PCM3120-Q1 [TI]

汽车类、立体声、106dB SNR、768kHz、低功耗、软件控制的音频 ADC;
PCM3120-Q1
型号: PCM3120-Q1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

汽车类、立体声、106dB SNR、768kHz、低功耗、软件控制的音频 ADC

文件: 总122页 (文件大小:5665K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PCM3120-Q1  
ZHCSPD4A APRIL 2022 REVISED SEPTEMBER 2022  
PCM3120-Q1 2 通道、768 kHzBurr-BrownTM ADC  
1 特性  
3 说明  
• 多通道高性ADC  
PCM3120-Q1 是一款高性能 Burr-Brown音频模数转  
换器 (ADC)最多可支持对脉冲密度调制 (PDM) 麦克  
风输入的两个模拟通道或四个数字通道进行同步采样。  
该器件支持线路和麦克风输入并能够实现单端和差分  
输入配置。该器件集成了可编程通道增益、数字音量控  
制、可编程麦克风偏置电压、锁相环 (PLL)、可编程高  
通滤波器 (HPF)、双二阶滤波器、低延迟滤波器模式,  
并可实现高达 768kHz 的采样率。该器件支持时分多路  
复用 (TDM)I2S 或左对齐 (LJ) 音频格式并可通过  
I2C 接口进行控制。这些集成的高性能特性以及采用  
3.3V 1.8 V 单电源供电的功能使该器件非常适用  
于远场麦克风录音应用中空间受限的音频系统。  
2 通道模拟麦克风输入或线路输入  
4 通道数PDM 麦克风  
– 多2 个模拟和多2 个数字麦克风通道  
ADC 线路和麦克风差分输入性能:  
– 动态范(DR)106 dB  
THD+N-95 dB  
ADC 通道相加模式DR 性能:  
109 dB2 通道相加  
ADC 输入电压:  
– 差2VRMS 满量程输入  
– 单1VRMS 满量程输入  
ADC 采样(fS) = 8 kHz 768 kHz  
• 可编程通道设置:  
PCM3120-Q1 额定工作温度范围为 –40°C 至  
+125°C并且采20 WQFN 封装。  
– 通道增益0 dB 42 dB0.5 dB  
– 数字音量控制100 dB 27 dB  
– 增益校准分辨率0.1 dB  
– 相位校准分辨率163 ns  
• 可编程麦克风偏置或电源电压生成  
• 低延迟信号处理滤波器选择  
• 可编HPF 和双二阶数字滤波器  
• 自动增益控制(AGC)  
器件信息  
器件型(1)  
PCM3120-Q1  
封装尺寸标称值)  
封装  
3.00mm × 3.00mm间距  
0.5mm  
WQFN (20)  
(1) 如需了解所有可用封装请参阅数据表末尾的封装选项附录。  
Digital PDM Microphones  
Interface 4-channel  
PLL and Clock  
Generation  
IN1P  
IN1M  
GPIO1  
• 话音激活检(VAD)  
I2C 控制接口  
• 集成高性能音PLL  
• 自动时钟分频器设置配置  
• 音频串行数据接口:  
FSYNC  
BCLK  
Stereo ADC  
with Front-End  
PGA  
Programmable  
Digital Filters,  
Biquads, AGC  
Audio Serial  
Interface  
IN2P_GPI1  
(TDM, I2S, LJ)  
SDOUT  
IN2M_GPO1  
– 格式TDMI2S 或左对(LJ)  
– 字长16 位、20 位、24 32 位  
– 主/从接口  
SDA  
SCL  
MICBIAS_GPI2  
VREF  
MICBIAS, Regulators and  
Voltage Reference  
I2C Control Interface  
• 单电源运行3.3V 1.8V  
I/O 电源运行3.3V 1.8V  
1.8V AVDD 电源电压下的功耗:  
Thermal Pad  
(VSS)  
AVDD  
DREG  
IOVDD  
AREG  
简化版方框图  
48 kHz 采样率下9.5 mW/通道  
2 应用  
汽车主动噪声消除  
汽车音响主机  
后座娱乐系统  
数字驾驶舱处理单元  
远程信息处理控制单元  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SBASAH0  
 
 
 
 
PCM3120-Q1  
ZHCSPD4A APRIL 2022 REVISED SEPTEMBER 2022  
www.ti.com.cn  
Table of Contents  
8.1 Overview...................................................................17  
8.2 Functional Block Diagram.........................................18  
8.3 Feature Description...................................................18  
8.4 Device Functional Modes..........................................56  
8.5 Programming............................................................ 57  
8.6 Register Maps...........................................................60  
9 Application and Implementation..................................98  
9.1 Application Information............................................. 98  
9.2 Typical Applications.................................................. 98  
9.3 What to Do and What Not to Do............................. 105  
10 Power Supply Recommendations............................105  
11 Layout.........................................................................108  
11.1 Layout Guidelines................................................. 108  
11.2 Layout Example.................................................... 108  
12 Device and Documentation Support........................109  
12.1 Documentation Support........................................ 109  
12.2 接收文档更新通知................................................. 109  
12.3 支持资源................................................................109  
12.4 Trademarks...........................................................109  
12.5 Electrostatic Discharge Caution............................109  
12.6 术语表................................................................... 109  
13 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Device Comparison Table...............................................3  
6 Pin Configuration and Functions...................................4  
7 Specifications.................................................................. 5  
7.1 Absolute Maximum Ratings........................................ 5  
7.2 ESD Ratings............................................................... 5  
7.3 Recommended Operating Conditions.........................6  
Thermal Information..........................................................6  
7.4 Electrical Characteristics.............................................7  
7.5 Timing Requirements: I2C Interface..........................10  
7.6 Switching Characteristics: I2C Interface....................11  
7.7 Timing Requirements: TDM, I2S or LJ Interface....... 11  
7.8 Switching Characteristics: TDM, I2S or LJ  
Interface.......................................................................11  
Timing Requirements: PDM Digital Microphone  
Interface.......................................................................11  
7.9 Switching Characteristics: PDM Digial  
Microphone Interface...................................................12  
7.10 Timing Diagrams.....................................................12  
7.11 Typical Characteristics............................................ 14  
8 Detailed Description......................................................17  
Information.................................................................. 110  
13.1 Tape and Reel Information....................................114  
4 Revision History  
以前版本的页码可能与当前版本的页码不同  
Changes from Revision * (April 2022) to Revision A (September 2022)  
Page  
• 将文档状态从预告信息更改为量产数据...............................................................................................................1  
Copyright © 2022 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: PCM3120-Q1  
 
PCM3120-Q1  
ZHCSPD4A APRIL 2022 REVISED SEPTEMBER 2022  
www.ti.com.cn  
5 Device Comparison Table  
FEATURE  
Control interface  
PCM1821-Q1  
PCM1820-Q1  
Pin control  
PCM1822-Q1  
PCM3120-Q1  
PCM5120-Q1  
I2C  
PCM6120-Q1  
Digital audio serial interface  
Audio analog channel  
TDM or I2S  
TDM or I2S or left-justified (LJ)  
2
Digital microphone channel  
Not available  
N/A  
4
Programmable MICBIAS  
voltage  
Yes  
Dynamic range (DRE  
disabled)  
106 dB  
113 dB  
111 dB  
106 dB  
108 dB  
113 dB  
Dynamic range (DRE enabled)  
ADC SNR with DRE  
Input Voltage  
Not available  
N/A  
123 dB  
123 dB  
117 dB  
117 dB  
1 Vrms  
Not available  
N/A  
120 dB  
120 dB  
2 Vrms  
123 dB  
123 dB  
2 Vrms  
Input Type  
Differential/Single-  
Ended  
Differential  
Differential/Single-Ended  
Input impedance  
Compatibility  
10 kΩ  
2.5 kΩ  
2.5 kΩ, 10 kΩ, 20 kΩ  
Pin-to-pin, package, drop-in replacements of each other  
Pin-to-pin, package, and control registers compatible; drop-in  
replacements of each other  
Package  
WQFN (RTE), 20-pin, 3.00 mm × 3.00 mm (0.5-mm pitch)  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: PCM3120-Q1  
 
PCM3120-Q1  
ZHCSPD4A APRIL 2022 REVISED SEPTEMBER 2022  
www.ti.com.cn  
6 Pin Configuration and Functions  
20  
VSS  
VSS  
15  
IN1P  
IN1M  
1
14  
13  
12  
11  
DREG  
SCL  
2
3
4
Thermal Pad (VSS)  
IN2P_GPI1  
IN2M_GPO1  
SDA  
GPIO1  
5
VSS  
VSS  
10  
Not to scale  
6-1. RTE Package, 20-Pin WQFN With Exposed Thermal Pad, Top View  
6-1. Pin Functions  
PIN  
TYPE  
DESCRIPTION  
NO.  
1
NAME  
IN1P  
Analog input  
Analog input  
Analog input 1P pin.  
Analog input 1M pin.  
2
IN1M  
Analog input 2P pin or general-purpose digital input 1 (multipurpose functions  
such as digital microphones data, PLL input clock source, and so forth).  
3
4
IN2P_GPI1  
Analog input/digital input  
Analog input 2M pin or general-purpose digital output 1 (multipurpose functions  
such as digital microphone clock, interrupt, and so forth).  
IN2M_GPO1 Analog input/digital output  
Device ground internally shorted to thermal pad. Short this package corner pin  
directly to the board ground plane. See the package drawings at the end of this  
document for corner pin dimensions.  
5
VSS  
Ground supply  
6
7
8
9
SDOUT  
BCLK  
Digital output  
Digital I/O  
Audio serial data interface bus output.  
Audio serial data interface bus bit clock.  
FSYNC  
IOVDD  
Digital I/O  
Audio serial data interface bus frame synchronization signal.  
Digital I/O power supply (1.8 V or 3.3 V, nominal).  
Digital supply  
Device ground internally shorted to thermal pad. Short this package corner pin  
directly to the board ground plane. See the package drawings at the end of this  
document for corner pin dimensions.  
10  
11  
VSS  
Ground supply  
Digital I/O  
General-purpose digital input/output 1 (multipurpose functions such as digital  
microphones clock or data, PLL input clock source, interrupt, and so forth).  
GPIO1  
12  
13  
SDA  
SCL  
Digital I/O  
Data pin for I2C control bus.  
Clock pin for I2C control bus.  
Digital input  
Digital regulator output voltage for digital core supply (1.5 V, nominal). Connect  
a 10-µF and 0.1-µF low ESR capacitor in parallel to device ground (VSS).  
14  
DREG  
Digital supply  
Device ground internally shorted to thermal pad. Short this package corner pin  
directly to the board ground plane. See the package drawings at the end of this  
document for corner pin dimensions.  
15  
16  
VSS  
Ground supply  
Analog supply  
AVDD  
Analog power (1.8 V or 3.3 V, nominal).  
Copyright © 2022 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: PCM3120-Q1  
 
PCM3120-Q1  
ZHCSPD4A APRIL 2022 REVISED SEPTEMBER 2022  
www.ti.com.cn  
6-1. Pin Functions (continued)  
PIN  
TYPE  
DESCRIPTION  
NO.  
NAME  
Analog on-chip regulator output voltage for analog supply (1.8 V, nominal) or  
external analog power (1.8 V, nominal). Connect a 10-µF and 0.1-µF low ESR  
capacitor in parallel to analog ground (AVSS).  
17  
AREG  
Analog supply  
Analog  
Analog reference voltage filter output. Connect a 1-µF capacitor to analog  
ground (AVSS).  
18  
19  
VREF  
MICBIAS output or general-purpose digital input 2 (multipurpose functions such  
MICBIAS_GPI2 Analog output/digital input as digital microphones data, PLL input clock source, and so forth). If used as  
MICBIAS output, then connect a 1-µF capacitor to analog ground (AVSS).  
Device ground internally shorted to thermal pad. Short this package corner pin  
20  
VSS  
Ground supply  
Ground supply  
directly to the board ground plane. See the package drawings at the end of this  
document for corner pin dimensions.  
Thermal Pad  
(VSS)  
Thermal pad shorted to internal device ground. Short the thermal pad directly to  
the board ground plane.  
Thermal Pad  
7 Specifications  
7.1 Absolute Maximum Ratings  
over the operating ambient temperature range (unless otherwise noted)(1)  
MIN  
0.3  
0.3  
0.3  
0.3  
0.3  
MAX  
UNIT  
AVDD to AVSS  
3.9  
2.0  
Supply voltage  
AREG to AVSS  
V
IOVDD to VSS (thermal pad)  
AVSS to VSS (thermal pad)  
Analog input pins voltage to AVSS  
3.9  
Ground voltage differences  
Analog input voltage  
0.3  
V
V
AVDD + 0.3  
Digital input except IN2P_GPI1 and MICBIAS_GPI2 pins  
voltage to VSS (thermal pad)  
IOVDD + 0.3  
AVDD + 0.3  
0.3  
0.3  
Digital input voltage  
Temperature  
V
Digital input IN2P_GPI1 and MICBIAS_GPI2 pins  
voltage to VSS (thermal pad)  
Operating ambient, TA  
Junction, TJ  
125  
150  
150  
40  
40  
65  
°C  
Storage, Tstg  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under  
Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device  
reliability.  
7.2 ESD Ratings  
VALUE  
±2000  
±500  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
V(ESD)  
Electrostatic discharge  
V
Charged-device model (CDM), per JEDEC specification JESD22-C101(2)  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: PCM3120-Q1  
 
 
 
 
 
 
PCM3120-Q1  
ZHCSPD4A APRIL 2022 REVISED SEPTEMBER 2022  
www.ti.com.cn  
7.3 Recommended Operating Conditions  
MIN  
NOM  
MAX  
UNIT  
POWER  
Analog supply voltage AVDD to AVSS (AREG is generated using onchip regulator):  
AVDD 3.3-V operation  
3.0  
1.7  
3.3  
1.8  
3.6  
1.9  
AVDD,  
V
V
AREG(1)  
Analog supply voltage AVDD and AREG to AVSS (AREG internal regulator is  
shutdown): AVDD 1.8-V operation  
IO supply voltage to VSS (thermal pad): IOVDD 3.3-V operation  
IOVDD  
3.0  
3.3  
1.8  
3.6  
IO supply voltage to VSS (thermal pad): IOVDD 1.8-V operation  
1.65  
1.95  
INPUTS  
Analog input pins voltage to AVSS  
0
0
0
AVDD  
IOVDD  
AVDD  
V
V
V
Digital input except IN2P_GPI1 and MICBIAS_GPI2 pins voltage to VSS (thermal pad)  
Digital input IN2P_GPI1 and MICBIAS_GPI2 pins voltage to VSS (thermal pad)  
TEMPERATURE  
TA  
Operating ambient temperature  
125  
°C  
40  
OTHERS  
GPIOx or GPIx (used as MCLK input) clock frequency  
36.864  
400  
MHz  
pF  
SCL and SDA bus capacitance for I2C interface supports standard-mode and fast-  
mode  
Cb  
CL  
SCL and SDA bus capacitance for I2C interface supports fast-mode plus  
Digital output load capacitance  
550  
50  
20  
pF  
(1) AVSS and VSS (thermal pad): all ground pins must be tied together and must not differ in voltage by more than 0.2 V.  
Thermal Information  
PCM3120-Q1  
THERMAL METRIC(1)  
RTE (WQFN)  
20 PINS  
55.9  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
33.1  
23.4  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
0.6  
ψJT  
23.3  
ψJB  
RθJC(bot)  
16.7  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
Copyright © 2022 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: PCM3120-Q1  
 
 
 
 
PCM3120-Q1  
ZHCSPD4A APRIL 2022 REVISED SEPTEMBER 2022  
www.ti.com.cn  
7.4 Electrical Characteristics  
at TA = 25°C, AVDD = 3.3 V, IOVDD = 3.3 V, fIN = 1-kHz sinusoidal signal, fS = 48 kHz, 32-bit audio data, BCLK = 256 × fS,  
TDM slave mode, and PLL on (unless otherwise noted)  
PARAMETER  
ADC CONFIGURATION  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Input pins INxP or INxM, 2.5-kinput impedance  
2.5  
10  
20  
selection  
Input pins INxP or INxM, 10-kinput impedance  
selection  
AC input impedance  
Channel gain range  
kΩ  
Input pins INxP or INxM, 20-kinput impednace  
selection  
Programmable range with 0.5-dB steps  
0
42  
dB  
ADC PERFORMANCE FOR LINE/MICROPHONE INPUT RECORDING : AVDD 3.3-V OPERATION  
Differential input full-scale  
AC-coupled input  
2
1
VRMS  
VRMS  
AC signal voltage  
Single-ended input full-  
AC-coupled input  
scale AC signal voltage  
IN1 differential input selected and AC signal shorted to  
100  
106  
100  
107  
100  
ground, 10-kinput impedance selection, 0-dB channel  
gain  
Signal-to-noise ratio, A-  
SNR  
dB  
dB  
dB  
weighted(1) (2)  
IN1 differential input selected and AC signal shorted to  
ground, 10-kinput impedance selection, 12-dB channel  
gain  
IN1 differential input selected and 60-dB full-scale AC  
signal input, 10-kinput impedance selection, 0-dB  
channel gain  
Dynamic range, A-  
DR  
weighted(2)  
IN1 differential input selected and 72-dB full-scale AC  
signal input, 10-kinput impedance selection, 12-dB  
channel gain  
IN1 differential input selected and 1-dB full-scale AC  
signal input, 10-kinput impedance selection, 0-dB  
95  
93  
80  
Total harmonic distortion(2)  
channel gain  
THD+N  
(3)  
IN1 differential input selected and 13-dB full-scale AC  
signal input, 10-kinput impedance selection, 12-dB  
channel gain  
ADC PERFORMANCE FOR LINE/MICROPHONE INPUT RECORDING : AVDD 1.8-V OPERATION  
Differential input full-scale  
AC-coupled Input  
1
VRMS  
VRMS  
AC signal voltage  
Single-ended input full-  
AC-coupled Input  
0.5  
scale AC signal voltage  
IN1 differential input selected and AC signal shorted to  
Signal-to-noise ratio, A-  
SNR  
DR  
100  
101  
dB  
dB  
dB  
ground, 10-kinput impedance selection, 0-dB channel  
weighted(1) (2)  
gain  
IN1 differential input selected and 60-dB full-scale AC  
signal input, 10-kinput impedance selection, 0-dB  
channel gain  
Dynamic range, A-  
weighted(2)  
IN1 differential input selected and 2-dB full-scale AC  
signal Input, 10-kinput impedance selection, 0 dB  
channel gain  
Total harmonic distortion(2)  
THD+N  
90  
(3)  
ADC OTHER PARAMETERS  
Digital volume control  
Programmable 0.5-dB steps  
Programmable  
27  
768  
32  
dB  
100  
7.35  
16  
range  
Output data sample rate  
kHz  
Bits  
Output data sample word  
length  
Programmable  
First-order IIR filter with programmable coefficients,  
3-dB point (default setting)  
Digital high-pass filter cutoff  
frequency  
12  
Hz  
1-dB full-scale AC-signal input to non measurement  
channel  
Interchannel isolation  
dB  
dB  
124  
Interchannel gain mismatch  
0.1  
6-dB full-scale AC-signal input and 0-dB channel gain  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: PCM3120-Q1  
 
PCM3120-Q1  
ZHCSPD4A APRIL 2022 REVISED SEPTEMBER 2022  
www.ti.com.cn  
at TA = 25°C, AVDD = 3.3 V, IOVDD = 3.3 V, fIN = 1-kHz sinusoidal signal, fS = 48 kHz, 32-bit audio data, BCLK = 256 × fS,  
TDM slave mode, and PLL on (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
0-dB channel gain, across temperature range 40°C to  
125°C  
Gain drift(4)  
36.8  
ppm/°C  
Interchannel phase  
mismatch  
1-kHz sinusoidal signal  
0.02  
0.0005  
102  
Degrees  
Degrees/°C  
dB  
1-kHz sinusoidal signal, across temperature range –  
40°C to 125°C  
Phase drift(5)  
Power-supply rejection  
ratio  
100-mVPP, 1-kHz sinusoidal signal on AVDD, differential  
input selected, 0-dB channel gain  
PSRR  
CMRR  
Differential microphone input selected, 0-dB channel  
gain, 100-mVPP, 1-kHz signal on both pins and measure  
level at output  
Common-mode rejection  
ratio  
60  
dB  
µVRMS  
V
MICROPHONE BIAS  
MICBIAS noise  
BW = 20 Hz to 20 kHz, A-weighted, 1-μF capacitor  
between MICBIAS and AVSS  
2.1  
MICBIAS programmed to VREF and VREF programmed  
to either 2.75 V, 2.5 V, or 1.375 V  
VREF  
MICBIAS programmed to VREF × 1.096 and VREF  
programmed to either 2.75 V, 2.5 V, or 1.375 V  
VREF ×  
1.096  
MICBIAS voltage  
Bypass to AVDD with 5-mA load  
AVDD 0.2  
MICBIAS current drive  
5
1
mA  
%
MICBIAS programmed to either VREF or VREF ×  
1.096, measured up to max load  
MICBIAS load regulation  
0
0.6  
MICBIAS over current  
protection threshold  
6.1  
mA  
DIGITAL I/O  
All digital pins except IN2P_GPI1 and MICBIAS_GPI2,  
SDA and SCL, IOVDD 1.8-V operation  
0.35 ×  
IOVDD  
0.3  
0.3  
Low-level digital input logic  
voltage threshold  
VIL  
V
V
V
All digital pins except IN2P_GPI1 and MICBIAS_GPI2,  
SDA and SCL, IOVDD 3.3-V operation  
0.8  
IOVDD + 0.3  
IOVDD + 0.3  
0.45  
All digital pins except IN2P_GPI1 and MICBIAS_GPI2,  
SDA and SCL, IOVDD 1.8-V operation  
0.65 ×  
IOVDD  
High-level digital input logic  
voltage threshold  
VIH  
All digital pins except IN2P_GPI1 and MICBIAS_GPI2,  
SDA and SCL, IOVDD 3.3-V operation  
2
All digital pins except IN2M_GPO1, SDA and SCL, IOL  
2 mA, IOVDD 1.8-V operation  
=
=
=
=
Low-level digital output  
voltage  
VOL  
All digital pins except IN2M_GPO1, SDA and SCL, IOL  
2 mA, IOVDD 3.3-V operation  
0.4  
All digital pins except IN2M_GPO1, SDA and SCL, IOH  
2 mA, IOVDD 1.8-V operation  
IOVDD –  
0.45  
High-level digital output  
voltage  
VOH  
V
All digital pins except IN2M_GPO1, SDA and SCL, IOH  
2 mA, IOVDD 3.3-V operation  
2.4  
0.5  
Low-level digital input logic  
voltage threshold  
VIL(I2C)  
SDA and SCL  
0.3 x IOVDD  
IOVDD + 0.5  
0.4  
V
V
V
V
High-level digital input logic  
voltage threshold  
VIH(I2C)  
VOL1(I2C)  
VOL2(I2C)  
SDA and SCL  
0.7 x IOVDD  
Low-level digital output  
voltage  
SDA, IOL(I2C) = 3 mA, IOVDD > 2 V  
SDA, IOL(I2C) = 2 mA, IOVDD 2 V  
Low-level digital output  
voltage  
0.2 x IOVDD  
SDA, VOL(I2C) = 0.4 V, standard-mode or fast-mode  
SDA, VOL(I2C) = 0.4 V, fast-mode plus  
3
Low-level digital output  
current  
IOL(I2C)  
mA  
20  
Input logic-high leakage for All digital pins except IN2P_GPI1 and MICBIAS_GPI2  
digital inputs pins, input = IOVDD  
IIH  
IIL  
0.1  
0.1  
5
5
µA  
µA  
5  
5  
Input logic-low leakage for All digital pins except IN2P_GPI1 and MICBIAS_GPI2  
digital inputs pins, input = 0 V  
Copyright © 2022 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: PCM3120-Q1  
PCM3120-Q1  
ZHCSPD4A APRIL 2022 REVISED SEPTEMBER 2022  
www.ti.com.cn  
at TA = 25°C, AVDD = 3.3 V, IOVDD = 3.3 V, fIN = 1-kHz sinusoidal signal, fS = 48 kHz, 32-bit audio data, BCLK = 256 × fS,  
TDM slave mode, and PLL on (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
IN2P_GPI1 and MICBIAS_GPI2 digital pins, AVDD 1.8-V  
operation  
0.35 × AVDD  
0.3  
Low-level digital input logic  
voltage threshold  
VIL(GPIx)  
VIH(GPIx)  
VOL(GPOx)  
V
IN2P_GPI1 and MICBIAS_GPI2 digital pins, AVDD 3.3-V  
operation  
0.8  
AVDD + 0.3  
AVDD + 0.3  
0.45  
0.3  
0.65 × AVDD  
2
IN2P_GPI1 and MICBIAS_GPI2 digital pins, AVDD 1.8-V  
operation  
High-level digital input logic  
voltage threshold  
V
V
V
IN2P_GPI1 and MICBIAS_GPI2 digital pins, AVDD 3.3-V  
operation  
IN2M_GPO2 digital pin, IOL = 2 mA, AVDD 1.8-V  
operation  
Low-level digital output  
voltage  
IN2M_GPO2 digital pin, IOL = 2 mA, AVDD 3.3-V  
operation  
0.4  
IN2M_GPO2 digital pin, IOH = 2 mA, AVDD 1.8-V  
operation  
AVDD –  
0.45  
High-level digital output  
voltage  
VOH(GPOx)  
IN2M_GPO2 digital pin, IOH = 2 mA, AVDD 3.3-V  
operation  
2.4  
5  
5  
Input logic-high leakage for IN2P_GPI1 and MICBIAS_GPI2 digital pins, input =  
IIH(GPIx)  
IIL(GPIx)  
CIN  
0.1  
0.1  
5
5
5
µA  
µA  
pF  
digital inputs  
AVDD  
Input logic-high leakage for  
digital inputs  
IN2P_GPI1 and MICBIAS_GPI2 digital pins, input = 0 V  
Input capacitance for digital  
inputs  
All digital pins  
Pulldown resistance for  
digital I/O pins when  
asserted on  
RPD  
20  
kΩ  
TYPICAL SUPPLY CURRENT CONSUMPTION  
All external clocks stopped, AVDD = 3.3 V, internal  
IAVDD  
5
AREG  
Current consumption in  
sleep mode (software  
shutdown mode)  
All external clocks stopped, AVDD = 1.8 V, external  
AREG supply (AREG shorted to AVDD)  
IAVDD  
29  
µA  
IIOVDD  
IIOVDD  
IAVDD  
All external clocks stopped, IOVDD = 3.3 V  
All external clocks stopped, IOVDD = 1.8 V  
AVDD = 3.3 V, internal AREG  
0.5  
0.5  
11.1  
Current consumption with  
ADC 2-channel operating  
at fS 48-kHz, PLL off  
AVDD = 1.8 V, external AREG supply (AREG shorted to  
AVDD)  
IAVDD  
10.5  
mA  
mA  
mA  
IIOVDD  
IIOVDD  
IAVDD  
IOVDD = 3.3 V  
0.1  
0.05  
11.3  
and BCLK = 512 × fS  
IOVDD = 1.8 V  
AVDD = 3.3 V, internal AREG  
Current consumption with  
ADC 2-channel operating  
at fS 16-kHz, PLL on and  
BCLK = 256 × fS  
AVDD = 1.8 V, external AREG supply (AREG shorted to  
AVDD)  
IAVDD  
10.6  
IIOVDD  
IIOVDD  
IAVDD  
IOVDD = 3.3 V  
0.05  
0.02  
12.2  
IOVDD = 1.8 V  
AVDD = 3.3 V, internal AREG  
Current consumption with  
ADC 2-channel operating  
at fS 48-kHz, PLL on  
AVDD = 1.8 V, external AREG supply (AREG shorted to  
AVDD)  
IAVDD  
11.6  
IIOVDD  
IIOVDD  
IOVDD = 3.3 V  
IOVDD = 1.8 V  
0.1  
and BCLK = 256 × fS  
0.05  
(1) Ratio of output level with 1-kHz full-scale sine-wave input, to the output level with the AC signal input shorted to ground, measured A-  
weighted over a 20-Hz to 20-kHz bandwidth using an audio analyzer.  
(2) All performance measurements done with 20-kHz low-pass filter and, where noted, A-weighted filter. Failure to use such a filter may  
result in higher THD and lower SNR and dynamic range readings than shown in the Electrical Characteristics. The low-pass filter  
removes out-of-band noise, which, although not audible, may affect dynamic specification values.  
(3) For best distortion performance, use input AC-coupling capacitors with low-voltage coefficient.  
(4) Gain drift = gain variation (in temperature range) / typical gain value (gain at room temperature) / temperature range × 106 measured  
with gain in linear scale.  
(5) Phase drift = phase deviation (in temperature range) / (temperature range).  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: PCM3120-Q1  
 
 
 
 
 
PCM3120-Q1  
ZHCSPD4A APRIL 2022 REVISED SEPTEMBER 2022  
www.ti.com.cn  
7.5 Timing Requirements: I2C Interface  
at TA = 25°C, IOVDD = 3.3 V or 1.8 V (unless otherwise noted); see Figure 7-1 for timing diagram  
MIN  
NOM  
MAX  
UNIT  
STANDARD-MODE  
fSCL  
SCL clock frequency  
0
4
100  
kHz  
Hold time (repeated) START condition.  
After this period, the first clock pulse is generated.  
tHD;STA  
μs  
tLOW  
Low period of the SCL clock  
High period of the SCL clock  
Setup time for a repeated START condition  
Data hold time  
4.7  
4
μs  
μs  
μs  
μs  
ns  
tHIGH  
tSU;STA  
tHD;DAT  
tSU;DAT  
tr  
4.7  
0
3.45  
Data setup time  
250  
SDA and SCL rise time  
1000  
300  
ns  
tf  
SDA and SCL fall time  
ns  
tSU;STO  
tBUF  
Setup time for STOP condition  
Bus free time between a STOP and START condition  
4
μs  
μs  
4.7  
FAST-MODE  
fSCL  
SCL clock frequency  
0
400  
kHz  
Hold time (repeated) START condition.  
After this period, the first clock pulse is generated.  
tHD;STA  
0.6  
μs  
tLOW  
Low period of the SCL clock  
High period of the SCL clock  
Setup time for a repeated START condition  
Data hold time  
1.3  
0.6  
0.6  
0
μs  
μs  
μs  
μs  
ns  
tHIGH  
tSU;STA  
tHD;DAT  
tSU;DAT  
tr  
0.9  
Data setup time  
100  
20  
SDA and SCL rise time  
300  
300  
ns  
20 × (IOVDD / 5.5  
V)  
tf  
SDA and SCL fall time  
ns  
tSU;STO  
Setup time for STOP condition  
0.6  
1.3  
μs  
μs  
tBUF  
Bus free time between a STOP and START condition  
FAST-MODE PLUS  
fSCL  
SCL clock frequency  
0
1000  
kHz  
Hold time (repeated) START condition.  
After this period, the first clock pulse is generated.  
tHD;STA  
0.26  
μs  
tLOW  
Low period of the SCL clock  
High period of the SCL clock  
Setup time for a repeated START condition  
Data hold time  
0.5  
0.26  
0.26  
0
μs  
μs  
μs  
μs  
ns  
tHIGH  
tSU;STA  
tHD;DAT  
tSU;DAT  
tr  
Data setup time  
50  
SDA and SCL rise time  
120  
120  
ns  
20 × (IOVDD / 5.5  
V)  
tf  
SDA and SCL fall time  
ns  
tSU;STO  
tBUF  
Setup time for STOP condition  
0.26  
0.5  
μs  
μs  
Bus free time between a STOP and START condition  
Copyright © 2022 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: PCM3120-Q1  
 
PCM3120-Q1  
ZHCSPD4A APRIL 2022 REVISED SEPTEMBER 2022  
www.ti.com.cn  
7.6 Switching Characteristics: I2C Interface  
at TA = 25°C, IOVDD = 3.3 V or 1.8 V (unless otherwise noted); see Figure 7-1 for timing diagram  
PARAMETER  
TEST CONDITIONS  
MIN  
250  
250  
TYP  
MAX  
1250  
850  
UNIT  
Standard-mode  
td(SDA)  
SCL to SDA delay  
Fast-mode  
ns  
Fast-mode plus  
400  
7.7 Timing Requirements: TDM, I2S or LJ Interface  
at TA = 25°C, IOVDD = 3.3 V or 1.8 V and 20-pF load on all outputs (unless otherwise noted); see 7-2 for timing diagram  
MIN  
40  
25  
25  
8
NOM  
MAX  
UNIT  
t(BCLK)  
BCLK period  
ns  
tH(BCLK)  
tL(BCLK)  
tSU(FSYNC)  
tHLD(FSYNC)  
tr(BCLK)  
BCLK high pulse duration (1)  
BCLK low pulse duration (1)  
FSYNC setup time  
FSYNC hold time  
BCLK rise time  
ns  
ns  
ns  
8
ns  
10% - 90% rise time(2)  
90% - 10% fall time(2)  
10  
10  
ns  
tf(BCLK)  
BCLK fall time  
ns  
(1) The BCLK minimum high or low pulse duration can be relaxed to 14 ns (to meet the timing specifications), if the SDOUT data line is  
latched on the same BCLK edge polarity as the edge used by the device to transmit SDOUT data.  
(2) The BCLK maximum rise and fall time can be relaxed to 13 ns if the BCLK frequency used in the system is below 20 MHz. Relaxing  
the BCLK rise and fall time can cause noise to increase because of higher clock jitter.  
7.8 Switching Characteristics: TDM, I2S or LJ Interface  
at TA = 25°C, IOVDD = 3.3 V or 1.8 V and 20-pF load on all outputs (unless otherwise noted); see 7-2 for timing diagram  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
td(SDOUT-BCLK)  
td(SDOUT-FSYNC)  
BCLK to SDOUT delay  
50% of BCLK to 50% of SDOUT  
3
18  
ns  
FSYNC to SDOUT delay in TDM  
or LJ mode (for MSB data with  
TX_OFFSET = 0)  
50% of FSYNC to 50% of  
SDOUT  
18  
ns  
BCLK output clock frequency:  
master mode (1)  
f(BCLK)  
24.576  
MHz  
ns  
BCLK high pulse duration: master  
mode  
tH(BCLK)  
tL(BCLK)  
td(FSYNC)  
14  
14  
3
BCLK low pulse duration: master  
mode  
ns  
BCLK to FSYNC delay: master  
mode  
50% of BCLK to 50% of FSYNC  
18  
ns  
tr(BCLK)  
tf(BCLK)  
BCLK rise time: master mode  
BCLK fall time: master mode  
10% - 90% rise time  
90% - 10% fall time  
8
8
ns  
ns  
(1) The BCLK output clock frequency must be lower than 18.5 MHz (to meet the timing specifications), if the SDOUT data line is latched  
on the opposite BCLK edge polarity than the edge used by the device to transmit SDOUT data.  
Timing Requirements: PDM Digital Microphone Interface  
at TA = 25°C, IOVDD = 3.3 V or 1.8 V and 20-pF load on all outputs (unless otherwise noted); see Figure 7-3 for timing  
diagram  
MIN  
30  
0
NOM  
MAX  
UNIT  
ns  
tSU(PDMDINx)  
tHLD(PDMDINx)  
PDMDINx setup time  
PDMDINx hold time  
ns  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: PCM3120-Q1  
 
 
 
 
 
 
 
PCM3120-Q1  
ZHCSPD4A APRIL 2022 REVISED SEPTEMBER 2022  
www.ti.com.cn  
7.9 Switching Characteristics: PDM Digial Microphone Interface  
at TA = 25°C, IOVDD = 3.3 V or 1.8 V and 20-pF load on all outputs (unless otherwise noted); see Figure 7-3 for timing  
diagram  
PARAMETER  
TEST CONDITIONS  
MIN  
0.768  
72  
TYP  
MAX  
UNIT  
MHz  
ns  
f(PDMCLK)  
tH(PDMCLK)  
tL(PDMCLK)  
tr(PDMCLK)  
tf(PDMCLK)  
PDMCLK clock frequency  
PDMCLK high pulse duration  
PDMCLK low pulse duration  
PDMCLK rise time  
6.144  
72  
ns  
10% - 90% rise time  
18  
18  
ns  
PDMCLK fall time  
90% - 10% fall time  
ns  
7.10 Timing Diagrams  
SDA  
tBUF  
tHD;STA  
tLOW  
tr  
td(SDA)  
SCL  
tHD;STA  
tHD;DAT  
tHIGH  
tSU;DAT  
tSU;STA  
tSU;STO  
STO  
STA  
tf  
STA  
STO  
7-1. I2C Interface Timing Diagram  
FSYNC  
tSU(FSYNC)  
tHLD(FSYNC)  
t(BCLK)  
tL(BCLK)  
BCLK  
tH(BCLK)  
tr(BCLK)  
tf(BCLK)  
td(FSYNC)  
td(SDOUT-BCLK)  
td(SDOUT-FSYNC)  
SDOUT  
7-2. TDM (With BCLK_POL = 1), I2S, and LJ Interface Timing Diagram  
Copyright © 2022 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: PCM3120-Q1  
 
 
 
 
PCM3120-Q1  
ZHCSPD4A APRIL 2022 REVISED SEPTEMBER 2022  
www.ti.com.cn  
tSU(PDMDINx)  
tHLD(PDMDINx) tSU(PDMDINx)  
tHLD(PDMDINx)  
tH(PDMCLK)  
tL(PDMCLK)  
PDMCLK  
PDMDINx  
t(PDMCLK)  
tf(PDMCLK)  
tr(PDMCLK)  
Falling Edge Captured  
Rising Edge Captured  
7-3. PDM Digital Microphone Interface Timing Diagram  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: PCM3120-Q1  
 
PCM3120-Q1  
ZHCSPD4A APRIL 2022 REVISED SEPTEMBER 2022  
www.ti.com.cn  
7.11 Typical Characteristics  
at TA = 25°C, AVDD = 3.3 V, IOVDD = 3.3 V, fIN = 1-kHz sinusoidal signal, fS = 48 kHz, 32-bit audio data, BCLK = 256 × fS,  
TDM slave mode, PLL on, differential input, channel gain = 0 dB, and linear phase decimation filter (unless otherwise noted);  
all performance measurements are done with a 20-kHz, low-pass filter, and an A-weighted filter  
-60  
-60  
Channel-1  
Channel-2  
Channel-1  
Channel-2  
-70  
-70  
-80  
-80  
-90  
-90  
-100  
-110  
-120  
-130  
-100  
-110  
-120  
-130  
-130  
-115  
-100  
-85  
-70  
-55  
-40  
-25  
-10  
0
-130  
-115  
-100  
-85  
-70  
-55  
-40  
-25  
-10  
0
Input Amplitude (dB)  
Input Amplitude (dB)  
TDH0D0+1  
TDH0D0+2  
Differential input  
Single-ended input  
7-4. THD+N vs Input Amplitude  
7-5. THD+N vs Input Amplitude  
-60  
-70  
-60  
-70  
Channel-1  
Channel-2  
Channel-1  
Channel-2  
-80  
-80  
-90  
-90  
-100  
-110  
-120  
-130  
-100  
-110  
-120  
-130  
-130  
-115  
-100  
-85  
-70  
-55  
-40  
-25  
-10  
0
20 30 4050 70 100  
200 300 500  
1000 2000  
5000 10000 20000  
D004  
Input Amplitude (dB)  
Frequency (Hz)  
TDH0D0+3  
Differential input with AVDD = 1.8 V and VREF = 1.375 V  
7-6. THD+N vs Input Amplitude  
7-7. THD+N vs Input Frequency With a 60-dBr Input  
-60  
14  
Channel-1  
Channel-1  
Channel-2  
13  
12  
11  
10  
9
Channel-2  
-70  
-80  
-90  
8
7
-100  
-110  
-120  
-130  
6
5
4
3
2
1
20 30 4050 70 100  
200 300 500  
1000 2000  
5000 10000 20000  
D005  
0
4
8
12  
16  
20  
24  
28  
32  
36  
40  
44  
Frequency (Hz)  
Channel Gain (dB)  
TDH0D0+6  
Differential input  
7-8. THD+N vs Input Frequency With a 1-dBr Input  
7-9. Input-Referred Noise vs Channel Gain  
Copyright © 2022 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: PCM3120-Q1  
 
PCM3120-Q1  
ZHCSPD4A APRIL 2022 REVISED SEPTEMBER 2022  
www.ti.com.cn  
7.11 Typical Characteristics (continued)  
at TA = 25°C, AVDD = 3.3 V, IOVDD = 3.3 V, fIN = 1-kHz sinusoidal signal, fS = 48 kHz, 32-bit audio data, BCLK = 256 × fS,  
TDM slave mode, PLL on, differential input, channel gain = 0 dB, and linear phase decimation filter (unless otherwise noted);  
all performance measurements are done with a 20-kHz, low-pass filter, and an A-weighted filter  
14  
13  
12  
11  
10  
9
20  
10  
Channel-1  
Channel-2  
Channel-1  
Channel-2  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
-120  
8
7
6
5
4
3
2
1
0
4
8
12  
16  
20  
24  
28  
32  
36  
40  
44  
20 30 50 70100 200300 500 1000 2000  
5000 1000020000  
100000  
DF0re0q8  
Channel Gain (dB)  
Frequency (Hz)  
TDH0D0+7  
Single-ended input  
7-10. Input-Referred Noise vs Channel Gain  
7-11. Frequency Response With a 12-dBr Input  
-60  
0
Channel-1  
Channel-2  
Channel-1  
Channel-2  
-20  
-70  
-40  
-60  
-80  
-90  
-80  
-100  
-120  
-140  
-160  
-180  
-200  
-100  
-110  
-120  
-130  
20 30 4050 70 100  
200 300 500  
1000 2000  
5000 10000 20000  
20 30 4050 70 100  
200 300 500  
1000 2000  
5000 10000 20000  
D010  
Frequency (Hz)  
Frequency (Hz)  
D009  
7-12. Power-Supply Rejection Ratio vs Ripple Frequency  
7-13. Differential FFT With Idle Input  
With 100-mVPP Amplitude  
0
0
-20  
Channel-1  
Channel-1  
Channel-2  
Channel-2  
-20  
-40  
-40  
-60  
-60  
-80  
-80  
-100  
-120  
-140  
-160  
-180  
-200  
-100  
-120  
-140  
-160  
-180  
-200  
20 30 4050 70 100  
200 300 500  
1000 2000  
5000 10000 20000  
20 30 4050 70 100  
200 300 500  
1000 2000  
5000 10000 20000  
D011  
Frequency (Hz)  
Frequency (Hz)  
7-15. Single Ended FFT With Idle Input  
7-14. Differential FFT With a 60-dBr Input  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: PCM3120-Q1  
PCM3120-Q1  
ZHCSPD4A APRIL 2022 REVISED SEPTEMBER 2022  
www.ti.com.cn  
7.11 Typical Characteristics (continued)  
at TA = 25°C, AVDD = 3.3 V, IOVDD = 3.3 V, fIN = 1-kHz sinusoidal signal, fS = 48 kHz, 32-bit audio data, BCLK = 256 × fS,  
TDM slave mode, PLL on, differential input, channel gain = 0 dB, and linear phase decimation filter (unless otherwise noted);  
all performance measurements are done with a 20-kHz, low-pass filter, and an A-weighted filter  
0
-20  
0
-20  
Channel-1  
Channel-2  
Channel-1  
Channel-2  
-40  
-40  
-60  
-60  
-80  
-80  
-100  
-120  
-140  
-160  
-180  
-200  
-100  
-120  
-140  
-160  
-180  
-200  
20 30 4050 70 100  
200 300 500  
1000 2000  
5000 10000 20000  
20 30 4050 70 100  
200 300 500  
1000 2000  
5000 10000 20000  
D012  
Frequency (Hz)  
Frequency (Hz)  
7-16. Single Ended FFT With a 60-dBr Input  
7-17. Differential FFT With a 1-dBr Input  
-60  
-60  
Channel-1  
Channel-2  
Channel-3  
Channel-4  
Channel-1  
Channel-2  
Channel-3  
Channel-4  
-70  
-80  
-70  
-80  
-90  
-90  
-100  
-110  
-120  
-130  
-100  
-110  
-120  
-130  
-130  
-115  
-100  
-85  
-70  
-55  
-40  
-25  
-10 -1  
20 30 4050 70 100  
200 300 500  
1000 2000  
5000 10000 20000  
TDH0D2+2  
Input Amplitude (dB)  
Frequency (Hz)  
TDH0D1+3  
7-18. PDM Input THD+N vs Input Amplitude  
7-19. PDM Input THD+N vs Input Frequency With a  
20-dBr Input  
0
20  
10  
Channel-1  
Channel-2  
-20  
-40  
Channel-3  
Channel-4  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-60  
-80  
-100  
-120  
-140  
-160  
-180  
-200  
-90  
Channel-1  
Channel-2  
Channel-3  
-100  
-110  
Channel-4  
-120  
20 30 50 70100 200300 500 1000 2000  
20 30 4050 70 100  
200 300 500  
1000 2000  
5000 10000 20000  
5000 1000020000  
100000  
Frequency (Hz)  
Frequency (Hz)  
Freq  
D015  
D016  
7-20. PDM Input FFT With a 60-dBr Input  
7-21. PDM Input Frequency Response With a  
20-dBr Input  
Copyright © 2022 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: PCM3120-Q1  
PCM3120-Q1  
ZHCSPD4A APRIL 2022 REVISED SEPTEMBER 2022  
www.ti.com.cn  
8 Detailed Description  
8.1 Overview  
The PCM3120-Q1 is a high-performance, low-power, flexible, 2-channel, audio analog-to-digital converter (ADC)  
with extensive feature integration. This device is intended for applications in voice-activated systems,  
professional microphones, audio conferencing, portable computing, communication, and entertainment  
applications. The high dynamic range of the device enables far-field audio recording with high fidelity. This  
device integrates a host of features that reduces cost, board space, and power consumption in space-  
constrained, battery-powered, consumer, home, and industrial applications.  
The PCM3120-Q1 consists of the following blocks:  
2-channel, multibit, high-performance delta-sigma (ΔΣ) ADC  
Configurable single-ended or differential audio inputs  
Low-noise, programmable microphone bias output  
Automatic gain controller (AGC)  
Programmable decimation filters with a linear-phase filter or a low-latency filter  
Programmable channel gain, volume control, biquad filters for each channel  
Programmable phase and gain calibration with fine resolution for each channel  
Programmable high-pass filter (HPF), and digital channel mixer  
Pulse density modulation (PDM) microphone 4-channel interface with a high-performance decimation filter  
Integrated low-jitter phase-locked loop (PLL) supporting a wide range of system clocks  
Integrated digital and analog voltage regulators to support single-supply operation  
Communication to the PCM3120-Q1 for configuring the control registers is supported using an I2C interface. The  
device supports a highly flexible audio serial interface [time-division multiplexing (TDM), I2S, or left-justified (LJ)]  
to transmit audio data seamlessly in the system across devices.  
The PCM3120-Q1 can support multiple devices by sharing the common TDM bus across devices. Moreover, the  
device includes a daisy-chain feature as well. These features relax the shared TDM bus timing requirements and  
board design complexities when operating multiple devices for applications requiring high audio data bandwidth.  
8-1 lists the reference abbreviations used throughout this document to registers that control the device.  
8-1. Abbreviations for Register References  
REFERENCE  
ABBREVIATION  
DESCRIPTION  
EXAMPLE  
Single data bit. The value of a  
single bit in a register.  
Page y, register z, bit k  
Py_Rz_Dk  
Page 4, register 36, bit 0 = P4_R36_D0  
Range of data bits. A range of  
data bits (inclusive).  
Page y, register z, bits k-m  
Page y, register z  
Py_Rz_D[k:m]  
Py_Rz  
Page 4, register 36, bits 3-0 = P4_R36_D[3:0]  
Page 4, register 36 = P4_R36  
One entire register. All eight  
bits in the register as a unit.  
Range of registers. A range of  
registers in the same page.  
Page y, registers z-n  
Py_Rz-Rn  
Page 4, registers 36, 37, 38 = P4_R36-R38  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: PCM3120-Q1  
 
 
 
PCM3120-Q1  
ZHCSPD4A APRIL 2022 REVISED SEPTEMBER 2022  
www.ti.com.cn  
8.2 Functional Block Diagram  
Audio Clock Generation  
PLL  
Multifunction Pins  
(Digital Microphones  
4-Channel Digital Microphone Filters  
(Input Clock Source -  
BCLK, GPIOx, GPIx)  
GPIO1  
Interface, Interrupt, PLL  
Input Clock)  
SDOUT  
BCLK  
IN1P  
IN1M  
ADC  
Channel-1  
PGA  
PGA  
Audio Serial  
Interface (TDM,  
I2S, LJ)  
Digital Filters  
IN2P_GPI1  
ADC  
Channel-2  
(Low Latency LPF,  
Programmable  
Biquads, AGC)  
FSYNC  
IN2M_GPO1  
Regulators, Current Bias  
and Voltage Reference  
Programmable  
MICBIAS_GPI2  
SDA  
SCL  
I2C Control  
Interface  
Microphone Bias  
8.3 Feature Description  
8.3.1 Serial Interfaces  
This device has two serial interfaces: control and audio data. The control serial interface is used for device  
configuration. The audio data serial interface is used for transmitting audio data to the host device.  
8.3.1.1 Control Serial Interfaces  
The device contains configuration registers and programmable coefficients that can be set to the desired values  
for a specific system and application use. All registers can be accessed using I2C communication to the device.  
For more information, see 8.5 for further details.  
8.3.1.2 Audio Serial Interfaces  
Digital audio data flows between the host processor and the PCM3120-Q1 on the digital audio serial interface  
(ASI), or audio bus. This highly flexible ASI bus includes a TDM mode for multichannel operation, support for I2S  
or left-justified protocols format, programmable data length options, very flexible master-slave configurability for  
bus clock lines, and the ability to communicate with multiple devices within a system directly.  
Copyright © 2022 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: PCM3120-Q1  
 
 
PCM3120-Q1  
ZHCSPD4A APRIL 2022 REVISED SEPTEMBER 2022  
www.ti.com.cn  
The bus protocol TDM, I2S, or left-justified (LJ) format can be selected by using the ASI_FORMAT[1:0]  
(P0_R7_D[7:6]) register bits. As shown in 8-2 and 8-3, these modes are all most significant bit (MSB)-first,  
pulse code modulation (PCM) data format, with the output channel data word-length programmable as 16, 20,  
24, or 32 bits by configuring the ASI_WLEN[1:0] (P0_R7_D[5:4]) register bits.  
8-2. Audio Serial Interface Format  
P0_R7_D[7:6] : ASI_FORMAT[1:0]  
AUDIO SERIAL INTERFACE FORMAT  
00 (default)  
Time division multiplexing (TDM) mode  
01  
10  
11  
Inter IC sound (I2S) mode  
Left-justified (LJ) mode  
Reserved (do not use this setting)  
8-3. Audio Output Channel Data Word-Length  
P0_R7_D[5:4] : ASI_WLEN[1:0]  
AUDIO OUTPUT CHANNEL DATA WORD-LENGTH  
00  
01  
Output channel data word-length set to 16 bits  
Output channel data word-length set to 20 bits  
Output channel data word-length set to 24 bits  
Output channel data word-length set to 32 bits  
10  
11 (default)  
The frame sync pin, FSYNC, is used to define the beginning of a frame and has the same frequency as the  
output data sample rates. The bit clock pin, BCLK, is used to clock out the digital audio data across the serial  
bus. The number of bit-clock cycles in a frame must accommodate all active output channels with the  
programmed data word length.  
A frame consists of multiple time-division channel slots (up to 64) on the audio bus. This allows for either a single  
device or multiple PCM3120-Q1 devices sharing the same bus. The device supports up to four output channels  
that can be configured to place their audio data on bus slot 0 to slot 63. 8-4 lists the output channel slot  
configuration settings. In I2S and LJ mode, the slots are divided into two sets, left-channel slots and right-  
channel slots, as described in 8.3.1.2.2 and 8.3.1.2.3 .  
8-4. Output Channel Slot Assignment Settings  
P0_R11_D[5:0] : CH1_SLOT[5:0]  
00 0000 = 0d (default)  
00 0001 = 1d  
OUTPUT CHANNEL 1 SLOT ASSIGNMENT  
Slot 0 for TDM or left slot 0 for I2S, LJ.  
Slot 1 for TDM or left slot 1 for I2S, LJ.  
01 1111 = 31d  
10 0000 = 32d  
Slot 31 for TDM or left slot 31 for I2S, LJ.  
Slot 32 for TDM or right slot 0 for I2S, LJ.  
11 1110 = 62d  
11 1111 = 63d  
Slot 62 for TDM or right slot 30 for I2S, LJ.  
Slot 63 for TDM or right slot 31 for I2S, LJ.  
Similarly, the slot assignment setting for output channel 2 to channel 8 can be done using the CH2_SLOT  
(P0_R12) to CH8_SLOT (P0_R18) registers, respectively.  
The slot word length is the same as the output channel data word length set for the device. The output channel  
data word length must be set to the same value for all PCM3120-Q1 devices if all devices share the same ASI  
bus in a system. The maximum number of slots possible for the ASI bus in a system is limited by the available  
bus bandwidth, which depends upon the BCLK frequency, output data sample rate used, and the channel data  
word length configured.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: PCM3120-Q1  
 
 
 
PCM3120-Q1  
ZHCSPD4A APRIL 2022 REVISED SEPTEMBER 2022  
www.ti.com.cn  
The device also includes a feature that offsets the start of the slot data transfer with respect to the frame sync by  
up to 31 cycles of the bit clock. 8-5 lists the programmable offset configuration settings.  
8-5. Programmable Offset Settings for the ASI Slot Start  
P0_R8_D[4:0] : TX_OFFSET[4:0]  
PROGRAMMABLE OFFSET SETTING FOR SLOT DATA TRANSMISSION START  
0 0000 = 0d (default)  
The device follows the standard protocol timing without any offset.  
Slot start is offset by one BCLK cycle, as compared to standard protocol timing.  
For I2S or LJ, the left and right slot start is offset by one BCLK cycle, as compared to  
standard protocol timing.  
0 0001 = 1d  
......  
......  
Slot start is offset by 30 BCLK cycles, as compared to standard protocol timing.  
For I2S or LJ, the left and right slot start is offset by 30 BCLK cycles, as compared to  
standard protocol timing.  
1 1110 = 30d  
Slot start is offset by 31 BCLK cycles, as compared to standard protocol timing.  
For I2S or LJ, the left and right slot start is offset by 31 BCLK cycles, as compared to  
standard protocol timing.  
1 1111 = 31d  
The device also features the ability to invert the polarity of the frame sync pin, FSYNC, used to transfer the audio  
data as compared to the default FSYNC polarity used in standard protocol timing. This feature can be set using  
the FSYNC_POL (P0_R7_D3) register bit. Similarly, the device can invert the polarity of the bit clock pin, BCLK,  
which can be set using the BCLK_POL (P0_R7_D2) register bit.  
8.3.1.2.1 Time Division Multiplexed Audio (TDM) Interface  
In TDM mode, also known as DSP mode, the rising edge of FSYNC starts the data transfer with the slot 0 data  
first. Immediately after the slot 0 data transmission, the remaining slot data are transmitted in order. FSYNC and  
each data bit (except the MSB of slot 0 when TX_OFFSET equals 0) is transmitted on the rising edge of BCLK.  
8-1 to 8-4 illustrate the protocol timing for TDM operation with various configurations.  
FSYNC  
BCLK  
SDOUT  
N-1 N-2 N-3  
2
1
0
N-1 N-2 N-3  
2
1
0
N-1 N-2 N-3  
2
1
0
N-1 N-2 N-3  
2
1
0
Slot-1  
(Word Length : N)  
Slot-0  
(Word Length : N)  
Slot-2 to Slot-7  
(Word Length : N)  
Slot-0  
(Word Length : N)  
(n+1)th Sample  
nth Sample  
8-1. TDM Mode Standard Protocol Timing (TX_OFFSET = 0)  
FSYNC  
BCLK  
SDOUT  
N-1  
2
1
0
N-1 N-2 N-3  
2
1
0
N-1 N-2 N-3  
2
1
0
N-1  
2
1
0
Slot-1  
(Word Length : N)  
Slot-0  
(Word Length : N)  
nth Sample  
Slot-0  
(Word Length : N)  
(n+1)th Sample  
Slot-2 to Slot-7  
(Word Length : N)  
TX_OFFSET = 2  
TX_OFFSET = 2  
8-2. TDM Mode Protocol Timing (TX_OFFSET = 2)  
Copyright © 2022 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: PCM3120-Q1  
 
 
PCM3120-Q1  
ZHCSPD4A APRIL 2022 REVISED SEPTEMBER 2022  
www.ti.com.cn  
FSYNC  
BCLK  
1
0
N-1  
2
1
0
N-1 N-2 N-3  
2
1
0
2
1
0
N-1 N-2 N-3  
0
N-1 N-2  
3
2
1
0
N-1  
SDOUT  
Slot-1  
(Word Length : N)  
Slot-0  
(Word Length : N)  
Slot-0  
(Word Length : N)  
(n+1)th Sample  
Slot-2 to Slot-7  
(Word Length : N)  
TX_OFFSET = 2  
nth Sample  
8-3. TDM Mode Protocol Timing (No Idle BCLK Cycles, TX_OFFSET = 2)  
FSYNC  
BCLK  
SDOUT  
N-1 N-2 N-3  
2
1
0
N-1 N-2 N-3  
2
1
0
N-1 N-2 N-3  
2
1
0
N-1 N-2 N-3  
2
1
0
Slot-1  
(Word Length : N)  
Slot-0  
(Word Length : N)  
Slot-2 to Slot-7  
(Word Length : N)  
Slot-0  
(Word Length : N)  
(n+1)th Sample  
nth Sample  
8-4. TDM Mode Protocol Timing (TX_OFFSET = 0 and BCLK_POL = 1)  
For proper operation of the audio bus in TDM mode, the number of bit clocks per frame must be greater than or  
equal to the number of active output channels times the programmed word length of the output channel data.  
The device supports FSYNC as a pulse with a 1-cycle-wide bit clock, but also supports multiples as well. For a  
higher BCLK frequency operation, using TDM mode with a TX_OFFSET value higher than 0 is recommended.  
8.3.1.2.2 Inter IC Sound (I2S) Interface  
The standard I2S protocol is defined for only two channels: left and right. The device extends the same protocol  
timing for multichannel operation. In I2S mode, the MSB of the left slot 0 is transmitted on the falling edge of  
BCLK in the second cycle after the falling edge of FSYNC. Immediately after the left slot 0 data transmission, the  
remaining left slot data are transmitted in order. The MSB of the right slot 0 is transmitted on the falling edge of  
BCLK in the second cycle after the rising edge of FSYNC. Immediately after the right slot 0 data transmission,  
the remaining right slot data are transmitted in order. FSYNC and each data bit is transmitted on the falling edge  
of BCLK. 8-5 to 8-8 illustrate the protocol timing for I2S operation with various configurations.  
FSYNC  
BCLK  
SDOUT  
N-1 N-2  
1
0
N-1 N-2  
1
0
N-1  
1
0
N-1 N-2  
N-1 N-2  
1
0
1
0
Left  
Slot-0  
(Word Length : N)  
Left  
Slot-2 to Slot-3  
(Word Length : N)  
Right  
Slot-0  
Right  
Slot-2 to Slot-3  
(Word Length : N) (Word Length : N)  
Left  
Slot-0  
(Word Length : N)  
(n+1)th Sample  
nth Sample  
8-5. I2S Mode Standard Protocol Timing (TX_OFFSET = 0)  
FSYNC  
BCLK  
SDOUT  
N-1  
1
0
N-1 N-2  
1
0
N-1  
1
0
N-1  
N-1  
1
0
1
0
Left  
Slot-0  
(Word Length : N) (Word Length : N)  
Left  
Slot-2 to Slot-3  
Right  
Slot-0  
Right  
Slot-2 to Slot-3  
(Word Length : N) (Word Length : N)  
Left  
Slot-0  
(Word Length : N)  
(n+1)th Sample  
TX_OFFSET = 1  
TX_OFFSET = 1  
TX_OFFSET = 1  
nth Sample  
8-6. I2S Protocol Timing (TX_OFFSET = 1)  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: PCM3120-Q1  
 
 
 
PCM3120-Q1  
ZHCSPD4A APRIL 2022 REVISED SEPTEMBER 2022  
www.ti.com.cn  
FSYNC  
BCLK  
N-1 N-2  
1
0
N-1 N-2  
0
0
N-1  
1
0
N-1  
1
0
N-1 N-2  
0
N-1  
1
0
1
0
N-1 N-2  
SDOUT  
Left  
Slot-0  
(Word Length : N)  
(n+1)th Sample  
Left  
Slot-1 to Slot-3  
(Word Length : N)  
Right  
Slot-1 to Slot-3  
(Word Length : N)  
nth Sample  
8-7. I2S Protocol Timing (No Idle BCLK Cycles, TX_OFFSET = 0)  
FSYNC  
BCLK  
SDOUT  
N-1 N-2  
1
0
N-1 N-2  
1
0
N-1  
1
0
N-1 N-2  
N-1 N-2  
1
0
1
0
Left  
Slot-0  
(Word Length : N)  
Left  
Slot-2 to Slot-3  
(Word Length : N)  
Right  
Slot-0  
Right  
Slot-2 to Slot-3  
(Word Length : N) (Word Length : N)  
Left  
Slot-0  
(Word Length : N)  
(n+1)th Sample  
nth Sample  
8-8. I2S Protocol Timing (TX_OFFSET = 0 and BCLK_POL = 1)  
For proper operation of the audio bus in I2S mode, the number of bit clocks per frame must be greater than or  
equal to the number of active output channels (including left and right slots) times the programmed word length  
of the output channel data. The device FSYNC low pulse must be a number of BCLK cycles wide that is greater  
than or equal to the number of active left slots times the data word length configured. Similarly, the FSYNC high  
pulse must be a number of BCLK cycles wide that is greater than or equal to the number of active right slots  
times the data word length configured.  
8.3.1.2.3 Left-Justified (LJ) Interface  
The standard LJ protocol is defined for only two channels: left and right. The device extends the same protocol  
timing for multichannel operation. In LJ mode, the MSB of the left slot 0 is transmitted in the same BCLK cycle  
after the rising edge of FSYNC. Each subsequent data bit is transmitted on the falling edge of BCLK.  
Immediately after the left slot 0 data transmission, the remaining left slot data are transmitted in order. The MSB  
of the right slot 0 is transmitted in the same BCLK cycle after the falling edge of FSYNC. Each subsequent data  
bit is transmitted on the falling edge of BCLK. Immediately after the right slot 0 data transmission, the remaining  
right slot data are transmitted in order. FSYNC is transmitted on the falling edge of BCLK. 8-9 to 8-12  
illustrate the protocol timing for LJ operation with various configurations.  
FSYNC  
BCLK  
SDOUT  
N-1 N-2  
1
0
N-1 N-2  
1
0
N-1  
1
0
N-1 N-2  
N-1 N-2  
1
0
1
0
Left  
Slot-0  
(Word Length : N)  
Left  
Slot-2 to Slot-3  
(Word Length : N)  
Right  
Slot-0  
Right  
Slot-2 to Slot-3  
(Word Length : N) (Word Length : N)  
Left  
Slot-0  
(Word Length : N)  
(n+1)th Sample  
nth Sample  
8-9. LJ Mode Standard Protocol Timing (TX_OFFSET = 0)  
Copyright © 2022 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: PCM3120-Q1  
 
 
 
PCM3120-Q1  
ZHCSPD4A APRIL 2022 REVISED SEPTEMBER 2022  
www.ti.com.cn  
FSYNC  
BCLK  
SDOUT  
N-1  
1
0
N-1 N-2  
1
0
N-1  
1
0
N-1  
N-1  
1
0
1
0
Left  
Slot-0  
(Word Length : N) (Word Length : N)  
Left  
Slot-2 to Slot-3  
Right  
Slot-0  
Right  
Slot-2 to Slot-3  
(Word Length : N) (Word Length : N)  
Left  
Slot-0  
(Word Length : N)  
(n+1)th Sample  
TX_OFFSET = 2  
TX_OFFSET = 2  
TX_OFFSET = 2  
nth Sample  
8-10. LJ Protocol Timing (TX_OFFSET = 2)  
FSYNC  
BCLK  
N-1 N-2  
1
0
N-1 N-2  
0
0
N-1  
1
0
N-1  
1
0
N-1 N-2  
0
N-1  
1
0
N-1 N-2  
1
0
SDOUT  
Left  
Slot-0  
(Word Length : N)  
(n+1)th Sample  
Left  
Slot-1 to Slot-3  
(Word Length : N)  
Right  
Slot-1 to Slot-3  
(Word Length : N)  
nth Sample  
8-11. LJ Protocol Timing (No Idle BCLK Cycles, TX_OFFSET = 0)  
FSYNC  
BCLK  
SDOUT  
N-1 N-2  
1
0
N-1 N-2  
1
0
N-1  
1
0
N-1 N-2  
N-1 N-2  
1
0
1
0
Left  
Slot-0  
(Word Length : N)  
Left  
Slot-2 to Slot-3  
(Word Length : N)  
Right  
Slot-0  
Right  
Slot-2 to Slot-3  
(Word Length : N) (Word Length : N)  
Left  
Slot-0  
(Word Length : N)  
(n+1)th Sample  
TX_OFFSET = 1  
TX_OFFSET = 1  
TX_OFFSET = 1  
nth Sample  
8-12. LJ Protocol Timing (TX_OFFSET = 1 and BCLK_POL = 1)  
For proper operation of the audio bus in LJ mode, the number of bit clocks per frame must be greater than or  
equal to the number of active output channels (including left and right slots) times the programmed word length  
of the output channel data. The device FSYNC high pulse must be a number of BCLK cycles wide that is greater  
than or equal to the number of active left slots times the data word length configured. Similarly, the FSYNC low  
pulse must be number of BCLK cycles wide that is greater than or equal to the number of active right slots times  
the data word length configured. For a higher BCLK frequency operation, using LJ mode with a TX_OFFSET  
value higher than 0 is recommended.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: PCM3120-Q1  
 
PCM3120-Q1  
ZHCSPD4A APRIL 2022 REVISED SEPTEMBER 2022  
www.ti.com.cn  
8.3.1.3 Using Multiple Devices With Shared Buses  
The device has many supported features and flexible options that can be used in the system to seamlessly  
connect the PCM3120-Q1 and any other audio device by sharing a single common I2C control bus and an audio  
serial interface bus. This architecture enables multiple applications to be applied to a system that require a  
microphone array for beam-forming operations, audio conferencing, noise cancellation, and so forth. 8-13  
shows a diagram of the PCM3120-Q1 and PCMx140-Q1 devices in a configuration where the control and audio  
data buses are shared.  
Control Bus – I2C Interface  
PCMx120-Q1  
U1  
PCMx140-Q1  
U2  
Host Processor  
Audio Data Bus – TDM, I2S, LJ Interface  
8-13. Multiple Devices With Shared Control and Audio Data Buses  
The PCM3120-Q1 consists of the following features to enable seamless connection and interaction of multiple  
devices using a shared bus:  
I2C broadcast simultaneously writes to (or triggers) all PCM3120-Q1 and PCMx140-Q1 devices  
Supports up to 64 configuration output channel slots for the audio serial interface  
Tri-state feature (with enable and disable) for the unused audio data slots of the device  
Supports a bus-holder feature (with enable and disable) to keep the last driven value on the audio bus  
The GPIO1 or GPOx pin can be configured as a secondary output data lane for the audio serial interface  
The GPIO1 or GPIx pin can be used in a daisy-chain configuration of multiple devices  
Supports one BCLK cycle data latching timing to relax the timing requirement for the high-speed interface  
Programmable master and slave options for the audio serial interface  
Ability to synchronize the multiple devices for the simultaneous sampling requirement across devices  
See the Multiple TLV320ADCx140 Devices With Shared TDM and I2C Bus application report for further details.  
Copyright © 2022 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: PCM3120-Q1  
 
PCM3120-Q1  
ZHCSPD4A APRIL 2022 REVISED SEPTEMBER 2022  
www.ti.com.cn  
8.3.2 Phase-Locked Loop (PLL) and Clock Generation  
The device has a smart auto-configuration block to generate all necessary internal clocks required for the ADC  
modulator and the digital filter engine used for signal processing. This configuration is done by monitoring the  
frequency of the FSYNC and BCLK signal on the audio bus.  
The device supports the various output data sample rates (of the FSYNC signal frequency) and the BCLK to  
FSYNC ratio to configure all clock dividers, including the PLL configuration, internally without host programming.  
8-6 and 8-7 list the supported FSYNC and BCLK frequencies.  
8-6. Supported FSYNC (Multiples or Submultiples of 48 kHz) and BCLK Frequencies  
BCLK (MHz)  
BCLK TO  
FSYNC  
RATIO  
FSYNC  
(8 kHz)  
FSYNC  
(16 kHz)  
FSYNC  
(24 kHz)  
FSYNC  
(32 kHz)  
FSYNC  
(48 kHz)  
FSYNC  
(96 kHz)  
FSYNC (192 FSYNC (384 FSYNC (768  
kHz)  
kHz)  
kHz)  
16  
24  
Reserved  
Reserved  
0.256  
0.256  
0.384  
0.384  
0.576  
0.512  
0.768  
0.768  
1.152  
1.536  
2.304  
3.072  
6.144  
12.288  
4.608  
9.216  
18.432  
32  
0.512  
0.768  
1.024  
1.536  
3.072  
6.144  
12.288  
24.576  
48  
0.384  
0.768  
1.152  
1.536  
2.304  
4.608  
9.216  
18.432  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
64  
0.512  
1.024  
1.536  
2.048  
3.072  
6.144  
12.288  
24.576  
96  
0.768  
1.536  
2.304  
3.072  
4.608  
9.216  
18.432  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
128  
192  
256  
384  
512  
1024  
2048  
1.024  
2.048  
3.072  
4.096  
6.144  
12.288  
18.432  
24.576  
Reserved  
Reserved  
Reserved  
Reserved  
24.576  
1.536  
3.072  
4.608  
6.144  
9.216  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
2.048  
4.096  
6.144  
8.192  
12.288  
18.432  
24.576  
Reserved  
Reserved  
3.072  
6.144  
9.216  
12.288  
16.384  
Reserved  
Reserved  
4.096  
8.192  
12.288  
24.576  
Reserved  
8.192  
16.384  
Reserved  
16.384  
8-7. Supported FSYNC (Multiples or Submultiples of 44.1 kHz) and BCLK Frequencies  
BCLK (MHz)  
BCLK TO  
FSYNC  
RATIO  
FSYNC  
(7.35 kHz)  
FSYNC  
FSYNC  
FSYNC  
FSYNC  
(44.1 kHz)  
FSYNC  
FSYNC  
FSYNC  
FSYNC  
(14.7 kHz) (22.05 kHz) (29.4 kHz)  
(88.2 kHz) (176.4 kHz) (352.8 kHz) (705.6 kHz)  
16  
24  
Reserved  
Reserved  
Reserved  
0.3528  
Reserved  
0.3528  
0.4704  
0.7056  
0.9408  
1.4112  
0.3528  
0.5292  
0.7056  
1.0584  
1.4112  
0.4704  
0.7056  
0.7056  
1.0584  
1.4112  
2.1168  
2.8224  
4.2336  
5.6448  
8.4672  
11.2896  
16.9344  
32  
0.9408  
1.4112  
2.8224  
5.6448  
11.2896  
22.5792  
48  
1.4112  
2.1168  
4.2336  
8.4672  
16.9344  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
64  
0.4704  
1.8816  
2.8224  
5.6448  
11.2896  
22.5792  
96  
0.7056  
2.1168  
2.8224  
4.2336  
8.4672  
16.9344  
22.5792  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
128  
192  
256  
384  
512  
1024  
2048  
0.9408  
1.8816  
2.8224  
3.7632  
5.6448  
7.5264  
15.0528  
Reserved  
2.8224  
4.2336  
5.6448  
8.4672  
11.2896  
22.5792  
Reserved  
3.7632  
5.6448  
11.2896  
16.9344  
22.5792  
Reserved  
Reserved  
Reserved  
Reserved  
1.4112  
5.6448  
8.4672  
1.8816  
7.5264  
11.2896  
16.9344  
22.5792  
Reserved  
Reserved  
2.8224  
11.2896  
15.0528  
Reserved  
Reserved  
3.7632  
7.5264  
15.0528  
The status register ASI_STS (P0_R21), captures the device auto detect result for the FSYNC frequency and the  
BCLK to FSYNC ratio. If the device finds any unsupported combinations of FSYNC frequency and BCLK to  
FSYNC ratios, the device generates an ASI clock-error interrupt and mutes the record channels accordingly.  
The device uses an integrated, low-jitter, phase-locked loop (PLL) to generate internal clocks required for the  
ADC modulator and digital filter engine, as well as other control blocks. The device also supports an option to  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: PCM3120-Q1  
 
 
 
PCM3120-Q1  
ZHCSPD4A APRIL 2022 REVISED SEPTEMBER 2022  
www.ti.com.cn  
use BCLK, GPIO1, or the GPIx pin (as MCLK) as the audio clock source without using the PLL to reduce power  
consumption. However, the ADC performance may degrade based on jitter from the external clock source, and  
some processing features may not be supported if the external audio clock source frequency is not high enough.  
Therefore, TI recommends using the PLL for high-performance applications. More details and information on  
how to configure and use the device in low-power mode without using the PLL are discussed in the  
TLV320ADCx120 Power Consumption Matrix Across Various Usage Scenarios application report.  
The device also supports an audio bus master mode operation using the GPIO1 or GPIx pin (as MCLK) as the  
reference input clock source and supports various flexible options and a wide variety of system clocks. More  
details and information on master mode configuration and operation are discussed in the Configuring and  
Operating TLV320ADCx120 as an Audio Bus Master application report.  
The audio bus clock error detection and auto-detect feature automatically generates all internal clocks, but can  
be disabled using the ASI_ERR (P0_R9_D5) and AUTO_CLK_CFG (P0_R19_D6) register bits, respectively. In  
the system, this disable feature can be used to support custom clock frequencies that are not covered by the  
auto detect scheme. For such application use cases, care must be taken to ensure that the multiple clock  
dividers are all configured appropriately. Therefore, TI recommends using the PPC3 GUI for device configuration  
settings; for more details see the ADCx120EVM-PDK Evaluation module user's guide and the PurePath™  
console graphical development suite.  
8.3.3 Input Channel Configurations  
The device consists of two pairs of analog input pins (INxP and INxM) that can be configured as differential  
inputs or single-ended inputs for the recording channel. The device supports simultaneous recording of up to two  
channels using the high-performance multichannel ADC. The input source for the analog pins can be from  
electret condenser analog microphones, micro-electro-mechanical system (MEMS) analog microphones, or line-  
in (auxiliary) inputs from the system board. Additionally, if the application uses digital PDM microphones for the  
recording, then the IN2P_GPI1, IN2M_GPO1, GPIO1, and MICBIAS_GPI2 pins can be reconfigured in the  
device to support up to four channels for the digital microphone recording. The device can also support  
simultaneous recording on two analog and two digital microphone channels. 8-8 shows the input source  
selection for the record channel.  
8-8. Input Source Selection for the Record Channel  
P0_R60_D[6:5] : CH1_INSRC[1:0]  
INPUT CHANNEL 1 RECORD SOURCE SELECTION  
Analog differential input for channel 1 (this setting is valid only when the GPI1 and GPO1 pin  
functions are disabled)  
00 (default)  
Analog single-ended input for channel 1 (this setting is valid only when the GPI1 and GPO1  
pin functions are disabled)  
01  
Digital PDM input for channel 1 (configure the GPIx and GPOx pin accordingly for PDMDIN1  
and PDMCLK)  
10  
11  
Reserved (do not use this setting)  
Similarly, the input source selection setting for input channel 2, channel 3, and channel 4 can be configured  
using the CH2_INSRC[1:0] (P0_R65_D[6:5]), CH3_INSRC[1:0] (P0_R70_D[6:5]), and CH4_INSRC[1:0]  
(P0_R75_D[6:5]) register bits, respectively.  
Typically, voice or audio signal inputs are capacitively coupled (AC coupled) to the device; however, the device  
also supports an option for DC-coupled inputs to save board space. This configuration can be done  
independently for each channel by setting the CH1_DC (P0_R60_D4), CH2_DC (P0_R65_D4), CH3_DC  
(P0_R70_D4), and CH4_DC (P0_R75_D4) register bits. The INxM pin can be directly grounded in DC-coupled  
mode (see 8-14), but the INxM pin must be grounded after the AC-coupling capacitor in AC-coupled mode  
(see 8-15) for the single-ended input configuration. For the best dynamic range performance, the differential  
AC-coupled input must be used .  
Copyright © 2022 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: PCM3120-Q1  
 
PCM3120-Q1  
ZHCSPD4A APRIL 2022 REVISED SEPTEMBER 2022  
www.ti.com.cn  
Line or  
Line or  
Microphone  
Single-ended  
Input  
Microphone  
Single-ended  
Input  
INxP  
INxM  
INxP  
INxM  
GND  
PCMx120-Q1  
PCMx120-Q1  
GND  
8-14. Single-Ended, DC-Coupled Input  
8-15. Single-Ended, AC-Coupled Input  
Connection  
Connection  
The device allows for flexibility in choosing the typical input impedance on INxP or INxM from 2.5 k(default),  
10 k, and 20 kbased on the input source impedance. The higher input impedance results in slightly higher  
noise or lower dynamic range. 8-9 lists the configuration register settings for the input impedance for the  
record channel.  
8-9. Input Impedance Selection for the Record Channel  
P0_R60_D[3:2] : CH1_IMP[1:0]  
CHANNEL 1 INPUT IMPEDANCE SELECTION  
Channel 1 input impedance typical value is 2.5 kon INxP or INxM  
Channel 1 input impedance typical value is 10 kon INxP or INxM  
Channel 1 input impedance typical value is 20 kon INxP or INxM  
Reserved (do not use this setting)  
00 (default)  
01  
10  
11  
Similarly, the input impedance selection setting for input channel 2 can be configured using the CH2_IMP[1:0]  
(P0_R65_D[3:2]) register bits.  
The value of the coupling capacitor in AC-coupled mode must be chosen so that the high-pass filter formed by  
the coupling capacitor and the input impedance do not affect the signal content. Before proper recording can  
begin, this coupling capacitor must be charged up to the common-mode voltage at power up. To enable quick  
charging, the device has modes to speed up the charging of the coupling capacitor. The default value of the  
quick-charge timing is set for a coupling capacitor up to 1 µF. However, if a higher-value capacitor is used in the  
system, then the quick-charging timing can be increased by using the INCAP_QCHG (P0_R5_D[5:4]) register  
bits. For best distortion performance, use the low-voltage coefficient capacitors for AC coupling.  
The PCM3120-Q1 can also support a higher input common-mode tolerance at the expense of noise  
performance by a few decibels. The device supports three different modes with different common-mode  
tolerances, which can be configured using the CH1_INP_CM_TOL_CFG[1:0] (P0_R58_D[7:6]) register bits. 表  
8-10 lists the configuration register settings for the input impedance for the record channel.  
8-10. Common-Mode Tolerance Mode Selection for Record Channel  
P0_R58_D[7:6] :  
CHANNEL 1 INPUT COMMON-MODE TOLERANCE  
CH1_INP_CM_TOL_CFG[1:0]  
Channel 1 input common-mode tolerance of: AC-coupled input = 100 mVPP, DC-coupled  
00 (default)  
01  
input = 2.82 VPP  
.
Channel 1 input common-mode tolerance of: AC/DC-coupled input = 1 VPP  
.
Channel 1 input common-mode tolerance of: AC/DC-coupled input = 0-AVDD (supported  
only with an input impedance of 10 kand 20 k). For input impedance of 2.5 k, the input  
common-mode tolerance is 0.4 V to 2.6 V.  
10 (high CMRR mode)  
11  
Reserved (do not use this setting)  
Similarly, the common-mode tolerance setting for input channel 2 can be configured using the  
CH2_INP_CM_TOL_CFG[1:0] (P0_R58_D[5:4]) register bits. See the Input Common Mode Tolerance and High  
CMRR modes for TLV320ADCx120 Devices application report for further details.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: PCM3120-Q1  
 
 
 
PCM3120-Q1  
ZHCSPD4A APRIL 2022 REVISED SEPTEMBER 2022  
www.ti.com.cn  
8.3.4 Reference Voltage  
All audio data converters require a DC reference voltage. The PCM3120-Q1 achieves low-noise performance by  
internally generating a low-noise reference voltage. This reference voltage is generated using a band-gap circuit  
with high PSRR performance. This audio converter reference voltage must be filtered externally using a  
minimum 1-µF capacitor connected from the VREF pin to analog ground (AVSS).  
The value of this reference voltage can be configured using the P0_R59_D[1:0] register bits and must be set to  
an appropriate value based on the desired full-scale input for the device and the AVDD supply voltage available  
in the system. The default VREF value is set to 2.75 V, which in turn supports a 2-VRMS differential full-scale  
input to the device. The required minimum AVDD voltage for this mode is 3 V. 8-11 lists the various VREF  
settings supported along with required AVDD range and the supported full-scale input signal for that  
configuration.  
8-11. VREF Programmable Settings  
VREF OUTPUT  
VOLTAGE (Same as  
Internal ADC VREF)  
DIFFERENTIAL FULL-  
SCALE INPUT  
SINGLE-ENDED FULL-  
SCALE INPUT  
P0_R59_D[1:0] :  
ADC_FSCALE[1:0]  
AVDD RANGE  
REQUIREMENT  
SUPPORTED  
SUPPORTED  
00 (default)  
2.75 V  
2.5 V  
2 VRMS  
1.818 VRMS  
1 VRMS  
1 VRMS  
0.909 VRMS  
0.5 VRMS  
Reserved  
3 V to 3.6 V  
2.8 V to 3.6 V  
1.7 V to 1.9 V  
Reserved  
01  
10  
11  
1.375 V  
Reserved  
Reserved  
To achieve low-power consumption, this audio reference block is powered down as described in the 8.4.1  
section. When exiting sleep mode, the audio reference block is powered up using the internal fast-charge  
scheme and the VREF pin settles to its steady-state voltage after the settling time (a function of the decoupling  
capacitor on the VREF pin). This time is approximately equal to 3.5 ms when using a 1-μF decoupling capacitor.  
If a higher-value decoupling capacitor is used on the VREF pin, the fast-charge setting must be reconfigured  
using the VREF_QCHG (P0_R2_D[4:3]) register bits, which support options of 3.5 ms (default), 10 ms, 50 ms, or  
100 ms.  
8.3.5 Programmable Microphone Bias  
The device integrates a built-in, low-noise microphone bias pin that can be used in the system for biasing  
electret-condenser microphones or providing the supply to the MEMS analog or digital microphone. The  
integrated bias amplifier supports up to 5 mA of load current that can be used for multiple microphones and is  
designed to provide a combination of high PSRR, low noise, and programmable bias voltages to allow the  
biasing to be fine tuned for specific microphone combinations.  
When using this MICBIAS pin for biasing or supplying to multiple microphones, avoid any common impedance  
on the board layout for the MICBIAS connection to minimize coupling across microphones. 8-12 shows the  
available microphone bias programmable options.  
8-12. MICBIAS Programmable Settings  
P0_R59_D[6:4] : MBIAS_VAL[2:0]  
P0_R59_D[1:0] : ADC_FSCALE[1:0]  
MICBIAS OUTPUT VOLTAGE  
2.75 V (same as the VREF output)  
2.5 V (same as the VREF output)  
1.375 V (same as the VREF output)  
3.014 V (1.096 times the VREF output)  
2.740 V (1.096 times the VREF output)  
1.507 V (1.096 times the VREF output)  
Reserved (do not use these settings)  
Same as AVDD  
00 (default)  
000 (default)  
01  
10  
00 (default)  
001  
01  
10  
010 to 101  
110  
XX  
XX  
XX  
111  
Reserved (do not use this setting)  
Copyright © 2022 Texas Instruments Incorporated  
28  
Submit Document Feedback  
Product Folder Links: PCM3120-Q1  
 
 
 
PCM3120-Q1  
ZHCSPD4A APRIL 2022 REVISED SEPTEMBER 2022  
www.ti.com.cn  
The microphone bias output can be powered on or powered off (default) by configuring the MICBIAS_PDZ  
(P0_R117_D7) register bit. Additionally, the device provides an option to configure the GPIO1 or GPIx pin to  
directly control the microphone bias output powering on or off. This feature is useful to control the microphone  
directly without engaging the host for I2C communication. The MICBIAS_PDZ (P0_R117_D7) register bit value is  
ignored if the GPIO1 or GPIx pin is configured to set the microphone bias on or off.  
8.3.6 Signal-Chain Processing  
The PCM3120-Q1 signal chain is comprised of very-low-noise, high-performance, and low-power analog blocks  
and highly flexible and programmable digital processing blocks. The high performance and flexibility combined  
with a compact package makes the PCM3120-Q1 optimized for a variety of end-equipments and applications  
that require multichannel audio capture. 8-16 shows a conceptual block diagram that highlights the various  
building blocks used in the signal chain, and how the blocks interact in the signal chain.  
PDMCLK  
PDM  
Interface  
PDMIN  
Digital Microphone  
M
U
X
Phase  
Calibration  
Decimation  
Filters  
INP  
INM  
PGA  
ADC  
Output  
Channel  
Data to ASI  
Gain  
Calibration  
Digital  
Summer/Mixer  
Biquad  
Filters  
Digital Volume  
Control (DVC)  
HPF  
Other Input Channels Processed Data  
after Gain Calibration  
8-16. Signal-Chain Processing Flowchart  
The front-end PGA is very low noise, with a -dB dynamic range performance. Along with a low-noise and low-  
distortion, multibit, delta-sigma ADC, the front-end PGA enables the PCM3120-Q1 to record a far-field audio  
signal with very high fidelity, both in quiet and loud environments. Moreover, the ADC architecture has inherent  
antialias filtering with a high rejection of out-of-band frequency noise around multiple modulator frequency  
components. Therefore, the device prevents noise from aliasing into the audio band during ADC sampling.  
Further on in the signal chain, an integrated, high-performance multistage digital decimation filter sharply cuts off  
any out-of-band frequency noise with high stop-band attenuation.  
The device also has an integrated programmable biquad filters that allows for custom low-pass, high-pass, or  
any other desired frequency shaping. Thus, the overall signal chain architecture removes the requirement to add  
external components for antialiasing low-pass filtering, and thus saves drastically on the external system  
component cost and board space. See the TLV320ADCx140 Integrated Analog Anti-Aliasing Filter and Flexible  
Digital Filter application report for further details.  
The signal chain also consists of various highly programmable digital processing blocks such as phase  
calibration, gain calibration, high-pass filter, digital summer or mixer, biquad filters, and volume control. The  
details on these processing blocks are discussed further in this section. The device also supports up to four  
digital PDM microphone recording channels when the analog record channels are not used. Channels 1 to 2 in  
the signal chain block diagram of 8-16 are as described in this section, however, channels 3 to 4 only support  
the digital microphone recording option and do not support the digital summer or mixer option.  
The desired input channels for recording can be enabled or disabled by using the IN_CH_EN (P0_R115)  
register, and the output channels for the audio serial interface can be enabled or disabled by using the  
ASI_OUT_EN (P0_R116) register. In general, the device supports simultaneous power-up and power-down of all  
active channels for simultaneous recording. However, based on the application needs, if some channels must be  
powered-up or powered-down dynamically when the other channel recording is on, then that use case is  
supported by setting the DYN_CH_PUPD_EN (P0_R117_D4) register bit to 1'b1.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: PCM3120-Q1  
 
PCM3120-Q1  
ZHCSPD4A APRIL 2022 REVISED SEPTEMBER 2022  
www.ti.com.cn  
The device supports an input signal bandwidth up to 80 kHz, which allows the high-frequency non-audio signal  
to be recorded by using a 176.4-kHz (or higher) sample rate.  
For output sample rates of 48 kHz or lower, the device supports all features for 4-channel recording and various  
programmable processing blocks. However, for output sample rates higher than 48 kHz, there are limitations in  
the number of simultaneous channel recordings supported and the number of biquad filters and such. See the  
TLV320ADCx140 Sampling Rates and Programmable Processing Blocks Supported application report for further  
details.  
8.3.6.1 Programmable Channel Gain and Digital Volume Control  
The device has an independent programmable channel gain setting for each input channel that can be set to the  
appropriate value based on the maximum input signal expected in the system and the ADC VREF setting used  
(see the 8.3.4 section), which determines the ADC full-scale signal level.  
Configure the desired channel gain setting before powering up the ADC channel and do not change this setting  
when the ADC is powered on. The programmable range supported for each channel gain is from 0 dB to 42 dB  
in steps of 0.5 dB. To achieve low-noise performance, the device internal logic first maximizes the gain for the  
front-end, low-noise analog PGA, which supports a dynamic range of 120 dB, and then applies any residual  
programmed channel gain in the digital processing block.  
8-13 shows the programmable options available for the channel gain.  
8-13. Channel Gain Programmable Settings  
P0_R61_D[7:1] : CH1_GAIN[6:0]  
000 0000 = 0d (default)  
000 0001 = 1d  
CHANNEL GAIN SETTING FOR INPUT CHANNEL 1  
Input channel 1 gain is set to 0 dB  
Input channel 1 gain is set to 0.5 dB  
Input channel 1 gain is set to 1 dB  
000 0010 = 2d  
101 0011 = 83d  
Input channel 1 gain is set to 41.5 dB  
Input channel 1 gain is set to 42 dB  
Reserved (do not use these settings)  
101 0100 = 84d  
101 0101 to 111 1111 = 85d to 127d  
Similarly, the channel gain setting for input channel 2 can be configured using the CH2_GAIN (P0_R66_D[7:1])  
register bits. The channel gain feature is not available for the digital microphone record path.  
The device also supports gain change when the ADC is enabled. The device supports multiple configurations to  
limit the audible artifacts during dynamic gain change. This feature can be configured by using the  
OTF_GAIN_CHANGE_CFG (P0_R113_D[7:6]) register bits.  
The device also has a programmable digital volume control with a range from 100 dB to +27 dB in steps of  
0.5 dB with the option to mute the channel recording. The digital volume control value can be changed  
dynamically when the ADC channel is powered up and recording. During volume control changes, the soft ramp-  
up or ramp-down volume feature is used internally to avoid any audible artifacts. Soft-stepping can be entirely  
disabled using the DISABLE_SOFT_STEP (P0_R108_D4) register bit.  
The digital volume control setting is independently available for each output channel, including the digital  
microphone record channel. However, the device also supports an option to gang-up the volume control setting  
for all channels together using the channel 1 digital volume control setting, regardless if channel 1 is powered up  
or powered down. This gang-up can be enabled using the DVOL_GANG (P0_R108_D7) register bit.  
Copyright © 2022 Texas Instruments Incorporated  
30  
Submit Document Feedback  
Product Folder Links: PCM3120-Q1  
 
PCM3120-Q1  
ZHCSPD4A APRIL 2022 REVISED SEPTEMBER 2022  
www.ti.com.cn  
8-14 shows the programmable options available for the digital volume control.  
8-14. Digital Volume Control (DVC) Programmable Settings  
P0_R62_D[7:0] : CH1_DVOL[7:0]  
DVC SETTING FOR OUTPUT CHANNEL 1  
0000 0000 = 0d  
Output channel 1 DVC is set to mute  
0000 0001 = 1d  
Output channel 1 DVC is set to 100 dB  
Output channel 1 DVC is set to 99.5 dB  
Output channel 1 DVC is set to 99 dB  
0000 0010 = 2d  
0000 0011 = 3d  
1100 1000 = 200d  
1100 1001 = 201d (default)  
1100 1010 = 202d  
Output channel 1 DVC is set to 0.5 dB  
Output channel 1 DVC is set to 0 dB  
Output channel 1 DVC is set to 0.5 dB  
1111 1101 = 253d  
1111 1110 = 254d  
1111 1111 = 255d  
Output channel 1 DVC is set to 26 dB  
Output channel 1 DVC is set to 26.5 dB  
Output channel 1 DVC is set to 27 dB  
Similarly, the digital volume control setting for output channel 2 to channel 4 can be configured using the  
CH2_DVOL (P0_R67) to CH4_DVOL (P0_R77) register bits, respectively.  
The internal digital processing engine soft ramps up the volume from a muted level to the programmed volume  
level when the channel is powered up, and the internal digital processing engine soft ramps down the volume  
from a programmed volume to mute when the channel is powered down. This soft-stepping of volume is done to  
prevent abruptly powering up and powering down the record channel. This feature can also be entirely disabled  
using the DISABLE_SOFT_STEP (P0_R108_D4) register bit.  
8.3.6.2 Programmable Channel Gain Calibration  
Along with the programmable channel gain and digital volume, this device also provides programmable channel  
gain calibration. The gain of each channel can be finely calibrated or adjusted in steps of 0.1 dB for a range of –  
0.8-dB to 0.7-dB gain error. This adjustment is useful when trying to match the gain across channels resulting  
from external components and microphone sensitivity. This feature, in combination with the regular digital  
volume control, allows the gains across all channels to be matched for a wide gain error range with a resolution  
of 0.1 dB. 8-15 shows the programmable options available for the channel gain calibration.  
8-15. Channel Gain Calibration Programmable Settings  
P0_R63_D[7:4] : CH1_GCAL[3:0]  
CHANNEL GAIN CALIBRATION SETTING FOR INPUT CHANNEL 1  
0000 = 0d  
Input channel 1 gain calibration is set to 0.8 dB  
0001 = 1d  
Input channel 1 gain calibration is set to 0.7 dB  
1000 = 8d (default)  
Input channel 1 gain calibration is set to 0 dB  
1110 = 14d  
1111 = 15d  
Input channel 1 gain calibration is set to 0.6 dB  
Input channel 1 gain calibration is set to 0.7 dB  
Similarly, the channel gain calibration setting for input channel 2 to channel 4 can be configured using the  
CH2_GCAL (P0_R68) to CH4_GCAL (P0_R78) register bits, respectively.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
31  
Product Folder Links: PCM3120-Q1  
 
 
PCM3120-Q1  
ZHCSPD4A APRIL 2022 REVISED SEPTEMBER 2022  
www.ti.com.cn  
8.3.6.3 Programmable Channel Phase Calibration  
In addition to the gain calibration, the phase delay in each channel can be finely calibrated or adjusted in steps  
of one modulator clock cycle for a cycle range of 0 to 255 for the phase error of the analog microphone. The  
modulator clock, which is the same clock used for ADC_MOD_CLK, is 6.144 MHz (the output data sample rate  
is multiples or submultiples of 48 kHz) or 5.6448 MHz (the output data sample rate is multiples or submultiples of  
44.1 kHz). For the digital microphone interface, the phase calibration clock is dependent on the PDM clock used.  
For a PDM_CLK of 6.144 MHz (the output data sample rate is multiples or submultiples of 48 kHz) or 5.6448  
MHz (the output data sample rate is multiples or submultiples of 44.1 kHz), the phase calibration clock is the  
same as PDM_CLK. For a PDM_CLK equal to or lower than 3.072 MHz (the output data sample rate is multiples  
or submultiples of 48 kHz), the phase calibration clock used is 3.072 MHz. Similarly, for a PDM_CLK of 2.8224  
MHz, 1.4112 MHz, or 705.6 kHz (the output data sample rate is multiples or submultiples of 44.1 kHz), and the  
phase calibration clock used is 2.8224 MHz. This feature is very useful for applications that must match the  
phase with fine resolution between each channel, including any phase mismatch across channels resulting from  
external components or microphones. 8-16 shows the available programmable options for channel phase  
calibration for the analog or digital microphone with a PDM_CLK of 6.144 MHz or 5.6448 MHz.  
8-16. Channel Phase Calibration Programmable Settings  
P0_R64_D[7:0] : CH1_PCAL[7:0]  
0000 0000 = 0d (default)  
0000 0001 = 1d  
CHANNEL PHASE CALIBRATION SETTING FOR INPUT CHANNEL 1  
Input channel 1 phase calibration with no delay  
Input channel 1 phase calibration delay is set to one cycle of the modulator clock  
Input channel 1 phase calibration delay is set to two cycles of the modulator clock  
0000 0010 = 2d  
1111 1110 = 254d  
1111 1111 = 255d  
Input channel 1 phase calibration delay is set to 254 cycles of the modulator clock  
Input channel 1 phase calibration delay is set to 255 cycles of the modulator clock  
For a digital microphone interface with a PDM_CLK frequency below 3.072 MHz, the phase calibration range is  
from 0 to 127 of the phase calibration clock (3.072 MHz for the output data sample rate is multiples or  
submultiples of 48 kHz and 2.8224 MHz for the output data sample rate is multiples or submultiples of 44.1 kHz).  
This range can be configured using CH1_PCAL[7:1] for channel 1.  
Similarly, the channel phase calibration setting for input channel 2 to channel 4 can be configured using the  
CH2_PCAL (P0_R69) to CH4_PCAL (P0_R79) register bits, respectively.  
The phase calibration feature must not be used when the analog input and PDM input are used together for  
simultaneous conversion.  
8.3.6.4 Programmable Digital High-Pass Filter  
To remove the DC offset component and attenuate the undesired low-frequency noise content in the record data,  
the device supports a programmable high-pass filter (HPF). The HPF is not a channel-independent filter setting  
but is globally applicable for all ADC channels. This HPF is constructed using the first-order infinite impulse  
response (IIR) filter, and is efficient enough to filter out possible DC components of the signal. 8-17 shows the  
predefined 3-dB cutoff frequencies available that can be set by using the HPF_SEL[1:0] register bits of  
P0_R107. Additionally, to achieve a custom 3-dB cutoff frequency for a specific application, the device also  
allows the first-order IIR filter coefficients to be programmed when the HPF_SEL[1:0] register bits are set to  
2'b00. 8-17 shows a frequency response plot for the HPF filter.  
8-17. HPF Programmable Settings  
P0_R107_D[1:0] :  
HPF_SEL[1:0]  
-3-dB CUTOFF FREQUENCY  
SETTING  
-3-dB CUTOFF FREQUENCY AT  
16-kHz SAMPLE RATE  
-3-dB CUTOFF FREQUENCY AT  
48-kHz SAMPLE RATE  
00  
01 (default)  
10  
Programmable 1st-order IIR filter  
0.00025 × fS  
Programmable 1st-order IIR filter  
Programmable 1st-order IIR filter  
4 Hz  
32 Hz  
128 Hz  
12 Hz  
96 Hz  
0.002 × fS  
11  
0.008 × fS  
384 Hz  
Copyright © 2022 Texas Instruments Incorporated  
32  
Submit Document Feedback  
Product Folder Links: PCM3120-Q1  
 
 
PCM3120-Q1  
ZHCSPD4A APRIL 2022 REVISED SEPTEMBER 2022  
www.ti.com.cn  
3
0
-3  
-6  
-9  
-12  
-15  
-18  
-21  
-24  
-27  
-30  
-33  
-36  
-39  
-42  
-45  
HPF -3 dB Cutoff = 0.00025 ì fS  
HPF -3 dB Cutoff = 0.002 ì fS  
HPF -3 dB Cutoff = 0.008 ì fS  
5E-50.0001  
0.001 0.002 0.005 0.01 0.02  
0.05  
Normalized Frequency (1/fS)  
HPF_  
8-17. HPF Filter Frequency Response Plot  
方程1 gives the transfer function for the first-order programmable IIR filter:  
00 + 01VF1  
231 F &1VF1  
: ;  
* V =  
(1)  
The frequency response for this first-order programmable IIR filter with default coefficients is flat at a gain of 0 dB  
(all-pass filter). The host device can override the frequency response by programming the IIR coefficients in 表  
8-18 to achieve the desired frequency response for high-pass filtering or any other desired filtering. If  
HPF_SEL[1:0] are set to 2'b00, the host device must write these coefficients values for the desired frequency  
response before powering-up any ADC channel for recording. 8-18 shows the filter coefficients for the first-  
order IIR filter.  
8-18. 1st-Order IIR Filter Coefficients  
FILTER  
COEFFICIENT  
COEFFICIENT REGISTER  
MAPPING  
FILTER  
DEFAULT COEFFICIENT VALUE  
0x7FFFFFFF  
N0  
N1  
D1  
P4_R72-R75  
P4_R76-R79  
P4_R80-R83  
Programmable 1st-order IIR filter (can be  
allocated to HPF or any other desired filter)  
0x00000000  
0x00000000  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
33  
Product Folder Links: PCM3120-Q1  
 
 
 
PCM3120-Q1  
ZHCSPD4A APRIL 2022 REVISED SEPTEMBER 2022  
www.ti.com.cn  
8.3.6.5 Programmable Digital Biquad Filters  
The device supports up to 12 programmable digital biquad filters. These highly efficient filters achieve the  
desired frequency response. In digital signal processing, a digital biquad filter is a second-order, recursive linear  
filter with two poles and two zeros. 方程2 gives the transfer function of each biquad filter:  
00 + 201VF1 + 02VF2  
231 F 2&1VF1 F &2VF2  
: ;  
* V =  
(2)  
The frequency response for the biquad filter section with default coefficients is flat at a gain of 0 dB (all-pass  
filter). The host device can override the frequency response by programming the biquad coefficients to achieve  
the desired frequency response for a low-pass, high-pass, or any other desired frequency shaping. The  
programmable coefficients for the mixer operation are located in 8.6.4.1 and 8.6.4.2 . If biquad filtering is  
required, then the host device must write these coefficients values before powering up any ADC channels for  
recording. As described in 8-19, these biquad filters can be allocated for each output channel based on the  
BIQUAD_CFG[1:0] register setting of P0_R108. By setting BIQUAD_CFG[1:0] to 2'b00, the biquad filtering for all  
record channels is disabled and the host device can choose this setting if no additional filtering is required for the  
system application. See the TLV320ADCx140 Programmable Biquad Filter Configuration and Applications  
application report for further details.  
8-19. Biquad Filter Allocation to the Record Output Channel  
RECORD OUTPUT CHANNEL ALLOCATION USING P0_R108_D[6:5] REGISTER SETTING  
PROGRAMMABLE  
BIQUAD FILTER  
BIQUAD_CFG[1:0] = 2'b01  
(1 Biquad per Channel)  
BIQUAD_CFG[1:0] = 2'b10 (Default)  
(2 Biquads per Channel)  
BIQUAD_CFG[1:0] = 2'b11  
(3 Biquads per Channel)  
Biquad filter 1  
Biquad filter 2  
Biquad filter 3  
Biquad filter 4  
Biquad filter 5  
Biquad filter 6  
Biquad filter 7  
Biquad filter 8  
Biquad filter 9  
Biquad filter 10  
Biquad filter 11  
Biquad filter 12  
Allocated to output channel 1  
Allocated to output channel 2  
Allocated to output channel 3  
Allocated to output channel 4  
Not used  
Allocated to output channel 1  
Allocated to output channel 2  
Allocated to output channel 3  
Allocated to output channel 4  
Allocated to output channel 1  
Allocated to output channel 2  
Allocated to output channel 3  
Allocated to output channel 4  
Not used  
Allocated to output channel 1  
Allocated to output channel 2  
Allocated to output channel 3  
Allocated to output channel 4  
Allocated to output channel 1  
Allocated to output channel 2  
Allocated to output channel 3  
Allocated to output channel 4  
Allocated to output channel 1  
Allocated to output channel 2  
Allocated to output channel 3  
Allocated to output channel 4  
Not used  
Not used  
Not used  
Not used  
Not used  
Not used  
Not used  
Not used  
Not used  
Not used  
8-20 shows the biquad filter coefficients mapping to the register space.  
8-20. Biquad Filter Coefficients Register Mapping  
PROGRAMMABLE BIQUAD BIQUAD FILTER COEFFICIENTS PROGRAMMABLE BIQUAD BIQUAD FILTER COEFFICIENTS  
FILTER  
REGISTER MAPPING  
FILTER  
REGISTER MAPPING  
Biquad filter 1  
Biquad filter 2  
Biquad filter 3  
Biquad filter 4  
Biquad filter 5  
Biquad filter 6  
P2_R8-R27  
Biquad filter 7  
Biquad filter 8  
Biquad filter 9  
Biquad filter 10  
Biquad filter 11  
Biquad filter 12  
P3_R8-R27  
P2_R28-R47  
P3_R28-R47  
P2_R48-R67  
P3_R48-R67  
P2_R68-R87  
P3_R68-R87  
P2_R88-R107  
P2_R108-R127  
P3_R88-R107  
P3_R108-R127  
Copyright © 2022 Texas Instruments Incorporated  
34  
Submit Document Feedback  
Product Folder Links: PCM3120-Q1  
 
 
 
PCM3120-Q1  
ZHCSPD4A APRIL 2022 REVISED SEPTEMBER 2022  
www.ti.com.cn  
8.3.6.6 Programmable Channel Summer and Digital Mixer  
For applications that require an even higher SNR than that supported for each channel, the device digital  
summing mode can be used. In this mode, the digital record data are summed up across the channel with an  
equal weightage factor, which helps in reducing the effective record noise. 8-21 lists the configuration settings  
available for channel summing mode.  
8-21. Channel Summing Mode Programmable Settings  
SNR AND DYNAMIC RANGE  
P0_R107_D[3:2] : CH_SUM[1:0]  
CHANNEL SUMMING MODE FOR INPUT CHANNELS  
Channel summing mode is disabled  
BOOST  
00 (default)  
Not applicable  
Output channel 1 = (input channel 1 + input channel 2) / 2  
Output channel 2 = (input channel 1 + input channel 2) / 2  
Reserved (do not use this setting)  
Around 3-dB boost in SNR and  
dynamic range  
01  
10  
11  
Not applicable  
Not applicable  
Reserved (do not use this setting)  
The device additionally supports a fully programmable mixer feature that can mix the various input channels with  
their custom programmable scale factor to generate the final output channels. The programmable mixer feature  
is available only if CH_SUM[1:0] is set to 2'b00. The mixer function is supported for all input channels. 8-18  
shows a block diagram that describes the mixer 1 operation to generate output channel 1. The programmable  
coefficients for the mixer operation are located in the 8.6.4.3 section.  
Attenuated by  
Input Channel-1  
MIX1_CH1  
Processed Data  
factor  
Output Channel-1  
Routed to Bi-Quad  
Filter  
+
Attenuated by  
Input Channel-2  
MIX1_CH2  
Processed Data  
factor  
8-18. Programmable Digital Mixer Block Diagram  
A similar mixer operation is performed by mixer 2 to generate output channel 2.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
35  
Product Folder Links: PCM3120-Q1  
 
 
PCM3120-Q1  
ZHCSPD4A APRIL 2022 REVISED SEPTEMBER 2022  
www.ti.com.cn  
8.3.6.7 Configurable Digital Decimation Filters  
The device record channel includes a high dynamic range, built-in digital decimation filter to process the  
oversampled data from the multibit delta-sigma (ΔΣ) modulator to generate digital data at the same Nyquist  
sampling rate as the FSYNC rate. As illustrated in 8-16, this decimation filter can also be used for processing  
the oversampled PDM stream from the digital microphone. The decimation filter can be chosen from three  
different types, depending on the required frequency response, group delay, and phase linearity requirements for  
the target application. The selection of the decimation filter option can be done by configuring the DECI_FILT  
(P0_R107_D[5:4]) register bits. 8-22 shows the configuration register setting for the decimation filter mode  
selection for the record channel.  
8-22. Decimation Filter Mode Selection for the Record Channel  
P0_R107_D[5:4] : DECI_FILT[1:0]  
DECIMATION FILTER MODE SELECTION  
00 (default)  
Linear phase filters are used for the decimation  
01  
10  
11  
Low latency filters are used for the decimation  
Ultra-low latency filters are used for the decimation  
Reserved (do not use this setting)  
8.3.6.7.1 Linear Phase Filters  
The linear phase decimation filters are the default filters set by the device and can be used for all applications  
that require a perfect linear phase with zero-phase deviation within the pass-band specification of the filter. The  
filter performance specifications and various plots for all supported output sampling rates are listed in this  
section.  
8.3.6.7.1.1 Sampling Rate: 7.35 kHz to 8 kHz  
8-19 and 8-20 respectively show the magnitude response and the pass-band ripple for a decimation filter  
with a sampling rate of 7.35 kHz to 8 kHz. 8-23 lists the specifications for a decimation filter with a 7.35-kHz to  
8-kHz sampling rate.  
10  
0
0.5  
0.4  
0.3  
0.2  
0.1  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
0
0.4 0.8 1.2 1.6  
2
Normalized Frequency (1/fS)  
2.4 2.8 3.2 3.6  
4
0
0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5  
Normalized Frequency (1/fS)  
D001  
D001  
8-19. Linear Phase Decimation Filter Magnitude 8-20. Linear Phase Decimation Filter Pass-Band  
Response Ripple  
8-23. Linear Phase Decimation Filter Specifications  
PARAMETER  
TEST CONDITIONS  
MIN  
0.05  
72.7  
TYP  
MAX  
UNIT  
Pass-band ripple  
Frequency range is 0 to 0.454 × fS  
Frequency range is 0.58 × fS to 4 × fS  
Frequency range is 4 × fS onwards  
Frequency range is 0 to 0.454 × fS  
0.05  
dB  
Stop-band attenuation  
Group delay or latency  
dB  
81.2  
17.1  
1/fS  
Copyright © 2022 Texas Instruments Incorporated  
36  
Submit Document Feedback  
Product Folder Links: PCM3120-Q1  
 
 
 
PCM3120-Q1  
ZHCSPD4A APRIL 2022 REVISED SEPTEMBER 2022  
www.ti.com.cn  
8.3.6.7.1.2 Sampling Rate: 14.7 kHz to 16 kHz  
8-21 and 8-22 respectively show the magnitude response and the pass-band ripple for a decimation filter  
with a sampling rate of 14.7 kHz to16 kHz. 8-24 lists the specifications for a decimation filter with a 14.7 kHz  
to 16-kHz sampling rate.  
10  
0
0.5  
0.4  
0.3  
0.2  
0.1  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
0
0.4 0.8 1.2 1.6  
2
Normalized Frequency (1/fS)  
2.4 2.8 3.2 3.6  
4
0
0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5  
Normalized Frequency (1/fS)  
D001  
D001  
8-21. Linear Phase Decimation Filter Magnitude 8-22. Linear Phase Decimation Filter Pass-Band  
Response Ripple  
8-24. Linear Phase Decimation Filter Specifications  
PARAMETER  
TEST CONDITIONS  
MIN  
0.05  
73.3  
TYP  
MAX  
UNIT  
Pass-band ripple  
Frequency range is 0 to 0.454 × fS  
Frequency range is 0.58 × fS to 4 × fS  
Frequency range is 4 × fS onwards  
Frequency range is 0 to 0.454 × fS  
0.05  
dB  
Stop-band attenuation  
Group delay or latency  
dB  
95.0  
15.7  
1/fS  
8.3.6.7.1.3 Sampling Rate: 22.05 kHz to 24 kHz  
8-23 and 8-24 respectively show the magnitude response and the pass-band ripple for a decimation filter  
with a sampling rate of 22.05 kHz to 24 kHz. 8-25 lists the specifications for a decimation filter with a 22.05-  
kHz to 24-kHz sampling rate.  
10  
0
0.5  
0.4  
0.3  
0.2  
0.1  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
0
0.4 0.8 1.2 1.6  
2
Normalized Frequency (1/fS)  
2.4 2.8 3.2 3.6  
4
0
0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5  
Normalized Frequency (1/fS)  
D001  
D001  
8-23. Linear Phase Decimation Filter Magnitude 8-24. Linear Phase Decimation Filter Pass-Band  
Response Ripple  
8-25. Linear Phase Decimation Filter Specifications  
PARAMETER  
TEST CONDITIONS  
MIN  
0.05  
73.0  
TYP  
MAX  
UNIT  
Pass-band ripple  
Frequency range is 0 to 0.454 × fS  
Frequency range is 0.58 × fS to 4 × fS  
Frequency range is 4 × fS onwards  
0.05  
dB  
Stop-band attenuation  
dB  
96.4  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
37  
Product Folder Links: PCM3120-Q1  
 
 
 
 
PCM3120-Q1  
ZHCSPD4A APRIL 2022 REVISED SEPTEMBER 2022  
www.ti.com.cn  
8-25. Linear Phase Decimation Filter Specifications (continued)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Group delay or latency  
Frequency range is 0 to 0.454 × fS  
16.6  
1/fS  
8.3.6.7.1.4 Sampling Rate: 29.4 kHz to 32 kHz  
8-25 and 8-26 respectively show the magnitude response and the pass-band ripple for a decimation filter  
with a sampling rate of 29.4 kHz to 32 kHz. 8-26 lists the specifications for a decimation filter with a 29.4-kHz  
to 32-kHz sampling rate.  
10  
0
0.5  
0.4  
0.3  
0.2  
0.1  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
0
0.4 0.8 1.2 1.6  
2
Normalized Frequency (1/fS)  
2.4 2.8 3.2 3.6  
4
0
0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5  
Normalized Frequency (1/fS)  
D001  
D001  
8-25. Linear Phase Decimation Filter Magnitude 8-26. Linear Phase Decimation Filter Pass-Band  
Response Ripple  
8-26. Linear Phase Decimation Filter Specifications  
PARAMETER  
TEST CONDITIONS  
MIN  
0.05  
73.7  
TYP  
MAX  
UNIT  
Pass-band ripple  
Frequency range is 0 to 0.454 × fS  
Frequency range is 0.58 × fS to 4 × fS  
Frequency range is 4 × fS onwards  
Frequency range is 0 to 0.454 × fS  
0.05  
dB  
Stop-band attenuation  
Group delay or latency  
dB  
107.2  
16.9  
1/fS  
8.3.6.7.1.5 Sampling Rate: 44.1 kHz to 48 kHz  
8-27 and 8-28 respectively show the magnitude response and the pass-band ripple for a decimation filter  
with a sampling rate of 44.1 kHz to 48 kHz. 8-27 lists the specifications for a decimation filter with a 44.1-kHz  
to 48-kHz sampling rate.  
10  
0
0.5  
0.4  
0.3  
0.2  
0.1  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
0
0.4 0.8 1.2 1.6  
2
Normalized Frequency (1/fS)  
2.4 2.8 3.2 3.6  
4
0
0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5  
Normalized Frequency (1/fS)  
D001  
D001  
8-27. Linear Phase Decimation Filter Magnitude 8-28. Linear Phase Decimation Filter Pass-Band  
Response  
Ripple  
Copyright © 2022 Texas Instruments Incorporated  
38  
Submit Document Feedback  
Product Folder Links: PCM3120-Q1  
 
 
 
PCM3120-Q1  
ZHCSPD4A APRIL 2022 REVISED SEPTEMBER 2022  
www.ti.com.cn  
8-27. Linear Phase Decimation Filter Specifications  
PARAMETER  
TEST CONDITIONS  
MIN  
0.05  
73.8  
TYP  
MAX  
UNIT  
Pass-band ripple  
Frequency range is 0 to 0.454 × fS  
Frequency range is 0.58 × fS to 4 × fS  
Frequency range is 4 × fS onwards  
Frequency range is 0 to 0.454 × fS  
0.05  
dB  
Stop-band attenuation  
Group delay or latency  
dB  
98.1  
17.1  
1/fS  
8.3.6.7.1.6 Sampling Rate: 88.2 kHz to 96 kHz  
8-29 and 8-30 respectively show the magnitude response and the pass-band ripple for a decimation filter  
with a sampling rate of 88.2 kHz to 96 kHz. 8-28 lists the specifications for a decimation filter with an 88.2-kHz  
to 96-kHz sampling rate.  
10  
0
0.5  
0.4  
0.3  
0.2  
0.1  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
0
0.4 0.8 1.2 1.6  
2
Normalized Frequency (1/fS)  
2.4 2.8 3.2 3.6  
4
0
0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5  
Normalized Frequency (1/fS)  
D001  
D001  
8-29. Linear Phase Decimation Filter Magnitude 8-30. Linear Phase Decimation Filter Pass-Band  
Response Ripple  
8-28. Linear Phase Decimation Filter Specifications  
PARAMETER  
TEST CONDITIONS  
MIN  
0.05  
73.6  
TYP  
MAX  
UNIT  
Pass-band ripple  
Frequency range is 0 to 0.454 × fS  
Frequency range is 0.58 × fS to 4 × fS  
Frequency range is 4 × fS onwards  
Frequency range is 0 to 0.454 × fS  
0.05  
dB  
Stop-band attenuation  
Group delay or latency  
dB  
97.9  
17.1  
1/fS  
8.3.6.7.1.7 Sampling Rate: 176.4 kHz to 192 kHz  
8-31 and 8-32 respectively show the magnitude response and the pass-band ripple for a decimation filter  
with a sampling rate of 176.4 kHz to 192 kHz. 8-29 lists the specifications for a decimation filter with a 176.4-  
kHz to 192-kHz sampling rate.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
39  
Product Folder Links: PCM3120-Q1  
 
 
 
PCM3120-Q1  
ZHCSPD4A APRIL 2022 REVISED SEPTEMBER 2022  
www.ti.com.cn  
10  
0
0.5  
0.4  
0.3  
0.2  
0.1  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
0
0.4 0.8 1.2 1.6  
2
Normalized Frequency (1/fS)  
2.4 2.8 3.2 3.6  
4
0
0.05  
0.1  
0.15  
0.2  
0.25  
Normalized Frequency (1/fS)  
0.3  
0.35  
0.4  
D001  
D001  
8-31. Linear Phase Decimation Filter Magnitude  
8-32. Linear Phase Decimation Filter Pass-Band  
Response  
Ripple  
8-29. Linear Phase Decimation Filter Specifications  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Pass-band ripple  
Frequency range is 0 to 0.3 × fS  
Frequency range is 0.473 × fS to 4 × fS  
Frequency range is 4 × fS onwards  
Frequency range is 0 to 0.3 × fS  
0.05  
dB  
0.05  
70.0  
Stop-band attenuation  
Group delay or latency  
dB  
111.0  
11.9  
1/fS  
8.3.6.7.1.8 Sampling Rate: 352.8 kHz to 384 kHz  
8-33 and 8-34 respectively show the magnitude response and the pass-band ripple for a decimation filter  
with a sampling rate of 352.8 kHz to 384 kHz. 8-30 lists the specifications for a decimation filter with a 352.8-  
kHz to 384-kHz sampling rate.  
10  
0
0.5  
0.4  
0.3  
0.2  
0.1  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
0
0.4 0.8 1.2 1.6  
2
Normalized Frequency (1/fS)  
2.4 2.8 3.2 3.6  
4
0
0.05  
0.1  
0.15  
Normalized Frequency (1/fS)  
0.2  
0.25  
0.3  
D001  
D001  
8-33. Linear Phase Decimation Filter Magnitude 8-34. Linear Phase Decimation Filter Pass-Band  
Response Ripple  
8-30. Linear Phase Decimation Filter Specifications  
PARAMETER  
TEST CONDITIONS  
MIN  
0.05  
70.0  
TYP  
MAX  
UNIT  
Pass-band ripple  
Frequency range is 0 to 0.212 × fS  
Frequency range is 0.58 × fS to 4 × fS  
Frequency range is 4 × fS onwards  
Frequency range is 0 to 0.212 × fS  
0.05  
dB  
Stop-band attenuation  
Group delay or latency  
dB  
108.8  
7.2  
1/fS  
8.3.6.7.1.9 Sampling Rate: 705.6 kHz to 768 kHz  
8-35 and 8-36 respectively show the magnitude response and the pass-band ripple for a decimation filter  
with a sampling rate of 705.6 kHz to 768 kHz. 8-31 lists the specifications for a decimation filter with a 705.6-  
kHz to 768-kHz sampling rate.  
Copyright © 2022 Texas Instruments Incorporated  
40  
Submit Document Feedback  
Product Folder Links: PCM3120-Q1  
 
 
 
 
PCM3120-Q1  
ZHCSPD4A APRIL 2022 REVISED SEPTEMBER 2022  
www.ti.com.cn  
10  
0
0.5  
0.4  
0.3  
0.2  
0.1  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
0
0.4 0.8 1.2 1.6  
2
Normalized Frequency (1/fS)  
2.4 2.8 3.2 3.6  
4
0
0.05  
0.1  
Normalized Frequency (1/fS)  
0.15  
0.2  
D001  
D001  
8-35. Linear Phase Decimation Filter Magnitude 8-36. Linear Phase Decimation Filter Pass-Band  
Response Ripple  
8-31. Linear Phase Decimation Filter Specifications  
PARAMETER  
TEST CONDITIONS  
MIN  
0.05  
75.0  
TYP  
MAX  
UNIT  
Pass-band ripple  
Frequency range is 0 to 0.113 × fS  
Frequency range is 0.58 × fS to 2 × fS  
Frequency range is 2 × fS onwards  
Frequency range is 0 to 0.113 × fS  
0.05  
dB  
Stop-band attenuation  
Group delay or latency  
dB  
88.0  
5.9  
1/fS  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
41  
Product Folder Links: PCM3120-Q1  
 
 
PCM3120-Q1  
ZHCSPD4A APRIL 2022 REVISED SEPTEMBER 2022  
www.ti.com.cn  
8.3.6.7.2 Low-Latency Filters  
For applications where low latency with minimal phase deviation (within the audio band) is critical, the low-  
latency decimation filters on the PCM3120-Q1 can be used. The device supports these filters with a group delay  
of approximately seven samples with an almost linear phase response within the 0.365 × fS frequency band.  
This section provides the filter performance specifications and various plots for all supported output sampling  
rates for the low-latency filters.  
8.3.6.7.2.1 Sampling Rate: 14.7 kHz to 16 kHz  
8-37 shows the magnitude response and 8-38 shows the pass-band ripple and phase deviation for a  
decimation filter with a sampling rate of 14.7 kHz to 16 kHz. 8-32 lists the specifications for a decimation filter  
with a 14.7-kHz to 16-kHz sampling rate.  
0.5  
0.4  
0.3  
0.2  
0.1  
0
0.5  
0.4  
0.3  
0.2  
0.1  
0
10  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
Pass-Band Ripple  
Phase Deviation  
0
0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5  
Normalized Frequency (1/fS)  
0
0.4 0.8 1.2 1.6  
2
Normalized Frequency (1/fS)  
2.4 2.8 3.2 3.6  
4
D002  
D002  
8-38. Low-Latency Decimation Filter Pass-Band  
8-37. Low-Latency Decimation Filter Magnitude  
Ripple and Phase Deviation  
Response  
8-32. Low-Latency Decimation Filter Specifications  
PARAMETER  
Pass-band ripple  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
dB  
Frequency range is 0 to 0.451 × fS  
Frequency range is 0.61 × fS onwards  
Frequency range is 0 to 0.363 × fS  
Frequency range is 0 to 0.363 × fS  
Frequency range is 0 to 0.363 × fS  
0.05  
0.05  
Stop-band attenuation  
Group delay or latency  
Group delay deviation  
Phase deviation  
87.3  
dB  
7.6  
1/fS  
0.022  
0.25  
1/fS  
0.022  
0.21  
Degrees  
Copyright © 2022 Texas Instruments Incorporated  
42  
Submit Document Feedback  
Product Folder Links: PCM3120-Q1  
 
 
PCM3120-Q1  
ZHCSPD4A APRIL 2022 REVISED SEPTEMBER 2022  
www.ti.com.cn  
8.3.6.7.2.2 Sampling Rate: 22.05 kHz to 24 kHz  
8-39 shows the magnitude response and 8-40 shows the pass-band ripple and phase deviation for a  
decimation filter with a sampling rate of 22.05 kHz to 24 kHz. 8-33 lists the specifications for a decimation  
filter with a 22.05-kHz to 24-kHz sampling rate.  
0.5  
0.4  
0.3  
0.2  
0.1  
0
0.5  
0.4  
0.3  
0.2  
0.1  
0
10  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
Pass-Band Ripple  
Phase Deviation  
0
0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5  
Normalized Frequency (1/fS)  
0
0.4 0.8 1.2 1.6  
2
Normalized Frequency (1/fS)  
2.4 2.8 3.2 3.6  
4
D002  
D002  
8-40. Low-Latency Decimation Filter Pass-Band  
8-39. Low-Latency Decimation Filter Magnitude  
Ripple and Phase Deviation  
Response  
8-33. Low-Latency Decimation Filter Specifications  
PARAMETER  
Pass-band ripple  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
dB  
Frequency range is 0 to 0.459 × fS  
Frequency range is 0.6 × fS onwards  
Frequency range is 0 to 0.365 × fS  
Frequency range is 0 to 0.365 × fS  
Frequency range is 0 to 0.365 × fS  
0.01  
0.01  
Stop-band attenuation  
Group delay or latency  
Group delay deviation  
Phase deviation  
87.2  
dB  
7.5  
1/fS  
0.026  
0.30  
1/fS  
0.026  
0.26  
Degrees  
8.3.6.7.2.3 Sampling Rate: 29.4 kHz to 32 kHz  
8-41 shows the magnitude response and 8-42 shows the pass-band ripple and phase deviation for a  
decimation filter with a sampling rate of 29.4 kHz to 32 kHz. 8-34 lists the specifications for a decimation filter  
with a 29.4-kHz to 32-kHz sampling rate.  
0.5  
0.4  
0.3  
0.2  
0.1  
0
0.5  
0.4  
0.3  
0.2  
0.1  
0
10  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
Pass-Band Ripple  
Phase Deviation  
0
0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5  
Normalized Frequency (1/fS)  
0
0.4 0.8 1.2 1.6  
2
Normalized Frequency (1/fS)  
2.4 2.8 3.2 3.6  
4
D002  
D002  
8-42. Low-Latency Decimation Filter Pass-Band  
8-41. Low-Latency Decimation Filter Magnitude  
Ripple and Phase Deviation  
Response  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
43  
Product Folder Links: PCM3120-Q1  
 
 
 
PCM3120-Q1  
ZHCSPD4A APRIL 2022 REVISED SEPTEMBER 2022  
www.ti.com.cn  
8-34. Low-Latency Decimation Filter Specifications  
PARAMETER  
Pass-band ripple  
TEST CONDITIONS  
MIN  
0.04  
88.3  
TYP  
MAX  
UNIT  
dB  
Frequency range is 0 to 0.457 × fS  
Frequency range is 0.6 × fS onwards  
Frequency range is 0 to 0.368 × fS  
Frequency range is 0 to 0.368 × fS  
Frequency range is 0 to 0.368 × fS  
0.04  
Stop-band attenuation  
Group delay or latency  
Group delay deviation  
Phase deviation  
dB  
8.7  
1/fS  
0.026  
0.31  
1/fS  
0.026  
0.26  
Degrees  
8.3.6.7.2.4 Sampling Rate: 44.1 kHz to 48 kHz  
8-43 shows the magnitude response and 8-44 shows the pass-band ripple and phase deviation for a  
decimation filter with a sampling rate of 44.1 kHz to 48 kHz. 8-35 lists the specifications for a decimation filter  
with a 44.1-kHz to 48-kHz sampling rate.  
0.5  
0.4  
0.3  
0.2  
0.1  
0
0.5  
0.4  
0.3  
0.2  
0.1  
0
10  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
Pass-Band Ripple  
Phase Deviation  
0
0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5  
Normalized Frequency (1/fS)  
0
0.4 0.8 1.2 1.6  
2
Normalized Frequency (1/fS)  
2.4 2.8 3.2 3.6  
4
D002  
D002  
8-44. Low-Latency Decimation Filter Pass-Band  
8-43. Low-Latency Decimation Filter Magnitude  
Ripple and Phase Deviation  
Response  
8-35. Low-Latency Decimation Filter Specifications  
PARAMETER  
Pass-band ripple  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
dB  
Frequency range is 0 to 0.452 × fS  
Frequency range is 0.6 × fS onwards  
Frequency range is 0 to 0.365 × fS  
Frequency range is 0 to 0.365 × fS  
Frequency range is 0 to 0.365 × fS  
0.015  
0.015  
Stop-band attenuation  
Group delay or latency  
Group delay deviation  
Phase deviation  
86.4  
dB  
7.7  
1/fS  
0.027  
0.30  
1/fS  
0.027  
0.25  
Degrees  
Copyright © 2022 Texas Instruments Incorporated  
44  
Submit Document Feedback  
Product Folder Links: PCM3120-Q1  
 
 
 
PCM3120-Q1  
ZHCSPD4A APRIL 2022 REVISED SEPTEMBER 2022  
www.ti.com.cn  
8.3.6.7.2.5 Sampling Rate: 88.2 kHz to 96 kHz  
8-45 shows the magnitude response and 8-46 shows the pass-band ripple and phase deviation for a  
decimation filter with a sampling rate of 88.2 kHz to 96 kHz. 8-36 lists the specifications for a decimation filter  
with an 88.2-kHz to 96-kHz sampling rate.  
0.5  
0.4  
0.3  
0.2  
0.1  
0
0.5  
0.4  
0.3  
0.2  
0.1  
0
10  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
Pass-Band Ripple  
Phase Deviation  
0
0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5  
Normalized Frequency (1/fS)  
0
0.4 0.8 1.2 1.6  
2
Normalized Frequency (1/fS)  
2.4 2.8 3.2 3.6  
4
D002  
D002  
8-46. Low-Latency Decimation Filter Pass-Band  
8-45. Low-Latency Decimation Filter Magnitude  
Ripple and Phase Deviation  
Response  
8-36. Low-Latency Decimation Filter Specifications  
PARAMETER  
Pass-band ripple  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
dB  
Frequency range is 0 to 0.466 × fS  
Frequency range is 0.6 × fS onwards  
Frequency range is 0 to 0.365 × fS  
Frequency range is 0 to 0.365 × fS  
Frequency range is 0 to 0.365 × fS  
0.04  
0.04  
Stop-band attenuation  
Group delay or latency  
Group delay deviation  
Phase deviation  
86.3  
dB  
7.7  
1/fS  
0.027  
0.30  
1/fS  
0.027  
0.26  
Degrees  
8.3.6.7.2.6 Sampling Rate: 176.4 kHz to 192 kHz  
8-47 shows the magnitude response and 8-48 shows the pass-band ripple and phase deviation for a  
decimation filter with a sampling rate of 176.4 kHz to 192 kHz. 8-37 lists the specifications for a decimation  
filter with a 176.4-kHz to 192-kHz sampling rate.  
0.5  
0.4  
0.3  
0.2  
0.1  
0
0.5  
0.4  
0.3  
0.2  
0.1  
0
10  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
Pass-Band Ripple  
Phase Deviation  
0
0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5  
Normalized Frequency (1/fS)  
0
0.4 0.8 1.2 1.6  
2
Normalized Frequency (1/fS)  
2.4 2.8 3.2 3.6  
4
D002  
D002  
8-48. Low-Latency Decimation Filter Pass-Band  
8-47. Low-Latency Decimation Filter Magnitude  
Ripple and Phase Deviation  
Response  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
45  
Product Folder Links: PCM3120-Q1  
 
 
 
PCM3120-Q1  
ZHCSPD4A APRIL 2022 REVISED SEPTEMBER 2022  
www.ti.com.cn  
8-37. Low-Latency Decimation Filter Specifications  
PARAMETER  
Pass-band ripple  
TEST CONDITIONS  
Frequency range is 0 to 463 × fS  
Frequency range is 0.6 × fS onwards  
Frequency range is 0 to 0.365 × fS  
Frequency range is 0 to 0.365 × fS  
Frequency range is 0 to 0.365 × fS  
MIN  
0.03  
85.6  
TYP  
MAX  
UNIT  
dB  
0.03  
Stop-band attenuation  
Group delay or latency  
Group delay deviation  
Phase deviation  
dB  
7.7  
1/fS  
0.027  
0.30  
1/fS  
0.027  
0.26  
Degrees  
8.3.6.7.3 Ultra-Low Latency Filters  
For applications where ultra-low latency (within the audio band) is critical, the ultra-low latency decimation filters  
on the PCM3120-Q1 can be used. The device supports these filters with a group delay of approximately four  
samples with an almost linear phase response within the 0.325 × fS frequency band. This section provides the  
filter performance specifications and various plots for all supported output sampling rates for the ultra-low latency  
filters.  
8.3.6.7.3.1 Sampling Rate: 14.7 kHz to 16 kHz  
8-49 shows the magnitude response and 8-50 shows the pass-band ripple and phase deviation for a  
decimation filter with a sampling rate of 14.7 kHz to 16 kHz. 8-38 lists the specifications for a decimation filter  
with a 14.7-kHz to 16-kHz sampling rate.  
0.5  
0.4  
0.3  
0.2  
0.1  
0
25  
20  
15  
10  
5
10  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
0
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
-5  
-10  
-15  
-20  
-25  
Pass-Band Ripple  
Phase Deviation  
0
0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5  
Normalized Frequency (1/fS)  
0
0.4 0.8 1.2 1.6  
2
Normalized Frequency (1/fS)  
2.4 2.8 3.2 3.6  
4
D003  
D003  
8-50. Ultra-Low-Latency Decimation Filter Pass-  
8-49. Ultra-Low-Latency Decimation Filter  
Band Ripple and Phase Deviation  
Magnitude Response  
8-38. Ultra-Low-Latency Decimation Filter Specifications  
PARAMETER  
Pass-band ripple  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
dB  
Frequency range is 0 to 0.45 × fS  
Frequency range is 0.6 × fS onwards  
Frequency range is 0 to 0.325 × fS  
Frequency range is 0 to 0.325 × fS  
Frequency range is 0 to 0.325 × fS  
0.05  
0.05  
Stop-band attenuation  
Group delay or latency  
Group delay deviation  
Phase deviation  
87.2  
dB  
4.3  
1/fS  
0.512  
14.2  
1/fS  
0.512  
10.0  
Degrees  
Copyright © 2022 Texas Instruments Incorporated  
46  
Submit Document Feedback  
Product Folder Links: PCM3120-Q1  
 
 
 
PCM3120-Q1  
ZHCSPD4A APRIL 2022 REVISED SEPTEMBER 2022  
www.ti.com.cn  
8.3.6.7.3.2 Sampling Rate: 22.05 kHz to 24 kHz  
8-51 shows the magnitude response and 8-52 shows the pass-band ripple and phase deviation for a  
decimation filter with a sampling rate of 22.05 kHz to 24 kHz. 8-39 lists the specifications for a decimation  
filter with a 22.05-kHz to 24-kHz sampling rate.  
0.5  
0.4  
0.3  
0.2  
0.1  
0
25  
20  
15  
10  
5
10  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
0
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
-5  
-10  
-15  
-20  
-25  
Pass-Band Ripple  
Phase Deviation  
0
0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5  
Normalized Frequency (1/fS)  
0
0.4 0.8 1.2 1.6  
2
Normalized Frequency (1/fS)  
2.4 2.8 3.2 3.6  
4
D003  
D003  
8-52. Ultra-Low-Latency Decimation Filter Pass-  
8-51. Ultra-Low-Latency Decimation Filter  
Band Ripple and Phase Deviation  
Magnitude Response  
8-39. Ultra-Low-Latency Decimation Filter Specifications  
PARAMETER  
Pass-band ripple  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
dB  
Frequency range is 0 to 0.46 × fS  
Frequency range is 0.6 × fS onwards  
Frequency range is 0 to 0.325 × fS  
Frequency range is 0 to 0.325 × fS  
Frequency range is 0 to 0.325 × fS  
0.01  
0.01  
Stop-band attenuation  
Group delay or latency  
Group delay deviation  
Phase deviation  
87.1  
dB  
4.1  
1/fS  
0.514  
14.3  
1/fS  
0.514  
10.0  
Degrees  
8.3.6.7.3.3 Sampling Rate: 29.4 kHz to 32 kHz  
8-53 shows the magnitude response and 8-54 shows the pass-band ripple and phase deviation for a  
decimation filter with a sampling rate of 29.4 kHz to 32 kHz. 8-40 lists the specifications for a decimation filter  
with a 29.4-kHz to 32-kHz sampling rate.  
0.5  
0.4  
0.3  
0.2  
0.1  
0
25  
20  
15  
10  
5
10  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
0
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
-5  
-10  
-15  
-20  
-25  
Pass-Band Ripple  
Phase Deviation  
0
0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5  
Normalized Frequency (1/fS)  
0
0.4 0.8 1.2 1.6  
2
Normalized Frequency (1/fS)  
2.4 2.8 3.2 3.6  
4
D003  
D003  
8-54. Ultra-Low-Latency Decimation Filter Pass-  
8-53. Ultra-Low-Latency Decimation Filter  
Band Ripple and Phase Deviation  
Magnitude Response  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
47  
Product Folder Links: PCM3120-Q1  
 
 
 
PCM3120-Q1  
ZHCSPD4A APRIL 2022 REVISED SEPTEMBER 2022  
www.ti.com.cn  
8-40. Ultra-Low-Latency Decimation Filter Specifications  
PARAMETER  
Pass-band ripple  
TEST CONDITIONS  
MIN  
0.04  
88.3  
TYP  
MAX  
UNIT  
dB  
Frequency range is 0 to 0.457 × fS  
Frequency range is 0.6 × fS onwards  
Frequency range is 0 to 0.325 × fS  
Frequency range is 0 to 0.325 × fS  
Frequency range is 0 to 0.325 × fS  
0.04  
Stop-band attenuation  
Group delay or latency  
Group delay deviation  
Phase deviation  
dB  
5.2  
1/fS  
0.492  
13.5  
1/fS  
0.492  
9.5  
Degrees  
8.3.6.7.3.4 Sampling Rate: 44.1 kHz to 48 kHz  
8-55 shows the magnitude response and 8-56 shows the pass-band ripple and phase deviation for a  
decimation filter with a sampling rate of 44.1 kHz to 48 kHz. 8-41 lists the specifications for a decimation filter  
with a 44.1-kHz to 48-kHz sampling rate.  
0.5  
0.4  
0.3  
0.2  
0.1  
0
25  
20  
15  
10  
5
10  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
0
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
-5  
-10  
-15  
-20  
-25  
Pass-Band Ripple  
Phase Deviation  
0
0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5  
Normalized Frequency (1/fS)  
0
0.4 0.8 1.2 1.6  
2
Normalized Frequency (1/fS)  
2.4 2.8 3.2 3.6  
4
D003  
D003  
8-56. Ultra-Low-Latency Decimation Filter Pass-  
8-55. Ultra-Low-Latency Decimation Filter  
Band Ripple and Phase Deviation  
Magnitude Response  
8-41. Ultra-Low-Latency Decimation Filter Specifications  
PARAMETER  
Pass-band ripple  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
dB  
Frequency range is 0 to 0.452 × fS  
Frequency range is 0.6 × fS onwards  
Frequency range is 0 to 0.325 × fS  
Frequency range is 0 to 0.325 × fS  
Frequency range is 0 to 0.325 × fS  
0.015  
0.015  
Stop-band attenuation  
Group delay or latency  
Group delay deviation  
Phase deviation  
86.4  
dB  
4.1  
1/fS  
0.525  
14.5  
1/fS  
0.525  
10.3  
Degrees  
Copyright © 2022 Texas Instruments Incorporated  
48  
Submit Document Feedback  
Product Folder Links: PCM3120-Q1  
 
 
 
PCM3120-Q1  
ZHCSPD4A APRIL 2022 REVISED SEPTEMBER 2022  
www.ti.com.cn  
8.3.6.7.3.5 Sampling Rate: 88.2 kHz to 96 kHz  
8-57 shows the magnitude response and 8-58 shows the pass-band ripple and phase deviation for a  
decimation filter with a sampling rate of 88.2 kHz to 96 kHz. 8-42 lists the specifications for a decimation filter  
with an 88.2-kHz to 96-kHz sampling rate.  
0.5  
0.4  
0.3  
0.2  
0.1  
0
5
10  
0
4
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
3
2
1
0
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
-1  
-2  
-3  
-4  
-5  
Pass-Band Ripple  
Phase Deviation  
0
0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5  
Normalized Frequency (1/fS)  
0
0.4 0.8 1.2 1.6  
2
Normalized Frequency (1/fS)  
2.4 2.8 3.2 3.6  
4
D003  
D003  
8-58. Ultra-Low-Latency Decimation Filter Pass-  
8-57. Ultra-Low-Latency Decimation Filter  
Band Ripple and Phase Deviation  
Magnitude Response  
8-42. Ultra-Low-Latency Decimation Filter Specifications  
PARAMETER  
Pass-band ripple  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
dB  
Frequency range is 0 to 0.466 × fS  
Frequency range is 0.6 × fS onwards  
Frequency range is 0 to 0.1625 × fS  
Frequency range is 0 to 0.1625 × fS  
Frequency range is 0 to 0.1625 × fS  
0.04  
0.04  
Stop-band attenuation  
Group delay or latency  
Group delay deviation  
Phase deviation  
86.3  
dB  
3.7  
1/fS  
0.091  
1.30  
1/fS  
0.091  
0.86  
Degrees  
8.3.6.7.3.6 Sampling Rate: 176.4 kHz to 192 kHz  
8-59 shows the magnitude response and 8-60 shows the pass-band ripple and phase deviation for a  
decimation filter with a sampling rate of 176.4 kHz to 192 kHz. 8-43 lists the specifications for a decimation  
filter with a 176.4-kHz to 192-kHz sampling rate.  
0.5  
0.4  
0.3  
0.2  
0.1  
0
5
10  
0
4
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
3
2
1
0
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
-1  
-2  
-3  
-4  
-5  
Pass-Band Ripple  
Phase Deviation  
0
0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5  
Normalized Frequency (1/fS)  
0
0.4 0.8 1.2 1.6  
2
Normalized Frequency (1/fS)  
2.4 2.8 3.2 3.6  
4
D003  
D003  
8-60. Ultra-Low-Latency Decimation Filter Pass-  
8-59. Ultra-Low-Latency Decimation Filter  
Band Ripple and Phase Deviation  
Magnitude Response  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
49  
Product Folder Links: PCM3120-Q1  
 
 
 
PCM3120-Q1  
ZHCSPD4A APRIL 2022 REVISED SEPTEMBER 2022  
www.ti.com.cn  
8-43. Ultra-Low-Latency Decimation Filter Specifications  
PARAMETER  
Pass-band ripple  
TEST CONDITIONS  
Frequency range is 0 to 0.463 × fS  
Frequency range is 0.6 × fS onwards  
Frequency range is 0 to 0.085 × fS  
Frequency range is 0 to 0.085 × fS  
Frequency range is 0 to 0.085 × fS  
MIN  
0.03  
85.6  
TYP  
MAX  
UNIT  
dB  
0.03  
Stop-band attenuation  
Group delay or latency  
Group delay deviation  
Phase deviation  
dB  
3.7  
1/fS  
0.024  
0.18  
1/fS  
0.024  
0.12  
Degrees  
8.3.6.7.3.7 Sampling Rate: 352.8 kHz to 384 kHz  
8-61 shows the magnitude response and 8-62 shows the pass-band ripple and phase deviation for a  
decimation filter with a sampling rate of 352.8 kHz to 384 kHz. 8-44 lists the specifications for a decimation  
filter with a 352.8-kHz to 384-kHz sampling rate.  
0.5  
0.4  
0.3  
0.2  
0.1  
0
2
10  
0
1.6  
1.2  
0.8  
0.4  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
-0.4  
-0.8  
-1.2  
-1.6  
-2  
Pass-Band Ripple  
Phase Deviation  
0
0.05  
0.1 0.15  
Normalized Frequency (1/fS)  
0.2  
0.25  
0
0.4 0.8 1.2 1.6  
2
Normalized Frequency (1/fS)  
2.4 2.8 3.2 3.6  
4
D002  
D002  
8-62. Ultra-Low-Latency Decimation Filter Pass-  
8-61. Ultra-Low-Latency Decimation Filter  
Band Ripple and Phase Deviation  
Magnitude Response  
8-44. Ultra-Low-Latency Decimation Filter Specifications  
PARAMETER  
Pass-band ripple  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
dB  
Frequency range is 0 to 0.1 × fS  
Frequency range is 0.56 × fS onwards  
Frequency range is 0 to 0.157 × fS  
Frequency range is 0 to 0.157 × fS  
Frequency range is 0 to 0.157 × fS  
0.01  
0.04  
Stop-band attenuation  
Group delay or latency  
Group delay deviation  
Phase deviation  
70.1  
dB  
4.1  
1/fS  
0.18  
2.07  
1/fS  
0.18  
0.85  
Degrees  
Copyright © 2022 Texas Instruments Incorporated  
50  
Submit Document Feedback  
Product Folder Links: PCM3120-Q1  
 
 
 
PCM3120-Q1  
ZHCSPD4A APRIL 2022 REVISED SEPTEMBER 2022  
www.ti.com.cn  
8.3.7 Automatic Gain Controller (AGC)  
The device includes an automatic gain controller (AGC) for ADC recording. As shown in 8-63, the AGC can  
be used to maintain a nominally constant output level when recording speech. Instead of manually setting the  
channel gain in AGC mode, the circuitry automatically adjusts the channel gain when the input signal becomes  
overly loud or very weak, such as when a person speaking into a microphone moves closer to or farther from the  
microphone. The AGC algorithm has several programmable parameters, including target level, maximum gain  
allowed, attack and release (or decay) time constants, and noise thresholds that allow the algorithm to be fine-  
tuned for any particular application.  
Input  
Signal  
Output  
Signal  
Target  
Level  
AGC  
Gain  
Decay Time  
Attack  
Time  
8-63. AGC Characteristics  
The target level (AGC_LVL) represents the nominal approximate output level at which the AGC attempts to hold  
the ADC output signal level. The PCM3120-Q1 allows programming of different target levels, which can be  
programmed from 6 dB to 36 dB relative to a full-scale signal, and the AGC_LVL default value is set to –  
34 dB. The target level is recommended to be set with enough margin to prevent clipping when loud sounds  
occur. 8-45 lists the AGC target level configuration settings.  
8-45. AGC Target Level Programmable Settings  
P0_R112_D[7:4] : AGC_LVL[3:0]  
AGC TARGET LEVEL FOR OUTPUT  
0000  
0001  
0010  
The AGC target level is the 6-dB output signal level  
The AGC target level is the 8-dB output signal level  
The AGC target level is the 10-dB output signal level  
1110 (default)  
The AGC target level is the 34-dB output signal level  
The AGC target level is the 36-dB output signal level  
1111  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
51  
Product Folder Links: PCM3120-Q1  
 
 
PCM3120-Q1  
ZHCSPD4A APRIL 2022 REVISED SEPTEMBER 2022  
www.ti.com.cn  
The maximum gain allowed (AGC_MAXGAIN) gives flexibility to the designer to restrict the maximum gain  
applied by the AGC. This feature limits the channel gain in situations where environmental noise is greater than  
the programmed noise threshold. The AGC_MAXGAIN can be programmed from 3 dB to 42 dB with steps of  
3 dB and the default value is set to 24 dB. 8-46 lists the AGC_MAXGAIN configuration settings.  
8-46. AGC Maximum Gain Programmable Settings  
P0_R112_D[3:0] :  
AGC MAXIMUM GAIN ALLOWED  
AGC_MAXGAIN[3:0]  
0000  
0001  
0010  
The AGC maximum gain allowed is 3 dB  
The AGC maximum gain allowed is 6 dB  
The AGC maximum gain allowed is 9 dB  
0111 (default)  
The AGC maximum gain allowed is 24 dB  
1110  
1111  
The AGC maximum gain allowed is 39 dB  
The AGC maximum gain allowed is 42 dB  
For further details on the AGC various configurable parameter and application use, see the Using the Automatic  
Gain Controller (AGC) in TLV320ADCx120 Family application report.  
8.3.8 Voice Activity Detection (VAD)  
The PCM3120-Q1 supports voice activity detection (VAD) mode. In this mode, the PCM3120-Q1 continuously  
monitors one of the input channels for voice detection. The device consumes low quiescent current from the  
AVDD supply in this mode. This feature can be enabled by setting VAD_EN (P0_R117_D0) to 1'b1. On detecting  
voice activity, the PCM3120-Q1 can alert the host through an interrupt or auto wake up and start recording  
based on the I2C programmed configuration. This alert can be configured through the VAD_MODE  
(P1_R30_D[7:6]) register bits.  
This feature is supported on both the analog and digital microphone interfaces. For lowest power VAD, the digital  
microphone interface is recommended. The input channel for the VAD can be selected by setting the  
VAD_CH_SEL (P1_R30_D[5:4]) register bits to an appropriate value. See the Using the Voice Activity Detector  
(VAD) in the TLV320ADC5120 and TLV320ADC6120 application report for further details.  
Copyright © 2022 Texas Instruments Incorporated  
52  
Submit Document Feedback  
Product Folder Links: PCM3120-Q1  
 
PCM3120-Q1  
ZHCSPD4A APRIL 2022 REVISED SEPTEMBER 2022  
www.ti.com.cn  
8.3.9 Digital PDM Microphone Record Channel  
In addition to supporting analog microphones, the device also interfaces to digital pulse-density-modulation  
(PDM) microphones and uses high-order and high-performance decimation filters to generate pulse code  
modulation (PCM) output data that can be transmitted on the audio serial interface to the host. The device  
supports up to four digital microphone recording channels. If the second channel analog microphone is not used  
in the system, then the analog input pins (IN2P and IN2M) can be repurposed as the GPI1 and GPO1 pins,  
respectively, and can be configured for the PDMDIN1 and PDMCLK clocks for digital PDM microphone  
recording. GPIO1 or GPI2 (multiplexed with MICBIAS) can be used as PDMDIN2 to enable four-channel PDM  
microphone recording. If two-channel analog input recording is needed, MICBIAS (configured as GPI2) and  
GPIO1 can be used as PDMDIN and PDMCLK, respectively, to enable two-channel DMIC recording along with  
two-channel AIN recording. The device can support a total of four channels at the input (analog and digital).  
The device internally generates PDMCLK with a programmable frequency of either 6.144 MHz, 3.072 MHz,  
1.536 MHz, or 768 kHz (for output data sample rates in multiples or submultiples of 48 kHz) or 5.6448 MHz,  
2.8224 MHz, 1.4112 MHz, or 705.6 kHz (for output data sample rates in multiples or submultiples of 44.1 kHz)  
using the PDMCLK_DIV[1:0] (P0_R31_D[1:0]) register bits. PDMCLK can be routed on the GPO1 and GPIO1  
pins. This clock can be connected to the external digital microphone device. 8-64 shows a connection  
diagram of the digital PDM microphones.  
VDD  
VDD  
VDD  
IOVDD  
DATA  
Digital  
PDM  
SEL  
Microphone  
U1  
CLK  
GND  
GND  
PCMx120-Q1  
VDD  
VDD  
SEL  
GPIx (PDMDINx)  
GPOx (PDMCLK)  
DATA  
CLK  
Digital  
PDM  
Microphone  
U2  
GND  
GND  
8-64. Digital PDM Microphones Connection Diagram for the PCM3120-Q1  
The single-bit output of the external digital microphone device can be connected to the GPIx pin. This single  
data line can be shared by two digital microphones to place their data on the opposite edge of PDMCLK.  
Internally, the device latches the steady value of the data on either the rising or falling edge of PDMCLK based  
on the configuration register bits set in P0_R32_D[7:4]. 8-65 shows the digital PDM microphone interface  
timing diagram.  
PDMCLK  
PDMDINx  
D1[n]  
D2[n]  
D1[n+1]  
D2[n+1]  
D1[n+2]  
Mic-1  
Data  
Mic-2  
Data  
Mic-1  
Data  
Mic-2  
Data  
Mic-1  
Data  
(n+1)th Sample  
(n+2)th Sample  
nth Sample  
8-65. Digital PDM Microphone Protocol Timing Diagram  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
53  
Product Folder Links: PCM3120-Q1  
 
 
PCM3120-Q1  
ZHCSPD4A APRIL 2022 REVISED SEPTEMBER 2022  
www.ti.com.cn  
When the digital microphone is used for recording, the analog blocks of the respective ADC channel are  
powered down and bypassed for power efficiency. Use the CH1_INSRC[1:0] (P0_R60_D[6:5]) and  
CH2_INSRC[1:0] (P0_R65_D[6:5]) register bits to select the analog microphone or digital microphone for  
channel 1 to channel 2. Channel 3 and channel 4 support only the digital microphone interface.  
8.3.10 Interrupts, Status, and Digital I/O Pin Multiplexing  
Certain events in the device may require host processor intervention and can be used to trigger interrupts to the  
host processor. One such event is an audio serial interface (ASI) bus error. The device powers down the record  
channels if any faults are detected with the ASI bus error clocks, such as:  
Invalid FSYNC frequency  
Invalid SBCLK to FSYNC ratio  
Long pauses of the SBCLK or FSYNC clocks  
When an ASI bus clock error is detected, the device shuts down the record channel as quickly as possible. After  
all ASI bus clock errors are resolved, the device volume ramps back to its previous state to recover the record  
channel. During an ASI bus clock error, the internal interrupt request (IRQ) interrupt signal asserts low if the  
clock error interrupt mask register bit INT_MASK0[7] (P0_R51_D7) is set low. The clock fault is also available for  
readback in the latched fault status register bit INT_LTCH0 (P0_R54), which is a read-only register. Reading the  
latched fault status register, INT_LTCH0, clears all latched fault status. The device can be additionally configured  
to route the internal IRQ interrupt signal on the GPIO1 or GPOx pins and also can be configured as open-drain  
outputs so that these pins can be wire-ANDed to the open-drain interrupt outputs of other devices.  
The IRQ interrupt signal can either be configured as active low or active high polarity by setting the INT_POL  
(P0_R50_D7) register bit. This signal can also be configured as a single pulse or a series of pulses by  
programming the INT_EVENT[1:0] (P0_R50_D[6:5]) register bits. If the interrupts are configured as a series of  
pulses, the events trigger the start of pulses that stop when the latched fault status register is read to determine  
the cause of the interrupt.  
The device also supports read-only live-status registers to determine if the channels are powered up or down  
and if the device is in sleep mode or not. These status registers are located in the DEV_STS0 (P0_R118) and  
DEV_STS1 (P0_R119) register bits.  
The device has a multifunctional GPIO1 pin that can be configured for a desired specific function. Additionally, if  
the channel is not used for analog input recording, then the analog input pins for that channel (INxP and INxM)  
can be repurposed as multifunction pins (GPIx and GPOx) by configuring the CHx_INSRC[1:0] register bits  
located in the CHx_CFG0 register. The maximum number of GPO pins supported by the device is four and the  
maximum number of GPI pins are four. 8-47 lists all possible allocations of these multifunctional pins for the  
various features.  
Copyright © 2022 Texas Instruments Incorporated  
54  
Submit Document Feedback  
Product Folder Links: PCM3120-Q1  
PCM3120-Q1  
ZHCSPD4A APRIL 2022 REVISED SEPTEMBER 2022  
www.ti.com.cn  
8-47. Multifunction Pin Assignments  
ROW  
PIN FUNCTION(3)  
GPIO1  
GPO1  
GPI1  
GPI2  
GPIO1_CFG  
GPO1_CFG  
GPI1_CFG  
GPI2_CFG  
A
B
C
D
E
F
P0_R33[7:4]  
P0_R34[7:4]  
P0_R43[6:4]  
P0_R43[2:0]  
Pin disabled  
S(1)  
S (default)  
S (default)  
S (default)  
General-purpose output (GPO)  
Interrupt output (IRQ)  
S
S
NS(2)  
NS  
S
NS  
NS  
S
S (default)  
S
Power down for all ADC channels  
PDM clock output (PDMCLK)  
MiCBIAS on/off input (BIASEN)  
General-purpose input (GPI)  
Master clock input (MCLK)  
ASI daisy-chain input (SDIN)  
PDM data input 1 (PDMDIN1)  
PDM data input 2 (PDMDIN2)  
S
S
S
S
S
S
S
S
NS  
S
NS  
NS  
S
NS  
NS  
S
NS  
NS  
NS  
NS  
NS  
NS  
G
H
I
S
S
S
S
J
S
S
K
S
S
(1) S means the feature mentioned in this row is supported for the respective GPIO1, GPOx, or GPIx pin mentioned in this column.  
(2) NS means the feature mentioned in this row is not supported for the respective GPIO1, GPOx, or GPIx pin mentioned in this column.  
(3) Only the GPIO1 pin is with reference to the IOVDD supply, the other GPOx and GPIx pins are with reference to the AVDD supply and  
their primary pin functions are for the PDMCLK or PDMDIN function.  
Each GPOx or GPIOx pin can be independently set for the desired drive configurations setting using the  
GPOx_DRV[3:0] or GPIO1_DRV[3:0] register bits. 8-48 lists the drive configuration settings.  
8-48. GPIO or GPOx Pins Drive Configuration Settings  
P0_R33_D[3:0] : GPIO1_DRV[3:0]  
GPIO OUTPUT DRIVE CONFIGURATION SETTINGS FOR GPIO1  
000  
001  
The GPIO1 pin is set to high impedance (floated)  
The GPIO1 pin is set to be driven active low or active high  
The GPIO1 pin is set to be driven active low or weak high (on-chip pullup)  
The GPIO1 pin is set to be driven active low or Hi-Z (floated)  
The GPIO1 pin is set to be driven weak low (on-chip pulldown) or active high  
The GPIO1 pin is set to be driven Hi-Z (floated) or active high  
Reserved (do not use these settings)  
010 (default)  
011  
100  
101  
110 and 111  
Similarly, the GPO1 pin can be configured using the GPO1_DRV(P0_R34) register bits.  
When configured as a general-purpose output (GPO), the GPIO1 or GPOx pin values can be driven by writing  
the GPIO_VAL or GPOx_VAL (P0_R41) registers. The GPIO_MON (P0_R42) register can be used to readback  
the status of the GPIO1 pin when configured as a general-purpose input (GPI). Similarly, the GPI_MON  
(P0_R47) register can be used to readback the status of the GPIx pins when configured as a general-purpose  
input (GPI).  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
55  
Product Folder Links: PCM3120-Q1  
 
 
 
 
 
PCM3120-Q1  
ZHCSPD4A APRIL 2022 REVISED SEPTEMBER 2022  
www.ti.com.cn  
8.4 Device Functional Modes  
8.4.1 Sleep Mode or Software Shutdown  
In sleep mode or software shutdown mode, the device consumes very low quiescent current from the AVDD  
supply and, at the same time, allows the I2C communication to wake the device for active operation.  
The device enters sleep mode when the host device sets the SLEEP_ENZ (P0_R2_D0) bit to 1'b0. If the  
SLEEP_ENZ bit is asserted low when the device is in active mode, the device ramps down the volume on the  
record data, powers down the analog and digital blocks, and enters sleep mode. However, the device still  
continues to retain the last programmed value of the device configuration registers and programmable  
coefficients.  
In sleep mode, do not perform any I2C transactions, except for exiting sleep mode in order to enter active mode.  
After entering sleep mode, wait at least 10 ms before starting I2C transactions to exit sleep mode.  
When exiting sleep mode, the host device must configure the PCM3120-Q1 to use either an external 1.8-V  
AREG supply (default setting) or an on-chip-regulator-generated AREG supply. To configure the AREG supply,  
write to AREG_SELECT, bit D7 in the same P0_R2 register.  
8.4.2 Active Mode  
If the host device exits sleep mode by setting the SLEEP_ENZ bit to 1'b1, the device enters active mode. In  
active mode, I2C transactions can be done to configure and power-up the device for active operation. After  
entering active mode, wait at least 1 ms before starting any I2C transactions in order to allow the device to  
complete the internal wake-up sequence.  
Read and write operations to the programmable coefficient registers in page 2, page 3, and page 4, and to the  
channel configuration registers (CHx_CFG[1:4]), and AGC_CFG0 in page 0 must be done 10 ms after exiting  
sleep mode.  
After configuring all other registers for the target application and system settings, configure the input and output  
channel enable registers, IN_CH_EN (P0_R115) and ASI_OUT_CH_EN (P0_R116), respectively. Lastly,  
configure the device power-up register, PWR_CFG (P0_R117). All programmable coefficient values must be  
written before powering up the respective channel.  
In active mode, the power-up and power-down status of various blocks is monitored by reading the read-only  
device status bits located in the DEV_STS0 (P0_R117) and DEV_STS1 (P0_R118) registers.  
8.4.3 Software Reset  
A software reset can be done any time by asserting the SW_RESET (P0_R1_D0) register bit, which is a self-  
clearing bit. This software reset immediately shuts down the device, and restores all device configuration  
registers and programmable coefficients to their default values.  
Copyright © 2022 Texas Instruments Incorporated  
56  
Submit Document Feedback  
Product Folder Links: PCM3120-Q1  
 
 
 
PCM3120-Q1  
ZHCSPD4A APRIL 2022 REVISED SEPTEMBER 2022  
www.ti.com.cn  
8.5 Programming  
The device contains configuration registers and programmable coefficients that can be set to the desired values  
for a specific system and application use. These registers are called device control registers and are each eight  
bits in width, mapped using a page scheme.  
Each page contains 128 configuration registers. All device configuration registers are stored in page 0, which is  
the default page setting at power up and after a software reset. All programmable coefficient registers are  
located in page 2, page 3, and page 4. The current page of the device can be switched to a new desired page by  
using the PAGE[7:0] bits located in register 0 of every page.  
8.5.1 Control Serial Interfaces  
The device control registers can be accessed using I2C communication to the device. The device operates with  
a fixed I2C address and can be configured using this address.  
8.5.1.1 I2C Control Interface  
The device supports the I2C control protocol as a target device, and is capable of operating in standard mode,  
fast mode, and fast mode plus. The I2C control protocol requires a 7-bit target address. The 7-bit target address  
is fixed at 1001110 and cannot be changed. If the I2C_BRDCAST_EN (P0_R2_D2) bit is set to 1'b1, then the I2C  
target address is fixed to 1001100 in order to allow simultaneous I2C broadcast communication to multiple  
devices in the system, including the PCMx140-Q1, PCMD3140-Q1, and PCMD3180-Q1 devices. 8-49 lists  
the possible device addresses resulting from this configuration.  
8-49. I2C Target Address Settings  
I2C_BRDCAST_EN (P0_R2_D2)  
I2C TARGET ADDRESS  
0 (default)  
1
1001 110  
1001 100  
8.5.1.1.1 General I2C Operation  
The I2C bus employs two signals, SDA (data) and SCL (clock), to communicate between integrated circuits in a  
system using serial data transmission. The address and data 8-bit bytes are transferred MSB first. In addition,  
each byte transferred on the bus is acknowledged by the receiving device with an acknowledge bit. Each  
transfer operation begins with the controller device driving a start condition on the bus and ends with the  
controller device driving a stop condition on the bus. The bus uses transitions on the data pin (SDA) while the  
clock is at logic high to indicate start and stop conditions. A high-to-low transition on SDA indicates a start, and a  
low-to-high transition indicates a stop. Normal data-bit transitions must occur within the low time of the clock  
period.  
The controller device drives a start condition followed by the 7-bit target address and the read/write (R/W) bit to  
open communication with another device and then waits for an acknowledgment condition. The target device  
holds SDA low during the acknowledge clock period to indicate acknowledgment. When this occurs, the  
controller device transmits the next byte of the sequence. Each target device is addressed by a unique 7-bit  
target address plus the R/W bit (1 byte). All compatible devices share the same signals via a bidirectional bus  
using a wired-AND connection.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
57  
Product Folder Links: PCM3120-Q1  
 
 
 
PCM3120-Q1  
ZHCSPD4A APRIL 2022 REVISED SEPTEMBER 2022  
www.ti.com.cn  
There is no limit on the number of bytes that can be transmitted between start and stop conditions. When the last  
word transfers, the controller device generates a stop condition to release the bus. 8-66 shows a generic data  
transfer sequence.  
8- Bit Data for  
Register (N)  
8- Bit Data for  
Register (N+1)  
8-66. Typical I2C Sequence  
In the system, use external pullup resistors for the SDA and SCL signals to set the logic high level for the bus.  
The SDA and SCL voltages must not exceed the device supply voltage, IOVDD.  
8.5.1.1.1.1 I2C Single-Byte and Multiple-Byte Transfers  
The device I2C interface supports both single-byte and multiple-byte read/write operations for all registers.  
During multiple-byte read operations, the device responds with data, a byte at a time, starting at the register  
assigned, as long as the controller device continues to respond with acknowledges.  
The device supports sequential I2C addressing. For write transactions, if a register is issued followed by data for  
that register and all the remaining registers that follow, a sequential I2C write transaction takes place. For I2C  
sequential write transactions, the register issued then serves as the starting point, and the amount of data  
subsequently transmitted, before a stop or start is transmitted, determines how many registers are written.  
8.5.1.1.1.1.1 I2C Single-Byte Write  
As shown in 8-67, a single-byte data write transfer begins with the controller device transmitting a start  
condition followed by the I2C device address and the read/write bit. The read/write bit determines the direction of  
the data transfer. For a write-data transfer, the read/write bit must be set to 0. After receiving the correct I2C  
target address and the read/write bit, the device responds with an acknowledge bit (ACK). Next, the controller  
device transmits the register byte corresponding to the device internal register address being accessed. After  
receiving the register byte, the device again responds with an acknowledge bit (ACK). Then, the controller  
transmits the byte of data to be written to the specified register. When finished, the target device responds with  
an acknowledge bit (ACK). Finally, the controller device transmits a stop condition to complete the single-byte  
data write transfer.  
Start  
Condition  
Acknowledge  
Acknowledge  
Acknowledge  
R/W  
ACK A7 A6 A5 A4 A3 A2 A1 A0 ACK D7 D6 D5 D4 D3 D2 D1 D0 ACK  
A6 A5 A4  
A3 A2 A1 A0  
Stop  
2
I C Device Address and  
Read/Write Bit  
Register  
Data Byte  
Condition  
8-67. I2C Single-Byte Write Transfer  
Copyright © 2022 Texas Instruments Incorporated  
58  
Submit Document Feedback  
Product Folder Links: PCM3120-Q1  
 
 
PCM3120-Q1  
ZHCSPD4A APRIL 2022 REVISED SEPTEMBER 2022  
www.ti.com.cn  
8.5.1.1.1.1.2 I2C Multiple-Byte Write  
As shown in 8-68, a multiple-byte data write transfer is identical to a single-byte data write transfer except that  
multiple data bytes are transmitted by the controller device to the target device. After receiving each data byte,  
the device responds with an acknowledge bit (ACK). Finally, the controller device transmits a stop condition after  
the last data-byte write transfer.  
Register  
8-68. I2C Multiple-Byte Write Transfer  
8.5.1.1.1.1.3 I2C Single-Byte Read  
As shown in 8-69, a single-byte data read transfer begins with the controller device transmitting a start  
condition followed by the I2C target address and the read/write bit. For the data read transfer, both a write  
followed by a read are done. Initially, a write is done to transfer the address byte of the internal register address  
to be read. As a result, the read/write bit is set to 0.  
After receiving the target address and the read/write bit, the device responds with an acknowledge bit (ACK).  
The controller device then sends the internal register address byte, after which the device issues an  
acknowledge bit (ACK). The controller device transmits another start condition followed by the target address  
and the read/write bit again. This time, the read/write bit is set to 1, indicating a read transfer. Next, the device  
transmits the data byte from the register address being read. After receiving the data byte, the controller device  
transmits a not-acknowledge (NACK) followed by a stop condition to complete the single-byte data read transfer.  
Repeat Start  
Condition  
Not  
Start  
Acknowledge  
Condition  
Acknowledge  
Acknowledge  
A0 ACK  
Acknowledge  
A6 A5  
A1 A0 R/W ACK A7 A6 A5 A4  
A6 A5  
A1 A0 R/W ACK D7 D6  
D1 D0 ACK  
2
2
Stop  
Condition  
I C Device Address and  
Read/Write Bit  
Register  
I C Device Address and  
Read/Write Bit  
Data Byte  
8-69. I2C Single-Byte Read Transfer  
8.5.1.1.1.1.4 I2C Multiple-Byte Read  
As shown in 8-70, a multiple-byte data read transfer is identical to a single-byte data read transfer except that  
multiple data bytes are transmitted by the device to the controller device. With the exception of the last data byte,  
the controller device responds with an acknowledge bit after receiving each data byte. After receiving the last  
data byte, the controller device transmits a not-acknowledge (NACK) followed by a stop condition to complete  
the data read transfer.  
Repeat Start  
Condition  
Not  
Start  
Acknowledge  
Condition  
Acknowledge  
Acknowledge  
A0 ACK  
Acknowledge  
Acknowledge  
Acknowledge  
D0 ACK D7  
A6  
A0 R/W ACK A7 A6 A5  
A6  
A0 R/W ACK D7  
D0 ACK D7  
D0 ACK  
2
2
Register  
Stop  
Condition  
I C Device Address and  
Read/Write Bit  
I C Device Address and  
Read/Write Bit  
First Data Byte  
Other Data Bytes  
Last Data Byte  
8-70. I2C Multiple-Byte Read Transfer  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
59  
Product Folder Links: PCM3120-Q1  
 
 
 
PCM3120-Q1  
ZHCSPD4A APRIL 2022 REVISED SEPTEMBER 2022  
www.ti.com.cn  
8.6 Register Maps  
This section describes the control registers for the device in detail. All registers are eight bits in width and are  
allocated to device configuration and programmable coefficients settings. These registers are mapped internally  
using a page scheme that can be controlled using I2C communication to the device. Each page contains 128  
bytes of registers. All device configuration registers are stored in page 0, which is the default page setting at  
power up (and after a software reset). All programmable coefficient registers are located in page 2, page 3, and  
page 4. The device current page can be switch to a new desired page by using the PAGE[7:0] bits located in  
register 0 of every page.  
Do not read from or write to reserved pages or reserved registers. Write only default values for the reserved bits  
in the valid registers.  
The procedure for register access across pages is:  
Select page N (write data N to register 0 regardless of the current page number)  
Read or write data from or to valid registers in page N  
Select the new page M (write data M to register 0 regardless of the current page number)  
Read or write data from or to valid registers in page M  
Repeat as needed  
8.6.1 Device Configuration Registers  
This section describes the device configuration registers for page 0 and page 1.  
8.6.1.1 PCM3120-Q1 Access Codes  
8.6.1.1 lists the access codes used for the PCM3120-Q1 registers.  
8-50. PCMx120-Q1 Access Type Codes  
ACCESS TYPE  
CODE  
DESCRIPTION  
Read Type  
R
R
Read  
R-W  
R/W  
Read or write  
Write Type  
W
W
Write  
Reset or Default Value  
-n  
Value after reset or the default value  
Copyright © 2022 Texas Instruments Incorporated  
60  
Submit Document Feedback  
Product Folder Links: PCM3120-Q1  
 
 
PCM3120-Q1  
ZHCSPD4A APRIL 2022 REVISED SEPTEMBER 2022  
www.ti.com.cn  
8.6.2 Page 0 Registers  
8-51 lists the memory-mapped registers for the Page 0 registers. All register offset addresses not listed in 表  
8-51 should be considered as reserved locations and the register contents should not be modified.  
8-51. PAGE 0 Registers  
Address  
0x0  
Acronym  
Register Name  
Reset Value  
0x00  
0x00  
0x00  
0x05  
0x30  
0x00  
0x00  
0x00  
0x00  
0x01  
0x02  
0x03  
0x02  
0x48  
0xFF  
0x10  
0x40  
0x00  
0x22  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0xFF  
0x00  
0x00  
0x00  
0x00  
0x00  
0xC9  
0x80  
0x00  
0x00  
0x00  
0xC9  
0x80  
0x00  
Section  
PAGE_CFG  
SW_RESET  
SLEEP_CFG  
SHDN_CFG  
ASI_CFG0  
ASI_CFG1  
ASI_CFG2  
ASI_MIX_CFG  
ASI_CH1  
Device page register  
8.6.2.1  
8.6.2.2  
8.6.2.3  
8.6.2.4  
8.6.2.5  
8.6.2.6  
8.6.2.7  
8.6.2.8  
8.6.2.9  
8.6.2.10  
8.6.2.11  
8.6.2.12  
8.6.2.13  
8.6.2.14  
8.6.2.15  
8.6.2.16  
8.6.2.17  
8.6.2.18  
8.6.2.19  
8.6.2.20  
8.6.2.21  
8.6.2.22  
8.6.2.23  
8.6.2.24  
8.6.2.25  
8.6.2.26  
8.6.2.27  
8.6.2.28  
8.6.2.29  
8.6.2.30  
8.6.2.31  
8.6.2.32  
8.6.2.33  
8.6.2.34  
8.6.2.35  
8.6.2.36  
8.6.2.37  
8.6.2.38  
8.6.2.39  
0x1  
Software reset register  
0x2  
Sleep mode register  
0x5  
Shutdown configuration register  
ASI configuration register 0  
0x7  
0x8  
ASI configuration register 1  
0x9  
ASI configuration register 2  
0xA  
ASI input mixing configuration register  
Channel 1 ASI slot configuration register  
Channel 2 ASI slot configuration register  
Channel 3 ASI slot configuration register  
Channel 4 ASI slot configuration register  
ASI master mode configuration register 0  
ASI master mode configuration register 1  
ASI bus clock monitor status register  
Clock source configuration register 0  
PDM clock generation configuration register  
PDM DINx sampling edge register  
GPIO configuration register 0  
0xB  
0xC  
ASI_CH2  
0xD  
ASI_CH3  
0xE  
ASI_CH4  
0x13  
0x14  
0x15  
0x16  
0x1F  
0x20  
0x21  
0x22  
0x29  
0x2A  
0x2B  
0x2F  
0x32  
0x33  
0x36  
0x3A  
0x3B  
0x3C  
0x3D  
0x3E  
0x3F  
0x40  
0x41  
0x42  
0x43  
0x44  
0x45  
MST_CFG0  
MST_CFG1  
ASI_STS  
CLK_SRC  
PDMCLK_CFG  
PDMIN_CFG  
GPIO_CFG0  
GPO_CFG0  
GPO_VAL  
GPO configuration register 0  
GPIO, GPO output value register  
GPIO monitor value register  
GPIO_MON  
GPI_CFG0  
GPI_MON  
GPI configuration register 0  
GPI monitor value register  
INT_CFG  
Interrupt configuration register  
Interrupt mask register 0  
INT_MASK0  
INT_LTCH0  
CM_TOL_CFG  
BIAS_CFG  
CH1_CFG0  
CH1_CFG1  
CH1_CFG2  
CH1_CFG3  
CH1_CFG4  
CH2_CFG0  
CH2_CFG1  
CH2_CFG2  
CH2_CFG3  
CH2_CFG4  
Latched interrupt readback register 0  
ADC common mode configuration register  
Bias and ADC configuration register  
Channel 1 configuration register 0  
Channel 1 configuration register 1  
Channel 1 configuration register 2  
Channel 1 configuration register 3  
Channel 1 configuration register 4  
Channel 2 configuration register 0  
Channel 2 configuration register 1  
Channel 2 configuration register 2  
Channel 2 configuration register 3  
Channel 2 configuration register 4  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
61  
Product Folder Links: PCM3120-Q1  
 
PCM3120-Q1  
ZHCSPD4A APRIL 2022 REVISED SEPTEMBER 2022  
www.ti.com.cn  
8-51. PAGE 0 Registers (continued)  
Address  
0x48  
0x49  
0x4A  
0x4D  
0x4E  
0x4F  
0x6B  
0x6C  
0x70  
0x71  
0x73  
0x74  
0x75  
0x76  
0x77  
0x7E  
Acronym  
Register Name  
Reset Value  
0xC9  
0x80  
Section  
CH3_CFG2  
CH3_CFG3  
CH3_CFG4  
CH4_CFG2  
CH4_CFG3  
CH4_CFG4  
DSP_CFG0  
DSP_CFG1  
AGC_CFG0  
GAIN_CFG  
IN_CH_EN  
ASI_OUT_CH_EN  
PWR_CFG  
DEV_STS0  
DEV_STS1  
I2C_CKSUM  
Channel 3 configuration register 2  
Channel 3 configuration register 3  
Channel 3 configuration register 4  
Channel 4 configuration register 2  
Channel 4 configuration register 3  
Channel 4 configuration register 4  
DSP configuration register 0  
8.6.2.40  
8.6.2.41  
8.6.2.42  
8.6.2.43  
8.6.2.44  
8.6.2.45  
8.6.2.46  
8.6.2.47  
8.6.2.48  
8.6.2.49  
8.6.2.50  
8.6.2.51  
8.6.2.52  
8.6.2.53  
8.6.2.54  
8.6.2.55  
0x00  
0xC9  
0x80  
0x00  
0x01  
DSP configuration register 1  
0x40  
AGC configuration register 0  
0xE7  
0x00  
Gain change Configuration  
Input channel enable configuration register  
ASI output channel enable configuration register  
Power up configuration register  
Device status value register 0  
Device status value register 1  
I2C checksum register  
0xC0  
0x00  
0x00  
0x00  
0x80  
0x00  
8.6.2.1 PAGE_CFG Register (Address = 0x0) [Reset = 0x00]  
PAGE_CFG is shown in 8-52.  
Return to the 8-51.  
The device memory map is divided into pages. This register sets the page.  
8-52. PAGE_CFG Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
PAGE[7:0]  
R/W  
00000000b These bits set the device page.  
0d = Page 0  
1d = Page 1  
2d to 254d = Page 2 to page 254 respectively  
255d = Page 255  
8.6.2.2 SW_RESET Register (Address = 0x1) [Reset = 0x00]  
SW_RESET is shown in 8-53.  
Return to the 8-51.  
This register is the software reset register. Asserting a software reset places all register values in their default  
power-on-reset (POR) state.  
8-53. SW_RESET Register Field Descriptions  
Bit  
7-1  
0
Field  
Type  
Reset  
0000000b  
0b  
Description  
RESERVED  
SW_RESET  
R
Reserved bits; Write only reset value  
R/W  
Software reset. This bit is self clearing.  
0d = Do not reset  
1d = Reset all registers to their reset values  
Copyright © 2022 Texas Instruments Incorporated  
62  
Submit Document Feedback  
Product Folder Links: PCM3120-Q1  
 
 
 
 
PCM3120-Q1  
ZHCSPD4A APRIL 2022 REVISED SEPTEMBER 2022  
www.ti.com.cn  
8.6.2.3 SLEEP_CFG Register (Address = 0x2) [Reset = 0x00]  
SLEEP_CFG is shown in 8-54.  
Return to the 8-51.  
This register configures the regulator, VREF quick charge, I2C broadcast and sleep mode.  
8-54. SLEEP_CFG Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
AREG_SELECT  
R/W  
0b  
The analog supply selection from either the internal regulator supply  
or the external AREG supply.  
0d = External 1.8-V AREG supply (use this setting when AVDD is 1.8  
V and short AREG with AVDD)  
1d = Internally generated 1.8-V AREG supply using an on-chip  
regulator (use this setting when AVDD is 3.3 V)  
6-5  
4-3  
RESERVED  
R/W  
R/W  
00b  
00b  
Reserved bits; Write only reset values  
VREF_QCHG[1:0]  
The duration of the quick-charge for the VREF external capacitor is  
set using an internal series impedance of 200 Ω.  
0d = VREF quick-charge duration of 3.5 ms (typical)  
1d = VREF quick-charge duration of 10 ms (typical)  
2d = VREF quick-charge duration of 50 ms (typical)  
3d = VREF quick-charge duration of 100 ms (typical)  
2
I2C_BRDCAST_EN  
R/W  
0b  
I2C broadcast addressing setting.  
0d = I2C broadcast mode disabled  
1d = I2C broadcast mode enabled; the I2C target address is fixed at  
1001 100  
1
0
RESERVED  
SLEEP_ENZ  
R
0b  
0b  
Reserved bit; Write only reset value  
R/W  
Sleep mode setting.  
0d = Device is in sleep mode  
1d = Device is not in sleep mode  
8.6.2.4 SHDN_CFG Register (Address = 0x5) [Reset = 0x05]  
SHDN_CFG is shown in 8-55.  
Return to the 8-51.  
This register configures the device shutdown  
8-55. SHDN_CFG Register Field Descriptions  
Bit  
7-6  
5-4  
Field  
Type  
Reset  
Description  
RESERVED  
INCAP_QCHG[1:0]  
R
00b  
Reserved bits; Write only reset value  
R/W  
00b  
The duration of the quick-charge for the external AC-coupling  
capacitor is set using an internal series impedance of 800 Ω.  
0d = INxP, INxM quick-charge duration of 2.5 ms (typical)  
1d = INxP, INxM quick-charge duration of 12.5 ms (typical)  
2d = INxP, INxM quick-charge duration of 25 ms (typical)  
3d = INxP, INxM quick-charge duration of 50 ms (typical)  
3-2  
1-0  
RESERVED  
RESERVED  
R/W  
R/W  
01b  
01b  
Reserved bits; Write only reset values  
Reserved bits; Write only reset values  
8.6.2.5 ASI_CFG0 Register (Address = 0x7) [Reset = 0x30]  
ASI_CFG0 is shown in 8-56.  
Return to the 8-51.  
This register is the ASI configuration register 0.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
63  
Product Folder Links: PCM3120-Q1  
 
 
 
 
 
PCM3120-Q1  
ZHCSPD4A APRIL 2022 REVISED SEPTEMBER 2022  
www.ti.com.cn  
8-56. ASI_CFG0 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-6  
ASI_FORMAT[1:0]  
R/W  
00b  
ASI protocol format.  
0d = TDM mode  
1d = I2S mode  
2d = LJ (left-justified) mode  
3d = Reserved; Don't use  
5-4  
ASI_WLEN[1:0]  
R/W  
11b  
ASI word or slot length.  
0d = 16 bits (Recommended this setting to be used with 10-kΩor  
20-kΩinput impedance configuration)  
1d = 20 bits  
2d = 24 bits  
3d = 32 bits  
3
2
1
FSYNC_POL  
BCLK_POL  
TX_EDGE  
R/W  
R/W  
R/W  
0b  
0b  
0b  
ASI FSYNC polarity.  
0d = Default polarity as per standard protocol  
1d = Inverted polarity with respect to standard protocol  
ASI BCLK polarity.  
0d = Default polarity as per standard protocol  
1d = Inverted polarity with respect to standard protocol  
ASI data output (on the primary and secondary data pin) transmit  
edge.  
0d = Default edge as per the protocol configuration setting in bit 2  
(BCLK_POL)  
1d = Inverted following edge (half cycle delay) with respect to the  
default edge setting  
0
TX_FILL  
R/W  
0b  
ASI data output (on the primary and secondary data pin) for any  
unused cycles  
0d = Always transmit 0 for unused cycles  
1d = Always use Hi-Z for unused cycles  
8.6.2.6 ASI_CFG1 Register (Address = 0x8) [Reset = 0x00]  
ASI_CFG1 is shown in 8-57.  
Return to the 8-51.  
This register is the ASI configuration register 1.  
8-57. ASI_CFG1 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
TX_LSB  
R/W  
0b  
ASI data output (on the primary and secondary data pin) for LSB  
transmissions.  
0d = Transmit the LSB for a full cycle  
1d = Transmit the LSB for the first half cycle and Hi-Z for the second  
half cycle  
6-5  
TX_KEEPER[1:0]  
R/W  
00b  
ASI data output (on the primary and secondary data pin) bus keeper.  
0d = Bus keeper is always disabled  
1d = Bus keeper is always enabled  
2d = Bus keeper is enabled during LSB transmissions only for one  
cycle  
3d = Bus keeper is enabled during LSB transmissions only for one  
and half cycles  
Copyright © 2022 Texas Instruments Incorporated  
64  
Submit Document Feedback  
Product Folder Links: PCM3120-Q1  
 
 
 
PCM3120-Q1  
ZHCSPD4A APRIL 2022 REVISED SEPTEMBER 2022  
www.ti.com.cn  
8-57. ASI_CFG1 Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
4-0  
TX_OFFSET[4:0]  
R/W  
00000b  
ASI data MSB slot 0 offset (on the primary and secondary data pin).  
0d = ASI data MSB location has no offset and is as per standard  
protocol  
1d = ASI data MSB location (TDM mode is slot 0 or I2S, LJ mode is  
the left and right slot 0) offset of one BCLK cycle with respect to  
standard protocol  
2d = ASI data MSB location (TDM mode is slot 0 or I2S, LJ mode is  
the left and right slot 0) offset of two BCLK cycles with respect to  
standard protocol  
3d to 30d = ASI data MSB location (TDM mode is slot 0 or I2S, LJ  
mode is the left and right slot 0) offset assigned as per configuration  
31d = ASI data MSB location (TDM mode is slot 0 or I2S, LJ mode is  
the left and right slot 0) offset of 31 BCLK cycles with respect to  
standard protocol  
8.6.2.7 ASI_CFG2 Register (Address = 0x9) [Reset = 0x00]  
ASI_CFG2 is shown in 8-58.  
Return to the 8-51.  
This register is the ASI configuration register 2.  
8-58. ASI_CFG2 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
ASI_DAISY  
R/W  
0b  
ASI daisy chain connection.  
0d = All devices are connected in the common ASI bus  
1d = All devices are daisy-chained for the ASI bus. This is supported  
only if ASI input mixing is disabled, refer register 10 for details on  
ASI input mixing feature.  
6
5
RESERVED  
ASI_ERR  
R
0b  
0b  
Reserved bit; Write only reset value  
R/W  
ASI bus error detection.  
0d = Enable bus error detection  
1d = Disable bus error detection  
4
ASI_ERR_RCOV  
R/W  
0b  
ASI bus error auto resume.  
0d = Enable auto resume after bus error recovery  
1d = Disable auto resume after bus error recovery and remain  
powered down until the host configures the device  
3
RESERVED  
RESERVED  
R/W  
R
0b  
Reserved bit; Write only reset value  
Reserved bits; Write only reset value  
2-0  
000b  
8.6.2.8 ASI_MIX_CFG Register (Address = 0xA) [Reset = 0x00]  
ASI_MIX_CFG is shown in 8-59.  
Return to the 8-51.  
This register is the ASI input mixing configuration register.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
65  
Product Folder Links: PCM3120-Q1  
 
 
 
PCM3120-Q1  
ZHCSPD4A APRIL 2022 REVISED SEPTEMBER 2022  
www.ti.com.cn  
8-59. ASI_MIX_CFG Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-6  
ASI_MIX_SEL[1:0]  
R/W  
00b  
ASI input (from GPIx or GPIO) mixing selection with channel data.  
0d = No mixing  
1d = Channel 1 and channel 2 output data mixed with ASI input data  
on channel 1 (slot 0)  
2d = Channel 1 and channel 2 output data mixed with ASI input data  
on channel 2 (slot 1)  
3d = Mixed both channel data with ASI input data independently.  
Mixed asi_in_ch_1 with channel 1 output data and similarly mix  
asi_in_ch_2 with channel 2 output data  
5-4  
3
ASI_GAIN_SEL[1:0]  
ASI_IN_INVERSE  
R/W  
R/W  
00b  
0b  
ASI input data gain selection before mixing to channel data.  
0d = No gain  
1d = Gain asi input data by -6dB  
2d = Gain asi input data by -12dB  
3d = Gain asi input data by -18dB  
Invert ASI input data before mixing to channel data.  
0d = No inversion done for ASI input data  
1d = ASI input data inverted before mixing with channel data  
2
1
0
RESERVED  
RESERVED  
RESERVED  
R
R
R
0b  
0b  
0b  
Reserved bit; Write only reset value  
Reserved bit; Write only reset value  
Reserved bit; Write only reset value  
8.6.2.9 ASI_CH1 Register (Address = 0xB) [Reset = 0x00]  
ASI_CH1 is shown in 8-60.  
Return to the 8-51.  
This register is the ASI slot configuration register for channel 1.  
8-60. ASI_CH1 Register Field Descriptions  
Bit  
7-6  
5-0  
Field  
Type  
Reset  
Description  
RESERVED  
CH1_SLOT[5:0]  
R
00b  
Reserved bits; Write only reset value  
R/W  
000000b  
Channel 1 slot assignment.  
0d = TDM is slot 0 or I2S, LJ is left slot 0  
1d = TDM is slot 1 or I2S, LJ is left slot 1  
2d to 30d = Slot assigned as per configuration  
31d = TDM is slot 31 or I2S, LJ is left slot 31  
32d = TDM is slot 32 or I2S, LJ is right slot 0  
33d = TDM is slot 33 or I2S, LJ is right slot 1  
34d to 62d = Slot assigned as per configuration  
63d = TDM is slot 63 or I2S, LJ is right slot 31  
8.6.2.10 ASI_CH2 Register (Address = 0xC) [Reset = 0x01]  
ASI_CH2 is shown in 8-61.  
Return to the 8-51.  
This register is the ASI slot configuration register for channel 2.  
8-61. ASI_CH2 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-6  
RESERVED  
R
00b  
Reserved bits; Write only reset value  
Copyright © 2022 Texas Instruments Incorporated  
66  
Submit Document Feedback  
Product Folder Links: PCM3120-Q1  
 
 
 
 
 
PCM3120-Q1  
ZHCSPD4A APRIL 2022 REVISED SEPTEMBER 2022  
www.ti.com.cn  
8-61. ASI_CH2 Register Field Descriptions (continued)  
Bit  
Field  
CH2_SLOT[5:0]  
Type  
Reset  
Description  
5-0  
R/W  
000001b  
Channel 2 slot assignment.  
0d = TDM is slot 0 or I2S, LJ is left slot 0  
1d = TDM is slot 1 or I2S, LJ is left slot 1  
2d to 30d = Slot assigned as per configuration  
31d = TDM is slot 31 or I2S, LJ is left slot 31  
32d = TDM is slot 32 or I2S, LJ is right slot 0  
33d = TDM is slot 33 or I2S, LJ is right slot 1  
34d to 62d = Slot assigned as per configuration  
63d = TDM is slot 63 or I2S, LJ is right slot 31  
8.6.2.11 ASI_CH3 Register (Address = 0xD) [Reset = 0x02]  
ASI_CH3 is shown in 8-62.  
Return to the 8-51.  
This register is the ASI slot configuration register for channel 3.  
8-62. ASI_CH3 Register Field Descriptions  
Bit  
7-6  
5-0  
Field  
Type  
Reset  
Description  
RESERVED  
CH3_SLOT[5:0]  
R
00b  
Reserved bits; Write only reset value  
R/W  
000010b  
Channel 3 slot assignment.  
0d = TDM is slot 0 or I2S, LJ is left slot 0  
1d = TDM is slot 1 or I2S, LJ is left slot 1  
2d to 30d = Slot assigned as per configuration  
31d = TDM is slot 31 or I2S, LJ is left slot 31  
32d = TDM is slot 32 or I2S, LJ is right slot 0  
33d = TDM is slot 33 or I2S, LJ is right slot 1  
34d to 62d = Slot assigned as per configuration  
63d = TDM is slot 63 or I2S, LJ is right slot 31  
8.6.2.12 ASI_CH4 Register (Address = 0xE) [Reset = 0x03]  
ASI_CH4 is shown in 8-63.  
Return to the 8-51.  
This register is the ASI slot configuration register for channel 4.  
8-63. ASI_CH4 Register Field Descriptions  
Bit  
7-6  
5-0  
Field  
Type  
Reset  
Description  
RESERVED  
CH4_SLOT[5:0]  
R
00b  
Reserved bits; Write only reset value  
R/W  
000011b  
Channel 4 slot assignment.  
0d = TDM is slot 0 or I2S, LJ is left slot 0  
1d = TDM is slot 1 or I2S, LJ is left slot 1  
2d to 30d = Slot assigned as per configuration  
31d = TDM is slot 31 or I2S, LJ is left slot 31  
32d = TDM is slot 32 or I2S, LJ is right slot 0  
33d = TDM is slot 33 or I2S, LJ is right slot 1  
34d to 62d = Slot assigned as per configuration  
63d = TDM is slot 63 or I2S, LJ is right slot 31  
8.6.2.13 MST_CFG0 Register (Address = 0x13) [Reset = 0x02]  
MST_CFG0 is shown in 8-64.  
Return to the 8-51.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
67  
Product Folder Links: PCM3120-Q1  
 
 
 
 
 
PCM3120-Q1  
ZHCSPD4A APRIL 2022 REVISED SEPTEMBER 2022  
www.ti.com.cn  
This register is the ASI master mode configuration register 0.  
8-64. MST_CFG0 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
MST_SLV_CFG  
R/W  
0b  
ASI master or slave configuration register setting.  
0d = Device is in slave mode (both BCLK and FSYNC are inputs to  
the device)  
1d = Device is in master mode (both BCLK and FSYNC are  
generated from the device)  
6
AUTO_CLK_CFG  
R/W  
0b  
Automatic clock configuration setting.  
0d = Auto clock configuration is enabled (all internal clock divider and  
PLL configurations are auto derived)  
1d = Auto clock configuration is disabled (custom mode and device  
GUI must be used for the device configuration settings)  
5
4
AUTO_MODE_PLL_DIS  
BCLK_FSYNC_GATE  
R/W  
R/W  
0b  
0b  
Automatic mode PLL setting.  
0d = PLL is enabled in auto clock configuration  
1d = PLL is disabled in auto clock configuration  
BCLK and FSYNC clock gate (valid when the device is in master  
mode).  
0d = Do not gate BCLK and FSYNC  
1d = Force gate BCLK and FSYNC when being transmitted from the  
device in master mode  
3
FS_MODE  
R/W  
R/W  
0b  
Sample rate setting (valid when the device is in master mode).  
0d = fS is a multiple (or submultiple) of 48 kHz  
1d = fS is a multiple (or submultiple) of 44.1 kHz  
2-0  
MCLK_FREQ_SEL[2:0]  
010b  
These bits select the MCLK (GPIO or GPIx) frequency for the PLL  
source clock input (valid when the device is in master mode and  
MCLK_FREQ_SEL_MODE = 0).  
0d = 12 MHz  
1d = 12.288 MHz  
2d = 13 MHz  
3d = 16 MHz  
4d = 19.2 MHz  
5d = 19.68 MHz  
6d = 24 MHz  
7d = 24.576 MHz  
8.6.2.14 MST_CFG1 Register (Address = 0x14) [Reset = 0x48]  
MST_CFG1 is shown in 8-65.  
Return to the 8-51.  
This register is the ASI master mode configuration register 1.  
8-65. MST_CFG1 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-4  
FS_RATE[3:0]  
R/W  
0100b  
Programmed sample rate of the ASI bus (not used when the device  
is configured in slave mode auto clock configuration).  
0d = 7.35 kHz or 8 kHz  
1d = 14.7 kHz or 16 kHz  
2d = 22.05 kHz or 24 kHz  
3d = 29.4 kHz or 32 kHz  
4d = 44.1 kHz or 48 kHz  
5d = 88.2 kHz or 96 kHz  
6d = 176.4 kHz or 192 kHz  
7d = 352.8 kHz or 384 kHz  
8d = 705.6 kHz or 768 kHz  
9d to 15d = Reserved; Don't use  
Copyright © 2022 Texas Instruments Incorporated  
68  
Submit Document Feedback  
Product Folder Links: PCM3120-Q1  
 
 
 
PCM3120-Q1  
ZHCSPD4A APRIL 2022 REVISED SEPTEMBER 2022  
www.ti.com.cn  
8-65. MST_CFG1 Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
3-0  
FS_BCLK_RATIO[3:0]  
R/W  
1000b  
Programmed BCLK to FSYNC frequency ratio of the ASI bus (not  
used when the device is configured in slave mode auto clock  
configuration).  
0d = Ratio of 16  
1d = Ratio of 24  
2d = Ratio of 32  
3d = Ratio of 48  
4d = Ratio of 64  
5d = Ratio of 96  
6d = Ratio of 128  
7d = Ratio of 192  
8d = Ratio of 256  
9d = Ratio of 384  
10d = Ratio of 512  
11d = Ratio of 1024  
12d = Ratio of 2048  
13d to 15d = Reserved; Don't use  
8.6.2.15 ASI_STS Register (Address = 0x15) [Reset = 0xFF]  
ASI_STS is shown in 8-66.  
Return to the 8-51.  
This register s the ASI bus clock monitor status register  
8-66. ASI_STS Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-4  
FS_RATE_STS[3:0]  
R
1111b  
Detected sample rate of the ASI bus.  
0d = 7.35 kHz or 8 kHz  
1d = 14.7 kHz or 16 kHz  
2d = 22.05 kHz or 24 kHz  
3d = 29.4 kHz or 32 kHz  
4d = 44.1 kHz or 48 kHz  
5d = 88.2 kHz or 96 kHz  
6d = 176.4 kHz or 192 kHz  
7d = 352.8 kHz or 384 kHz  
8d = 705.6 kHz or 768 kHz  
9d to 14d = Reserved status  
15d = Invalid sample rate  
3-0  
FS_RATIO_STS[3:0]  
R
1111b  
Detected BCLK to FSYNC frequency ratio of the ASI bus.  
0d = Ratio of 16  
1d = Ratio of 24  
2d = Ratio of 32  
3d = Ratio of 48  
4d = Ratio of 64  
5d = Ratio of 96  
6d = Ratio of 128  
7d = Ratio of 192  
8d = Ratio of 256  
9d = Ratio of 384  
10d = Ratio of 512  
11d = Ratio of 1024  
12d = Ratio of 2048  
13d to 14d = Reserved status  
15d = Invalid ratio  
8.6.2.16 CLK_SRC Register (Address = 0x16) [Reset = 0x10]  
CLK_SRC is shown in 8-67.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
69  
Product Folder Links: PCM3120-Q1  
 
 
 
PCM3120-Q1  
ZHCSPD4A APRIL 2022 REVISED SEPTEMBER 2022  
www.ti.com.cn  
Return to the 8-51.  
This register is the clock source configuration register.  
8-67. CLK_SRC Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
DIS_PLL_SLV_CLK_SRC R/W  
0b  
Audio root clock source setting when the device is configured with  
the PLL disabled in the auto clock configuration for slave mode  
(AUTO_MODE_PLL_DIS = 1).  
0d = BCLK is used as the audio root clock source  
1d = MCLK (GPIO or GPIx) is used as the audio root clock source  
(the MCLK to FSYNC ratio is as per MCLK_RATIO_SEL setting)  
6
MCLK_FREQ_SEL_MOD R/W  
E
0b  
Master mode MCLK (GPIO or GPIx) frequency selection mode (valid  
when the device is in auto clock configuration).  
0d = MCLK frequency is based on the MCLK_FREQ_SEL (P0_R19)  
configuration  
1d = MCLK frequency is specified as a multiple of FSYNC in the  
MCLK_RATIO_SEL (P0_R22) configuration  
5-3  
MCLK_RATIO_SEL[2:0]  
R/W  
010b  
These bits select the MCLK (GPIO or GPIx) to FSYNC ratio for  
master mode or when MCLK is used as the audio root clock source  
in slave mode.  
0d = Ratio of 64  
1d = Ratio of 256  
2d = Ratio of 384  
3d = Ratio of 512  
4d = Ratio of 768  
5d = Ratio of 1024  
6d = Ratio of 1536  
7d = Ratio of 2304  
2
1
RESERVED  
R/W  
0b  
0b  
Reserved bit; Write only reset value  
INV_BCLK_FOR_FSYNC R/W  
Invert BCLK polarity only for FSYNC generation in master mode  
configuration.  
0d = Do not invert BCLK polarity for FSYNC generation  
1d = Invert BCLK polarity for FSYNC generation  
0
RESERVED  
R/W  
0b  
Reserved bit; Write only reset value  
8.6.2.17 PDMCLK_CFG Register (Address = 0x1F) [Reset = 0x40]  
PDMCLK_CFG is shown in 8-68.  
Return to the 8-51.  
This register is the PDM clock generation configuration register.  
8-68. PDMCLK_CFG Register Field Descriptions  
Bit  
7
Field  
Type  
Reset  
Description  
RESERVED  
RESERVED  
PDMCLK_DIV[1:0]  
R/W  
0b  
Reserved bit; Write only reset value  
6-2  
1-0  
R/W  
R/W  
10000b  
00b  
Reserved bits; Write only reset values  
PDMCLK divider value.  
0d = PDMCLK is 2.8224 MHz or 3.072 MHz  
1d = PDMCLK is 1.4112 MHz or 1.536 MHz  
2d = PDMCLK is 705.6 kHz or 768 kHz  
3d = PDMCLK is 5.6448 MHz or 6.144 MHz (applicable only for PDM  
channel 1 and 2)  
8.6.2.18 PDMIN_CFG Register (Address = 0x20) [Reset = 0x00]  
PDMIN_CFG is shown in 8-69.  
Return to the 8-51.  
Copyright © 2022 Texas Instruments Incorporated  
70  
Submit Document Feedback  
Product Folder Links: PCM3120-Q1  
 
 
 
 
PCM3120-Q1  
ZHCSPD4A APRIL 2022 REVISED SEPTEMBER 2022  
www.ti.com.cn  
This register is the PDM DINx sampling edge configuration register.  
8-69. PDMIN_CFG Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
PDMDIN1_EDGE  
R/W  
0b  
PDMCLK latching edge used for channel 1 and channel 2 data.  
0d = Channel 1 data are latched on the negative edge, channel 2  
data are latched on the positive edge  
1d = Channel 1 data are latched on the positive edge, channel 2 data  
are latched on the negative edge  
6
RESERVED  
RESERVED  
R/W  
R
0b  
Reserved bit; Write only reset value  
Reserved bits; Write only reset value  
5-0  
000000b  
8.6.2.19 GPIO_CFG0 Register (Address = 0x21) [Reset = 0x22]  
GPIO_CFG0 is shown in 8-70.  
Return to the 8-51.  
This register is the GPIO configuration register 0.  
8-70. GPIO_CFG0 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-4  
GPIO1_CFG[3:0]  
R/W  
0010b  
GPIO1 configuration.  
0d = GPIO1 is disabled  
1d = GPIO1 is configured as a general-purpose output (GPO)  
2d = GPIO1 is configured as a device interrupt output (IRQ)  
3d = Reserved; Don't use  
4d = GPIO1 is configured as a PDM clock output (PDMCLK)  
5d = Reserved; Don't use  
6d = Reserved; Don't use  
7d = PD all ADC channels  
8d = GPIO1 is configured as an input to control when MICBIAS turns  
on or off (MICBIAS_EN)  
9d = GPIO1 is configured as a general-purpose input (GPI)  
10d = GPIO1 is configured as a master clock input (MCLK)  
11d = GPIO1 is configured as an ASI input for daisy-chain or ASI  
input for mixing (SDIN)  
12d = GPIO1 is configured as a PDM data input for channel 1 and  
channel 2 (PDMDIN1)  
13d = GPIO1 is configured as a PDM data input for channel 3 and  
channel 4 (PDMDIN2)  
14d to 15d = Reserved; Don't use  
3
RESERVED  
R
0b  
Reserved bit; Write only reset value  
2-0  
GPIO1_DRV[2:0]  
R/W  
010b  
GPIO1 output drive configuration.  
0d = Hi-Z output  
1d = Drive active low and active high  
2d = Drive active low and weak high  
3d = Drive active low and Hi-Z  
4d = Drive weak low and active high  
5d = Drive Hi-Z and active high  
6d to 7d = Reserved; Don't use  
8.6.2.20 GPO_CFG0 Register (Address = 0x22) [Reset = 0x00]  
GPO_CFG0 is shown in 8-71.  
Return to the 8-51.  
This registeris the GPO configuration register 0.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
71  
Product Folder Links: PCM3120-Q1  
 
 
 
 
PCM3120-Q1  
ZHCSPD4A APRIL 2022 REVISED SEPTEMBER 2022  
www.ti.com.cn  
8-71. GPO_CFG0 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-4  
GPO1_CFG[3:0]  
R/W  
0000b  
IN2M_GPO1 (GPO1) configuration.  
0d = GPO1 is disabled  
1d = GPO1 is configured as a general-purpose output (GPO)  
2d = GPO1 is configured as a device interrupt output (IRQ)  
3d = Reserved; Don't use  
4d = GPO1 is configured as a PDM clock output (PDMCLK)  
5d to 15d = Reserved; Don't use  
3
RESERVED  
R
0b  
Reserved bit; Write only reset value  
2-0  
GPO1_DRV[2:0]  
R/W  
000b  
IN2M_GPO1 (GPO1) output drive configuration.  
0d = Hi-Z output  
1d = Drive active low and active high  
2d = Reserved; Don't use  
3d = Drive active low and Hi-Z  
4d = Reserved; Don't use  
5d = Drive Hi-Z and active high  
6d to 7d = Reserved; Don't use  
8.6.2.21 GPO_VAL Register (Address = 0x29) [Reset = 0x00]  
GPO_VAL is shown in 8-72.  
Return to the 8-51.  
This register is the GPIO and GPO output value register.  
8-72. GPO_VAL Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
GPIO1_VAL  
R/W  
0b  
GPIO1 output value when configured as a GPO.  
0d = Drive the output with a value of 0  
1d = Drive the output with a value of 1  
6
GPO1_VAL  
RESERVED  
R/W  
R
0b  
GPO1 output value when configured as a GPO.  
0d = Drive the output with a value of 0  
1d = Drive the output with a value of 1  
5-0  
000000b  
Reserved bits; Write only reset value  
8.6.2.22 GPIO_MON Register (Address = 0x2A) [Reset = 0x00]  
GPIO_MON is shown in 8-73.  
Return to the 8-51.  
This register is the GPIO monitor value register.  
8-73. GPIO_MON Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
GPIO1_MON  
R
0b  
GPIO1 monitor value when configured as a GPI.  
0d = Input monitor value 0  
1d = Input monitor value 1  
6-0  
RESERVED  
R
0000000b  
Reserved bits; Write only reset value  
8.6.2.23 GPI_CFG0 Register (Address = 0x2B) [Reset = 0x00]  
GPI_CFG0 is shown in 8-74.  
Return to the 8-51.  
This register is the GPI configuration register 0.  
Copyright © 2022 Texas Instruments Incorporated  
72  
Submit Document Feedback  
Product Folder Links: PCM3120-Q1  
 
 
 
 
 
 
PCM3120-Q1  
ZHCSPD4A APRIL 2022 REVISED SEPTEMBER 2022  
www.ti.com.cn  
8-74. GPI_CFG0 Register Field Descriptions  
Bit  
7
Field  
Type  
Reset  
Description  
RESERVED  
R
0b  
Reserved bit; Write only reset value  
6-4  
GPI1_CFG[2:0]  
R/W  
000b  
IN2P_GPI1 (GPI1) configuration.  
0d = GPI1 is disabled  
1d = GPI1 is configured as a general-purpose input (GPI)  
2d = GPI1 is configured as a master clock input (MCLK)  
3d = GPI1 is configured as an ASI input for daisy-chain or ASI input  
for mixing (SDIN)  
4d = GPI1 is configured as a PDM data input for channel 1 and  
channel 2 (PDMDIN1)  
5d = GPI1 is configured as a PDM data input for channel 3 and  
channel 4 (PDMDIN2)  
6d = Reserved; Don't use  
7d = PD all ADC channels  
3
RESERVED  
R
0b  
Reserved bit; Write only reset value  
2-0  
GPI2_CFG[2:0]  
R/W  
000b  
MICBIAS as GPI2 configuration.  
0d = GPI2 is disabled  
1d = GPI2 is configured as a general-purpose input (GPI)  
2d = GPI2 is configured as a master clock input (MCLK)  
3d = GPI2 is configured as an ASI input for daisy-chain or ASI input  
for mixing (SDIN)  
4d = GPI2 is configured as a PDM data input for channel 1 and  
channel 2 (PDMDIN1)  
5d = GPI2 is configured as a PDM data input for channel 3 and  
channel 4 (PDMDIN2)  
6d = Reserved; Don't use  
7d = PD all ADC channels  
8.6.2.24 GPI_MON Register (Address = 0x2F) [Reset = 0x00]  
GPI_MON is shown in 8-75.  
Return to the 8-51.  
This regiser is the GPI monitor value register.  
8-75. GPI_MON Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
GPI1_MON  
R
0b  
GPI1 monitor value when configured as a GPI.  
0d = Input monitor value 0  
1d = Input monitor value 1  
6
GPI2_MON  
RESERVED  
R
R
0b  
GPI2 monitor value when MICBIAS is configured as a GPI.  
0d = Input monitor value 0  
1d = Input monitor value 1  
5-0  
000000b  
Reserved bits; Write only reset value  
8.6.2.25 INT_CFG Register (Address = 0x32) [Reset = 0x00]  
INT_CFG is shown in 8-76.  
Return to the 8-51.  
This regiser is the interrupt configuration register.  
8-76. INT_CFG Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
INT_POL  
R/W  
0b  
Interrupt polarity.  
0d = Active low (IRQZ)  
1d = Active high (IRQ)  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
73  
Product Folder Links: PCM3120-Q1  
 
 
 
 
 
PCM3120-Q1  
ZHCSPD4A APRIL 2022 REVISED SEPTEMBER 2022  
www.ti.com.cn  
8-76. INT_CFG Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
6-5  
INT_EVENT[1:0]  
R/W  
00b  
Interrupt event configuration.  
0d = INT asserts on any unmasked latched interrupts event  
Dont use  
2d = INT asserts for 2 ms (typical) for every 4-ms (typical) duration  
on any unmasked latched interrupts event  
3d = INT asserts for 2 ms (typical) one time on each pulse for any  
unmasked interrupts event  
4-3  
2
RESERVED  
R
00b  
0b  
Reserved bits; Write only reset value  
LTCH_READ_CFG  
R/W  
Interrupt latch registers readback configuration.  
0d = All interrupts can be read through the LTCH registers  
1d = Only unmasked interrupts can be read through the LTCH  
registers  
1-0  
RESERVED  
R
00b  
Reserved bits; Write only reset value  
8.6.2.26 INT_MASK0 Register (Address = 0x33) [Reset = 0xFF]  
INT_MASK0 is shown in 8-77.  
Return to the 8-51.  
This register is the interrupt masks register 0.  
8-77. INT_MASK0 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
INT_MASK0  
R/W  
1b  
ASI clock error mask.  
0d = Do not mask  
1d = Mask  
6
5
4
3
INT_MASK0  
INT_MASK0  
INT_MASK0  
INT_MASK0  
R/W  
R/W  
R/W  
R/W  
1b  
1b  
1b  
1b  
PLL Lock interrupt mask.  
0d = Do not mask  
1d = Mask  
ASI input mixing saturation alert mask.  
0d = Do not mask  
1d = Mask  
VAD Power up detect interrupt mask.  
0d = Do not mask  
1d = Mask  
VAD Power down detect interrupt mask.  
0d = Do not mask  
1d = Mask  
2
1
0
RESERVED  
RESERVED  
RESERVED  
R/W  
R/W  
R/W  
1b  
1b  
1b  
Reserved bit; Write only reset value  
Reserved bit; Write only reset value  
Reserved bit; Write only reset value  
8.6.2.27 INT_LTCH0 Register (Address = 0x36) [Reset = 0x00]  
INT_LTCH0 is shown in 8-78.  
Return to the 8-51.  
This register is the latched Interrupt readback register 0.  
8-78. INT_LTCH0 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
INT_LTCH0  
R
0b  
Interrupt caused by an ASI bus clock error (self-clearing bit).  
0d = No interrupt  
1d = Interrupt  
Copyright © 2022 Texas Instruments Incorporated  
74  
Submit Document Feedback  
Product Folder Links: PCM3120-Q1  
 
 
 
 
PCM3120-Q1  
ZHCSPD4A APRIL 2022 REVISED SEPTEMBER 2022  
www.ti.com.cn  
8-78. INT_LTCH0 Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
6
INT_LTCH0  
R
0b  
Interrupt caused by PLL LOCK (self-clearing bit).  
0d = No interrupt  
1d = Interrupt  
5
INT_LTCH0  
R
0b  
Interrupt caused by ASI input mixing channel saturation alert (self  
clearing bit).  
0d = No interrupt  
1d = Interrupt  
4
3
INT_LTCH0  
INT_LTCH0  
R
R
0b  
0b  
Interrupt caused by VAD power up detect (self clearing bit).  
0d = No interrupt  
1d = Interrupt  
Interrupt caused by VAD power down detect (self clearing bit).  
0d = No interrupt  
1d = Interrupt  
2
1
0
RESERVED  
RESERVED  
RESERVED  
R
R
R
0b  
0b  
0b  
Reserved bit; Write only reset value  
Reserved bit; Write only reset value  
Reserved bit; Write only reset value  
8.6.2.28 CM_TOL_CFG Register (Address = 0x3A) [Reset = 0x00]  
CM_TOL_CFG is shown in 8-79.  
Return to the 8-51.  
This register is the ADC common mode configuration register  
8-79. CM_TOL_CFG Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-6  
CH1_INP_CM_TOL_CFG[ R/W  
1:0]  
00b  
Channel 1 input common mode variance tolerance configuration.  
0d = Common mode variance tolerance for AC coupled = 100 mVpp  
and DC coupled = 2.82 Vpp  
1d = Common Mode Tolerance of: AC/DC Coupled Input=1V peak to  
peak  
2d = Common Mode Tolerance of: AC/DC Coupled Input=0-  
AVDD(Supported only with Input Impendance of 10 k/20 k). For  
input impedance of 2.5 k, input common mode tolerance= 0.4V to  
2.6V.  
3d = Reserved; Don't use  
5-4  
CH2_INP_CM_TOL_CFG[ R/W  
1:0]  
00b  
Channel 2 input common mode variance tolerance configuration.  
0d = Common mode variance tolerance for AC coupled = 100 mVpp  
and DC coupled = 2.82 Vpp  
1d = Common Mode Tolerance of: AC/DC Coupled Input=1V peak to  
peak  
2d = Common Mode Tolerance of: AC/DC Coupled Input=0-  
AVDD(Supported only with Input Impendance of 10 k/20 k). For  
input impedance of 2.5 k, input common mode tolerance= 0.4V to  
2.6V.  
3d = Reserved; Don't use  
3-0  
RESERVED  
R
0000b  
Reserved bits; Write only reset value  
8.6.2.29 BIAS_CFG Register (Address = 0x3B) [Reset = 0x00]  
BIAS_CFG is shown in 8-80.  
Return to the 8-51.  
This register is the bias and ADC configuration register  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
75  
Product Folder Links: PCM3120-Q1  
 
 
 
PCM3120-Q1  
ZHCSPD4A APRIL 2022 REVISED SEPTEMBER 2022  
www.ti.com.cn  
8-80. BIAS_CFG Register Field Descriptions  
Bit  
7
Field  
Type  
Reset  
Description  
RESERVED  
MBIAS_VAL[2:0]  
R
0b  
Reserved bit; Write only reset value  
MICBIAS value.  
6-4  
R/W  
000b  
0d = Microphone bias is set to VREF (2.750 V, 2.500 V, or 1.375 V)  
1d = Microphone bias is set to VREF x 1.096 (3.014 V, 2.740 V, or  
1.507 V)  
2d = Microphone bias is set to VCM = IN1M, for ADC single-ended  
configuration  
3d = Microphone bias is set to VCM = IN2M, for ADC single-ended  
configuration  
4d = Microphone bias is set to VCM = average of IN1M and IN2M,  
for ADC single-ended configuration  
5d = Microphone bias is set to VCM = internal crude common mode  
6d = Microphone bias is set to AVDD  
7d = MICBIAS configured as GPI2  
3-2  
1-0  
RESERVED  
R
00b  
00b  
Reserved bits; Write only reset value  
ADC_FSCALE[1:0]  
R/W  
ADC full-scale setting (configure this setting based on the AVDD  
supply minimum voltage used).  
0d = VREF is set to 2.75 V to support 2 VRMS for the differential input  
or 1 VRMS for the single-ended input  
1d = VREF is set to 2.5 V to support 1.818 VRMS for the differential  
input or 0.909 VRMS for the single-ended input  
2d = VREF is set to 1.375 V to support 1 VRMS for the differential  
input or 0.5 VRMS for the single-ended input  
3d = Reserved; Don't use  
8.6.2.30 CH1_CFG0 Register (Address = 0x3C) [Reset = 0x00]  
CH1_CFG0 is shown in 8-81.  
Return to the 8-51.  
This register is configuration register 0 for channel 1.  
8-81. CH1_CFG0 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
CH1_INTYP  
R/W  
0b  
Channel 1 input type.  
0d = Microphone input  
1d = Line input  
6-5  
CH1_INSRC[1:0]  
R/W  
00b  
Channel 1 input configuration.  
0d = Analog differential input  
1d = Analog single-ended input  
2d = Digital microphone PDM input (configure the GPO and GPI pins  
accordingly for PDMDIN1 and PDMCLK)  
3d = Reserved; Don't use  
4
CH1_DC  
R/W  
R/W  
0b  
Channel 1 input coupling (applicable for the analog input).  
0d = AC-coupled input  
1d = DC-coupled input  
3-2  
CH1_IMP[1:0]  
00b  
Channel 1 input impedance (applicable for the analog input).  
0d = Typical 2.5-kΩinput impedance  
1d = Typical 10-kΩinput impedance  
2d = Typical 20-kΩinput impedance  
3d = Reserved; Don't use  
1
0
RESERVED  
R
0b  
0b  
Reserved bit; Write only reset value  
CH1_AGCEN  
R/W  
Channel 1 automatic gain controller (AGC) setting.  
0d = AGC disabled  
1d = AGC enabled based on the configuration of bit 3 in register 108  
(P0_R108)  
Copyright © 2022 Texas Instruments Incorporated  
76  
Submit Document Feedback  
Product Folder Links: PCM3120-Q1  
 
 
 
PCM3120-Q1  
ZHCSPD4A APRIL 2022 REVISED SEPTEMBER 2022  
www.ti.com.cn  
8.6.2.31 CH1_CFG1 Register (Address = 0x3D) [Reset = 0x00]  
CH1_CFG1 is shown in 8-82.  
Return to the 8-51.  
This register is configuration register 1 for channel 1.  
8-82. CH1_CFG1 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-1  
CH1_GAIN[6:0]  
R/W  
0000000b  
Channel 1 gain.  
0d = Channel gain is set to 0 dB  
1d = Channel gain is set to 0.5 dB  
2d = Channel gain is set to 1 dB  
3d to 83d = Channel gain is set as per configuration  
84d = Channel gain is set to 42 dB  
85d to 127d = Reserved; Don't use  
0
CH1_GAIN_SIGN_BIT  
R/W  
0b  
Channel-1 gain sign configuration.  
0d = Positive channel gain  
1d = Negative channel gain (minimum channel gain supported till -11  
dB; supported only for channel input impedance of 10-kΩand 20-  
kΩ)  
8.6.2.32 CH1_CFG2 Register (Address = 0x3E) [Reset = 0xC9]  
CH1_CFG2 is shown in 8-83.  
Return to the 8-51.  
This register is configuration register 2 for channel 1.  
8-83. CH1_CFG2 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
CH1_DVOL[7:0]  
R/W  
11001001b Channel 1 digital volume control.  
0d = Digital volume is muted  
1d = Digital volume control is set to -100 dB  
2d = Digital volume control is set to -99.5 dB  
3d to 200d = Digital volume control is set as per configuration  
201d = Digital volume control is set to 0 dB  
202d = Digital volume control is set to 0.5 dB  
203d to 253d = Digital volume control is set as per configuration  
254d = Digital volume control is set to 26.5 dB  
255d = Digital volume control is set to 27 dB  
8.6.2.33 CH1_CFG3 Register (Address = 0x3F) [Reset = 0x80]  
CH1_CFG3 is shown in 8-84.  
Return to the 8-51.  
This register is configuration register 3 for channel 1.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
77  
Product Folder Links: PCM3120-Q1  
 
 
 
 
 
PCM3120-Q1  
ZHCSPD4A APRIL 2022 REVISED SEPTEMBER 2022  
www.ti.com.cn  
8-84. CH1_CFG3 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-4  
CH1_GCAL[3:0]  
R/W  
1000b  
Channel 1 gain calibration.  
0d = Gain calibration is set to -0.8 dB  
1d = Gain calibration is set to -0.7 dB  
2d = Gain calibration is set to -0.6 dB  
3d to 7d = Gain calibration is set as per configuration  
8d = Gain calibration is set to 0 dB  
9d = Gain calibration is set to 0.1 dB  
10d to 13d = Gain calibration is set as per configuration  
14d = Gain calibration is set to 0.6 dB  
15d = Gain calibration is set to 0.7 dB  
3-0  
RESERVED  
R
0000b  
Reserved bits; Write only reset value  
8.6.2.34 CH1_CFG4 Register (Address = 0x40) [Reset = 0x00]  
CH1_CFG4 is shown in 8-85.  
Return to the 8-51.  
This register is configuration register 4 for channel 1.  
8-85. CH1_CFG4 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
CH1_PCAL[7:0]  
R/W  
00000000b Channel 1 phase calibration with modulator clock resolution.  
0d = No phase calibration  
1d = Phase calibration delay is set to one cycle of the modulator  
clock  
2d = Phase calibration delay is set to two cycles of the modulator  
clock  
3d to 254d = Phase calibration delay as per configuration  
255d = Phase calibration delay is set to 255 cycles of the modulator  
clock  
8.6.2.35 CH2_CFG0 Register (Address = 0x41) [Reset = 0x00]  
CH2_CFG0 is shown in 8-86.  
Return to the 8-51.  
This register is configuration register 0 for channel 2.  
8-86. CH2_CFG0 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
CH2_INTYP  
R/W  
0b  
Channel 2 input type.  
0d = Microphone input  
1d = Line input  
6-5  
CH2_INSRC[1:0]  
R/W  
00b  
Channel 2 input configuration.  
0d = Analog differential input (the GPI1 and GPO1 pin functions must  
be disabled)  
1d = Analog single-ended input (the GPI1 and GPO1 pin functions  
must be disabled)  
2d = Digital microphone PDM input (configure the GPO and GPI pins  
accordingly for PDMDIN1 and PDMCLK)  
3d = Reserved; Don't use  
4
CH2_DC  
R/W  
0b  
Channel 2 input coupling (applicable for the analog input).  
0d = AC-coupled input  
1d = DC-coupled input  
Copyright © 2022 Texas Instruments Incorporated  
78  
Submit Document Feedback  
Product Folder Links: PCM3120-Q1  
 
 
 
 
 
PCM3120-Q1  
ZHCSPD4A APRIL 2022 REVISED SEPTEMBER 2022  
www.ti.com.cn  
8-86. CH2_CFG0 Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
3-2  
CH2_IMP[1:0]  
R/W  
00b  
Channel 2 input impedance (applicable for the analog input).  
0d = Typical 2.5-kΩinput impedance  
1d = Typical 10-kΩinput impedance  
2d = Typical 20-kΩinput impedance  
3d = Reserved; Don't use  
1
0
RESERVED  
R
0b  
0b  
Reserved bit; Write only reset value  
CH2_AGCEN  
R/W  
Channel 2 automatic gain controller (AGC) setting.  
0d = AGC disabled  
1d = AGC enabled based on the configuration of bit 3 in register 108  
(P0_R108)  
8.6.2.36 CH2_CFG1 Register (Address = 0x42) [Reset = 0x00]  
CH2_CFG1 is shown in 8-87.  
Return to the 8-51.  
This register is configuration register 1 for channel 2.  
8-87. CH2_CFG1 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-1  
CH2_GAIN[6:0]  
R/W  
0000000b  
Channel 2 gain.  
0d = Channel gain is set to 0 dB  
1d = Channel gain is set to 0.5 dB  
2d = Channel gain is set to 1 dB  
3d to 83d = Channel gain is set as per configuration  
84d = Channel gain is set to 42 dB  
85d to 127d = Reserved; Don't use  
0
CH2_GAIN_SIGN_BIT  
R/W  
0b  
Channel-2 gain sign configuration.  
0d = Positive channel gain  
1d = Negative channel gain (minimum channel gain supported till -11  
dB; supported only for channel input impedance of 10-kΩand 20-  
kΩ)  
8.6.2.37 CH2_CFG2 Register (Address = 0x43) [Reset = 0xC9]  
CH2_CFG2 is shown in 8-88.  
Return to the 8-51.  
This register is configuration register 2 for channel 2.  
8-88. CH2_CFG2 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
CH2_DVOL[7:0]  
R/W  
11001001b Channel 2 digital volume control.  
0d = Digital volume is muted  
1d = Digital volume control is set to -100 dB  
2d = Digital volume control is set to -99.5 dB  
3d to 200d = Digital volume control is set as per configuration  
201d = Digital volume control is set to 0 dB  
202d = Digital volume control is set to 0.5 dB  
203d to 253d = Digital volume control is set as per configuration  
254d = Digital volume control is set to 26.5 dB  
255d = Digital volume control is set to 27 dB  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
79  
Product Folder Links: PCM3120-Q1  
 
 
 
 
PCM3120-Q1  
ZHCSPD4A APRIL 2022 REVISED SEPTEMBER 2022  
www.ti.com.cn  
8.6.2.38 CH2_CFG3 Register (Address = 0x44) [Reset = 0x80]  
CH2_CFG3 is shown in 8-89.  
Return to the 8-51.  
This register is configuration register 3 for channel 2.  
8-89. CH2_CFG3 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-4  
CH2_GCAL[3:0]  
R/W  
1000b  
Channel 2 gain calibration.  
0d = Gain calibration is set to -0.8 dB  
1d = Gain calibration is set to -0.7 dB  
2d = Gain calibration is set to -0.6 dB  
3d to 7d = Gain calibration is set as per configuration  
8d = Gain calibration is set to 0 dB  
9d = Gain calibration is set to 0.1 dB  
10d to 13d = Gain calibration is set as per configuration  
14d = Gain calibration is set to 0.6 dB  
15d = Gain calibration is set to 0.7 dB  
3-0  
RESERVED  
R
0000b  
Reserved bits; Write only reset value  
8.6.2.39 CH2_CFG4 Register (Address = 0x45) [Reset = 0x00]  
CH2_CFG4 is shown in 8-90.  
Return to the 8-51.  
This register is configuration register 4 for channel 2.  
8-90. CH2_CFG4 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
CH2_PCAL[7:0]  
R/W  
00000000b Channel 2 phase calibration with modulator clock resolution.  
0d = No phase calibration  
1d = Phase calibration delay is set to one cycle of the modulator  
clock  
2d = Phase calibration delay is set to two cycles of the modulator  
clock  
3d to 254d = Phase calibration delay as per configuration  
255d = Phase calibration delay is set to 255 cycles of the modulator  
clock  
8.6.2.40 CH3_CFG2 Register (Address = 0x48) [Reset = 0xC9]  
CH3_CFG2 is shown in 8-91.  
Return to the 8-51.  
This register is configuration register 2 for channel 3.  
8-91. CH3_CFG2 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
CH3_DVOL[7:0]  
R/W  
11001001b Channel 3 digital volume control.  
0d = Digital volume is muted  
1d = Digital volume control is set to -100 dB  
2d = Digital volume control is set to -99.5 dB  
3d to 200d = Digital volume control is set as per configuration  
201d = Digital volume control is set to 0 dB  
202d = Digital volume control is set to 0.5 dB  
203d to 253d = Digital volume control is set as per configuration  
254d = Digital volume control is set to 26.5 dB  
255d = Digital volume control is set to 27 dB  
Copyright © 2022 Texas Instruments Incorporated  
80  
Submit Document Feedback  
Product Folder Links: PCM3120-Q1  
 
 
 
 
 
 
PCM3120-Q1  
ZHCSPD4A APRIL 2022 REVISED SEPTEMBER 2022  
www.ti.com.cn  
8.6.2.41 CH3_CFG3 Register (Address = 0x49) [Reset = 0x80]  
CH3_CFG3 is shown in 8-92.  
Return to the 8-51.  
This register is configuration register 3 for channel 3.  
8-92. CH3_CFG3 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-4  
CH3_GCAL[3:0]  
R/W  
1000b  
Channel 3 gain calibration.  
0d = Gain calibration is set to -0.8 dB  
1d = Gain calibration is set to -0.7 dB  
2d = Gain calibration is set to -0.6 dB  
3d to 7d = Gain calibration is set as per configuration  
8d = Gain calibration is set to 0 dB  
9d = Gain calibration is set to 0.1 dB  
10d to 13d = Gain calibration is set as per configuration  
14d = Gain calibration is set to 0.6 dB  
15d = Gain calibration is set to 0.7 dB  
3-0  
RESERVED  
R
0000b  
Reserved bits; Write only reset value  
8.6.2.42 CH3_CFG4 Register (Address = 0x4A) [Reset = 0x00]  
CH3_CFG4 is shown in 8-93.  
Return to the 8-51.  
This register is configuration register 4 for channel 3.  
8-93. CH3_CFG4 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
CH3_PCAL[7:0]  
R/W  
00000000b Channel 3 phase calibration with modulator clock resolution.  
0d = No phase calibration  
1d = Phase calibration delay is set to one cycle of the modulator  
clock  
2d = Phase calibration delay is set to two cycles of the modulator  
clock  
3d to 254d = Phase calibration delay as per configuration  
255d = Phase calibration delay is set to 255 cycles of the modulator  
clock  
8.6.2.43 CH4_CFG2 Register (Address = 0x4D) [Reset = 0xC9]  
CH4_CFG2 is shown in 8-94.  
Return to the 8-51.  
This register is configuration register 2 for channel 4.  
8-94. CH4_CFG2 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
CH4_DVOL[7:0]  
R/W  
11001001b Channel 4 digital volume control.  
0d = Digital volume is muted  
1d = Digital volume control is set to -100 dB  
2d = Digital volume control is set to -99.5 dB  
3d to 200d = Digital volume control is set as per configuration  
201d = Digital volume control is set to 0 dB  
202d = Digital volume control is set to 0.5 dB  
203d to 253d = Digital volume control is set as per configuration  
254d = Digital volume control is set to 26.5 dB  
255d = Digital volume control is set to 27 dB  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
81  
Product Folder Links: PCM3120-Q1  
 
 
 
 
 
 
PCM3120-Q1  
ZHCSPD4A APRIL 2022 REVISED SEPTEMBER 2022  
www.ti.com.cn  
8.6.2.44 CH4_CFG3 Register (Address = 0x4E) [Reset = 0x80]  
CH4_CFG3 is shown in 8-95.  
Return to the 8-51.  
This register is configuration register 3 for channel 4.  
8-95. CH4_CFG3 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-4  
CH4_GCAL[3:0]  
R/W  
1000b  
Channel 4 gain calibration.  
0d = Gain calibration is set to -0.8 dB  
1d = Gain calibration is set to -0.7 dB  
2d = Gain calibration is set to -0.6 dB  
3d to 7d = Gain calibration is set as per configuration  
8d = Gain calibration is set to 0 dB  
9d = Gain calibration is set to 0.1 dB  
10d to 13d = Gain calibration is set as per configuration  
14d = Gain calibration is set to 0.6 dB  
15d = Gain calibration is set to 0.7 dB  
3-0  
RESERVED  
R
0000b  
Reserved bits; Write only reset value  
8.6.2.45 CH4_CFG4 Register (Address = 0x4F) [Reset = 0x00]  
CH4_CFG4 is shown in 8-96.  
Return to the 8-51.  
This register is configuration register 4 for channel 4.  
8-96. CH4_CFG4 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
CH4_PCAL[7:0]  
R/W  
00000000b Channel 4 phase calibration with modulator clock resolution.  
0d = No phase calibration  
1d = Phase calibration delay is set to one cycle of the modulator  
clock  
2d = Phase calibration delay is set to two cycles of the modulator  
clock  
3d to 254d = Phase calibration delay as per configuration  
255d = Phase calibration delay is set to 255 cycles of the modulator  
clock  
8.6.2.46 DSP_CFG0 Register (Address = 0x6B) [Reset = 0x01]  
DSP_CFG0 is shown in 8-97.  
Return to the 8-51.  
This register is the digital signal processor (DSP) configuration register 0.  
8-97. DSP_CFG0 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
DIS_DVOL_OTF_CHG  
R/W  
0b  
Disable run-time changes to DVOL settings.  
0d = Digital volume control changes supported while ADC is  
powered-on  
1d = Digital volume control changes not supported while ADC is  
powered-on. This is useful for 384 kHz and higher sample rate if  
more than one channel processing is required.  
6
RESERVED  
R/W  
0b  
Reserved bit; Write only reset value  
Copyright © 2022 Texas Instruments Incorporated  
82  
Submit Document Feedback  
Product Folder Links: PCM3120-Q1  
 
 
 
 
 
 
PCM3120-Q1  
ZHCSPD4A APRIL 2022 REVISED SEPTEMBER 2022  
www.ti.com.cn  
8-97. DSP_CFG0 Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
5-4  
DECI_FILT[1:0]  
R/W  
00b  
Decimation filter response.  
0d = Linear phase  
1d = Low latency  
2d = Ultra-low latency  
3d = Reserved; Don't use  
3-2  
1-0  
CH_SUM[1:0]  
R/W  
R/W  
00b  
01b  
Channel summation mode for higher SNR  
0d = Channel summation mode is disabled  
1d = 2-channel summation mode is enabled to generate a (CH1 +  
CH2) / 2 output  
2d = Reserved; Don't use  
3d = Reserved; Don't use  
HPF_SEL[1:0]  
High-pass filter (HPF) selection.  
0d = Programmable first-order IIR filter for a custom HPF with default  
coefficient values in P4_R72 to P4_R83 set as the all-pass filter  
1d = HPF with a cutoff of 0.00025 x fS (12 Hz at fS = 48 kHz) is  
selected  
2d = HPF with a cutoff of 0.002 x fS (96 Hz at fS = 48 kHz) is selected  
3d = HPF with a cutoff of 0.008 x fS (384 Hz at fS = 48 kHz) is  
selected  
8.6.2.47 DSP_CFG1 Register (Address = 0x6C) [Reset = 0x40]  
DSP_CFG1 is shown in 8-98.  
Return to the 8-51.  
This register is the digital signal processor (DSP) configuration register 1.  
8-98. DSP_CFG1 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
DVOL_GANG  
R/W  
0b  
DVOL control ganged across channels.  
0d = Each channel has its own DVOL CTRL settings as programmed  
in the CHx_DVOL bits  
1d = All active channels must use the channel 1 DVOL setting  
(CH1_DVOL) irrespective of whether channel 1 is turned on or not  
6-5  
BIQUAD_CFG[1:0]  
R/W  
10b  
Number of biquads per channel configuration.  
0d = No biquads per channel; biquads are all disabled  
1d = 1 biquad per channel  
2d = 2 biquads per channel  
3d = 3 biquads per channel  
4
3
DISABLE_SOFT_STEP  
AGC_SEL  
R/W  
R/W  
0b  
0b  
Soft-stepping disable during DVOL change, mute, and unmute.  
0d = Soft-stepping enabled  
1d = Soft-stepping disabled  
AGC Selection when is enabled for any channel  
0d = AGC is not selected  
1d = AGC is selected  
2
1
0
RESERVED  
R/W  
R/W  
R/W  
0b  
0b  
0b  
Reserved bit; Write only reset value  
Reserved bit; Write only reset value  
RESERVED  
EN_AVOID_CLIP  
Anti clippler when channel gain > 0 dB and AGC mode enabled.  
0d = Channel gain is maintained as per user programmed value  
1d = Signal level is compressed to avoid clipping when channel gain  
> 0 dB amd signal level crosses programmed threshold setting set in  
page-4.  
8.6.2.48 AGC_CFG0 Register (Address = 0x70) [Reset = 0xE7]  
AGC_CFG0 is shown in 8-99.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
83  
Product Folder Links: PCM3120-Q1  
 
 
 
PCM3120-Q1  
ZHCSPD4A APRIL 2022 REVISED SEPTEMBER 2022  
www.ti.com.cn  
Return to the 8-51.  
This register is the automatic gain controller (AGC) configuration register 0.  
8-99. AGC_CFG0 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-4  
AGC_LVL[3:0]  
R/W  
1110b  
AGC output signal target level.  
0d = Output signal target level is -6 dB  
1d = Output signal target level is -8 dB  
2d = Output signal target level is -10 dB  
3d to 13d = Output signal target level is as per configuration  
14d = Output signal target level is -34 dB  
15d = Output signal target level is -36 dB  
3-0  
AGC_MAXGAIN[3:0]  
R/W  
0111b  
AGC maximum gain allowed.  
0d = Maximum gain allowed is 3 dB  
1d = Maximum gain allowed is 6 dB  
2d = Maximum gain allowed is 9 dB  
3d to 11d = Maximum gain allowed is as per configuration  
12d = Maximum gain allowed is 39 dB  
13d = Maximum gain allowed is 42 dB  
14d to 15d = Reserved; Don't use  
8.6.2.49 GAIN_CFG Register (Address = 0x71) [Reset = 0x00]  
GAIN_CFG is shown in 8-100.  
Return to the 8-51.  
This register is the channel gain change configuration register.  
8-100. GAIN_CFG Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-6  
OTF_GAIN_CHANGE_CF R/W  
G[1:0]  
00b  
On the fly channel gain change configuration  
0d = On-the-fly gain change with some artifacts due to applying gain  
change immediately  
1d = On-the-fly gain change enabled with reduced artifacts but  
without soft-stepping  
2d = On-the-fly gain change enabled with soft-stepping of 0.5 dB per  
~20 µs, supported channel gain up to 30 dB for 10-kΩinput  
impedance mode and 24 dB for 20-kΩinput impedance mode  
3d = On-the-fly gain change enabled with soft-stepping of 0.5 dB per  
~40 µs, supported channel gain up to 30 dB for 10-kΩinput  
impedance mode and 24 dB for 20-kΩinput impedance mode  
5
RESERVED  
RESERVED  
R/W  
R
0b  
Reserved bit; Write only reset value  
Reserved bits; Write only reset value  
4-0  
00000b  
8.6.2.50 IN_CH_EN Register (Address = 0x73) [Reset = 0xC0]  
IN_CH_EN is shown in 8-101.  
Return to the 8-51.  
This register is the input channel enable configuration register.  
8-101. IN_CH_EN Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
IN_CH1_EN  
R/W  
1b  
Input channel 1 enable setting.  
0d = Channel 1 is disabled  
1d = Channel 1 is enabled  
Copyright © 2022 Texas Instruments Incorporated  
84  
Submit Document Feedback  
Product Folder Links: PCM3120-Q1  
 
 
 
 
 
PCM3120-Q1  
ZHCSPD4A APRIL 2022 REVISED SEPTEMBER 2022  
www.ti.com.cn  
8-101. IN_CH_EN Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
6
IN_CH2_EN  
IN_CH3_EN  
IN_CH4_EN  
RESERVED  
R/W  
1b  
Input channel 2 enable setting.  
0d = Channel 2 is disabled  
1d = Channel 2 is enabled  
5
4
R/W  
R/W  
R
0b  
Input channel 3 (PDM only) enable setting.  
0d = Channel 3 is disabled  
1d = Channel 3 is enabled  
0b  
Input channel 4 (PDM only) enable setting.  
0d = Channel 4 is disabled  
1d = Channel 4 is enabled  
3-0  
0000b  
Reserved bits; Write only reset value  
8.6.2.51 ASI_OUT_CH_EN Register (Address = 0x74) [Reset = 0x00]  
ASI_OUT_CH_EN is shown in 8-102.  
Return to the 8-51.  
This register is the ASI output channel enable configuration register.  
8-102. ASI_OUT_CH_EN Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
ASI_OUT_CH1_EN  
R/W  
0b  
ASI output channel 1 enable setting.  
0d = Channel 1 output slot is in a tri-state condition  
1d = Channel 1 output slot is enabled  
6
5
ASI_OUT_CH2_EN  
ASI_OUT_CH3_EN  
ASI_OUT_CH4_EN  
RESERVED  
R/W  
R/W  
R/W  
R
0b  
ASI output channel 2 enable setting.  
0d = Channel 2 output slot is in a tri-state condition  
1d = Channel 2 output slot is enabled  
0b  
ASI output channel 3 enable setting.  
0d = Channel 3 output slot is in a tri-state condition  
1d = Channel 3 output slot is enabled  
4
0b  
ASI output channel 4 enable setting.  
0d = Channel 4 output slot is in a tri-state condition  
1d = Channel 4 output slot is enabled  
3-0  
0000b  
Reserved bits; Write only reset value  
8.6.2.52 PWR_CFG Register (Address = 0x75) [Reset = 0x00]  
PWR_CFG is shown in 8-103.  
Return to the 8-51.  
This register is the power-up configuration register.  
8-103. PWR_CFG Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
MICBIAS_PDZ  
R/W  
0b  
Power control for MICBIAS.  
0d = Power down MICBIAS  
1d = Power up MICBIAS  
6
5
ADC_PDZ  
PLL_PDZ  
R/W  
R/W  
0b  
0b  
Power control for ADC and PDM channels.  
0d = Power down all ADC and PDM channels  
1d = Power up all enabled ADC and PDM channels  
Power control for the PLL.  
0d = Power down the PLL  
1d = Power up the PLL  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
85  
Product Folder Links: PCM3120-Q1  
 
 
 
 
PCM3120-Q1  
ZHCSPD4A APRIL 2022 REVISED SEPTEMBER 2022  
www.ti.com.cn  
8-103. PWR_CFG Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
4
DYN_CH_PUPD_EN  
R/W  
0b  
Dynamic channel power-up, power-down enable.  
0d = Channel power-up, power-down is not supported if any channel  
recording is on  
1d = Channel can be powered up or down individually, even if  
channel recording is on  
3-2  
DYN_MAXCH_SEL[1:0]  
R/W  
00b  
Dynamic mode maximum channel select configuration.  
0d = Channel 1 and channel 2 are used with dynamic channel  
power-up, power-down feature enabled  
1d = Channel 1 to channel 4 are used with dynamic channel power-  
up, power-down feature enabled  
2d = Reserved; Don't use  
3d = Reserved; Don't use  
1
0
RESERVED  
VAD_EN  
R/W  
R/W  
0b  
0b  
Reserved bit; Write only reset value  
Enable voice activity detection (VAD) algorithm.  
0d = VAD is disabled  
1d = VAD is enabled  
8.6.2.53 DEV_STS0 Register (Address = 0x76) [Reset = 0x00]  
DEV_STS0 is shown in 8-104.  
Return to the 8-51.  
This register is the device status value register 0.  
8-104. DEV_STS0 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
CH1_STATUS  
R
0b  
ADC or PDM channel 1 power status.  
0d = ADC or PDM channel is powered down  
1d = ADC or PDM channel is powered up  
6
CH2_STATUS  
RESERVED  
R
R
0b  
ADC or PDM channel 2 power status.  
0d = ADC or PDM channel is powered down  
1d = ADC or PDM channel is powered up  
5-0  
000000b  
Reserved bits; Write only reset value  
8.6.2.54 DEV_STS1 Register (Address = 0x77) [Reset = 0x80]  
DEV_STS1 is shown in 8-105.  
Return to the 8-51.  
This register is the device status value register 1.  
8-105. DEV_STS1 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-5  
MODE_STS[2:0]  
R
100b  
Device mode status.  
4d = Device is in sleep mode or software shutdown mode  
6d = Device is in active mode with all ADC or PDM channels turned  
off  
7d = Device is in active mode with at least one ADC or PDM channel  
turned on  
4-0  
RESERVED  
R
00000b  
Reserved bits; Write only reset value  
8.6.2.55 I2C_CKSUM Register (Address = 0x7E) [Reset = 0x00]  
I2C_CKSUM is shown in 8-106.  
Copyright © 2022 Texas Instruments Incorporated  
86  
Submit Document Feedback  
Product Folder Links: PCM3120-Q1  
 
 
 
 
 
PCM3120-Q1  
ZHCSPD4A APRIL 2022 REVISED SEPTEMBER 2022  
www.ti.com.cn  
Return to the 8-51.  
This register returns the I2C transactions checksum value.  
8-106. I2C_CKSUM Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
I2C_CKSUM[7:0]  
R/W  
00000000b These bits return the I2C transactions checksum value. Writing to this  
register resets the checksum to the written value. This register is  
updated on writes to other registers on all pages.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
87  
Product Folder Links: PCM3120-Q1  
 
PCM3120-Q1  
ZHCSPD4A APRIL 2022 REVISED SEPTEMBER 2022  
www.ti.com.cn  
8.6.3 Page 1 Registers  
8-107 lists the memory-mapped registers for the Page 1 registers. All register offset addresses not listed in 表  
8-107 should be considered as reserved locations and the register contents should not be modified.  
8-107. PAGE 1 Registers  
Address  
0x0  
Acronym  
Register Name  
Reset Value  
0x00  
Section  
8.6.3.1  
8.6.3.2  
8.6.3.3  
PAGE_CFG  
VAD_CFG1  
VAD_CFG2  
Device page register  
0x1E  
Voice activity detection configuration register 1  
Voice activity detection configuration register 2  
0x20  
0x1F  
0x08  
8.6.3.1 PAGE_CFG Register (Address = 0x0) [Reset = 0x00]  
PAGE_CFG is shown in 8-108.  
Return to the 8-107.  
The device memory map is divided into pages. This register sets the page.  
8-108. PAGE_CFG Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
PAGE[7:0]  
R/W  
00000000b These bits set the device page.  
0d = Page 0  
1d = Page 1  
2d to 254d = Page 2 to page 254 respectively  
255d = Page 255  
8.6.3.2 VAD_CFG1 Register (Address = 0x1E) [Reset = 0x20]  
VAD_CFG1 is shown in 8-109.  
Return to the 8-107.  
This register is configuration register 1 for voice activity detection.  
8-109. VAD_CFG1 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-6  
VAD_MODE[1:0]  
R/W  
00b  
Auto ADC power up / power down configuration selection.  
0d = User initiated ADC power-up and ADC power-down  
1d = VAD interrupt based ADC power up and ADC power down  
2d = VAD interrupt based ADC power up but user initiated ADC  
power down  
3d = User initiated ADC power-up but VAD interrupt based ADC  
power down  
5-4  
3-2  
VAD_CH_SEL[1:0]  
VAD_CLK_CFG[1:0]  
R/W  
R/W  
10b  
00b  
VAD channel select.  
0d = Channel 1 is monitored for VAD activity  
1d = Channel 2 is monitored for VAD activity  
2d = Channel 3 is monitored for VAD activity  
3d = Channel 4 is monitored for VAD activity  
Clock select for VAD  
0d = VAD processing using internal oscillator clock  
1d = VAD processing using external clock on BCLK input  
2d = VAD processing using external clock on MCLK input  
3d = Custom clock configuration based on MST_CFG, CLK_SRC  
and CLKGEN_CFG registers in page 0  
Copyright © 2022 Texas Instruments Incorporated  
88  
Submit Document Feedback  
Product Folder Links: PCM3120-Q1  
 
 
 
 
 
PCM3120-Q1  
ZHCSPD4A APRIL 2022 REVISED SEPTEMBER 2022  
www.ti.com.cn  
8-109. VAD_CFG1 Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
1-0  
VAD_EXT_CLK_CFG[1:0] R/W  
00b  
Clock configuration using external clock for VAD.  
0d = External clock is 3.072 MHz  
1d = External clock is 6.144 MHz  
2d = External clock is 12.288 MHz  
3d = External clock is 18.432 MHz  
8.6.3.3 VAD_CFG2 Register (Address = 0x1F) [Reset = 0x08]  
VAD_CFG2 is shown in 8-110.  
Return to the 8-107.  
This register is configuration register 2 for voice activity detection.  
8-110. VAD_CFG2 Register Field Descriptions  
Bit  
7
Field  
Type  
Reset  
Description  
RESERVED  
SDOUT_INT_CFG  
R/W  
0b  
Reserved bit; Write only reset value  
6
R/W  
0b  
SDOUT interrupt configuration.  
0d = SDOUT pin is not enabled for interrupt function  
1d = SDOUT pin is enabled to support interrupt output when channel  
data in not being recorded  
5
4
3
RESERVED  
R
0b  
0b  
1b  
Reserved bit; Write only reset value  
Reserved bit; Write only reset value  
RESERVED  
R/W  
R/W  
VAD_PD_DET_EN  
Enable ASI output data during VAD activity.  
0d = VAD processing is not enabled during ADC recording  
1d = VAD processing is enabled during ADC recording and VAD  
interrupts are generated as configured  
2-0  
RESERVED  
R
000b  
Reserved bits; Write only reset values  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
89  
Product Folder Links: PCM3120-Q1  
 
 
PCM3120-Q1  
ZHCSPD4A APRIL 2022 REVISED SEPTEMBER 2022  
www.ti.com.cn  
8.6.4 Programmable Coefficient Registers  
8.6.4.1 Programmable Coefficient Registers: Page 2  
This register page (shown in 8-111) consists of the programmable coefficients for the biquad 1 to biquad 6  
filters. To optimize the coefficients register transaction time for page 2, page 3, and page 4, the device also  
supports (by default) auto-incremented pages for the I2C writes and reads. After a transaction of register address  
0x7F, the device auto increments to the next page at register 0x08 to transact the next coefficient value.  
8-111. Page 2 Programmable Coefficient Registers  
ADDRESS  
0x00  
0x08  
0x09  
0x0A  
0x0B  
0x0C  
0x0D  
0x0E  
0x0F  
0x10  
0x11  
0x12  
0x13  
0x14  
0x15  
0x16  
0x17  
0x18  
0x19  
0x1A  
0x1B  
0x1C  
0x1D  
0x1E  
0x1F  
0x20  
0x21  
0x22  
0x23  
0x24  
0x25  
0x26  
0x27  
0x28  
0x29  
0x2A  
0x2B  
0x2C  
0x2D  
0x2E  
0x2F  
0x30  
0x31  
ACRONYM  
REGISTER NAME  
RESET VALUE  
0x00  
0x7F  
0xFF  
0xFF  
0xFF  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x7F  
0xFF  
0xFF  
0xFF  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x7F  
0xFF  
PAGE[7:0]  
Device page register  
BQ1_N0_BYT1[7:0]  
BQ1_N0_BYT2[7:0]  
BQ1_N0_BYT3[7:0]  
BQ1_N0_BYT4[7:0]  
BQ1_N1_BYT1[7:0]  
BQ1_N1_BYT2[7:0]  
BQ1_N1_BYT3[7:0]  
BQ1_N1_BYT4[7:0]  
BQ1_N2_BYT1[7:0]  
BQ1_N2_BYT2[7:0]  
BQ1_N2_BYT3[7:0]  
BQ1_N2_BYT4[7:0]  
BQ1_D1_BYT1[7:0]  
BQ1_D1_BYT2[7:0]  
BQ1_D1_BYT3[7:0]  
BQ1_D1_BYT4[7:0]  
BQ1_D2_BYT1[7:0]  
BQ1_D2_BYT2[7:0]  
BQ1_D2_BYT3[7:0]  
BQ1_D2_BYT4[7:0]  
BQ2_N0_BYT1[7:0]  
BQ2_N0_BYT2[7:0]  
BQ2_N0_BYT3[7:0]  
BQ2_N0_BYT4[7:0]  
BQ2_N1_BYT1[7:0]  
BQ2_N1_BYT2[7:0]  
BQ2_N1_BYT3[7:0]  
BQ2_N1_BYT4[7:0]  
BQ2_N2_BYT1[7:0]  
BQ2_N2_BYT2[7:0]  
BQ2_N2_BYT3[7:0]  
BQ2_N2_BYT4[7:0]  
BQ2_D1_BYT1[7:0]  
BQ2_D1_BYT2[7:0]  
BQ2_D1_BYT3[7:0]  
BQ2_D1_BYT4[7:0]  
BQ2_D2_BYT1[7:0]  
BQ2_D2_BYT2[7:0]  
BQ2_D2_BYT3[7:0]  
BQ2_D2_BYT4[7:0]  
BQ3_N0_BYT1[7:0]  
BQ3_N0_BYT2[7:0]  
Programmable biquad 1, N0 coefficient byte[31:24]  
Programmable biquad 1, N0 coefficient byte[23:16]  
Programmable biquad 1, N0 coefficient byte[15:8]  
Programmable biquad 1, N0 coefficient byte[7:0]  
Programmable biquad 1, N1 coefficient byte[31:24]  
Programmable biquad 1, N1 coefficient byte[23:16]  
Programmable biquad 1, N1 coefficient byte[15:8]  
Programmable biquad 1, N1 coefficient byte[7:0]  
Programmable biquad 1, N2 coefficient byte[31:24]  
Programmable biquad 1, N2 coefficient byte[23:16]  
Programmable biquad 1, N2 coefficient byte[15:8]  
Programmable biquad 1, N2 coefficient byte[7:0]  
Programmable biquad 1, D1 coefficient byte[31:24]  
Programmable biquad 1, D1 coefficient byte[23:16]  
Programmable biquad 1, D1 coefficient byte[15:8]  
Programmable biquad 1, D1 coefficient byte[7:0]  
Programmable biquad 1, D2 coefficient byte[31:24]  
Programmable biquad 1, D2 coefficient byte[23:16]  
Programmable biquad 1, D2 coefficient byte[15:8]  
Programmable biquad 1, D2 coefficient byte[7:0]  
Programmable biquad 2, N0 coefficient byte[31:24]  
Programmable biquad 2, N0 coefficient byte[23:16]  
Programmable biquad 2, N0 coefficient byte[15:8]  
Programmable biquad 2, N0 coefficient byte[7:0]  
Programmable biquad 2, N1 coefficient byte[31:24]  
Programmable biquad 2, N1 coefficient byte[23:16]  
Programmable biquad 2, N1 coefficient byte[15:8]  
Programmable biquad 2, N1 coefficient byte[7:0]  
Programmable biquad 2, N2 coefficient byte[31:24]  
Programmable biquad 2, N2 coefficient byte[23:16]  
Programmable biquad 2, N2 coefficient byte[15:8]  
Programmable biquad 2, N2 coefficient byte[7:0]  
Programmable biquad 2, D1 coefficient byte[31:24]  
Programmable biquad 2, D1 coefficient byte[23:16]  
Programmable biquad 2, D1 coefficient byte[15:8]  
Programmable biquad 2, D1 coefficient byte[7:0]  
Programmable biquad 2, D2 coefficient byte[31:24]  
Programmable biquad 2, D2 coefficient byte[23:16]  
Programmable biquad 2, D2 coefficient byte[15:8]  
Programmable biquad 2, D2 coefficient byte[7:0]  
Programmable biquad 3, N0 coefficient byte[31:24]  
Programmable biquad 3, N0 coefficient byte[23:16]  
Copyright © 2022 Texas Instruments Incorporated  
90  
Submit Document Feedback  
Product Folder Links: PCM3120-Q1  
 
 
PCM3120-Q1  
ZHCSPD4A APRIL 2022 REVISED SEPTEMBER 2022  
www.ti.com.cn  
8-111. Page 2 Programmable Coefficient Registers (continued)  
ADDRESS  
0x32  
0x33  
0x34  
0x35  
0x36  
0x37  
0x38  
0x39  
0x3A  
0x3B  
0x3C  
0x3D  
0x3E  
0x3F  
0x40  
0x41  
0x42  
0x43  
0x44  
0x45  
0x46  
0x47  
0x48  
0x49  
0x4A  
0x4B  
0x4C  
0x4D  
0x4E  
0x4F  
0x50  
0x51  
0x52  
0x53  
0x54  
0x55  
0x56  
0x57  
0x58  
0x59  
0x5A  
0x5B  
0x5C  
0x5D  
0x5E  
0x5F  
0x60  
0x61  
0x62  
0x63  
ACRONYM  
REGISTER NAME  
RESET VALUE  
0xFF  
0xFF  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x7F  
0xFF  
0xFF  
0xFF  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x7F  
0xFF  
0xFF  
0xFF  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
BQ3_N0_BYT3[7:0]  
Programmable biquad 3, N0 coefficient byte[15:8]  
Programmable biquad 3, N0 coefficient byte[7:0]  
Programmable biquad 3, N1 coefficient byte[31:24]  
Programmable biquad 3, N1 coefficient byte[23:16]  
Programmable biquad 3, N1 coefficient byte[15:8]  
Programmable biquad 3, N1 coefficient byte[7:0]  
Programmable biquad 3, N2 coefficient byte[31:24]  
Programmable biquad 3, N2 coefficient byte[23:16]  
Programmable biquad 3, N2 coefficient byte[15:8]  
Programmable biquad 3, N2 coefficient byte[7:0]  
Programmable biquad 3, D1 coefficient byte[31:24]  
Programmable biquad 3, D1 coefficient byte[23:16]  
Programmable biquad 3, D1 coefficient byte[15:8]  
Programmable biquad 3, D1 coefficient byte[7:0]  
Programmable biquad 3, D2 coefficient byte[31:24]  
Programmable biquad 3, D2 coefficient byte[23:16]  
Programmable biquad 3, D2 coefficient byte[15:8]  
Programmable biquad 3, D2 coefficient byte[7:0]  
Programmable biquad 4, N0 coefficient byte[31:24]  
Programmable biquad 4, N0 coefficient byte[23:16]  
Programmable biquad 4, N0 coefficient byte[15:8]  
Programmable biquad 4, N0 coefficient byte[7:0]  
Programmable biquad 4, N1 coefficient byte[31:24]  
Programmable biquad 4, N1 coefficient byte[23:16]  
Programmable biquad 4, N1 coefficient byte[15:8]  
Programmable biquad 4, N1 coefficient byte[7:0]  
Programmable biquad 4, N2 coefficient byte[31:24]  
Programmable biquad 4, N2 coefficient byte[23:16]  
Programmable biquad 4, N2 coefficient byte[15:8]  
Programmable biquad 4, N2 coefficient byte[7:0]  
Programmable biquad 4, D1 coefficient byte[31:24]  
Programmable biquad 4, D1 coefficient byte[23:16]  
Programmable biquad 4, D1 coefficient byte[15:8]  
Programmable biquad 4, D1 coefficient byte[7:0]  
Programmable biquad 4, D2 coefficient byte[31:24]  
Programmable biquad 4, D2 coefficient byte[23:16]  
Programmable biquad 4, D2 coefficient byte[15:8]  
Programmable biquad 4, D2 coefficient byte[7:0]  
Programmable biquad 5, N0 coefficient byte[31:24]  
Programmable biquad 5, N0 coefficient byte[23:16]  
Programmable biquad 5, N0 coefficient byte[15:8]  
Programmable biquad 5, N0 coefficient byte[7:0]  
Programmable biquad 5, N1 coefficient byte[31:24]  
Programmable biquad 5, N1 coefficient byte[23:16]  
Programmable biquad 5, N1 coefficient byte[15:8]  
Programmable biquad 5, N1 coefficient byte[7:0]  
Programmable biquad 5, N2 coefficient byte[31:24]  
Programmable biquad 5, N2 coefficient byte[23:16]  
Programmable biquad 5, N2 coefficient byte[15:8]  
Programmable biquad 5, N2 coefficient byte[7:0]  
BQ3_N0_BYT4[7:0]  
BQ3_N1_BYT1[7:0]  
BQ3_N1_BYT2[7:0]  
BQ3_N1_BYT3[7:0]  
BQ3_N1_BYT4[7:0]  
BQ3_N2_BYT1[7:0]  
BQ3_N2_BYT2[7:0]  
BQ3_N2_BYT3[7:0]  
BQ3_N2_BYT4[7:0]  
BQ3_D1_BYT1[7:0]  
BQ3_D1_BYT2[7:0]  
BQ3_D1_BYT3[7:0]  
BQ3_D1_BYT4[7:0]  
BQ3_D2_BYT1[7:0]  
BQ3_D2_BYT2[7:0]  
BQ3_D2_BYT3[7:0]  
BQ3_D2_BYT4[7:0]  
BQ4_N0_BYT1[7:0]  
BQ4_N0_BYT2[7:0]  
BQ4_N0_BYT3[7:0]  
BQ4_N0_BYT4[7:0]  
BQ4_N1_BYT1[7:0]  
BQ4_N1_BYT2[7:0]  
BQ4_N1_BYT3[7:0]  
BQ4_N1_BYT4[7:0]  
BQ4_N2_BYT1[7:0]  
BQ4_N2_BYT2[7:0]  
BQ4_N2_BYT3[7:0]  
BQ4_N2_BYT4[7:0]  
BQ4_D1_BYT1[7:0]  
BQ4_D1_BYT2[7:0]  
BQ4_D1_BYT3[7:0]  
BQ4_D1_BYT4[7:0]  
BQ4_D2_BYT1[7:0]  
BQ4_D2_BYT2[7:0]  
BQ4_D2_BYT3[7:0]  
BQ4_D2_BYT4[7:0]  
BQ5_N0_BYT1[7:0]  
BQ5_N0_BYT2[7:0]  
BQ5_N0_BYT3[7:0]  
BQ5_N0_BYT4[7:0]  
BQ5_N1_BYT1[7:0]  
BQ5_N1_BYT2[7:0]  
BQ5_N1_BYT3[7:0]  
BQ5_N1_BYT4[7:0]  
BQ5_N2_BYT1[7:0]  
BQ5_N2_BYT2[7:0]  
BQ5_N2_BYT3[7:0]  
BQ5_N2_BYT4[7:0]  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
91  
Product Folder Links: PCM3120-Q1  
PCM3120-Q1  
ZHCSPD4A APRIL 2022 REVISED SEPTEMBER 2022  
www.ti.com.cn  
8-111. Page 2 Programmable Coefficient Registers (continued)  
ADDRESS  
0x64  
0x65  
0x66  
0x67  
0x68  
0x69  
0x6A  
0x6B  
0x6C  
0x6D  
0x6E  
0x6F  
0x70  
0x71  
0x72  
0x73  
0x74  
0x75  
0x76  
0x77  
0x78  
0x79  
0x7A  
0x7B  
0x7C  
0x7D  
0x7E  
0x7F  
ACRONYM  
REGISTER NAME  
RESET VALUE  
BQ5_D1_BYT1[7:0]  
Programmable biquad 5, D1 coefficient byte[31:24]  
Programmable biquad 5, D1 coefficient byte[23:16]  
Programmable biquad 5, D1 coefficient byte[15:8]  
Programmable biquad 5, D1 coefficient byte[7:0]  
Programmable biquad 5, D2 coefficient byte[31:24]  
Programmable biquad 5, D2 coefficient byte[23:16]  
Programmable biquad 5, D2 coefficient byte[15:8]  
Programmable biquad 5, D2 coefficient byte[7:0]  
Programmable biquad 6, N0 coefficient byte[31:24]  
Programmable biquad 6, N0 coefficient byte[23:16]  
Programmable biquad 6, N0 coefficient byte[15:8]  
Programmable biquad 6, N0 coefficient byte[7:0]  
Programmable biquad 6, N1 coefficient byte[31:24]  
Programmable biquad 6, N1 coefficient byte[23:16]  
Programmable biquad 6, N1 coefficient byte[15:8]  
Programmable biquad 6, N1 coefficient byte[7:0]  
Programmable biquad 6, N2 coefficient byte[31:24]  
Programmable biquad 6, N2 coefficient byte[23:16]  
Programmable biquad 6, N2 coefficient byte[15:8]  
Programmable biquad 6, N2 coefficient byte[7:0]  
Programmable biquad 6, D1 coefficient byte[31:24]  
Programmable biquad 6, D1 coefficient byte[23:16]  
Programmable biquad 6, D1 coefficient byte[15:8]  
Programmable biquad 6, D1 coefficient byte[7:0]  
Programmable biquad 6, D2 coefficient byte[31:24]  
Programmable biquad 6, D2 coefficient byte[23:16]  
Programmable biquad 6, D2 coefficient byte[15:8]  
Programmable biquad 6, D2 coefficient byte[7:0]  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x7F  
0xFF  
0xFF  
0xFF  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
BQ5_D1_BYT2[7:0]  
BQ5_D1_BYT3[7:0]  
BQ5_D1_BYT4[7:0]  
BQ5_D2_BYT1[7:0]  
BQ5_D2_BYT2[7:0]  
BQ5_D2_BYT3[7:0]  
BQ5_D2_BYT4[7:0]  
BQ6_N0_BYT1[7:0]  
BQ6_N0_BYT2[7:0]  
BQ6_N0_BYT3[7:0]  
BQ6_N0_BYT4[7:0]  
BQ6_N1_BYT1[7:0]  
BQ6_N1_BYT2[7:0]  
BQ6_N1_BYT3[7:0]  
BQ6_N1_BYT4[7:0]  
BQ6_N2_BYT1[7:0]  
BQ6_N2_BYT2[7:0]  
BQ6_N2_BYT3[7:0]  
BQ6_N2_BYT4[7:0]  
BQ6_D1_BYT1[7:0]  
BQ6_D1_BYT2[7:0]  
BQ6_D1_BYT3[7:0]  
BQ6_D1_BYT4[7:0]  
BQ6_D2_BYT1[7:0]  
BQ6_D2_BYT2[7:0]  
BQ6_D2_BYT3[7:0]  
BQ6_D2_BYT4[7:0]  
Copyright © 2022 Texas Instruments Incorporated  
92  
Submit Document Feedback  
Product Folder Links: PCM3120-Q1  
PCM3120-Q1  
ZHCSPD4A APRIL 2022 REVISED SEPTEMBER 2022  
www.ti.com.cn  
8.6.4.2 Programmable Coefficient Registers: Page 3  
This register page (shown in 8-112) consists of the programmable coefficients for the biquad 7 to biquad 12  
filters. To optimize the coefficients register transaction time for page 2, page 3, and page 4, the device also  
supports (by default) auto-incremented pages for the I2C writes and reads. After a transaction of register address  
0x7F, the device auto increments to the next page at register 0x08 to transact the next coefficient value.  
8-112. Page 3 Programmable Coefficient Registers  
ADDRESS  
0x00  
0x08  
0x09  
0x0A  
0x0B  
0x0C  
0x0D  
0x0E  
0x0F  
0x10  
0x11  
0x12  
0x13  
0x14  
0x15  
0x16  
0x17  
0x18  
0x19  
0x1A  
0x1B  
0x1C  
0x1D  
0x1E  
0x1F  
0x20  
0x21  
0x22  
0x23  
0x24  
0x25  
0x26  
0x27  
0x28  
0x29  
0x2A  
0x2B  
0x2C  
0x2D  
0x2E  
0x2F  
0x30  
0x31  
0x32  
ACRONYM  
REGISTER NAME  
RESET VALUE  
0x00  
0x7F  
0xFF  
0xFF  
0xFF  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x7F  
0xFF  
0xFF  
0xFF  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x7F  
0xFF  
0xFF  
PAGE[7:0]  
Device page register  
BQ7_N0_BYT1[7:0]  
BQ7_N0_BYT2[7:0]  
BQ7_N0_BYT3[7:0]  
BQ7_N0_BYT4[7:0]  
BQ7_N1_BYT1[7:0]  
BQ7_N1_BYT2[7:0]  
BQ7_N1_BYT3[7:0]  
BQ7_N1_BYT4[7:0]  
BQ7_N2_BYT1[7:0]  
BQ7_N2_BYT2[7:0]  
BQ7_N2_BYT3[7:0]  
BQ7_N2_BYT4[7:0]  
BQ7_D1_BYT1[7:0]  
BQ7_D1_BYT2[7:0]  
BQ7_D1_BYT3[7:0]  
BQ7_D1_BYT4[7:0]  
BQ7_D2_BYT1[7:0]  
BQ7_D2_BYT2[7:0]  
BQ7_D2_BYT3[7:0]  
BQ7_D2_BYT4[7:0]  
BQ8_N0_BYT1[7:0]  
BQ8_N0_BYT2[7:0]  
BQ8_N0_BYT3[7:0]  
BQ8_N0_BYT4[7:0]  
BQ8_N1_BYT1[7:0]  
BQ8_N1_BYT2[7:0]  
BQ8_N1_BYT3[7:0]  
BQ8_N1_BYT4[7:0]  
BQ8_N2_BYT1[7:0]  
BQ8_N2_BYT2[7:0]  
BQ8_N2_BYT3[7:0]  
BQ8_N2_BYT4[7:0]  
BQ8_D1_BYT1[7:0]  
BQ8_D1_BYT2[7:0]  
BQ8_D1_BYT3[7:0]  
BQ8_D1_BYT4[7:0]  
BQ8_D2_BYT1[7:0]  
BQ8_D2_BYT2[7:0]  
BQ8_D2_BYT3[7:0]  
BQ8_D2_BYT4[7:0]  
BQ9_N0_BYT1[7:0]  
BQ9_N0_BYT2[7:0]  
BQ9_N0_BYT3[7:0]  
Programmable biquad 7, N0 coefficient byte[31:24]  
Programmable biquad 7, N0 coefficient byte[23:16]  
Programmable biquad 7, N0 coefficient byte[15:8]  
Programmable biquad 7, N0 coefficient byte[7:0]  
Programmable biquad 7, N1 coefficient byte[31:24]  
Programmable biquad 7, N1 coefficient byte[23:16]  
Programmable biquad 7, N1 coefficient byte[15:8]  
Programmable biquad 7, N1 coefficient byte[7:0]  
Programmable biquad 7, N2 coefficient byte[31:24]  
Programmable biquad 7, N2 coefficient byte[23:16]  
Programmable biquad 7, N2 coefficient byte[15:8]  
Programmable biquad 7, N2 coefficient byte[7:0]  
Programmable biquad 7, D1 coefficient byte[31:24]  
Programmable biquad 7, D1 coefficient byte[23:16]  
Programmable biquad 7, D1 coefficient byte[15:8]  
Programmable biquad 7, D1 coefficient byte[7:0]  
Programmable biquad 7, D2 coefficient byte[31:24]  
Programmable biquad 7, D2 coefficient byte[23:16]  
Programmable biquad 7, D2 coefficient byte[15:8]  
Programmable biquad 7, D2 coefficient byte[7:0]  
Programmable biquad 8, N0 coefficient byte[31:24]  
Programmable biquad 8, N0 coefficient byte[23:16]  
Programmable biquad 8, N0 coefficient byte[15:8]  
Programmable biquad 8, N0 coefficient byte[7:0]  
Programmable biquad 8, N1 coefficient byte[31:24]  
Programmable biquad 8, N1 coefficient byte[23:16]  
Programmable biquad 8, N1 coefficient byte[15:8]  
Programmable biquad 8, N1 coefficient byte[7:0]  
Programmable biquad 8, N2 coefficient byte[31:24]  
Programmable biquad 8, N2 coefficient byte[23:16]  
Programmable biquad 8, N2 coefficient byte[15:8]  
Programmable biquad 8, N2 coefficient byte[7:0]  
Programmable biquad 8, D1 coefficient byte[31:24]  
Programmable biquad 8, D1 coefficient byte[23:16]  
Programmable biquad 8, D1 coefficient byte[15:8]  
Programmable biquad 8, D1 coefficient byte[7:0]  
Programmable biquad 8, D2 coefficient byte[31:24]  
Programmable biquad 8, D2 coefficient byte[23:16]  
Programmable biquad 8, D2 coefficient byte[15:8]  
Programmable biquad 8, D2 coefficient byte[7:0]  
Programmable biquad 9, N0 coefficient byte[31:24]  
Programmable biquad 9, N0 coefficient byte[23:16]  
Programmable biquad 9, N0 coefficient byte[15:8]  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
93  
Product Folder Links: PCM3120-Q1  
 
 
PCM3120-Q1  
ZHCSPD4A APRIL 2022 REVISED SEPTEMBER 2022  
www.ti.com.cn  
8-112. Page 3 Programmable Coefficient Registers (continued)  
ADDRESS  
0x33  
0x34  
0x35  
0x36  
0x37  
0x38  
0x39  
0x3A  
0x3B  
0x3C  
0x3D  
0x3E  
0x3F  
0x40  
0x41  
0x42  
0x43  
0x44  
0x45  
0x46  
0x47  
0x48  
0x49  
0x4A  
0x4B  
0x4C  
0x4D  
0x4E  
0x4F  
0x50  
0x51  
0x52  
0x53  
0x54  
0x55  
0x56  
0x57  
0x58  
0x59  
0x5A  
0x5B  
0x5C  
0x5D  
0x5E  
0x5F  
0x60  
0x61  
0x62  
0x63  
0x64  
ACRONYM  
REGISTER NAME  
RESET VALUE  
BQ9_N0_BYT4[7:0]  
Programmable biquad 9, N0 coefficient byte[7:0]  
Programmable biquad 9, N1 coefficient byte[31:24]  
Programmable biquad 9, N1 coefficient byte[23:16]  
Programmable biquad 9, N1 coefficient byte[15:8]  
Programmable biquad 9, N1 coefficient byte[7:0]  
Programmable biquad 9, N2 coefficient byte[31:24]  
Programmable biquad 9, N2 coefficient byte[23:16]  
Programmable biquad 9, N2 coefficient byte[15:8]  
Programmable biquad 9, N2 coefficient byte[7:0]  
Programmable biquad 9, D1 coefficient byte[31:24]  
Programmable biquad 9, D1 coefficient byte[23:16]  
Programmable biquad 9, D1 coefficient byte[15:8]  
Programmable biquad 9, D1 coefficient byte[7:0]  
Programmable biquad 9, D2 coefficient byte[31:24]  
Programmable biquad 9, D2 coefficient byte[23:16]  
Programmable biquad 9, D2 coefficient byte[15:8]  
Programmable biquad 9, D2 coefficient byte[7:0]  
Programmable biquad 10, N0 coefficient byte[31:24]  
Programmable biquad 10, N0 coefficient byte[23:16]  
Programmable biquad 10, N0 coefficient byte[15:8]  
Programmable biquad 10, N0 coefficient byte[7:0]  
Programmable biquad 10, N1 coefficient byte[31:24]  
Programmable biquad 10, N1 coefficient byte[23:16]  
Programmable biquad 10, N1 coefficient byte[15:8]  
Programmable biquad 10, N1 coefficient byte[7:0]  
Programmable biquad 10, N2 coefficient byte[31:24]  
Programmable biquad 10, N2 coefficient byte[23:16]  
Programmable biquad 10, N2 coefficient byte[15:8]  
Programmable biquad 10, N2 coefficient byte[7:0]  
Programmable biquad 10, D1 coefficient byte[31:24]  
Programmable biquad 10, D1 coefficient byte[23:16]  
Programmable biquad 10, D1 coefficient byte[15:8]  
Programmable biquad 10, D1 coefficient byte[7:0]  
Programmable biquad 10, D2 coefficient byte[31:24]  
Programmable biquad 10, D2 coefficient byte[23:16]  
Programmable biquad 10, D2 coefficient byte[15:8]  
Programmable biquad 10, D2 coefficient byte[7:0]  
Programmable biquad 11, N0 coefficient byte[31:24]  
Programmable biquad 11, N0 coefficient byte[23:16]  
Programmable biquad 11, N0 coefficient byte[15:8]  
Programmable biquad 11, N0 coefficient byte[7:0]  
Programmable biquad 11, N1 coefficient byte[31:24]  
Programmable biquad 11, N1 coefficient byte[23:16]  
Programmable biquad 11, N1 coefficient byte[15:8]  
Programmable biquad 11, N1 coefficient byte[7:0]  
Programmable biquad 11, N2 coefficient byte[31:24]  
Programmable biquad 11, N2 coefficient byte[23:16]  
Programmable biquad 11, N2 coefficient byte[15:8]  
Programmable biquad 11, N2 coefficient byte[7:0]  
Programmable biquad 11, D1 coefficient byte[31:24]  
0xFF  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x7F  
0xFF  
0xFF  
0xFF  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x7F  
0xFF  
0xFF  
0xFF  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
BQ9_N1_BYT1[7:0]  
BQ9_N1_BYT2[7:0]  
BQ9_N1_BYT3[7:0]  
BQ9_N1_BYT4[7:0]  
BQ9_N2_BYT1[7:0]  
BQ9_N2_BYT2[7:0]  
BQ9_N2_BYT3[7:0]  
BQ9_N2_BYT4[7:0]  
BQ9_D1_BYT1[7:0]  
BQ9_D1_BYT2[7:0]  
BQ9_D1_BYT3[7:0]  
BQ9_D1_BYT4[7:0]  
BQ9_D2_BYT1[7:0]  
BQ9_D2_BYT2[7:0]  
BQ9_D2_BYT3[7:0]  
BQ9_D2_BYT4[7:0]  
BQ10_N0_BYT1[7:0]  
BQ10_N0_BYT2[7:0]  
BQ10_N0_BYT3[7:0]  
BQ10_N0_BYT4[7:0]  
BQ10_N1_BYT1[7:0]  
BQ10_N1_BYT2[7:0]  
BQ10_N1_BYT3[7:0]  
BQ10_N1_BYT4[7:0]  
BQ10_N2_BYT1[7:0]  
BQ10_N2_BYT2[7:0]  
BQ10_N2_BYT3[7:0]  
BQ10_N2_BYT4[7:0]  
BQ10_D1_BYT1[7:0]  
BQ10_D1_BYT2[7:0]  
BQ10_D1_BYT3[7:0]  
BQ10_D1_BYT4[7:0]  
BQ10_D2_BYT1[7:0]  
BQ10_D2_BYT2[7:0]  
BQ10_D2_BYT3[7:0]  
BQ10_D2_BYT4[7:0]  
BQ11_N0_BYT1[7:0]  
BQ11_N0_BYT2[7:0]  
BQ11_N0_BYT3[7:0]  
BQ11_N0_BYT4[7:0]  
BQ11_N1_BYT1[7:0]  
BQ11_N1_BYT2[7:0]  
BQ11_N1_BYT3[7:0]  
BQ11_N1_BYT4[7:0]  
BQ11_N2_BYT1[7:0]  
BQ11_N2_BYT2[7:0]  
BQ11_N2_BYT3[7:0]  
BQ11_N2_BYT4[7:0]  
BQ11_D1_BYT1[7:0]  
Copyright © 2022 Texas Instruments Incorporated  
94  
Submit Document Feedback  
Product Folder Links: PCM3120-Q1  
PCM3120-Q1  
ZHCSPD4A APRIL 2022 REVISED SEPTEMBER 2022  
www.ti.com.cn  
8-112. Page 3 Programmable Coefficient Registers (continued)  
ADDRESS  
0x65  
0x66  
0x67  
0x68  
0x69  
0x6A  
0x6B  
0x6C  
0x6D  
0x6E  
0x6F  
0x70  
0x71  
0x72  
0x73  
0x74  
0x75  
0x76  
0x77  
0x78  
0x79  
0x7A  
0x7B  
0x7C  
0x7D  
0x7E  
0x7F  
ACRONYM  
REGISTER NAME  
RESET VALUE  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x7F  
0xFF  
0xFF  
0xFF  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
BQ11_D1_BYT2[7:0]  
Programmable biquad 11, D1 coefficient byte[23:16]  
Programmable biquad 11, D1 coefficient byte[15:8]  
Programmable biquad 11, D1 coefficient byte[7:0]  
Programmable biquad 11, D2 coefficient byte[31:24]  
Programmable biquad 11, D2 coefficient byte[23:16]  
Programmable biquad 11, D2 coefficient byte[15:8]  
Programmable biquad 11, D2 coefficient byte[7:0]  
Programmable biquad 12, N0 coefficient byte[31:24]  
Programmable biquad 12, N0 coefficient byte[23:16]  
Programmable biquad 12, N0 coefficient byte[15:8]  
Programmable biquad 12, N0 coefficient byte[7:0]  
Programmable biquad 12, N1 coefficient byte[31:24]  
Programmable biquad 12, N1 coefficient byte[23:16]  
Programmable biquad 12, N1 coefficient byte[15:8]  
Programmable biquad 12, N1 coefficient byte[7:0]  
Programmable biquad 12, N2 coefficient byte[31:24]  
Programmable biquad 12, N2 coefficient byte[23:16]  
Programmable biquad 12, N2 coefficient byte[15:8]  
Programmable biquad 12, N2 coefficient byte[7:0]  
Programmable biquad 12, D1 coefficient byte[31:24]  
Programmable biquad 12, D1 coefficient byte[23:16]  
Programmable biquad 12, D1 coefficient byte[15:8]  
Programmable biquad 12, D1 coefficient byte[7:0]  
Programmable biquad 12, D2 coefficient byte[31:24]  
Programmable biquad 12, D2 coefficient byte[23:16]  
Programmable biquad 12, D2 coefficient byte[15:8]  
Programmable biquad 12, D2 coefficient byte[7:0]  
BQ11_D1_BYT3[7:0]  
BQ11_D1_BYT4[7:0]  
BQ11_D2_BYT1[7:0]  
BQ11_D2_BYT2[7:0]  
BQ11_D2_BYT3[7:0]  
BQ11_D2_BYT4[7:0]  
BQ12_N0_BYT1[7:0]  
BQ12_N0_BYT2[7:0]  
BQ12_N0_BYT3[7:0]  
BQ12_N0_BYT4[7:0]  
BQ12_N1_BYT1[7:0]  
BQ12_N1_BYT2[7:0]  
BQ12_N1_BYT3[7:0]  
BQ12_N1_BYT4[7:0]  
BQ12_N2_BYT1[7:0]  
BQ12_N2_BYT2[7:0]  
BQ12_N2_BYT3[7:0]  
BQ12_N2_BYT4[7:0]  
BQ12_D1_BYT1[7:0]  
BQ12_D1_BYT2[7:0]  
BQ12_D1_BYT3[7:0]  
BQ12_D1_BYT4[7:0]  
BQ12_D2_BYT1[7:0]  
BQ12_D2_BYT2[7:0]  
BQ12_D2_BYT3[7:0]  
BQ12_D2_BYT4[7:0]  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
95  
Product Folder Links: PCM3120-Q1  
PCM3120-Q1  
ZHCSPD4A APRIL 2022 REVISED SEPTEMBER 2022  
www.ti.com.cn  
8.6.4.3 Programmable Coefficient Registers: Page 4  
This register page (shown in 8-113) consists of the programmable coefficients for mixer 1 to mixer 4 and the  
first-order IIR filter.  
8-113. Page 4 Programmable Coefficient Registers  
ADDRESS  
0x00  
0x08  
0x09  
0x0A  
0x0B  
0x0C  
0x0D  
0x0E  
0x0F  
0x10  
0x11  
0x12  
0x13  
0x14  
0x15  
0x16  
0x17  
0x18  
0x19  
0x1A  
0x1B  
0x1C  
0x1D  
0x1E  
0x1F  
0x20  
0x21  
0x22  
0x23  
0x24  
0x25  
0x26  
0x27  
0x28  
0x29  
0x2A  
0x2B  
0x2C  
0x2D  
0x2E  
0x2F  
0x30  
0x31  
0x32  
0x33  
0x34  
ACRONYM  
REGISTER NAME  
RESET VALUE  
0x00  
0x7F  
0xFF  
0xFF  
0xFF  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x7F  
0xFF  
0xFF  
0xFF  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x7F  
0xFF  
0xFF  
0xFF  
0x00  
PAGE[7:0]  
Device page register  
MIX1_CH1_BYT1[7:0]  
MIX1_CH1_BYT2[7:0]  
MIX1_CH1_BYT3[7:0]  
MIX1_CH1_BYT4[7:0]  
MIX1_CH2_BYT1[7:0]  
MIX1_CH2_BYT2[7:0]  
MIX1_CH2_BYT3[7:0]  
MIX1_CH2_BYT4[7:0]  
MIX1_CH3_BYT1[7:0]  
MIX1_CH3_BYT2[7:0]  
MIX1_CH3_BYT3[7:0]  
MIX1_CH3_BYT4[7:0]  
MIX1_CH4_BYT1[7:0]  
MIX1_CH4_BYT2[7:0]  
MIX1_CH4_BYT3[7:0]  
MIX1_CH4_BYT4[7:0]  
MIX2_CH1_BYT1[7:0]  
MIX2_CH1_BYT2[7:0]  
MIX2_CH1_BYT3[7:0]  
MIX2_CH1_BYT4[7:0]  
MIX2_CH2_BYT1[7:0]  
MIX2_CH2_BYT2[7:0]  
MIX2_CH2_BYT3[7:0]  
MIX2_CH2_BYT4[7:0]  
MIX2_CH3_BYT1[7:0]  
MIX2_CH3_BYT2[7:0]  
MIX2_CH3_BYT3[7:0]  
MIX2_CH3_BYT4[7:0]  
MIX2_CH4_BYT1[7:0]  
MIX2_CH4_BYT2[7:0]  
MIX2_CH4_BYT3[7:0]  
MIX2_CH4_BYT4[7:0]  
MIX3_CH1_BYT1[7:0]  
MIX3_CH1_BYT2[7:0]  
MIX3_CH1_BYT3[7:0]  
MIX3_CH1_BYT4[7:0]  
MIX3_CH2_BYT1[7:0]  
MIX3_CH2_BYT2[7:0]  
MIX3_CH2_BYT3[7:0]  
MIX3_CH2_BYT4[7:0]  
MIX3_CH3_BYT1[7:0]  
MIX3_CH3_BYT2[7:0]  
MIX3_CH3_BYT3[7:0]  
MIX3_CH3_BYT4[7:0]  
MIX3_CH4_BYT1[7:0]  
Digital mixer 1, channel 1 coefficient byte[31:24]  
Digital mixer 1, channel 1 coefficient byte[23:16]  
Digital mixer 1, channel 1 coefficient byte[15:8]  
Digital mixer 1, channel 1 coefficient byte[7:0]  
Digital mixer 1, channel 2 coefficient byte[31:24]  
Digital mixer 1, channel 2 coefficient byte[23:16]  
Digital mixer 1, channel 2 coefficient byte[15:8]  
Digital mixer 1, channel 2 coefficient byte[7:0]  
Digital mixer 1, channel 3 coefficient byte[31:24]  
Digital mixer 1, channel 3 coefficient byte[23:16]  
Digital mixer 1, channel 3 coefficient byte[15:8]  
Digital mixer 1, channel 3 coefficient byte[7:0]  
Digital mixer 1, channel 4 coefficient byte[31:24]  
Digital mixer 1, channel 4 coefficient byte[23:16]  
Digital mixer 1, channel 4 coefficient byte[15:8]  
Digital mixer 1, channel 4 coefficient byte[7:0]  
Digital mixer 2, channel 1 coefficient byte[31:24]  
Digital mixer 2, channel 1 coefficient byte[23:16]  
Digital mixer 2, channel 1 coefficient byte[15:8]  
Digital mixer 2, channel 1 coefficient byte[7:0]  
Digital mixer 2, channel 2 coefficient byte[31:24]  
Digital mixer 2, channel 2 coefficient byte[23:16]  
Digital mixer 2, channel 2 coefficient byte[15:8]  
Digital mixer 2, channel 2 coefficient byte[7:0]  
Digital mixer 2, channel 3 coefficient byte[31:24]  
Digital mixer 2, channel 3 coefficient byte[23:16]  
Digital mixer 2, channel 3 coefficient byte[15:8]  
Digital mixer 2, channel 3 coefficient byte[7:0]  
Digital mixer 2, channel 4 coefficient byte[31:24]  
Digital mixer 2, channel 4 coefficient byte[23:16]  
Digital mixer 2, channel 4 coefficient byte[15:8]  
Digital mixer 2, channel 4 coefficient byte[7:0]  
Digital mixer 3, channel 1 coefficient byte[31:24]  
Digital mixer 3, channel 1 coefficient byte[23:16]  
Digital mixer 3, channel 1 coefficient byte[15:8]  
Digital mixer 3, channel 1 coefficient byte[7:0]  
Digital mixer 3, channel 2 coefficient byte[31:24]  
Digital mixer 3, channel 2 coefficient byte[23:16]  
Digital mixer 3, channel 2 coefficient byte[15:8]  
Digital mixer 3, channel 2 coefficient byte[7:0]  
Digital mixer 3, channel 3 coefficient byte[31:24]  
Digital mixer 3, channel 3 coefficient byte[23:16]  
Digital mixer 3, channel 3 coefficient byte[15:8]  
Digital mixer 3, channel 3 coefficient byte[7:0]  
Digital mixer 3, channel 4 coefficient byte[31:24]  
Copyright © 2022 Texas Instruments Incorporated  
96  
Submit Document Feedback  
Product Folder Links: PCM3120-Q1  
 
 
PCM3120-Q1  
ZHCSPD4A APRIL 2022 REVISED SEPTEMBER 2022  
www.ti.com.cn  
8-113. Page 4 Programmable Coefficient Registers (continued)  
ADDRESS  
0x35  
0x36  
0x37  
0x38  
0x39  
0x3A  
0x3B  
0x3C  
0x3D  
0x3E  
0x3F  
0x40  
0x41  
0x42  
0x43  
0x44  
0x45  
0x46  
0x47  
0x48  
0x49  
0x4A  
0x4B  
0x4C  
0x4D  
0x4E  
0x4F  
0x50  
0x51  
0x52  
0x53  
ACRONYM  
MIX3_CH4_BYT2[7:0]  
MIX3_CH4_BYT3[7:0]  
MIX3_CH4_BYT4[7:0]  
MIX4_CH1_BYT1[7:0]  
MIX4_CH1_BYT2[7:0]  
MIX4_CH1_BYT3[7:0]  
MIX4_CH1_BYT4[7:0]  
MIX4_CH2_BYT1[7:0]  
MIX4_CH2_BYT2[7:0]  
MIX4_CH2_BYT3[7:0]  
MIX4_CH2_BYT4[7:0]  
MIX4_CH3_BYT1[7:0]  
MIX4_CH3_BYT2[7:0]  
MIX4_CH3_BYT3[7:0]  
MIX4_CH3_BYT4[7:0]  
MIX4_CH4_BYT1[7:0]  
MIX4_CH4_BYT2[7:0]  
MIX4_CH4_BYT3[7:0]  
MIX4_CH4_BYT4[7:0]  
IIR_N0_BYT1[7:0]  
REGISTER NAME  
RESET VALUE  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x7F  
0xFF  
0xFF  
0xFF  
0x7F  
0xFF  
0xFF  
0xFF  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
Digital mixer 3, channel 4 coefficient byte[23:16]  
Digital mixer 3, channel 4 coefficient byte[15:8]  
Digital mixer 3, channel 4 coefficient byte[7:0]  
Digital mixer 4, channel 1 coefficient byte[31:24]  
Digital mixer 4, channel 1 coefficient byte[23:16]  
Digital mixer 4, channel 1 coefficient byte[15:8]  
Digital mixer 4, channel 1 coefficient byte[7:0]  
Digital mixer 4, channel 2 coefficient byte[31:24]  
Digital mixer 4, channel 2 coefficient byte[23:16]  
Digital mixer 4, channel 2 coefficient byte[15:8]  
Digital mixer 4, channel 2 coefficient byte[7:0]  
Digital mixer 4, channel 3 coefficient byte[31:24]  
Digital mixer 4, channel 3 coefficient byte[23:16]  
Digital mixer 4, channel 3 coefficient byte[15:8]  
Digital mixer 4, channel 3 coefficient byte[7:0]  
Digital mixer 4, channel 4 coefficient byte[31:24]  
Digital mixer 4, channel 4 coefficient byte[23:16]  
Digital mixer 4, channel 4 coefficient byte[15:8]  
Digital mixer 4, channel 4 coefficient byte[7:0]  
Programmable first-order IIR, N0 coefficient byte[31:24]  
Programmable first-order IIR, N0 coefficient byte[23:16]  
Programmable first-order IIR, N0 coefficient byte[15:8]  
Programmable first-order IIR, N0 coefficient byte[7:0]  
Programmable first-order IIR, N1 coefficient byte[31:24]  
Programmable first-order IIR, N1 coefficient byte[23:16]  
Programmable first-order IIR, N1 coefficient byte[15:8]  
Programmable first-order IIR, N1 coefficient byte[7:0]  
Programmable first-order IIR, D1 coefficient byte[31:24]  
Programmable first-order IIR, D1 coefficient byte[23:16]  
Programmable first-order IIR, D1 coefficient byte[15:8]  
Programmable first-order IIR, D1 coefficient byte[7:0]  
IIR_N0_BYT2[7:0]  
IIR_N0_BYT3[7:0]  
IIR_N0_BYT4[7:0]  
IIR_N1_BYT1[7:0]  
IIR_N1_BYT2[7:0]  
IIR_N1_BYT3[7:0]  
IIR_N1_BYT4[7:0]  
IIR_D1_BYT1[7:0]  
IIR_D1_BYT2[7:0]  
IIR_D1_BYT3[7:0]  
IIR_D1_BYT4[7:0]  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
97  
Product Folder Links: PCM3120-Q1  
PCM3120-Q1  
ZHCSPD4A APRIL 2022 REVISED SEPTEMBER 2022  
www.ti.com.cn  
9 Application and Implementation  
备注  
以下应用部分中的信息不属TI 器件规格的范围TI 不担保其准确性和完整性。TI 的客 户应负责确定  
器件是否适用于其应用。客户应验证并测试其设计以确保系统功能。  
9.1 Application Information  
The PCM3120-Q1 is a multichannel, high-performance audio analog-to-digital converter (ADC) that supports  
output sample rates of up to 768 kHz. The device supports either up to two analog microphones or up to four  
digital pulse density modulation (PDM) microphones for simultaneous recording applications.  
Communication to the PCM3120-Q1 for configuration of the control registers is supported using an I2C interface.  
The device supports a highly flexible, audio serial interface (TDM, I2S, and LJ) to transmit audio data seamlessly  
in the system across devices.  
9.2 Typical Applications  
9.2.1 Two-Channel Analog Microphone Recording  
9-1 shows a typical configuration of the PCM3120-Q1 for an application using two analog microelectrical-  
mechanical system (MEMS) microphones for simultaneous recording operation with an I2C control interface and  
a time-division multiplexing (TDM) audio data slave interface. For best distortion performance, use input AC-  
coupling capacitors with a low-voltage coefficient.  
10 μF  
1 μF  
3.3 V  
(3.0 V to 3.6 V)  
1 μF  
1 μF  
0.1 μF  
0.1 μF  
10 μF  
1 μF  
1 μF  
DREG  
VDD  
OUTP  
INP1  
0.1 μF  
AMIC1  
OUTM  
VSS  
INM1  
3.3 V  
(3.0 V to 3.6 V)  
OR  
1.8 V  
(1.65 V to 1.95 V)  
10 μF  
VDD  
OUTP  
INP2_GPI1 (INP2)  
AMIC2  
OUTM  
VSS  
INM2_GPO1 (INM2)  
0.1 μF  
IOVDD  
1 μF  
PCMx120-Q1  
0.1 μF  
Thermal Pad  
(VSS)  
R Ω  
R Ω  
Host Processor  
9-1. Two-Channel Analog Microphone Recording Diagram  
Copyright © 2022 Texas Instruments Incorporated  
98  
Submit Document Feedback  
Product Folder Links: PCM3120-Q1  
 
 
 
 
PCM3120-Q1  
ZHCSPD4A APRIL 2022 REVISED SEPTEMBER 2022  
www.ti.com.cn  
9.2.1.1 Design Requirements  
9-1 lists the design parameters for this application.  
9-1. Design Parameters  
KEY PARAMETER  
SPECIFICATION  
AVDD  
3.3 V  
AVDD supply current consumption  
IOVDD  
>14 mA (PLL on, two-channel recording, fS = 48 kHz)  
1.8 V or 3.3 V  
Maximum MICBIAS current  
5 mA (MICBIAS voltage is the same as AVDD)  
9.2.1.2 Detailed Design Procedure  
This section describes the necessary steps to configure the PCM3120-Q1 for this specific application. The  
following steps provide a sequence of items that must be executed in the time between powering the device up  
and reading data from the device or transitioning from one mode to another mode of operation.  
1. Apply power to the device:  
a. Power-up the IOVDD and AVDD power supplies  
b. Wait for at least 1 ms to allow the device to initialize the internal registers initialization  
c. The device now goes into sleep mode (low-power mode < 10 µA)  
2. Transition from sleep mode to active mode whenever required for the recording operation:  
a. Wake up the device by writing to P0_R2 to disable sleep mode  
b. Wait for at least 1 ms to allow the device to complete the internal wake-up sequence  
c. Override default configuration registers or programmable coefficients value as required (this step is  
optional)  
d. Enable all desired input channels by writing to P0_R115  
e. Enable all desired audio serial interface output channels by writing to P0_R116  
f. Power-up the ADC, MICBIAS, and PLL by writing to P0_R117  
g. Apply FSYNC and BCLK with the desired output sample rates and the BCLK to FSYNC ratio  
This specific step can be done at any point in the sequence after step a.  
See the 8.3.2 section for supported sample rates and the BCLK to FSYNC ratio.  
h. The device recording data are now sent to the host processor via the TDM audio serial data bus  
3. Transition from active mode to sleep mode (again) as required in the system for low-power operation:  
a. Enter sleep mode by writing to P0_R2 to enable sleep mode  
b. Wait at least 6 ms (when FSYNC = 48 kHz) for the volume to ramp down and for all blocks to power  
down  
c. Read P0_R119 to check the device shutdown and sleep mode status  
d. If the device P0_R119_D7 status bit is 1'b1 then stop FSYNC and BCLK in the system  
e. The device now goes into sleep mode (low-power mode < 10 µA) and retains all register values  
4. Transition from sleep mode to active mode (again) as required for the recording operation:  
a. Wake up the device by writing to P0_R2 to disable sleep mode  
b. Wait for at least 1 ms to allow the device to complete the internal wake-up sequence  
c. Apply FSYNC and BCLK with the desired output sample rates and the BCLK to FSYNC ratio  
d. The device recording data are now sent to the host processor via the TDM audio serial data bus  
5. Repeat step 2 to step 4 as required for configuration changes or step 3 to step 4 for mode transitions  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
99  
Product Folder Links: PCM3120-Q1  
 
PCM3120-Q1  
ZHCSPD4A APRIL 2022 REVISED SEPTEMBER 2022  
www.ti.com.cn  
9.2.1.2.1 Example Device Register Configuration Script for EVM Setup  
This section provides a typical EVM I2C register control script that shows how to set up the PCM3120-Q1 in a  
two-channel analog microphone recording mode with differential inputs.  
# Key: w 9C XX YY ==> write to I2C address 0x9C, to register 0xXX, data 0xYY  
#
#
# ==> comment delimiter  
# The following list gives an example sequence of items that must be executed in the time  
# between powering the device up and reading data from the device. There are  
# other valid sequences depending on which features are used.  
#
# See the PCM3120-Q1EVM user guide for jumper settings and audio connections.  
#
# Differential 2-channel : INP1/INM1 - Ch1, INP2/INM2 - Ch2  
# FSYNC = 44.1 kHz (output data sample rate), BCLK = 11.2896 MHz (BCLK/FSYNC = 256)  
################################################################  
#
#
# Power-up the IOVDD and AVDD power supplies  
# Wait for the IOVDD and AVDD power supplies to settle to a steady-state operating voltage range.  
# Wait for 1 ms.  
#
# Wake-up the device with an I2C write into P0_R2 using an internal AREG  
w 9C 0281  
#
# Enable input Ch-1 and Ch-2 by an I2C write into P0_R115  
w 9C 73 C0  
#
# Enable ASI output Ch-1 and Ch-2 slots by an I2C write into P0_R116  
w 9C 74 C0  
#
# Power-up the ADC, MICBIAS, and PLL by an I2C write into P0_R117  
w 9C 75 E0  
#
# Apply FSYNC = 44.1 kHz and BCLK = 11.2896 MHz and  
# Start recording data via the host on the ASI bus with a TDM protocol 32-bits channel wordlength  
Copyright © 2022 Texas Instruments Incorporated  
100 Submit Document Feedback  
Product Folder Links: PCM3120-Q1  
PCM3120-Q1  
ZHCSPD4A APRIL 2022 REVISED SEPTEMBER 2022  
www.ti.com.cn  
9.2.1.3 Application Curves  
Measurements are done on the EVM by feeding the device analog input signal using audio precision.  
0
-20  
-60  
Channel-1  
Channel-2  
Channel-1  
Channel-2  
-70  
-40  
-80  
-60  
-80  
-90  
-100  
-120  
-140  
-160  
-180  
-200  
-100  
-110  
-120  
-130  
20 30 4050 70 100  
200 300 500  
1000 2000  
5000 10000 20000  
ADC3  
-130  
-115  
-100  
-85  
-70  
-55  
-40  
-25  
-10  
0
Frequency (Hz)  
Input Amplitude (dB)  
ATHDDC+3  
9-2. FFT With a 60-dBr Input  
9-3. THD+N vs Input Amplitude  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback 101  
Product Folder Links: PCM3120-Q1  
PCM3120-Q1  
ZHCSPD4A APRIL 2022 REVISED SEPTEMBER 2022  
www.ti.com.cn  
9.2.2 Four-Channel Digital PDM Microphone Recording  
9-4 shows a typical configuration of the PCM3120-Q1 for an application using four digital PDM MEMS  
microphones with simultaneous recording operation using an I2C control interface and the TDM audio data slave  
interface. If the MICBIAS output is not used in the system then the 1 µF capacitor for the MICBIAS pin is not  
must.  
10 μF  
1 μF  
VDD  
(3.0 V to 3.6 V)  
0.1 μF  
0.1 μF  
1 μF  
10 μF  
VDD  
SEL  
VSS  
CLK  
VDD  
0.1 μF  
DREG  
DMIC1  
Rterm  
0.1 μF  
MICBIAS_GPI2  
DOUT  
VDD  
SEL  
CLK  
VDD  
0.1 μF  
3.3 V  
(3.0 V to 3.6 V)  
OR  
1.8 V  
(1.65 V to 1.95 V)  
DMIC2  
VSS  
DOUT  
Rterm  
Rterm  
10 μF  
VDD  
SEL  
CLK  
VDD  
0.1 μF  
DMIC3  
PCMx120-Q1  
IN2P_GPI1  
DOUT  
IOVDD  
VSS  
0.1 μF  
VDD  
SEL  
CLK  
IN2M_GPO1  
VDD  
0.1 μF  
Rterm  
DMIC4  
Thermal Pad  
(VSS)  
DOUT  
VSS  
Rterm  
IN1P  
IN1M  
R Ω  
R Ω  
Host  
Processor  
9-4. Four-Channel Digital PDM Microphone Recording Diagram  
9.2.2.1 Design Requirements  
9-2 lists the design parameters for this application.  
9-2. Design Parameters  
KEY PARAMETER  
SPECIFICATION  
AVDD  
3.3 V  
AVDD supply current consumption  
IOVDD  
>8 mA (PLL on, four-channel recording, fS = 48 kHz)  
1.8 V or 3.3 V  
Copyright © 2022 Texas Instruments Incorporated  
102 Submit Document Feedback  
Product Folder Links: PCM3120-Q1  
 
 
PCM3120-Q1  
ZHCSPD4A APRIL 2022 REVISED SEPTEMBER 2022  
www.ti.com.cn  
9.2.2.2 Detailed Design Procedure  
This section describes the necessary steps to configure the PCM3120-Q1 for this specific application. The  
following steps provide a sequence of items that must be executed in the time between powering the device up  
and reading data from the device or transitioning from one mode to another mode of operation.  
1. Apply power to the device:  
a. Power up the IOVDD and AVDD power supplies  
b. Wait for at least 1 ms to allow the device to initialize the internal registers initialization  
c. The device now goes into sleep mode (low-power mode < 10 µA)  
2. Transition from sleep mode to active mode whenever required for the recording operation:  
a. Wake up the device by writing to P0_R2 to disable sleep mode  
b. Wait for at least 1 ms to allow the device to complete the internal wake-up sequence  
c. Override the default configuration registers or programmable coefficients value as required (this step is  
optional)  
d. Configure channel 1 to channel 2 (CHx_INSRC) for the digital microphone as the input source for  
recording  
e. Configure GPO1 (GPO1_CFG) and GPIO1 (GPIO1_CFG) as the PDMCLK output  
f. Configure GPIx (GPI1x_CFG) as PDMDINx  
g. Enable all desired input channels by writing to P0_R115  
h. Enable all desired audio serial interface output channels by writing to P0_R116  
i. Power-up the ADC and PLL by writing to P0_R117  
j. Apply FSYNC and BCLK with the desired output sample rates and the BCLK to FSYNC ratio  
This specific step can be done at any point in the sequence after step a.  
See the 8.3.2 section for supported sample rates and the BCLK to FSYNC ratio.  
k. The device recording data is now sent to the host processor using the TDM audio serial data bus  
3. Transition from active mode to sleep mode (again) as required in the system for low-power operation:  
a. Enter sleep mode by writing to P0_R2 to enable sleep mode  
b. Wait at least 6 ms (when FSYNC = 48 kHz) for the volume to ramp down and for all blocks to power  
down  
c. Read P0_R119 to check the device shutdown and sleep mode status  
d. If the device P0_R119_D7 status bit is 1'b1 then stop FSYNC and BCLK in the system  
e. The device now goes into sleep mode (low-power mode < 10 µA) and retains all register values  
4. Transition from sleep mode to active mode (again) as required for the recording operation:  
a. Wake up the device by writing to P0_R2 to disable sleep mode  
b. Wait at least 1 ms to allow the device to complete the internal wake-up sequence  
c. Apply FSYNC and BCLK with the desired output sample rates and the BCLK to FSYNC ratio  
d. The device recording data are now sent to the host processor using the TDM audio serial data bus  
5. Repeat step 3 and step 4 as required for mode transitions and step 2 to step 4 for configuration changes  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback 103  
Product Folder Links: PCM3120-Q1  
PCM3120-Q1  
ZHCSPD4A APRIL 2022 REVISED SEPTEMBER 2022  
www.ti.com.cn  
9.2.2.2.1 Example Device Register Configuration Script for EVM Setup  
This section provides a typical EVM I2C register control script that shows how to set up the PCM3120-Q1 in a  
four-channel digital PDM microphone recording mode.  
# Key: w 9C XX YY ==> write to I2C address 0x9C, to register 0xXX, data 0xYY  
#
#
# ==> comment delimiter  
# The following list gives an example sequence of items that must be executed in the time  
# between powering the device up and reading data from the device. There are  
# other valid sequences depending on which features are used.  
#
# See the PCM3120-Q1EVM user guide for jumper settings and audio connections.  
#
# PDM 4-channel : PDMDIN1 - Ch1 and Ch2, PDMDIN2 - Ch3 and Ch4  
#
# FSYNC = 44.1 kHz (output data sample rate), BCLK = 11.2896 MHz (BCLK/FSYNC = 256)  
################################################################  
#
#
# Power-up the IOVDD and AVDD power supplies  
# Wait for the IOVDD and AVDD power supplies to settle to a steady state operating voltage range.  
# Wait for 1 ms.  
#
# Wake-up the device by an I2C write into P0_R2 using an internal AREG  
w 9C 02 81  
#
# Configure CH2_INSRC as a digital PDM input by an I2C write into P0_R65  
w 9C 41 40  
#
# Configure MICBIAS_GPI2 as a digital PDM input by an I2C write into P0_R59  
w 9C 3B 70  
#
# Configure GPO1 as PDMCLK by an I2C write into P0_R34  
w 9C 22 41  
#
# Configure GPI1 and GPI2 as PDMDIN1 and PDMDIN2 by an I2C write into P0_R43  
w 9C 2B 45  
#
# Enable input Ch-1 to Ch-4 by an I2C write into P0_R115  
w 9C 73 F0  
#
# Enable ASI output Ch-1 to Ch-4 slots by an I2C write into P0_R116  
w 9C 74 F0  
#
# Power-up the ADC and PLL by an I2C write into P0_R117  
w 9C 75 60  
#
# Apply FSYNC = 44.1 kHz and BCLK = 11.2896 MHz and  
# Start recording data via the host on the ASI bus with a TDM protocol 32-bits channel wordlength  
Copyright © 2022 Texas Instruments Incorporated  
104 Submit Document Feedback  
Product Folder Links: PCM3120-Q1  
PCM3120-Q1  
ZHCSPD4A APRIL 2022 REVISED SEPTEMBER 2022  
www.ti.com.cn  
9.3 What to Do and What Not to Do  
In the VAD mode of operation, there are some limitations on interrupt generation when auto wake up is enabled.  
For details about these limitations, see the Using the Voice Activity Detector (VAD) in the TLV320ADC5120 and  
TLV320ADC6120 application report.  
The automatic gain controller (AGC) feature has some limitation when using sampling rates lower than 44.1 kHz.  
For further details about this limitation, see the Using the Automatic Gain Controller (AGC) in TLV320ADCx120  
Family application report.  
10 Power Supply Recommendations  
The power-supply sequence between the IOVDD and AVDD rails can be applied in any order. However, after all  
supplies are stable, then only initiate the I2C transactions to initialize the device.  
For the supply power-up requirement, t1 and t2 must be at least 2 ms to allow the device to initialize the internal  
registers. See the 8.4 section for details on how the device operates in various modes after the device power  
supplies are settled to the recommended operating voltage levels. For the supply power-down requirement, t3  
and t4 must be at least 10 ms. This timing (as shown in 10-1) allows the device to ramp down the volume on  
the record data, power down the analog and digital blocks, and put the device into shutdown mode. The device  
can also be immediately put into shutdown mode by ramping down power supplies, but doing so causes an  
abrupt shutdown.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback 105  
Product Folder Links: PCM3120-Q1  
 
 
PCM3120-Q1  
ZHCSPD4A APRIL 2022 REVISED SEPTEMBER 2022  
www.ti.com.cn  
AVDD  
t1  
t3  
IOVDD  
I2C bus transaction for PCMx120-Q1  
t4  
t2  
Copyright © 2022 Texas Instruments Incorporated  
106 Submit Document Feedback  
Product Folder Links: PCM3120-Q1  
 
PCM3120-Q1  
ZHCSPD4A APRIL 2022 REVISED SEPTEMBER 2022  
www.ti.com.cn  
Make sure that the supply ramp rate is slower than 1 V/µs and that the wait time between a power-down and a  
power-up event is at least 100 ms. For supply ramp rate slower than 0.1 V/ms, host device must apply a  
software reset as first transaction before doing any device configuration. Make sure all digital input pins are at  
valid input levels and not toggling during supply sequencing.  
The PCM3120-Q1 supports a single AVDD supply operation by integrating an on-chip digital regulator, DREG,  
and an analog regulator, AREG. However, if the AVDD voltage is less than 1.98 V in the system, then short the  
AREG and AVDD pins onboard and do not enable the internal AREG by keeping the AREG_SELECT bit to 1b'0  
(default value) of P0_R2. If the AVDD supply used in the system is higher than 2.7 V, then the host device can  
set AREG_SELECT to 1'b1 while exiting sleep mode to allow the device internal regulator to generate the AREG  
supply.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback 107  
Product Folder Links: PCM3120-Q1  
PCM3120-Q1  
ZHCSPD4A APRIL 2022 REVISED SEPTEMBER 2022  
www.ti.com.cn  
11 Layout  
11.1 Layout Guidelines  
Each system design and printed circuit board (PCB) layout is unique. The layout must be carefully reviewed in  
the context of a specific PCB design. However, the following guidelines can optimize the device performance:  
Connect the thermal pad to ground. Use a via pattern to connect the device thermal pad, which is the area  
directly under the device, to the ground planes. This connection helps dissipate heat from the device.  
The decoupling capacitors for the power supplies must be placed close to the device pins.  
The supply decoupling capacitors must be used ceramic type with low ESR.  
Route the analog differential audio signals differentially on the PCB for better noise immunity. Avoid crossing  
digital and analog signals to prevent undesirable crosstalk.  
The device internal voltage references must be filtered using external capacitors. Place the filter capacitors  
near the VREF pin for optimal performance.  
Directly tap the MICBIAS pin to avoid common impedance when routing the biasing or supply traces for  
multiple microphones to avoid coupling across microphones.  
Directly short the VREF and MICBIAS external capacitors ground terminal to the AVSS pin without using any  
vias for this connection trace.  
Place the MICBIAS capacitor (with low equivalent series resistance) close to the device with minimal trace  
impedance.  
Use ground planes to provide the lowest impedance for power and signal current between the device and the  
decoupling capacitors. Treat the area directly under the device as a central ground area for the device, and  
all device grounds must be connected directly to that area.  
11.2 Layout Example  
10:VSS  
16:AVDD  
9:IOVDD  
8:FSYNC  
7:BCLK  
21:VSS  
17:AREG  
18:VREF  
19:MICBIAS_GPI2  
20:VSS  
6:SDOUT  
11-1. Layout Example  
Copyright © 2022 Texas Instruments Incorporated  
108 Submit Document Feedback  
Product Folder Links: PCM3120-Q1  
 
 
 
PCM3120-Q1  
ZHCSPD4A APRIL 2022 REVISED SEPTEMBER 2022  
www.ti.com.cn  
12 Device and Documentation Support  
12.1 Documentation Support  
12.1.1 Related Documentation  
For related documentation see the following:  
Texas Instruments, Multiple TLV320ADCx140 & TLV320ADCx120 Multiple TLV320ADCx140 Devices With  
Shared TDM and I2C Bus application report  
Texas Instruments, Configuring and Operating TLV320ADCx120 as an Audio Bus Master application report  
Texas Instruments, TLV320ADCx120 Sampling Rates and Programmable Processing Blocks Supported  
application report  
Texas Instruments, TLV320ADCx140 & TLV320ADCx120 Programmable Biquad Filter Configuration and  
Applications application report  
Texas Instruments, TLV320ADCx120 Power Consumption Matrix Across Various Usage Scenarios  
application report  
Texas Instruments, TLV320ADCx140 & TLV320ADCx120 Integrated Analog Anti-Aliasing Filter and Flexible  
Digital Filter application report  
Texas Instruments, Using the Automatic Gain Controller (AGC) in TLV320ADCx120 Family application report  
Texas Instruments, Using the Voice Activity Detector (VAD) in the TLV320ADCx120 and PCMD3140 devices  
application report  
Texas Instruments, Input Common Mode Tolerance and High CMRR modes for TLV320ADCx120 devices  
application report  
Texas Instruments, ADCx120EVM-PDK Evaluation module user's guide  
Texas Instruments, PurePathConsole Graphical Development Suite for Audio System Design and  
Development  
12.2 接收文档更新通知  
要接收文档更新通知请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册即可每周接收产品信息更  
改摘要。有关更改的详细信息请查看任何已修订文档中包含的修订历史记录。  
12.3 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
12.4 Trademarks  
Burr-Brown, PurePath, and TI E2Eare trademarks of Texas Instruments.  
所有商标均为其各自所有者的财产。  
12.5 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
12.6 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback 109  
Product Folder Links: PCM3120-Q1  
 
 
 
 
 
 
 
PCM3120-Q1  
ZHCSPD4A APRIL 2022 REVISED SEPTEMBER 2022  
www.ti.com.cn  
13 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2022 Texas Instruments Incorporated  
110  
Submit Document Feedback  
Product Folder Links: PCM3120-Q1  
 
PCM3120-Q1  
ZHCSPD4A APRIL 2022 REVISED SEPTEMBER 2022  
www.ti.com.cn  
PACKAGE OUTLINE  
WQFN - 0.8 mm max height  
PLASTIC QUAD FLATPACK- NO LEAD  
A
RTE0020A  
3.1  
2.9  
B
PIN 1 INDEX AREA  
3.1  
2.9  
C
0.8 MAX  
SEATING PLANE  
0.08  
C
0.05  
0.00  
1.5  
SQ  
1.4 0.1  
4X (SQ 0.2)  
TYP  
(0.1)  
6
10  
5
9
8X 0.4625  
0.225  
8X  
4
0.125  
0.1  
11  
C A B  
0.05  
C
SYMM  
21  
1.5  
14  
1
12X 0.5  
0.3  
16X  
0.2  
0.1  
C A B  
PIN1 ID  
(OPTIONAL)  
15  
20  
19  
16  
0.05  
C
0.5  
0.3  
16X  
SYMM  
4225900/A 06/2020  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for optimal thermal and mechanical performance.  
www.ti.com  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
111  
Product Folder Links: PCM3120-Q1  
PCM3120-Q1  
ZHCSPD4A APRIL 2022 REVISED SEPTEMBER 2022  
www.ti.com.cn  
EXAMPLE BOARD LAYOUT  
WQFN - 0.8 mm max height  
RTE0020A  
PLASTIC QUAD FLATPACK- NO LEAD  
(2.825)  
(2.8)  
(SQ 1.4)  
4X (0.575)  
4X (0.175)  
16X (0.6)  
4X (0.575)  
19  
16  
15  
20  
8X (0.4625)  
1
4X (0.175)  
14  
16X (0.25)  
(2.825)  
SYMM  
21  
(2.8)  
12X (0.5)  
4
2X (0.45)  
11  
(R 0.05) TYP  
(Ø 0.2) VIA  
TYP  
5
10  
2X (0.45)  
9
6
SYMM  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE: 20X  
0.07 MAX  
ALL AROUND  
0.07 MIN  
ALL AROUND  
METAL UNDER  
SOLDER MASK  
METAL  
EXPOSED  
METAL  
EXPOSED  
METAL  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
NON SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
4225900/A 06/2020  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271)  
.
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
Copyright © 2022 Texas Instruments Incorporated  
112  
Submit Document Feedback  
Product Folder Links: PCM3120-Q1  
PCM3120-Q1  
ZHCSPD4A APRIL 2022 REVISED SEPTEMBER 2022  
www.ti.com.cn  
EXAMPLE STENCIL DESIGN  
WQFN - 0.8 mm max height  
RTE0020A  
PLASTIC QUAD FLATPACK- NO LEAD  
(2.825)  
(2.8)  
4X (0.575)  
4X (0.175)  
(SQ 1.3)  
16X (0.6)  
4X (0.575)  
19  
16  
15  
20  
8X (0.4625)  
4X (0.175)  
21  
1
14  
16X (0.25)  
12X (0.5)  
(2.825)  
(2.8)  
SYMM  
11  
4
(R 0.05) TYP  
METAL TYP  
5
10  
9
6
SYMM  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD  
86% PRINTED COVERAGE BY AREA  
SCALE: 20X  
4225900/A 06/2020  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
113  
Product Folder Links: PCM3120-Q1  
PCM3120-Q1  
ZHCSPD4A APRIL 2022 REVISED SEPTEMBER 2022  
www.ti.com.cn  
13.1 Tape and Reel Information  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
Reel  
Diameter  
(mm)  
Reel  
Width W1  
(mm)  
Package  
Type  
Package  
Drawing  
A0  
(mm)  
B0  
(mm)  
K0  
(mm)  
P1  
(mm)  
W
(mm)  
Pin1  
Quadrant  
Device  
Pins  
SPQ  
XCM3120QRTERQ1  
WQFN  
RTE  
20  
3000  
330  
12.4  
3.3  
3.3  
1.1  
8
12  
Q2  
Copyright © 2022 Texas Instruments Incorporated  
114  
Submit Document Feedback  
Product Folder Links: PCM3120-Q1  
 
PCM3120-Q1  
ZHCSPD4A APRIL 2022 REVISED SEPTEMBER 2022  
www.ti.com.cn  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
Device  
XCM3120QRTERQ1  
Package Type  
Package Drawing Pins  
RTE 20  
SPQ  
Length (mm) Width (mm)  
367 367  
Height (mm)  
WQFN  
3000  
35  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
115  
Product Folder Links: PCM3120-Q1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
14-Dec-2022  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
PCM3120QRTERQ1  
ACTIVE  
WQFN  
RTE  
20  
3000 RoHS & Green  
NIPDAU  
Level-2-260C-1 YEAR  
-40 to 125  
3120Q  
Samples  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
4-Oct-2022  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
PCM3120QRTERQ1  
WQFN  
RTE  
20  
3000  
330.0  
12.4  
3.3  
3.3  
1.1  
8.0  
12.0  
Q2  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
4-Oct-2022  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
WQFN RTE 20  
SPQ  
Length (mm) Width (mm) Height (mm)  
367.0 367.0 35.0  
PCM3120QRTERQ1  
3000  
Pack Materials-Page 2  
PACKAGE OUTLINE  
WQFN - 0.8 mm max height  
PLASTIC QUAD FLATPACK- NO LEAD  
A
RTE0020A  
3.1  
2.9  
B
PIN 1 INDEX AREA  
3.1  
2.9  
C
0.8 MAX  
SEATING PLANE  
0.08 C  
0.05  
0.00  
1.5  
SQ  
1.4±0.1  
4X (SQ 0.2)  
TYP  
(0.1)  
6
10  
5
9
8X 0.4625  
0.225  
0.125  
0.1  
8X  
4
11  
C
A B  
0.05  
C
SYMM  
21  
1.5  
14  
1
12X 0.5  
0.3  
0.2  
0.1  
16X  
0.5  
C A B  
PIN1 ID  
(OPTIONAL)  
15  
20  
19  
16  
0.05  
C
16X  
SYMM  
0.3  
4225900/A 06/2020  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for optimal thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
WQFN - 0.8 mm max height  
RTE0020A  
PLASTIC QUAD FLATPACK- NO LEAD  
(2.825)  
(2.8)  
(SQ 1.4)  
4X (0.575)  
4X (0.175)  
16X (0.6)  
4X (0.575)  
15  
19  
16  
20  
8X (0.4625)  
4X (0.175)  
14  
1
16X (0.25)  
12X (0.5)  
(2.825)  
(2.8)  
SYMM  
21  
2X (0.45)  
11  
4
(R 0.05) TYP  
(Ø 0.2) VIA  
TYP  
5
10  
2X (0.45)  
9
6
SYMM  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE: 20X  
0.07 MAX  
0.07 MIN  
ALL AROUND  
ALL AROUND  
METAL UNDER  
SOLDER MASK  
METAL  
EXPOSED  
METAL  
EXPOSED  
METAL  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4225900/A 06/2020  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271)  
.
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
WQFN - 0.8 mm max height  
RTE0020A  
PLASTIC QUAD FLATPACK- NO LEAD  
(2.825)  
(2.8)  
4X (0.575)  
4X (0.175)  
(SQ 1.3)  
16X (0.6)  
4X (0.575)  
19  
16  
15  
20  
8X (0.4625)  
4X (0.175)  
21  
1
14  
16X (0.25)  
12X (0.5)  
(2.825)  
SYMM  
(2.8)  
11  
4
(R 0.05) TYP  
METAL TYP  
5
10  
9
6
SYMM  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD  
86% PRINTED COVERAGE BY AREA  
SCALE: 20X  
4225900/A 06/2020  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

PCM3120QRTERQ1

汽车类、立体声、106dB SNR、768kHz、低功耗、软件控制的音频 ADC | RTE | 20 | -40 to 125
TI

PCM3168A

24-Bit, 96-kHz/192-kHz, 6-In/8-Out Audio Codec with Differential Input/Output
TI

PCM3168A-Q1

24-Bit, 96-kHz/192-kHz, 6-In/8-Out Audio Codec with Differential Input/Output
TI

PCM3168A-Q1_15

24-Bit, 96-kHz/192-kHz, 6-In/8-Out Audio Codec with Differential Input/Output
TI

PCM3168APAP

24-Bit, 96-kHz/192-kHz, 6-In/8-Out Audio Codec with Differential Input/Output
TI

PCM3168APAPR

24-Bit, 96-kHz/192-kHz, 6-In/8-Out Audio Codec with Differential Input/Output
TI

PCM3168APAPRG4

24-Bit, 96-kHz/192-kHz, 6-In/8-Out Audio Codec with Differential Input/Output
TI

PCM3168ATPAPQ1

24-Bit, 96-kHz/192-kHz, 6-In/8-Out Audio Codec with Differential Input/Output
TI

PCM3168ATPAPRQ1

24-Bit, 96-kHz/192-kHz, 6-In/8-Out Audio Codec with Differential Input/Output
TI

PCM3168ATPAPRQ1G4

24-Bit, 96-kHz/192-kHz, 6-In/8-Out Audio Codec with Differential Input/Output
TI

PCM3168A_15

24-Bit, 96-kHz/192-kHz, 6-In/8-Out Audio Codec with Differential Input/Output
TI

PCM3430

Symbios SYM53C895 Small Computer System Integrated chip
ETC