PCM1860DBTR [TI]

具有通用前端的 103dB、2 通道硬件控制型音频 ADC | DBT | 30 | -40 to 125;
PCM1860DBTR
型号: PCM1860DBTR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有通用前端的 103dB、2 通道硬件控制型音频 ADC | DBT | 30 | -40 to 125

光电二极管 转换器
文件: 总144页 (文件大小:2847K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
PCM1860, PCM1861, PCM1862  
PCM1863, PCM1864, PCM1865  
Burr-Brown Audio  
ZHCSCB3D MARCH 2014REVISED MARCH 2018  
PCM186x 4 通道或 2 通道 192kHz 音频 ADC  
1 特性  
2 应用  
1
SNR 性能:  
家庭影院和电视  
语音控制设备  
蓝牙®扬声器  
110dB SNR (PCM1861/63/65)  
103dB SNR (PCM1860/62/64)  
麦克风阵列处理器  
ADC 采样率 (fS) = 8kHz 192kHz  
提供多达四个独立的 ADC 通道  
单端 2.1VRMS 满标量程 (FS) 输入  
差分 4.2VRMS FS 输入  
3 说明  
PCM186x 系列(PCM1860PCM1861、  
PCM1862PCM1863PCM1864 PCM1865)音  
频前端器件采用了新的音频功能集成方法,从而能够轻  
松地符合欧洲生态设计法规,同时能够以更低的成本实  
现高性能终端产品。PCM186x 支持 3.3V 单电源运  
行,并以小封装提供集成的可编程增益放大器  
(PGA);利用该配置,能够以更低的成本实现更小且更  
智能的产品。  
硬件 (HW) 控制:PCM1860/61  
软件 (SW) 控制(I2C SPI):  
PCM1862/63/64/65  
支持多达四个数字麦克风  
(软件控制的器件)  
可编程增益放大器 (PGA):  
固定增益:0dB12dB32dB  
(PCM1860/61)  
PCM186x 音频前端支持从较小的 mV 级麦克风输入到  
2.1VRMS 线路输入的单端输入电平,无需外部电阻分压  
器。前端混频器 (MIX)、多路复用器 (MUX) PGA 还  
支持差分 (Diff)、伪差分和单端 (SE) 输入,从而使这  
些器件成为需要干扰抑制的产品的理想接口。  
PCM186x 集成了许多可以辅助或替代某些 DSP 功能  
的系统级功能。  
软件控制的增益:–12dB +32dB  
(PCM1862/63/64/65)  
集成高性能音频 PLL  
3.3V 单电源运行  
3.3V 时的功耗:  
< 85mW (PCM1860/61/62/63)  
< 145mW (PCM1864/65)  
集成的带隙电压基准可提供出色的 PSRR,因此可能  
无需专用的模拟 3.3V 电源轨。  
用于音频系统唤醒和睡眠的 Energysense 音频内容  
检测器  
/从音频接口  
器件信息(1)  
自动 PGA 削波抑制控制  
所有器件之间具有 PCB 封装兼容性  
器件型号  
PCM186x  
封装  
封装尺寸(标称值)  
TSSOP (30)  
7.80mm x 4.40mm  
(1) 如需了解所有可用封装,请参阅数据表末尾的封装选项附录。  
简化应用示意图  
IN  
MIC  
DOUT  
BCK  
DOUT  
TMS320C5535  
PCM5121  
TPA3116  
TPA3116  
PCM186x  
LRCK  
SW mix  
IN  
LINE  
BCK  
LRCK  
PCM5100  
Copyright © 2017, Texas Instruments Incorporated  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SLAS831  
 
 
 
 
 
PCM1860, PCM1861, PCM1862  
PCM1863, PCM1864, PCM1865  
ZHCSCB3D MARCH 2014REVISED MARCH 2018  
www.ti.com.cn  
目录  
10.1 Application Information.......................................... 70  
10.2 Typical Applications .............................................. 75  
11 Power Supply Recommendations ..................... 79  
11.1 Power-Supply Distribution and Requirements ...... 79  
11.2 1.8-V Support........................................................ 79  
11.3 Brownout Conditions............................................. 79  
11.4 Power-Up Sequence............................................. 80  
11.5 Lowest Power-Down Modes ................................. 80  
11.6 Power-On Reset Sequencing Timing Diagram .... 81  
11.7 Power Connection Examples................................ 82  
11.8 Fade In.................................................................. 83  
12 Layout................................................................... 84  
12.1 Layout Guidelines ................................................. 84  
12.2 Layout Example .................................................... 85  
13 Register Maps...................................................... 85  
13.1 Register Map Description...................................... 85  
13.2 Register Map Summary ........................................ 86  
13.3 Page 0 Registers ................................................. 89  
13.4 Page 1 Registers ............................................... 129  
13.5 Page 3 Registers ............................................... 132  
13.6 Page 253 Registers ........................................... 133  
14 器件和文档支持 ................................................... 134  
14.1 文档支持.............................................................. 134  
14.2 相关链接.............................................................. 134  
14.3 接收文档更新通知 ............................................... 134  
14.4 社区资源.............................................................. 134  
14.5 ..................................................................... 134  
14.6 静电放电警告....................................................... 134  
14.7 Glossary.............................................................. 134  
15 机械、封装和可订购信息..................................... 135  
1
2
3
4
5
6
7
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Device Comparison Table..................................... 7  
Pin Configuration and Functions......................... 8  
Specifications....................................................... 12  
7.1 Absolute Maximum Ratings .................................... 12  
7.2 ESD Ratings............................................................ 12  
7.3 Recommended Operating Conditions..................... 12  
7.4 Thermal Information................................................ 12  
7.5 Electrical Characteristics: PGA and ADC AC  
Performance............................................................. 13  
7.6 Electrical Characteristics: DC ................................. 14  
7.7 Electrical Characteristics: Digital Filter.................... 16  
7.8 Timing Requirements: External Clock..................... 16  
7.9 Timing Requirements: I2C Control Interface .......... 17  
7.10 Timing Requirements: SPI Control Interface ....... 18  
7.11 Timing Requirements: Audio Data Interface for  
Slave Mode .............................................................. 19  
7.12 Timing Requirements: Audio Data Interface for  
Master Mode ............................................................ 20  
7.13 Typical Characteristics.......................................... 21  
Parameter Measurement Information ................ 23  
Detailed Description ............................................ 25  
9.1 Overview ................................................................. 25  
9.2 Functional Block Diagrams ..................................... 25  
9.3 Features Description .............................................. 28  
9.4 Device Functional Modes........................................ 60  
9.5 Programming........................................................... 62  
8
9
10 Application and Implementation........................ 70  
4 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
Changes from Revision C (August 2014) to Revision D  
Page  
已添加 在该数据表中添加了 PCM1860PCM1862 PCM1864 以及相关的内容;这些器件以前位于一个单独的数  
据表 (SLASE55A) .............................................................................................................................................................. 1  
已更改 为清楚起见,更改了标题 ............................................................................................................................................ 1  
已更改 更改了特性 项目以包含新的器件................................................................................................................................. 1  
已添加 添加了特性 项目以阐明硬件和软件控制的器........................................................................................................... 1  
已更改 将应用 中的汽车音响主机更改成了语音控制设备”................................................................................................... 1  
已更改 更改了说明 部分文本以阐明 3.3V 电源、集成 PGA 和其他前端 特性 ........................................................................ 1  
已更改 更改了简化应用图,以将以前的两个图合并为一个图 ................................................................................................. 1  
Deleted Typ Performance (3.3-V Supply, –1 dB-FS Input) table; redundant content ............................................................ 7  
Changed Device Comparison Table; updated for clarity........................................................................................................ 7  
Changed reference voltage output dcoupling point typical value from 0.5 VCC to 0.5 AVDD in VREF pin description........ 9  
Changed XO (pin 9) type from "—" to "Digital output" in both Pin Functions tables ............................................................. 9  
Changed "latch enable" to "word clock" in LRCK pin description ......................................................................................... 9  
Changed reference voltage output dcoupling point typical value from 0.5 VCC to 0.5 AVDD in VREF pin description ..... 11  
Changed "latch enable" to "word clock" in LRCK pin description ....................................................................................... 11  
2
版权 © 2014–2018, Texas Instruments Incorporated  
 
PCM1860, PCM1861, PCM1862  
PCM1863, PCM1864, PCM1865  
www.ti.com.cn  
ZHCSCB3D MARCH 2014REVISED MARCH 2018  
修订历史记录 (接下页)  
Added operating ambient temperature and junction temperature to Absolute Maximum Ratings table.............................. 12  
Changed ground voltage differences range from "AGND, DGND" to "AGND to DGND" ................................................... 12  
Changed storage temperature max value from 125°C to 150°C.......................................................................................... 12  
Changed CDM value from ±1500 V to ±750 V..................................................................................................................... 12  
Changed "Operating junction temperature range" to "Operating ambient temperature, TA" in Recommended  
Operating Conditions table ................................................................................................................................................... 12  
Changed Thermal Characteristics table to Thermal Information table................................................................................. 12  
Changed Electrical Characteristics: Primary PGA and ADC performance to include secondary ADC performance  
data, and deleted separate Electrical Characteristics: Secondary ADC Performance table ............................................... 13  
Added new table note to clarify test condition at 32-dB PGA gain....................................................................................... 13  
Added min value of 85 dB to input channel signal-to-noise ratio for 32 dB ......................................................................... 13  
Changed input channel signal-to-noise ratio for 32 dB typical value from 93 dB to 90 dB.................................................. 13  
Added min value of –76 dB to input channel THD+N, differential input for 32 dB .............................................................. 13  
Deleted "per input pin" and "out of phase" from full-scale voltage input parameter in Electrical Characteristics ................ 13  
Changed input channel signal-to-noise ratio, single-ended input value for PCM1865 from 110 dB to 106 dB;  
differential conditions used previously.................................................................................................................................. 13  
Changed "Energysense Detection Threshold" to "Default Energysense Signal Detection Threshold" in Electrical  
Characteristics, Secondary ADC Performance .................................................................................................................... 13  
Changed secondary ADC sampling rate from "same as audio sampling rate" to min of 8 kHz and max of 192 kHz ......... 13  
Changed Electrical Characteristics, DC conditions from master to slave mode; system clock from 256 × fS to 512 x fS.... 14  
Changed POWER section of the Electrical Characteristics, DC; updated section structure for clarity................................ 14  
Deleted all rows with XTAL as condition; not required for normal operation ....................................................................... 14  
Deleted all rows with Powerdown; not a valid operating mode ........................................................................................... 14  
Changed AVDD current typ value for 2-channel, 3.3-V, active mode from 16 mA to 18 mA .............................................. 14  
Changed Total power value for 2-channel, 3.3 V, sleep mode from 24 mW to 17.6 mW.................................................... 14  
Changed DVDD current for 2-channel, 3.3 V, standby mode from 353 µA to 0.015 mA..................................................... 14  
Changed Total power for 2-channel, 3.3 V, standby mode for software device from 0.59 mW to 0.64 mW ...................... 14  
DVDD current for 2-channel, 3.3 V and 1.8 V active mode typ value from 10 µA to 0.015 mA .......................................... 14  
Changed Total power for 2-channel, 3.3 V and 1.8 V active mode from 68 mW to 69.2 mW............................................. 14  
Changed Total power for 4-channel, 3.3 V, active mode from 145 mW to 135.3 mW ....................................................... 14  
Changed Total power for 4-channel, 3.3 V and 1.8 V, active mode from 128 mW to 117.3 mW........................................ 15  
Deleted redundant text "Valid with recommended values on analog rails (AVDD, VREF, and so on)" from PSRR ........... 15  
Changed "HPF frequency response" to "HPF –3-dB cutoff frequency" in Electrical Characteristics: Digital Filter.............. 16  
Added maximum BCK frequency rows to Timing Requirements, External Clock table ....................................................... 16  
Changed all FFT plot X axes from log scale to linear scale................................................................................................. 21  
Added Figure 7 ..................................................................................................................................................................... 21  
Changed Figure 9................................................................................................................................................................. 21  
Deleted previous Figure 11 and Figure 12........................................................................................................................... 21  
Added Figure 11 ................................................................................................................................................................... 21  
Added Figure 13 ................................................................................................................................................................... 22  
Added Figure 15 ................................................................................................................................................................... 22  
Changed Overview section for clarity................................................................................................................................... 25  
Deleted Terminology section; moved content to Overview section...................................................................................... 25  
Added Feature Description section, and moved existing content here................................................................................ 28  
Changed text in Analog Front End section for clarity........................................................................................................... 28  
Changed Mic Bias section; internal resistor is a terminating resistor................................................................................... 29  
版权 © 2014–2018, Texas Instruments Incorporated  
3
PCM1860, PCM1861, PCM1862  
PCM1863, PCM1864, PCM1865  
ZHCSCB3D MARCH 2014REVISED MARCH 2018  
www.ti.com.cn  
修订历史记录 (接下页)  
Deleted Figure 21 and Figure 22 from Mic Bias section ...................................................................................................... 29  
Added note stating that clocks are required to be running in order to change PGA in the Programmable Gain  
Amplifier section ................................................................................................................................................................... 31  
Added text to clarify digital PGA update use in Programmable Gain Amplifier section ....................................................... 31  
Changed note to clarify that the full scale moves to 4.2 VRMS when in differential mode at the end of the  
Programmable Gain Amplifier section.................................................................................................................................. 31  
Added new paragraph to end of Stereo PCM Sources section............................................................................................ 33  
Changed Figure 33; clock tree updated and corrected ........................................................................................................ 36  
Added new paragraph to target ADC, DSP1 and DSP2 clock rates in Device Clock Distribution and Generation section 36  
Changed Clock Configuration and Selection section; relevant to hardware-controlled devices only .................................. 37  
Added new paragraph regarding register MST_SCK_SRC to Clock Sources for Software-Controlled Devices section .... 37  
Added note ("In Master Mode on..") to Clock Sources for Software-Controlled Devices section ........................................ 38  
Changed Table 7; updated descriptions for clarity............................................................................................................... 38  
Changed "CLK_DIV_MST_SCK" to "CLK_DIV_SCK_BCK" and "CLK_DIV_MST_BCK" to "CLK_DIV_BCK_LRCK"  
in Table 7.............................................................................................................................................................................. 38  
Changed Figure 34; clock tree updated and corrected ........................................................................................................ 38  
Added "Target Clock Rates for ADC, DSP#1 and DSP#2" section ..................................................................................... 39  
Changed Table 9; corrected PLL values by increasing P and R by 1, and corrected DSP1 clock divider values .............. 40  
Changed Table 10; corrected PLL values by increasing P and R by 1, and corrected DSP1 clock divider values ............ 41  
Changed Table 12; corrected PLL values by increasing P and R by 1, and corrected typo in DSP2 column title.............. 43  
Changed Table 13; corrected PLL values by increasing P and R by 1, and corrected typo in DSP2 column title.............. 44  
Added text "The clock tree must also be set..." to Software-Controlled Devices ADC Non-Audio MCK PLL Mode  
section .................................................................................................................................................................................. 45  
Changed PLL condition for D = 0000 to show 1 MHz (PLLCKIN / P) 20 MHz and 1 J 63...................................... 45  
Changed PLL condition for D 0000 to show 6.667 MHz (PLLCLKIN / P) 20 MHz and 4 J 11 ............................. 45  
Changed register numbers in Software-Controlled Devices Manual PLL Calculation section to align with the register  
numbers in Table 14............................................................................................................................................................. 46  
Changed Clock Halt and Error section; clock error moved to Clocks section, and interrupt capability deleted................... 46  
Added Changing Clock Sources and Sample Rates section ............................................................................................... 47  
Changed Secondary ADC: Energysense and Analog Control section; energysense signal detection not available in  
active mode .......................................................................................................................................................................... 48  
Changed text from "control signals up to 1.65 V" to "control signals up to 4.3 V" in the Secondary ADC Analog Input  
Range section....................................................................................................................................................................... 49  
Changed section title from "Secondary ADC DC Level Change Detection" to "Secondary ADC Controlsense DC  
Level Change Detection"...................................................................................................................................................... 49  
Added text to the Secondary ADC Controlsense DC Level Change Detection section; controlsense is available in  
both active and sleep modes................................................................................................................................................ 49  
Added details to the Secondary ADC Controlsense DC Level Change Detection section regarding how to read  
simple 8-bit values from the secondary ADC ....................................................................................................................... 49  
Added new second paragraph to Energysense section....................................................................................................... 50  
Changed paragraph after Figure 38 in Energysense Signal Loss Flag section for clarity ................................................... 51  
Changed Digital Decimation Filters section; clarified two different HPFs in the device....................................................... 53  
Changed text to clarify digital PGA update use in Digital PGA section................................................................................ 53  
Changed Interrupt Controller section; deleted clock error as an interrupt source................................................................ 56  
Changed text after Figure 44 in Interrupt Controller section; clarified INT pins all have same logic signal......................... 56  
Added short description in the DIN Toggle Detection section.............................................................................................. 56  
Added Clearing Interrupts section ........................................................................................................................................ 56  
Changed Digital Audio Output 2 Configuration section; DOUT2 not available in TDM mode, only for 4-ch devices .......... 58  
4
版权 © 2014–2018, Texas Instruments Incorporated  
PCM1860, PCM1861, PCM1862  
PCM1863, PCM1864, PCM1865  
www.ti.com.cn  
ZHCSCB3D MARCH 2014REVISED MARCH 2018  
修订历史记录 (接下页)  
Added Time Division Multiplex (TDM Support) section........................................................................................................ 58  
Changed location of timing diagrams to Specifications section, and deleted Interface Timing section............................... 59  
Changed text in Bypassing the Internal LDO to Reduce Power Consumption section to clarify TDM mode with 1.8-V  
IOVDD operation .................................................................................................................................................................. 61  
Added text "The I2C control port.." to the I2C Interface section............................................................................................ 64  
Changed pin numbers in Table 22 from "15, 16, 14" to "23, 24, 25" ................................................................................... 64  
Added Real World Software Configuration using EnergySense and Controlsense section................................................. 65  
Added more detail to Programming DSP Coefficients on Software-Controlled Devices section, and moved to new  
location ................................................................................................................................................................................. 68  
已添加 Dual PCM186x TDM Functionality section ............................................................................................................... 73  
已添加 new paragraph to end of Analog Front-End Circuit For Single-Ended, Line-In Applications section....................... 74  
已更改 1.8-V Support section; clarified that both IOVDD and LDO must be driven with 1.8 V in 1.8-V mode .................... 79  
已添加 Brownout Conditions section .................................................................................................................................... 79  
已添加 test condition to step 3 in Power Up Sequence section; (PLL requires < 250 µs)................................................... 80  
已更改 Layout section for clarity .......................................................................................................................................... 84  
已删除 old Figure 67, PCM1865 EVM Signal Partitioning; redundant, and same information shown in Figure 74 ............ 84  
已添加 Figure 75................................................................................................................................................................... 85  
已更改 "0xFF" to "0xFE" in last sentence of Register Map Description section................................................................... 85  
Changed values for register 3, bits 6-0; changed from "RSV" to correct bit names ........................................................... 86  
Changed bits 4 and 3 from 1 and 0 to RSV, respectively, in register 27 ............................................................................. 86  
Changed register 44 (0x2C) from reserved ("RSV") to actual bit names............................................................................. 87  
Changed registers 52 and 53 to registers 51 and 52, respectively...................................................................................... 87  
Changed TX_WLEN bit option 00 description from "Reserved" to "32-bit" in Page 0, register 11 ...................................... 95  
Changed GPIO0_FUNC for 001 from "SPI MISO (Out:Default)" to "Digital MIC Input 0 (In)" and for 010 from  
"RESERVED" to "SPI MISO (Out)" in register 16 ................................................................................................................ 98  
Changed "DPGA" to "APGA" in description column for bits 3, 2, 1, and 0 in register 25 .................................................. 104  
Changed DIV_NUM default value in page 0, register 33 from "000 0001" to "000 0000" ................................................. 106  
Changed names and descriptions of master mode clock dividers in registers 37, 38, and 39 for clarity .......................... 108  
Changed "Divider" to "Multiplier" in R[3:0] description for register 42................................................................................ 110  
Changed values for R[3:0] from 1, 1/2, 1/3, 1/4, and 1/16 to 1, 2, 3, 4, and 16, respectively .......................................... 110  
Changed "Divider" to "Multiplier" in J[5:0] description for register 43 ................................................................................ 111  
Changed "Divider" to "Multiplier" in D_LSB[7:0] description for register 44....................................................................... 111  
Changed "Divider" to "Multiplier" in D_MSB[5:0] description for register 45...................................................................... 111  
Changed register 52 to register 51..................................................................................................................................... 114  
Changed register 53 to register 52..................................................................................................................................... 115  
Changed bit 3 from CLKERR to RSV in register 96........................................................................................................... 123  
Deleted bit 3 from CLKERR to RSV in register 97............................................................................................................. 124  
Changed default values in page 1: register 1 for bits 4, 2, 1, and 0 from "1" to "0", and updated descriptions for clarity. 129  
Changes from Revision B (March 2014) to Revision C  
Page  
已更改 在整个数据表中将端子更改成了引脚”...................................................................................................................... 1  
已添加 添加了有关可订购产品附录的表.............................................................................................................................. 1  
已删除 从器件信息表的部件号中删除了封装符号................................................................................................................. 1  
已更改 将“-1dBFS 下的 THD+N”更改成了“-1dBFS 下的差分输入”......................................................................................... 1  
Corrected pin numbers in Pin Description table..................................................................................................................... 9  
版权 © 2014–2018, Texas Instruments Incorporated  
5
PCM1860, PCM1861, PCM1862  
PCM1863, PCM1864, PCM1865  
ZHCSCB3D MARCH 2014REVISED MARCH 2018  
www.ti.com.cn  
Corrected pin numbers in Pin Description table - pin 11 is LDO and pin 12 is DGND ........................................................ 11  
Changed Energysense Accuracy typ from 1dB to 3dB ........................................................................................................ 13  
Changed Secondary ADC Accuracy from 10 bits to 12 bits ............................................................................................... 13  
Added Parameter Measurement Information section .......................................................................................................... 23  
已添加 default values for reserved registers ........................................................................................................................ 85  
Changes from Revision A (March 2014) to Revision B  
Page  
已添加 添加了 PCM1861 示例系统..................................................................................................................................... 1  
已更改 更改了典型性能表 ....................................................................................................................................................... 1  
Updated Page 3 and Page 253 registers ............................................................................................................................ 85  
Changes from Original (March 2014) to Revision A  
Page  
已更改 将预告信息更改成了生产数据状态 ......................................................................................................................... 1  
6
Copyright © 2014–2018, Texas Instruments Incorporated  
PCM1860, PCM1861, PCM1862  
PCM1863, PCM1864, PCM1865  
www.ti.com.cn  
ZHCSCB3D MARCH 2014REVISED MARCH 2018  
5 Device Comparison Table  
PART NUMBER  
PCM1860  
PCM1861  
PCM1862  
PCM1863  
PCM1864  
PCM1865  
I2C or SPI  
Control method  
H/W  
Differential  
SNR performance A weighted  
data  
103 dB  
110 dB  
103 dB  
110 dB  
103 dB  
110 dB  
Analog front end  
2.1 VRMS MUX with fixed PGA gains  
2
2.1 VRMS MUX, MIX, PGA and auxiliary ADC  
Simultaneous channel  
capability  
2
4
Energysense signal detect  
Energysense signal loss  
Controlsense  
Yes (fixed threshold)  
Yes (programmable threshold)  
Yes (programmable threshold)  
Yes (programmable threshold)  
Yes  
No  
No  
Interrupt controller  
Digital microphone support  
Clock PLL  
No  
No  
Yes (2)  
Yes (4)  
BCK to generate internal master clock  
Fully programmable  
0.22 mW  
Lowest power standby mode  
(1.8-V IOVDD)  
7.96 mW  
Digital mixing with digital and  
analog inputs  
No  
Yes  
Left-justified, I2S  
Left-justified, right-justified, I2S, TDM  
Digital output formats  
Interrupt capabilities  
Energysense signal loss and detect, controlsense, post PGA clipping, RX digital  
Energysense signal detect  
toggle  
Copyright © 2014–2018, Texas Instruments Incorporated  
7
PCM1860, PCM1861, PCM1862  
PCM1863, PCM1864, PCM1865  
ZHCSCB3D MARCH 2014REVISED MARCH 2018  
www.ti.com.cn  
6 Pin Configuration and Functions  
DBT Package: PCM1860 and PCM1861  
30-Pin TSSOP  
Top View  
VINL2/VIN1M  
VINR2/VIN2M  
VINL1/VIN1P  
VINR1/VIN2P  
Mic Bias  
VREF  
1
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
VINR3/VIN3P  
VINL3/VIN4P  
VINR4/VIN3M  
VINL4/VIN4M  
MD0  
2
3
4
5
6
MD1  
AGND  
7
MD3  
AVDD  
8
MD2  
XO  
9
MD4  
XI  
10  
11  
12  
13  
14  
15  
MD5  
LDO  
MD6  
DGND  
INT  
DVDD  
DOUT  
IOVDD  
BCK  
SCKI  
LRCK  
Not to scale  
8
Copyright © 2014–2018, Texas Instruments Incorporated  
 
PCM1860, PCM1861, PCM1862  
PCM1863, PCM1864, PCM1865  
www.ti.com.cn  
ZHCSCB3D MARCH 2014REVISED MARCH 2018  
Pin Functions: PCM1860 and PCM1861  
PIN  
TYPE  
DESCRIPTION  
NO.  
1
NAME  
VINL2/VIN1M  
VINR2/VIN2M  
VINL1/VIN1P  
VINR1/VIN2P  
Mic Bias  
Analog input  
Analog input  
Analog input  
Analog input  
Power  
Analog input 2, L-channel (or differential M input for input 1)  
Analog input 2, R-channel (or differential M input for input 2)  
Analog input 1, L-channel (or differential P input for input 1)  
Analog input 1, R-channel (or differential P input for input 2)  
Microphone bias output  
2
3
4
5
Power  
Reference voltage output decoupling point (typically, 0.5 AVDD). Connect 1-µF capacitor  
from this pin to AGND.  
6
7
8
VREF  
AGND  
AVDD  
Power  
Power  
Analog ground  
Analog power supply (typically, 3.3 V). Connect 0.1-µF and 10-µF capacitors from this pin  
to AGND.  
9
XO  
XI  
Digital output  
Digital input  
Power  
Crystal oscillator output  
10  
Crystal oscillator input or master clock input (1.8-V CMOS signal)  
Internal low-dropout regulator (LDO) decoupling output, or external 1.8-V input to bypass  
LDO. Connect 0.1-µF and 10-µF capacitors from this pin to DGND.  
11  
12  
13  
LDO  
DGND  
DVDD  
Power  
Power  
Digital ground  
Digital power supply (typically, 3.3 V). Connect 0.1-µF and 10-µF capacitors from this pin to  
DGND.  
14  
15  
IOVDD  
SCKI  
Power  
Power supply for I/O voltages (typically, 3.3 V or 1.8 V).  
CMOS level (3.3 V) master clock input  
Digital input  
Digital  
input/output  
Audio data word clock (left right clock) input/output(1)  
16  
17  
LRCK  
BCK  
Digital  
input/output  
Audio data bit clock input/output(1)  
18  
19  
DOUT  
INT  
Digital output  
Audio data digital output  
Analog output Interrupt output (for analog input detection). Pull high for active mode, pull low for idle.  
Analog input  
Analog MUX and gain selection using MD6, MD5, and MD2 pins, respectively:  
000: SE Ch 1 (VINL1 and VINR1)  
001: SE Ch 2 (VINL2 and VINR2)  
010: SE Ch 3 (VINL3 and VINR3)  
20  
MD6  
011: SE Ch 4 (VINL4 and VINR4)  
100: SE Ch 4 with 12-dB gain  
101: SE Ch 4 with 32-dB gain  
110: Diff Ch 1 (VIN1P and VIN1M, VIN2P and VIN2M)  
111: Diff Ch 2 (VIN3P and VIN3M, VIN4P and VIN4M) with 12-dB gain  
21  
22  
23  
24  
MD5  
MD4  
MD2  
MD3  
Analog input  
Analog input  
Analog input  
Digital Input  
Analog input  
Analog MUX and gain selection (see MD6 pin for description)  
Audio format: high = left-justified, low = I2S  
Analog MUX and gain selection (see MD6 pin for description)  
Filter select: 0 = FIR decimation filter, 1 = IIR low latency decimation filter  
Audio interface mode selection using MD1 and MD0 pins, respectively:  
00: Slave mode, 256 × fS, 384 × fS, 512 × fS autodetect  
01: Master mode (512 × fS)  
25  
MD1  
10: Master mode (384 × fS)  
11: Master mode (256 × fS)  
26  
27  
28  
29  
30  
MD0  
Analog input  
Analog input  
Analog input  
Analog input  
Analog input  
Audio interface mode selection (see MD1 pin for description)  
Analog input 4, L-channel (or differential M input for input 4)  
Analog input 4, R-channel (or differential M input for input 3)  
Analog input 3, L-channel (or differential P input for input 4)  
Analog input 3, R-channel (or differential P input for input 3)  
VINL4/VIN4M  
VINR4/VIN3M  
VINL3/VIN4P  
VINR3/VIN3P  
(1) Schmitt trigger input with internal pull-down (50 kΩ, typically).  
Copyright © 2014–2018, Texas Instruments Incorporated  
9
PCM1860, PCM1861, PCM1862  
PCM1863, PCM1864, PCM1865  
ZHCSCB3D MARCH 2014REVISED MARCH 2018  
www.ti.com.cn  
DBT Package: PCM1862, PCM1863, PCM1864, and PCM1865  
30-Pin TSSOP  
Top View  
VINL2/VIN1M  
VINR2/VIN2M  
VINL1/VIN1P  
VINR1/VIN2P  
Mic Bias  
VREF  
1
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
VINR3/VIN3P  
VINL3/VIN4P  
VINR4/VIN3M  
VINL4/VIN4M  
MD0  
2
3
4
5
6
MS/AD  
AGND  
7
MC/SCL  
AVDD  
8
MOSI/SDA  
MISO/GPIO0/DMIN2  
GPIO1/INTA/DMIN  
GPIO2/INTB/DMCLK  
GPIO3/INTC  
DOUT  
XO  
9
XI  
10  
11  
12  
13  
14  
15  
LDO  
DGND  
DVDD  
IOVDD  
BCK  
SCKI  
LRCK  
Not to scale  
NOTE: The DMIN2 option for pin 22 is only available on the PCM1864 and PCM1865 devices.  
10  
Copyright © 2014–2018, Texas Instruments Incorporated  
PCM1860, PCM1861, PCM1862  
PCM1863, PCM1864, PCM1865  
www.ti.com.cn  
ZHCSCB3D MARCH 2014REVISED MARCH 2018  
Pin Functions: PCM1862, PCM1863, PCM1864, and PCM1865  
PIN  
TYPE  
DESCRIPTION  
NO.  
1
NAME  
VINL2/VIN1M  
VINR2/VIN2M  
VINL1/VIN1P  
VINR1/VIN2P  
Mic Bias  
Analog input  
Analog input  
Analog input  
Analog input  
Power  
Analog input 2, L-channel (or differential M input for input 1)  
Analog input 2, R-channel (or differential M input for input 2)  
Analog input 1, L-channel (or differential P input for input 1)  
Analog input 1, R-channel (or differential P input for input 2)  
Microphone bias output  
2
3
4
5
6
Power  
Reference voltage output decoupling point (typically, 0.5 AVDD). Connect 1-µF  
capacitor from this pin to AGND.  
VREF  
AGND  
AVDD  
7
8
Power  
Power  
Analog ground  
Analog power supply (typically, 3.3 V). Connect 0.1-µF and 10-µF capacitors from  
this pin to AGND.  
9
XO  
XI  
Digital output  
Digital input  
Power  
Crystal oscillator output  
10  
11  
Crystal oscillator input or master clock input (1.8-V CMOS signal)  
Internal LDO decoupling output, or external 1.8-V input to bypass LDO. Connect  
0.1-µF and 10-µF capacitors from this pin to DGND.  
LDO  
12  
13  
DGND  
DVDD  
Power  
Power  
Digital ground  
Digital power supply (typically, 3.3 V). Connect 0.1-µF and 10-µF capacitors from  
this pin to DGND.  
14  
15  
16  
17  
18  
19  
IOVDD  
SCKI  
Power  
Power supply for I/O voltages (typically, 3.3 V or 1.8 V).  
CMOS level (3.3 V) master clock input  
Digital input  
LRCK  
Digital input/output Audio data world clock (left right clock) input/output(1)  
Digital input/output Audio data bit clock input/output(1)  
BCK  
DOUT  
Analog output  
Audio data digital output  
GPIO3/INTC  
Digital input/output GPIO 3 or interrupt C  
20  
21  
22  
GPIO2/INTB/DMCLK Digital input/output GPIO 2, interrupt B, or digital microphone clock output  
GPIO1/INTA/DMIN  
Digital input/output GPIO 1, interrupt A, or digital microphone input  
Digital input/output In SPI mode: master in, slave out  
MISO/GPIO0/DMIN2  
In I2C mode: GPIO0 (or DMIN2 for PCM1864 and PCM1865 only)  
23  
24  
25  
Digital input/output In SPI mode: master out, slave in  
In I2C mode: SDA  
MOSI/SDA  
MC/SCL  
MS/AD  
Digital input  
In SPI mode: serial bit clock  
In I2C mode: serial bit clock  
Digital input  
In SPI mode: chip select  
In I2C mode: address pin  
26  
27  
28  
29  
30  
MD0  
Digital input  
Analog input  
Analog input  
Analog input  
Analog input  
Control method select pin: I2C (tied low or not connected) or SPI (tied high)  
Analog input 4, L-channel (or differential M input for input 4)  
Analog input 4, R-channel (or differential M input for input 3)  
Analog input 3, L-channel (or differential P input for input 4)  
Analog input 3, R-channel (or differential P input for input 3)  
VINL4/VIN4M  
VINR4/VIN3M  
VINL3/VIN4P  
VINR3/VIN3P  
(1) Schmitt trigger input with internal pull-down (50 kΩ, typically).  
Copyright © 2014–2018, Texas Instruments Incorporated  
11  
PCM1860, PCM1861, PCM1862  
PCM1863, PCM1864, PCM1865  
ZHCSCB3D MARCH 2014REVISED MARCH 2018  
www.ti.com.cn  
7 Specifications  
7.1 Absolute Maximum Ratings  
over operating temperature (unless otherwise noted)(1)  
MIN  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–1.7  
–40  
MAX  
3.9  
UNIT  
AVDD to AGND  
Supply voltage  
DVDD to DGND  
IOVDD to DGND  
AGND to DGND  
Digital input to DGND  
XI to DGND  
3.9  
V
3.9  
Ground voltage differences  
Digital input voltage  
0.3  
V
V
V
IOVDD + 0.3  
2.1  
Analog input voltage  
VINxx to AGND  
Operating ambient, TA  
Junction, TJ  
5.0  
125  
Temperature  
–40  
150  
°C  
Storage, Tstg  
–40  
150  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating  
conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
7.2 ESD Ratings  
VALUE  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
±2000  
V(ESD)  
Electrostatic discharge  
V
Charged-device model (CDM), per JEDEC specification JESD22-  
C101(2)  
±750  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
7.3 Recommended Operating Conditions  
MIN  
NOM  
MAX  
UNIT  
POWER  
AVDD  
Analog supply voltage to AGND  
Digital supply voltage to DGND  
3.0  
3.0  
3.3  
3.3  
1.8  
3.3  
3.6  
3.6  
V
V
V
V
DVDD  
at 1.8 V  
at 3.3 V  
1.62  
3.0  
1.98  
3.6  
IOVDD IO supply voltage to DGND  
LDO pin voltage to DGND  
LDO  
IOVDD – 0.3  
IOVDD  
IOVDD + 0.3  
V
(LDO is an input when using external 1.8-V power supply)  
TEMPERATURE  
TA Operating ambient temperature  
–40  
125  
°C  
7.4 Thermal Information  
PCM186x  
THERMAL METRIC(1)  
DBT (TSSOP)  
30 PINS  
79.6  
UNIT  
RθJA  
RθJC(top)  
RθJB  
ψJT  
Junction-to-ambient thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
15.1  
33.1  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
0.4  
ψJB  
32.6  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
12  
Copyright © 2014–2018, Texas Instruments Incorporated  
 
PCM1860, PCM1861, PCM1862  
PCM1863, PCM1864, PCM1865  
www.ti.com.cn  
ZHCSCB3D MARCH 2014REVISED MARCH 2018  
7.5 Electrical Characteristics: PGA and ADC AC Performance  
all specifications at TA = 25°C, AVDD = 3.3 V, DVDD = 3.3 V, IOVDD = 3.3 V, master mode, single-speed mode, fS = 48 kHz,  
system clock = 256 × fS, and 24-bit data (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
PRIMARY PGA AND ADC  
PCM1860  
PCM1862  
PCM1864  
97  
97  
103  
110  
dB  
dB  
0-dB PGA gain, –60-dB input signal,  
master mode at Diff input  
Input channel signal-to-noise ratio,  
differential input  
PCM1861  
PCM1863  
PCM1865  
32-dB PGA gain(1), –86-dB input signal, master mode at  
Diff input  
85  
–85  
–76  
90  
–93  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
0-dB PGA gain, –1-dB input signal, master mode at Diff  
input  
Input channel THD+N, differential  
input  
32-dB PGA gain, –33-dB input signal, master mode at  
Diff input  
–84  
L channel to R channel separation line  
input  
0-dB PGA gain, –1-dB input signal, master mode  
20-dB PGA gain, –1-dB input signal, master mode  
0-dB PGA gain, –1-dB input signal, master mode  
0-dB PGA gain, –1-dB input signal, master mode  
20-dB PGA gain, –1-dB input signal, master mode  
–105  
–105  
–105  
–105  
–105  
–105  
L channel to R channel separation mic  
input  
L1 channel to L2 channel separation  
line input  
R1 channel to R2 channel separation  
line input  
L1 channel to L2 channel separation  
mic input  
R1 channel to R2 channel separation  
mic input  
20-dB PGA gain, –1-dB input signal, master mode  
–12 to +12 dB (1-dB step), 20 dB, and 32 dB  
Range of analog PGA  
–12(2)  
32  
dB  
dB  
Accuracy of PGA + ADC  
0.5  
Matching between PGA + ADCs on-  
chip  
0.05  
dB  
Single-ended mode  
2.1  
4.2  
VRMS  
VRMS  
Full-scale voltage input  
Differential mode (2.1 VRMS per pin)  
PCM1860  
PCM1862  
PCM1864  
103  
106  
dB  
dB  
0-dB PGA gain, –60-dB input signal,  
master mode at SE input  
Input channel signal-to-noise ratio,  
single-ended input  
PCM1861  
PCM1863  
PCM1865  
32-dB PGA gain, –92-dB input signal, master mode at  
SE input  
75  
87  
68  
dB  
dB  
dB  
0-dB PGA gain, –1-dB input signal, master mode at SE  
input  
Input channel THD+N, single-ended  
input  
32-dB PGA gain, –33-dB input signal, master mode at  
SE input  
PCM1864 and PCM1865  
10  
20  
Input impedance per analog input pin  
kΩ  
PCM1860, PCM1861, PCM1862, and PCM1863  
Differential input, 1-kHz signal on both pins and measure  
level at output  
CMRR Common-mode rejection ratio  
56  
dB  
SECONDARY ADC PERFORMANCE  
Default Energysense signal detection  
threshold  
At 1 kHz  
–57  
dBFS  
Energysense signal bandwidth  
Energysense accuracy(2)  
10  
3
kHz  
dB  
Secondary ADC accuracy  
Secondary ADC sampling rate  
12  
bits  
kHz  
8
192  
(1) 32-dB gain when using differential mode inputs is only available in SW-controlled devices.  
(2) Specified by design.  
Copyright © 2014–2018, Texas Instruments Incorporated  
13  
PCM1860, PCM1861, PCM1862  
PCM1863, PCM1864, PCM1865  
ZHCSCB3D MARCH 2014REVISED MARCH 2018  
www.ti.com.cn  
7.6 Electrical Characteristics: DC  
all specifications at TA = 25°C, AVDD = 3.3 V, DVDD = 3.3 V, IOVDD = 3.3 V, slave mode, single-speed mode, fS = 48 kHz,  
system clock = 512 × fS, and 24-bit data (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
POWER  
AVDD current  
18  
0.01  
6.2  
mA  
mA  
mA  
mW  
mA  
mA  
mA  
mW  
mA  
mA  
mA  
mW  
mA  
mA  
mA  
mW  
mA  
mA  
mA  
mW  
mA  
mA  
mA  
mW  
mA  
mA  
mW  
mA  
mA  
mA  
mW  
mA  
mA  
mA  
mW  
mA  
mA  
mA  
mW  
mA  
mA  
mA  
mW  
mA  
mA  
mA  
mW  
DVDD current  
IOVDD current  
Total Power  
2-channel device, AVDD = DVDD = IOVDD = 3.3 V,  
active mode  
80  
AVDD current  
DVDD current  
IOVDD current  
Total power  
2.8  
0.353  
2.2  
2-channel device, AVDD = DVDD = IOVDD = 3.3 V,  
sleep mode  
17.6  
0.06  
0.015  
0.12  
0.64  
1.3  
AVDD current  
DVDD current  
IOVDD current  
Total power  
2-channel device, AVDD = DVDD = IOVDD = 3.3 V,  
standby mode for software device  
AVDD current  
DVDD current  
IOVDD current  
Total power  
0.353  
1.6  
2-channel device, AVDD = DVDD = IOVDD = 3.3 V,  
standby mode for hardware device  
10.725  
18  
AVDD current  
DVDD current  
IOVDD and LDO Current  
Total power  
0.015  
5.4  
2-channel device, AVDD = DVDD = 3.3 V,  
IOVDD = LDO = 1.8 V, active mode  
69.2  
2.8  
AVDD current  
DVDD current  
IOVDD and LDO Current  
Total power  
0.353  
2
2-channel device, AVDD = DVDD = 3.3 V  
IOVDD = LDO = 1.8 V, sleep mode  
13.995  
0.06  
0.007  
0.221  
1.3  
AVDD current  
DVDD current  
Total power(1)  
AVDD current  
DVDD current  
IOVDD and LDO Current  
Total power  
2-channel device, AVDD = DVDD = 3.3 V,  
IOVDD = LDO = 1.8 V,  
standby mode for software device  
2-channel device, AVDD = DVDD = 3.3 V,  
IOVDD = LDO = 1.8 V,  
standby mode for hardware device  
0.35  
1.4  
7.965  
31  
AVDD current  
DVDD current  
IOVDD current  
Total power  
0.01  
10  
4-channel device, AVDD = DVDD = IOVDD = 3.3 V,  
active mode  
135.3  
2.8  
AVDD current  
DVDD current  
IOVDD current  
Total power  
0.35  
2.2  
4-channel device, AVDD = DVDD = IOVDD = 3.3 V,  
sleep mode  
17.655  
0.06  
0.015  
0.12  
0.644  
1.3  
AVDD current  
DVDD current  
IOVDD current  
Total power  
4-channel device, AVDD = DVDD = IOVDD = 3.3 V,  
standby mode for software device  
AVDD current  
DVDD current  
IOVDD current  
Total power  
0.35  
0.16  
10.725  
4-channel device, AVDD = DVDD = IOVDD = 3.3 V,  
standby mode for hardware device  
(1) IOVDD and LDO current consumption is negligible for software-controlled devices in standby mode.  
14  
Copyright © 2014–2018, Texas Instruments Incorporated  
PCM1860, PCM1861, PCM1862  
PCM1863, PCM1864, PCM1865  
www.ti.com.cn  
ZHCSCB3D MARCH 2014REVISED MARCH 2018  
Electrical Characteristics: DC (continued)  
all specifications at TA = 25°C, AVDD = 3.3 V, DVDD = 3.3 V, IOVDD = 3.3 V, slave mode, single-speed mode, fS = 48 kHz,  
system clock = 512 × fS, and 24-bit data (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
mA  
mA  
mA  
mW  
mA  
mA  
mA  
mW  
mA  
mA  
mW  
mA  
mA  
mA  
mW  
mA  
mA  
mA  
AVDD current  
31  
DVDD current  
0.01  
8.3  
4-channel device, AVDD = DVDD = 3.3 V,  
IOVDD = LDO = 1.8 V, active mode  
IOVDD and LDO Current  
Total power  
117.3  
2.8  
AVDD current  
DVDD current  
0.35  
2
4-channel device, AVDD = DVDD = 3.3 V,  
IOVDD = LDO = 1.8 V, sleep mode  
IOVDD and LDO Current  
Total power  
13.995  
0.06  
0.007  
0.221  
1.3  
AVDD current  
4-channel device, AVDD = DVDD = 3.3 V,  
IOVDD = LDO = 1.8 V,  
standby mode for software device  
DVDD current  
Total power(1)  
AVDD current  
4-channel device, AVDD = DVDD = 3.3 V,  
IOVDD = LDO = 1.8 V,  
standby mode for hardware device  
DVDD current  
0.35  
1.4  
IOVDD and LDO Current  
Total power  
7.965  
0.5  
on IOVDD when XTAL is used  
on DVDD in BCK PLL mode  
1.5  
on IOVDD when master mode is enabled  
2
Additional current consumption  
Power-supply rejection ratio  
IOVDD = 3.3 V or IOVDD = LDO = 1.8 V, fS = 192  
kHz, 2-channel active mode  
4
mA  
IOVDD = 3.3 V or IOVDD = LDO = 1.8 V, fS = 192  
kHz, 4-channel active mode  
7.5  
80  
mA  
dB  
PSRR  
MIC BIAS  
Mic bias noise  
5
4
µVRMS  
mA  
Mic bias current drive  
Mic bias voltage  
2.6  
V
DIGITAL I/O  
VOH  
VOL  
Output logic high voltage level  
IOH = 2 mA  
75  
25  
%IOVDD  
%IOVDD  
µA  
Output logic low voltage level  
Input logic high current level  
Input logic low current level  
IOL = –2 mA  
All digital pins  
All digital pins  
|IIH|1  
|IIL|1  
10  
–10  
µA  
Copyright © 2014–2018, Texas Instruments Incorporated  
15  
PCM1860, PCM1861, PCM1862  
PCM1863, PCM1864, PCM1865  
ZHCSCB3D MARCH 2014REVISED MARCH 2018  
www.ti.com.cn  
7.7 Electrical Characteristics: Digital Filter  
all specifications at TA = 25°C, AVDD = 3.3 V, DVDD = 3.3 V, IOVDD = 3.3 V, master mode, single-speed mode, fS = 48 kHz,  
system clock = 256 × fS, and 24-bit data (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
CLASSIC FIR  
Pass band  
0.454  
0.583  
±0.05  
–65  
30  
fS  
fS  
Stop band  
Pass-band ripple  
dB  
Stop-band attenuation  
Group delay or latency  
HPF –3-dB cutoff frequency  
dB  
Samples  
Hz  
1
LOW LATENCY IIR  
Pass band  
0.454  
0.546  
±0.02  
–75  
10  
fS  
fS  
Stop band  
Pass-band ripple  
Stop-band attenuation  
Group delay or latency  
HPF –3-dB cutoff frequency  
dB  
dB  
Samples  
Hz  
1
7.8 Timing Requirements: External Clock  
all specifications at TA = 25°C, AVDD = 3.3 V, DVDD = 3.3 V, IOVDD = 3.3 V, master mode, single-speed mode, fS = 48 kHz,  
system clock = 256 × fS, 24-bit data (unless otherwise noted)  
MIN  
15  
TYP  
MAX  
35  
UNIT  
MHz  
MHz  
MHz  
XTAL support  
MCLK frequency  
MCLK  
3.3 V on MCLK pin  
1.8 V MCLK input on XI pin  
1.8 V MCLK  
1
50  
1
50  
MCLK input duty cycle  
48%  
52%  
50  
IOVDD = 3.3 V  
MHz  
MHz  
Maximum BCK frequency  
IOVDD = 1.8 V  
25  
16  
Copyright © 2014–2018, Texas Instruments Incorporated  
PCM1860, PCM1861, PCM1862  
PCM1863, PCM1864, PCM1865  
www.ti.com.cn  
ZHCSCB3D MARCH 2014REVISED MARCH 2018  
7.9 Timing Requirements: I2C Control Interface  
CONDITIONS  
Standard  
MIN  
MAX  
100  
UNIT  
kHz  
fSCL  
SCL clock frequency  
Fast  
400  
kHz  
Standard  
Fast  
4.7  
1.3  
tBUF  
Bus free time between a STOP and START condition  
Low period of the SCL clock  
High period of the SCL clock  
Setup time for repeated START condition  
Hold time for START condition  
Hold time for repeated START condition  
Data setup time  
µs  
µs  
Standard  
Fast  
4.7  
tLOW  
1.3  
Standard  
Fast  
4.0  
µs  
ns  
µs  
ns  
µs  
ns  
µs  
ns  
tHI  
600  
Standard  
Fast  
4.7  
tRS-SU  
tS-HD  
tRS-HD  
tD-SU  
tD-HD  
tSCL-R  
tSCL-R1  
tSCL-F  
tSDA-R  
tSDA-F  
tP-SU  
600  
Standard  
Fast  
4.0  
600  
Standard  
Fast  
4.0  
600  
Standard  
Fast  
250  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
100  
Standard  
Fast  
0
900  
900  
Data hold time  
0
Standard  
Fast  
20 + 0.1CB  
20 + 0.1CB  
20 + 0.1CB  
20 + 0.1CB  
20 + 0.1CB  
20 + 0.1CB  
20 + 0.1CB  
20 + 0.1CB  
20 + 0.1CB  
20 + 0.1CB  
4.0  
1000  
300  
Rise time of SCL signal  
Standard  
Fast  
1000  
300  
Rise time of SCL signal after a repeated START  
condition and after an acknowledge bit  
Standard  
Fast  
1000  
300  
Fall time of SCL signal  
Standard  
Fast  
1000  
300  
Rise time of SDA signal  
Fall time of SDA signal  
Setup time for STOP condition  
Standard  
Fast  
1000  
300  
Standard  
Fast  
µs  
ns  
pF  
ns  
600  
CB  
tSP  
Capacitive load for SDA and SCL line  
Pulse duration of spike suppressed  
400  
50  
Fast  
Noise margin at high level for each connected device  
(including hysteresis)  
VNH  
0.2VDD  
V
Repeated  
START  
STOP  
START  
tD-HD  
tSDA-R  
tD-SU  
tP-SU  
tSDA-F  
tBUF  
SDA  
SCL  
tRS-HD  
tLOW  
tSP  
tSCL-R  
tSCL-F  
tS-HD  
tRS-SU  
tHI  
Figure 1. I2C Control Interface Timing  
Copyright © 2014–2018, Texas Instruments Incorporated  
17  
PCM1860, PCM1861, PCM1862  
PCM1863, PCM1864, PCM1865  
ZHCSCB3D MARCH 2014REVISED MARCH 2018  
www.ti.com.cn  
7.10 Timing Requirements: SPI Control Interface  
MIN  
100  
40  
MAX  
UNIT  
ns  
tMCY  
tMCL  
tMCH  
tMHH  
tMSS  
tMSH  
tMDH  
tMDS  
tMOS  
MC pulse period  
Pulse duration, MC low  
Pulse duration, MC high  
Pulse duration, MS high  
MS falling edge to MC rising edge  
MS hold time(1)  
ns  
40  
ns  
20  
ns  
30  
ns  
30  
ns  
MOSI hold time  
15  
ns  
MOSI setup time  
15  
ns  
MC rising edge to MDO stable  
20  
ns  
(1) MC falling edge for LSB to MS rising edge.  
MS  
t
t
MCL  
MCH  
t
t
t
MSS  
MSH  
MHH  
MC  
MOSI  
MISO  
t
MCY  
MSB IN  
BIT 15  
BIT 14 - 2  
BIT 1  
LSB  
t
t
MDS  
MDH  
BIT 1  
LSB  
HI-Z  
HI-Z  
Figure 2. SPI Control Interface Timing  
18  
Copyright © 2014–2018, Texas Instruments Incorporated  
PCM1860, PCM1861, PCM1862  
PCM1863, PCM1864, PCM1865  
www.ti.com.cn  
ZHCSCB3D MARCH 2014REVISED MARCH 2018  
7.11 Timing Requirements: Audio Data Interface for Slave Mode  
PARAMETER(1)  
MIN  
1 / (64 × fS)  
1.5 × tSCKI  
1.5 × tSCKI  
50  
TYP  
MAX UNIT  
tBCKP  
tBCKH  
tBCKL  
tLRSU  
tLRHD  
tLRCP  
tCKDO  
tLRDO  
tR  
BCK period  
ns  
ns  
ns  
ns  
ns  
µs  
BCK pulse duration high  
BCK pulse duration low  
LRCK set up time to BCK rising edge  
LRCK hold time to BCK rising edge  
LRCK period  
10  
10  
Delay time BCK falling edge to DOUT valid  
Delay time LRCK edge to DOUT valid  
Rise time of all signals  
–10  
40  
40  
20  
20  
ns  
ns  
ns  
ns  
–10  
tF  
Fall time of all signals  
(1) Timing measurement reference level is 1.4 V for input and 0.5VDD for output. Rise and fall times are measured from 10% to 90% of the  
IN/OUT signals swing. Load capacitance of DOUT is 20 pF. tSCKI means SCKI period.  
tLRCP  
LRCK  
1.4 V  
tBCKH  
tBCKL  
tLRHD  
tLRSU  
BCK  
1.4 V  
tBCKP  
tCKDO  
tLRDO  
DOUT  
0.5 VDD  
Figure 3. Audio Data Interface Timing, Slave Mode: LRCK and BCK as Inputs  
Copyright © 2014–2018, Texas Instruments Incorporated  
19  
PCM1860, PCM1861, PCM1862  
PCM1863, PCM1864, PCM1865  
ZHCSCB3D MARCH 2014REVISED MARCH 2018  
www.ti.com.cn  
MAX UNIT  
7.12 Timing Requirements: Audio Data Interface for Master Mode  
PARAMETER(1)  
MIN  
TYP  
tBCKP  
BCK period  
150 1 / (64 ×  
fS)  
2000  
ns  
tBCKH  
tBCKL  
tCKLR  
tLRCP  
tCKDO  
tLRDO  
tR  
BCK pulse duration high  
65  
65  
1000  
1000  
20  
ns  
ns  
ns  
µs  
ns  
ns  
ns  
ns  
ns  
BCK pulse duration low  
Delay time BCK falling edge to LRCK valid  
LRCK period  
–10  
10  
–10  
–10  
1/fS  
125  
20  
Delay time BCK falling edge to DOUT valid  
Delay time LRCK edge to DOUT valid  
Rise time of all signals  
20  
20  
tF  
Fall time of all signals  
20  
tSCKBCK Delay time SCKI rising edge to BCK edge(2)  
5
30  
(1) Timing measurement reference level is 0.5 VDD. Rise and fall times are measured from 10% to 90% of the IN/OUT signals swing. Load  
capacitance of all signals are 20 pF.  
(2) Timing measurement reference level is 1.4 V for input and 0.5 VDD for output. Load capacitance of BCK is 20 pF. This timing is applied  
when SCKI frequency is less than 25 MHz.  
tLRCP  
LRCK  
0.5 VDD  
0.5 VDD  
0.5 VDD  
tBCKH  
tBCKL  
tCKLR  
BCK  
tBCKP  
tCKDO  
tLRDO  
DOUT  
Figure 4. Audio Data Interface Timing, Master Mode: LRCK and BCK as Outputs  
1.4 V  
SCKI  
t
t
SCKBCK  
SCKBCK  
0.5 V  
DD  
BCK  
Figure 5. Audio Data Interface Timing, Master Mode: BCK as Outputs  
20  
Copyright © 2014–2018, Texas Instruments Incorporated  
PCM1860, PCM1861, PCM1862  
PCM1863, PCM1864, PCM1865  
www.ti.com.cn  
ZHCSCB3D MARCH 2014REVISED MARCH 2018  
7.13 Typical Characteristics  
all specifications at TA = 25°C, AVDD = 3.3 V, DVDD = 3.3 V, IOVDD = 3.3 V, master mode, single-speed mode, fS = 48 kHz,  
system clock = 256 × fS, and 24-bit data (unless otherwise noted)  
0
-20  
0
-20  
-40  
-40  
-60  
-60  
-80  
-80  
-100  
-100  
-90  
-80  
-70  
-60  
-50  
-40  
-30  
-20  
-10  
0
-90  
-80  
-70  
-60  
-50  
-40  
-30  
-20  
-10  
0
Input Level (dBFS)  
Input Level (dBFS)  
D001  
D002  
PCM1861, PCM1863, and PCM1865  
PCM1860, PCM1862, and PCM1864  
Figure 6. THD+N vs Input Level  
Figure 7. THD+N vs Input Level  
-60  
-70  
-60  
-70  
-80  
-80  
-90  
-90  
-100  
-110  
-120  
-130  
-140  
-150  
-160  
-100  
-110  
-120  
-130  
-140  
-150  
-160  
0
4
8
12  
16  
20  
0
4
8
12  
16  
20  
Frequency (kHz)  
Frequency (kHz)  
D003  
D004  
PCM1861, PCM1863, and PCM1865  
Input = –60 dBFS at 1 kHz  
PCM1860, PCM1862, and PCM1864  
Input = –60 dBFS at 1 kHz  
Figure 8. Main ADC Output FFT  
Figure 9. Main ADC Output FFT  
0
-20  
0
-20  
-40  
-40  
-60  
-60  
-80  
-80  
-100  
-120  
-140  
-160  
-100  
-120  
-140  
-160  
0
4
8
12  
16  
20  
0
4
8
12  
16  
20  
Frequency (kHz)  
Frequency (kHz)  
D005  
D006  
PCM1861, PCM1863, and PCM1865  
Input = –1 dBFS at 1 kHz  
PCM1860, PCM1862, and PCM1864  
Input = –1 dBFS at 1 kHz  
Figure 10. Main ADC Output FFT  
Figure 11. Main ADC Output FFT  
Copyright © 2014–2018, Texas Instruments Incorporated  
21  
PCM1860, PCM1861, PCM1862  
PCM1863, PCM1864, PCM1865  
ZHCSCB3D MARCH 2014REVISED MARCH 2018  
www.ti.com.cn  
Typical Characteristics (continued)  
all specifications at TA = 25°C, AVDD = 3.3 V, DVDD = 3.3 V, IOVDD = 3.3 V, master mode, single-speed mode, fS = 48 kHz,  
system clock = 256 × fS, and 24-bit data (unless otherwise noted)  
-108.75  
-102.6  
-102.7  
-102.8  
-102.9  
-103  
-109  
-109.25  
-109.5  
-109.75  
-110  
-103.1  
-103.2  
-103.3  
-103.4  
-103.5  
-103.6  
-110.25  
-110.5  
-110.75  
3
3.1  
3.2  
3.3  
3.4  
3.5  
3.6  
3
3.1  
3.2  
3.3  
3.4  
3.5  
3.6  
Supply Voltage (V)  
Supply Voltage (V)  
D007  
D008  
PCM1861, PCM1863, and PCM1865  
Figure 12. Dynamic Range vs Supply Voltage  
PCM1860, PCM1862, and PCM1864  
Figure 13. Dynamic Range vs Supply Voltage  
-94.1  
-94.2  
-94.3  
-94.4  
-94.5  
-94.6  
-94.7  
-94.8  
-94.9  
-95  
-91.5  
-91.55  
-91.6  
-91.65  
-91.7  
-91.75  
-91.8  
-91.85  
-91.9  
-95.1  
3
3.1  
3.2  
3.3  
3.4  
3.5  
3.6  
3
3.1  
3.2  
3.3  
3.4  
3.5  
3.6  
Supply Voltage (V)  
Supply Voltage (V)  
D009  
D010  
PCM1861, PCM1863, and PCM1865  
Figure 14. THD+N vs Supply Voltage  
PCM1860, PCM1862, and PCM1864  
Figure 15. THD+N vs Supply Voltage  
250  
200  
150  
100  
50  
0
-5  
-10  
-15  
-20  
-25  
-30  
-35  
4ch  
2ch  
0
48  
96  
144  
192  
20  
200  
2k  
20k  
Sample Rate (kHz)  
Frequency (Hz)  
D011  
D012  
At fS = 48 kHz, 96 kHz, and 192 kHz  
Figure 16. Power Consumption vs Sample Rate  
fS = 48 kHz  
Figure 17. Secondary ADC Frequency Response  
22  
Copyright © 2014–2018, Texas Instruments Incorporated  
PCM1860, PCM1861, PCM1862  
PCM1863, PCM1864, PCM1865  
www.ti.com.cn  
ZHCSCB3D MARCH 2014REVISED MARCH 2018  
Typical Characteristics (continued)  
all specifications at TA = 25°C, AVDD = 3.3 V, DVDD = 3.3 V, IOVDD = 3.3 V, master mode, single-speed mode, fS = 48 kHz,  
system clock = 256 × fS, and 24-bit data (unless otherwise noted)  
0
0
-20  
-20  
-40  
-40  
-60  
-60  
-80  
-80  
-100  
-120  
-140  
-160  
-100  
-120  
-140  
-160  
0
4
8
12  
16  
20  
0
10  
20  
30  
40  
50  
60  
Frequency (kHz)  
Frequency (kHz)  
D013  
D014  
fS = 48 kHz  
fS = 192 kHz, BW = 60 kHz, Input = –1 dBFS  
Figure 18. Secondary ADC FFT  
Figure 19. High Bandwidth FFT of THD Components  
40  
36  
32  
28  
24  
20  
16  
12  
8
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
4
0
-4  
-8  
-12  
-12 -8 -4  
0
4
8
12 16 20 24 28 32 36 40  
-90  
-80  
-70  
-60  
-50  
-40  
-30  
-20  
-10  
0
Input Amplitude (dB)  
Input Amplitude (dB)  
D015  
D016  
Figure 20. PGA ADC Gain  
Figure 21. Linearity, Input vs Output  
8 Parameter Measurement Information  
All typical characteristics for the devices are measured using the respective PCM186x evaluation module (EVM)  
and an Audio Precision SYS-2722 Audio Analyzer. A programmable serial interface adapter (PSIA) is used to  
allow the I2S interface to be driven directly into the SYS-2722. The EVM schematic is shown in Figure 22.  
Copyright © 2014–2018, Texas Instruments Incorporated  
23  
PCM1860, PCM1861, PCM1862  
PCM1863, PCM1864, PCM1865  
ZHCSCB3D MARCH 2014REVISED MARCH 2018  
www.ti.com.cn  
ANALOG  
INPUTS  
ANALOG  
IN2L  
GND  
1
2
3
J2  
DNP  
1
2
3
IN3L  
GND  
J4  
INPUTS  
R4 R5  
2.20K  
0603  
R6 R7  
2.20K  
0603  
R8 R9 R10 R11  
2.20K  
0603  
IN2R  
2.20K  
0603  
2.20K  
0603  
2.20K  
0603  
2.20K  
0603  
2.20K  
0603  
100LS  
C1  
10uF/16V  
1
2
IN3R  
1
VINL2/VIN1M  
0805 X7R  
L
L
100LS  
VIN2  
C2  
10uF/16V  
C15  
10uF/16V  
2
VIN3  
VINR2/VIN2M  
0805 X7R  
VINR3/VIN3P  
VINL3/VIN4P  
R
R
0805 X7R  
0805 X7R  
R40  
100K  
0402  
R41  
100K  
0402  
C16  
10uF/16V  
R44  
100K  
0402  
R45  
100K  
0402  
IN1L  
Case  
1
2
3
Case  
MICBIAS  
J3  
MICBIAS  
C14  
GND  
GND  
Orange  
GND  
IN4L  
1
2
3
J5  
IN1R  
0.1ufd/50V  
0603 X7R  
GND  
GND  
GND  
GND  
100LS  
GND  
C3  
10uF/16V  
1
2
1
2
VINL1/VIN1P  
0805 X7R  
L
L
IN4R  
GND  
100LS  
VIN1  
C4  
10uF/16V  
C17  
10uF/16V  
VIN4  
VINR1/VIN2P  
0805 X7R  
VINR4/VIN3M  
VINL4/VIN4M  
R
R
1
2
0805 X7R  
0805 X7R  
J6  
100LS  
C18  
10uF/16V  
R42  
100K  
0402  
R43  
100K  
0402  
R46  
100K  
0402  
R47  
100K  
0402  
Case  
Case  
2L  
Orange  
3R  
Orange  
GND  
GND  
GND  
2R  
3L  
Orange  
GND  
GND  
Orange  
GND  
GND  
1
2
1L  
Orange  
J9  
100LS  
4R  
Orange  
+3.3VA  
MD0  
2
1
4
3
1R  
Orange  
4L  
Orange  
0603  
+3.3VA  
U1  
XO  
GND  
MD1/AD  
2
1
4
1
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
3
3
3
3
GPIO  
I2C  
C6  
20pfd/50V 0603 COG  
XO  
XI  
GND  
GND  
1
2
0603  
Y0  
24.576MHz  
HC-49USX  
+3.3VA  
C7  
20pfd/50V 0603 COG  
3
GND  
2
MD3/MC/SCL  
2
1
4
4
3
3
3
SCL-PCM  
J7  
1
2
XI  
J11  
0603  
5
MD0  
MD1/AD  
1
2
4
6
8
C5  
+3.3VA  
100LS  
6
3
5
7
GND  
GND  
0603 X7R  
GND  
DOUT2/MD2/MOSI/SDA  
2
1.0ufd/16V  
1
4
7
MD3/MC/SCL  
SDA-PCM  
GND  
+3.3V  
C40  
+1.8V  
0603  
8
DOUT2/MD2/MOSI/SDA  
MD4/MISO/GPIO  
+3.3VA  
9
9
10  
12  
14  
16  
GND  
MD4/MISO/GPIO  
2
1
4
C19  
10  
11  
12  
13  
14  
15  
11  
13  
15  
MD5/GPIO1/INTA/DMIN  
MD6/GPIO2/INTB/DMCLK  
INT/GPIO3/INTC  
+3.3VA  
R1  
0.1ufd/16V  
0402 X7R  
0.1ufd/16V  
0402 X7R  
0603  
0.0  
0603  
+3.3VA  
C8  
C9  
GND  
GND  
GND  
GND  
+3.3V  
MD5/GPIO1/INTA/DMIN  
2
1
4
GND  
10ufd/10V  
0805 X7R  
0.1ufd/16V  
0402 X7R  
DOUT  
Orange  
+3.3V  
+1.8V  
0603  
U4  
VCCB VCCA  
R13  
4.99K  
0402  
GND  
GND  
+3.3VA  
BCK  
Orange  
6
5
4
1
2
3
GND  
SCKI  
+1.8V  
J10  
MD6/GPIO2/INTB/DMCLK  
2
1
4
Orange  
1
1
OE  
B
GND  
A
PCM1860DBT  
PCM1861DBT  
PCM1862DBT  
PCM1863DBT  
PCM1864DBT  
DIN  
Orange  
J8  
GND  
0603  
2
2
C10  
C11  
100LS  
+3.3VA  
GND  
LRCK  
Orange  
TXB0101DBV  
SOT23-DBV6  
100LS  
1.0ufd/16V  
0603 X7R  
0.1ufd/16V  
0402 X7R  
GND  
INT/GPIO3/INTC  
2
1
4
GND  
PCM1865DBT  
GND  
GND  
+3.3VA  
0603  
TSSOP30-DBT  
R2  
R12  
LED  
0.0  
0603  
649  
0603  
Green/2.1V  
0603  
C12  
C13  
R3  
0.0  
0603  
R20  
0.0  
0603  
R21 R22  
0.0  
0603  
0.0  
0603  
10ufd/10V  
0805 X7R  
0.1ufd/16V  
0402 X7R  
SPDIF I2S  
GND  
GND  
XO-BUF  
SCKI  
LRCK  
BCK  
SCKI  
LRCK  
BCK  
DOUT  
DOUT  
DIN  
DIN  
SPDIF I2S  
SDA-PCM  
SCL-PCM  
I2C BUS  
Copyright © 2016, Texas Instruments Incorporated  
Figure 22. PCM186x Test Circuit  
24  
Copyright © 2014–2018, Texas Instruments Incorporated  
PCM1860, PCM1861, PCM1862  
PCM1863, PCM1864, PCM1865  
www.ti.com.cn  
ZHCSCB3D MARCH 2014REVISED MARCH 2018  
9 Detailed Description  
9.1 Overview  
The PCM186x family of audio, analog-to-digital converters (ADCs) features a highly flexible, audio front end that  
supports input levels from small millivolt microphone inputs to 2.1-VRMS line inputs. The analog front end can be  
configured to support either differential or single-ended inputs, providing optimal performance when using  
differential inputs. Mixing single-ended and differential inputs is possible. A digital microphone interface is  
available in the software-controlled devices.  
These devices support advanced clocking with the aid of an integrated oscillator circuit and an on-chip analog  
phase-locked loop (PLL). The integrated oscillator circuit allows for the use of an external crystal or an external  
master clock as the clock source in master mode. In addition, the PLL can be used to generate an on-chip  
master clock that can be shared with the rest of the system, all from a bit clock input. This feature is useful in  
systems where the audio source has no master clock to drive digital-to-analog converters (DACs) and amplifiers.  
The on-chip clock monitoring system can also be monitored by the system microcontroller, in case clocks are lost  
and the device enters sleep or standby state.  
The secondary analog-to-digital converter (ADC) is a low-power, non-audio ADC that is used in sleep mode to  
monitor the analog inputs. The secondary ADC is also used in controlsense mode to measure dc voltages in a  
system, such as battery voltage and control potentiometers. In addition, controlsense features offer an option to  
generate interrupts after detected voltages cross specific thresholds, allowing the microcontroller to be in a lower-  
power sleep mode while the control voltages being measured are stable.  
Control registers in this data sheet are shown as REGISTER_BIT_or_BYTE_NAME (page.x hex_address).  
9.2 Functional Block Diagrams  
The high level block diagrams, Figure 23 to Figure 25, show the differences between the PCM186x family. An  
internal block diagram of the PCM186x family is shown in Figure 26.  
PCM1860  
VINL1/VIN1P  
VINL2/VIN1M  
VINL3/VIN4P  
VINL4/VIN4M  
PCM1861  
MIX,  
MUX  
Primary  
ADC  
PGA  
PGA  
Audio  
Serial  
Port  
BCK  
Secondary  
ADC  
LRCK  
DOUT  
Energysense  
VINR1/VIN2P  
VINR2/VIN2M  
VINR3/VIN3P  
VINR4/VIN3M  
(LJ, I2S)  
MIX,  
MUX  
Primary  
ADC  
INT  
VREF  
MD6  
MD5  
MD4  
MD3  
MD2  
MD1  
MD0  
Reference  
Power  
Mic Bias  
Control  
and  
Interrupt  
Clocks, PLL  
Copyright © 2017, Texas Instruments Incorporated  
Figure 23. PCM1860 and PCM1861  
Copyright © 2014–2018, Texas Instruments Incorporated  
25  
 
PCM1860, PCM1861, PCM1862  
PCM1863, PCM1864, PCM1865  
ZHCSCB3D MARCH 2014REVISED MARCH 2018  
www.ti.com.cn  
Functional Block Diagrams (continued)  
PCM1862  
PCM1863  
VINL1/VIN1P  
VINL2/VIN1M  
VINL3/VIN4P  
VINL4/VIN4M  
Primary  
ADC  
MIX,  
MUX  
PGA  
PGA  
Audio  
Serial  
BCK  
Mixer and  
Energysense  
DSPs  
Secondary  
ADC  
LRCK  
DOUT  
Port  
VINR1/VIN2P  
VINR2/VIN2M  
VINR3/VIN3P  
VINR4/VIN3M  
(LJ, I2S, TDM)  
MIX,  
MUX  
Primary  
ADC  
DOUT2  
DMIC/DIN  
GPIO3/INTC  
VREF  
GPIO2/INTB/DMCLK  
GPIO1/INTA/DMIN  
MISO/GPIO0  
MOSI/SDA  
Reference  
Power  
Mic Bias  
Control,  
GPIO,  
Interrupt,  
Digital Mic Interface  
MC/SCL  
Clocks, PLL  
MS/AD  
MD0  
Copyright © 2017, Texas Instruments Incorporated  
Figure 24. PCM1862 and PCM1863  
PCM1864  
PCM1865  
Primary  
ADC  
(CH1L)  
PGA  
PGA  
VINL1/VIN1P  
VINL2/VIN1M  
VINL3/VIN4P  
VINL4/VIN4M  
Primary  
ADC  
MIX,  
MUX  
(CH2L)  
Audio  
Serial  
BCK  
Mixer and  
Energysense  
DSPs  
Secondary  
ADC  
LRCK  
DOUT  
Port  
VINR1/VIN2P  
VINR2/VIN2M  
VINR3/VIN3P  
VINR4/VIN3M  
(LJ, I2S, TDM)  
Primary  
ADC  
(CH1R)  
MIX,  
MUX  
PGA  
PGA  
Primary  
ADC  
DOUT2  
(CH2R)  
DMIC/DIN  
GPIO3/INTC  
GPIO2/INTB/DMCLK  
GPIO1/INTA/DMIN  
MISO/GPIO0/DMIN2  
MOSI/SDA  
VREF  
Reference  
Power  
Mic Bias  
Control,  
GPIO,  
Interrupt,  
Digital Mic Interface  
MC/SCL  
Clocks, PLL  
MS/AD  
MD0  
Copyright © 2017, Texas Instruments Incorporated  
Figure 25. PCM1864 and PCM1865  
26  
Copyright © 2014–2018, Texas Instruments Incorporated  
PCM1860, PCM1861, PCM1862  
PCM1863, PCM1864, PCM1865  
www.ti.com.cn  
ZHCSCB3D MARCH 2014REVISED MARCH 2018  
Functional Block Diagrams (continued)  
Power supplies and references have been omitted from this diagram for simplicity. Dotted lines, for the  
programmable gain amplifier (PGA) and the additional ADCs, are for the 4-channel devices only. Greyed-out pins  
are multifunction pins only.  
SCKI  
SCK0  
(GPIO)  
XI  
MUX  
XO  
Clock Generator  
and Detector  
MUX  
PLL  
LRCK  
Analog  
CTRL  
BCK_IN  
PGA  
Controller  
BCK  
Audio  
ADC  
On-Chip  
Oscillator  
Analog PGAs  
Audio  
ADC  
GPIO2/INTB/DMCLK  
GPIO1/INTA/DMIN  
MISO/GPIO0/DMIN2  
Digital Mic Inputs  
VINL1/VIN1P  
VINL2/VIN1M  
VINL3/VIN4P  
VINL4/VIN4M  
DSP #1  
DSP #2  
MIX,  
MUX  
Audio  
ADC  
Audio  
Digital  
S-Curve  
Volume  
6ch  
6ch  
2ch  
DOUT  
Serial  
TX  
Audio  
Serial  
TX  
FIR/IIR  
Filter  
High-Pass  
Filter  
6ch Mixer  
Analog  
PGAs  
DOUT2  
(GPIO)  
(ADC + I2S)  
VINR1/VIN2P  
VINR2/VIN2M  
VINR3/VIN3P  
VINR4/VIN3M  
Digital  
PGA  
Audio  
Serial  
RX  
DIN  
(GPIO)  
MIX,  
MUX  
Audio  
ADC  
Energysense  
Signal Loss  
Digital Zero  
Crossing Detect  
PGA Zero  
Cross  
Detect  
Sec  
ADC  
Low-Pass  
Filter  
High-Pass  
Filter  
Energysense  
Signal Resume  
Interrupt  
Manager  
and  
INT  
ADC  
Master  
Clock  
DC Threshold  
Cross Detect  
Controller  
On-Chip  
Oscillator  
1/8  
Mic  
Bias  
I2C/SPI  
Port  
Mic Bias  
Copyright © 2017, Texas Instruments Incorporated  
Figure 26. Internal Block Diagram of the PCM186x  
Copyright © 2014–2018, Texas Instruments Incorporated  
27  
PCM1860, PCM1861, PCM1862  
PCM1863, PCM1864, PCM1865  
ZHCSCB3D MARCH 2014REVISED MARCH 2018  
9.3 Features Description  
9.3.1 Analog Front End  
www.ti.com.cn  
The PCM186x has a flexible front end that accepts either differential or single-ended inputs. The device supports  
up to 2.1 VRMS in single-ended mode, and up to 4.2 VRMS in differential mode.  
The MIX and MUX circuit before the PGA allows the analog inputs to be mixed and multiplexed in both single-  
ended and differential modes. Mixing functionality is available in software-controlled devices only. No individual  
gain controls are available before the PGA. A high-level diagram of the front-end circuitry is shown in Figure 27.  
PCM186x  
Mic Bias  
Generator  
Digial Microphone PDM Input  
(Software Controlled Devices Only)  
VINL1/VIN1P  
VINL2/VIN1M  
VINL3/VIN4P  
VINL4/VIN4M  
MIX,  
MUX  
Audio  
ADC  
Decimation and  
Other Filters  
Analog  
PGAs  
VINR1/VIN2P  
VINR2/VIN2M  
VINR3/VIN3P  
VINR4/VIN3M  
Digital  
PGA  
MIX,  
MUX  
Audio  
ADC  
PGA  
Zero-Cross Detect  
Copyright © 2017, Texas Instruments Incorporated  
Figure 27. High Level View of PCM186x Front End-Circuitry  
DC blocking capacitors are required on the analog inputs to make sure that correct dc bias conditions are  
established. Because the value of the output short-circuit protection resistor in the source product is typically  
unknown, issues such as gain error and dc shift may occur if dc blocking capacitors are not used.  
For systems where external amplifiers are used before the PCM186x, dc blocking capacitors are still  
recommended because the input pins are designed to bias to AVDD / 2. The common mode voltage range is still  
limited to the maximum input voltage of the device.  
Do not connect unused analog input pins.  
28  
Copyright © 2014–2018, Texas Instruments Incorporated  
 
PCM1860, PCM1861, PCM1862  
PCM1863, PCM1864, PCM1865  
www.ti.com.cn  
ZHCSCB3D MARCH 2014REVISED MARCH 2018  
Features Description (continued)  
9.3.2 Microphone Support  
The PCM186x supports analog and digital microphones. Analog signals are treated the same way as line-level  
signals, except for the requirement for mic bias. Digital microphone Inputs (PDM inputs) use GPIOs on the  
device. Two-channel ADC variants of the PCM186x family can support two digital microphones using a single  
data pin and a single clock pin. The 4-channel variants can support up to 4 digital microphones (2 data pins).  
The PCM1860 and PCM1861 offer three pin-selectable gain options, 0 dB, 12 dB, or 32 dB.  
The PCM1862, PCM1863, PCM1864, and PCM1865 offer programmable gain options from –12 dB to +32 dB  
with –0.5-dB step intervals.  
Digital microphones typically have a PDM output that can be brought into an ADC digital decimation filter. PDM  
microphones require power and a clock. Power should be handled from an external source.  
Digital microphone mode gain can be added in the digital PGA and in the mixer. In digital microphone mode, the  
PCM1862 and PCM1863 offer up to 18-dB gain (mixer only); whereas, the PCM1864 and PCM1865 offer up to  
30-dB gain (18 dB from mixer and 12 dB from digital PGA).  
On the PCM1864 and PCM1865, a 2-channel digital mic + 2-channel ADC mode is possible. With the PCM1862  
or PCM1863, four channels are only possible with a ADC + I2S input configuration.  
9.3.2.1 Mic Bias  
The PCM186x can provide a microphone bias to power and bias microphones at 2.6 V on pin 5. Decouple or  
filter the Mic Bias pin with an external capacitor. Mic Bias is typically used with a electret microphone. The  
internal regulator, as well as an on-chip terminating resistor to GND can also be enabled using register  
MIC_BIAS_CTRL (Page.3, 0x15). By default, the device is configured to bypass the on-chip resistor. The mic  
bias pin can be left unconnected if not used.  
9.3.3 Input Multiplexer (PCM1860 and PCM1861)  
The hardware-controlled devices can support a wide gain range using the MD2, MD5 and MD6 configuration pins  
as shown in Table 1.  
Table 1. Channel and Gain Selection for Hardware-Controlled Devices  
MD6  
L
MD5  
L
MD2  
L
ADC1_L / PGA1_L  
S.E - VINL1 / 0 dB  
ADC1_R / PGA1_R  
S.E - VINR1 / 0 dB  
L
L
H
S.E - VINL2 / 0 dB  
S.E - VINR2 / 0 dB  
L
H
L
S.E - VINL3 / 0 dB  
S.E - VINR3 / 0 dB  
L
H
H
S.E - VINL4 / 0 dB  
S.E - VINR4 / 0 dB  
H
L
L
S.E - VINL4 / 12 dB  
S.E - VINL4 / 32 dB  
Diff(VIN1P/VIN1M) / 0 dB  
Diff(VIN3P/VIN3M) / 12 dB  
S.E - VINR4 / 12 dB  
S.E - VINR4 / 32 dB  
Diff(VIN2P/VIN2M) / 0 dB  
Diff(VIN4P/VIN4M) / 12 dB  
H
L
H
H
H
L
H
H
H
Copyright © 2014–2018, Texas Instruments Incorporated  
29  
 
PCM1860, PCM1861, PCM1862  
PCM1863, PCM1864, PCM1865  
ZHCSCB3D MARCH 2014REVISED MARCH 2018  
www.ti.com.cn  
9.3.4 Mixers and Multiplexers (PCM1862, PCM1863, PCM1864, and PCM1865)  
The PCM186x software-controlled devices offer a mix and multiplex level of functionality on the front end, as  
shown in Figure 27. The switches integrated into the multiplexer can also be switched on in parallel, offering a  
direct mix of inputs. This function can be selected by register for each ADC input selection,  
ADCX1_INPUT_SEL_X (Page.0, 0x06 0x09). In single ended mode, each Audio ADC is tightly coupled to a  
dedicated PGA and MUX. ADC1L (and ADC2L on the PCM1864 and PCM1865) is connected a mux that has  
input pins VINLx, (x = 1 to 4). ADC1R (and ADC2R on the PCM1864 and PCM1865) is connected to a mux that  
has input pins VINRx (x = 1 to 4).  
Mixing between the left channels of stereo pairs is possible in the mux dedicated to ADC1L and right channels of  
stereo pairs in the mux dedicated to ADC1R. In addition, polarity of the inputs can be inverted using the MSB of  
the select register. Mixing left and right sources to create mono mixes can only be done in the digital mixer, post  
ADC conversion, or alternatively, other analog inputs can be connected for mixing.  
The examples available are shown in Table 2, where [SE] is single-ended, and [DIFF] is a differential input.  
Table 2. MUX, MIX, and Polarity Input Selection(1)  
REGISTER  
CODE  
ADC1L AND ADC2L  
ADC1R AND ADC2R  
0x00  
No Selection (Mute)  
VINL1[SE] (Default)  
No Selection (Mute)  
VINR1[SE] (Default)  
0x01  
0x02  
0x03  
0x04  
0x05  
0x06  
0x07  
0x08  
0x09  
0x0A  
0x0B  
0x0C  
0x0D  
0x0E  
0x0F  
0x10  
0x20  
0x30  
VINL2[SE]  
VINR2[SE]  
VINL2[SE] + VINL1[SE]  
VINR2[SE] + VINR1[SE]  
VINL3[SE]  
VINR3[SE]  
VINL3[SE] + VINL1[SE]  
VINR3[SE] + VINR1[SE]  
VINL3[SE] + VINL2[SE]  
VINR3[SE] + VINR2[SE]  
VINL3[SE] + VINL2[SE] + VINL1[SE]  
VINL4[SE]  
VINR3[SE] + VINR2[SE] + VINR1[SE]  
VINR4[SE]  
VINL4[SE] + VINL1[SE]  
VINR4[SE] + VINR1[SE]  
VINL4[SE] + VINL2[SE]  
VINR4[SE] + VINR2[SE]  
VINL4[SE] + VINL2[SE] + VINL1[SE]  
VINL4[SE] + VINL3[SE]  
VINR4[SE] + VINR2[SE] + VINR1[SE]  
VINR4[SE] + VINR3[SE]  
VINL4[SE] + VINL3[SE] + VINL1[SE]  
VINL4[SE] + VINL3[SE] + VINL2[SE]  
VINL4[SE] + VINL3[SE] + VINL2[SE] + VINL1[SE]  
{VIN1P, VIN1M}[DIFF]  
VINR4[SE] + VINR3[SE] + VINR1[SE]  
VINR4[SE] + VINR3[SE] + VINR2[SE]  
VINR4[SE] + VINR3[SE] + VINR2[SE] + VINR1[SE]  
{VIN2P, VIN2M}[DIFF]  
{VIN4P, VIN4M}[DIFF]  
{VIN3P, VIN3M}[DIFF]  
{VIN1P, VIN1M}[DIFF] + {VIN4P, VIN4M}[DIFF]  
{VIN2P, VIN2M}[DIFF] + {VIN3P, VIN3M}[DIFF]  
(1) Bold items are channel options for hardware-controlled devices.  
30  
Copyright © 2014–2018, Texas Instruments Incorporated  
 
PCM1860, PCM1861, PCM1862  
PCM1863, PCM1864, PCM1865  
www.ti.com.cn  
ZHCSCB3D MARCH 2014REVISED MARCH 2018  
9.3.5 Programmable Gain Amplifier  
The PCM186x has a two-stage programmable gain amplifier (PGA). Coarse gain adjustment is done in the  
analog domain, and fine gain adjustment is done in the digital domain. The ±12-dB analog gain steps are  
designed for varying line level inputs, whereas the 20 dB and 32 dB are primarily designed for microphone  
inputs, and will likely need additional gain that can be done in the digital domain. The analog gain steps between  
–12 dB and +12 dB are in 1-dB steps. Half-dB steps between those points are done in the digital PGA. Gain  
steps between 12 dB and 20 dB are all done in the digital domain. (for example, 18-dB gain = 12-dB analog + 6-  
dB digital). The gain structure in the PCM186x is shown in Figure 28.  
œ12 dB to +32 dB  
0.5 dB to 11.5 dB  
œ100 dB to +18 dB  
œ100 dB to 0 dB  
Decimation  
Filter  
Digital  
Mixer  
S-Curve  
Volume  
Audio  
ADC  
Analog  
PGA  
Digital  
PGA  
Mixer  
PGA  
CIC Filter  
Copyright © 2017, Texas Instruments Incorporated  
Figure 28. PCM186x Complete Gain Structure (PGAs and Attenuator)  
The analog gain steps within the analog PGA are shown in Figure 29. Again, from –12 dB to +12 dB, the steps  
are 1 dB each. The digital PGA has granularity down to 0.5 dB.  
PGA  
Value  
0x74.0  
0x0C.0  
0x14.0  
0x40.0  
œ12 dB to +12 dB in 1-dB steps  
œ12 dB  
0 dB  
12 dB  
20 dB  
32 dB  
Figure 29. Analog Gain Steps With Software-Controlled Devices  
The PGA in the PCM186x is a hybrid analog and digital programmable gain amplifier. The devices integrate a  
lookup table with the optimal gain balance between analog and digital gain, allowing the gain to be set in a single  
register per channel. For example, set 18 dB gain, and the system allocates 12 dB to the analog PGA, and 6 dB  
to the digital PGA. This function is called auto gain mapping.  
The PGA is a zero crossing detect type, and has the ability to set target gain, and have the device work towards  
it (with a timeout if there is no zero crossing). Any changes in the Analog PGA and digital PGA are designed to  
step towards the final level. However, any changes in the mixer PGA are immediate. Take care when changing  
gain levels in the digital mixer PGA. Alternatively, multiple writes can be made of small enough values that do not  
cause significant pops or clicks.  
NOTE  
Changing gain in the PGA requires the on-chip DSP to be clocked. The DSP is used to  
calculate the steps to the target gain. This is not an issue in master mode, but can be a  
challenge in slave mode, if the system master is not active yet.  
For example, if the current level = 0 dB, then set the target as 3.5 dB. The PGA then increases gain in 0.5-dB  
steps towards 3.5 dB.  
The auto gain mapping function can by bypassed if required, using manual gain mapping. Manual gain mapping  
is useful when using digital microphones, as the PDM input signal bypasses the analog PGA and must be  
amplified using the digital PGA. (PGA_MODE (Page.0, 0x19). Digital PGA update is only available in the 4-  
channel devices because the digital gain in 2-channel devices is fixed to 0 dB when manual gain mapping is  
enabled.  
NOTE  
Using the device with a differential inputs increases the full-scale voltage to 4.2 VRMS  
(that's 2.1 VRMS per pin, out of phase).  
Copyright © 2014–2018, Texas Instruments Incorporated  
31  
 
 
 
PCM1860, PCM1861, PCM1862  
PCM1863, PCM1864, PCM1865  
ZHCSCB3D MARCH 2014REVISED MARCH 2018  
www.ti.com.cn  
9.3.6 Automatic Clipping Suppression  
The PCM186x software-controlled devices have the ability to automatically lower the gain in 0.5 dB steps under  
the following conditions if the ADC is clipping.  
The device detects clipping after the decimation filter in the signal chain, shown in Figure 30, and counts the  
number of successive clips before responding.  
The device also generates an internal interrupt that can be mapped to a GPIO or interrupt pin, allowing the  
system microcontroller to make the decision to increase the gain and consider the clipping an isolated event, or  
make the decision that the new gain setting is appropriate.  
–12 dB to +32 dB  
0.5 dB to 12 dB  
Mixer  
PGA  
Digital  
PGA  
Digital  
Mixer  
S-Curve  
Volume  
Decimation  
Filter  
Analog  
PGA  
ADC  
CIC Filter  
–100 dB ~ +18 dB  
–100 dB ~ 0 dB  
Zero  
PGA  
Cross  
Controller  
Detector  
Auto  
Gain  
Digital PGA  
Overflow Detector  
Control  
Copyright © 2017, Texas Instruments Incorporated  
Figure 30. Sampling Points Within the PCM186x for Auto Clipping Suppression  
9.3.6.1 Attenuation Level  
This feature is not designed to be a complete analog gain control. This feature was defined to avoid clipping, and  
to inform the system microcontroller of a clipping event, to allow the microcontroller (or the end user) to decide if  
the gain should be increased again.  
The attenuation is programmable to –3 dB, –4 dB, –5 dB, or –6 dB.  
9.3.6.2 Channel Linking  
Depending on the application, users may not want to link input channels, however, for the majority of stereo input  
applications, its strongly recommended to set the system to track gain across inputs, to maintain balance.  
The auto PGA clipping suppression control has the settings shown in Table 3.  
Table 3. Auto Clipping Suppression Control Registers  
REGISTER  
LOCATION  
REGISTER NAME  
USAGE  
VALUES  
0: Disable (Default)  
1: Enable  
AGC_EN  
Pg0 0x05  
Enable auto gain control  
0: 80  
Start auto gain control after detects CLIP_NUM times of ADC  
sample clips  
1: 40  
2: 20  
CLIP_NUM[1:0]  
Pg0 0x05  
3: 10 (Default)  
0: –3 dB (Default)  
1: –4 dB  
2: –5 dB  
MAX_ATT[1:0]  
Pg0 0x05  
Pg0 0x05  
Maximum automatic attenuation  
3: –6 dB  
Enable clipping detection after the digital PGA. Note that digital  
PGA is post ADC, meaning that there is a short delay before  
clipping is detected.  
0: Disable (Default)  
1: Enable  
DPGA_CLIP_EN  
0: Independent control (Default)  
1: Ch1[R]/Ch2[L]/Ch2[R] follow Ch1[L] PGA  
value.  
Link all channels together if dealing with stereo sources to maintain  
balance.  
LINK  
Pg0 0x05  
Pg0 0x05  
0: Immediate change  
1: Smooth change (default)  
SMOOTH  
Enable smooth transition from step to step (zero crossing).  
32  
Copyright © 2014–2018, Texas Instruments Incorporated  
 
 
PCM1860, PCM1861, PCM1862  
PCM1863, PCM1864, PCM1865  
www.ti.com.cn  
ZHCSCB3D MARCH 2014REVISED MARCH 2018  
9.3.7 Zero Crossing Detect  
The PCM186x uses a zero crossing detector to make gain changes only when the incoming signal crosses the  
halfway point between negative and positive swing, reducing zipper noise.  
There are two sources for the controller, the output of the ADC modulator and the output from the digital PGA.  
The analog PGA is sampled at four times the audio sampling rate to detect the zero crossing. The digital PGA is  
sampled at a similar rate.  
The process for changing gain in the PCM186x is as follows:  
1. Detect a zero crossing of the oversampled analog input channel.  
2. Increment or decrement the gain toward the target PGA value step by 0.5 dB.  
3. Repeat from (1) until arrival at the target PGA value.  
4. If zero crossing does not occur for 8192 sample times (= time out), change the gain per sample.  
This process does not require intervention by the user. This data serves as information only. Also, please note  
that DSPs must be running (clocked) for this functionality to work.  
9.3.8 Digital Inputs  
9.3.8.1 Stereo PCM Sources  
The PCM186x can support stereo PCM data on GPIO pins so that I2S sources, such as wireless modules can  
have their data mixed with the incoming analog content. The clock rate of the incoming data (known as DIN)  
must be synchronous with the PCM186x software-controlled device main clocks. There is no integrated sample  
rate converter on-chip. The DIN signal can be received on GPIO0, 1, 2, or 3, and configured on GPIO_FUNC_X  
(Page.0 0x10 and 0x11). The incoming data are then driven to the digital mixer running on DSP2.  
The audio format can be configured separately from the output serial port using register RX_TDM_OFFSET (P0,  
0x0E).  
Inputs can be mixed and volume-controlled before routing to a digital amplifier. Typical uses could be the  
connection to a Bluetooth module. The mixing and crossfading is done all in the PCM186x, rather than a hard  
switch in external logic. The on-chip PLL also helps create the system master clock (SCKOUT) for poorly  
designed I2S Bluetooth modules that do not provide a system clock to drive the system DACs.  
If the stereo PCM data source has a requirement to drive the audio clock pins when transmitting in a system  
where the PCM186x has not been set to slave yet, the PCM186x does not suffer any damage during clock driver  
contention. However, the PCM186x will have some irregular output due to clock errors. In systems with additional  
stereo PCM sources that need to be master (such as a S/PDIF receive), set the PCM186x to always be a clock  
slave, or switch the device from master to slave mode, before enabling the stereo PCM source.  
Copyright © 2014–2018, Texas Instruments Incorporated  
33  
PCM1860, PCM1861, PCM1862  
PCM1863, PCM1864, PCM1865  
ZHCSCB3D MARCH 2014REVISED MARCH 2018  
www.ti.com.cn  
9.3.8.2 Digital PDM Microphones  
Up to four digital microphones are supported on the PCM1864 and PCM1865, using a shared output clock  
(configured from GPIO2) and two data lines, GPIO0 or GPIO1. Two digital microphones are supported on the  
PCM1862 and PCM1863, mainly using GPIO1 as the data input. The PCM1860 or PCM1861 does not support  
digital microphones. The typical connection and protocol diagrams for these microphones are shown in Figure 31  
and Figure 32.  
GPIO1  
DATA_L  
DATA  
CLK  
DIGMIC_IN1  
GPIO1  
Wired-OR  
L/R SEL  
GND  
VDD  
DATA_R  
DATA  
CLK  
L/R SEL  
GPIO2  
DIGMIC_CLK (64 × fS)  
GPIO2  
Copyright © 2017, Texas Instruments Incorporated  
Figure 31. Digital Microphone Example Connection  
GPIO2  
(DIGMIC_CLK)  
Hi-Z  
Hi-Z  
DATA_L  
DATA_R  
GPIO1  
L(n)  
Hi-Z  
L(n+1)  
Hi-Z  
L(n+2)  
Hi-Z  
R(n)  
R(n)  
R(n+1)  
R(n+1)  
L(n)  
L(n+1)  
Figure 32. Digital Microphone Protocol  
Supported Digital Microphone clock frequency is as follows, and the frequency depends on required operating  
sampling frequency as follows:  
2.0480 MHz (32 kHz × 64)  
2.8224 MHz (44.1 kHz × 64)  
3.072 MHz (48 kHz × 64)  
3.072 MHz (96 kHz × 32 )  
The recommended operating conditions for the Digital MIC are:  
Sampling frequency is 32 kHz or 44.1 kHz  
SCK is 256 × fS.  
Enable Auto Clock Detector (Default)  
34  
Copyright © 2014–2018, Texas Instruments Incorporated  
 
 
PCM1860, PCM1861, PCM1862  
PCM1863, PCM1864, PCM1865  
www.ti.com.cn  
ZHCSCB3D MARCH 2014REVISED MARCH 2018  
9.3.9 Clocks  
9.3.9.1 Description  
The PCM186x family has an extremely flexible clocking architecture. All converters require a master clock  
(typically, a 2n power of the sampling rate known as MCK), a bit clock (BCK) that is used to clock the data bit-by-  
bit out of the device (typically running at 64-fS to allow up to 32 bits per channel output), and finally a wordclock  
(left-right clock, LRCK) that is used to set the exact sampling point for the ADC.  
The PCM186x family can be a clock master (where BCK and LRCK can be internally divided from a provided  
master clock) or can be a clock slave, where all clocks (MCK, BCK and LRCK) must be provided by an external  
source.  
Unlike many competing devices, the PCM186x family can source its master clock from two different sources,  
either an external crystal, or a CMOS level (3.3 V or 1.8 V) clock, eliminating the usual external crystal oscillator  
circuit required to source a CMOS clock signal.  
The PCM186x also differentiates itself by integrating an on-chip phase locked loop (PLL) that can generate real  
audio-rate clocks from any clock source between 1 MHz and 50 MHz. The PCM1860 or PCM1861 hardware-  
controlled devices have the ability to detect an absence of MCK in slave mode and automatically generate a  
MCK signal. Software-controlled devices, such as the PCM1862, PCM1863, PCM1864 and PCM1865 can have  
their PLL programmed to generate audio clocks based on any incoming clock rate. For example, a 12 MHz clock  
in the system can be used to generate clocks for a 44.1-kHz system.  
9.3.9.2 External Clock-Source Limits  
The three different clock sources for the device each have some limits in terms of their input circuitry, as shown  
in Table 4. These limits are separate from the internal PLL capability.  
On PCM1860 and PCM1861, the highest standard frequency supported by an XTAL is 96 kHz, because the  
lowest divider ratio of master clock to LRCK is 256 (24.576 MHz / 256 = 96 kHz). This limitation is not present in  
the software-controlled devices because the divider ratio is programmable. However, 192 kHz can be supported  
by using an external CMOS source.  
Table 4. External Clock-Source Limitations and Notes  
CLOCK SOURCE  
LIMITS  
NOTES  
XTAL  
15 MHz 35 MHz  
Should be input to SCKI pin. 3.3  
V CMOS can be input, even when  
IOVDD is 1.8 V  
3.3-V CMOS MCLK  
1.8-V CMOS MCLK  
1 MHz 50 MHz  
1 MHz 50 MHz  
Should be input to XI pin.  
9.3.9.3 Device Clock Distribution and Generation  
PLLs can be used in all modes to generate the clocks required to run both fixed-function DSPs. The dividers are  
automatically configured based on the clock rate detection. The clock architecture shown in Figure 33 allows  
non-audio clock sources to be used as clock sources and the PCM186x to continue to run in a master mode,  
providing all PCM and I2S clocks for other converters in the system.  
Copyright © 2014–2018, Texas Instruments Incorporated  
35  
 
 
 
 
PCM1860, PCM1861, PCM1862  
PCM1863, PCM1864, PCM1865  
ZHCSCB3D MARCH 2014REVISED MARCH 2018  
www.ti.com.cn  
PCM186x  
PLL_REF_SEL  
(Page 0 Reg 0x28)  
XO  
SCK  
SCK_XI_SEL[1:0]  
(Page 0 Reg 0x20)  
Clock  
Divider  
(0x23)  
ADC_CLK_SRC  
(Page 0 Reg 0x20)  
MUX  
MUX  
Audio ADC Clocks  
PLL Clock  
XI  
PLL  
SCKI  
SCK  
MUX  
Clock  
Divider  
(0x21)  
DSP1_CLK_SRC  
(Page 0 Reg 0x20)  
K × R / P  
DSP #1  
BCK  
PLL Clock  
LRCK  
K = J.D  
J = 1,2,3, ,62,63  
SCK  
Clock  
Divider  
(0x22)  
DSP2_CLK_SRC  
(Page 0 Reg 0x20)  
D = 0000,0001, ,9999  
R = 1,2,3,4, ,15,16  
P = 1,2, ,127,128  
MUX  
DSP #2  
PLL Clock  
SCKI  
MST_SCK_SRC  
(Page 0 Reg 0x20)  
SCK_OUT_TO_GPIO  
MUX  
Clock  
Divider  
PLL Clock  
SCKI  
Autoset by  
Master/Slave mode  
MUX  
CLK_DIV_PLL_SCK  
(Page 0 Reg 0x25)  
Autoset by format  
Clock  
Divider  
BCK OUT IN  
MASTER MODE  
MUX  
MUX  
BCK  
CLK_DIV_SCK_BCK  
(Page 0 Reg 0x26)  
Clock  
Divider  
LRCK OUT IN  
MASTER MODE  
MUX  
LRCK  
CLK_DIV_BCK_LRCK  
(Page 0 Reg 0x27)  
MASTER MODE ONLY  
Copyright © 2017, Texas Instruments Incorporated  
Figure 33. PCM186x Main Audio Clock Tree and Clock Generation  
Target Clock Rates for the ADC, DSP1 and DSP2 can be seen in Table 9 and Table 10. In manual clock  
configuration modes, the dividers should be set to achieve these targets. In short, for 2-channel devices, DSP1  
and DSP2 should be 256x the sampling rate; for 4-channel devices, DSP1 should be configured for 512x the  
sampling rate, and DSP2 should be 256x.  
9.3.9.4 Clocking Modes  
As shown in Table 5, there are four different clocking modes available on the device that take advantage of the  
onboard PLL and clock detection. Advanced clock detection and a smart internal state engine in the PCM186x  
can automatically configure the various dividers in the device (see the Device Clock Distribution and Generation  
section) with optimized values. Automatic clock configuration is enabled by default, using the register  
CLKDET_EN (Page.0, 0x20).  
Table 5. PCM186x Clocking Modes  
External XTAL/MCK  
NAME  
DEVICE  
BCK, LRCK DIRECTION  
PLL CONFIGURATION  
INPUT  
ADC master mode  
ADC slave mode  
PCM186x  
PCM186x  
YES  
OUT  
IN  
Not required  
Not required  
YES  
Automatic for standard  
audio rates  
ADC slave PLL mode  
PCM186x  
NO  
IN  
PCM1862  
PCM1863  
PCM1864  
PCM1865  
ADC non-audio MCK  
YES  
OUT  
Manual  
36  
Copyright © 2014–2018, Texas Instruments Incorporated  
 
 
PCM1860, PCM1861, PCM1862  
PCM1863, PCM1864, PCM1865  
www.ti.com.cn  
ZHCSCB3D MARCH 2014REVISED MARCH 2018  
9.3.9.4.1 Clock Configuration and Selection for Hardware-Controlled Devices  
The PCM1860 and PCM1861 hardware-controlled devices offer both master and slave functionality. In master  
mode, a source master clock (of 256x, 384x, or 512x the sampling rate) can be sourced from either an external  
crystal (XI/XO) or on an incoming SCK. (see the External Clock-Source Limits section for input rate limitations on  
SCK sources) The clock from XI and SCK are OR-ed internally, allowing either to be used.  
These hardware-controlled devices can generate the other I2S clocks (BCK and LRCK) in master mode (with  
dividers set in MD0 and MD1) or be a clock slave to MCK,BCK and LRCK. In this scenario, the device auto-  
detects the clock divider ratio.  
In master mode, BCK per LRCK is fixed at 64, and allows up to 32 bits per channel.  
Selection of the appropriate master or slave, and clock ratio between MCK and fS can be done using MD0 and  
MD1.  
Table 6 shows the suggested master clock rates for each of the sample rates supported. For slave mode, set  
BCK per LRCK to 64.  
Table 6. External Master Clock Rate Versus Sampling Frequency  
SYSTEM CLOCK FREQUENCY (MHz)  
SAMPLING RATE FREQUENCY  
(kHz)  
256 × fS  
2.048  
384 × fS  
3.072  
512 × fS  
4.096  
8.0  
16.0  
32.0  
44.1  
48.0  
64.0  
88.2  
96.0  
176.4  
192.0  
4.096  
6.144  
8.192  
8.1920  
12.2880  
16.9344  
18.4320  
24.5760  
33.8688  
36.8640  
16.3840  
22.5792  
24.5760  
32.7680  
45.1584  
49.1520  
11.2896  
12.2880  
16.3840  
22.5792  
24.5760  
45.1584  
49.1520  
9.3.9.4.2 Clock Sources for Software-Controlled Devices  
The PCM1862, PCM1863, PCM1864, and PCM1865 software-controlled devices support a wide range of options  
for generating the clocks required to operate the ADC section, as well as an interface and other control blocks,  
as shown in Figure 34.  
The clocks for the PLL require a source reference clock. This clock source can be configured on software  
devices as the XTAL, SCK or BCK.  
These software-controlled devices share a similar clock tree for the generation and distribution of clocks, as  
shown in Figure 33.  
Register CLK_MODE (Page.0 0x20) is used to configure the clock configuration. Bits [5:7] configure the OR and  
MUX for the incoming MCLK.  
Register MST_MODE (Page.0 0x20) is used to set the device in master or slave mode. Bits [1:3] set clock  
sources for the ADC, DSP1 and DSP2. These can mostly be ignored for the most common applications, but are  
provided for advanced users.  
Register MST_SCK_SRC (Page.0 0x20) is used to set the source of the SCKO in master mode. The master  
mode BCK and LRCK will be a division of this. The selection is either SCKI/XTI or PLL. PLL can be used when  
you have a non-audio rate reference clock (BCK or SCKI), as well as when you have an SCKI that is much too  
slow for what is required for SCKO.  
Most applications will use XTI/SCKI as the source for master mode SCK.  
The CLKDET_EN (Page.0, 0x20) register bit (auto clock detector) is important; the clock detector is mainly  
functional for slave modes, and for master modes where the master clock is a 256×, 384×, or 512× multiple of  
the incoming data rate.  
Copyright © 2014–2018, Texas Instruments Incorporated  
37  
 
PCM1860, PCM1861, PCM1862  
PCM1863, PCM1864, PCM1865  
ZHCSCB3D MARCH 2014REVISED MARCH 2018  
www.ti.com.cn  
The relation between the master mode configuration registers is shown in Table 7.  
NOTE  
Non audio related master clock sources can be used with the PCM186x software -  
controlled devices providing the PLL is programmed manually. CLKDET_EN should be set  
to 0.  
The result of configurations can be checked by reading registers FS_INFO / CURRENT_BCK_RATIO (Page.0  
0x73 and 0x74).  
NOTE  
In master mode on software-controlled devices, only the following BCK to LRCK ratios are  
supported: 32x, 48x, 64x and 256x. 128x is not supported  
Table 7. Master Mode Clock Configuration Registers  
CLOCK MULTIPLEXER  
MST_SCK_SRC  
DIVIDER  
FUNCTION  
BITS  
Master mode SCK source  
FUNCTION  
Page 0, register 0x20, bits[5]  
BITS  
Clock divider of PLL to SCKOUT  
divider (for example, master  
mode or BCK PLL slave mode  
with SCK for the rest of the  
system)  
CLK_DIV_PLL_SCK  
Pg0, reg 0x25, bits[0:6]  
Ratio of master clock (SCK) to bit  
clock (BCK)  
CLK_DIV_SCK_BCK  
CLK_DIV_BCK_LRCK  
Pg0, reg 0x26, bits[0:6]  
Pg0, reg 0x27, bits[0:6]  
Ratio of bit clock (BCK) to left-  
right clock (LRCK)  
PCM186x  
PLL_REF_SEL  
(Page 0 Reg 0x28)  
XO  
SCK  
SCK_XI_SEL[1:0]  
(Page 0 Reg 0x20)  
Clock  
Divider  
(0x23)  
ADC_CLK_SRC  
(Page 0 Reg 0x20)  
MUX  
MUX  
Audio ADC Clocks  
PLL Clock  
XI  
PLL  
SCKI  
SCK  
MUX  
Clock  
Divider  
(0x21)  
DSP1_CLK_SRC  
(Page 0 Reg 0x20)  
K × R / P  
DSP #1  
BCK  
PLL Clock  
LRCK  
K = J.D  
J = 1,2,3, ,62,63  
SCK  
Clock  
Divider  
(0x22)  
DSP2_CLK_SRC  
(Page 0 Reg 0x20)  
D = 0000,0001, ,9999  
R = 1,2,3,4, ,15,16  
P = 1,2, ,127,128  
MUX  
DSP #2  
PLL Clock  
SCKI  
MST_SCK_SRC  
(Page 0 Reg 0x20)  
SCK_OUT_TO_GPIO  
MUX  
Clock  
Divider  
PLL Clock  
SCKI  
Autoset by  
Master/Slave mode  
MUX  
CLK_DIV_PLL_SCK  
(Page 0 Reg 0x25)  
Autoset by format  
Clock  
Divider  
BCK OUT IN  
MASTER MODE  
MUX  
MUX  
BCK  
CLK_DIV_SCK_BCK  
(Page 0 Reg 0x26)  
Clock  
Divider  
LRCK OUT IN  
MASTER MODE  
MUX  
LRCK  
CLK_DIV_BCK_LRCK  
(Page 0 Reg 0x27)  
MASTER MODE ONLY  
Copyright © 2017, Texas Instruments Incorporated  
Figure 34. PLL Clock Source and Clock Distribution  
38  
Copyright © 2014–2018, Texas Instruments Incorporated  
 
PCM1860, PCM1861, PCM1862  
PCM1863, PCM1864, PCM1865  
www.ti.com.cn  
ZHCSCB3D MARCH 2014REVISED MARCH 2018  
9.3.9.4.3 Clocking Configuration and Selection for Software-Controlled Devices  
9.3.9.4.3.1 Target Clock Rates for ADC, DSP1 and DSP2  
The ADC, DSP1 and DSP2 each have specific minimum clock requirements that can be driven from either the  
incoming SCK or the output of the PLL, as shown in Table 8.  
Table 8. Minimum Required Clock Ratios for ADC, DSP1 and DSP2  
CORE  
ADC  
2-CHANNEL DEVICE RATIO  
128x output sampling rate  
256x output sampling rate  
256x output sampling rate  
4-CHANNEL DEVICE RATIO  
128x output sampling rate  
512x output sampling rate  
256x output sampling rate  
DSP #1  
DSP #2  
9.3.9.4.3.2 Configuration of Master Mode  
If an external, high-quality MCLK is available (either on the SCK pin or XTAL), then configure the PCM186x to  
run in master mode where possible, with the ADC and serial ports being driven from the MCLK or SCK source.  
The on-chip DSPs may continue to require clocks from the PLL, as they run from a much higher clock rate.  
Clock MUXs and overall configuration can be done in register Page0, 0x20. For the best performance in master  
mode, the automatic clock configuration circuitry configures the clocks as shown in Table 9 and Table 10, if the  
device is a PCM186x 2-channel or 4-channel, software-controlled device. The tables below show data at 48 kHz  
multiples, the ratios for multiples of 44.1 kHz are identical, while the absolute MHz values will be multiples of 44.1  
kHz instead of 48 kHz.  
This automatic configuration can be bypassed using registers, starting from CLKDET_EN (Page.0, 0x20).  
Copyright © 2014–2018, Texas Instruments Incorporated  
39  
 
PCM1860, PCM1861, PCM1862  
PCM1863, PCM1864, PCM1865  
ZHCSCB3D MARCH 2014REVISED MARCH 2018  
www.ti.com.cn  
Table 9. PCM1862 and PCM1863 (2-Channel) Clock Divider and Source Control in the Presence of External SCK  
DSP1 CLOCK  
DSP2 CLOCK  
ADC CLOCK  
SCK FREQ  
(MHz)  
PLL FREQ  
(MHz)  
DSP1 CLOCK  
(MHz)  
DSP 2  
CLOCK (MHz)  
ADC CLOCK  
(MHz)  
fS  
SCK RATIO  
PLL RATIO  
PLL CONFIG  
SOURCE  
DIVIDER  
SOURCE  
DIVIDER  
SOURCE  
DIVIDER  
P=1,R=2,  
J=48, D=0  
128  
256  
384  
1.024  
12288  
12288  
12288  
98.304  
98.304  
98.304  
2.048  
2.048  
2.048  
PLL  
SCK  
SCK  
48  
2.048  
2.048  
2.048  
PLL  
SCK  
SCK  
48  
1.024  
1.024  
1.024  
PLL  
96  
P=1,R=2,  
J=24, D=0  
2.048  
3.072  
1
1
1
1
SCK  
SCK  
2
3
8 kHz  
P=1,R=2,  
J=16, D=0  
512  
768  
4.096  
6.144  
Off  
Off  
2.048  
3.072  
SCK  
SCK  
2
2
2.048  
3.072  
SCK  
SCK  
2
2
1.024  
1.024  
SCK  
SCK  
4
6
P=1,R=2,  
J=24, D=0  
128  
256  
384  
2.048  
4.096  
6.144  
6144  
6144  
6144  
98.304  
98.304  
98.304  
4.096  
4.096  
6.144  
PLL  
SCK  
SCK  
24  
1
4.096  
4.096  
6.144  
PLL  
SCK  
SCK  
24  
1
2.048  
2.048  
2.048  
PLL  
SCK  
SCK  
48  
2
P=1,R=2,  
J=12, D=0  
16 kHz  
P=1,R=2, J=8,  
D=0  
1
1
3
512  
768  
8.192  
Off  
Off  
4.096  
6.144  
SCK  
SCK  
2
2
4.096  
6.144  
SCK  
SCK  
2
2
2.048  
2.048  
SCK  
SCK  
4
6
12.288  
P=1,R=2, J=8,  
D=0  
128  
256  
384  
6.144  
12.288  
18.432  
2048  
2048  
2048  
98.304  
98.304  
98.304  
12.288  
12.288  
18.432  
PLL  
SCK  
SCK  
8
1
1
12.288  
12.288  
18.432  
PLL  
SCK  
SCK  
8
1
1
6.144  
6.144  
6.144  
PLL  
SCK  
SCK  
16  
2
P=2,R=2, J=8,  
D=0  
48 kHz  
P=3,R=2, J=8,  
D=0  
3
512  
768  
24.576  
36.864  
Off  
Off  
12.288  
18.432  
SCK  
SCK  
2
2
12.288  
18.432  
SCK  
SCK  
2
2
6.144  
6.144  
SCK  
SCK  
4
6
P=4,R=2,  
J=16, D=0  
128  
256  
12.288  
24.576  
1024  
1024  
1024  
98.304  
98.304  
24.756  
24.756  
PLL  
4
1
24.756  
24.756  
PLL  
4
1
6.144  
6.144  
SCK  
SCK  
2
4
P=8,R=2,  
J=16, D=0  
SCK  
SCK  
96 kHz  
P=12,R=2,  
J=16, D=0  
384  
512  
128  
36.864  
49.152  
24.576  
98.304  
Off  
24.756  
24.756  
49.152  
SCK  
SCK  
PLL  
1
2
2
24.756  
24.756  
49.152  
SCK  
SCK  
PLL  
1
2
2
6.144  
6.144  
6.144  
SCK  
SCK  
SCK  
6
8
4
P=4,R=2, J=8,  
D=0  
512  
512  
98.304  
192 kHz  
P=8,R=2, J=8,  
D=0  
256  
49.152  
98.304  
49.152  
SCK  
1
49.152  
SCK  
1
6.144  
SCK  
8
40  
Copyright © 2014–2018, Texas Instruments Incorporated  
PCM1860, PCM1861, PCM1862  
PCM1863, PCM1864, PCM1865  
www.ti.com.cn  
ZHCSCB3D MARCH 2014REVISED MARCH 2018  
Table 10. PCM1864 and PCM1865 (4-Channel) Clock Divider and Source Control With External SCK  
DSP1 CLOCK  
DSP2 CLOCK  
ADC CLOCK  
SCK FREQ  
(MHz)  
PLL FREQ  
(MHz)  
DSP1 CLOCK  
(MHz)  
DSP 2  
CLOCK (MHz)  
ADC CLOCK  
(MHz)  
fS  
SCK RATIO  
PLL RATIO  
PLL CONFIG  
SOURCE  
DIVIDER  
SOURCE  
DIVIDER  
SOURCE  
DIVIDER  
P=1,R=2,  
J=48, D=0  
128  
256  
1.024  
2.048  
12288  
12288  
12288  
98.304  
98.304  
4.096  
4.096  
PLL  
PLL  
24  
2.048  
2.048  
PLL  
48  
1.024  
1.024  
PLL  
96  
P=1,R=2,  
J=24, D=0  
24  
SCK  
1
SCK  
2
8 kHz  
16 kHz  
48 kHz  
P=1,R=2,  
J=16, D=0  
384  
512  
768  
3.072  
4.096  
6.144  
98.304  
Off  
4.096  
4.096  
4.096  
PLL  
SCK  
PLL  
24  
1
2.048  
2.048  
3.072  
SCK  
SCK  
SCK  
1
2
2
1.024  
1.024  
1.024  
SCK  
SCK  
SCK  
3
4
6
P=1,R=2, J=8,  
D=0  
6144  
6144  
6144  
6144  
98.304  
24  
P=1,R=2,  
J=24, D=0  
128  
256  
2.048  
4.096  
98.304  
98.304  
8.192  
8.192  
PLL  
PLL  
12  
12  
4.096  
4.096  
PLL  
24  
1
2.048  
2.048  
PLL  
48  
2
P=1,R=2,  
J=12, D=0  
SCK  
SCK  
P=1,R=2, J=8,  
D=0  
384  
512  
768  
6.144  
8.192  
98.304  
Off  
8.192  
8.192  
8.192  
PLL  
SCK  
PLL  
12  
1
6.144  
4.096  
6.144  
SCK  
SCK  
SCK  
1
2
2
2.048  
2.048  
2.048  
SCK  
SCK  
SCK  
3
4
6
P=4,R=2,  
J=16, D=0  
12.288  
2048  
2048  
2048  
2048  
98.304  
12  
P=1,R=2, J=8,  
D=0  
128  
256  
6.144  
98.304  
98.304  
24.576  
24.576  
PLL  
PLL  
4
4
12.288  
12.288  
PLL  
8
1
6.144  
6.144  
PLL  
16  
2
P=4,R=2,  
J=16, D=0  
12.288  
SCK  
SCK  
P=3,R=2, J=8,  
D=0  
384  
512  
768  
18.432  
24.576  
36.864  
98.304  
Off  
24.576  
24.576  
24.576  
PLL  
SCK  
PLL  
4
1
4
18.432  
12.288  
18.432  
SCK  
SCK  
SCK  
1
2
2
6.144  
6.144  
6.144  
SCK  
SCK  
SCK  
3
4
6
P=3,R=2, J=4,  
D=0  
2048  
1024  
1024  
1024  
98.304  
P=4,R=2,  
J=16, D=0  
128  
256  
12.288  
24.576  
98.304  
98.304  
49.152  
49.152  
PLL  
PLL  
2
2
24.756  
24.756  
PLL  
4
1
6.144  
6.144  
SCK  
SCK  
2
4
P=4,R=2, J=8,  
D=0  
SCK  
96 kHz  
P=12,R=2,  
J=16, D=0  
384  
512  
128  
36.864  
49.152  
24.576  
98.304  
Off  
49.152  
49.152  
98.304  
PLL  
SCK  
PLL  
2
1
1
24.756  
24.756  
49.152  
SCK  
SCK  
PLL  
1
2
2
6.144  
6.144  
6.144  
SCK  
SCK  
SCK  
6
8
4
P=4,R=2, J=8,  
D=0  
512  
512  
98.304  
192 kHz  
P=8,R=2, J=8,  
D=0  
256  
49.152  
98.304  
98.304  
PLL  
1
49.152  
SCK  
1
6.144  
SCK  
8
Copyright © 2014–2018, Texas Instruments Incorporated  
41  
PCM1860, PCM1861, PCM1862  
PCM1863, PCM1864, PCM1865  
ZHCSCB3D MARCH 2014REVISED MARCH 2018  
www.ti.com.cn  
9.3.9.4.4 BCK Input Slave PLL Mode  
The PCM186x software-controlled devices can generate an internal MCLK system clock using the PLL  
(referenced from an external input BCK) in slave mode. Supported sampling frequencies are listed in Table 11.  
While the PCM186x can support down to 8 kHz, analog performance is not tested at this rate.  
Table 11. Auto PLL BCK Requirements  
SAMPLING  
FREQUENCY  
BCK RATIO  
TO LRCK  
BCK  
FREQUENCY  
8 kHz  
256  
64  
2.048  
1.024  
4.096  
1.536  
2.304  
3.072  
12.288  
3.072  
4.608  
6.144  
24.576  
6.144  
9.216  
12.288  
49.152  
16 kHz  
256  
32  
48  
48 kHz  
96 kHz  
192 kHz  
64  
256  
32  
48  
64  
256  
32  
48  
64  
256  
In software SPI or I2C mode, a PCM186x software-controlled device can use the on-chip crystal oscillator, if a  
CMOS clock source is not available. Audio clocks can be generated through the PLL from the non-audio  
standard CMOS or crystal frequency (and then can be divided down as described previously). This function is not  
available in hardware mode.  
The 8-kHz sampling rate is only supported if an external MCK is provided. The autodetect and PLL system  
support frequencies as low as 32 kHz. Analog performance is not tested in this mode.  
The clock tree can also be programmed manually, with the settings shown in Table 12 and Table 13.  
42  
Copyright © 2014–2018, Texas Instruments Incorporated  
 
PCM1860, PCM1861, PCM1862  
PCM1863, PCM1864, PCM1865  
www.ti.com.cn  
ZHCSCB3D MARCH 2014REVISED MARCH 2018  
Table 12. PCM1862 and PCM1863 (2-Channel) PLL BCK Settings  
DSP1 CLOCK DIVIDER  
2-CHANNEL MODE  
DSP1 CLOCK  
(MHz)  
2-CHANNEL  
DSP2 CLOCK DIVIDER  
ADC CLOCK DIVIDER  
BCK FREQ  
(MHz)  
PLL FREQ  
(MHz)  
DSP2 CLOCK  
(MHz)  
ADC CLOCK  
(MHz)  
fS  
BCK RATIO  
PLL RATIO  
PLL CONFIG  
SOURCE DIVIDER  
SOURCE  
DIVIDER  
SOURCE  
DIVIDER  
P=1,R=2,  
J=24, D=0  
8 kHz  
256  
64  
2.048  
1.024  
4.096  
1.536  
2.304  
3.072  
12.288  
3.072  
4.608  
6.144  
24.576  
6.144  
9.216  
12.288  
49.152  
12288  
6144  
6144  
2048  
2048  
2048  
2048  
1024  
1024  
1024  
1024  
512  
98.304  
98.304  
98.304  
98.304  
92.16  
2.048  
4.096  
PLL  
48  
2.048  
4.096  
PLL  
48  
1.024  
2.048  
2.048  
6.144  
6.144  
6.144  
6.144  
6.144  
6.144  
6.144  
6.144  
6.144  
6.144  
6.144  
6.144  
PLL  
96  
P=1,R=2,  
J=48, D=0  
PLL  
PLL  
PLL  
PLL  
PLL  
PLL  
PLL  
PLL  
PLL  
PLL  
PLL  
PLL  
PLL  
PLL  
24  
24  
8
PLL  
PLL  
PLL  
PLL  
PLL  
PLL  
PLL  
PLL  
PLL  
PLL  
PLL  
PLL  
PLL  
PLL  
24  
24  
8
PLL  
PLL  
PLL  
PLL  
PLL  
PLL  
PLL  
PLL  
PLL  
PLL  
PLL  
PLL  
PLL  
PLL  
48  
48  
16  
15  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16 kHz  
P=2,R=2,  
J=24, D=0  
256  
32  
4.096  
4.096  
P=1,R=2,  
J=32, D=0  
12.288  
15.36  
12.288  
15.36  
P=1,R=2,  
J=20, D=0  
48  
6
6
48 kHz  
P=1,R=2,  
J=16, D=0  
64  
98.304  
98.304  
98.304  
98.304  
98.304  
98.304  
98.304  
98.304  
98.304  
98.304  
12.288  
12.288  
24.576  
24.576  
24.576  
24.576  
49.152  
49.152  
49.152  
49.152  
8
12.288  
12.288  
24.576  
24.576  
24.576  
24.576  
49.152  
49.152  
49.152  
49.152  
8
P=4,R=2,  
J=16, D=0  
256  
32  
8
8
P=1,R=2,  
J=16, D=0  
4
4
P=3,R=2,  
J=32, D=0  
48  
4
4
96 kHz  
P=2,R=2,  
J=16, D=0  
64  
4
4
P=8,R=2,  
J=16, D=0  
256  
32  
4
4
P=2,R=2,  
J=16, D=0  
2
2
P=3,R=2,  
J=16, D=0  
48  
512  
2
2
192 kHz  
P=4,R=2,  
J=16, D=0  
64  
512  
2
2
P=16,R=2,  
J=16, D=0  
256  
512  
2
2
Copyright © 2014–2018, Texas Instruments Incorporated  
43  
PCM1860, PCM1861, PCM1862  
PCM1863, PCM1864, PCM1865  
ZHCSCB3D MARCH 2014REVISED MARCH 2018  
www.ti.com.cn  
Table 13. PCM1864 and PCM1865 (4-Channel) PLL BCK Settings  
DSP1 CLOCK DIVIDER  
4-CHANNEL MODE  
DSP1 CLOCK  
(MHz)  
4-CHANNEL  
DSP2 CLOCK DIVIDER  
ADC CLOCK DIVIDER  
BCK FREQ  
(MHz)  
PLL FREQ  
(MHz)  
DSP2 CLOCK  
(MHz)  
ADC CLOCK  
(MHz)  
fS  
BCK RATIO  
PLL RATIO  
PLL CONFIG  
SOURCE DIVIDER  
SOURCE  
DIVIDER  
SOURCE  
DIVIDER  
P=1,R=2,  
J=24, D=0  
8 kHz  
256  
64  
2.048  
1.024  
4.096  
1.536  
2.304  
3.072  
12.288  
3.072  
4.608  
6.144  
24.576  
6.144  
9.216  
12.288  
49.152  
12288  
6144  
6144  
2048  
2048  
2048  
2048  
1024  
1024  
1024  
1024  
512  
98.304  
98.304  
98.304  
98.304  
92.16  
4.096  
8.192  
PLL  
24  
2.048  
4.096  
PLL  
48  
1.024  
2.048  
2.048  
6.144  
6.144  
6.144  
6.144  
6.144  
6.144  
6.144  
6.144  
6.144  
6.144  
6.144  
6.144  
PLL  
96  
P=1,R=2,  
J=48, D=0  
PLL  
PLL  
PLL  
PLL  
PLL  
PLL  
PLL  
PLL  
PLL  
PLL  
PLL  
PLL  
PLL  
PLL  
12  
12  
4
PLL  
PLL  
PLL  
PLL  
PLL  
PLL  
PLL  
PLL  
PLL  
PLL  
PLL  
PLL  
PLL  
PLL  
24  
24  
8
PLL  
PLL  
PLL  
PLL  
PLL  
PLL  
PLL  
PLL  
PLL  
PLL  
PLL  
PLL  
PLL  
PLL  
48  
48  
16  
15  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16 kHz  
P=2,R=2,  
J=24, D=0  
256  
32  
8.192  
4.096  
P=1,R=2,  
J=32, D=0  
24.576  
30.72  
12.288  
15.36  
P=1,R=2,  
J=20, D=0  
48  
3
6
48 kHz  
P=1,R=2,  
J=16, D=0  
64  
98.304  
98.304  
98.304  
98.304  
98.304  
98.304  
98.304  
98.304  
98.304  
98.304  
24.576  
24.576  
49.152  
49.152  
49.152  
49.152  
98.304  
98.304  
98.304  
98.304  
4
12.288  
12.288  
24.576  
24.576  
24.576  
24.576  
49.152  
49.152  
49.152  
49.152  
8
P=4,R=2,  
J=16, D=0  
256  
32  
4
8
P=1,R=2,  
J=16, D=0  
2
4
P=3,R=2,  
J=32, D=0  
48  
2
4
96 kHz  
P=2,R=2,  
J=16, D=0  
64  
2
4
P=8,R=2,  
J=16, D=0  
256  
32  
2
4
P=2,R=2,  
J=16, D=0  
1
2
P=3,R=2,  
J=16, D=0  
48  
512  
1
2
192 kHz  
P=4,R=2,  
J=16, D=0  
64  
512  
1
2
P=16,R=2,  
J=16, D=0  
256  
512  
1
2
44  
Copyright © 2014–2018, Texas Instruments Incorporated  
PCM1860, PCM1861, PCM1862  
PCM1863, PCM1864, PCM1865  
www.ti.com.cn  
ZHCSCB3D MARCH 2014REVISED MARCH 2018  
9.3.9.4.5 Software-Controlled Devices ADC Non-Audio MCK PLL Mode  
This mode is mainly used for systems driving TDM ports or systems where the MCK is not related to the audio  
sampling rate. For example, where the audio ADC must share a clock source with the central processor  
(commonly, 12 MHz, 24 MHz, or 27 MHz.)  
Under these conditions, set automatic configuration register CLKDET_EN (Page 0, 0x20) to 0, and manually  
configure the PLL using registers (Page 0, 0x28 - 0x2D); see Software-Controlled Devices Manual PLL  
Calculation. The clock tree must also be set to use the PLL output as the master mode SCKOUT source, and  
have the appropriate SCK-to-BCK and BCK-to-LRCK dividers set.  
9.3.9.5 Software-Controlled Devices Manual PLL Calculation  
The PCM186x has an on-chip PLL with fractional multiplication to generate the clock frequency required by the  
audio ADC, modulator and digital signal processing blocks. The programmability of the PLL allows operation  
from a wide variety of clocks that may be available in the system. The PLL input supports clocks varying from 1  
MHz to 50 MHz, and is register programmable to enable generation of required sampling rates with fine  
precision.  
The PLL by default is enabled because the on-chip fixed function DSPs require high clock rates to complete all  
various decimation, mixing, and level-detection functions. The PLL output clock PLLCK is given by Equation 1:  
PLLCKINìRì JD  
PLLCKINìR ìK  
PLLCK =  
or PLLCK =  
P
P
where  
R = 1, 2, 3, 4, ….. 15, 16  
J = 1, 2, 3, 4,...63, and D = 0000, 0001, 0002...9999  
K = J.D  
P = 1, 2, 3...15  
(1)  
R, J, D, and P are register programmable. J is the integer portion of K (the numbers to the left of the decimal  
point), while D is the fractional portion of K (the numbers to the right of the decimal point, assuming four digits of  
precision).  
Examples:  
If K = 8.5, then J = 8, D = 5000  
If K = 7.12, then J = 7, D = 1200  
If K = 14.03, then J = 14, D = 0300  
If K = 6.0004, then J = 6, D = 0004  
When the PLL is enabled and D = 0000 (that is, an integer multiple), the following conditions must be satisfied:  
1 MHz (PLLCKIN / P) 20 MHz  
64 MHz < (PLLCKIN × K × R / P) < 100 MHz  
1 J 63  
When the PLL is enabled and D 0000 (that is, a noninteger multiple), the following conditions must be satisfied:  
6.667 MHz (PLLCLKIN / P) 20 MHz  
64 MHz < (PLLCKIN x K x R / P) < 100 MHz  
4 J 11  
R = 1  
When the PLL is enabled,  
fSref = (PLLCLKIN × K × R) / (N × P) :  
N is selected so that fSref × N = PLLCLKIN × K × R / P is in the allowable range.  
Example:  
MCLK = 12 MHz and fSref = 44.1 kHz, (N=2048)  
Select P = 1, R = 1, K = 7.5264, which results in J = 7, D = 5264  
Example:  
MCLK = 12 MHz and fSref = 48.0 kHz, (N=2048)  
Select P = 1, R = 1, K = 8.192, which results in J = 8, D = 1920  
Copyright © 2014–2018, Texas Instruments Incorporated  
45  
 
 
PCM1860, PCM1861, PCM1862  
PCM1863, PCM1864, PCM1865  
ZHCSCB3D MARCH 2014REVISED MARCH 2018  
www.ti.com.cn  
The PLL can be programmed using page 0, registers 0x28 thru 0x2D. Turn on the PLL using page 0, register  
0x28, D(0). The variable P can be programmed using page 0, register 0x29, D(3:0). The variable R can be  
programmed using page 0, register 0x2A, D(3:0). The variable J can be programmed using page 0, register  
0x2B, D(5:0). The variable D is 14-bits and is programmed into two registers. The MSB portion is programmed  
using page 0, register 0x2D, D(5:0), and the LSB portion is programmed using page 0, register 0x2C, D(7:0).  
The variable D is set when the LSB portion is programmed.  
Values are programmed in the registers in Table 14.  
Table 14. PLL Coefficient Registers  
REGISTER  
FUNCTION  
BITS  
PLL enable, lock status and  
PLL reference  
PLL_EN  
Page 0, register 0x28  
PLL_P  
PLL_J  
PLL P  
PLL J  
Page 0, register 0x29  
Page 0, register 0x2B  
Page 0, register 0x2C (least significant bits)  
Page 0, register 0x2D (most significant bits)  
Page 0, register 0x2A  
PLL_Dx  
PLL_R  
PLL D  
PLL R  
9.3.9.6 Clock Halt and Error  
The status of the halt and error detector can be read from register CLK_ERR_STAT (Page.0, 0x75).  
9.3.9.7 Clock Halt and Error Detect  
The PCM186x has a clock error detection block inside that continues to monitor the ratio of BCK to LRCK.  
If a clock error is detected (such as an unexpected number of BCKs per LRCK), then the device goes into  
standby mode.  
If all the clocks are stopped going into the device, then the device shifts into sleep state, and begins  
Energysense signal detect mode.  
When a clock error occurs, the PCM186x starts the following sequence:  
1. Mute audio output immediately (without volume ramp down)  
2. Wait until proper clock is supplied (known as Clock Waiting State)  
3. Restart clock detection. The PLL and all clock dividers are reconfigured with the result of the detection.  
4. Start fade-in  
If the device stops transmitting data, the first step is to read CLK_ERR_STAT (Page.0 0x72). The least  
significant nibble shows the device status. Value 0x01 suggests Clock Waiting State, at which point the clock  
error status can be read in register STATE (Page.0 0x75). The clock detection logic is shown in Table 15.  
Table 15. Summary of Clock Detection Logic  
SCK  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
HALT  
BCK  
ACTIVE  
ACTIVE  
HALT  
LRCK  
ACTIVE  
HALT  
RESULT  
No error  
ACTION  
Normal operation  
Clock error  
Clock error  
Clock error  
No error  
Enter clock waiting state  
Enter clock waiting state  
Enter SLEEP  
ACTIVE  
HALT  
HALT  
ACTIVE  
ACTIVE  
HALT  
ACTIVE  
HALT  
Enter BCK PLL mode  
Enter clock waiting state  
Enter clock waiting state  
Enter SLEEP  
HALT  
Clock error  
Clock error  
Clock error  
HALT  
ACTIVE  
HALT  
HALT  
HALT  
46  
Copyright © 2014–2018, Texas Instruments Incorporated  
 
 
PCM1860, PCM1861, PCM1862  
PCM1863, PCM1864, PCM1865  
www.ti.com.cn  
ZHCSCB3D MARCH 2014REVISED MARCH 2018  
In addition, the device uses an on-chip oscillator to detect errors in the rate of present clocks. That logic is shown  
in Table 16.  
Table 16. Summary of Clock Error Logic  
SCK/LRCK Ratio  
BCK/LRCK RATIO  
LRCK  
ERROR DETECT  
ACTION  
-
-
< 8 kHz or > 192 kHz  
fS error  
Enter clock waiting state  
Not 128 / 256 /  
384 / 512 / 768  
Enter the clock waiting state, tie I2S  
output to 0  
Enter the clock waiting state, tie I2S  
output to 0  
Enter the clock waiting state, tie I2S  
output to 0  
Enter the clock waiting state, tie I2S  
output to 0  
-
8 / 16 / 32 / 44.1 / 48 kHz  
88.2 / 96 kHz  
SCK error  
SCK error  
SCK error  
BCK error  
fS error  
Not 128 / 256 /  
384 / 512  
-
Not 128 / 256  
-
176.4 / 192 kHz  
8 / 16 / 32 / 44.1 / 48 / 88.2  
/ 96 / 174.6 / 196 kHz  
Not 256 / 64 / 48 / 32  
Enter the clock waiting state, tie I2S  
output to 0  
>192 kHz  
In an application with a non-audio standard SCK coming into the product, the clock error detection on the SCK  
pin can be ignored by disabling the auto clock detector (CLKDET_EN Page.0 0x20).  
9.3.9.8 Changes in Clock Sources and Sample Rates  
In slave mode, when changing clock sources, the PCM186x requires at least three BCK clocks of no clock or  
data for the device to reconfigure after clocks resume (if the device is in auto clock config mode).  
For example, auto clock config mode: StateA = 48 kHz, change to StateB = 44.1 kHz  
For changing from state A to State B:  
Leaving State A  
Hold clocks (or HiZ from external) for 3 BCK minimum  
Change clocks  
Allow ~100 µs (at least 3 BLKs at 48 kHz) for the device to reconfigure  
Data ramp back in on zero-crossing ramp (if zero crossing has not been disabled in software mode)  
Transition to State B complete  
In master mode, simply switching the I/O pins on the hardware-controlled devices, or changing the sampling rate  
register should change the sampling rate.  
NOTE  
Hardware-controlled devices cannot switch from XTAL master mode to external slave  
mode because the XTAL continues clocking the internal SCLK and not be in sync to the  
new external clocks. However, this switch can be done in software mode.  
9.3.10 Analog-to-Digital Converters (ADCs)  
9.3.10.1 Main Audio ADCs  
The SNR of the primary ADCs in the PCM186x are 103 dB (for PCM1860, PCM1862, PCM1864), or 110 dB (for  
PCM1861, PCM1863, PCM1865), with 40-kHz bandwidth that is tightly coupled to dedicated PGAs and input  
multiplexers. Often in this document, references are made to ADC1L and ADC1R (or CH1_L and CH1_R), the  
main left and right ADCs present in the PCM1862, PCM1863, PCM1864 and PCM1865. References to ADC2L  
and ADC2R are the other pair of left and right ADCs present only in the PCM1864 and PCM1865.  
Copyright © 2014–2018, Texas Instruments Incorporated  
47  
 
PCM1860, PCM1861, PCM1862  
PCM1863, PCM1864, PCM1865  
ZHCSCB3D MARCH 2014REVISED MARCH 2018  
www.ti.com.cn  
9.3.10.2 Secondary ADC: Energysense and Analog Control  
The PCM186x has a secondary ADC, shown in Figure 35, that is used for signal level detection or dc level  
change detection.  
PCM186x  
DSP#1  
Decimation  
DSP#2  
VINL1/VIN1P  
VINL2/VIN1M  
VINL3/VIN4P  
VINL4/VIN4M  
VINR1/VIN2P  
VINR2/VIN2M  
VINR3/VIN3P  
VINR4/VIN3M  
Energysense Loss of  
Signal Flag  
Trigger Mask Register  
(SIGDET_TRIG_MASK)  
Status Register  
(SIGDET_STAT)  
4fS  
Audio  
ADC  
HPF  
Filter  
8:1  
MUX  
Sticky  
Registers (1)  
4fS  
Signal Resume or Present Flag  
Control Voltage Change Flag  
Secondary  
ADC  
LPF  
HPF  
SIGDET_CH_MODE  
[7:0]  
Scan All  
Channels  
ADC  
Master  
Clock  
Interrupt  
Controller  
INTx  
On-Chip  
Oscillator  
1/8  
Sleep  
Mode  
Copyright © 2017, Texas Instruments Incorporated  
(1) Reset ports not shown.  
Figure 35. Secondary ADC Architecture  
The secondary ADC has two main purposes in the PCM186x family. The primary purpose is to act as a low  
power signal detection system, to aid with system wakeup from sleep. TI calls this functionality energysense.  
Other functionality includes the ability to use any spare analog inputs as generic ADC inputs, for connection to  
simple analog sources, such as voltages from control potentiometers. TI calls this functionality controlsense or dc  
control.  
The secondary ADC is a one-bit, delta-sigma type ADC. The sampling rate is directly connected to the main ADC  
audio sampling clocks during ACTIVE functionality. When the device is in sleep state, then the secondary ADC  
switches the clock source to an on-chip oscillator (if there are no other clock sources).  
In sleep mode, the inputs are all treated as single-ended inputs. Differential inputs are not supported in this mode  
because the PGA must be powered up, and thus, consume more power.  
In active mode, energysense audio signal detection on any channels other than the primary is not available;  
however, other inputs can be read using the secondary ADC channel driven in controlsense mode.  
In sleep mode, each input pin can be configured to perform either energysense or controlsense. Both functions  
can generate interrupts when their thresholds are crossed. All inputs will be cycled through and converted  
continuously, performing either an enerysense or a controlsense function.  
In active mode, any dc based controls will either need to be polled continuously by the systems host, or  
streamed out continuously in a 6ch TDM mode. In an application, this may mean that the main input is being  
converted, while the system battery level, or analog volume control knob position is polled using controlsense.  
To make the secondary ADC as flexible as possible in both energysense and controlsense modes, the following  
controls and coefficients are available in the register map. More details on each are in the relevant following  
sections.  
Coefficients for the secondary ADC low-pass filter  
Coefficients for the secondary ADC high-pass filter  
Reference voltage and interrupt voltage delta for each input in controlsense mode  
Signal loss conditions (time and threshold)  
Signal resume conditions (threshold)  
Interrupt behavior (for example, ping every x ms if host does not clear)  
Scan time for each single ended input  
48  
Copyright © 2014–2018, Texas Instruments Incorporated  
 
PCM1860, PCM1861, PCM1862  
PCM1863, PCM1864, PCM1865  
www.ti.com.cn  
ZHCSCB3D MARCH 2014REVISED MARCH 2018  
9.3.10.2.1 Secondary ADC Analog Input Range  
To match the dynamic range of the secondary ADC to an incoming line level signal, an overall attenuation is  
applied to the incoming signal. This attenuation is also present in controlsense mode. The impact of this is that  
the secondary ADC in controlsense mode can only detect control signals up to 4.3 V. Exact values will vary a  
small amount from device to device along with the gain error.  
Input impedance of the secondary ADC is designed to be 20 kΩ.  
9.3.10.2.2 Frequency Response of the Secondary ADC  
The natural response of the secondary ADC is not flat by frequency. However, the frequency response can be  
flattened, so that all frequencies are equally sensitive to the energysense detector by modifying the LPF or HPF  
biquads in the DSP.  
9.3.10.3 Secondary ADC Controlsense DC Level Change Detection  
This function is used for external analog controls, such as potentiometers to set volume, tone control, or a  
sensor. The data for control sense has no high pass filter applied to it, even if the main audio path does have a  
HPF enabled.  
AS shown in Figure 36, there are two parameters for the dc level change detection: reference level  
(REF_LEVEL) and difference level (DIFF_LEVEL). Each input pin (input 1 through 8) has a different reference  
and difference level.  
(1) DIFF_LEVEL > 0  
REF_LEVEL  
(2) DIFF_LEVEL < 0  
Time  
An interrupt is generated  
Figure 36. DC Detection Function  
Users set a reference point, and a difference point. If the voltage at the control point crosses the difference point  
then an interrupt is driven from the device. This is useful for filtering out noise, as well as reducing the load on  
the host processor for controls that tend to be set and forget (such as volume).  
The data from the secondary ADC can also be streamed out of the device in TDM form and directly from the I2C  
register map. AUXADC_DATA_CTRL (Page.0 0x58) is used to configure and check the status of the DC  
detector.  
This feature (thresholds and interrupts) is available in both active and sleep modes. In sleep mode, the device  
automatically scans through each channel designated a controlsense input. In active mode, the scanning will  
need to be done manually by a host microcontroller by modifying the SEC_ADC_INPUT_SEL (Page.0, 0x0A)  
register.  
Most applications requiring the use of  
a
potentiometer for control can simply use the  
SIGDET_DC_LEVEL_CHx_x registers to read the 8-bit value. To enable the SIGDET_DC_LEVEL_CHx_x  
registers to work, then the DC_NOLATCH AUXADC_DATA_CTRL (Page.0, 0x58, B[7]) should be set to 1, and  
the appropriate input pins should be set to controlsense inputs SIGDET_CH_MODE (Page.0, 0x30)  
Direct 16-bit two's compliment reads from the secondary ADC can be done using AUXADC_DATA_CTRL  
(Page.0, 0x58) includes a latch function that is used to read the data the secondary ADC on demand in 16-bit  
two's compliment format from registers 0x59 and 0x5A.  
Copyright © 2014–2018, Texas Instruments Incorporated  
49  
 
PCM1860, PCM1861, PCM1862  
PCM1863, PCM1864, PCM1865  
ZHCSCB3D MARCH 2014REVISED MARCH 2018  
www.ti.com.cn  
9.3.11 Energysense  
Energysense functionality has been added to the PCM186x to aid with auto-sleep and auto-wakeup for end  
equipment systems that are expected to be sold within the European Union. The latest Ecodesign legislation in  
Europe has demanded that products consume less than 500 mW in standby. Most off-the-shelf external power  
adaptors can consume 300 mW when idling, leaving the system with only 200 mW available. In many systems  
that require that almost everything be powered down in sleep mode after there is no more content to be played,  
and then to be powered back up when signal enters the system again.  
Energysense is designed to work in collaboration with a microcontroller to trigger interrupts notifying the  
microcontroller to change the state of the PCM186x, and the rest of the board (for example, amplifiers, and so  
on). The PCM186x does not automatically switch between sleep and wake modes.  
Energysense is split into two functions: signal loss flag and signal resume flag. Both are available on the  
PCM186x software-controlled devices. The PCM1860 and PCM1861 only support signal resume, as shown in  
Table 17. By default, the signal resume threshold is set at –57 dBFS. Signal resume (autowakeup) only functions  
when the device has been set to sleep.  
Table 17. Energysense States  
MODE  
PURPOSE  
CONDITIONS  
POSITIVE OUTCOME  
WORST CASE  
SLEEP  
Detect Input Signal and Wake up BCK and LRCK stopped (not locked) or  
Host Wakes and services interrupt (reads  
register)  
Host Doesn't respond or start clocks.  
(Signal Detect from SLEEP  
Mode)  
register Set.  
Trigger Interrupt when input crosses  
above (threshold)  
Host Starts BCK/LRCK. (Moving system to  
ACTIVE mode) or writes to register.  
PCM186x keeps triggering interrupts until  
host responds.  
Trigger for 1ms every X seconds until  
clocks start (x=1 by default)  
ACTIVE  
(Signal Loss over time  
Mode)  
Detect content below (threshold) BCK and LRCK are currently running  
System can choose to go to sleep or not. If  
not, reset interrupt  
If system does not sleep, remain in Mode  
2, and prompt every Y.  
Assist system to sleep after  
If no content above -(threshold) dB for Y If System decides to sleep, stop BCK/LRCK.  
MCU will need to mask that interrupt.  
audio inactivity (for example,  
Source is off, but speaker still  
on)  
minutes, drive interrupt.  
This will move PCM186x to SLEEP mode.  
9.3.11.1 Energysense Signal Loss Flag  
The main ADC constantly monitors the input signal level while in ACTIVE mode. Should the input level remain  
below a register defined threshold (for example –60 dB - Virtual Coefficient 0x2C, programmable through Page  
1.) for a register defined amount of time (for example 1 minute - set by SIGDET_LOSS_TIME (Page.0, 0x33) ),  
an interrupt can be generated.  
If the system MCU decides to move to sleep mode, the PCM186x can be moved to SLEEP by stopping  
BCK/LRCK or using PWRDN_CTRL (Page.0, 0x70); see Table 17 for details.  
If BCK and LRCK are stopped by the host after the interrupt, the device goes to the sleep state as shown in  
Figure 37. Otherwise, the interrupt continues for a few seconds, defined by SIGDET_INT_INTVL (Page.0, 0x36)  
unless the interrupt and timeout counter is reset.  
Stopped BCK and LRCK by the Host  
Time of loss of signal (Y minutes )  
Sleep State  
Threshold  
Level  
INT  
1 ms  
Figure 37. Energysense Signal Loss  
50  
Copyright © 2014–2018, Texas Instruments Incorporated  
 
 
PCM1860, PCM1861, PCM1862  
PCM1863, PCM1864, PCM1865  
www.ti.com.cn  
ZHCSCB3D MARCH 2014REVISED MARCH 2018  
In a typical application, the host MCU will note and reset this register multiple times until a system sleep number  
is hit. For example, a 5-minute signal loss could be implemented by using the default 1-minute timeout on the  
PCM186x, and counting five interrupts. An example is shown in Figure 38.  
Time of Loss of Signal (Y minutes)  
Y minutes  
Y minutes  
1 ms  
1 ms  
1 ms  
Figure 38. Interrupt Behavior for Signal Loss  
Alternatively, the SIGDET_LOSS_TIME (Page.0, 0x33) register in the device can be changed from one minute  
(default) to five minutes. This timeout is sample rate dependant. The expected sample rate is 48 kHz, but should  
the system be running at 96 kHz, then the time will be halved. (192 kHz = quarter the register setting).  
The duration of the interrupt can also be modified using INT_PLS (Page.0 0x62) to be pulses, or to be a sticky  
flag, where sticky is defined as the interrupt is on until cleared.  
9.3.11.2 Energysense Signal Detect Circuitry  
In sleep mode (BCK and LRCK stop, or by register), the PCM186x monitors the signal level or dc level change  
using the secondary ADC. All eight channels are converted one after the other in a circular manner. The scan  
time is specified with register SIGDET_SCAN_TIME. All eight channels are measured, even if some have the  
respective interrupt outputs muted. Accuracy and frequency response are a function of scan time. A long scan  
time allows detection of lower frequency content. The energysense signal wakeup logic is shown Figure 39.  
Scanning All Channels  
1 ms  
Interval Time (X sec)  
Figure 39. Energysense Signal Wakeup Logic  
There is a balance between lowest frequency detectable, and time on that particular channel. There are three  
options in register SIGDET_INT_INTVL (Page.0 0x36):  
50-Hz detect (160 ms per channel)  
100-Hz detect (80 ms per channel)  
200-Hz detect (40 ms per channel)  
Copyright © 2014–2018, Texas Instruments Incorporated  
51  
 
 
PCM1860, PCM1861, PCM1862  
PCM1863, PCM1864, PCM1865  
ZHCSCB3D MARCH 2014REVISED MARCH 2018  
www.ti.com.cn  
9.3.11.2.1 Energysense Threshold Levels for Both Signal Loss and Signal Detect  
There are two threshold levels used for Energysense, as shown in Figure 40. One is the loss of signal level,  
another one is the resume of signal level.  
RESUME Level  
LOSS Level  
Figure 40. Dual Thresholds for Energysense  
As both thresholds are DSP based, their coefficients are stored in virtual coefficient space that is programmed  
through the device register map.  
For example, to change the resume threshold value to –30 dB (0x040C37):  
Write 0x00 0x01 ; # change to register page 1  
Write 0x02 0x2D ; # write the memory address of resume threshold  
Write 0x04 0x04 ; # bit[23:15]  
Write 0x05 0x0C ; # bit[15:8]  
Write 0x06 0x37 ; # bit[7:0]  
Write 0x01 0x01 ; # execute write operation  
9.3.11.3 Programming Various Coefficients for Energysense  
Programming the DSP coefficients for the energysense secondary ADC is done through the indirect virtual  
programming registers in Page1. The low-pass filter (LPF) and high-pass filter (HPF) coefficients can be written  
to flatten out the frequency response, as well as the energysense loss and resume thresholds. Visually, one can  
imagine the DSP flow as shown in Figure 41.  
DSP#1  
DSP#2  
Decimation  
Filter  
Energysense  
Loss-of-Signal Flag  
HPF  
HPF  
Main ADC  
Signal Resume of  
Present Flag  
Secondary  
ADC  
LPF  
Control Voltage  
Change Flag  
SGIDET_CH_Mode[7:0]  
Copyright © 2016, Texas Instruments Incorporated  
Figure 41. Energysense Process Flow  
52  
Copyright © 2014–2018, Texas Instruments Incorporated  
 
 
PCM1860, PCM1861, PCM1862  
PCM1863, PCM1864, PCM1865  
www.ti.com.cn  
ZHCSCB3D MARCH 2014REVISED MARCH 2018  
To flatten out the response of the secondary ADC, so that all frequencies are detected evenly, write the biquads  
shown in Table 18 to the virtual DSP memory, using the techniques discussed in the Programming DSP  
Coefficients on Software-Controlled Devices section.  
Table 18. Secondary ADC Biquad Coefficients at 48-  
kHz Sampling  
COEFFICIENT  
LPF_B0  
LPF_B1  
LPF_B2  
LPF_A1  
LPF_A2  
HPF_B0  
HPF_B1  
HPF_B2  
HPF_A1  
HPF_A2  
VIRTUAL RAM ADDRESS  
0x20  
0x21  
0x22  
0x23  
0x24  
0x25  
0x26  
0x27  
0x28  
0x29  
9.3.12 Audio Processing  
Both DSP1 and DSP2 are fixed function processors that are not custom-programmable. They are used in this  
device to perform multiple filtering, mixing functions, signal detection and housekeeping functions. Programming  
the DSP coefficients is done indirectly using registers on Page1. The data and target DSP memory address are  
stored in registers, and once the DSPs are ready for the data (that is done by request) the data is then latched  
into the DSP memory.  
This indirect method of programming the DSP allows multiple registers to be written, without consuming valuable  
register map space. More details can be found in the Programming DSP Coefficients on Software-Controlled  
Devices section.  
9.3.12.1 DSP1 Processing Features  
9.3.12.1.1 Digital Decimation Filters  
The main audio path uses a selectable decimation filter used to convert the high-data-rate modulator to I2S rates.  
A choice between a classic FIR response and a low-latency IIR response is available. A high-pass filter, separate  
from that used for the secondary ADC, is also available to remove any dc bias that may be present in the signal.  
This feature is enabled by default.  
Details can be found in the DSP_CTRL register (Page.0, 0x71).  
9.3.12.1.2 Digital PGA  
As discussed in the Programmable Gain Amplifier section, the digital PGA gain can be controlled by the auto  
gain mapping function, that will use the analog gain settings in register PGA_VAL_CH1_L (Page.0 0x01) and  
related registers to achieve the target gain with a combination of digital and analog gain. However, digital gain  
can be also controlled directly by disabling the auto gain mapping function using register  
PGA_CONTROL_MAPPING (Page.0 0x19). Manual update of digital PGA is only available in 4-channel devices  
because the digital PGA gain is fixed to 0 dB when manual gain mapping is enabled.  
9.3.12.2 DSP2 Processing Features  
9.3.12.2.1 Digital Mixing Function  
This function allows post ADC mixing, as well as ADC + incoming I2S mix. Volume control functionality can be  
performed prior to outputting the signal to an I2S DAC or Amplifier.  
Gain range is from –120 dB to +18 dB (4.20 format). Phase Inversion can be done by performing the two's  
compliment of the positive gain coefficient. two's compliment can be performed by inverting all bits in the binary  
coefficient, and adding 1 to the LSB.  
Copyright © 2014–2018, Texas Instruments Incorporated  
53  
 
 
PCM1860, PCM1861, PCM1862  
PCM1863, PCM1864, PCM1865  
ZHCSCB3D MARCH 2014REVISED MARCH 2018  
www.ti.com.cn  
As the DSP coefficients are directly written, no soft ramping is available. Use of I2S receive sacrifices two digital  
mic channels due to pin limitations.  
Coefficients are written indirectly to virtual memory addresses using the registers on page 1. Details of the  
registers are shown in the Register Maps section.  
A diagram of the digital mixing functionality is shown in Figure 42.  
MIX1_CH1L  
Ch1[L]  
MIX1_CH1R  
Mute  
Ch1[R]  
MIX1_CH2L  
Ch2[L]  
MIX1_CH2R  
Ch2[R]  
MIX1_I2SL  
I2S[L]  
I2S Tx1  
DOUT1  
MIX1_I2SR  
I2S[R]  
Ch1[L]  
Ch1[R]  
Mute  
Ch2[L]  
Ch2[R]  
I2S[L]  
Mixer 2  
Mixer 3  
Mixer 4  
I2S[R]  
Ch1[L]  
Ch1[R]  
Mute  
Ch2[L]  
Ch2[R]  
I2S[L]  
I2S[R]  
I2S Tx2  
DOUT2  
Ch1[L]  
Ch1[R]  
Mute  
Ch2[L]  
Ch2[R]  
I2S[L]  
I2S[R]  
Copyright © 2016, Texas Instruments Incorporated  
Figure 42. Digital Mixer Functionality  
54  
Copyright © 2014–2018, Texas Instruments Incorporated  
 
PCM1860, PCM1861, PCM1862  
PCM1863, PCM1864, PCM1865  
www.ti.com.cn  
ZHCSCB3D MARCH 2014REVISED MARCH 2018  
9.3.13 Fade-In and Fade-Out Functions  
The PCM186x has fade-in and fade-out functions on DOUT to avoid pop noise. This function is engaged on  
device power up or down, and mute or unmute. The level changes from 0 dB to mute, or mute to 0 dB, are  
performed using pseudo S-shaped characteristics calculation with zero-cross detection. Because of the zero-  
cross detection, the time needed for the fade-in and fade-out depends upon the analog input frequency (fIN).  
Fade takes 48 / fIN until processing is completed. If there is no zero cross during 8192 / fS, DOUT is faded in or  
out by force during 48 /fS (TIME OUT). Figure 43 illustrates the fade-in and fade-out operation processing.  
Fade-In Complete  
Fade-In Start  
Fade-Out Start  
Fade-Out Complete  
DOUT  
(Contents)  
BPZ  
48/fin or 48/fS  
48/fin or 48/fS  
Figure 43. Fade-In and Fade-Out Operations  
9.3.14 Mappable GPIO Pins  
All the GPIO pins on thePCM186x software-controlled devices can be configured for various functions. They can  
each have their polarity inverted to make control of following circuits easier. See the control registers for each  
GPIO for a better explanation of mapping. (such as GPIO1_FUNC at Page.0 0x10)  
The type of function can also be controlled, including such behavior as regular inputs, inputs with toggle  
detection, or sticky bits. The device can also be configured as an open drain output, so that multiple interrupt  
outputs from different devices in the system can be connected together.  
9.3.15 Interrupt Controller  
The hardware-controlled PCM1860 and PCM1861 has the energysense signal detect as the default output on  
the INT pin. There are no other interrupt sources. The INT pin on the PCM1860 and PCM1861 is also used to  
put the device into power-down mode. Figure 44 shows the interrupt logic  
PCM186x  
Software-Controlled Devices  
Enable bits  
Sticky Registers  
Energysense  
Pulse Duration  
Polarity  
DC Level Change  
Polarity  
Control  
Interrupt  
Generator  
INT  
Post PGA Clipping  
Detection  
DIN Toggle  
Status  
Clear Bits  
Copyright © 2017, Texas Instruments Incorporated  
Figure 44. Interrupt Logic  
Copyright © 2014–2018, Texas Instruments Incorporated  
55  
 
 
PCM1860, PCM1861, PCM1862  
PCM1863, PCM1864, PCM1865  
ZHCSCB3D MARCH 2014REVISED MARCH 2018  
www.ti.com.cn  
The software-controlled devices have multiple signals that can be mapped to the interrupt outputs. These  
include:  
Energysense (default)  
Secondary ADC controlsense interrupt  
Post PGA clip  
DIN toggle  
The Interrupt controller has the following features  
The Interrupt sources can be filtered by the enable register (INT_EN).  
The Interrupt flags can be monitored by reading the status register (INT_STAT).  
The interrupt flags can be cleared by writing the status register.  
The polarity of the interrupt signal can be changed between active high, active low and Open Collector (High  
Impedance is pulled to GND) (INT_PLS).  
The pulse width of the interrupt signal can be changed between 1ms, 2ms, 3ms and 4ms.  
The interrupt controlled cannot remain asserted, the status bits can be sticky, but the interrupt pin itself has  
no hold function.  
Using a combination of these features, as well as the interrupt sources, allows the PCM186x to alert a host  
microcontroller of an event, using whichever polarity signal required (pull high, pull low, Hi-Z open collector). The  
host controller can then communicate with the device to poll the interrupt flag register to find out what happened.  
Additional registers can then be read for more details. (For instance, which input triggered an energysense  
event.). From a register point of view, there is no difference between INT A, INT B and INT C logic, other than  
their signaling (positive, negative or open drain).  
9.3.15.1 DIN Toggle Detection  
DIN toggle can be used to trigger from an external PCM audio data source or any other digital data source (such  
as a IR remote control UART stream) where there is a toggling logic state. (from 0 V to 3.3 V, or vice versa). All  
GPIO pins support DIN toggle detection, other than GPIO2.  
This function is only enabled in sleep mode.  
9.3.15.2 Clearing Interrupts  
Each Interrupt type has a specific method to clear. When clearing or resetting an interrupt, always remove the  
source of the interrupt first.  
9.3.15.2.1 Reset Energysense Loss (in Active Mode)  
Background: In active mode, the threshold is set to a system-level defined loss threshold (for example, –80  
dBFS), and the timeout set to 1 minute.  
After 1 minute, the interrupt triggers. To reset energysense loss, take the following steps:  
Step 1: Disable the interrupt in INT_EN (Page.0 0x60)  
Step 2: Look at INT_STAT (Page.0 0x61). What is the energysense interrupt?  
The interrupt status register INT_STAT (Page.0 0x61) is sticky in active mode. After being set, this register  
cannot be reset without clearing SIGDET_STAT (Page.0 0x32).  
Step 3 Option 1:The easiest way to clear the register is to move to sleep mode. PWRDN_CTRL (Page.0  
0x70)  
Step 3 Option 2: To ignore the interrupt, or to clear it and remain in active mode (and wait another minute)  
Step 4: Set the signal loss threshold to –110 dB (so that the interrupt is no longer generated by internal logic)  
Step 5: Clear the SIGDET_STAT (Page.0 0x32) register by:  
Write 0xFF to SIGDET_STAT (Page.0 0x32)  
Read SIGDET_STAT (Page.0 0x32). The register should be 0x00  
Step 6: Now set signal loss threshold to the original –80 dBFS  
Step 7: Enable the interrupt again INT_EN (Page.0 0x60)  
56  
Copyright © 2014–2018, Texas Instruments Incorporated  
PCM1860, PCM1861, PCM1862  
PCM1863, PCM1864, PCM1865  
www.ti.com.cn  
ZHCSCB3D MARCH 2014REVISED MARCH 2018  
9.3.15.2.2 Reset Energysense Detect (In Sleep Mode)  
Background: The device is in sleep mode, with the wake threshold set as a DSP memory coefficient.  
INT_STAT (Page.0 0x61) is sticky and SIGDET_STAT (Page.0 0x32) is not sticky in this mode. The Interrupt  
pin triggers dynamically as the audio crosses the threshold. The SIGDET_STAT (Page.0 0x32) register  
shows which input is causing the input only while that particular input is causing the interrupt. The INT_STAT  
(Page.0 0x61) register shows the energysense interrupt has been triggered until it is cleared.  
The system host controller responds to the interrupt in one of two ways:  
Option 1: Move to active mode. PWRDN_CTRL (Page.0 0x70)  
Option 2: Ignore the interrupt in the system controller, or disable the interrupt for a set amount of time using  
INT_EN (Page.0 0x60)  
9.3.15.2.3 Reset Controlsense (Active and Sleep Modes)  
If a potentiometer has been moved and the interrupt asserts, the following steps should be taken:  
Step 1: Read the INT_STAT (Page.0 0x61) to confirm it is a controlsense event.  
Step 2: Disable the controlsense interrupt temporarily: INT_EN (Page.0 0x60)  
Step 3: Read the SIGDET_STAT (Page.0 0x32) to see which channel changed  
Step 4: Read the appropriate SIGDET_DC_LEVEL_CHx_x to find the new value  
Step 5: Copy the value to the appropriate SIGDET_DC_REF_CHx_x register. This action should stop the  
interrupt being caused internally.  
Step 6: Re-enable the Interrupt INT_EN (Page.0 0x60)  
9.3.15.2.4 Reset DIN Toggle (In Sleep Mode)  
Background: The DIN toggle mode can detect if there is a toggle on an external data pin. For The INT pin will  
pulse as and when the Internal ADC flow clips. Despite the dynamic nature of the interrupt output pin, INT_STAT  
(Page.0 0x61) is a sticky register. To clear this register, take the following steps:  
Step 1: Read the INT_STAT (Page.0 0x61) to confirm it is a PGA clipping event.  
Step 2: Lower the gain of the current input channel INT_EN (Page.0 0x60)  
Step 3: Reset the interrupt using INT_EN (Page.0 0x60). Set bit 5 to 0, then back to 1  
Step 4: Bit 5 of INT_STAT (Page.0 0x61) should now be 0. If not, go to step 2 again.  
9.3.15.2.5 Reset PGA Clipping (Active)  
Background: PGA Clipping is a dynamic interrupt. The INT pin will pulse as and when the Internal ADC flow  
clips. Despite the dynamic nature of the interrupt output pin, INT_STAT (Page.0 0x61) is a sticky register. To  
clear this register, take the following steps:  
Step 1: Read the INT_STAT (Page.0 0x61) to confirm it is a PGA clipping event.  
Step 2: Lower the gain of the current input channel INT_EN (Page.0 0x60)  
Step 3: Reset the interrupt using INT_EN (Page.0 0x60). Set bit 5 to 0, then back to 1.  
Step 4: Bit 5 of INT_STAT (Page.0 0x61) should now be 0. If not, go to step 2 again.  
Copyright © 2014–2018, Texas Instruments Incorporated  
57  
PCM1860, PCM1861, PCM1862  
PCM1863, PCM1864, PCM1865  
ZHCSCB3D MARCH 2014REVISED MARCH 2018  
www.ti.com.cn  
9.3.16 Audio Format Selection and Timing Details  
9.3.16.1 Audio Format Selection  
Format selection for the PCM1860 and PCM1861 is controlled using a hardware pin configuration. There is a  
choice of left-justified data (known as LJ) or I2S.  
On the PCM186x software-controlled devices, format selection is done with the registers in I2S_FMT (Page.0  
0x0B), which offers additional support for right-justified (RJ) and time division multiplexed (TDM) data for multiple  
channels.  
The PCM186x software-controlled devices also offer an additional DOUT pin that can be driven through the  
GPIO pins. For an example, see the register details at GPIO1_FUNC (Page.0 0x10).  
9.3.16.2 Serial Audio Interface Timing Details  
2
FORMAT 0: FMT = Low = 24-Bit, MSB-First, I S  
LRCK  
BCK  
Left-Channel  
Right-Channel  
DOUT  
1
2
3
22 23 24  
LSB  
1
2
3
22 23 24  
LSB  
MSB  
MSB  
FORMAT 1: FMT = High = 24-Bit, MSB-First, Left-Justified  
LRCK  
BCK  
Left-Channel  
Right-Channel  
DOUT  
1
2
3
22 23 24  
LSB  
1
2
3
22 23 24  
LSB  
1
MSB  
MSB  
Figure 45. Audio Data Format  
(LRCK and BCK Work as Inputs in Slave Mode and as Outputs in Master Mode)  
9.3.16.3 Digital Audio Output 2 Configuration  
The PCM186x four-channel software-controlled devices offer an additional DOUT through the use of a GPIO that  
has its rate synchronized with the primary DOUT. DOUT2 is configured using the digital mixer, shown in Digital  
Mixing Function. In TDM Modes, DOUT2 is not available.  
The GPIO used for DOUT2 can be set using registers. GPIO0 is used for SPI-MOSI in SPI mode, however, it  
can be retasked for DOUT2 duties if MOSI is not required.GPIO0_FUNC (Page.0 0x10), GPIO1_FUNC (Page.0  
0x10), GPIO2_FUNC (Page.0 0x11), or GPIO3_FUNC (Page.0 0x11) can be used to set GPIOx to DOUT2  
9.3.16.4 Time Division Multiplex (TDM Support)  
The software-controlled devices can support TDM for both slave and master modes. In many devices, this is also  
known as DSP Mode.  
Data on the TDM stream can be between two and four channels of audio content from each PCM186x mixer  
output. By default, each mixer passes data from the respective ADC in a bypass or passthrough configuration.  
Data from the secondary ADC can also be output on channels five and six. The frame rate in TDM mode fixed to  
256 BCK per frame, and the duty cycle of the LRCK (or frame sync signal) can be either a 50 / 50 duty cycle, or  
a single bit at the start of the frame.  
Up to 32 bits per channel are available. In 32-bit mode, 24 bits of data and 8 bits of padding (zero) are used per  
channel. In 24-, 20-, and 16-bit data, no padding is provided between channels. In 24-bit mode, channel two  
begins transmitting on bit clock 25.  
In data formats lower than 24 bits, the data is simply truncated, not dithered to 16 bits.  
In slave mode, only a rising edge on the first bit is required to start the frame. (similar to MSB-first, left-justified).  
58  
Copyright © 2014–2018, Texas Instruments Incorporated  
PCM1860, PCM1861, PCM1862  
PCM1863, PCM1864, PCM1865  
www.ti.com.cn  
ZHCSCB3D MARCH 2014REVISED MARCH 2018  
In master mode, only a 50% duty cycle on the output is possible. This configuration is made by setting  
TDM_LRCK_MODE (Page.0 0x0B) to 0.  
Typically when interfacing to a DSP, only the rising edge on the first bit of data of the frame is required.  
While the device is not transmitting data (but still being clocked), the DOUT pin will be Hi-Z (high impedance) to  
allow other devices on the bus to transmit their data.  
TDM mode is configured using I2S_FMT (Page.0 0x0B), TDM_LRCK_MODE (Page.0 0x0B), TDM_OSEL  
(Page.0 0x0C)  
The timing limits for the interface signals are defined by the Serial Audio Data Interface Configuration section  
with the addition that the BCK period minimum must be at least 1 / (512 × fS) to make sure that data is clocked in  
correctly.  
The audio format is shown in Figure 46. The 24-bit data can fit up to 10 channels of data in a 256x bitclock  
stream; however, the I2C-controlled devices only have two possible I2C addresses. The eight channels of audio  
data should be no issue.  
BCK (fixed at 256 × fS)  
LRCK / Frame Sync  
50% Duty Cycle (Master Mode)  
Example  
24-Bit  
TDM Mode  
LRCK / Frame Sync  
1BCK or 50% Duty Cycle (Slave Mode)  
24-Bit  
DATA  
Ch1 data  
(24 bits)  
Ch2 data  
(24 bits)  
Ch3 data  
(24 bits)  
Ch4 data  
(24 bits)  
Ch5 data  
(24 bits)  
Ch6 data  
(24 bits)  
Ch7 data  
(24 bits)  
Ch8 data  
(24 bits)  
Ch9 data Ch10 data EMPTY Ch1 data  
No Gaps  
(24 bits)  
(24 bits) (16 bits) (24 bits)  
BCK (fixed at 256 × fS)  
LRCK / Frame Sync  
50% Duty Cycle (Master Mode)  
Example  
32-Bit  
Mode  
LRCK / Frame Sync  
1BCK or 50% Duty Cycle (Slave Mode)  
24-Bit  
DATA  
Ch1 data  
8
Ch2 data  
8
Ch3 data  
8
Ch4 data  
8
Ch5 data  
8
Ch6 data  
8
Ch7 data  
8
Ch8 data  
8
8-Bit Gaps  
(24 bits) bits (24 bits) bits (24 bits) bits (24 bits) bits (24 bits) bits (24 bits) bits (24 bits) bits (24 bits) bits  
Figure 46. Audio Format for TDM  
NOTE  
TDM mode can only function up to 96 kHz sampling rate when IOVDD is 1.8 V. This is  
due to an I/O limitation of 25 MHz at 1.8 V.  
9.3.16.5 Decimation Filter Select  
The PCM186x offers a choice of two different digital filters, a Classic FIR response and a low latency IIR.  
9.3.16.6 Serial Audio Data Interface Configuration  
The PCM186x devices interface to the audio system through LRCK, BCK and DOUT.  
The PCM186x hardware-controlled devices are configured using pin MD4 to select between left-justified data and  
I2S.  
The PCM186x software-controlled devices are configured using register I2S_FMT (Page.0 0x0B). Use register  
I2S_TX_OFFSET (Page.0 0x0D) when dealing with TDM systems to offset the data transmit.  
In addition, the offset required for receiving 24-bit data is programmed using RX_TDM_OFFSET (P0, R0x0E).  
Copyright © 2014–2018, Texas Instruments Incorporated  
59  
 
 
PCM1860, PCM1861, PCM1862  
PCM1863, PCM1864, PCM1865  
ZHCSCB3D MARCH 2014REVISED MARCH 2018  
9.4 Device Functional Modes  
9.4.1 Power Mode Descriptions  
www.ti.com.cn  
The PCM186x family has multiple power modes: active, sleep, idle, and standby. Table 19 lists the power modes  
and functions.  
Active mode: describes the mode where the device is targeting full performance and functionality.  
Idle mode: describes the mode where the digital output is muted and the analog side (such as PGAs) are still  
powered up.  
Sleep mode: describes the mode where the main ADCs are not in use, but the device continues to do  
Energysense input level detection.  
Standby mode: drops the power into an ultra-low power mode where only the control port is available.  
Table 19. Power Modes  
ACTIVE OR IDLE  
FUNCTIONS  
SLEEP (Energysense)  
STANDBY  
(MUTE)  
ANALOG FUNCTIONS  
Programmable Gain  
Amps  
ON  
OFF  
OFF  
ADC  
ADC Reference  
CMBF  
ON  
ON  
ON  
ON  
ON  
ON  
ON  
OFF  
OFF  
ON  
ON  
ON  
ON  
ON  
OFF  
OFF  
ON  
Reference  
ON  
Mic Bias  
OFF  
OFF  
OFF  
Secondary ADC PGA  
Secondary PGA  
ACCESSORY FUNCTIONS  
LDO  
ON  
ON  
ON  
ON  
ON  
ON  
ON  
ON  
ON  
ON  
Oscillator  
Clock Halt Detection  
PLL  
ON  
OFF  
5% ON (Control Port  
Only)  
Digital Cores  
ON  
20% ON  
9.4.1.1 PCM1860 and PCM1861 Hardware Device Power Down Functions  
9.4.1.1.1 Enter Standby Mode (From Active Mode)  
The external host should drive the INT pin (GPIO3) high (whilst there is no interrupt pending) to place the device  
in Idle mode.  
The INT pin is configured as an energysense interrupt output on the hardware-controlled device; therefore, the  
external host microcontroller should use it as multi-function pin. (MCU pin configured as INPUT when no  
requirement exists to move to standby, MCU pin as OUTPUT driving HIGH when a need exists to place the  
device in an idle state.)  
NOTE  
While the device is driving its interrupt high, any external voltage on the INT pin will be  
ignored by the device, until the interrupt event (and pulse) is finished.  
9.4.1.1.2 Exit From Standby Mode Back to Active  
The external MCU host releases the INT pin (GPIO3). This typically involves reconfiguring the external MCU  
GPIO into an INPUT or HI-Z.  
60  
Copyright © 2014–2018, Texas Instruments Incorporated  
 
PCM1860, PCM1861, PCM1862  
PCM1863, PCM1864, PCM1865  
www.ti.com.cn  
ZHCSCB3D MARCH 2014REVISED MARCH 2018  
9.4.1.1.3 Enter or Exit Sleep or Energysense Mode to Active  
Enter sleep mode: Halt BCK and LRCK  
Exit sleep mode: Resume BCK and LRCK  
9.4.1.2 PCM186x Software Device Power Down Functions  
9.4.1.2.1 Enter or Exit Stand-by Mode  
Enter standby mode: Send power down command by writing register PWRDN_CTRL (Page.0 0x70)  
Exit standby mode: Send power up command by writing register PWRDN_CTRL (Page.0 0x70)  
9.4.1.2.2 Enter Sleep Mode  
Send sleep command by writing register PWRDN_CTRL (Page.0 0x70) or  
Halt BCK and LRCK when I2S is configured as I2S slave mode  
9.4.1.2.3 Exit Sleep Mode  
Send resume from (exit) sleep command by writing register PWRDN_CTRL (Page.0 0x70) or  
Resume BCK and LRCK when I2S is configured as I2S slave mode  
9.4.1.3 Bypassing the Internal LDO to Reduce Power Consumption  
The PCM186x has an integrated LDO allowing single 3.3-V supply operation. However, developers desiring to  
minimize power consumption can bypass the on-chip LDO and provide 1.8 V to IOVDD and to LDO under the  
following conditions:  
TDM mode is limited to BCK driving a maximum of 25 MHz, because the BCK and DATA cells cannot exceed  
25 MHz when IOVDD is 1.8 V. Consequently, a maximum of 96-kHz sampling frequency operation is  
possible.  
IOVDD MUST be 1.8 V along with LDO, if an external 1.8 V supply is used to bypass the internal LDO.  
Copyright © 2014–2018, Texas Instruments Incorporated  
61  
PCM1860, PCM1861, PCM1862  
PCM1863, PCM1864, PCM1865  
ZHCSCB3D MARCH 2014REVISED MARCH 2018  
www.ti.com.cn  
9.5 Programming  
9.5.1 Control  
9.5.1.1 Hardware Control Configuration  
PCM186x devices require the following functions to be configured on startup. Hardware-controlled devices  
require a subset of these configurations:  
Control interface type and address for PCM186x software-controlled devices  
The clock mode and rate (automatic in slave mode, or divider ratio in master mode) for hardware-controlled  
devices. For more details see the Clocks section.  
The interface audio data format for hardware-controlled devices.  
Digital filter selection (FIR or IIR) for hardware-controlled devices; requires a power cycle to change.  
Analog input channels and PGA gain for hardware-controlled devices.  
9.5.1.2 Software-Controlled Device Configuration  
PCM186x software-controlled devices are configured and controlled by using either I2C or SPI using MD0 and  
MD1. Table 20 shows the MD0 control protocols, and Table 21 shows the MD1 mode selection.  
Table 20. MD0: Control Protocol Select  
MD0  
Low (or floating)  
High  
Control Protocol  
I2C Mode  
SPI Mode  
Table 21. MD1: I2C Address or SPI Chip Select  
MODE  
I2C  
I2C  
MD1 USE  
STATIC MD1 VALUE  
CONFIGURATION  
I2C Address: 0x94  
I2C Address: 0x96  
N/A  
Address pin  
Address pin  
Low  
High  
N/A  
SPI  
MS (SPI Chip Select)  
9.5.1.3 SPI Interface  
The SPI interface is a 4-wire synchronous serial port that operates asynchronously to the serial audio interface  
and the system clock (SCK). The serial control interface is used to program and read the on-chip mode registers.  
The control interface includes MISO, MOSI, MC, and MS. MISO (master in slave out) is the serial data output,  
used to read back the values of the mode registers; MOSI (master out slave in) is the serial data input, used to  
program the mode registers.  
MC is the serial bit clock, used to shift data in and out of the control port on the MC falling edge. MS is the  
active-low mode control enable, used to enable the internal mode register access. If data from the device is not  
required, the MISO pin can be assigned to GPIO1 by register control.  
9.5.1.3.1 Register Read and Write Operation  
All read and write operations for the serial control port use 16-bit data words. Figure 47 shows the control data  
word format. The most significant bit is the read and write (R/W) bit. For write operations, the bit must be set to 0.  
For read operations, the bit must be set to 1. There are seven bits, labeled IDX[6:0], that hold the register index  
(or address) for the read and write operations. The least significant eight bits, D[7:0], contain the data to be  
written to, or the data that was read from, the register specified by IDX[6:0].  
Figure 48 and Figure 49 show the functional timing diagram for writing or reading through the serial control port.  
MS should be held at logic 1 state until a register needs to be written or read. To start the register write or read  
cycle, MS should be set to logic 0. Sixteen clocks are then provided on MC, corresponding to the 16 bits of the  
control data word on MOSI and readback data on MISO. After the eighth clock cycle has completed, the data  
from the indexed-mode control register appears on MISO during the read operation. After the sixteenth clock  
cycle has completed, the data is latched into the indexed-mode control register during the write operation. To  
write or read subsequent data, MS should be set to logic 1 once.  
62  
Copyright © 2014–2018, Texas Instruments Incorporated  
 
 
PCM1860, PCM1861, PCM1862  
PCM1863, PCM1864, PCM1865  
www.ti.com.cn  
ZHCSCB3D MARCH 2014REVISED MARCH 2018  
MSB  
LSB  
IDX6 IDX5 IDX4 IDX3 IDX2 IDX1 IDX0 R/W  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Register Index (or Address)  
Register Data  
NOTE: B8 is used for selection of write or read. Setting = 0 indicates a write, while = 1 indicates a read. Bits 15–9 are used  
for register address. Bits 7–0 are used for register data.  
Figure 47. Control Data Word Format for MDI  
MS  
MC  
A6 A5 A4 A3 A2 A1 A0  
W
D7 D6 D5 D4 D3 D2 D1 D0  
MOSI  
MISO  
HI-z  
Figure 48. Serial Control Format for Write  
MS  
MC  
A6 A5 A4 A3 A2 A1 A0  
R
D7 D6 D5 D4 D3 D2 D1 D0  
D7 D6 D5 D4 D3 D2 D1 D0  
MOSI  
MISO  
HI-z  
HI-z  
Figure 49. Serial Control Format for Read  
Copyright © 2014–2018, Texas Instruments Incorporated  
63  
PCM1860, PCM1861, PCM1862  
PCM1863, PCM1864, PCM1865  
ZHCSCB3D MARCH 2014REVISED MARCH 2018  
www.ti.com.cn  
9.5.1.4 I2C Interface  
The PCM186x software-controlled devices support the I2C serial bus and the data transmission protocol for  
standard and fast mode as a slave device. This protocol is explained in I2C specification 2.0.  
The I2C control port is available even in the absence of any other clocks in the system.  
In I2C mode, the control pins are changed as shown in Table 22.  
Table 22. I2C Pins and Functions  
PIN NAME  
SDA  
PIN NUMBER  
PROPERTY  
Input / Output  
Input  
DESCRIPTION  
I2C data  
I2C clock  
I2C address 1  
23  
24  
25  
SCL  
AD  
Input  
9.5.1.4.1 Slave Address  
The PCM186x software-controlled devices have a 7-bit slave address, as shown in Table 23. The first six bits  
(MSBs) of the slave address are factory preset to 1001 01. The next bit of the address byte is the device select  
bit, which can be user-defined by the AD pin. A maximum of two PCM186x devices can be connected on the  
same bus at one time. Each device responds when receiving the respective slave address.  
Table 23. I2C Slave Address  
MSB  
1
LSB  
R/W  
0
0
1
0
1
AD  
9.5.1.4.2 Packet Protocol  
A master device must control packet protocol, which consists of start condition, slave address, read/write bit,  
data if write or acknowledge if read, and stop condition. The PCM186x software-controlled devices support only  
slave receivers and slave transmitters. Figure 50 shows the basic I2C framework.  
SDA  
SCL  
1–7  
8
9
1–8  
9
1–8  
9
9
Sp  
St  
Slave address R/W  
ACK  
DATA  
ACK  
DATA  
ACK  
ACK  
R/W: Readoperation if 1;otherwise,write operation  
ACK: Acknowledgement of a byte if 0  
DATA: 8 bits (byte)  
Start  
Stop  
condition  
condition  
write operation  
Transmitter  
Data Type  
M
M
M
S
M
S
M
S
S
M
------------  
------------  
St  
slave  
address  
R/W  
ACK  
DATA  
ACK  
DATA  
ACK  
ACK  
Sp  
read operation  
Transmitter  
Data Type  
M
M
M
S
M
S
M
S
S
M
St  
slave  
R/W  
ACK  
DATA  
ACK  
DATA  
ACK  
ACK  
Sp  
address  
M: Master Device MMM S: Slave Device  
St: Start Condition MMM Sp: Stop Conditiion  
Figure 50. Basic I2C Framework  
9.5.2 Current Status Registers  
Page.0, registers 0x72 through 0x75 and 0x78 can be used to read the device status at any time. Sample rate,  
power rail status, clock error, and clock ratios can all be read from these registers.  
64  
Copyright © 2014–2018, Texas Instruments Incorporated  
 
 
 
PCM1860, PCM1861, PCM1862  
PCM1863, PCM1864, PCM1865  
www.ti.com.cn  
ZHCSCB3D MARCH 2014REVISED MARCH 2018  
9.5.3 Real World Software Configuration using Energysense and Controlsense  
To gain the benefit of many of the PCM186x features, use a microcontroller to monitor and control the device.  
There are two main modes withing the device, Active and Sleep. Using a microcontroller to process the interrupts  
for both energysense and controlsense allows the system to intelligently wake and sleep as well as update  
system controls. Figure 51 and Figure 52 show flow diagrams for both active and sleep modes, respectively.  
Extended I2C register settings are shown in Bold Text.  
9.5.3.1 Active Mode Flow Diagram  
PowerUp  
Basic Device  
Configuration  
Stable System  
Running in Active Mode  
Manually (0x0A)  
cycle for secondary  
No Interrupt  
ADC source  
(control pot)  
Interrupt!  
INT_STAT  
Energysense Signal Loss  
ControlSense  
(0x61)  
Move to Sleep or wait  
Sleep  
Ignore and Wait Longer  
for another length of  
time?  
Update System  
Refresh Pot Value  
Reset Ref Level  
Clear E-Sense  
Interrupt  
Move to Sleep Mode  
(0x70)  
Figure 51. Active Mode Flow Chart  
Copyright © 2014–2018, Texas Instruments Incorporated  
65  
 
PCM1860, PCM1861, PCM1862  
PCM1863, PCM1864, PCM1865  
ZHCSCB3D MARCH 2014REVISED MARCH 2018  
www.ti.com.cn  
9.5.3.2 Basic Device Configuration  
The device by default starts in slave mode at 48 kHz (per the EVM)  
Set global loss level to be –50 dB using the DSP coefficient method.  
Set 4R as controlsense input (for example, a control voltage for volume control) using SIGDET_CH_MODE  
(0x30)  
Configure active mode secondary to be channel 4R using SEC_ADC_INPUT_SEL (0x0A)  
Set Read Data without latch in register AUXADC_DATA_CTRL (0x58)  
Set interrupts (energysense and controlsense) using INT_EN (0x60)  
Set interrupt pulse for 3 mS (makes it easier to see it visually using INT_PLS (0x62)  
9.5.3.3 Clear Energysense Interrupt  
Disable the energysense interrupt in INT_STAT register (0x61)  
Remove the interrupt source by changing the loss detect threshold to 110 dB (ADC noise level) using the DSP  
coefficient method.  
Write 0xFF to the SIGDET_STAT (0x32) register.  
Write 0x00 to the SIGDET_STAT (0x32) register.  
Change the loss detect threshold back to –50 dB using the DSP coefficient method.  
Re-enable the energysense interrupt in INT_STAT register (0x61)  
9.5.3.4 Update System Settings  
Read interrupt status INT_STAT register(0x61)  
Clear interrupt enable INT_EN (0x60)  
Check which input caused the interrupt; in this case, looking for (4R) SIGDET_STAT (0x32)  
Read new 4R data (for example, SIGDET_DC_LEVEL_CH4_R 0x57).  
Host would normally process as needed. (foe example, change volume in the amplifier)  
Set SIGDET_DC_REF_CH4_R (0x55) to be the new value.  
Now that interrupt source is removed, we can clear the SIGDET_STAT register (0x32)  
Write 0xFF to SIGDET_STAT register (0x32).  
Write 0x00 to SIGDET_STAT register (0x32).  
Re-enable control Sense Interrupt in INT_EN (0x60)  
9.5.3.5 Sleep Mode Flow Diagram  
The sleep mode flow chart is shown in Figure 52.  
66  
Copyright © 2014–2018, Texas Instruments Incorporated  
PCM1860, PCM1861, PCM1862  
PCM1863, PCM1864, PCM1865  
www.ti.com.cn  
ZHCSCB3D MARCH 2014REVISED MARCH 2018  
Sleep Mode Start  
No Interrupt  
Interrupt!  
INT_STAT  
(0x61)  
Energysense  
Audio Detect  
ControlSense  
Update System  
Disable Interrupt  
(0x60)  
Disable Interrupt  
Refresh Pot Value  
Update System  
Read SIGDET_STAT  
(0x32)  
Reset Ref Level  
Re-enable Interrupt  
Change Primary  
Audio Inputs?  
WAKE?  
(0x70)  
WAKE (0x70)  
No  
Yes  
Figure 52. Sleep Mode Flow Chart  
9.5.3.6 Update Controlsense values in Sleep Mode  
9.5.3.6.1 Update System Settings  
In sleep mode, any channels set as controlsense inputs are scanned through automatically. The read and writes  
to SIGDET_DC_REF_CHx_x and SIGDET_DC_LEVEL_CHx_x should be selected based on whichever input  
caused the interrupt.  
Read interrupt status INT_STAT register(0x61)  
Clear controlsense interrupt enable INT_EN (0x60)  
Check which input caused the interrupt SIGDET_STAT (0x32)  
Read new data (for example, SIGDET_DC_LEVEL_CHx_x).  
Host would normally process as needed (for example, change volume in the amplifier)  
Set SIGDET_DC_REF_CHx_x to be the new value.  
Now that interrupt source is removed, we can clear the SIGDET_STAT register (0x32) --  
Write 0xFF to SIGDET_STAT register (0x32).  
Write 0x00 to SIGDET_STAT register (0x32).  
Re-enable controlsense interrupt in INT_EN (0x60)  
Copyright © 2014–2018, Texas Instruments Incorporated  
67  
PCM1860, PCM1861, PCM1862  
PCM1863, PCM1864, PCM1865  
ZHCSCB3D MARCH 2014REVISED MARCH 2018  
9.5.4 Programming and Register Reference  
9.5.4.1 Coefficient Data Formats  
www.ti.com.cn  
All mixer gain coefficients are 24-bit coefficients using a 4.20 number format. Numbers formatted as 4.20  
numbers have 4 bits to the left of the binary point and 20 bits to the right of the binary point.  
The most significant bit of the 4.20 number format is the sine bit. It is used, as part of a two's complement  
number to invert the phase of that mixer input.  
See SLAC663 for a calculator to convert from dB to the hexadecimal coefficient required.  
9.5.5 Programming DSP Coefficients on Software-Controlled Devices  
The two fixed function DSPs on chip can have coefficients for filters and mixers programmed to them. This is  
done indirectly using specific registers on page 1. The devices integrate a memory arbiter that copies the  
coefficient from the I2C or SPI register space to the appropriate DSP memory address, when the DSP has  
completed its instructions for that sample. The refresh mechanism for the memory arbiter to update the I2C or  
SPI register space requires two dummy I2C writes to move from the DSP internal memory, through the arbiter  
and onwards to be visible in the I2C or SPI register space. See Figure 53  
Refresh Status  
Clocked by I2C Write  
I2C and SPI  
Register Space  
Memory Arbiter  
DSP Internal Memory  
Figure 53. Register to DSP Memory Structure  
Each 24-bit coefficient can be written once every audio sample. This allows a single sample update of a mixer  
coefficient, however, biquad coefficients will require multiple audio samples for all of the coefficients to be written.  
Under such conditions, the device should be muted until all coefficients are written. Otherwise, the biquad could  
become unstable.  
In addition, DSP Internal memory can only be written to when the DSP is provided a clock from either the PLL or  
an external master clock source. Requesting a WREQ = 1 Register 0x01 of page 0x01 will have no effect, if the  
DSP is not currently running. This is of relevance if the system is running as a clock slave, and the clocks stop.  
For example, to write to these registers, change the energysense resume threshold value to –30 dB (0x040C37)  
1. Write 0x00 0x01 ; # change to register bank 1  
2. Write 0x00 0x01 ; # two dummy writes to update the status of the write busy bit  
3. Write 0x00 0x01 ; # ^^^^  
4. Read Register 0x01 # if value is 0x00 then continue (check if system is still writing/reading). Otherwise, do  
another dummy write and check again.  
5. Write 0x02 0x2D ; # write the memory address of resume threshold  
6. Write 0x04 0x04 ; # bit[23:15]  
7. Write 0x05 0x0C ; # bit[15:8]  
8. Write 0x06 0x37 ; # bit[7:0]  
9. Write 0x01 0x01 ; # execute write operation  
See SLAC663 for more details.  
The internal DSP coefficient memory space is mapped as shown in Table 24.  
68  
Copyright © 2014–2018, Texas Instruments Incorporated  
 
PCM1860, PCM1861, PCM1862  
PCM1863, PCM1864, PCM1865  
www.ti.com.cn  
ZHCSCB3D MARCH 2014REVISED MARCH 2018  
Table 24. Virtual 24-Bit DSP Coefficient Registers  
NAME  
COEFFICIENT  
MIX1_CH1L  
MIX1_CH1R  
MIX1_CH2L  
MIX1_CH2R  
MIX1_I2SL  
MIX1_I2SR  
MIX2_CH1L  
MIX2_CH1R  
MIX2_CH2L  
MIX2_CH2R  
MIX2_I2SL  
MIX2_I2SR  
MIX3_CH1L  
MIX3_CH1R  
MIX3_CH2L  
MIX3_CH2R  
MIX3_I2SL  
MIX3_I2SR  
MIX4_CH1L  
MIX4_CH1R  
MIX4_CH2L  
MIX4_CH2R  
MIX4_I2SL  
MIX4_I2SR  
LPF_B0  
ADDRESS  
0x00  
0x01  
0x02  
0x03  
0x04  
0x05  
0x06  
0x07  
0x08  
0x09  
0x0A  
0x0B  
0x0C  
0x0D  
0x0E  
0x0F  
0x10  
0x11  
0x12  
0x13  
0x14  
0x15  
0x16  
0x17  
0x20  
0x21  
0x22  
0x23  
0x24  
0x25  
0x26  
0x27  
0x28  
0x29  
0x2C  
0x2D  
DESCRIPTION  
4.20 format  
Mixer-1  
Mixer-2  
Mixer-3  
Mixer-4  
4.20 format  
4.20 format  
4.20 format  
1.23 format  
Secondary ADC LPF and HPF  
Coefficients  
LPF_B1  
LPF_B2  
LPF_A1  
LPF_A2  
HPF_B0  
HPF_B1  
HPF_B2  
HPF_A1  
HPF_A2  
Energysense  
Loss_threshold  
Resume_threshold  
1.23 format  
Copyright © 2014–2018, Texas Instruments Incorporated  
69  
PCM1860, PCM1861, PCM1862  
PCM1863, PCM1864, PCM1865  
ZHCSCB3D MARCH 2014REVISED MARCH 2018  
www.ti.com.cn  
10 Application and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
The PCM186x family is extremely flexible, and this flexibility gives rise to a number of design questions that  
define the design requirements for a given application.  
10.1 Application Information  
In this section, the design choices are described, followed by a typical system implementation. The simplified  
application diagrams shown in 64 and 66 illustrate a typical system that would require the following  
architecture decisions to be made:  
Device Control Method  
Hardware Control (PCM1860, PCM1861)  
Software Control (PCM1862, PCM1863, PCM1864 and PCM1865)  
SPI  
I2C  
Power-Supply Options  
Single supply  
Separate analog and digital supplies  
Separate IO supply  
Master Clock Source  
External CMOS-level clock  
External crystal with integrated oscillator  
Analog Input Configuration  
Single-ended  
Differential  
An example application diagram is shown in 54.  
IN  
MIC  
DOUT  
BCK  
DOUT  
TMS320C5535  
PCM5121  
TPA3116  
TPA3116  
PCM186x  
LRCK  
SW mix  
IN  
LINE  
BCK  
PCM5100  
LRCK  
Copyright © 2017, Texas Instruments Incorporated  
54. Example Application Diagram  
70  
版权 © 2014–2018, Texas Instruments Incorporated  
 
PCM1860, PCM1861, PCM1862  
PCM1863, PCM1864, PCM1865  
www.ti.com.cn  
ZHCSCB3D MARCH 2014REVISED MARCH 2018  
Application Information (接下页)  
10.1.1 Device Control Method  
10.1.1.1 Hardware Control  
The PCM1860 and PCM1861 are controlled with pullup or pulldown voltages on pins MD0 through MD6. The INT  
pin is ideally designed to be used with a microcontroller that can treat the pin as both an input (when used as an  
interrupt) and as an output to pull the pin high, and force power down. See the Pin Configuration and Functions  
for the PCM1860 and PCM1861 for specific configuration details. The hardware control interface is shown in 图  
55.  
MD0 26  
Sample Rate and  
Master/Slave Selection  
MD1 25  
Digital Audio Format Selection  
Filter Mode Selection  
MD4 24  
MD3I 23  
MD2 22  
MD5 21  
MD6 20  
INT 19  
Interrupt and Gain Selection  
Interrupt  
Copyright © 2017, Texas Instruments Incorporated  
55. PCM1860 and PCM1861 Hardware Control Interface  
10.1.1.2 Software Control  
10.1.1.2.1 SPI Control  
SPI control is selected by the MD0 pin; in this case, MDO connects to 3.3 V, so that the device acts as an SPI  
slave. The SPI control interface is shown in 56.  
MD0 26  
MS 25  
3.3 V SPI Select  
MC 24  
SPI  
MOSI 23  
MISO 22  
GPIO1/INTA/DMIN 21  
GPIO2/INTB/DMCLK 20  
GPIO3/INTC 19  
Interrupt / GPIO  
Interrupt / GPIO  
Interrupt / GPIO  
Copyright © 2017, Texas Instruments Incorporated  
56. SPI Control Interface Including Interrupt Signals  
版权 © 2014–2018, Texas Instruments Incorporated  
71  
 
 
PCM1860, PCM1861, PCM1862  
PCM1863, PCM1864, PCM1865  
ZHCSCB3D MARCH 2014REVISED MARCH 2018  
www.ti.com.cn  
Application Information (接下页)  
10.1.1.2.2 I2C Control  
I2C control is selected by the MD0 pin; in this example, MDO is pulled down to ground, so that the device acts as  
an I2C slave. One address line is supported to select between two devices on the same bus. The I2C control  
interface is shown in 57.  
I2C Select  
MD0 26  
GND  
I2C Address Select  
AD 25  
SCL 24  
I2C Bus  
SDA 23  
GPIO1/INTA/DMIN 21  
GPIO2/INTB/DMCLK 20  
GPIO3/INTC 19  
Interrupt / GPIO  
Interrupt / GPIO  
Interrupt / GPIO  
Copyright © 2017, Texas Instruments Incorporated  
57. I2C Control Interface Including Interrupt Signals  
10.1.2 Power-Supply Options  
10.1.2.1 3.3-V AVDD, DVDD, and IOVDD  
The 3.3-V AVDD, DVDD, and IOVDD Example is the most typical power-supply configuration. The 3.3-V single  
supply is shown in 58.  
8
AVDD  
13 DVDD  
14 IOVDD  
11 LDO  
10 F  
2.2 F  
2.2 F  
GND  
6
VREF  
12 DGND  
AGND  
7
GND  
Copyright © 2017, Texas Instruments Incorporated  
58. Single 3.3-V Supply  
10.1.2.2 3.3-V AVDD, DVDD, and 1.8-V IOVDD  
For details regarding lower-power applications, see 3.3-V AVDD, DVDD With 1.8-V IOVDD Example for Lower-  
Power Applications for lower-power applications.  
72  
版权 © 2014–2018, Texas Instruments Incorporated  
 
 
PCM1860, PCM1861, PCM1862  
PCM1863, PCM1864, PCM1865  
www.ti.com.cn  
ZHCSCB3D MARCH 2014REVISED MARCH 2018  
Application Information (接下页)  
10.1.3 Master Clock Source  
The PCM186x family offers three different clock sources. For the highest performance, run the ADC in master  
mode from a stable, well-known SCK source, such as a CMOS SCK, or a external crystal (XTAL). The PCM186x  
is easy to hook up to a crystal, simply connect to XI and XO, and add capacitors to ground, as suggested in the  
XTAL manufacturer's data sheet (typically 15 pF).  
External CMOS clock sources can be brought directly into the SCKI pin (for 3.3-V sources) or into the XI pin (1.8  
V sources).  
The PLL must be enabled if the clock source is unrelated to the audio rate. For instance, a 12-MHz USB crystal  
requires custom PLL settings to generate the 48-kHz rate clocks and the 44.1-kHz rate clocks required by many  
audio systems. An example with a 12-MHz clock is shown in Software-Controlled Devices Manual PLL  
Calculation.  
For timing limits on XTAL and SCKI, see the Specifications section.  
10.1.4 Dual PCM186x TDM Functionality  
Two PCM186x software-controlled devices can be used together to create an 8-channel (or higher) channel  
count system using a TDM. In 59, Device A is used as the TDM clock master, and Device B is configured to  
be a TDM slave and transmit on channels 5, 6, 7, and 8 of the TDM stream. The key difference is that Device A  
most likely has a crystal, or an SCKI source, and is configured to be the TDM master, whereas Device B does  
not require an XTAL or SCKI source because Device B uses the internal PLL to generate the required system  
clocks. Another two channels can be added to the stream from a stereo device; however, I2C address  
management is required because the PCM186x software-controlled devices can only have one of two I2C  
addresses.  
CH1, CH2, CH3, CH4  
CH5, CH6, CH7, CH8  
DATA  
LRCK  
BCK  
DSP Processor  
PCM186x #1  
PCM186x #2  
(TDM Master)  
(TDM Slave)  
SDA  
SCL  
Copyright © 2017, Texas Instruments Incorporated  
59. TDM With Two PCM186x  
版权 © 2014–2018, Texas Instruments Incorporated  
73  
 
PCM1860, PCM1861, PCM1862  
PCM1863, PCM1864, PCM1865  
ZHCSCB3D MARCH 2014REVISED MARCH 2018  
www.ti.com.cn  
Application Information (接下页)  
10.1.5 Analog Input Configuration  
10.1.5.1 Analog Front-End Circuit For Single-Ended, Line-In Applications  
Most systems can simply use an input filter similar to the one shown in 60. However, for systems with  
significant out-of-band noise, a simple filter such as that shown in 61 can be used for pre-ADC, antialiasing  
filtering. The recommended resistor value for the antialiasing filter is 100 Ω. Place film-type capacitors of 0.01 µF  
as close as possible to the VINLx and VINRx pins, and terminate to GND as close as possible to the AGND pin  
in order to maximize the dynamic performance of the ADC.  
Adding this filter resistor also adds some input current limiting into the device, if the ESD diodes begin to clamp  
the signal when the maximum input voltage is exceeded. Keep the current through the input ESD diodes as low  
as possible, with ~5 mA treated as a absolute maximum. Any higher and the ESD diodes may fail because of the  
thermal constraints.  
10 µF  
10 µF  
100  
Single-Ended  
Audio Source  
Single-Ended  
Audio Source  
VINxx  
VINxx  
0.01 µF  
PCM186x  
PCM186x  
Copyright © 2017, Texas Instruments Incorporated  
Copyright © 2017, Texas Instruments Incorporated  
60. Analog Input Circuit for Single-Ended Input  
61. Analog Input Circuit With Additional Anti  
Aliasing Filter for Single-Ended Applications  
Applications  
10.1.5.2 Analog Front-End Circuit for Differential, Line-In Applications  
As in single-ended applications, most systems can simply use an input filter similar to 62. However, for  
systems with significant out-of-band noise, a simple filter such as that shown in 63 can be used for pre-ADC,  
antialiasing filtering. The recommended resistor value for the antialiasing filter is 47 Ω. Place film-type capacitors  
of 0.01 µF as close as possible to the VINLx and VINRx pins, and terminate to GND as close as possible to the  
AGND pin in order to maximize the dynamic performance of ADC. To maintain common-mode rejection, match  
the series resistors as closely as possible.  
10 µF  
10 µF  
47  
Differential +  
Audio Source  
Differential +  
Audio Source  
VINxP  
VINxM  
VINxP  
VINxM  
0.01 µF  
Differential -  
Audio Source  
Differential -  
Audio Source  
10 µF  
PCM186x  
10 µF  
47 ꢀ  
PCM186x  
Copyright © 2017, Texas Instruments Incorporated  
Copyright © 2017, Texas Instruments Incorporated  
62. Analog Input Circuit for Differential Input  
63. Differential Input Circuit With Additional  
Applications  
AntiAliasing Filter  
74  
版权 © 2014–2018, Texas Instruments Incorporated  
 
 
PCM1860, PCM1861, PCM1862  
PCM1863, PCM1864, PCM1865  
www.ti.com.cn  
ZHCSCB3D MARCH 2014REVISED MARCH 2018  
10.2 Typical Applications  
10.2.1 Stereo Recording Application for PCM186x Hardware-Controlled Devices in Master Mode  
3.3 V  
3.3 V  
1
2
3
4
VINL2/VIN1M  
VINR2/VIN2M  
VINL1/VIN1P  
VINR1/VIN2P  
Mic Bias  
5
Stereo  
Pair 2  
0.1 F  
10 F 0.1 F  
10 F  
2.2 k  
2.2 kꢀ  
IOVDD 14  
DVDD 13  
10 F  
10 F  
Right Mic  
Left Mic  
Stereo  
Pair 1  
AVDD  
8
30 VINR3/VIN3P  
29 VINL3/VIN4P  
28 VINR4/VIN3M  
27 VINL4/VIN4M  
MD0 26  
MD1 25  
MD3 23  
MD4 22  
MD2 24  
MD5 21  
MD6 20  
INT 19  
Stereo  
Pair 3  
Sample Rate or Master/Slave  
Selection  
Filter Mode Selection  
Stereo  
Pair 4  
Digital Audio Format Selection  
15 pF  
9 XO  
10 XI  
Input and Gain Selection  
15 pF  
11 LDO  
2.2 F  
2.2 F  
6
7
VREF  
AGND  
DOUT 18  
BCK 17  
LRCK 16  
System  
Processor  
12 DGND  
15 SCKI  
PCM1860  
PCM1861  
Copyright © 2017, Texas Instruments Incorporated  
NOTE: Pins not shown in specific order.  
64. Stereo Recording Application for PCM186x Hardware-Controlled Devices in Master Mode  
版权 © 2014–2018, Texas Instruments Incorporated  
75  
 
PCM1860, PCM1861, PCM1862  
PCM1863, PCM1864, PCM1865  
ZHCSCB3D MARCH 2014REVISED MARCH 2018  
www.ti.com.cn  
Typical Applications (接下页)  
10.2.1.1 Design Requirements  
Device control method: Hardware control by digital GPIO pins of a microcontroller  
XTAL used for master mode  
Single-ended analog inputs  
10.2.1.2 Detailed Design Procedure  
Device control method: Hardware control by digital GPIO pins of a microcontroller  
Select XTAL capacitors by reading the XTAL data sheet  
Single-ended analog inputs  
MD2, MD5, MD6 configuration (see the Pin Configuration and Functions for the PCM1860 and PCM1861)  
Audio slave mode  
MD0, MD1 grounded (see 64, and the Pin Configuration and Functions for the PCM1860 and  
PCM1861)  
The power rails in this application allow the usage of X7R Ceramic capacitors. A maximum voltage rating of  
6.3 V should be enough for the power supply capacitors.  
Configure the microcontroller INT pin to be an input for interrupts, or change the function to output to pull high  
to power down the PCM1860 and PCM1861.  
10.2.1.3 Application Curves  
0
œ20  
œ40  
œ60  
œ80  
œ100  
œ120  
œ140  
œ160  
20  
200  
2000  
Frequency (Hz)  
20000  
C013  
65. Frequency Response with –1-dB Input at 1 kHz  
76  
版权 © 2014–2018, Texas Instruments Incorporated  
PCM1860, PCM1861, PCM1862  
PCM1863, PCM1864, PCM1865  
www.ti.com.cn  
ZHCSCB3D MARCH 2014REVISED MARCH 2018  
Typical Applications (接下页)  
10.2.2 Stereo Recording Application for PCM186x Software-Controlled Devices in Slave PLL Mode with  
1.8-V IOVDD  
1.8 V  
3.3 V  
0.1 F  
10 F  
0.1 F  
10 F  
1
2
3
4
VINL2/VIN1M  
VINR2/VIN2M  
VINL1/VIN1P  
VINR1/VIN2P  
Mic Bias  
5
Stereo  
Pair 2  
2.2 k  
2.2 kꢀ  
IOVDD 14  
DVDD 13  
10 F  
10 F  
3.3 V  
Right MIC  
Left MIC  
Stereo  
Pair 1  
AVDD  
8
0.1 F  
10 F  
30 VINR3/VIN3P  
29 VINL3/VIN4P  
28 VINR4/VIN3M  
27 VINL4/VIN4M  
MD0 26  
MS/AD 25  
Stereo  
Pair 3  
I²C Address Select  
I²C Bus  
MC/SCL 24  
Stereo  
Pair 4  
MOSI/SDA 23  
9
XO  
MISO/GPIO0/DMIN2 22  
GPIO1/INTA/DMIN 21  
GPIO1/INTB/DMCLK 20  
GPIO3/INTC 19  
DOUT 18  
1.8 V  
10 XI  
Interrupt or GPIO  
11 LDO  
2.2 F  
6
7
VREF  
AGND  
2.2 F  
PCM1862  
System  
Processor  
12 DGND  
15 SCKI  
BCK 17  
PCM1863  
PCM1864  
PCM1865  
LRCK 16  
Copyright © 2017, Texas Instruments Incorporated  
NOTE: Pins not shown in specific order.  
66. Stereo Recording Application for PCM186x Software-Controlled Devices in Slave PLL Mode with  
1.8-V IOVDD  
版权 © 2014–2018, Texas Instruments Incorporated  
77  
PCM1860, PCM1861, PCM1862  
PCM1863, PCM1864, PCM1865  
ZHCSCB3D MARCH 2014REVISED MARCH 2018  
www.ti.com.cn  
Typical Applications (接下页)  
10.2.2.1 Design Requirements  
Device control method: Software control by I2C  
Clock slave to a 1.8-V device that only supplies BCK and LRCK (such as a Bluetooth module)  
Single-ended analog inputs  
10.2.2.2 Detailed Design Procedure  
Device control method: Configure for I2C by pulling MD0 to GND, and setting I2C address by setting the AD  
pin high or low  
Make sure that BCK is configured in clock master device to be 64 × fS for automatic PLL setting to function.  
Single-ended analog inputs  
MD2, MD5, MD6 configuration; see  
Audio slave mode  
Configure appropriate clock registers  
Page 0, 0x20 - Set MST_MODE = 1 (I2S slave)  
The power rails in this application allow the usage of X7R ceramic capacitors. A maximum voltage rating of  
6.3 V should be enough for the power-supply capacitors.  
10.2.2.3 Application Curves  
0
œ20  
œ40  
œ60  
œ80  
œ100  
œ120  
œ140  
œ160  
20  
200  
2000  
Frequency (Hz)  
20000  
C013  
67. Frequency Response With –60-dB Input at 1 kHz  
78  
版权 © 2014–2018, Texas Instruments Incorporated  
PCM1860, PCM1861, PCM1862  
PCM1863, PCM1864, PCM1865  
www.ti.com.cn  
ZHCSCB3D MARCH 2014REVISED MARCH 2018  
11 Power Supply Recommendations  
11.1 Power-Supply Distribution and Requirements  
The PCM186x powers the device using the pins shown in 68.  
AVDD  
(3.3 V)  
DVDD  
(3.3 V)  
IOVDD  
(1.8 V or 3.3 V)  
LDO  
(1.8 V)  
Primary  
ADCs  
Digital Core  
(DSP, Logic)  
PLL  
Digital IO  
Analog Circuits  
Secondary  
ADC  
Oscillator  
Digital Circuits  
Power Circuits  
Clock Halt  
Detect  
PGAs  
1.8V LDO  
Reference  
Mic Bias  
PCM186x  
Copyright © 2017, Texas Instruments Incorporated  
68. PCM186x Power Distribution Tree  
The PCM186x uses a combination of 3.3-V functional blocks and 1.8-V functional blocks to achieve high analog  
performance, combined with high levels of digital integration. As such, the device has three internal power rails.  
AVDD provides the analog circuits with a clean 3.3-V rail. DVDD is used for 3.3-V digital clock circuits.  
Externally, AVDD and DVDD can be connected together without significant impact to performance. The final rail,  
IOVDD, is used for driving the input/output digital circuitry.  
The PCM186x integrates an on-chip LDO to convert an external 3.3 V to the 1.8 V required by the digital core.  
The LDO input is derived from IOVDD. Power-supply pin descriptions are listed in 25.  
25. Power-Supply Pin Descriptions  
NAME  
AVDD  
DVDD  
IOVDD  
DESCRIPTION  
Analog voltage supply (3.3 V) that powers the ADC, PGA, reference, and secondary ADC.  
Digital voltage supply (3.3 V) that is used for the PLL and the oscillator circuit.  
Input/output pin voltage. Also used as a source for the internal LDO for the digital circuit.  
Output from the on-chip LDO that is used with a 0.1-µF decoupling capacitor. Can be driven (used as power input)  
with a 1.8-V supply to bypass the on-chip LDO for lower power consumption.  
LDO  
AGND  
DGND  
Analog ground  
Digital ground  
11.2 1.8-V Support  
All PCM186x devices can support external devices with a 1.8 V I/O. This operating mode is configured by driving  
IOVDD and LDO with 1.8 V.  
11.3 Brownout Conditions  
The PCM186x devices do not have a brownout detector, or a reset pin to hold while the system is powering up.  
Make sure that the system design meets minimum AVDD, DVDD and IOVDD requirements.  
版权 © 2014–2018, Texas Instruments Incorporated  
79  
 
 
PCM1860, PCM1861, PCM1862  
PCM1863, PCM1864, PCM1865  
ZHCSCB3D MARCH 2014REVISED MARCH 2018  
www.ti.com.cn  
11.4 Power-Up Sequence  
The power-up sequence consists of the following steps:  
1. Power-on reset  
1. Power up AVDD, DVDD and IOVDD  
2. Check if LDO is being driven with an external 1.8 V, or is an output. Enable LDO if required.  
3. Release digital reset  
2. Wait until analog voltage reference is stable  
3. Configure clock (PLL requires < 250 µs)  
4. Fade-in audio ADC content  
11.5 Lowest Power-Down Modes  
To achieve the lowest levels of power down and sleep current, the following recommended write sequences are  
suggested on PCM186x software-controlled devices:  
11.5.1 Lowest Power In Standby Mode (AVDD = DVDD = IOVDD = 3.3 V)  
Consumption as low as 0.59 mW  
0x00=0x00 //select page0  
0x70=0x14 //power down reference  
0x00=0x03 //select page3  
0x12=0x41 //disable OSC  
0x00=0x00 //select page0  
11.5.2 Lowest Power in Sleep or Energysense Mode (AVDD = DVDD = IOVDD = 3.3 V)  
Consumption as low as 14 mW  
Clocks must be running during this process  
0x00=0x00 //select page0  
0x70=0x72 //enter in sleep mode  
0x00=0xfd //select page253  
0x14=0x10 //change global bias current  
0x00=0x00 //select page0  
Now stop the clocks  
11.5.3 Lower Power in Sleep or Energysense Mode (AVDD = DVDD 3.3 V and IOVDD = 1.8 V)  
Consumption as low as 11.15 mW  
Clocks must be running during this process  
0x00=0x00 //select page0  
0x70=0x72 //enter in sleep mode  
0x00=0xfd //select page253  
0x14=0x10 //change global bias current  
0x00=0x00 //select page0  
stop the clocks (note: make sure the clock IO is 1.8 V)  
80  
版权 © 2014–2018, Texas Instruments Incorporated  
PCM1860, PCM1861, PCM1862  
PCM1863, PCM1864, PCM1865  
www.ti.com.cn  
ZHCSCB3D MARCH 2014REVISED MARCH 2018  
11.6 Power-On Reset Sequencing Timing Diagram  
LDO Out  
1.8V  
1.5V  
0V  
LDO_GOOD  
DVDD & AVDD  
GOOD  
OSC Clock  
Counts 16 clocks  
OSC GOOD  
Digital Reset  
Wait  
REF  
PLL and  
Clock Divider  
Config  
Device  
Config  
Clock  
Detection  
Wait for the PLL  
lock  
stable  
REF Fast Boot  
2ms  
PLL Lock Flag  
Digital Module Clocks  
DOUT  
Fade-IN  
69. Power-On Reset Timing Diagram  
版权 © 2014–2018, Texas Instruments Incorporated  
81  
PCM1860, PCM1861, PCM1862  
PCM1863, PCM1864, PCM1865  
ZHCSCB3D MARCH 2014REVISED MARCH 2018  
www.ti.com.cn  
11.7 Power Connection Examples  
11.7.1 3.3-V AVDD, DVDD, and IOVDD Example  
This example shows the most typical usage. One single supply, shared between all three supply voltage inputs.  
Rail-connected decoupling capacitors are not shown. 70 shows 3.3-V supply for all supplies. 71 shows  
separate 3.3 V for AVDD and DVDD.  
There is no disadvantage in separating the AVDD and DVDD, as the device waits until  
both are present before powering up.  
AVDD  
DVDD  
IOVDD  
LDO  
3.3 V  
PCM186x  
1.8-V  
Output  
Copyright © 2017, Texas Instruments Incorporated  
70. 3.3 V for All Supplies  
AVDD  
DVDD  
IOVDD  
LDO  
3.3 VA  
3.3 VD  
PCM186x  
1.8-V  
Output  
Copyright © 2017, Texas Instruments Incorporated  
71. Separate 3.3 V for AVDD and DVDD  
11.7.2 3.3-V AVDD, DVDD With 1.8-V IOVDD Example for Lower-Power Applications  
The PCM186x also supports interfacing to lower power 1.8-V processors, as shown in 72. In the presence of  
an external 1.8 V connected to LDO, the internal LDO that takes DVDD (3.3 V) and converts it to the 1.8-V core  
voltage is bypassed. Under such conditions, IOVDD will then be used as the 1.8-V source for the digital core of  
the device. In such systems, it is still important to have 3.3 V for DVDD, as specific sections of the digital core in  
the device run from 3.3 V.  
AVDD  
DVDD  
IOVDD  
LDO  
3.3 V  
PCM186x  
1.8-V  
External  
Copyright © 2017, Texas Instruments Incorporated  
72. 1.8-V IOVDD With 3.3 V for AVDD and DVDD  
82  
版权 © 2014–2018, Texas Instruments Incorporated  
 
 
 
PCM1860, PCM1861, PCM1862  
PCM1863, PCM1864, PCM1865  
www.ti.com.cn  
ZHCSCB3D MARCH 2014REVISED MARCH 2018  
11.8 Fade In  
This sequence is the final stage of the power up and is illustrated in 73. After the PLL has locked, the ADC  
starts running, and the data follows the fade-in sequence according to the following steps:  
1. Detect a zero crossing audio input.  
2. Increment the volume towards 0 dB with S-shaped volume.  
3. Repeat from step 1 until the result is 0 dB. The number of steps from mute to 0 dB is 48 steps.  
4. If zero crossing does not occur for 8192 sample times (= time out), change the volume-per-sample time.  
0 dB (Unmute)  
Mute Event  
Time  
48 Steps / Zero Crossing  
or  
48 Steps / fS  
73. S-Curve Fade-In Behavior  
版权 © 2014–2018, Texas Instruments Incorporated  
83  
 
PCM1860, PCM1861, PCM1862  
PCM1863, PCM1864, PCM1865  
ZHCSCB3D MARCH 2014REVISED MARCH 2018  
www.ti.com.cn  
12 Layout  
12.1 Layout Guidelines  
Employ best design practices when laying out a printed circuit board (PCB) for both analog and digital  
components. The PCM186x audio ADC is a relatively simple device to lay out, even on a two-layer PCB. The  
following basic recommendations for layout of the PCM186x help achieve the best possible performance of the  
device.  
Separate analog and digital sections where layout permits. Route analog lines away from digital lines. This  
routing technique prevents digital noise from coupling back into analog signals.  
The bottom copper plane can be a shared ground, whereas a ground plane can be used on the top layer as  
well. Separated planes for analog and digital grounds are not required to achieve data sheet performance.  
Place decoupling capacitors as close as possible to the supply pins, and in the same layer of the device, to  
yield the best results. Do not place vias between decoupling capacitors and the device.  
Place ground planes between the input traces to achieve the lowest crosstalk performance.  
The EVM user’s guide shows the schematics, a bill of material, and a more detailed PCB layout.  
12.1.1 Grounding and System Partitioning  
Use the same plane for analog and digital grounds to avoid any potential voltage difference between these  
grounds. On the PCM186x EVM, maximum SNR performance is achieved by using a single ground plane, and  
making sure that the return currents for digital signals are not near the AGND pin or the input signals.  
As shown in 74, the pin layout of the PCM186x is partitioned into two sections: analog and digital. No digital  
return currents (for example, clocks) are generated in the analog circuitry, as long as the system is partitioned in  
such a way that digital signals are routed away from the analog sections.  
1
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
2
Analog  
Section  
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
Digital  
Section  
74. Single Ground With Analog Pins Partitioned to the Top and Digital Pins at the Bottom  
84  
版权 © 2014–2018, Texas Instruments Incorporated  
 
PCM1860, PCM1861, PCM1862  
PCM1863, PCM1864, PCM1865  
www.ti.com.cn  
ZHCSCB3D MARCH 2014REVISED MARCH 2018  
12.2 Layout Example  
75. Layout Example  
13 Register Maps  
13.1 Register Map Description  
The register map is the primary way to configure the PCM186x software-controlled devices. The register map is  
separated into four pages: 0,1,3, and 253. Page 0 handles all of the device configuration. Page 1 is used to  
indirectly program coefficients into the two fixed function DSPs on the PCM186x. Page 3 and page 253 contain  
additional registers for lower-power use. All undocumented registers are considered reserved; do not write to  
undocumented registers.  
Change pages by writing to register 0x00 with the required page.  
Reset registers by writing 0xFE to register 0x00.  
Copyright © 2014–2018, Texas Instruments Incorporated  
85  
PCM1860, PCM1861, PCM1862  
PCM1863, PCM1864, PCM1865  
ZHCSCB3D MARCH 2014REVISED MARCH 2018  
www.ti.com.cn  
13.2 Register Map Summary  
Table 26. Register Map Summary  
DEC  
Page 0  
HEX  
BIT 7  
BIT 6  
BIT 5  
DPGA_CLIP_EN  
RSV  
BIT 4  
BIT 3  
BIT 2  
BIT 1  
BIT 0  
1
0x01  
0x02  
0x03  
0x04  
0x05  
0x06  
0x07  
0x08  
0x09  
0x0A  
0x0B  
0x0C  
0x0D  
0x0E  
0x0F  
0x10  
0x11  
0x12  
0x13  
0x14  
0x15  
0x16  
0x17  
0x18  
0x19  
0x1A  
0x1B  
0x20  
0x21  
0x22  
0x23  
0x25  
0x26  
0x27  
0x28  
0x29  
PGA_VAL_CH1_L  
PGA_VAL_CH1_R  
PGA_VAL_CH2_L  
PGA_VAL_CH2_R  
MAX_ATT  
2
3
4
5
SMOOTH  
POL  
LINK  
RSV  
RSV  
RSV  
RSV  
START_ATT  
AGC_EN  
6
SEL_L  
SEL_R  
SEL_L  
SEL_R  
7
POL  
8
POL  
9
POL  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
32  
33  
34  
35  
37  
38  
39  
40  
41  
RSV  
SEL  
RX_WLEN  
TDM_LRCK_MODE  
TX_WLEN  
FMT  
RSV  
TDM_OSEL  
TX_TDM_OFFSET  
RX_TDM_OFFSET  
DPGA_VAL_CH1_L  
GPIO1_POL  
GPIO3_POL  
RSV  
GPIO1_FUNC  
GPIO3_FUNC  
GPIO1_DIR  
GPIO0_POL  
GPIO2_POL  
RSV  
GPIO0_FUNC  
GPIO2_FUNC  
GPIO0_DIR2  
GPIO2_DIR2  
GPIO1_IN  
RSV  
GPIO3_DIR2  
RSV  
GPIO3_OUT  
GPIO2_OUT  
GPIO1_OUT  
GPIO0_OUT  
GPIO3_IN  
GPIO2_IN  
GPIO0_IN  
PULL_DOWN_DIS[3]  
PULL_DOWN_DIS[2]  
PULL_DOWN_DIS[1]  
PULL_DOWN_DIS[0]  
RSV  
DPGA_VAL_CH1_R  
DPGA_VAL_CH2_L  
DPGA_VAL_CH2_R  
DPGA_CH2_R  
DPGA_CH2_L  
DPGA_CH1_R  
DPGA_CH1_L  
APGA_CH2_R  
APGA_CH2_L  
APGA_CH1_R  
DIGMIC_4CH  
APGA_CH1_L  
DIGMIC_EN  
DIGMIC_IN1_SEL  
DIGMIC_IN0_SEL  
RSV  
RSV  
DIN_RESAMP  
SCK_XI_SEL  
MST_SCK_SRC  
MST_MODE  
ADC_CLK_SRC  
DIV_NUM  
DSP2_CLK_SRC  
DSP1_CLK_SRC  
CLKDET_EN  
RSV  
RSV  
RSV  
RSV  
RSV  
DIV_NUM  
DIV_NUM  
DIV_NUM  
DIV_NUM  
DIV_NUM  
RSV  
LOCK  
RSV  
PLL_REF_SEL  
PLL_EN  
RSV  
P
86  
Copyright © 2014–2018, Texas Instruments Incorporated  
PCM1860, PCM1861, PCM1862  
PCM1863, PCM1864, PCM1865  
www.ti.com.cn  
ZHCSCB3D MARCH 2014REVISED MARCH 2018  
Table 26. Register Map Summary (continued)  
DEC  
42  
43  
44  
45  
48  
49  
50  
51  
52  
54  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
90  
96  
97  
98  
HEX  
0x2A  
0x2B  
0x2C  
0x2D  
0x30  
0x31  
0x32  
0x33  
0x34  
0x36  
0x40  
0x41  
0x42  
0x43  
0x44  
0x45  
0x46  
0x47  
0x48  
0x49  
0x4A  
0x4B  
0x4C  
0x4D  
0x4E  
0x4F  
0x50  
0x51  
0x52  
0x53  
0x54  
0x55  
0x56  
0x57  
0x58  
0x59  
0x5A  
0x60  
0x61  
0x62  
BIT 7  
BIT 6  
BIT 5  
BIT 4  
BIT 3  
BIT 2  
BIT 1  
BIT 0  
RSV  
R
RSV  
RSV  
J
D_LSB  
D_MSB  
CH4R  
CH4R  
CH4R  
CH4L  
CH4L  
CH4L  
RSV  
CH3R  
CH3R  
CH3R  
CH3L  
CH3L  
CH3L  
CH2R  
CH2R  
CH2R  
CH2L  
CH2L  
CH2L  
TIME  
CH1R  
CH1R  
CH1R  
CH1L  
CH1L  
CH1L  
RSV  
RSV  
TIME  
INT_INTVL  
REF  
DIFF  
LEVEL  
REF  
DIFF  
LEVEL  
REF  
DIFF  
LEVEL  
REF  
DIFF  
LEVEL  
REF  
DIFF  
LEVEL  
REF  
DIFF  
LEVEL  
REF  
DIFF  
LEVEL  
REF  
DIFF  
LEVEL  
DC_NOLATCH  
AUXADC_RDY  
DC_RDY  
AUXADC_LATCH  
AUXADC_DATA_TYPE  
DC_CH  
AUXADC_DATA_LSB  
AUXADC_DATA_MSB  
POSTPGA_CP  
RSV  
RSV  
RSV  
RSV  
DC_CHANG  
DC_CHANG  
DIN_TOGGLE  
DIN_TOGGLE  
ENGSTR  
ENGSTR  
POSTPGA_CP  
POL0  
RSV  
POL1  
RSV  
WIDTH  
Copyright © 2014–2018, Texas Instruments Incorporated  
87  
PCM1860, PCM1861, PCM1862  
PCM1863, PCM1864, PCM1865  
ZHCSCB3D MARCH 2014REVISED MARCH 2018  
www.ti.com.cn  
Table 26. Register Map Summary (continued)  
DEC  
112  
113  
114  
115  
116  
117  
120  
HEX  
0x70  
0x71  
0x72  
0x73  
0x74  
0x75  
0x78  
BIT 7  
BIT 6  
BIT 5  
BIT 4  
BIT 3  
BIT 2  
PWRDN  
BIT 1  
SLEEP  
BIT 0  
STBY  
RSV  
2CH  
RSV  
FLT  
HPF_EN  
MUTE_CH2_R  
MUTE_CH2_L  
MUTE_CH1_R  
MUTE_CH1_L  
RSV  
STATE  
RSV  
BCK_RATIO2  
BCKHLT  
RSV  
INFO  
SCK_RATIO2  
BCKERR  
AVDD  
RSV  
RSV  
RSV  
RSV  
LRCKHLT  
RSV  
SCKHTL  
DONE  
LRCKERR  
DVDD  
SCKERR  
LDO  
Page 1  
1
0x01  
0x02  
0x04  
0x05  
0x06  
0x07  
0x08  
0x09  
0x0A  
0x0B  
RSV  
BUSY  
R_REQ  
W_REQ  
2
RSV  
MEM_ADDR  
4
MEM_WDATA_0  
5
MEM_WDATA_1  
MEM_WDATA_2  
6
7
MEM_WDATA3  
MEM_RDATA_3  
RSV  
RSV  
8
MEM_RDATA_0  
MEM_RDATA_1  
MEM_RDATA_2  
9
10  
11  
Page 3  
18  
0x12  
0x15  
RSV  
RSV  
PD  
21  
PDZ  
Page 253  
20  
0x14  
PGA_ICI  
REF_ICI  
RSV  
88  
Copyright © 2014–2018, Texas Instruments Incorporated  
PCM1860, PCM1861, PCM1862  
PCM1863, PCM1864, PCM1865  
www.ti.com.cn  
ZHCSCB3D MARCH 2014REVISED MARCH 2018  
13.3 Page 0 Registers  
13.3.1 Page 0: Register 1 (address = 0x01) [reset = 0x00]  
Figure 76. Page 0: Register 1  
7
6
5
4
3
2
1
0
PGA_VAL_CH1_L  
R/W-0000 0000b  
Table 27. Page 0: Register 1 Field Descriptions  
Bit  
Field  
PGA_VAL_CH1_L  
Type  
Reset  
Description  
7-0  
R/W  
0000 0000b PGA Value Channel 1 Left  
Global channel gain for ADC1L. (analog + digital). Analog gain  
only, if manual gain mapping is enabled. (0x19)  
Specify two's complement value with 7.1 format.  
1110 1000: –12.0 dB (Min)  
1111 1110: –1.0 dB  
1111 1111: 0.5 dB  
0000 0000: 0.0 dB (default)  
0000 0001: 0.5 dB  
0000 0010: 1.0 dB  
0001 1000: 12.0 dB  
0010 1000: 20.0 dB  
0100 0000: 32.0 dB  
0101 0000: 40.0 dB (Max)  
13.3.2 Page 0: Register 2 (address = 0x02) [reset = 0x00]  
Figure 77. Page 0: Register 2  
7
6
5
4
3
2
1
0
PGA_VAL_CH1_R  
R/W-0000 0000b  
Table 28. Page 0: Register 2 Field Descriptions  
Bit  
Field  
PGA_VAL_CH1_R  
Type  
Reset  
Description  
7-0  
R/W  
0000 0000b PGA Value Channel 1 Right  
Programmable gain value, channel 1 right (see Page 0, 0x01  
for complete description)  
13.3.3 Page 0: Register 3 (address = 0x03) [reset = 0x00]  
Figure 78. Page 0: Register 3  
7
6
5
4
3
2
1
0
PGA_VAL_CH2_L  
R/W-0000 0000b  
Table 29. Page 0: Register 3 Field Descriptions  
Bit  
Field  
PGA_VAL_CH2_L  
Type  
Reset  
Description  
7-0  
R/W  
0000 0000b PGA Value Channel 2 Left  
Programmable gain value, channel 2 left (see Page 0, 0x01 for  
complete description)  
Copyright © 2014–2018, Texas Instruments Incorporated  
89  
PCM1860, PCM1861, PCM1862  
PCM1863, PCM1864, PCM1865  
ZHCSCB3D MARCH 2014REVISED MARCH 2018  
www.ti.com.cn  
13.3.4 Page 0: Register 4 (address = 0x04) [reset = 0x00]  
Figure 79. Page 0: Register 4  
7
6
5
4
3
2
1
0
PGA_VAL_CH2_R  
R/W-0000 0000b  
Table 30. Page 0: Register 4 Field Descriptions  
Bit  
Field  
PGA_VAL_CH2_R  
Type  
Reset  
Description  
7-0  
R/W  
0000 0000b PGA Value Channel 2 Right  
Programmable gain value, channel 2 right (see Page 0, 0x01  
for complete description)  
13.3.5 Page 0: Register 5 (address = 0x05) [reset = 0x86]  
Figure 80. Page 0: Register 5  
7
6
5
4
3
2
1
0
DPGA_CLIP_E  
N
AGC_EN  
SMOOTH  
R/W-1b  
LINK  
MAX_ATT  
R/W-00b  
START_ATT  
R/W-11b  
R/W-0b  
R/W-0b  
R/W-0b  
Table 31. Page 0: Register 5 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
SMOOTH  
R/W  
1b  
PGA Control  
Enable PGA smooth change  
0: Immediate change  
1: Smooth change (default)  
6
5
LINK  
R/W  
R/W  
R/W  
0b  
Link PGA Control  
0: Independent control (default)  
1: Ch1[R] / Ch2[L] / Ch2[R] follow Ch1[L] PGA value.  
DPGA_CLIP_EN  
MAX_ATT  
0b  
Enable Clipping Detection After Digital PGA  
0: Disable (default)  
1: Enable  
4-3  
00b  
Attenuation Limit of the Automatic Clipping Suppression  
00: –3 dB (default)  
01: –4 dB  
10: –5 dB  
11: –6 dB  
2-1  
START_ATT  
AGC_EN  
R/W  
R/W  
11b  
0b  
Start Automatic Clipping Suppression After Clipping is  
Detected CLIP_NUM Times  
00: 80  
01: 40  
10: 20  
11: 10 (default)  
0
Enable Automatic Clipping Suppression  
0: Disable (default)  
1: Enable  
90  
Copyright © 2014–2018, Texas Instruments Incorporated  
PCM1860, PCM1861, PCM1862  
PCM1863, PCM1864, PCM1865  
www.ti.com.cn  
ZHCSCB3D MARCH 2014REVISED MARCH 2018  
13.3.6 Page 0: Register 6 (address = 0x06) [reset = 0x41]  
Figure 81. Page 0: Register 6  
7
6
5
4
3
2
1
0
POL  
RSV  
SEL_L  
R/W-0b  
R/W-1b  
R/W-00 0001b  
Table 32. Page 0: Register 6 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
POL  
R/W  
0b  
Change ADC1_INPUT_SEL_L Signal Polarity  
0: Normal (default)  
1: Inverted  
6
RSV  
R/W  
R/W  
1b  
Reserved. Always write 1.  
5-0  
SEL_L  
00 0001b  
ADC 1 Input Channel Select (ADC1L)  
00 0000: No select  
00 0001: VINL1[SE] (default)  
00 0010: VINL2[SE]  
00 0011: VINL2[SE] + VINL1[SE]  
00 0100: VINL3[SE]  
00 0101: VINL3[SE] + VINL1[SE]  
00 0110: VINL3[SE] + VINL2[SE]  
00 0111: VINL3[SE] + VINL2[SE] + VINL1[SE]  
00 1000: VINL4[SE]  
00 1001: VINL4[SE] + VINL1[SE]  
00 1010: VINL4[SE] + VINL2[SE]  
00 1011: VINL4[SE] + VINL2[SE] + VINL1[SE]  
00 1100: VINL4[SE] + VINL3[SE]  
00 1101: VINL4[SE] + VINL3[SE] + VINL1[SE]  
00 1110: VINL4[SE] + VINL3[SE] + VINL2[SE]  
00 1111: VINL4[SE] + VINL3[SE] + VINL2[SE] + VINL1[SE]  
01 0000: {VIN1P, VIN1M}[DIFF]  
10 0000: {VIN4P, VIN4M}[DIFF]  
11 0000: {VIN1P, VIN1M}[DIFF] + {VIN4P, VIN4M}[DIFF]  
Copyright © 2014–2018, Texas Instruments Incorporated  
91  
PCM1860, PCM1861, PCM1862  
PCM1863, PCM1864, PCM1865  
ZHCSCB3D MARCH 2014REVISED MARCH 2018  
www.ti.com.cn  
13.3.7 Page 0: Register 7 (address = 0x07) [reset = 0x41]  
Figure 82. Page 0: Register 7  
7
6
5
4
3
2
1
0
POL  
RSV  
SEL_R  
R/W-0b  
R/W-1b  
R/W-00 0001b  
Table 33. Page 0: Register 7 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
POL  
R/W  
0b  
Change ADC1_INPUT_SEL_R Signal Polarity  
0: Normal (default)  
1: Inverted  
6
RSV  
R/W  
R/W  
1b  
Reserved. Do not access.  
5-0  
SEL_R  
00 0001b  
ADC 1 Input Channel Select (ADC1R)  
00 0000: No select  
00 0001: VINR1[SE] (default)  
00 0010: VINR2[SE]  
00 0011: VINR2[SE] + VINR1[SE]  
00 0100: VINR3[SE]  
00 0101: VINR3[SE] + VINR1[SE]  
00 0110: VINR3[SE] + VINR2[SE]  
00 0111: VINR3[SE] + VINR2[SE] + VINR1[SE]  
00 1000: VINR4[SE]  
00 1001: VINR4[SE] + VINR1[SE]  
00 1010: VINR4[SE] + VINR2[SE]  
00 1011: VINR4[SE] + VINR2[SE] + VINR1[SE]  
00 1100: VINR4[SE] + VINR3[SE]  
00 1101: VINR4[SE] + VINR3[SE] + VINR1[SE]  
00 1110: VINR4[SE] + VINR3[SE] + VINR2[SE]  
00 1111: VINR4[SE] + VINR3[SE] + VINR2[SE] + VINR1[SE]  
01 0000: {VIN2P, VIN2M}[DIFF]  
10 0000: {VIN3P, VIN3M}[DIFF]  
11 0000: {VIN2P, VIN2M}[DIFF] + {VIN3P, VIN3M}[DIFF]  
92  
Copyright © 2014–2018, Texas Instruments Incorporated  
PCM1860, PCM1861, PCM1862  
PCM1863, PCM1864, PCM1865  
www.ti.com.cn  
ZHCSCB3D MARCH 2014REVISED MARCH 2018  
13.3.8 Page 0: Register 8 (address = 0x08) [reset = 0x42]  
Figure 83. Page 0: Register 8  
7
6
5
4
3
2
1
0
POL  
RSV  
SEL_L  
R/W-0b  
R/W-1b  
R/W-00 0010b  
Table 34. Page 0: Register 8 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
POL  
R/W  
0b  
Change ADC2_INPUT_SEL_L Signal Polarity  
0: Normal (default)  
1: Inverted  
6
RSV  
R/W  
R/W  
1b  
Reserved. Do not access.  
5-0  
SEL_L  
00 0010b  
ADC 2 Input Channel Select (ADC2L)  
00 0000: No select  
00 0001: VINL1[SE] (default)  
00 0010: VINL2[SE]  
00 0011: VINL2[SE] + VINL1[SE]  
00 0100: VINL3[SE]  
00 0101: VINL3[SE] + VINL1[SE]  
00 0110: VINL3[SE] + VINL2[SE]  
00 0111: VINL3[SE] + VINL2[SE] + VINL1[SE]  
00 1000: VINL4[SE]  
00 1001: VINL4[SE] + VINL1[SE]  
00 1010: VINL4[SE] + VINL2[SE]  
00 1011: VINL4[SE] + VINL2[SE] + VINL1[SE]  
00 1100: VINL4[SE] + VINL3[SE]  
00 1101: VINL4[SE] + VINL3[SE] + VINL1[SE]  
00 1110: VINL4[SE] + VINL3[SE] + VINL2[SE]  
00 1111: VINL4[SE] + VINL3[SE] + VINL2[SE] + VINL1[SE]  
01 0000: {VIN1P, VIN1M}[DIFF]  
10 0000: {VIN4P, VIN4M}[DIFF]  
11 0000: {VIN1P, VIN1M}[DIFF] + {VIN4P, VIN4M}[DIFF]  
Copyright © 2014–2018, Texas Instruments Incorporated  
93  
PCM1860, PCM1861, PCM1862  
PCM1863, PCM1864, PCM1865  
ZHCSCB3D MARCH 2014REVISED MARCH 2018  
www.ti.com.cn  
13.3.9 Page 0: Register 9 (address = 0x09) [reset = 0x42]  
Figure 84. Page 0: Register 9  
7
6
5
4
3
2
1
0
POL  
RSV  
SEL_R  
R/W-0b  
R/W-1b  
R/W-00 0010b  
Table 35. Page 0: Register 9 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
POL  
R/W  
0b  
Change ADC2_INPUT_SEL_R Signal Polarity  
0: Normal (default)  
1: Inverted  
6
RSV  
R/W  
R/W  
1b  
Reserved. Do not access.  
5-0  
SEL_R  
00 0010b  
ADC 2 Input Channel Select (ADC2R)  
00 0000: No select  
00 0001: VINR1[SE] (default)  
00 0010: VINR2[SE]  
00 0011: VINR2[SE] + VINR1[SE]  
00 0100: VINR3[SE]  
00 0101: VINR3[SE] + VINR1[SE]  
00 0110: VINR3[SE] + VINR2[SE]  
00 0111: VINR3[SE] + VINR2[SE] + VINR1[SE]  
00 1000: VINR4[SE]  
00 1001: VINR4[SE] + VINR1[SE]  
00 1010: VINR4[SE] + VINR2[SE]  
00 1011: VINR4[SE] + VINR2[SE] + VINR1[SE]  
00 1100: VINR4[SE] + VINR3[SE]  
00 1101: VINR4[SE] + VINR3[SE] + VINR1[SE]  
00 1110: VINR4[SE] + VINR3[SE] + VINR2[SE]  
00 1111: VINR4[SE] + VINR3[SE] + VINR2[SE] + VINR1[SE]  
01 0000: {VIN2P, VIN2M}[DIFF]  
10 0000: {VIN3P, VIN3M}[DIFF]  
11 0000: {VIN2P, VIN2M}[DIFF] + {VIN3P, VIN3M}[DIFF]  
94  
Copyright © 2014–2018, Texas Instruments Incorporated  
PCM1860, PCM1861, PCM1862  
PCM1863, PCM1864, PCM1865  
www.ti.com.cn  
ZHCSCB3D MARCH 2014REVISED MARCH 2018  
13.3.10 Page 0: Register 10 (address = 0x0A) [reset = 0x00]  
Figure 85. Page 0: Register 10  
7
6
5
4
3
2
1
0
RSV  
SEL3  
R/W-0000b  
R/W-0000b  
Table 36. Page 0: Register 10 Field Descriptions  
Bit  
7-4  
3-0  
Field  
RSV  
SEL  
Type  
R/W  
R/W  
Reset  
0000b  
0000b  
Description  
Reserved. Do not access.  
Secondary ADC Input Channel  
Do not select the same channel that is already in use by an  
audio ADC  
0: No Select (default)  
1: ch1(L)  
2: ch1(R)  
3: ch2(L)  
4: ch2(R)  
5: ch3(L)  
6: ch3(R)  
7: ch4(L)  
8: ch4(R)  
13.3.11 Page 0: Register 11 (address = 0x0B) [reset = 0x44]  
Figure 86. Page 0: Register 11  
7
6
5
4
3
2
1
0
RX_WLEN  
R/W-01b  
RSV  
TDM_LRCK_M  
TX_WLEN  
R/W-01b  
FMT  
ODE  
R/W-0  
R/W-0b  
R/W-00b  
Table 37. Page 0: Register 11 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-6  
RX_WLEN  
R/W  
01b  
Receive PCM Word Length  
00: 32-bit  
01: 24-bit (default)  
10: 20-bit  
11: 16-bit  
5
4
RSV  
R/W  
R/W  
0b  
0b  
Reserved. Do not access.  
TDM_LRCK_MODE  
LRCK Duty Cycle in TDM Mode  
TDM format can support 2 channels, 4 channels, or 6 channels  
with one device.  
When BCK to LRCK ratio is 256, FMT must be configured as  
TDM format.  
Configure the duty cycle of LRCK when I2S is configured as  
TDM mode  
0: duty cycle of LRCK is 50% (default)  
1: duty cycle of LRCK is 1/256 (similar DSP mode)  
3-2  
1-0  
TX_WLEN  
FMT  
R/W  
R/W  
01b  
00b  
Stereo PCM Word Length  
00: 32-bit  
01: 24-bit (default)  
10: 20-bit  
11: 16-bit  
Serial Audio Interface Format (TDM/DSP Mode)  
0: I2S (default)  
1: Left justified  
2: Right justified  
3: TDM/DSP (256fS BCK is required)  
Copyright © 2014–2018, Texas Instruments Incorporated  
95  
PCM1860, PCM1861, PCM1862  
PCM1863, PCM1864, PCM1865  
ZHCSCB3D MARCH 2014REVISED MARCH 2018  
www.ti.com.cn  
13.3.12 Page 0: Register 12 (address = 0x0C) [reset = 0x00]  
Figure 87. Page 0: Register 12  
7
6
5
4
3
2
1
0
RSV  
TDM_OSEL  
R/W-00b  
R/W-000000b  
Table 38. Page 0: Register 12 Field Descriptions  
Bit  
7-2  
1-0  
Field  
Type  
R/W  
R/W  
Reset  
000000b  
00b  
Description  
RSV  
Reserved. Do not access.  
Select TDM Transmission Data  
TDM_OSEL  
Ch2 data only available on 4-channel device.  
00: 2ch TDM (default)  
DOUT1: ch1[L], ch1[R]  
DOUT2: ch2[L], ch2[R]  
01: 4ch TDM  
DOUT1: ch1[L], ch1[R], ch2[L], ch2[R]  
DOUT2: ch1[L], ch1[R], ch2[L], ch2[R]  
10: 6ch TDM  
DOUT1: ch1[L], ch1[R], ch2[L], ch2[R], sec_ADC_LPF,  
sec_ADC_HPF  
DOUT2: ch1[L], ch1[R], ch2[L], ch2[R], sec_ADC_LPF,  
sec_ADC_HPF  
11: RESERVED  
13.3.13 Page 0: Register 13 (address = 0x0D) [reset = 0x00]  
Figure 88. Page 0: Register 13  
7
6
5
4
3
2
1
0
TX_TDM_OFFSET  
R/W-0000 0000b  
Table 39. Page 0: Register 13 Field Descriptions  
Bit  
Field  
TX_TDM_OFFSET  
Type  
Reset  
Description  
7-0  
R/W  
0000 0000b  
Set Offset Position in Serial Audio Data Frame  
This setting is enabled when 0x0B FMT[1:0] is set to DSP  
format.  
0: 0 (default)  
1: 1 BCK (same as I2S)  
2: 2 BCK  
3: 3 BCK  
:
255: 255 BCK  
96  
Copyright © 2014–2018, Texas Instruments Incorporated  
PCM1860, PCM1861, PCM1862  
PCM1863, PCM1864, PCM1865  
www.ti.com.cn  
ZHCSCB3D MARCH 2014REVISED MARCH 2018  
13.3.14 Page 0: Register 14 (address = 0x0E) [reset = 0x00]  
Figure 89. Page 0: Register 14  
7
6
5
4
3
2
1
0
RX_TDM_OFFSET  
R/W-0000 0000b  
Table 40. Page 0: Register 14 Field Descriptions  
Bit  
Field  
RX_TDM_OFFSET  
Type  
Reset  
Description  
7-0  
R/W  
0000 0000b  
Set Offset Position in a Serial Audio Data Frame  
This setting is enabled when I2S_RX_FMT is set to DSP  
format.  
Offset position in a serial audio data frame.  
0: 0 (default)  
1: 1 BCK (same as I2S, only if LRCK is configured as 50% duty  
cycle)  
2: 2 BCK  
3: 3 BCK  
:
255: 255 BCK  
13.3.15 Page 0: Register 15 (address = 0x0F) [reset = 0x00]  
Figure 90. Page 0: Register 15  
7
6
5
4
3
2
1
0
DPGA_VAL_CH1_L  
R/W-0000 0000b  
Table 41. Page 0: Register 15 Field Descriptions  
Bit  
Field  
DPGA_VAL_CH1_L  
Type  
Reset  
Description  
7-0  
R/W  
0000 0000b Gain Setting for Digital PGA Channel 1 Left  
4-channel PCM186x only when is used in following scenarios:  
i. Analog PGA gain and digital PGA are set separately.  
ii. Digital microphone Interface is used (when manual gain  
mapping is enabled in register 0x19).  
Specify two's complement value with 7.1 format.  
0x28 to 0x3F in 0.5-dB steps  
Others: Reserved  
Copyright © 2014–2018, Texas Instruments Incorporated  
97  
PCM1860, PCM1861, PCM1862  
PCM1863, PCM1864, PCM1865  
ZHCSCB3D MARCH 2014REVISED MARCH 2018  
www.ti.com.cn  
13.3.16 Page 0: Register 16 (address = 0x10) [reset = 0x01]  
Figure 91. Page 0: Register 16  
7
6
5
4
3
2
1
0
GPIO1_POL  
R/W-0b  
GPIO1_FUNC  
R/W-000b  
GPIO0_POL  
R/W-0b  
GPIO0_FUNC  
R/W-001b  
Table 42. Page 0: Register 16 Field Descriptions  
Bit  
Field  
GPIO1_POL  
Type  
Reset  
Description  
7
R/W  
0b  
GPIO1 Polarity Control  
0: Normal (default)  
1: Invert  
6-4  
GPIO1_FUNC  
R/W  
000b  
Function select, GPIO1  
000: GPIO1(default)  
001: Digital mic input 1(In)  
010: INT  
011: Internal SCK (Out)  
100: Digital mute (In)  
101: DOUT2 (Out)  
110: DIN (In)  
111: Reserved  
3
GPIO0_POL  
R/W  
R/W  
0b  
GPIO0 Polarity Control  
0: Normal (default)  
1: Invert  
2-0  
GPIO0_FUNC  
001b  
Function select, GPIO0  
000: GPIO0  
001: Digital mic input 0 (In, default)  
010: SPI MISO (Ou)  
011: Internal SCK (Out)  
100: Digital mute (In)  
101: DOUT2 (Out)  
110: DIN (In)  
111: Reserved  
98  
Copyright © 2014–2018, Texas Instruments Incorporated  
PCM1860, PCM1861, PCM1862  
PCM1863, PCM1864, PCM1865  
www.ti.com.cn  
ZHCSCB3D MARCH 2014REVISED MARCH 2018  
13.3.17 Page 0: Register 17 (address = 0x11) [reset = 0x20]  
Figure 92. Page 0: Register 17  
7
6
5
4
3
2
1
0
GPIO3_POL  
R/W-0b  
GPIO3_FUNC  
R/W-010b  
GPIO2_POL  
R/W-0b  
GPIO2_FUNC  
R/W-000b  
Table 43. Page 0: Register 17 Field Descriptions  
Bit  
Field  
GPIO3_POL  
Type  
Reset  
Description  
7
R/W  
0b  
GPIO3 Polarity Control  
0: Normal (default)  
1: Invert  
6-4  
GPIO3_FUNC  
R/W  
010b  
Function select, GPIO1  
000: GPIO3  
001: Reserved  
010: INT (default)  
011: Internal SCK (Out)  
100: Digital mute (In)  
101: DOUT2 (Out)  
110: DIN (In)  
111: Reserved  
3
GPIO2_POL  
R/W  
R/W  
0b  
GPIO2 Polarity Control  
0: Normal (default)  
1: Invert  
2-0  
GPIO2_FUNC  
000b  
Function select, GPIO2  
000: GPIO2 (default)  
001: Digital mic clock output 0 (Out)  
010: INT  
011: Internal SCK (Out)  
100: Digital mute (In)  
101: DOUT2 (Out)  
110: DIN (In)  
111: Reserved  
Copyright © 2014–2018, Texas Instruments Incorporated  
99  
PCM1860, PCM1861, PCM1862  
PCM1863, PCM1864, PCM1865  
ZHCSCB3D MARCH 2014REVISED MARCH 2018  
www.ti.com.cn  
13.3.18 Page 0: Register 18 (address = 0x12) [reset = 0x00]  
Figure 93. Page 0: Register 18  
7
6
5
4
3
2
1
0
RSV  
GPIO1_DIR  
R/W-000b  
RSV  
GPIO0_DIR  
R/W-000b  
R/W-0b  
R/W-0b  
Table 44. Page 0: Register 18 Field Descriptions  
Bit  
7
Field  
Type  
R/W  
R/W  
Reset  
0b  
Description  
RSV  
Reserved. Do not access.  
6-4  
GPIO1_DIR  
000b  
Direction Control of GPIO1 When Configured as GPIO  
Function  
000: Input (default)  
001: Input with sticky bit  
010: Input with toggle detection  
011: Raw input (not deglictched)  
100: Output  
101: Open drain  
110: Reserved  
111: Reserved  
3
RSV  
R/W  
R/W  
0b  
Reserved. Do not access.  
2-0  
GPIO0_DIR  
000b  
Direction Control of GPIO0 When Configured as GPIO  
Function  
000: Input (default)  
001: Input with sticky bit  
010: Input with toggle detection  
011: Raw input (not deglictched)  
100: Output  
101: Open drain  
110: Reserved  
111: Reserved  
100  
Copyright © 2014–2018, Texas Instruments Incorporated  
PCM1860, PCM1861, PCM1862  
PCM1863, PCM1864, PCM1865  
www.ti.com.cn  
ZHCSCB3D MARCH 2014REVISED MARCH 2018  
13.3.19 Page 0: Register 19 (address = 0x13) [reset = 0x00]  
Figure 94. Page 0: Register 19  
7
6
5
4
3
2
1
0
RSV  
GPIO3_DIR  
R/W-000b  
RSV  
GPIO2_DIR  
R/W-000b  
R/W-0b  
R/W-0b  
Table 45. Page 0: Register 19 Field Descriptions  
Bit  
7
Field  
Type  
R/W  
R/W  
Reset  
0b  
Description  
RSV  
Reserved. Do not access.  
6-4  
GPIO3_DIR  
000b  
Direction Control of GPIO3 When Configured as GPIO  
Function  
000: Input (default)  
001: Input with sticky bit  
010: Input with toggle detection  
011: Raw input (not deglictched)  
100: Output  
101: Open drain  
110: Reserved  
111: Reserved  
3
RSV  
R/W  
R/W  
0b  
Reserved. Do not access.  
2-0  
GPIO2_DIR  
000b  
Direction Control of GPIO2 When Configured as GPIO  
Function  
000: Input (default)  
001: Input with sticky bit  
010: Input with toggle detection  
011: Raw input (not deglictched)  
100: Output  
101: Open drain  
110: Reserved  
111: Reserved  
13.3.20 Page 0: Register 20 (address = 0x14) [reset = 0x00]  
Figure 95. Page 0: Register 20  
7
6
5
4
3
2
1
0
GPIO3_OUT  
R/W-0b  
GPIO2_OUT  
R/W-0b  
GPIO1_OUT  
R/W-0b  
GPIO0_OUT  
R/W-0b  
GPIO3_IN  
R-0b  
GPIO2_IN  
R-0b  
GPIO1_IN  
R-0b  
GPIO0_IN  
R-0b  
Table 46. Page 0: Register 20 Field Descriptions  
Bit  
7
Field  
GPIO3_OUT  
Type  
R/W  
R/W  
R/W  
R/W  
R/W  
Reset  
0b  
Description  
GPIO3 Output Status  
GPIO2 Output Status  
GPIO1Output Status  
GPIO0 Output Status  
6
GPIO2_OUT  
GPIO1_OUT  
GPIO0_OUT  
GPIO3_IN  
0b  
5
0b  
4
0b  
3
0b  
GPIO3 Input Status or Toggle Status  
The sticky flag is cleared when this register is read.  
2
1
0
GPIO2_IN  
GPIO1_IN  
GPIO0_IN  
R/W  
R/W  
R/W  
0b  
0b  
0b  
GPIO2 Input Status or Toggle Status  
The sticky flag is cleared when this register is read.  
GPIO1 Input Status or Toggle Status  
The sticky flag is cleared when this register is read.  
GPIO0 Input Status or Toggle Status  
The sticky flag is cleared when this register is read.  
Copyright © 2014–2018, Texas Instruments Incorporated  
101  
PCM1860, PCM1861, PCM1862  
PCM1863, PCM1864, PCM1865  
ZHCSCB3D MARCH 2014REVISED MARCH 2018  
www.ti.com.cn  
13.3.21 Page 0: Register 21 (address = 0x15) [reset = 0x00]  
Figure 96. Page 0: Register 21  
7
6
5
4
3
2
1
0
PULL_DOWN_ PULL_DOWN_ PULL_DOWN_ PULL_DOWN_  
RSV  
DIS[3]  
DIS[2]  
DIS[1]  
DIS[0]  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0000b  
Table 47. Page 0: Register 21 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
PULL_DOWN_DIS[3]  
R/W  
0b  
Enable or Disable the Pull-Down Resistor of GPIO3  
0: Enable the pull down of GPIO3, IntC (pin 19)  
1: Disable the pull down  
6
5
PULL_DOWN_DIS[2]  
PULL_DOWN_DIS[1]  
R/W  
R/W  
0b  
0b  
Enable or Disable the Pull-Down Resistor of GPIO2  
0: Enable the pull down of GPIO2, IntB (pin 20)  
Enable or Disable the Pull-Down Resistor of GPIO1  
0: Enable the pull down of GPIO1 (pin 21)  
1: Disable the pull down  
4
PULL_DOWN_DIS[0]  
RSV  
R/W  
R/W  
0b  
0b  
Enable or Disable the Pull-Down Resistor of GPIO0  
0: Enable the pull down of GPIO0 (pin 22)  
1: Disable the pull down  
3-0  
Reserved. Do not access.  
13.3.22 Page 0: Register 22 (address = 0x16) [reset = 0x00]  
Figure 97. Page 0: Register 22  
7
6
5
4
3
2
1
0
DPGA_VAL_CH1_R  
R/W-0000 0000b  
Table 48. Page 0: Register 22 Field Descriptions  
Bit  
Field  
DPGA_VAL_CH1_R  
Type  
Reset  
Description  
7-0  
R/W  
0000 0000b Gain Setting for Digital PGA Channel 1 Right  
4-channel PCM186x only when is used in following scenarios:  
i. Analog PGA gain and digital PGA are set separately  
ii. Digital microphone Interface is used (\when manual gain  
mapping is enabled in register 0x19)  
Specify two's complement value with 7.1 format.  
0010 1000: 0.0 dB  
0010 1001: 0.5 dB  
0010 1010: 1.0 dB  
0010 1011: 1.5 dB  
:
0011 1111: 7.5 dB (max)  
Others: Reserved  
102  
Copyright © 2014–2018, Texas Instruments Incorporated  
PCM1860, PCM1861, PCM1862  
PCM1863, PCM1864, PCM1865  
www.ti.com.cn  
ZHCSCB3D MARCH 2014REVISED MARCH 2018  
13.3.23 Page 0: Register 23 (address = 0x17) [reset = 0x00]  
Figure 98. Page 0: Register 23  
7
6
5
4
3
2
1
0
DPGA_VAL_CH2_L  
R/W-0000 0000b  
Table 49. Page 0: Register 23 Field Descriptions  
Bit  
Field  
DPGA_VAL_CH2_L  
Type  
Reset  
0000 0000b Gain Setting for Digital PGA Channel 2 Left  
4-channel PCM186x only. See Page 0, Reg 0x16 description  
Description  
7-0  
R/W  
13.3.24 Page 0: Register 24 (address = 0x18) [reset = 0x00]  
Figure 99. Page 0: Register 24  
7
6
5
4
3
2
1
0
DPGA_VAL_CH2_R  
R/W-0000 0000b  
Table 50. Page 0: Register 24 Field Descriptions  
Bit  
Field  
DPGA_VAL_CH2_R  
Type  
Reset  
0000 0000b Gain Setting for Digital PGA channel 2 Right  
4-channel PCM186x only. See Page 0, Reg 0x16 description  
Description  
7-0  
R/W  
Copyright © 2014–2018, Texas Instruments Incorporated  
103  
PCM1860, PCM1861, PCM1862  
PCM1863, PCM1864, PCM1865  
ZHCSCB3D MARCH 2014REVISED MARCH 2018  
www.ti.com.cn  
13.3.25 Page 0: Register 25 (address = 0x19) [reset = 0x00]  
Figure 100. Page 0: Register 25  
7
6
5
4
3
2
1
0
DPGA_CH2_R DPGA_CH2_L DPGA_CH1_R DPGA_CH1_L APGA_CH2_R APGA_CH2_L APGA_CH1_R APGA_CH1_L  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
Table 51. Page 0: Register 25 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
DPGA_CH2_R  
R/W  
0b  
DPGA Control Mapping (4-channel PCM186x only)  
CH2_R channel (Note: Using manual gain mapping in the 2-  
channel device sets the digital gain to 0dB.)  
0: Auto gain mapping (default)  
1: Manual gain mapping  
6
5
4
3
2
1
0
DPGA_CH2_L  
DPGA_CH1_R  
DPGA_CH1_L  
APGA_CH2_R  
APGA_CH2_L  
APGA_CH1_R  
APGA_CH1_L  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
0b  
0b  
0b  
0b  
0b  
0b  
0b  
DPGA Control Mapping (4-channel PCM186x only)  
Gain control mode for digital PGA of CH2_L channel  
0: Auto gain mapping (default)  
1: Manual gain mapping  
DPGA Control Mapping (4-channel PCM186x only)  
Gain control mode for digital PGA of CH1_R channel  
0: Auto gain mapping (default)  
1: Manual gain mapping  
DPGA Control Mapping (4-channel PCM186x only)  
Gain control mode for digital PGA of CH1_L channel  
0: Auto gain mapping (default)  
1: Manual gain mapping  
APGA Control Mapping (4-channel PCM186x only)  
Gain control mode for analog PGA of CH2_R channel  
0: Auto gain mapping (default)  
1: Manual gain mapping  
APGA Control Mapping (4-channel PCM186x only)  
Gain control mode for analog PGA of CH2_L channel  
0: Auto gain mapping (default)  
1: Manual gain mapping  
APGA Control Mapping (4-channel PCM186x only)  
Gain control mode for analog PGA of CH1_R channel  
0: Auto gain mapping (default)  
1: Manual gain mapping  
APGA Control Mapping (4-channel PCM186x only)  
Gain control mode for analogPGA of CH1_L channel  
0: Auto gain mapping (default)  
1: Manual gain mapping  
104  
Copyright © 2014–2018, Texas Instruments Incorporated  
PCM1860, PCM1861, PCM1862  
PCM1863, PCM1864, PCM1865  
www.ti.com.cn  
ZHCSCB3D MARCH 2014REVISED MARCH 2018  
13.3.26 Page 0: Register 26 (address = 0x1A) [reset = 0x00]  
Figure 101. Page 0: Register 26  
7
6
5
4
3
2
1
0
DIGMIC_IN1_SEL  
R/W-00b  
DIGMIC_IN0_SEL  
R/W-00b  
RSV  
DIGMIC_4CH  
R/W-0b  
DIGMIC_EN  
R/W-0b  
R/W-00b  
Table 52. Page 0: Register 26 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-6  
DIGMIC_IN1_SEL  
R/W  
00b  
Digital Mic Data Input Selection for MIC1 Interface (4-channel  
devices only)  
00: GPIO0 (default)  
01: GPIO1  
10: Invalid  
11: Invalid  
5-4  
DIGMIC_IN0_SEL  
R/W  
00b  
Digital Mic Data Input Selection for MIC0 Interface  
00: GPIO0 (default)  
01: GPIO1  
10: Invalid  
11: Invalid  
3-2  
1
RSV  
R/W  
R/W  
00b  
0b  
Reserved. Do not access.  
DIGMIC_4CH  
Second Pair of Filters Selection for Digital Microphone as  
Signal Processing (4-channel device only)  
0: configured for analog ADC signal processing (default)  
1: configured for digital MIC signal processing  
0
DIGMIC_EN  
R/W  
0b  
First Pair of Filters Selection for Digital Microphone as Signal  
Processing  
0: configured as analog ADC signal processing (default)  
1: configured as digital MIC signal processing  
13.3.27 Page 0: Register 27 (address = 0x1B) [reset = 0x00]  
Figure 102. Page 0: Register 27  
7
6
5
4
3
2
1
0
RSV  
DIN_RESAMP  
R/W-00b  
R/W-00 0000b  
Table 53. Page 0: Register 27 Field Descriptions  
Bit  
7-2  
1-0  
Field  
Type  
R/W  
R/W  
Reset  
00 0000b  
00b  
Description  
RSV  
Reserved. Do not access.  
DIN_RESAMP  
Resample DIN with Internal BCK to Avoid Internal Timing Issue  
00: No resample (default)  
01: resample DIN with rising edge of BCK  
10: resample DIN with falling edge of BCK  
11: Not supported  
Copyright © 2014–2018, Texas Instruments Incorporated  
105  
PCM1860, PCM1861, PCM1862  
PCM1863, PCM1864, PCM1865  
ZHCSCB3D MARCH 2014REVISED MARCH 2018  
www.ti.com.cn  
13.3.28 Page 0: Register 32 (address = 0x20) [reset = 0x01]  
Figure 103. Page 0: Register 32  
7
6
5
4
3
2
1
0
SCK_XI_SEL  
R/W-00b  
MST_SCK_SR  
C
MST_MODE  
ADC_CLK_SR DSP2_CLK_SR DSP1_CLK_SR CLKDET_EN  
C
C
C
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-1b  
Table 54. Page 0: Register 32 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-6  
SCK_XI_SEL  
R/W  
00b  
SCK or XTAL Selection  
00: SCK or XTAL (default)  
01: SCK  
10: XTAL  
11: Reserved  
5
4
3
2
1
0
MST_SCK_SRC  
MST_MODE  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
0b  
0b  
0b  
0b  
0b  
1b  
Master-Mode SCK Source Selection  
0: SCK or XI (default)  
1: PLL (as in BCK PLL mode)  
Master or Slave Selection  
0: Slave (default)  
1: Master  
ADC_CLK_SRC  
DSP2_CLK_SRC  
DSP1_CLK_SRC  
CLKDET_EN  
ADC Clock Source Selection (ignored if CLKDET_EN = 1)  
0: SCK (default)  
1: PLL  
DSP2 Clock Source Selection (ignored if CLKDET_EN = 1)  
0: SCK (default)  
1: PLL  
DSP1 Clock Source Selection (ignored if CLKDET_EN = 1)  
0: SCK (default)  
1: PLL  
Enable Auto Clock Detector Configuration  
0: Disable  
1: Enable (default)  
13.3.29 Page 0: Register 33 (address = 0x21) [reset = 0x00]  
Figure 104. Page 0: Register 33  
7
6
5
4
3
2
1
0
RSV  
DIV_NUM  
R/W-0b  
R/W-000 0000b  
Table 55. Page 0: Register 33 Field Descriptions  
Bit  
7
Field  
Type  
R/W  
R/W  
Reset  
0b  
Description  
RSV  
Reserved. Do not access.  
6-0  
DIV_NUM  
000 0000b  
Set DSP1 Clock Divider Value  
Ignored if CLKDET_EN = 1  
0: 1 (default)  
1: 1/2  
2: 1/3  
3: 1/4  
:
127: 1/128  
106  
Copyright © 2014–2018, Texas Instruments Incorporated  
PCM1860, PCM1861, PCM1862  
PCM1863, PCM1864, PCM1865  
www.ti.com.cn  
ZHCSCB3D MARCH 2014REVISED MARCH 2018  
13.3.30 Page 0: Register 34 (address = 0x22) [reset = 0x01]  
Figure 105. Page 0: Register 34  
7
6
5
4
3
2
1
0
RSV  
DIV_NUM  
R/W-0b  
R/W-000 0001b  
Table 56. Page 0: Register 34 Field Descriptions  
Bit  
7
Field  
Type  
R/W  
R/W  
Reset  
0b  
Description  
RSV  
Reserved. Do not access.  
6-0  
DIV_NUM  
000 0001b  
Set DSP2 Clock Divider Value  
Ignored if CLKDET_EN = 1  
0: 1  
1: 1/2 (default)  
2: 1/3  
3: 1/4  
:
127: 1/128  
13.3.31 Page 0: Register 35 (address = 0x23) [reset = 0x03]  
Figure 106. Page 0: Register 35  
7
6
5
4
3
2
1
0
RSV  
DIV_NUM  
R/W-0b  
R/W-000 0011b  
Table 57. Page 0: Register 35 Field Descriptions  
Bit  
7
Field  
Type  
R/W  
R/W  
Reset  
0
Description  
RSV  
Reserved. Do not access.  
6-0  
DIV_NUM  
000 0011b  
Set ADC Clock Divider Value  
Ignored if CLKDET_EN = 1  
0: 1  
1: 1/2  
2: 1/3  
3: 1/4 (default)  
:
127: 1/128  
Copyright © 2014–2018, Texas Instruments Incorporated  
107  
PCM1860, PCM1861, PCM1862  
PCM1863, PCM1864, PCM1865  
ZHCSCB3D MARCH 2014REVISED MARCH 2018  
www.ti.com.cn  
13.3.32 Page 0: Register 37 (address = 0x25) [reset = 0x07]  
CLK_DIV_PLL_SCK is the alternate name for this register.  
Figure 107. Page 0: Register 37  
7
6
5
4
3
2
1
0
RSV  
DIVNUM  
R/W-0b  
R/W-000 0111b  
Table 58. Page 0: Register 37 Field Descriptions  
Bit  
7
Field  
Type  
R/W  
R/W  
Reset  
0
Description  
RSV  
Reserved. Do not access.  
6-0  
DIV_NUM  
000 0111b  
Set PLL SCK Clock Output Divider for SCK Out (when  
enabled)  
Used in BCK slave mode or master mode where PLL-ed SCK  
Out is required. Requires MST_SCK_SRC (0x20) to be  
enabled.  
Divider value:  
0: 1  
1: 1/2  
2: 1/3  
3: 1/4  
:
7: 1/8 (default)  
:
127: 1/128  
13.3.33 Page 0: Register 38 (address = 0x26) [reset = 0x03]  
CLK_DIV_SCK_BCK is the alternate name for this register.  
Figure 108. Page 0: Register 38  
7
6
5
4
3
2
1
0
RSV  
DIVNUM  
R/W-0b  
R/W-000 0011b  
Table 59. Page 0: Register 38 Field Descriptions  
Bit  
7
Field  
Type  
R/W  
R/W  
Reset  
0
Description  
RSV  
Reserved. Do not access.  
6-0  
DIV_NUM  
000 0011b  
Set Master Clock (SCK) to BCK Divider Value  
Ratio of master clock (SCK) to bit clock (BCK) in master mode  
Divider value:  
0: 1  
1: 1/2  
2: 1/3  
3: 1/4 (default)  
:
7: 1/8  
:
127: 1/128  
108  
Copyright © 2014–2018, Texas Instruments Incorporated  
PCM1860, PCM1861, PCM1862  
PCM1863, PCM1864, PCM1865  
www.ti.com.cn  
ZHCSCB3D MARCH 2014REVISED MARCH 2018  
13.3.34 Page 0: Register 39 (address = 0x27) [reset = 0x3F]  
CLK_DIV_BCK_LRCK is the alternate name for this register.  
Figure 109. Page 0: Register 39  
7
6
5
4
3
2
1
0
DIV_NUM  
R/W-0011 1111b  
Table 60. Page 0: Register 39 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
DIV_NUM  
R/W  
0011 1111b Set Bit Clock (BCK) to LRCK Divider Value  
Ratio of bit clock (BCK) to word clock (LRCK) in master mode  
Divider value:  
0: 1  
1: 1/2  
2: 1/3  
3: 1/4  
:
63: 1/64 (default)  
:
127: 1/128  
:
255: 1/256  
13.3.35 Page 0: Register 40 (address = 0x28) [reset = 0x01]  
Figure 110. Page 0: Register 40  
7
6
5
4
3
2
1
0
RSV  
LOCK  
R/W-0b  
RSV  
PLL_REF_SEL  
R/W-0b  
PLL_EN  
R/W-1b  
R/W-000b  
R/W-00b  
Table 61. Page 0: Register 40 Field Descriptions  
Bit  
7-5  
4
Field  
RSV  
Type  
R/W  
R/W  
Reset  
000b  
0b  
Description  
Reserved. Do not access.  
LOCK  
PLL Lock Status  
0: Not locked (default)  
1: Locked  
3-2  
1
RSV  
R/W  
R/W  
00b  
0b  
Reserved. Do not access.  
PLL_REF_SEL  
PLL Reference Clock Selection  
Ignored if CLKDET_EN = 1  
0: SCK (default)  
1: BCK  
0
PLL_EN  
R/W  
1b  
PLL Enable  
Ignored if CLKDET_EN = 1  
0: Disable  
1: Enable (default)  
Copyright © 2014–2018, Texas Instruments Incorporated  
109  
PCM1860, PCM1861, PCM1862  
PCM1863, PCM1864, PCM1865  
ZHCSCB3D MARCH 2014REVISED MARCH 2018  
www.ti.com.cn  
13.3.36 Page 0: Register 41 (address = 0x29) [reset = 0x00]  
Figure 111. Page 0: Register 41  
7
6
5
4
3
2
1
0
RSV  
P
R/W-0b  
R/W-000 0000b  
Table 62. Page 0: Register 41 Field Descriptions  
Bit  
7
Field  
Type  
R/W  
R/W  
Reset  
0b  
Description  
RSV  
Reserved. Do not access.  
6-0  
000 0000b  
PLL P Divider Value  
Ignored if CLKDET_EN = 1  
0: 1 (default)  
1: 1/2  
2: 1/3  
3: 1/4  
:
127: 1/128  
13.3.37 Page 0: Register 42 (address = 0x2A) [reset = 0x00]  
Figure 112. Page 0: Register 42  
7
6
5
4
3
2
1
0
RSV  
R
R/W-0000b  
R/W-0000b  
Table 63. Page 0: Register 42 Field Descriptions  
Bit  
7-4  
3-0  
Field  
RSV  
R
Type  
R/W  
R/W  
Reset  
0000b  
0000b  
Description  
Reserved. Do not access.  
PLL R Multiplier Value  
Ignored if CLKDET_EN = 1  
0: 1 (default)  
1: 2  
2: 3  
3: 4  
:
15 16  
110  
Copyright © 2014–2018, Texas Instruments Incorporated  
PCM1860, PCM1861, PCM1862  
PCM1863, PCM1864, PCM1865  
www.ti.com.cn  
ZHCSCB3D MARCH 2014REVISED MARCH 2018  
13.3.38 Page 0: Register 43 (address = 0x2B) [reset = 0x01]  
Figure 113. Page 0: Register 43  
7
6
5
4
3
2
1
0
RSV  
J
R/W-0b  
R/W-000 0001b  
Table 64. Page 0: Register 43 Field Descriptions  
Bit  
7
Field  
RSV  
J
Type  
R/W  
R/W  
Reset  
0b  
Description  
Reserved. Do not access.  
6-0  
000 0001b  
Integer Part of PLL J.D Multiplier Value  
Ignored if CLKDET_EN = 1  
0: (Prohibit)  
1: 1 (default)  
2: 2  
:
63: 63  
13.3.39 Page 0: Register 44 (address = 0x2C) [reset = 0x00]  
Figure 114. Page 0: Register 44  
7
6
5
4
3
2
1
0
D_LSB  
R/W-0000 0000b  
Table 65. Page 0: Register 44 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
D_LSB  
R/W  
0000 0000b Fractional Part of PLL J.D-Multiplier Value (least significant  
bits)  
Ignored if CLKDET_EN = 1  
0: 0 (default)  
1: 1  
2: 2  
:
9999: 9999 (0x270F for both registers combined)  
13.3.40 Page 0: Register 45 (address = 0x2D) [reset = 0x00]  
Figure 115. Page 0: Register 45  
7
6
5
4
3
2
1
0
RSV  
D_MSB  
R/W-00b  
R/W-00 0000b  
Table 66. Page 0: Register 45 Field Descriptions  
Bit  
7-6  
5-0  
Field  
Type  
R/W  
R/W  
Reset  
00b  
Description  
RSV  
Reserved. Do not access.  
D_MSB  
00 0000b  
Fractional Part of PLL J.D Multiplier Value. (most significant  
bits, [13:8])  
Ignored if CLKDET_EN = 1  
0: 0 (default)  
1: 1  
2: 2  
:
9999: 9999 (0x270F for both registers combined)  
Copyright © 2014–2018, Texas Instruments Incorporated  
111  
PCM1860, PCM1861, PCM1862  
PCM1863, PCM1864, PCM1865  
ZHCSCB3D MARCH 2014REVISED MARCH 2018  
www.ti.com.cn  
13.3.41 Page 0: Register 48 (address = 0x30) [reset = 0x00]  
SIGDET_CH_MODE is the alternate name for this register.  
Figure 116. Page 0: Register 48  
7
6
5
4
3
2
1
0
CH4R  
R/W-0b  
CH4L  
R/W-0b  
CH3R  
R/W-0b  
CH3L  
R/W-0b  
CH2R  
R/W-0b  
CH2L  
R/W-0b  
CH1R  
R/W-0b  
CH1L  
R/W-0b  
Table 67. Page 0: Register 48 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
CH4R  
R/W  
0b  
Signal Detection Mode for Channel 4 Right  
Select the signal detection mode for each channel in SLEEP  
mode  
0: Audio signal detection (default)  
1: DC level-change detection  
6
5
4
3
2
1
0
CH4L  
CH3R  
CH3L  
CH2R  
CH2L  
CH1R  
CH1L  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
0b  
0b  
0b  
0b  
0b  
0b  
0b  
Signal Detection Mode for Channel 4 Left  
Select the signal detection mode for each channel in SLEEP  
mode  
0: Audio signal detection (default)  
1: DC level-change detection  
Signal Detection Mode for Channel 3 Right  
Select the signal detection mode for each channel in SLEEP  
mode  
0: Audio signal detection (default)  
1: DC level-change detection  
Signal Detection Mode for Channel 3 Left  
Select the signal detection mode for each channel in SLEEP  
mode  
0: Audio signal detection (default)  
1: DC level-change detection  
Signal Detection Mode for Channel 2 Right  
Select the signal detection mode for each channel in SLEEP  
mode  
0: Audio signal detection (default)  
1: DC level-change detection  
Signal Detection Mode for Channel 2 Left  
Select the signal detection mode for each channel in SLEEP  
mode  
0: Audio signal detection (default)  
1: DC level-change detection  
Signal Detection Mode for Channel 1 Right  
Select the signal detection mode for each channel in SLEEP  
mode  
0: Audio signal detection (default)  
1: DC level-change detection  
Signal Detection Mode for Channel 1 Left  
Select the signal detection mode for each channel in SLEEP  
mode  
0: Audio signal detection (default)  
1: DC level-change detection  
112  
Copyright © 2014–2018, Texas Instruments Incorporated  
PCM1860, PCM1861, PCM1862  
PCM1863, PCM1864, PCM1865  
www.ti.com.cn  
ZHCSCB3D MARCH 2014REVISED MARCH 2018  
13.3.42 Page 0: Register 49 (address = 0x31) [reset = 0x00]  
SIGDET_TRIG_MASK is the alternate name for this register.  
Figure 117. Page 0: Register 49  
7
6
5
4
3
2
1
0
CH4R  
R/W-0b  
CH4L  
R/W-0b  
CH3R  
R/W-0b  
CH3L  
R/W-0b  
CH2R  
R/W-0b  
CH2L  
R/W-0b  
CH1R  
R/W-0b  
CH1L  
R/W-0b  
Table 68. Page 0: Register 49 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
CH4R  
R/W  
0b  
Mask Bits of Interrupt Trigger for Channel 4 Right  
All channels are scanned, even if they are masked. Developers  
can ignore specific channels and prevent them from generating  
interrupts using this register  
0: No mask (default)  
1: Mask  
6
5
4
3
2
1
0
CH4L  
CH3R  
CH3L  
CH2R  
CH2L  
CH1R  
CH1L  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
0b  
0b  
0b  
0b  
0b  
0b  
0b  
Mask Bits of Interrupt Trigger for Channel 4 Left  
All channels are scanned, even if they are masked. Developers  
can ignore specific channels and prevent them from generating  
interrupts using this register  
0: No mask (default)  
1: Mask  
Mask Bits of Interrupt Trigger for Channel 3 Right  
All channels are scanned, even if they are masked. Developers  
can ignore specific channels and prevent them from generating  
interrupts using this register  
0: No mask (default)  
1: Mask  
Mask Bits of Interrupt Trigger for Channel 3 Left  
All channels are scanned, even if they are masked. Developers  
can ignore specific channels and prevent them from generating  
interrupts using this register  
0: No mask (default)  
1: Mask  
Mask Bits of Interrupt Trigger for Channel 2 Right  
All channels are scanned, even if they are masked. Developers  
can ignore specific channels and prevent them from generating  
interrupts using this register  
0: No mask (default)  
1: Mask  
Mask Bits of Interrupt Trigger for Channel 2 Left  
All channels are scanned, even if they are masked. Developers  
can ignore specific channels and prevent them from generating  
interrupts using this register  
0: No mask (default)  
1: Mask  
Mask Bits of Interrupt Trigger for Channel 1 Right  
All channels are scanned, even if they are masked. Developers  
can ignore specific channels and prevent them from generating  
interrupts using this register  
0: No mask (default)  
1: Mask  
Mask Bits of Interrupt Trigger for Channel 1 Left  
All channels are scanned, even if they are masked. Developers  
can ignore specific channels and prevent them from generating  
interrupts using this register  
0: No mask (default)  
1: Mask  
Copyright © 2014–2018, Texas Instruments Incorporated  
113  
PCM1860, PCM1861, PCM1862  
PCM1863, PCM1864, PCM1865  
ZHCSCB3D MARCH 2014REVISED MARCH 2018  
www.ti.com.cn  
13.3.43 Page 0: Register 50 (address = 0x32) [reset = 0x00]  
SIGDET_STAT is the alternate name for this register.  
Figure 118. Page 0: Register 50  
7
6
5
4
3
2
1
0
CH4R  
R/W-0b  
CH4L  
R/W-0b  
CH3R  
R/W-0b  
CH3L  
R/W-0b  
CH2R  
R/W-0b  
CH2L  
R/W-0b  
CH1R  
R/W-0b  
CH1L  
R/W-0b  
Table 69. Page 0: Register 50 Field Descriptions  
Bit  
7
Field  
Type  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Reset  
0b  
Description  
CH4R  
CH4L  
CH3R  
CH3L  
CH2R  
CH2L  
CH1R  
CH1L  
Status of Signal Level Detection in Both Energysense and  
Controlsense Modes (read only). Field column indicates  
respective channel.  
A) In audio signal detection mode:  
a) In the active or run state:  
0: Signal active  
1: Signal lost  
b) In the sleep mode  
0: Signal lost  
1: Signal active  
6
0b  
5
0b  
4
0b  
3
0b  
2
0b  
1
0b  
In automatic clipping suppression mode:  
0: No change  
0
0b  
1: changed DC level  
13.3.44 Page 0: Register 51 (address = 0x33) [reset = 0x00]  
SIGDET_LOSS_TIME is the alternate name for this register.  
Figure 119. Page 0: Register 51  
7
6
5
4
3
2
1
0
RSV  
TIME  
R/W-000b  
R/W-0 0001b  
Table 70. Page 0: Register 51 Field Descriptions  
Bit  
7-5  
4-0  
Field  
RSV  
TIME  
Type  
R/W  
R/W  
Reset  
000  
Description  
Reserved. Do not access.  
0 0001b  
If the signal drops below the threshold on the current audio  
input for this set amount of time, the device generates an  
interrupt  
0: Prohibit  
1: 1 minute (default)  
2: 2 minutes  
3: 3 minutes  
:
30: 30 minutes (Max)  
114  
Copyright © 2014–2018, Texas Instruments Incorporated  
PCM1860, PCM1861, PCM1862  
PCM1863, PCM1864, PCM1865  
www.ti.com.cn  
ZHCSCB3D MARCH 2014REVISED MARCH 2018  
13.3.45 Page 0: Register 52 (address = 0x34) [reset = 0x00]  
SIGDET_SCAN_TIME is the alternate name for this register.  
Figure 120. Page 0: Register 52  
7
6
5
4
3
2
1
0
RSV  
TIME  
R/W-0 0000b  
R/W-000b  
Table 71. Page 0: Register 52 Field Descriptions  
Bit  
Field  
RSV  
TIME  
Type  
R/W  
R/W  
Reset  
0 0000  
000  
Description  
7-33  
2-1  
Reserved. Do not access.  
Configures the scan time for each channel in the SLEEP state  
000: 160 ms (default)  
001: 80 ms  
010: 40 ms  
011: 20 ms  
100: 10 ms  
Others: Invalid  
13.3.46 Page 0: Register 54 (address = 0x36) [reset = 0x01]  
SIGDET_INT_INTVL is the alternate for this register.  
Figure 121. Page 0: Register 54  
7
6
5
4
3
2
1
0
RSV  
RSV  
RSV  
RSV  
R/W-0b  
RSV  
R/W-0b  
INT_INTVL  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-1b  
Table 72. Page 0: Register 54 Field Descriptions  
Bit  
7-3  
2-0  
Field  
Type  
R/W  
R/W  
Reset  
0 0000  
001b  
Description  
RSV  
Reserved. Do not access.  
INT_INTVL  
Interval time of the signal detector interrupt when there is  
signal detection. This time value is used for energysense  
wakeup from sleep interrupt and from controlsense interrupts  
Interval time of the signal-resume interrupt  
000: No repeat  
001: 1 sec (default)  
010: 2 sec  
011: 3 sec  
100: 4 sec  
Others: Invalid  
Copyright © 2014–2018, Texas Instruments Incorporated  
115  
PCM1860, PCM1861, PCM1862  
PCM1863, PCM1864, PCM1865  
ZHCSCB3D MARCH 2014REVISED MARCH 2018  
www.ti.com.cn  
13.3.47 Page 0: Register 64 (address = 0x40) [reset =0x80]  
SIGDET_DC_REF_CH1_L is the alternate name for this register.  
Figure 122. Page 0: Register 64  
7
6
5
4
3
2
1
0
REF  
R/W-1000 0000b  
Table 73. Page 0: Register 64 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
REF  
R/W  
1000 0000b Reference Level of Controlsense Detection  
13.3.48 Page 0: Register 65 (address = 0x41) [reset = 0x7F]  
SIGDET_DC_DIFF_CH1_L is the alternate name for this register.  
Figure 123. Page 0: Register 65  
7
6
5
4
3
2
1
0
0
0
DIFF  
R/W-0111 1111b  
Table 74. Page 0: Register 65 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
DIFF  
R/W  
0111 1111b Difference Level of Controlsense Detection  
13.3.49 Page 0: Register 66 (address = 0x42) [reset = 0x00]  
SIGDET_DC_LEVEL_CH1_L is the alternate name for this register.  
Figure 124. Page 0: Register 66  
7
6
5
4
3
2
1
LEVEL  
R-0000 0000b  
Table 75. Page 0: Register 66 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
LEVEL  
R
0000 0000b Current DC Level  
13.3.50 Page 0: Register 67 (address = 0x43) [reset = 0x80]  
SIGDET_DC_REF_CH1_R is the alternate name for this register.  
Figure 125. Page 0: Register 67  
7
6
5
4
3
2
1
REF  
R/W-1000 0000b  
Table 76. Page 0: Register 67 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
REF  
R/W  
1000 0000b Reference Level of Controlsense Detection  
116  
Copyright © 2014–2018, Texas Instruments Incorporated  
PCM1860, PCM1861, PCM1862  
PCM1863, PCM1864, PCM1865  
www.ti.com.cn  
ZHCSCB3D MARCH 2014REVISED MARCH 2018  
13.3.51 Page 0: Register 68 (address = 0x44) [reset = 0x7F]  
SIGDET_DC_DIFF_CH1_R is the alternate name for this register.  
Figure 126. Page 0: Register 68  
7
6
5
4
3
2
1
0
DIFF  
R/W-0111 1111b  
Table 77. Page 0: Register 68 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
DIFF  
R/W  
0111 1111b Difference Level of Controlsense Detection  
13.3.52 Page 0: Register 69 (address = 0x45) [reset = 0x00]  
SIGDET_DC_LEVEL_CH 1_R is the alternate name for this register.  
Figure 127. Page 0: Register 69  
7
6
5
4
3
2
1
0
LEVEL  
R-0000 0000b  
Table 78. Page 0: Register 69 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
LEVEL  
R
0000 0000b Current DC Level  
13.3.53 Page 0: Register 70 (address = 0x46) [reset = 0x80]  
SIGDET_DC_REF_CH2_L is the alternate name for this register.  
Figure 128. Page 0: Register 70  
7
6
5
4
3
2
1
0
REF  
R/W-1000 0000b  
Table 79. Page 0: Register 70 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
REF  
R/W  
1000 0000b Reference Level of Controlsense Detection  
13.3.54 Page 0: Register 71 (address = 0x47) [reset = 0x7F]  
SIGDET_DC_DIFF_CH2_L is the alternate name for this register.  
Figure 129. Page 0: Register 71  
7
6
5
4
3
2
1
0
DIFF  
R/W-0111 1111b  
Table 80. Page 0: Register 71 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
DIFF  
R/W  
0111 1111b Difference Level of Controlsense Detection  
Copyright © 2014–2018, Texas Instruments Incorporated  
117  
PCM1860, PCM1861, PCM1862  
PCM1863, PCM1864, PCM1865  
ZHCSCB3D MARCH 2014REVISED MARCH 2018  
www.ti.com.cn  
13.3.55 Page 0: Register 72 (address = 0x48) [reset = 0x00]  
SIGDET_DC_LEVEL_CH2_L is the alternate name for this register.  
Figure 130. Page 0: Register 72  
7
6
5
4
3
2
1
0
LEVEL  
R-0000 0000b  
Table 81. Page 0: Register 72 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
LEVEL  
R
0000 0000b Current DC Level  
13.3.56 Page 0: Register 73 (address = 0x49) [reset = 0x80]  
SIGDET_DC_REF_CH2_R is the alternate name for this register.  
Figure 131. Page 0: Register 73  
7
6
5
4
3
2
1
0
0
0
REF  
R/W-1000 0000b  
Table 82. Page 0: Register 73 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
REF  
R/W  
1000 0000b Reference Level of Controlsense Detection  
13.3.57 Page 0: Register 74 (address = 0x4A) [reset = 0x7F]  
SIGDET_DC_DIFF_CH2_R is the alternate name for this register.  
Figure 132. Page 0: Register 74  
7
6
5
4
3
2
1
DIFF  
R/W-0111 1111b  
Table 83. Page 0: Register 74 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
DIFF  
R/W  
0111 1111b Difference Level of Controlsense Detection  
13.3.58 Page 0: Register 75 (address = 0x4B) [reset = 0x00]  
SIGDET_DC_LEVEL_CH 2_R is the alternate name for this register.  
Figure 133. Page 0: Register 75  
7
6
5
4
3
2
1
LEVEL  
R-0000 0000b  
Table 84. Page 0: Register 75 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
LEVEL  
R
0000 0000b Current DC Level  
118  
Copyright © 2014–2018, Texas Instruments Incorporated  
PCM1860, PCM1861, PCM1862  
PCM1863, PCM1864, PCM1865  
www.ti.com.cn  
ZHCSCB3D MARCH 2014REVISED MARCH 2018  
13.3.59 Page 0: Register 76 (address = 0x4C) [reset = 0x80]  
SIGDET_DC_REF_CH3_L is the alternate name for this register.  
Figure 134. Page 0: Register 76  
7
6
5
4
3
2
1
0
REF  
R/W-1000 0000b  
Table 85. Page 0: Register 76 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
REF  
R/W  
1000 0000b Reference Level of Controlsense Detection  
13.3.60 Page 0: Register 77 (address = 0x4D) [reset = 0x7F]  
SIGDET_DC_DIFF_CH3_L is the alternate name for this register.  
Figure 135. Page 0: Register 77  
7
6
5
4
3
2
1
0
DIFF  
R/W-0111 1111b  
Table 86. Page 0: Register 77 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
DIFF  
R/W  
0111 1111b Difference Level of Controlsense Detection  
13.3.61 Page 0: Register 78 (address = 0x4E) [reset = 0x00]  
SIGDET_DC_LEVEL_CH3_L is the alternate name for this register.  
Figure 136. Page 0: Register 78  
7
6
5
4
3
2
1
0
LEVEL  
R-0000 0000b  
Table 87. Page 0: Register 78 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
LEVEL  
R
0000 0000b Current DC Level  
13.3.62 Page 0: Register 79 (address = 0x4F) [reset = 0x80]  
SIGDET_DC_REF_CH3_R is the alternate name for this register.  
Figure 137. Page 0: Register 79  
7
6
5
4
3
2
1
0
REF  
R/W-1000 0000b  
Table 88. Page 0: Register 79 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
REF  
R/W  
1000 0000b Reference Level of Controlsense Detection  
Copyright © 2014–2018, Texas Instruments Incorporated  
119  
PCM1860, PCM1861, PCM1862  
PCM1863, PCM1864, PCM1865  
ZHCSCB3D MARCH 2014REVISED MARCH 2018  
www.ti.com.cn  
13.3.63 Page 0: Register 80 (address = 0x50) [reset = 0x7F]  
SIGDET_DC_DIFF_CH3_R is the alternate name for this register.  
Figure 138. Page 0: Register 80  
7
6
5
4
3
2
1
0
DIFF  
R/W-0111 1111b  
Table 89. Page 0: Register 80 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
DIFF  
R/W  
0111 1111b Difference Level of Controlsense Detection  
13.3.64 Page 0: Register 81 (address = 0x51) [reset = 0x00]  
SIGDET_DC_LEVEL_CH3_R is the alternate name for this register.  
Figure 139. Page 0: Register 81  
7
6
5
4
3
2
1
0
0
0
LEVEL  
R-0000 0000b  
Table 90. Page 0: Register 81 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
LEVEL  
R
0000 0000b Current DC Level  
13.3.65 Page 0: Register 82 (address = 0x52) [reset = 0x80]  
SIGDET_DC_REF_CH4_L is the alternate name for this register.  
Figure 140. Page 0: Register 82  
7
6
5
4
3
2
1
REF  
R/W-1000 0000b  
Table 91. Page 0: Register 82 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
REF  
R/W  
1000 0000b Reference Level of Controlsense Detection  
13.3.66 Page 0: Register 83 (address = 0x53) [reset = 0x7F]  
SIGDET_DC_DIFF_CH4_L is the alternate name for this register.  
Figure 141. Page 0: Register 83  
7
6
5
4
3
2
1
DIFF  
R/W-0111 1111b  
Table 92. Page 0: Register 83 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
DIFF  
R/W  
0111 1111b Difference Level of Controlsense Detection  
120  
Copyright © 2014–2018, Texas Instruments Incorporated  
PCM1860, PCM1861, PCM1862  
PCM1863, PCM1864, PCM1865  
www.ti.com.cn  
ZHCSCB3D MARCH 2014REVISED MARCH 2018  
13.3.67 Page 0: Register 84 (address = 0x54) [reset = 0x00]  
SIGDET_DC_LEVEL_CH4_L is the alternate name for this register.  
Figure 142. Page 0: Register 84  
7
6
5
4
3
2
1
0
LEVEL  
R-0000 0000b  
Table 93. Page 0: Register 84 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
LEVEL  
R
0000 0000b Current DC Level  
13.3.68 Page 0: Register 85 (address = 0x55) [reset = 0x80]  
SIGDET_DC_REF_CH4_R is the alternate name for this register.  
Figure 143. Page 0: Register 82  
7
6
5
4
3
2
1
0
REF  
R/W-1000 0000b  
Table 94. Page 0: Register 85 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
REF  
R/W  
1000 0000b Reference Level of Controlsense Detection  
13.3.69 Page 0: Register 86 (address = 0x56) [reset = 0x7F]  
SIGDET_DC_DIFF_CH4_R is the alternate name for this register.  
Figure 144. Page 0: Register 86  
7
6
5
4
3
2
1
0
DIFF  
R/W-0111 1111b  
Table 95. Page 0: Register 86 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
DIFF  
R/W  
0111 1111b Difference Level of Controlsense Detection  
13.3.70 Page 0: Register 87 (address = 0x57) [reset = 0x00]  
Figure 145. Page 0: Register 84  
7
6
5
4
3
2
1
0
LEVEL  
R-0000 0000b  
Table 96. Page 0: Register 87 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
LEVEL  
R
0000 0000b Current DC Level  
Copyright © 2014–2018, Texas Instruments Incorporated  
121  
PCM1860, PCM1861, PCM1862  
PCM1863, PCM1864, PCM1865  
ZHCSCB3D MARCH 2014REVISED MARCH 2018  
www.ti.com.cn  
13.3.71 Page 0: Register 88 (address = 0x58) [reset = 0x00]  
AUXADC_DATA_CTRL is the alternate name for this register.  
Figure 146. Page 0: Register 88  
7
6
5
4
3
2
1
0
AUXADC_LAT AUXADC_DAT  
DC_NOLATCH AUXADC_RDY  
DC_RDY  
R/W-0b  
DC_CH  
R/W-000b  
CH  
A_TYPE  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
Table 97. Page 0: Register 88 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
DC_NOLATCH  
R/W  
0b  
Read Without Latch  
Read directly without latch operation (from secondary ADC)  
0: With latch operation (default)  
1: Without latch operation when read dc value  
6
AUXADC_RDY  
R/W  
0b  
AUXADC Ready  
Indicate latch operation is finished and AUXADC value is ready  
for read operation.  
0: Latch operation is running (default)  
1: AUXADC value is ready for read operation  
5
4
DC_RDY  
R/W  
R/W  
0b  
0b  
DC Ready  
Indicate latch operation is finished and dc value is ready.  
0: Latch operation is running (default)  
1: DC value is ready for read operation  
AUXADC_LATCH  
AUXADC Latch  
Trigger to latch 16-bit AUXADC value for read operation: rising  
edge is the trigger signal  
0: Idle (default)  
1: Latch the value for read operation  
3
AUXADC_DATA_TYPE  
DC_CH[2:0]  
R/W  
R/W  
0b  
Data to be Read From Control Interface  
0: read LPF data (default)  
1: read HPF data  
2-0  
000b  
DC-Value Channel Select  
Select dc-value channel to be latched for control-interface read  
operation  
000: CH1_L (default)  
001: CH1_R  
010: CH2_L  
011: CH2_R  
100: CH3_L  
101: CH3_R  
110: CH4_L  
111: CH4_R  
13.3.72 Page 0: Register 89 (address = 0x59) [reset = 0x00]  
Figure 147. Page 0: Register 89  
7
6
5
4
3
2
1
0
AUXADC_DATA_LSB  
R-0000 0000b  
Table 98. Page 0: Register 89 Field Descriptions  
Bit  
Field  
AUXADC_DATA_LSB  
Type  
Reset  
0000 0000b Low Byte of Secondary ADC Output  
The data depends on AUXADC_DATA_TYPE setting  
Description  
7-0  
R
AUXADC_DATA_TYPE = 0: reading LPF of secondary ADC  
AUXADC_DATA_TYPE = 1: reading HPF of secondary ADC  
122  
Copyright © 2014–2018, Texas Instruments Incorporated  
PCM1860, PCM1861, PCM1862  
PCM1863, PCM1864, PCM1865  
www.ti.com.cn  
ZHCSCB3D MARCH 2014REVISED MARCH 2018  
13.3.73 Page 0: Register 90 (address = 0x5A) [reset = 0x00]  
Figure 148. Page 0: Register 90  
7
6
5
4
3
2
1
0
AUXADC_DATA_MSB  
R-0000 0000b  
Table 99. Page 0: Register 90 Field Descriptions  
Bit  
Field  
AUXADC_DATA_MSB  
Type  
Reset  
Description  
7-0  
R
0000 0000b High Byte of Secondary ADC Output [15:8]  
The data depends on AUXADC_DATA_TYPE setting  
AUXADC_DATA_TYPE = 0: reading LPF of secondary ADC  
AUXADC_DATA_TYPE = 1: reading HPF of secondary ADC  
13.3.74 Page 0: Register 96 (address = 0x60) [reset = 0x01]  
Figure 149. Page 0: Register 96  
7
6
5
4
3
2
1
0
RSV  
POSTPGA_CP  
R/W-0b  
RSV  
R/W-0b  
DC_CHANG  
R/W-0b  
DIN_TOGGLE  
R/W-0b  
ENGSTR  
R/W-1b  
R/W-000b  
Table 100. Page 0: Register 96 Field Descriptions  
Bit  
7-5  
4
Field  
Type  
R/W  
R/W  
Reset  
000b  
0b  
Description  
RSV  
Reserved. Always write 000b.  
POSTPGA_CP  
Enable the Post-PGA Clipping Interrupt  
Write 0 to clear interrupts, all bits in this register  
0: Disable (default)  
1: Enable  
3
2
RSV  
R/W  
R/W  
0b  
0b  
Reserved. Always write 0b.  
DC_CHANG  
Enable the DC Level Change Interrupt  
0: Disable (default)  
1: Enable  
1
0
DIN_TOGGLE  
ENGSTR  
R/W  
R/W  
0b  
1b  
Enable I2S RX DIN toggle Interrupt  
0: Disable (default)  
1: Enable  
Enable the energysense Interrupt  
0: Disable  
1: Enable (default)  
Copyright © 2014–2018, Texas Instruments Incorporated  
123  
PCM1860, PCM1861, PCM1862  
PCM1863, PCM1864, PCM1865  
ZHCSCB3D MARCH 2014REVISED MARCH 2018  
www.ti.com.cn  
13.3.75 Page 0: Register 97 (address = 0x61) [reset = 0x00]  
Figure 150. Page 0: Register 97  
7
6
5
4
3
2
1
0
RSV  
POSTPGA_CP  
R-0b  
RSV  
R-0b  
DC_CHANG  
R-0b  
DIN_TOGGLE  
R-0b  
ENGSTR  
R-0b  
R-000b  
Table 101. Page 0: Register 97 Field Descriptions  
Bit  
7-5  
4
Field  
Type  
R
Reset  
000b  
0b  
Description  
RSV  
Reserved. Always write 000b.  
POSTPGA_CP  
R
Status of Post-PGA Clipping Interrupt  
Write 0 to register 0x60 clear interrupts, all bits in this register  
0: None  
1: Interrupt occurred  
3
2
RSV  
R
R
0b  
0b  
Reserved. Always write 0b.  
DC_CHANG  
Status of the DC Level Change Interrupt  
0: None  
1: Interrupt occurred  
1
0
DIN_TOGGLE  
ENGSTR  
R
R
0b  
0b  
Status of I2S RX DIN toggle Interrupt  
0: None  
1: Interrupt occurred  
Status of the energysense Interrupt  
0: None  
1: Interrupt occurred  
13.3.76 Page 0: Register 98 (address = 0x62) [reset =0x10]  
Figure 151. Page 0: Register 98  
7
6
5
4
3
2
1
0
RSV  
POL  
RSV  
WIDTH  
R/W-00b  
R/W-01b  
R/W-00b  
R/W-00b  
Table 102. Page 0: Register 98 Field Descriptions  
Bit  
7-5  
5-4  
Field  
RSV  
POL  
Type  
R/W  
R/W  
Reset  
00b  
Description  
Reserved. Always write 00b.  
01b  
Polarity of the Interrupt Pulse  
00: Low active  
01: High active (default)  
10: Open drain (L-Active)  
11: Reserved  
3-2  
1-0  
RSV  
R/W  
R/W  
00b  
00b  
Reserved. Always write 00b.  
WIDTH  
Width of the Interrupt Pulse  
00: 1 ms (default)  
01: 2 ms  
10: 3 ms  
11: Infinity for level sense  
124  
Copyright © 2014–2018, Texas Instruments Incorporated  
PCM1860, PCM1861, PCM1862  
PCM1863, PCM1864, PCM1865  
www.ti.com.cn  
ZHCSCB3D MARCH 2014REVISED MARCH 2018  
13.3.77 Page 0: Register 112 (address = 0x70) [reset = 0x70]  
Figure 152. Page 0: Register 112  
7
6
5
4
3
2
1
0
RSV  
PWRDN  
R/W-0b  
SLEEP  
R/W-0b  
STBY  
R/W-0b  
R/W-0 1110b  
Table 103. Page 0: Register 112 Field Descriptions  
Bit  
7-3  
2
Field  
Type  
R/w  
Reset  
0 1110b  
0b  
Description  
RSV  
Reserved. Always write 0 1110b  
PWRDN  
R/W  
Enter Analog Power Down State  
0: Power Up (default)  
1: Power Down  
1
0
SLEEP  
STBY  
R/W  
R/W  
0b  
0b  
Enter the Device Sleep State  
After the chip enters SLEEP state, energysense application will  
be triggered.  
0: Power Up (default)  
1: Sleep  
Enter Digital Standby State  
0: Run (default)  
1: Standby  
13.3.78 Page 0: Register 113 (address = 0x71) [reset = 0x10]  
DSP_CTRL is the alternate name for this register.  
Figure 153. Page 0: Register 113  
7
6
5
4
3
2
1
0
2CH  
RSV  
FLT  
HPF_EN  
R/W-1b  
MUTE_CH2_R MUTE_CH2_L MUTE_CH1_R MUTE_CH1_L  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
Table 104. Page 0: Register 113 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
2CH  
R/W  
0b  
Processing Mode Selection  
Select the processing mode for 4-channel device only. This  
configuration CANNOT be changed on the fly in RUN state.  
0: 4 channels (default)  
1: 2 channels  
6
5
RSV  
FLT  
R/W  
R/W  
0b  
0b  
Reserved. Always write 0b.  
Select Decimation Filter Type  
0: Normal (default)  
1: Short latency  
4
3
2
1
0
HPF_EN  
R/W  
R/W  
R/W  
R/W  
R/W  
1b  
0b  
0b  
0b  
0b  
Enable High-Pass Filter  
0: Disable  
1: Enable (default)  
MUTE_CH2_R  
MUTE_CH2_L  
MUTE_CH1_R  
MUTE_CH1_L  
Mute Ch2(R)  
0: Unmute (default)  
1: Mute  
Mute Ch2(L)  
0: Unmute (default)  
1: Mute  
Mute Ch1(R)  
0: Unmute (default)  
1: Mute  
Mute Ch1(L)  
0: Unmute (default)  
1: Mute  
Copyright © 2014–2018, Texas Instruments Incorporated  
125  
PCM1860, PCM1861, PCM1862  
PCM1863, PCM1864, PCM1865  
ZHCSCB3D MARCH 2014REVISED MARCH 2018  
www.ti.com.cn  
13.3.79 Page 0: Register 114 (address = 0x72) [reset = 0x00]  
Figure 154. Page 0: Register 114  
7
6
5
4
3
2
1
0
RSV  
STATE  
R-0000b  
R-0000b  
Table 105. Page 0: Register 114 Field Descriptions  
Bit  
7-4  
3-0  
Field  
RSV  
Type  
R
Reset  
0000b  
0000b  
Description  
Reserved. Always write 0000b.  
STATE  
R
Device Current Status  
0000: Power down (default)  
0001: Wait clock stable  
0010: Release reset  
0011: Stand-by  
0100: Fade IN  
0101: Fade OUT  
0110: Reserved  
0111: Reserved  
1000: Reserved  
1001: Sleep  
1010: Reserved  
1011: Reserved  
1100: Reserved  
1101: Reserved  
1110: Reserved  
1111: Run  
13.3.80 Page 0: Register 115 (address = 0x73) [reset = 0x00]  
Figure 155. Page 0: Register 115  
7
6
5
4
3
2
1
0
RSV  
INFO  
R-000b  
R-0 0000b  
Table 106. Page 0: Register 115 Field Descriptions  
Bit  
7-3  
2-0  
Field  
RSV  
INFO  
Type  
R
Reset  
0 0000b  
000b  
Description  
Reserved. Always write 0 0000b.  
R
Current Sampling Frequency  
000: Out of range (Low) or LRCK Halt (default)  
001: 8 kHz  
010: 16 kHz  
011: 32 khz to 48 kHz  
100: 88.2 kHz to 96 kHz  
101: 176.4 kHz to 192 kHz  
110: Out of range (High)  
111: Invalid fS  
126  
Copyright © 2014–2018, Texas Instruments Incorporated  
PCM1860, PCM1861, PCM1862  
PCM1863, PCM1864, PCM1865  
www.ti.com.cn  
ZHCSCB3D MARCH 2014REVISED MARCH 2018  
13.3.81 Page 0: Register 116 (address = 0x74) [reset = 0x00]  
Figure 156. Page 0: Register 116  
7
6
5
4
3
2
1
0
RSV  
R-0b  
BCK_RATIO  
R-000b  
RSV  
R-0b  
SCK_RATIO  
R-000b  
Table 107. Page 0: Register 116 Field Descriptions  
Bit  
Field  
Type  
R
Reset  
0b  
Description  
7
RSV  
Reserved. Always write 0 0000b.  
6-4  
BCK_RATIO  
R
000b  
Current Receiving BCK Ratio  
Default value: 000 (default)  
000: Out of range (L) or BCK Halt  
001: 32  
010: 48  
011: 64  
100: 256  
101: (Not assigned)  
110: Out of range (H)  
111: Invalid BCK ratio or LRCK Halt  
3
RSV  
R
R
0b  
Reserved. Always write 0 0000b.  
2-0  
SCK_RATIO  
000b  
Current SCK Ratio  
000: Out of range (L) or SCK Halt (default)  
001: 128  
010: 256  
011: 384  
100: 512  
101: 768  
110: Out of range (H)  
111: Invalid SCK ratio or LRCK Halt  
Copyright © 2014–2018, Texas Instruments Incorporated  
127  
PCM1860, PCM1861, PCM1862  
PCM1863, PCM1864, PCM1865  
ZHCSCB3D MARCH 2014REVISED MARCH 2018  
www.ti.com.cn  
13.3.82 Page 0: Register 117 (address = 0x75) [reset = 0x00]  
CLK_ERR_STAT is the alternate name for this register.  
Figure 157. Page 0: Register 117  
7
6
5
4
3
2
1
0
RSV  
R-0b  
LRCKHLT  
R-0b  
BCKHLT  
R-0b  
SCKHTL  
R-0b  
RSV  
R-0b  
LRCKERR  
R-0b  
BCKERR  
R-0b  
SCKERR  
R-0b  
Table 108. Page 0: Register 117 Field Descriptions  
Bit  
Field  
Type  
R
Reset  
0b  
Description  
7
6
RSV  
Reserved. Always write 0b.  
LRCKHLT  
BCKHLT  
SCKHTL  
R
0b  
LRCK Halt Status  
0: No Error (default)  
1: Halt  
5
4
R
R
0b  
0b  
BCK Halt Status  
0: No Error (default)  
1: Halt  
SCK Halt Status  
0: No Error (default)  
1: Halt  
3
2
RSV  
R
R
0b  
0b  
Reserved. Always write 0b.  
LRCKERR  
LRCK Error Status  
0: No Error (default)  
1: Error  
1
0
BCKERR  
SCKERR  
R
R
0b  
0b  
BCK Error Status  
0: No Error (default)  
1: Error  
SCK Error Status  
0: No Error (default)  
1: Error  
13.3.83 Page 0: Register 120 (address = 0x78) [reset = 0x00]  
Figure 158. Page 0: Register 120  
7
6
5
4
3
2
1
0
RSV  
DVDD  
R/W-0b  
AVDD  
R/W-0b  
LDO  
R/W-0b  
R/W-0b  
Table 109. Page 0: Register 120 Field Descriptions  
Bit  
7-3  
2
Field  
RSV  
Type  
R
Reset  
0 0000b  
0b  
Description  
Reserved. Always write 0 0000b.  
DVDD  
R
DVDD Status  
0:Bad or Missing (default)  
1:Good  
1
0
AVDD  
LDO  
R
R
0b  
0b  
AVDD Status  
0:Bad or issing (default)  
1:Good  
Digital LDO Status  
0:Bad or Missing (default)  
1:Good  
128  
Copyright © 2014–2018, Texas Instruments Incorporated  
PCM1860, PCM1861, PCM1862  
PCM1863, PCM1864, PCM1865  
www.ti.com.cn  
ZHCSCB3D MARCH 2014REVISED MARCH 2018  
13.4 Page 1 Registers  
13.4.1 Page 1: Register 1 (address = 0x01) [reset = 0x00]  
Figure 159. Page 1: Register 1  
7
6
5
4
3
2
1
0
RSV  
DONE  
R-0b  
RSV  
BUSY  
R-0b  
R_REQ  
R/W-0b  
W_REQ  
R/W-0b  
R/W-000b  
R/W-0b  
Table 110. Page 1: Register 1 Field Descriptions  
Bit  
7-5  
4
Field  
RSV  
Type  
R/W  
R
Reset  
000b  
0b  
Description  
Reserved. Always write 000b.  
DONE  
Done Status Flag  
1: Write or read operation is done with one cycle as indicator  
0: Idle or is busy (default)  
3
2
RSV  
R/W  
R
0b  
0b  
Reserved. Always write 000b.  
BUSY  
Busy Status Flag  
1: Write or read operation is running and not finished  
0: Write or read operation is finished (default)  
1
0
R_REQ  
W_REQ  
R/W  
R/W  
0b  
0b  
Memory Mapper Register Access to DSP-2 - READ  
1: Request read operation  
0: The read operation is done and data is ready to read from  
I2C/SPI interface (default)  
Memory Mapper Register Access to DSP-2 - WRITE  
1: Request write operation  
0: The write operation is done and is ready for next write  
operation command (default)  
13.4.2 Page 1: Register 2 (address = 0x02) [reset = 0x00]  
Figure 160. Page 1: Register 2  
7
6
5
4
3
2
1
0
RSV  
MEM_ADDR  
R/W-0b  
R/W-000 0000b  
Table 111. Page 1: Register 2 Field Descriptions  
Bit  
7
Field  
Type  
R/W  
R/W  
Reset  
0b  
Description  
RSV  
Reserved. Always write 0b.  
Memory Mapped Register Address  
6-0  
MEM_ADDR  
000 0000b  
Status of the memory mapped register access  
13.4.3 Page 1: Register 4 (address = 0x04) [reset = 0x00]  
Figure 161. Page 1: Register 4  
7
6
5
4
3
2
1
0
MEM_WDATA_0  
R/W-0000 0000b  
Table 112. Page 1: Register 4 Field Descriptions  
Bit  
Field  
MEM_WDATA_0  
Type  
Reset  
Description  
7-0  
R/W  
0000 0000b Write Data to 24-Bit Memory  
Coefficient [23:16]  
Copyright © 2014–2018, Texas Instruments Incorporated  
129  
PCM1860, PCM1861, PCM1862  
PCM1863, PCM1864, PCM1865  
ZHCSCB3D MARCH 2014REVISED MARCH 2018  
www.ti.com.cn  
13.4.4 Page 1: Register 5 (address = 0x05) [reset = 0x00]  
Figure 162. Page 1: Register 5  
7
6
5
4
3
2
1
0
MEM_WDATA_1  
R/W-0000 0000b  
Table 113. Page 1: Register 5 Field Descriptions  
Bit  
Field  
MEM_WDATA_1  
Type  
Reset  
Description  
7-0  
R/W  
0000 0000b Write Data to 24-Bit Memory  
Coefficient [15:8]  
13.4.5 Page 1: Register 6 (address = 0x06) [reset = 0x00]  
Figure 163. Page 1: Register 6  
7
6
5
4
3
2
1
0
MEM_WDATA_2  
R/W-0000 0000b  
Table 114. Page 1: Register 6 Field Descriptions  
Bit  
Field  
MEM_WDATA_2  
Type  
Reset  
Description  
7-0  
R/W  
0000 0000b Write Data to 24-Bit Memory  
Coefficient [7:0]  
13.4.6 Page 1: Register 7 (address = 0x07) [reset = 0x00]  
Figure 164. Page 1: Register 7  
7
6
5
4
3
2
1
0
MEM_WDATA_  
3
RSV  
R/W-0b  
R/W-000 0000b  
Table 115. Page 1: Register 7 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
MEM_WDATA_2  
R/W  
0b  
Write Data to 24-Bit Memory  
Reserved  
6-0  
RSV  
R/W  
000 0000b  
Reserved. Always write 000 0000b.  
13.4.7 Page 1: Register 8 (address = 0x08) [reset = 0x00]  
Figure 165. Page 1: Register 8  
7
6
5
4
3
2
1
0
MEM_RDATA_0  
R-0000 0000b  
Table 116. Page 1: Register 8 Field Descriptions  
Bit  
Field  
MEM_RDATA_0  
Type  
Reset  
Description  
7-0  
R
0000 0000b Read Data from 24-Bit Memory  
Coefficient [23:16]  
130  
Copyright © 2014–2018, Texas Instruments Incorporated  
PCM1860, PCM1861, PCM1862  
PCM1863, PCM1864, PCM1865  
www.ti.com.cn  
ZHCSCB3D MARCH 2014REVISED MARCH 2018  
13.4.8 Page 1: Register 9 (address = 0x09) [reset = 0x00]  
Figure 166. Page 1: Register 9  
7
6
5
4
3
2
1
0
MEM_RDATA_1  
R-0000 0000b  
Table 117. Page 1: Register 9 Field Descriptions  
Bit  
Field  
MEM_RDATA_1  
Type  
Reset  
Description  
7-0  
R
0000 0000b Read Data from 24-Bit Memory  
Coefficient [15:8]  
13.4.9 Page 1: Register 10 (address = 0x0A) [reset = 0x00]  
Figure 167. Page 1: Register 10  
7
6
5
4
3
2
1
0
MEM_RDATA_2  
R-0000 0000b  
Table 118. Page 1: Register 10 Field Descriptions  
Bit  
Field  
MEM_RDATA_2  
Type  
Reset  
Description  
7-0  
R
0000 0000b Read Data from 24-Bit Memory  
Coefficient [7:0]  
13.4.10 Page 1: Register 11 (address = 0x0B) [reset = 0x00]  
Figure 168. Page 1: Register 11  
7
6
5
4
3
2
1
0
MEM_RDATA_  
3
RSV  
R/W-0b  
R/W-000 0000b  
Table 119. Page 1: Register 11 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
MEM_RDATA_3  
R
0b  
Read Data from 24-Bit Memory  
Reserved  
6-0  
RSV  
R/W  
000 0000b  
Reserved. Always write 000 0000b.  
Copyright © 2014–2018, Texas Instruments Incorporated  
131  
PCM1860, PCM1861, PCM1862  
PCM1863, PCM1864, PCM1865  
ZHCSCB3D MARCH 2014REVISED MARCH 2018  
www.ti.com.cn  
13.5 Page 3 Registers  
13.5.1 Page 3: Register 18 (address = 0x12) [reset =0x40]  
Figure 169. Page 3: Register 18  
7
6
5
4
3
2
1
0
RSV  
PD  
R/W-010 0000b  
R/W-0b  
Table 120. Page 3: Register 18 Field Descriptions  
Bit  
7-1  
0
Field  
RSV  
PD  
Type  
R/W  
R/W  
Reset  
010 0000b  
0b  
Description  
Reserved. Always write 010 0000b  
Oscillator Power Down Control  
0: Power up (default)  
1: Power down  
13.5.2 Page 3: Register 21 (address = 0x15) [reset = 0x01]  
Figure 170. Page 3: Register 21  
7
6
5
4
3
2
1
0
RSV  
TERM  
W-0b  
RSV  
PDZ  
W-1b  
R/W-000b  
R/W-000b  
Table 121. Page 3: Register 21 Field Descriptions  
Bit  
7-5  
4
Field  
RSV  
Type  
R/W  
W
Reset  
000b  
0b  
Description  
Reserved. Always write 000b.  
TERM  
Mic Bias Resistor Bypass (Write only)  
0: Disable (default)  
1: Enable  
3-1  
0
RSV  
PDZ  
R/W  
W
000b  
0b  
Reserved. Always write 000b.  
Mic Bias Control (Write only)  
0: Power down  
1: Power up (default)  
132  
Copyright © 2014–2018, Texas Instruments Incorporated  
PCM1860, PCM1861, PCM1862  
PCM1863, PCM1864, PCM1865  
www.ti.com.cn  
ZHCSCB3D MARCH 2014REVISED MARCH 2018  
13.6 Page 253 Registers  
13.6.1 Page 253: Register 20 (address = 0x14) [reset = 0x00]  
Figure 171. Page 253: Register 20  
7
6
5
4
3
2
1
0
PGA_ICI  
R/W-00b  
REF_ICI  
R/W-00b  
RSV  
R/W-0000b  
Table 122. Page 253: Register 20 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-6  
PGA_ICI  
R/W  
00b  
PGA Bias Current Trim  
00: 100% (default)  
01: Reserved  
10: 75%  
11: Reserved  
5-4  
3-0  
REF_ICI  
RSV  
R/W  
R/W  
00b  
Global bias current trim  
00: 100% (default)  
01: 75%  
10: Reserved  
11: Reserved  
0000b  
Reserved. Always write 0000b.  
版权 © 2014–2018, Texas Instruments Incorporated  
133  
PCM1860, PCM1861, PCM1862  
PCM1863, PCM1864, PCM1865  
ZHCSCB3D MARCH 2014REVISED MARCH 2018  
www.ti.com.cn  
14 器件和文档支持  
14.1 文档支持  
14.1.1 相关文档  
PCM186x EVM 用户指南》  
14.2 相关链接  
123 列出了快速访问链接。类别包括技术文档、支持和社区资源、工具和软件,以及立即购买的快速链接。  
123. 相关链接  
器件  
产品文件夹  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
立即订购  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
技术文档  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
工具和软件  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
支持和社区  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
PCM1860  
PCM1861  
PCM1862  
PCM1863  
PCM1864  
PCM1865  
14.3 接收文档更新通知  
要接收文档更新通知,请导航至 TI.com.cn 上的器件产品文件夹。请单击右上角的提醒我 进行注册,即可每周接收  
产品信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
14.4 社区资源  
下列链接提供到 TI 社区资源的连接。链接的内容由各个分销商按照原样提供。这些内容并不构成 TI 技术规范,  
并且不一定反映 TI 的观点;请参阅 TI 《使用条款》。  
TI E2E™ 在线社区 TI 的工程师对工程师 (E2E) 社区。此社区的创建目的在于促进工程师之间的协作。在  
e2e.ti.com 中,您可以咨询问题、分享知识、拓展思路并与同行工程师一道帮助解决问题。  
设计支持  
TI 参考设计支持 可帮助您快速查找有帮助的 E2E 论坛、设计支持工具以及技术支持的联系信息。  
14.5 商标  
E2E is a trademark of Texas Instruments.  
蓝牙 is a registered trademark of Bluetooth SIG, Inc..  
All other trademarks are the property of their respective owners.  
14.6 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
14.7 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
134  
版权 © 2014–2018, Texas Instruments Incorporated  
 
PCM1860, PCM1861, PCM1862  
PCM1863, PCM1864, PCM1865  
www.ti.com.cn  
ZHCSCB3D MARCH 2014REVISED MARCH 2018  
15 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,且  
不会对此文档进行修订。如需获取此数据表的浏览器版本,请查阅左侧的导航栏。  
版权 © 2014–2018, Texas Instruments Incorporated  
135  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
PCM1860DBT  
PCM1860DBTR  
PCM1861DBT  
PCM1861DBTR  
PCM1862DBT  
PCM1862DBTR  
PCM1863DBT  
PCM1863DBTR  
PCM1864DBT  
PCM1864DBTR  
PCM1865DBT  
PCM1865DBTR  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
DBT  
DBT  
DBT  
DBT  
DBT  
DBT  
DBT  
DBT  
DBT  
DBT  
DBT  
DBT  
30  
30  
30  
30  
30  
30  
30  
30  
30  
30  
30  
30  
60  
RoHS & Green  
NIPDAU  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
PCM1860  
2000 RoHS & Green  
60 RoHS & Green  
2000 RoHS & Green  
60 RoHS & Green  
2000 RoHS & Green  
60 RoHS & Green  
2000 RoHS & Green  
60 RoHS & Green  
2000 RoHS & Green  
60 RoHS & Green  
2000 RoHS & Green  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
PCM1860  
PCM1861  
PCM1861  
PCM1862  
PCM1862  
PCM1863  
PCM1863  
PCM1864  
PCM1864  
PCM1865  
PCM1865  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
5-Jan-2022  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
PCM1860DBTR  
PCM1861DBTR  
PCM1862DBTR  
PCM1863DBTR  
PCM1864DBTR  
PCM1865DBTR  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
DBT  
DBT  
DBT  
DBT  
DBT  
DBT  
30  
30  
30  
30  
30  
30  
2000  
2000  
2000  
2000  
2000  
2000  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
16.4  
16.4  
16.4  
16.4  
16.4  
16.4  
6.95  
6.95  
6.95  
6.95  
6.95  
6.95  
8.3  
8.3  
8.3  
8.3  
8.3  
8.3  
1.6  
1.6  
1.6  
1.6  
1.6  
1.6  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
16.0  
16.0  
16.0  
16.0  
16.0  
16.0  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
5-Jan-2022  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
PCM1860DBTR  
PCM1861DBTR  
PCM1862DBTR  
PCM1863DBTR  
PCM1864DBTR  
PCM1865DBTR  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
DBT  
DBT  
DBT  
DBT  
DBT  
DBT  
30  
30  
30  
30  
30  
30  
2000  
2000  
2000  
2000  
2000  
2000  
350.0  
350.0  
350.0  
350.0  
350.0  
350.0  
350.0  
350.0  
350.0  
350.0  
350.0  
350.0  
43.0  
43.0  
43.0  
43.0  
43.0  
43.0  
Pack Materials-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
5-Jan-2022  
TUBE  
*All dimensions are nominal  
Device  
Package Name Package Type  
Pins  
SPQ  
L (mm)  
W (mm)  
T (µm)  
B (mm)  
PCM1860DBT  
PCM1861DBT  
PCM1862DBT  
PCM1863DBT  
PCM1864DBT  
PCM1865DBT  
DBT  
DBT  
DBT  
DBT  
DBT  
DBT  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
30  
30  
30  
30  
30  
30  
60  
60  
60  
60  
60  
60  
530  
530  
530  
530  
530  
530  
10.2  
10.2  
10.2  
10.2  
10.2  
10.2  
3600  
3600  
3600  
3600  
3600  
3600  
3.5  
3.5  
3.5  
3.5  
3.5  
3.5  
Pack Materials-Page 3  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

PCM1860QDBTRQ1

具有通用前端的汽车类 103dB 2 通道硬件控制型音频 ADC | DBT | 30 | -40 to 125
TI

PCM1861

PCM186x 110dB 2ch and 4ch Audio ADCs with Universal Front End
TI

PCM1861-Q1

具有通用前端的汽车类 110dB 2 通道硬件控制型音频 ADC
TI

PCM1861DBT

PCM186x 110dB 2ch and 4ch Audio ADCs with Universal Front End
TI

PCM1861DBTR

PCM186x 110dB 2ch and 4ch Audio ADCs with Universal Front End
TI

PCM1861QDBTRQ1

具有通用前端的汽车类 110dB 2 通道硬件控制型音频 ADC | DBT | 30 | -40 to 125
TI

PCM1861_15

PCM186x 110dB 2ch and 4ch Audio ADCs with Universal Front End
TI

PCM1862

具有通用前端的 103dB、2 通道软件控制型音频 ADC
TI

PCM1862-Q1

具有通用前端的汽车类 103dB、2 通道软件控制型音频 ADC
TI

PCM1862DBT

具有通用前端的 103dB、2 通道软件控制型音频 ADC | DBT | 30 | -40 to 125
TI

PCM1862DBTR

具有通用前端的 103dB、2 通道软件控制型音频 ADC | DBT | 30 | -40 to 125
TI

PCM1862QDBTRQ1

具有通用前端的汽车类 103dB、2 通道软件控制型音频 ADC | DBT | 30 | -40 to 125
TI