PCM4204 [TI]

118dB SNR 4 通道音频 ADC;
PCM4204
型号: PCM4204
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

118dB SNR 4 通道音频 ADC

文件: 总39页 (文件大小:1193K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
SBAS327A − JUNE 2004 − REVISED SEPTEMBER 2004  
FEATURES  
APPLICATIONS  
D
Four High-Performance Delta-Sigma  
Analog-to-Digital Converters  
− 24-Bit Linear PCM or 1-Bit Direct Stream  
Digital (DSD) Output Data  
− Supports PCM Output Sampling Rates up  
to 216kHz  
D
D
D
D
D
Digital Recorders and Mixing Desks  
Digital Audio Effects Processors  
Broadcast Studio Equipment  
Surround Sound Encoders  
High-End A/V Receivers  
− Supports 64f and 128f DSD Output Data  
S
S
DESCRIPTION  
Rates  
D
D
D
Dynamic Performance: PCM Output  
− Dynamic Range: 118dB  
− THD+N: −105dB  
Dynamic Performance: DSD Output  
− Dynamic Range: 115dB  
− THD+N: −103dB  
The PCM4204 is a high-performance, four-channel  
analog-to-digital (A/D) converter designed for professional  
and broadcast audio applications. The PCM4204  
architecture utilizes a 1-bit delta-sigma modulator per  
channel incorporating a novel density modulated dither  
scheme for improved dynamic performance.  
Audio Serial Port  
The PCM4204 supports 24-bit linear PCM output data,  
with sampling frequencies up to 216kHz. The PCM4204  
can also be configured to output either 64x or 128x  
oversampled, 1-bit direct stream digital (DSD) data for  
each channel. In addition, the PCM4204 supports a DSD  
input mode, allowing 1-bit DSD to 24-bit PCM data format  
conversion utilizing the on-chip digital decimation filter.  
These features make the PCM4204 suitable for a variety  
of digital audio recording and processing applications.  
− 24-Bit Linear PCM Output Data  
− Master or Slave Mode Operation  
− Supports Left-Justified, Right-Justified,  
2
I S, and TDM Data Formats  
D
D
DSD Data Port  
− Supports DSD Output or Input for All Four  
Channels Simultaneously  
− Input Mode Provides 1-Bit DSD to 24-Bit  
PCM Data Format Conversion  
Additional PCM Output Features  
− Linear-Phase Digital Decimation Filter  
− Digital High-Pass Filter for DC Removal  
− Clipping Flag Output for Each Channel  
Power Supplies: +5V Analog and +3.3V Digital  
Power Dissipation:  
The PCM4204 includes a flexible audio serial port inter-  
face, which supports standard PCM audio data formats, as  
well as time division multiplexed (TDM) PCM data formats.  
Multiple format support allows the system designer to  
choose the interface format that best suits the end applica-  
tion. Audio data format selection, sampling mode configu-  
ration, and high-pass filter functions are all programmed  
using dedicated control pins.  
D
D
− f = 48kHz: 600mW typical  
S
The PCM4204 operates from a +5V analog power  
supply and a +3.3V digital power supply. The digital I/O  
pins are compatible with +3.3V logic families. The  
PCM4204 is available in a thermally-enhanced HTQFP-64  
PowerPADpackage.  
− f = 96kHz: 640mW typical  
S
− f = 192kHz: 615mW typical  
S
Power-Down Mode  
Available in a Thermally-Enhanced HTQFP-64  
Package  
D
D
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments  
semiconductor products and disclaimers thereto appears at the end of this data sheet.  
PowerPAD is a registered trademark of Texas Instruments. All other trademarks are the property of their respective owners.  
ꢅꢤ ꢥ ꢟꢦ ꢜ ꢧꢨ ꢥꢩ ꢟ ꢝꢧꢝ ꢁꢌ ꢈꢉ ꢇ ꢊꢋ ꢑꢁꢉꢌ ꢁꢪ ꢍꢛ ꢇ ꢇ ꢆꢌꢑ ꢋꢪ ꢉꢈ ꢘꢛꢫ ꢙꢁꢍ ꢋꢑꢁ ꢉꢌ ꢞꢋ ꢑꢆꢬ ꢅꢇ ꢉꢞꢛ ꢍꢑꢪ  
ꢍ ꢉꢌ ꢈꢉꢇ ꢊ ꢑꢉ ꢪ ꢘꢆ ꢍ ꢁ ꢈꢁ ꢍ ꢋ ꢑꢁ ꢉꢌꢪ ꢘ ꢆꢇ ꢑꢃꢆ ꢑꢆ ꢇ ꢊꢪ ꢉꢈ ꢧꢆꢭ ꢋꢪ ꢨꢌꢪ ꢑꢇ ꢛꢊ ꢆꢌꢑ ꢪ ꢪꢑ ꢋꢌꢞ ꢋꢇ ꢞ ꢮ ꢋꢇ ꢇ ꢋ ꢌꢑꢯꢬ  
ꢅꢇ ꢉ ꢞꢛꢍ ꢑ ꢁꢉ ꢌ ꢘꢇ ꢉ ꢍ ꢆ ꢪ ꢪ ꢁꢌ ꢂ ꢞꢉ ꢆ ꢪ ꢌꢉꢑ ꢌꢆ ꢍꢆ ꢪꢪ ꢋꢇ ꢁꢙ ꢯ ꢁꢌꢍ ꢙꢛꢞ ꢆ ꢑꢆ ꢪꢑꢁ ꢌꢂ ꢉꢈ ꢋꢙ ꢙ ꢘꢋ ꢇ ꢋꢊ ꢆꢑꢆ ꢇ ꢪꢬ  
Copyright 2004, Texas Instruments Incorporated  
www.ti.com  
ꢅ ꢜꢢ ꢏ ꢎ ꢣ ꢏ  
www.ti.com  
SBAS327A − JUNE 2004 − REVISED SEPTEMBER 2004  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate  
precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to  
damage because very small parametric changes could cause the device not to meet its published specifications.  
ABSOLUTE MAXIMUM RATINGS  
over operating free-air temperature range unless otherwise noted  
(1)  
PCM4204  
+6.0  
UNIT  
V
V
1, V  
2
V
V
V
CC  
CC  
Supply voltage  
1, V 2, V  
DD  
3
+3.6  
DD DD  
Ground voltage differences  
(any AGND to DGND or BGND)  
0.1  
FMT0, FMT1, FMT2, S/M, FS0, FS1, FS2,  
SCKI, RST, HPFD, SUB, BCK, LRCK,  
DSDCLK, DSD1, DSD2, DSD3, DSD4, TEST  
Digital input voltage  
−0.3 to (V  
+ 0.3)  
V
DD  
Analog input voltage  
V 1−4+, V 1−4−  
IN IN  
−0.3 to (V  
+ 0.3)  
V
V
CC  
Input current (any pin except supplies)  
Operating temperature range  
10mA  
−10 to +70  
°C  
°C  
Storage temperature range, T  
STG  
−65 to +150  
(1)  
Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. Exposure to absolute maximum  
conditions for extended periods may degrade device reliability. These are stress ratings only, and functional operation of the device at these or  
any other conditions beyond those specified is not implied.  
PACKAGE/ORDERING INFORMATION  
For the most current package and ordering information, see the Package Option Addendum located at the end of this  
datasheet.  
2
ꢅ ꢜꢢ ꢏ ꢎꢣ ꢏ  
www.ti.com  
SBAS327A − JUNE 2004 − REVISED SEPTEMBER 2004  
ELECTRICAL CHARACTERISTICS  
Unless otherwise noted, all characteristics specified with T = +25°C, V  
= +5V, V = +3.3V, system clock (SCKI) is 512f for Single Rate  
DD S  
A
CC  
Sampling, 256f for Dual Rate Sampling, or 128f for Quad Rate Sampling. The device is operated in Master mode for all dynamic performance  
S
S
measurements.  
PCM4204  
TYP  
PARAMETER  
RESOLUTION  
TEST CONDITIONS  
MIN  
MAX  
UNIT  
24  
Bits  
DATA FORMAT  
2
Audio Data Formats (PCM)  
Audio Data Word Length (PCM)  
Binary Data Format (PCM)  
DSD Output Format and Word Length  
DIGITAL INPUT/OUTPUT  
Input Logic Level  
Left and Right Justified, I S, TDM  
24  
Bits  
Bits  
Two’s Complement Binary, MSB First  
1-Bit Data  
V
V
0.7 x V  
0
V
IH  
IL  
DD  
DD  
0.3 x V  
V
V
DD  
Output Logic Level  
V
V
I
I
= −2mA  
= +2mA  
0.8 x V  
0
V
OH  
OL  
OH  
OH  
DD  
DD  
DD  
0.2 x V  
Input Leakage  
(1)  
Current  
I
V
= V  
+1  
−1  
+10  
−10  
µA  
µA  
IH  
IN  
DD  
I
V
= 0V  
IL  
IN  
Input Leakage  
(2)  
I
V
= V  
+35  
−35  
+100  
−100  
µA  
µA  
IH  
IN  
DD  
Current  
I
V
= 0V  
IL  
IN  
CLOCK FREQUENCIES  
System Clock Frequency, f  
Single Rate Sampling Mode  
Dual Rate Sampling Mode  
6.144  
12.8  
38.4  
38.4  
MHz  
MHz  
SCKI  
Quad Rate Sampling Mode  
12.8  
38.4  
MHz  
Sampling Frequency, f  
Single Rate Sampling Mode  
Dual Rate Sampling Mode  
Quad Rate Sampling Mode  
24  
54  
108  
54  
108  
216  
kHz  
kHz  
kHz  
S
ANALOG INPUTS  
Full Scale Input Voltage  
Average Input Impedance  
Common-mode Rejection  
Differential Input  
6.0  
3
85  
V
PP  
kΩ  
dB  
DC SPECIFICATIONS  
V
COM  
V
COM  
12, V  
12, V  
34 Output Voltage  
COM  
34 Output Current  
COM  
+2.5  
200  
V
µA  
(1)  
(2)  
(3)  
Applies to the FMT0, FMT1, FMT2, S/M, FS0, FS1, FS2, HPFD, BCK, LRCK, SUB, DSDCLK, DSD1, DSD2, DSD3, DSD4, and SCKI pins.  
Applies to the TEST and RST pins.  
Typical performance is measured using an Audio Precision System Two Cascade or Cascade Plus test system. The measurement bandwidth  
is limited using the Audio Precision 22Hz high-pass filter in combination with either a 20kHz low-pass filter for f = 48kHz or a 40kHz low-pass  
S
filter for f = 96kHz and 192kHz. All A-weighted measurements are performed using the A-weighting filter in combination with the band limiting  
S
filters already mentioned. The measurements are made with the RMS detector selected.  
(4)  
(5)  
A 256f system clock is used at final production test for f = 48kHz measurements.  
S
S
Typical DSD performance is measured using an Audio Precision System Two Cascade or Cascade Plus test system. The measurement  
bandwidthis limited using the Audio Precision 22Hz high-pass filter in combination with a 20kHz low-pass filter. All A-weighted measurements  
are performed using the A-weighting filter in combination with the band limiting filter already mentioned. The measurements are made with the  
RMS detector selected. The 1-bit DSD data is converted to 24-bit linear PCM data for measurement using a PCM4204 configured for DSD input  
mode.  
3
ꢅ ꢜꢢ ꢏ ꢎ ꢣ ꢏ  
www.ti.com  
SBAS327A − JUNE 2004 − REVISED SEPTEMBER 2004  
ELECTRICAL CHARACTERISTICS (continued)  
Unless otherwise noted, all characteristics specified with T = +25°C, V  
= +5V, V = +3.3V, system clock (SCKI) is 512f for Single Rate  
DD S  
A
CC  
Sampling, 256f for Dual Rate Sampling, or 128f for Quad Rate Sampling. The device is operated in Master mode for all dynamic performance  
S
S
measurements.  
PCM4204  
TYP  
PARAMETER  
TEST CONDITIONS  
MIN  
MAX  
UNIT  
(3)  
DYNAMIC PERFORMANCE (PCM Output)  
(4)  
= 48kHz  
THD+N  
f
f
f
S
V
V
= −0.5dBFS, f = 1kHz  
IN  
−105  
−56  
118  
−96  
dB  
dB  
dB  
dB  
IN  
IN  
= −60dBFS, f = 1kHz  
IN  
Dynamic Range  
Channel Separation  
V
IN  
= −60dBFS, f = 1kHz, A-weighted  
IN  
112  
105  
120  
= 96kHz  
THD+N  
S
V
V
= −0.5dBFS, f = 1kHz, BW = 20Hz to 40kHz  
IN  
−103  
−52  
118  
dB  
dB  
dB  
dB  
IN  
IN  
= −60dBFS, f = 1kHz, BW = 20Hz to 40kHz  
IN  
Dynamic Range  
Channel Separation  
V
IN  
= −60dBFS, f = 1kHz, A-weighted  
IN  
120  
= 192kHz  
S
THD+N  
Dynamic Range  
V
= −0.5dBFS, f = 1kHz, BW = 20Hz to 40kHz  
IN  
−103  
108  
117  
dB  
dB  
dB  
dB  
IN  
V
= 0V, Unweighted, BW = 20Hz to 40kHz  
IN  
V
IN  
= 0V, A-weighted  
Channel Separation  
120  
(5)  
DYNAMIC PERFORMANCE (DSD Output)  
64f Output Rate  
S
THD+N  
DSDBCK = 2.8224MHz, BW = 20Hz to 20kHz  
= −0.5dBFS, f = 1kHz  
V
IN  
−103  
−52  
115  
dB  
dB  
dB  
IN  
V
IN  
= −60dBFS, f = 1kHz  
IN  
Dynamic Range  
V
IN  
= −60dBFS, f = 1kHz, A-weighted  
IN  
DSDBCK = 5.6448MHz, BW = 20Hz to 20kHz  
= −0.5dBFS, f = 1kHz  
128f Output Rate  
S
THD+N  
V
IN  
−105  
−56  
118  
dB  
dB  
dB  
IN  
= −60dBFS, f = 1kHz  
V
IN  
IN  
Dynamic Range  
V
IN  
= −60dBFS, f = 1kHz, A-weighted  
IN  
DIGITAL DECIMATION FILTER  
Single and Dual Rate Sampling Modes  
Passband Edge  
Passband Ripple  
Stop Band Edge  
Stop Band Attenuation  
Group Delay  
−0.005dB  
0.453f  
0.005  
Hz  
dB  
Hz  
dB  
sec  
S
0.547f  
S
−100  
37/f  
S
(1)  
(2)  
(3)  
Applies to the FMT0, FMT1, FMT2, S/M, FS0, FS1, FS2, HPFD, BCK, LRCK, SUB, DSDCLK, DSD1, DSD2, DSD3, DSD4, and SCKI pins.  
Applies to the TEST and RST pins.  
Typical performance is measured using an Audio Precision System Two Cascade or Cascade Plus test system. The measurement bandwidth  
is limited using the Audio Precision 22Hz high-pass filter in combination with either a 20kHz low-pass filter for f = 48kHz or a 40kHz low-pass  
S
filter for f = 96kHz and 192kHz. All A-weighted measurements are performed using the A-weighting filter in combination with the band limiting  
S
filters already mentioned. The measurements are made with the RMS detector selected.  
(4)  
(5)  
A 256f system clock is used at final production test for f = 48kHz measurements.  
S
S
Typical DSD performance is measured using an Audio Precision System Two Cascade or Cascade Plus test system. The measurement  
bandwidthis limited using the Audio Precision 22Hz high-pass filter in combination with a 20kHz low-pass filter. All A-weighted measurements  
are performed using the A-weighting filter in combination with the band limiting filter already mentioned. The measurements are made with the  
RMS detector selected. The 1-bit DSD data is converted to 24-bit linear PCM data for measurement using a PCM4204 configured for DSD input  
mode.  
4
ꢅ ꢜꢢ ꢏ ꢎꢣ ꢏ  
www.ti.com  
SBAS327A − JUNE 2004 − REVISED SEPTEMBER 2004  
ELECTRICAL CHARACTERISTICS (continued)  
Unless otherwise noted, all characteristics specified with T = +25°C, V  
= +5V, V = +3.3V, system clock (SCKI) is 512f for Single Rate  
DD S  
A
CC  
Sampling, 256f for Dual Rate Sampling, or 128f for Quad Rate Sampling. The device is operated in Master mode for all dynamic performance  
S
S
measurements.  
PCM4204  
TYP  
PARAMETER  
DIGITAL DECIMATION FILTER (continued)  
Quad Rate Sampling Mode  
Passband Edge  
TEST CONDITIONS  
MIN  
MAX  
UNIT  
−0.005dB  
−3dB  
0.375f  
Hz  
Hz  
dB  
Hz  
dB  
sec  
S
0.490f  
S
Passband Ripple  
Stop Band Edge  
Stop Band Attenuation  
Group Delay  
0.005  
0.770f  
−135  
S
9.5/f  
S
DIGITAL HIGH PASS FILTER  
Frequency Response (−3dB)  
POWER SUPPLY  
f /48000  
S
Hz  
Voltage Range  
V
1, V  
2
3
+4.75  
+3.0  
+5.0  
+3.3  
+5.25  
+3.6  
VDC  
VDC  
CC  
CC  
DD  
V
1, V 2, V  
DD DD  
Power Down Supply Current  
V
CC  
= +5V, V  
= +3.3V, RST = Low  
DD  
I
1 + I  
2
3
10  
2
mA  
mA  
CC  
CC  
DD  
I
1 + I 2 + I  
DD  
DD  
Quiescent Current  
I 1 + I 2  
CC CC  
V
= +5.0V  
(4)  
CC  
= 48kHz  
f
S
108  
108  
108  
130  
130  
130  
mA  
mA  
mA  
f
= 96kHz  
= 192kHz  
S
f
S
I 1 + I 2 + I 3  
DD DD DD  
V
= +3.3V  
DD  
= 48kHz  
(4)  
f
S
18  
30  
23  
23  
44  
26  
mA  
mA  
mA  
f
= 96kHz  
= 192kHz  
S
f
S
Total Power Dissipation  
V
CC  
= +5V, V  
= +3.3V  
(4)  
DD  
f
S
= 48kHz  
600  
640  
615  
726  
795  
736  
mW  
mW  
mW  
f
= 96kHz  
= 192kHz  
S
f
S
(1)  
(2)  
(3)  
Applies to the FMT0, FMT1, FMT2, S/M, FS0, FS1, FS2, HPFD, BCK, LRCK, SUB, DSDCLK, DSD1, DSD2, DSD3, DSD4, and SCKI pins.  
Applies to the TEST and RST pins.  
Typical performance is measured using an Audio Precision System Two Cascade or Cascade Plus test system. The measurement bandwidth  
is limited using the Audio Precision 22Hz high-pass filter in combination with either a 20kHz low-pass filter for f = 48kHz or a 40kHz low-pass  
S
filter for f = 96kHz and 192kHz. All A-weighted measurements are performed using the A-weighting filter in combination with the band limiting  
S
filters already mentioned. The measurements are made with the RMS detector selected.  
(4)  
(5)  
A 256f system clock is used at final production test for f = 48kHz measurements.  
S
S
Typical DSD performance is measured using an Audio Precision System Two Cascade or Cascade Plus test system. The measurement  
bandwidthis limited using the Audio Precision 22Hz high-pass filter in combination with a 20kHz low-pass filter. All A-weighted measurements  
are performed using the A-weighting filter in combination with the band limiting filter already mentioned. The measurements are made with the  
RMS detector selected. The 1-bit DSD data is converted to 24-bit linear PCM data for measurement using a PCM4204 configured for DSD input  
mode.  
5
ꢅ ꢜꢢ ꢏ ꢎ ꢣ ꢏ  
www.ti.com  
SBAS327A − JUNE 2004 − REVISED SEPTEMBER 2004  
PIN ASSIGNMENT  
64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49  
1
2
48  
47  
46  
VIN  
1
VIN4+  
IN4  
V
IN1+  
NC  
NC  
V
3
NC  
4
45 NC  
44 VCC2  
VCC  
1
5
AGND1  
BGND1  
DGND1  
6
43 AGND2  
7
42  
41  
40  
39  
38  
37  
BGND4  
DGND3  
8
PCM4204  
V
DD1  
9
VDD3  
10  
11  
12  
RST  
TEST  
FS0  
SUB  
HPFD  
CLIP4  
FS1 13  
FS2 14  
SCKI 15  
36 CLIP3  
35 CLIP2  
34 CLIP1  
16  
33  
BGND3  
BGND2  
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32  
6
ꢅ ꢜꢢ ꢏ ꢎꢣ ꢏ  
www.ti.com  
SBAS327A − JUNE 2004 − REVISED SEPTEMBER 2004  
Terminal Functions  
TERMINAL  
NAME  
PIN NO.  
I/O  
Input  
Input  
DESCRIPTION  
1
2
3
V
1−  
1+  
Channel 1 Analog Input, Inverting  
IN  
V
IN  
Channel 1 Analog Input, Non-inverting  
No Internal Connection  
No Internal Connection  
Analog Supply, +5V Nominal  
Analog Ground  
NC  
NC  
4
5
V 1  
CC  
Power  
Ground  
Ground  
Ground  
Power  
Input  
Input  
Input  
Input  
Input  
Input  
Ground  
Input  
Input  
Input  
Input  
6
AGND1  
BGND1  
DGND1  
7
Substrate Ground  
8
Digital Ground  
9
V 1  
DD  
Digital Supply, +3.3V Nominal  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
RST  
TEST  
FS0  
Reset/Power Down (Active Low with internal pull-up to V 1)  
DD  
Test Pin (Active High with internal pull-down to DGND)  
Sampling Mode  
FS1  
Sampling Mode  
FS2  
Sampling Mode  
SCKI  
BGND2  
S/M  
System Clock  
Substrate Ground  
Audio Serial Port Slave/Master Mode (0 = Master, 1 = Slave)  
Audio Data Format  
FMT0  
FMT1  
FMT2  
NC  
Audio Data Format  
Audio Data Format  
No Internal Connection  
Digital Ground  
DGND2  
Ground  
Power  
I/O  
V 2  
DD  
Digital Supply, +3.3V Nominal  
DSD Data Clock  
DSDCLK  
DSD1  
DSD2  
DSD3  
DSD4  
BCK  
I/O  
Channel 1 DSD Data  
I/O  
Channel 2 DSD Data  
I/O  
Channel 3 DSD Data  
I/O  
Channel 4 DSD Data  
I/O  
Audio Serial Port Bit Clock  
Audio Serial Port Left/Right (or Word) Clock  
LRCK  
SDOUT1  
SDOUT2  
BGND3  
CLIP1  
CLIP2  
CLIP3  
CLIP4  
HPFD  
SUB  
I/O  
(1)  
Output  
Output  
Ground  
Output  
Output  
Output  
Output  
Input  
Input  
Power  
PCM Data for Channels 1 and 2  
PCM Data for Channels 3 and 4  
Substrate Ground  
(1)  
Channel 1 Clipping Flag (Active High)  
Channel 2 Clipping Flag (Active High)  
Channel 3 Clipping Flag (Active High)  
Channel 4 Clipping Flag (Active High)  
High-Pass Filter Disable (Active High)  
TDM Sub-Frame Assignment (0 = SF 0, 1 = SF 1)  
Digital Supply, +3.3V Nominal  
V 3  
DD  
(1)  
For TDM formats, SDOUT1 carries data for all four channels, while SDOUT2 is driven low.  
7
ꢅ ꢜꢢ ꢏ ꢎ ꢣ ꢏ  
www.ti.com  
SBAS327A − JUNE 2004 − REVISED SEPTEMBER 2004  
Terminal Functions (continued)  
TERMINAL  
NAME  
PIN NO.  
I/O  
DESCRIPTION  
41  
DGND3  
BGND4  
AGND2  
Ground  
Digital Ground  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
Ground  
Ground  
Power  
Substrate Ground  
Analog Ground  
V 2  
CC  
Analog Supply, +5V Nominal  
No Internal Connection  
No Internal Connection  
Channel 4 Analog Input, Inverting  
NC  
NC  
V
4−  
4+  
Input  
Input  
Output  
Output  
Output  
Output  
IN  
V
IN  
Channel 4 Analog Input, Non-inverting  
Voltage Reference De-Coupling for Channels 3 and 4  
Reference Ground for Channels 3 and 4, connect to AGND  
Analog Ground  
V
V
34+  
34−  
REF  
REF  
AGND3  
V 34  
COM  
Common-mode Voltage for Channels 3 and 4, +2.5V Nominal  
No Internal Connection  
NC  
V
3−  
3+  
Input  
Input  
Channel 3 Analog Input, Inverting  
IN  
V
IN  
Channel 3 Analog Input, Non-inverting  
No Internal Connection  
NC  
NC  
No Internal Connection  
V
2−  
2+  
Input  
Input  
Channel 2 Analog Input, Inverting  
IN  
V
IN  
Channel 2 analog Input, Non-inverting  
No Internal Connection  
NC  
V 12  
COM  
Output  
Ground  
Output  
Output  
Common-mode Voltage for Channels 1 and 2, +2.5V Nominal  
Analog Ground  
AGND4  
V 12−  
REF  
Reference Ground for Channels 1 and 2, connect to AGND  
Voltage Reference De-Coupling for Channels 1 and 2  
V 12+  
REF  
(1)  
For TDM formats, SDOUT1 carries data for all four channels, while SDOUT2 is driven low.  
8
ꢅ ꢜꢢ ꢏ ꢎꢣ ꢏ  
www.ti.com  
SBAS327A − JUNE 2004 − REVISED SEPTEMBER 2004  
TYPICAL CHARACTERISTICS  
At T = +25°C with V  
= +5V, VDD = +3.3V, and a measurement bandwidth from 20Hz to 20kHz, unless otherwise noted.  
A
CC  
OVERALL CHARACTERISTICS  
SINGLE RATE FILTER  
STOP BAND ATTENUATION CHARACTERISTICS  
SINGLE RATE FILTER  
50  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
110  
120  
130  
140  
150  
fS = 48 kHz  
fS = 48 kHz  
0
50  
100  
150  
200  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
0.5  
Normalized Frequency (fS)  
0
1
0.75  
0.25  
Normalized Frequency (fS)  
TRANSIENT BAND CHARACTERISTICS  
SINGLE RATE FILTER  
PASSBAND RIPPLE CHARACTERISTICS  
SINGLE RATE FILTER  
0
0.02  
fS = 48kHz  
fS = 48kHz  
1
2
3
4
5
6
7
8
9
0
0.02  
0.04  
0.06  
0.08  
10  
0.1  
0.45  
0.47  
0.49  
0.51  
0.53  
0.55  
0
0.2  
0.4  
0.6  
0.1  
0.3  
0.5  
Normalized Frequency (fS)  
Normalized Frequency (fS)  
OVERALL CHARACTERISTICS  
DUAL RATE FILTER  
STOP BAND ATTENUATION CHARACTERISTICS  
DUAL RATE FILTER  
50  
0
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
110  
120  
130  
140  
150  
fS = 96kHz  
fS = 96kHz  
50  
100  
150  
200  
0
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0  
Normalized Frequency (fS)  
0.5  
Normalized Frequency (fS)  
0
1
0.75  
0.25  
9
ꢅ ꢜꢢ ꢏ ꢎ ꢣ ꢏ  
www.ti.com  
SBAS327A − JUNE 2004 − REVISED SEPTEMBER 2004  
TYPICAL CHARACTERISTICS (continued)  
At T = +25°C with V  
= +5V, VDD = +3.3V, and a measurement bandwidth from 20Hz to 20kHz, unless otherwise noted.  
A
CC  
TRANSIENT BAND CHARACTERISTICS  
DUAL RATE FILTER  
PASSBAND RIPPLE CHARACTERISTICS  
DUAL RATE FILTER  
0
1
2
3
4
5
6
7
8
9
0.02  
0
fS = 96kHz  
fS = 96kHz  
0.02  
0.04  
0.06  
0.08  
10  
0.1  
0.45  
0.47  
0.49  
0.51  
0.53  
0.55  
0
0.2  
0.4  
0.6  
0.1  
0.3  
0.5  
Normalized Frequency (fS)  
Normalized Frequency (fS)  
OVERALL CHARACTERISTICS  
QUAD RATE FILTER  
STOP BAND ATTENUATION CHARACTERISTICS  
QUAD RATE FILTER  
50  
0
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
110  
120  
130  
140  
150  
fS = 192kHz  
fS = 192kHz  
50  
100  
150  
200  
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9  
Normalized Frequency (fS)  
1
0.5  
Normalized Frequency (fS)  
0
1
0.75  
0.25  
TRANSIENT BAND CHARACTERISTICS  
QUAD RATE FILTER  
PASSBAND RIPPLE CHARACTERISTICS  
QUAD RATE FILTER  
0
0.02  
0
fS = 192kHz  
fS = 192kHz  
1
2
3
4
5
6
7
8
9
3.90dB at 0.5fS  
0.02  
0.04  
0.06  
0.08  
10  
0.1  
0
0.2  
0.4  
0.6  
0.45  
0.47  
0.49  
0.51  
0.53  
0.55  
0.1  
0.3  
0.5  
Normalized Frequency (fS)  
Normalized Frequency (fS)  
10  
ꢅ ꢜꢢ ꢏ ꢎꢣ ꢏ  
www.ti.com  
SBAS327A − JUNE 2004 − REVISED SEPTEMBER 2004  
TYPICAL CHARACTERISTICS (continued)  
At T = +25°C with V  
= +5V, VDD = +3.3V, and a measurement bandwidth from 20Hz to 20kHz, unless otherwise noted.  
A
CC  
HIGH PASS FILTER  
HIGH PASS FILTER  
PASSBAND CHARACTERISTICS  
STOP BAND CHARACTERISTICS  
5
0.02  
0
20  
40  
60  
80  
0.02  
0.04  
0.06  
0.08  
0.1  
100  
0
20  
20  
0.1  
0.2  
0.3  
0.4  
10k 20k  
10k 20k  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
Normalized Frequency (fS/1000)  
Normalized Frequency (fS/1000)  
FFT PLOT  
FFT PLOT  
(fS = 48kHz, fIN = 997Hz at 60dB)  
(fS = 48kHz, fIN = 997Hz at 20dB)  
0
0
20  
40  
60  
80  
20  
40  
60  
80  
100  
120  
140  
160  
180  
100  
120  
140  
160  
180  
100  
1k  
20  
100  
1k  
10k 20k  
Frequency (Hz)  
Frequency (Hz)  
FFT PLOT  
FFT PLOT  
(fS = 96kHz, fIN = 997Hz at 20dB)  
(fS = 48kHz, No Input [Idle])  
0
0
20  
40  
60  
80  
20  
40  
60  
80  
100  
120  
140  
160  
180  
100  
120  
140  
160  
180  
20  
100  
1k  
10k  
40k  
100  
1k  
Frequency (Hz)  
Frequency (Hz)  
11  
ꢅ ꢜꢢ ꢏ ꢎ ꢣ ꢏ  
www.ti.com  
SBAS327A − JUNE 2004 − REVISED SEPTEMBER 2004  
TYPICAL CHARACTERISTICS (continued)  
At T = +25°C with V  
= +5V, VDD = +3.3V, and a measurement bandwidth from 20Hz to 20kHz, unless otherwise noted.  
A
CC  
FFT PLOT  
(fS = 96kHz, fIN = 997Hz at 60dB)  
FFT PLOT  
(fS = 96kHz, No Input [Idle])  
0
0
20  
40  
60  
80  
20  
40  
60  
80  
100  
120  
140  
160  
180  
100  
120  
140  
160  
180  
20  
20  
20  
100  
1k  
10k  
40k  
100k  
100k  
20  
100  
1k  
10k  
40k  
Frequency (Hz)  
Frequency (Hz)  
FFT PLOT  
FFT PLOT  
(fS = 192kHz, fIN = 997Hz at 60dB)  
(fS = 192kHz, fIN = 997Hz at 20dB)  
0
0
20  
40  
60  
80  
20  
40  
60  
80  
100  
120  
140  
160  
180  
100  
120  
140  
160  
180  
100  
1k  
10k  
20  
100  
1k  
10k  
100k  
Frequency (Hz)  
Frequency (Hz)  
FFT PLOT  
(fS = 192kHz, No Input [Idle])  
THD+N vs AMPLITUDE  
(fS = 48kHz, fIN = 1kHz, BW = 20Hz to 20kHz)  
0
90  
92  
94  
96  
98  
20  
40  
60  
80  
100  
102  
104  
106  
108  
110  
112  
114  
116  
118  
120  
100  
120  
140  
160  
180  
100  
1k  
10k  
20  
140  
120  
100  
80  
60  
40  
0
Frequency (Hz)  
Input Amplitude (dB)  
12  
ꢅ ꢜꢢ ꢏ ꢎꢣ ꢏ  
www.ti.com  
SBAS327A − JUNE 2004 − REVISED SEPTEMBER 2004  
TYPICAL CHARACTERISTICS (continued)  
At T = +25°C with V  
CC  
= +5V, VDD = +3.3V, and a measurement bandwidth from 20Hz to 20kHz, unless otherwise noted.  
A
THD+N vs FREQUENCY  
THD+N vs AMPLITUDE  
(fS = 48kHz, Input Amplitude = 1dB,  
(fS = 96kHz, fIN = 1kHz, BW = 20Hz to 40kHz)  
BW = 20Hz to 20kHz)  
90  
92  
94  
96  
98  
100  
102  
104  
106  
108  
110  
112  
114  
116  
118  
120  
90  
92  
94  
96  
98  
100  
102  
104  
106  
108  
110  
112  
114  
116  
118  
120  
20  
140  
120  
100  
80  
60  
40  
0
20  
100  
1k  
10k 20k  
Input Amplitude (dB)  
Input Frequency (Hz)  
THD+N vs FREQUENCY  
(fS = 96kHz, Input Amplitude = 1dB,  
BW = 20Hz to 40kHz)  
THD+N vs AMPLITUDE  
(fS = 192kHz, fIN = 1kHz, BW = 20Hz to 40kHz)  
70  
75  
80  
85  
90  
95  
90  
92  
94  
96  
98  
100  
102  
104  
106  
108  
110  
112  
114  
116  
118  
120  
100  
105  
110  
115  
120  
20  
100  
1k  
10k  
40k  
20  
140  
120  
100  
80  
60  
40  
0
Input Frequency (Hz)  
Input Amplitude (dB)  
THD+N vs FREQUENCY  
(fS = 192kHz, Input Amplitude = 1dB,  
BW = 20Hz to 40kHz)  
70  
75  
80  
85  
90  
95  
100  
105  
110  
115  
120  
20  
100  
1k  
10k  
80k  
Input Frequency (Hz)  
13  
www.ti.com  
SBAS327A − JUNE 2004 − REVISED SEPTEMBER 2004  
On-chip voltage references are provided for the  
modulators, in addition to generating DC common-mode  
bias voltage outputs for use with external input circuitry.  
Linear phase digital decimation filtering is provided for the  
24-bit PCM output, with a minimum stop band attenuation  
of −100dB for all sampling modes.  
PRODUCT OVERVIEW  
The PCM4204 is a high-performance, four-channel audio  
analog-to-digital (A/D) converter designed for use in  
professional and broadcast audio applications. The  
PCM4204 features 24-bit linear PCM data outputs, as well  
as 1-bit Direct Stream Digital (DSD) data output and input  
capability for all four channels. Sampling rates up to  
216kHz are supported for PCM output formats, while 64x  
or 128x oversampled 1-bit data is supported for DSD  
modes. Native support for both PCM and DSD data  
formats makes the PCM4204 ideal for use in a wide variety  
of audio recording and processing applications.  
The PCM output mode features clipping flag outputs for  
each of the four channels, as well as a digital high-pass  
filter for DC removal. The PCM4204 may be configured  
using dedicated input pins for sampling mode and audio  
data format selection, high-pass filter enable/disable, and  
reset/power-down operation.  
A +5V power supply is required for the analog section of  
the device, while a +3.3V power supply is required for the  
digital circuitry. Figure 1 shows the functional block  
diagram for the PCM4204.  
The PCM4204 features 1-bit delta sigma modulators  
employing density modulated dither for improved dynamic  
performance. Differential voltage inputs are utilized for the  
modulators, providing excellent common-mode rejection.  
VIN1+  
LRCK  
BCK  
Delta−Sigma  
Modulator  
Digital  
Audio  
Serial  
Port  
Decimation and High Pass  
Filters  
VIN1  
SDOUT1  
SDOUT2  
V
REF12+  
DSD1  
DSD2  
DSD3  
V
REF12  
DSD  
Data  
Port  
Reference  
AGND4  
VCOM12  
DSD4  
DSDCLK  
FS0  
FS1  
FS2  
S/M  
VIN2+  
Delta−Sigma  
Modulator  
VIN2  
FMT0  
FMT1  
FMT2  
HPFD  
SUB  
Control  
and  
Status  
To /From  
VIN3+  
Other Blocks  
Delta−Sigma  
Modulator  
VIN3  
RST  
CLIP1  
CLIP2  
CLIP3  
CLIP4  
V
REF34+  
VREF34  
Reference  
AGND3  
VCOM34  
System Clock  
and  
To Other  
Blocks  
SCKI  
Timing  
V
IN4+  
Delta−Sigma  
Modulator  
VIN4  
Power and Ground  
Figure 1. PCM4204 Functional Block Diagram  
14  
ꢅ ꢜꢢ ꢏ ꢎꢣ ꢏ  
www.ti.com  
SBAS327A − JUNE 2004 − REVISED SEPTEMBER 2004  
recommended to have at least a 0.1µF X7R ceramic chip  
capacitor connected in parallel with a 33µF low ESR  
capacitor (tantalum, multilayer ceramic, or aluminum  
electrolytic) for de-coupling purposes.  
ANALOG INPUTS  
The PCM4204 includes four channels of A/D conversion,  
each with its own pair of differential voltage input pins. The  
VIN1− (pin 1) and VIN1+ (pin 2) analog inputs correspond  
to Channel 1. The VIN2− (pin 58) and VIN2+ (pin 59) analog  
inputs correspond to Channel 2. The VIN3− (pin 54) and  
VIN3+ (pin 55) analog inputs correspond to Channel 3. The  
VIN4− (pin 47) and VIN4+ (pin 48) analog inputs  
correspond to Channel 4. The average input impedance of  
each input pin is 3.0k.  
Each analog input pair accepts a full-scale input voltage of  
approximately 6.0VPP differential. The analog input should  
not swing below analog ground or above the VCC1 (pin 5)  
or VCC2 (pin 44) power supplies by more than 300mV.  
Schottky diodes may be used to clamp these pins to a safe  
input range, or the input buffer circuitry may be designed  
in a manner to ensure that the input swing does not exceed  
the absolute maximum ratings of the PCM4204. Refer to  
theApplications Information section of this datasheet for  
an example input buffer circuit.  
Refer to the Applications Information section of this  
datasheet for the recommended voltage reference pin  
connections.  
The VREF12+ and VREF34+ outputs should not be utilized  
to bias external circuitry, as they are not buffered. Use the  
VCOM12 (pin 16) and VCOM34 (pin 52) outputs to bias  
external circuitry. Although the VCOML and VCOMR outputs  
are internally buffered, the output current is limited to a few  
hundred µA. It is recommended to connect these pins to  
external nodes with greater than 1Mimpedance, or to  
buffer the outputs with a voltage follower circuit when  
driving multiple external nodes.  
Refer to the Applications Information section of this  
datasheet for an example input buffer circuit that utilizes  
the common-mode bias voltage outputs.  
SYSTEM CLOCK INPUT  
VOLTAGE REFERENCES AND COMMON MODE  
BIAS VOLTAGE OUTPUTS  
The PCM4204 requires a system clock, from which the  
modulator oversampling and digital sub-system clocks are  
derived. The system clock is applied at the SCKI input (pin  
15). The frequency of the system clock is dependent upon  
the desired PCM output sampling frequency or DSD data  
rate, along with the sampling mode selection. Table 1  
shows the corresponding system clock frequencies for  
common output sampling and data rates, along with the  
corresponding sampling modes. Timing requirements for  
the system clock are shown in Figure 2.  
The PCM4204 includes two on-chip voltage references,  
one for Channels 1 and 2 and another for Channels 3 and  
4. The VREF12− (pin 63) and VREF12+ (pin 64) outputs  
correspond to low and high reference outputs for Channels  
1 and 2. The VREF34− (pin 50) and VREF34+ (pin 49)  
outputs correspond to low and high reference outputs for  
Channels 3 and 4. De-coupling capacitors are connected  
between the high and low reference pins, and the low  
reference pin is then connected to an analog ground. It is  
Table 1. System Clock Frequencies for Common Output Sampling and Data Rates  
SYSTEM CLOCK FREQUENCY (MHz)  
SAMPLING FREQUENCY, f  
(kHz)  
S
128f  
192f  
256f  
384f  
512f  
768f  
S
SAMPLING MODE  
Single Rate  
S
S
S
S
S
32  
44.1  
48  
n/a  
n/a  
n/a  
n/a  
8.192  
11.2896  
12.288  
22.5792  
24.576  
n/a  
12.288  
16.9344  
18.432  
33.8688  
36.864  
n/a  
16.384  
22.5792  
24.576  
n/a  
24.576  
33.8688  
36.864  
n/a  
Single Rate  
Single Rate  
n/a  
n/a  
Dual Rate  
88.2  
96  
n/a  
n/a  
Dual Rate  
n/a  
n/a  
n/a  
n/a  
Quad Rate  
176.4  
192  
22.5792  
24.576  
n/a  
33.8688  
36.864  
n/a  
n/a  
n/a  
Quad Rate  
n/a  
n/a  
n/a  
n/a  
DSD Input/Output  
DSD Input/Output  
128f Data (Single Rate)  
11.2896  
11.2896  
16.9344  
16.9344  
22.5792  
n/a  
33.8688  
n/a  
S
64f Data (Dual Rate)  
n/a  
n/a  
S
15  
ꢅ ꢜꢢ ꢏ ꢎ ꢣ ꢏ  
www.ti.com  
SBAS327A − JUNE 2004 − REVISED SEPTEMBER 2004  
t
SCKIH  
SCKI  
t
t
SCKI  
SCKIL  
DESCRIPTION  
System Clock Period  
PARAMETER  
tSCKI  
MIN  
26  
MAX  
UNITS  
ns  
tSCKIH  
System Clock High Pulse Time  
System Clock Low Pulse Time  
12  
ns  
tSCKIL  
12  
ns  
Figure 2. System Clock Timing Requirements  
of the sampling mode pins is changed any time after  
power-up reset initialization, the user should issue an  
external forced reset to re-initialize the PCM4204. Table 2,  
Table 3, Table 4, and Table 5 indicate the sampling mode  
selections for PCM Master and Slave mode operation, as  
well as the DSD Output and Input mode operation.  
SAMPLING MODES  
The PCM4204 may be operated in one of three PCM  
sampling modes, or at one of two DSD output data rates.  
The PCM sampling modes are referred to as Single Rate,  
Dual Rate, and Quad Rate.  
Single Rate mode is utilized for sampling rates up to  
54kHz. The delta-sigma modulator oversamples the  
analog input signal by a rate equal to 128 times the desired  
output sampling rate.  
Table 2. Sampling Mode Selection for PCM  
Master Mode Operation  
SAMPLING MODE WITH  
SYSTEM CLOCK RATE  
FS2  
0
FS1  
0
FS0  
0
Dual Rate mode is utilized for sampling rates higher than  
54kHz and up to 108kHz. The delta-sigma modulator  
oversamples the analog input signal by a rate equal to 64  
times the desired output sampling rate.  
Single Rate with f  
Single Rate with f  
Single Rate with f  
Single Rate with f  
= 768f  
= 512f  
= 384f  
= 256f  
SCKI  
SCKI  
SCKI  
SCKI  
SCKI  
SCKI  
S
S
S
S
0
0
1
0
1
0
Quad Rate mode is utilized for sampling frequencies  
higher than 108kHz and up to 216kHz. The delta-sigma  
modulator oversamples the analog input signal by a rate  
equal to 32 times the desired output sampling rate.  
0
1
1
1
0
0
Dual Rate with f  
Dual Rate with f  
= 384f  
= 256f  
S
1
0
1
S
1
1
0
Quad Rate with f  
= 192f  
SCKI  
SCKI  
S
S
For DSD output data, the user may select either 64fS or  
128fS oversampled data rates, where fS is the base  
sampling rate, which is 44.1kHz for Super Audio CD  
(SACD) applications. The 64fS data rate is analogous to  
the Dual Rate PCM sampling mode, where the analog  
input signal is oversampled by a rate equal to 64 times the  
base sampling rate. The 128fS data rate corresponds to  
the Single Rate PCM sampling mode, where the analog  
input signal is oversampled by a rate equal to 128 times the  
base sampling rate. For DSD input data, the rate of the  
data must be known in order to configure the digital  
decimation filter for either 1/64 or 1/128 operation.  
1
1
1
Quad Rate with f  
= 128f  
Table 3. Sampling Mode Selection for PCM Slave  
Mode Operation  
FS2  
0
FS1  
0
FS0  
0
SAMPLING MODE  
Single Rate with Clock Auto-Detection  
Dual Rate with Clock Auto-Detection  
Quad Rate with Clock Auto-Detection  
Reserved  
0
0
1
0
1
0
0
1
1
1
0
0
Reserved  
Table 1 indicates the sampling mode utilized for common  
system clock and sampling rate combinations. The FS0  
(pin 12), FS1 (pin 13), and FS2 (pin 14) inputs are utilized  
to select the sampling mode for the PCM4204. If the state  
1
0
1
Reserved  
1
1
0
Reserved  
1
1
1
Reserved  
16  
ꢅ ꢜꢢ ꢏ ꢎꢣ ꢏ  
www.ti.com  
SBAS327A − JUNE 2004 − REVISED SEPTEMBER 2004  
In Master mode, the PCM bit and left/right clocks (BCK and  
LRCK respectively) are configured as output pins, and are  
derived from the system clock input (SCKI). For the DSD  
data and clock pins (DSD1, DSD2, DSD3, DSD4, and  
DSDCLK), they may be configured as either inputs or  
outputs, depending upon the DSD format selection. Table  
7 summarizes the corresponding Master mode data format  
selections.  
Table 4. Sampling Mode Selection for DSD  
Output Mode Operation  
FS2 FS1 FS0  
SAMPLING MODE  
128f DSD Output Rate with f  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
= 768f  
= 512f  
= 384f  
= 256f  
S
SCKI  
SCKI  
SCKI  
SCKI  
SCKI  
SCKI  
S
S
S
S
128f DSD Output Rate with f  
S
128f DSD Output Rate with f  
S
128f DSD Output Rate with f  
S
64f DSD Output Rate with f  
S
= 384f  
S
Figure 3, Figure 4, and Figure 5 illustrate the PCM and  
DSD data formats supported by the PCM4204.  
64f DSD Output Rate with f  
S
= 256f  
S
Reserved  
Reserved  
Table 6. Slave Mode Audio Data Format Selection  
S/M  
1
FMT2 FMT1 FMT0  
AUDIO DATA FORMAT  
0
0
0
0
0
0
1
1
0
1
0
1
24-bit Left-Justified  
Table 5. Sampling Mode Selection for DSD Input  
Mode Operation  
2
1
24-bit I S  
FS2 FS1 FS0  
SAMPLING MODE  
1
24-bit Right-Justified  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
Reserved  
1
TDM with No BCK Delay for  
Start of Frame  
128f DSD Output Rate with f  
S
= 512f  
= 384f  
= 256f  
SCKI  
SCKI  
SCKI  
SCKI  
SCKI  
S
S
S
128f DSD Output Rate with f  
S
1
1
0
0
TDM with One BCK Delay for  
Start of Frame  
128f DSD Output Rate with f  
S
1
1
1
1
1
1
0
1
1
1
0
1
Reserved  
Reserved  
Reserved  
64f DSD Output Rate with f  
= 384f  
S
S
64f DSD Output Rate with f  
S
= 256f  
S
Reserved  
Reserved  
Table 7. Master Mode Audio Data Format  
Selection  
AUDIO DATA FORMATS  
S/M  
0
FMT2 FMT1 FMT0  
AUDIO DATA FORMAT  
As mentioned previously, the PCM4204 supports 24-bit  
linear PCM output data, as well as 1-bit DSD output data.  
The available data formats are dependent upon whether  
the PCM4204 is configured in Slave or Master mode. The  
S/M (pin 17), FMT0 (pin 18), FMT1 (pin 19), and FMT2 (pin  
20) inputs are utilized to select either Slave or Master  
mode and the corresponding audio data format.  
0
0
0
0
0
0
1
1
0
1
0
1
24-bit Left-Justified  
2
0
24-bit I S  
0
24-bit Right-Justified  
0
DSD Output with PCM Output  
Disabled  
0
1
0
0
DSD Input with 24−Bit Right-  
Justified PCM Output  
In Slave mode, the PCM bit and left/right word clocks (BCK  
and LRCK) are configured as input pins. DSD data formats  
are not supported in Slave mode. Slave mode supports  
commonly used PCM audio data formats, including Left-  
Justified, Right-Justified, and Philips I2S. Time division  
multiplexed (TDM) data formats are also supported,  
allowing up to two PCM4204 devices to be cascaded on  
a single audio serial bus. Table 6 summarizes the  
corresponding Slave mode data format selections.  
0
0
0
1
1
1
0
1
1
1
0
1
Reserved  
Reserved  
Reserved  
17  
ꢅ ꢜꢢ ꢏ ꢎ ꢣ ꢏ  
www.ti.com  
SBAS327A − JUNE 2004 − REVISED SEPTEMBER 2004  
Ch. 1 (SDOUT1) or Ch. 3 (SDOUT2)  
Ch. 2 (SDOUT1) or Ch. 4 (SDOUT2)  
LRCKI  
BCKI  
SDOUT1  
SDOUT2  
MSB  
LSB  
MSB  
LSB  
(a) Left−Justified Data Format  
LRCKI  
BCKI  
SDOUT1  
SDOUT2  
MSB  
LSB  
MSB  
LSB  
(b) Right−Justified Data Format  
LRCKI  
BCKI  
SDOUT1  
SDOUT2  
MSB  
LSB  
MSB  
LSB  
(c) I2S Data Format  
1/fS  
2
Figure 3. PCM Data Formats: Left-Justified, Right-Justified, and Philips I S  
18  
ꢅ ꢜꢢ ꢏ ꢎꢣ ꢏ  
www.ti.com  
SBAS327A − JUNE 2004 − REVISED SEPTEMBER 2004  
TDM Data Format Long Frame (Single and Dual Rate Sampling Modes)  
LRCK  
No BCK Delay  
LRCK  
One BCK Delay  
Slot 1  
Ch. 1  
Slot 2  
Ch. 2  
Slot 3  
Ch. 3  
Slot 4  
Ch. 4  
Slot 5  
Ch. 1  
Slot 6  
Ch. 2  
Slot 7  
Ch. 3  
Slot 8  
Ch. 4  
SDOUT1  
Supports 8 Channels, or  
two PCM4204 devices.  
Sub−Frame 0  
(SUB = 0)  
Sub−Frame 1  
(SUB = 1)  
One Frame  
BCK = 256fS  
TDM Data Format Short Frame (All Sampling Modes)  
LRCK  
No BCK Delay  
LRCK  
One BCK Delay  
Slot 1  
Ch. 1  
Slot 2  
Ch. 2  
Slot 3  
Ch. 3  
Slot 4  
Ch. 4  
Slot 5  
Ch. 1  
Slot 6  
Ch. 2  
Slot 7  
Ch. 3  
Slot 8  
Ch. 4  
SDOUT1  
Supports 4 Channels, or  
two PCM4204 devices.  
One Frame  
BCK = 128fS  
(the SUB pin is ignored when using a Short Frame)  
In the case of BCK = 256fS, each time slot is 32 bits long and contains the 24−bit audio data for the corresponding channel.  
The audio data is leftjustified in the time slot, with the the least significant 8 bits of each time slot being dont care bits.  
Audio data is always presented in two’s complement, MSB−first format.  
Figure 4. PCM Data Formats: Time Division Multiplexed (TDM)  
audio serial port. The LRCK and BCK clocks must be  
DSDCLK  
synchronous. The SDOUT1 and SDOUT2 signals are the  
serial audio data outputs, with data being clocked out on  
the falling edge of the BCK clock. SDOUT1 carries data for  
Channels 1 and 2 when using Left-Justified, Right-  
Justified, or I2S data formats. SDOUT1 carries data for all  
four channels when using TDM data formats. SDOUT2  
carries data for Channels 3 and 4 when using Left-  
Justified, Right-Justified, or I2S data formats. SDOUT2 is  
forced low when using TDM data formats.  
DSD1  
DSD2  
DSD3  
DSD4  
DN3 DN2 DN1 DN DN+1 DN+2 DN+3 DN+4  
Figure 5. DSD Input and Output Data Format  
AUDIO SERIAL PORT OPERATION  
As mentioned in the Audio Data Format section of this  
datasheet, the audio serial port can operate in Master or  
Slave mode. In Master mode, the BCK and LRCK clock  
signals are outputs, derived from the system clock input,  
SCKI. The BCK clock is fixed at 128fS for Single Rate  
sampling mode, and at 64fS for Dual or Quad Rate  
sampling modes. The LRCK clock operates at fS, the  
output sampling rate (that is, 48kHz, 96kHz, etc.).  
This section provides additional details regarding the  
PCM4204 audio serial port, utilized for 24-bit linear PCM  
output data. The serial port is comprised of four signals:  
BCK (pin 29), LRCK (pin 30), SDOUT1 (pin 31), and  
SDOUT2 (pin 32). The BCK signal functions as the data (or  
bit) clock for the serial audio data. The LRCK is the  
left/right word or TDM frame synchronization clock for the  
19  
ꢅ ꢜꢢ ꢏ ꢎ ꢣ ꢏ  
www.ti.com  
SBAS327A − JUNE 2004 − REVISED SEPTEMBER 2004  
In Slave mode, the BCK and LRCK signals are inputs, with  
the clocks being generated by a master timing source,  
such as a DSP serial port, PLL clock synthesizer, or a  
crystal oscillator/divider circuit. For Left Justified, Right  
Justified, and I2S data formats, the BCK rate is typically  
128fS in Single Rate sampling mode, and 64fS in Dual or  
Quad Rate sampling modes. Although other BCK clock  
rates are possible, they are not recommended due to the  
potential for clock phase sensitivity issues, which may  
degrade the dynamic performance of the PCM4204. The  
LRCK clock operates at fS, the output sampling rate.  
In Slave mode, the TDM data formats support a BCK clock  
rate of 256fS for Long Frame operation, and 128fS for Short  
Frame operation. The length and rate of the TDM frame is  
auto−detected by the audio serial port. Long Frame  
operation is supported for Single and Dual rate sampling  
modes only. Short Frame operation is supported for all  
sampling modes.  
For the TDM data formats, the maximum BCK rate is  
27.648MHz for either Long or Short Frame operation. The  
LRCK clock operates at fS, the output sampling rate. The  
minimum clock high time for the LRCK clock is one BCK  
clock period. The start of frame is referenced to the rising  
edge of the LRCK signal.  
Figure 6 illustrates the typical audio serial port  
connections between a PCM4204 and an audio signal  
processor when using Left-Justified, Right-Justified, and  
I2S data formats in either Slave or Master modes.  
Sub-frame selection for Long Frame TDM operation is  
accomplished by using the SUB input (pin 39). When SUB  
= 0, the PCM4204 is assigned to sub-frame 0. The  
SDOUT1 pin will be driven during sub-frame 0 and  
tri-stated during sub-frame 1. When SUB = 1, the  
PCM4204 is assigned to sub-frame 1. The SDOUT1 pin  
will be driven during sub-frame 1 and tri-stated during  
sub-frame 0. For Short Frame TDM operation, the SUB pin  
is ignored, although driving or hardwiring the SUB pin low  
is an acceptable practice. Figure 7 shows two PCM4204  
devices and an audio DSP in a typical TDM format  
application.  
DSP  
FSR  
PCM4204  
LRCK  
CLKR  
DR0  
BCK  
SDOUT1  
SDOUT2  
DR1  
SCKI  
System Clock  
Figure 8 and Figure 9 illustrate the PCM4204 audio serial  
port timing for both Master and Slave mode operation.  
Figure 6. Typical Audio Serial Port Connections  
2
for Left-Justified, Right-Justified, and Philips I S  
Data Formats  
Device #1  
(Sub−Frame 0)  
DSP  
PCM4204  
FSR  
CLKR  
DR  
LRCK  
BCK  
SDOUT1  
SCKI  
SUB  
Device #2  
(Sub−Frame 1)  
PCM4204  
LRCK  
BCK  
SDOUT1  
SUB  
VCC  
System Clock  
Figure 7. TDM Connections for Two PCM4204 Devices and an Audio DSP  
20  
ꢅ ꢜꢢ ꢏ ꢎꢣ ꢏ  
www.ti.com  
SBAS327A − JUNE 2004 − REVISED SEPTEMBER 2004  
tLRCKP  
tLRCKHL  
tLRCKHL  
LRCK  
BCK  
tBCKP  
tBCKHL  
SDOUT1  
SDOUT2  
tBCKDO  
PARAM ETER  
tLRCKP  
DESCRIPTION  
MIN  
MAX  
UNITS  
µ
µ
LRCK Period  
LRCK High/Low Time  
BCK Period  
5
2.25  
78  
s
s
tLRCKHL  
tBCKP  
ns  
ns  
ns  
tBCKHL  
BCK High/Low Time  
35  
tBCKDO  
SDOUT Data Output Delay from BCK Falling Edge  
10  
2
Figure 8. Master and Slave Mode Audio Serial Port Timing: Left-Justified, Right-Justified, and Philips I S  
One Frame 1/fS  
tLRCKPW  
LRCK  
BCK  
tBCKHL  
tBCKP  
SDOUT1  
tBCKDO  
PARAMETER  
DESCRIPTION  
LRCK Period Width  
BCK Period  
MIN  
tBCKP  
39  
M AX  
UNITS  
tLRCKPW  
µ
1/fS −tBCKP  
s
tBCKP  
ns  
ns  
ns  
tBCKHL  
tBCKDO  
BCK High/Low Time  
17.5  
SDOUT Data Output Delay from BCK Falling Edge  
10  
Figure 9. Slave Mode Audio Serial Port Timing: Time Division Multiplexed (TDM) Formats  
21  
ꢅ ꢜꢢ ꢏ ꢎ ꢣ ꢏ  
www.ti.com  
SBAS327A − JUNE 2004 − REVISED SEPTEMBER 2004  
DSD DATA PORT OPERATION  
HIGH-PASS FILTER  
The DSD data port consists of a single DSD data clock  
signal, DSDCLK (pin 24), along with four synchronous  
DSD data lines, DSD1 (pin 25), DSD2 (pin 26), DSD3 (pin  
27), and DSD4 (pin 28). The data lines correspond to  
Channels 1 through 4, respectively. The DSD output or  
input data rate is determined by the sampling mode  
settings for the device, discussed in the Sampling Modes  
section of this datasheet.  
A digital high-pass filter is available for removing the DC  
component of the digitized input signal. The filter is located  
at the output of the digital decimation filter, and is available  
only when using PCM output data formats. The high-pass  
filter can be enabled or disabled for all four channels using  
the HPFD input (pin 38). Driving the HPFD input low  
enables the high-pass filter. Driving the HPFD input high  
disables the high-pass filter.  
For DSD output data, the serial port is configured in Master  
mode, with the DSDCLK derived from the system clock  
input, SCKI. The DSDCLK is equivalent to the  
oversampling clock supplied to the delta-sigma  
modulators. The DSD data outputs, DSD1 through DSD4,  
are synchronous to the DSDCLK. The clock and data lines  
are then connected to a data capture device for storage  
and processing.  
The −3dB corner frequency for the high-pass filter scales  
with the output sampling rate, where f−3dB = fS/48000,  
where fS is the output sampling rate.  
CLIPPING FLAGS  
The PCM4204 includes a clipping flag output for each  
channel. The outputs are designated CLIP1 (pin 34),  
CLIP2 (pin 35), CLIP3 (pin 36), and CLIP4 (pin 37),  
corresponding to Channels 1 through 4, respectively.  
The DSD input mode, the data port is configured as an  
input port, with DSD clock and data lines driven from an  
external data source. The Audio Serial Port is configured  
in Master mode, with the LRCK and BCK clocks derived  
from the system clock input, SCKI. The PCM data format  
is set to 24-bit Right-Justified. The input data is processed  
by the digital decimation filter and output as PCM data at  
the audio serial port.  
A clipping flag is forced high as soon as the digital output  
of the decimation filter exceeds the full-scale range for the  
corresponding channel. The clipping flag output is held  
high for a maximum of (256 x N) / fS seconds, where N =  
128 for Single Rate sampling mode, 256 for Dual Rate  
sampling mode, and 512 for Quad Rate sampling mode.  
If the decimation filter output does not exceed the full-scale  
range during the initial hold period, the output returns to a  
low state upon termination of the hold period.  
Figure 10 illustrates the DSD port timing for both the DSD  
output and input modes.  
DSDCLK  
tDCKP  
tDCKHL  
DSD1  
DSD2  
DSD3  
Input  
DSD4  
tDS  
tDH  
DSD1  
DSD2  
DSD3  
DSD4  
Output  
tDCKDO  
DESCRIPTION  
MIN  
MAX  
UNITS  
PARAM ETER  
tDCKP  
ns  
ns  
ns  
DSDCLK Cycle Time  
DSDCLK High/Low Time  
Data Setup Time  
156  
70  
tDCKHL  
tDS  
10  
10  
tDH  
10  
10  
10  
ns  
ns  
Data Hold Time  
tDCKDO  
DSD Data Output Delay from DSDCLK Falling  
Figure 10. DSD Data Port Timing  
22  
ꢅ ꢜꢢ ꢏ ꢎꢣ ꢏ  
www.ti.com  
SBAS327A − JUNE 2004 − REVISED SEPTEMBER 2004  
forced low. Once the initialization sequence is completed,  
the PCM4204 output is enabled. Figure 11 shows the  
power-on reset sequence timing.  
RESET OPERATION  
The PCM4204 includes two reset functions: power-on and  
externally controlled. This section describes the operation  
of each of these functions.  
The user may force a reset initialization sequence at any  
time while the system clock input is active by utilizing the  
RST input (pin 10). The RST input is active low, and  
requires a minimum low pulse width of 40ns. The  
low-to-high transition of the applied reset signal forces an  
initialization sequence to begin. As in the case of the  
power-on reset, the initialization sequence requires 1024  
system clock periods for completion. Figure 12 illustrates  
the reset sequence initiated when using the RST input.  
On power-up, the internal reset signal is forced low, forcing  
the PCM4204 into a reset state. The power-on reset circuit  
monitors the VDD1, VDD2, VDD3, VCC1, and VCC2 power  
supply. When the VDD supply exceeds +2.0V ( 400mV)  
and VDD1 and VDD2 supply exceeds +4.0V ( 400mV), the  
internal reset signal is forced high. The PCM4204 then  
waits for the system clock input (SCKI) to become active.  
Once the system clock has been detected, the initialization  
sequence begins. The initialization sequence requires  
1024 system clock periods for completion. During the  
initialization sequence, the ADC output data pins are  
Figure 13 shows the state of the audio data outputs for the  
PCM4204 before, during and after the reset operations.  
~ 4.0V  
VCC1  
VCC2  
0V  
~ 2.0V  
0V  
V
VDD  
VDD  
DD1  
2
3
Internal  
Reset  
1024 System Clock Periods  
Required for Initialization  
0V  
0V  
SCKI  
System Clock  
Indeterminate  
or Inactive  
Figure 11. Power-On Reset Sequence  
23  
ꢅ ꢜꢢ ꢏ ꢎ ꢣ ꢏ  
www.ti.com  
SBAS327A − JUNE 2004 − REVISED SEPTEMBER 2004  
t
> 40ns  
RSTL  
RST  
0V  
0V  
1024 System Clock Periods  
Required for Initialization  
Internal  
Reset  
SCKI  
0V  
Figure 12. External Reset Sequence  
HI  
Internal  
Reset  
LO  
Output  
Data Pins  
Outputs are Forced Low  
Outputs are Forced Low  
Valid Output Data  
Valid Output Data  
for 1024 SCKI Periods  
Initialization  
Period  
Figure 13. ADC Digital Output State for Reset Operations  
24  
www.ti.com  
SBAS327A − JUNE 2004 − REVISED SEPTEMBER 2004  
A single ground plane is utilized for the analog and digital  
ground connections. This approach ensures a low  
impedance connection between the analog, digital, and  
substrate ground pins. The +5V analog and +3.3V digital  
power connections are provided from separate supplies.  
POWER-DOWN OPERATION  
The PCM4204 can be forced to a power-down state by  
applying a low level to the RST input (pin 10) for a minimum  
of 65,536 system clock cycles. In power-down mode, all  
internal clocks are stopped, and output data pins are  
forced low. The system clock may then be removed to  
conserve additional power. Before exiting power-down  
mode, the system and audio clocks should be restarted.  
Once the clocks are active, the RST input may be driven  
high, which initiates a reset initialization sequence.  
Figure 14 illustrates the state of the output data pins  
before, during, and upon exiting the power-down state.  
Figure 16 illustrates an example input buffer circuit,  
designed for balanced differential input signals. This circuit  
is utilized on the PCM4204EVM evaluation board. The  
2.7nF and 100pF capacitors shown at the output of the  
buffer should be located as close as possible to the analog  
input pins of the PCM4204. The buffer shown in Figure 16  
can be easily made to function as a single ended to  
differential converter by simply grounding the (−) input  
terminal of the buffer circuit.  
APPLICATIONS INFORMATION  
The input impedance for the VCOMIN pin of the OPA1632  
is relatively low and will load down the VCOM12 or VCOM34  
outputs from the PCM4204. A voltage follower circuit is  
required to buffer these outputs, with a typical circuit  
configuration shown in Figure 17. An OPA227 is utilized as  
the buffer for the PCM4204EVM evaluation board.  
However, alternative op amps with comparable  
performance may be substituted.  
A typical connection diagram for the PCM4204 is shown  
in Figure 15. Capacitors for power supply and reference  
bypassing are shown with recommended values. Bypass  
capacitors should be located as close as possible to the  
power supply and reference pins of the PCM4204. Due to  
its small size, the 0.1µF capacitor can be located on the  
component (top) side of the board, while the larger 33µF  
capacitor can be located on the solder (bottom) side of the  
board.  
HI  
RST  
LO  
Outputs are  
Forced Low  
Outputs are  
Forced Low  
Output  
Data Pins  
Outputs are  
Forced Low  
Valid Output Data  
Valid Output Data  
1024  
65,536  
SCKI Periods  
Required for  
Initialization  
SCKI Periods  
Enter  
Power Down  
State  
Figure 14. ADC Digital Output State for Power-Down Operations  
25  
ꢅ ꢜꢢ ꢏ ꢎ ꢣ ꢏ  
www.ti.com  
SBAS327A − JUNE 2004 − REVISED SEPTEMBER 2004  
100Ω  
24  
DSDCLK  
DSD1  
25  
DSD Data  
26  
Storage or  
DSD2  
Processing  
27  
28  
1
2
DSD3  
VIN1−  
A1  
DSD4  
VIN1+  
100Ω  
33µF  
15  
29  
30  
31  
32  
64  
63  
62  
61  
+
SCKI  
V
REF12+  
0.1µF  
VREF12−  
BCK  
0.1µF  
AGND4  
VCOM12  
LRCK  
PCM Audio  
to  
DSP, DIT, etc.  
Master  
Clock  
SDOUT1  
SDOUT2  
59  
58  
VIN2+  
A2  
10  
11  
12  
13  
14  
17  
18  
19  
20  
34  
35  
36  
37  
38  
39  
Analog  
Inputs  
RST  
VIN2−  
TEST  
FS0  
55  
54  
VIN3+  
A3  
FS1  
VIN3−  
FS2  
52  
51  
S/M  
V
COM34  
FMT0  
FMT1  
FMT2  
CLIP1  
CLIP2  
CLIP3  
CLIP4  
HPFD  
SUB  
AGND3  
CONTROL  
via  
0.1µF  
33µF  
0.1µF  
50  
49  
48  
47  
VREF34−  
PCM4204  
Logic, µP, etc.  
+
VREF34+  
VIN4+  
A4  
VIN4−  
33µF  
5
6
+
VCC1  
0.1µF  
0.1µF  
AGND1  
+3.3VD  
µ
33 F  
33µF  
9
8
VDD1  
44  
43  
+
+
VCC2  
0.1µF  
DGND1  
AGND2  
33µF  
23  
22  
VDD2  
+5VA  
+
0.1µF  
3
DGND2  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
4
A1 through A4 are analog input buffers.  
Refer to Figure 16 for an example circuit.  
21  
45  
46  
53  
56  
57  
60  
33µF  
40  
41  
VDD3  
All capacitor values are in microfarads (µF).  
The 0.1µF caps are X7R ceramic chip type.  
+
0.1µF  
DGND3  
µ
The 33 F caps are Low ESR tantalum or  
X7R multilayer ceramic chip type.  
7
16  
33  
42  
BGND1  
BGND2  
BGND3  
BGND4  
Figure 15. Typical Connection Diagram  
26  
ꢅ ꢜꢢ ꢏ ꢎꢣ ꢏ  
www.ti.com  
SBAS327A − JUNE 2004 − REVISED SEPTEMBER 2004  
270  
1nF  
15V  
µ
10 F  
+
µ
0.1 F  
6
7
100pF  
1k  
1k  
40.2  
40.2  
8
1
5
4
(+)  
EN  
+
To VIN  
Differential  
Analog Input  
OPA1632  
2.7nF  
( )  
VOCM  
To VIN  
100pF  
2
3
1k  
From  
Buffered VCOM  
in Figure 17.  
µ
0.01 F  
µ
0.1 F  
µ
10 F  
+
+15V  
1nF  
270  
Figure 16. Example Input Buffer Circuit  
OPA227  
or equivalent  
PCM4204  
VCOM12  
or  
To  
µ
0.1 F  
Buffered VCOM  
in Figure 16.  
VCOM34  
Figure 17. Example Buffer Circuit for V  
12 and V  
34  
COM  
COM  
27  
ꢅ ꢜꢢ ꢏ ꢎ ꢣ ꢏ  
www.ti.com  
SBAS327A − JUNE 2004 − REVISED SEPTEMBER 2004  
using standard flow soldering techniques. This allows  
efficient attachment to the PCB and permits the board  
structure to be utilized as a heat sink for the package.  
Using a thermal pad identical in size to the die pad and vias  
connected to the PCB ground plane, the board designer  
can now implement power packaging without additional  
thermal hardware (for example, external heat sinks) or the  
need for specialized assembly instructions.  
PowerPAD THERMALLY ENHANCED PACKAGING  
The PowerPAD concept is implemented in standard epoxy  
resin package material. The integrated circuit is attached  
to the leadframe die pad using thermally conductive epoxy.  
The package is molded so that the leadframe die pad is  
exposed at a surface of the package. This provides an  
extremely low thermal resistance to the path between the  
IC junction and the exterior case. The external surface of  
the leadframe die pad is located on the PCB side of the  
package, allowing the die pad to be attached to the PCB  
Figure 18 illustrates a cross-section view of a PowerPAD  
package.  
Mold Compount  
(Epoxy)  
IC Die  
Wire Bond  
Wire Bond  
Leadframe Die Pad  
Exposed at Base of Package  
Die Attach Epoxy  
(thermally conductive)  
Leadframe  
Figure 18. Cross-Section View of a PowerPAD Thermally-Enhanced Package  
28  
www.ti.com  
SBAS327A − JUNE 2004 − REVISED SEPTEMBER 2004  
The via connections to the thermal pad and internal ground  
plane should be plated completely around the hole, as  
opposed to the typical web or spoke thermal relief  
connection. Plating entirely around the thermal via  
provides the most efficient thermal connection to the  
ground plane.  
PowerPAD PCB LAYOUT CONSIDERATIONS FOR  
THE PCM4204  
Figure 19 shows the recommended layer structure for  
thermal management when using a PowerPad package  
on a 4-layer printed circuit board design. Note that the  
thermal pad is placed on both the top and bottom sides of  
the board. The ground plane is utilized as the heat sink,  
while the power plane is thermally isolated from the  
thermal vias.  
ADDITIONAL PowerPAD PACKAGE  
INFORMATION  
Figure 20 shows the required thermal pad etch pattern for  
the 64-lead HTQFP package used for the PCM4204. Nine  
13 mil (0.33 mm) thermal vias plated with 1 oz. copper are  
placed within the thermal pad area for the purpose of  
connecting the pad to the ground plane layer. The ground  
plane is utilized as a heatsink in this application. It is very  
important that the thermal via diameter be no larger than  
13mils in order to avoid solder wicking during the reflow  
process. Solder wicking results in thermal voids that  
reduce heat dissipation efficiency and hampers heat flow  
away from the IC die.  
Texas Instruments publishes the PowerPAD Thermally  
Enhanced Package Application Report (TI literature  
number SLMA002), available for download at www.ti.com,  
which provides a more detailed discussion of PowerPAD  
design and layout considerations. Before attempting a  
board layout with the PCM4204, it is recommended that  
the hardware engineer and/or layout designer be familiar  
with the information contained in this document.  
9/20/2004  
Package  
Thermal Pad  
Component  
Traces  
13mils (0.33mm)  
Component (top) Side  
Ground Plane  
Thermal Via  
Power Plane  
Thermal Isolation  
(power plane only)  
Solder (bottom) Side  
Package  
Thermal Pad  
(bottom trace)  
Figure 19. Recommended PCB Structure for a 4−Layer Board  
29  
ꢅ ꢜꢢ ꢏ ꢎ ꢣ ꢏ  
www.ti.com  
SBAS327A − JUNE 2004 − REVISED SEPTEMBER 2004  
Package Outline  
Thermal Pad  
40mils (1mm)  
40mils (1mm)  
118mils (3mm)  
316mils (8mm)  
Thermal Via  
13mils (0.33mm)  
316mils (8mm)  
Figure 20. Thermal Pad Etch and Via Pattern for the 64-Lead HTQFP Package  
30  
PACKAGE OPTION ADDENDUM  
www.ti.com  
14-Oct-2022  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
PCM4204PAPR  
PCM4204PAPT  
ACTIVE  
ACTIVE  
HTQFP  
HTQFP  
PAP  
PAP  
64  
64  
1500 RoHS & Green  
250 RoHS & Green  
NIPDAU  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
-10 to 70  
-10 to 70  
PCM4204  
PCM4204  
Samples  
Samples  
NIPDAU  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
14-Oct-2022  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
26-Jun-2023  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
PCM4204PAPR  
HTQFP  
PAP  
64  
1500  
330.0  
24.4  
13.0  
13.0  
1.5  
16.0  
24.0  
Q2  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
26-Jun-2023  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
HTQFP PAP 64  
SPQ  
Length (mm) Width (mm) Height (mm)  
350.0 350.0 43.0  
PCM4204PAPR  
1500  
Pack Materials-Page 2  
GENERIC PACKAGE VIEW  
PAP 64  
10 x 10, 0.5 mm pitch  
HTQFP - 1.2 mm max height  
QUAD FLATPACK  
This image is a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4226442/A  
www.ti.com  
PACKAGE OUTLINE  
TM  
PAP0064F  
PowerPAD TQFP - 1.2 mm max height  
PLASTIC QUAD FLATPACK  
10.2  
9.8  
B
NOTE 3  
64  
49  
PIN 1 ID  
1
48  
10.2  
9.8  
12.2  
TYP  
11.8  
NOTE 3  
16  
33  
17  
32  
A
0.27  
64X  
60X 0.5  
0.17  
0.08  
C A B  
4X 7.5  
C
SEATING PLANE  
1.2 MAX  
(0.127)  
TYP  
SEE DETAIL A  
17  
32  
0.25  
GAGE PLANE  
(1)  
8X (R0.091)  
NOTE 4  
33  
16  
0.15  
0.05  
0.08 C  
0 -7  
0.75  
0.45  
6.5  
5.3  
DETAIL A  
65  
A
17  
TYPICAL  
20X (R0.137)  
NOTE 4  
1
48  
49  
64  
4226412/A 11/2020  
PowerPAD is a trademark of Texas Instruments.  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs.  
4. Strap features may not be present.  
5. Reference JEDEC registration MS-026.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
TM  
PAP0064F  
PowerPAD TQFP - 1.2 mm max height  
PLASTIC QUAD FLATPACK  
(8)  
NOTE 8  
(6.5)  
SYMM  
SOLDER MASK  
49  
64  
DEFINED PAD  
64X (1.5)  
(R0.05)  
TYP  
1
48  
64X (0.3)  
65  
(11.4)  
SYMM  
(1.1 TYP)  
60X (0.5)  
33  
16  
(
0.2) TYP  
VIA  
METAL COVERED  
32  
17  
SEE DETAILS  
BY SOLDER MASK  
(1.1 TYP)  
(11.4)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:6X  
0.05 MAX  
ALL AROUND  
0.05 MIN  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL  
EXPOSED METAL  
EXPOSED METAL  
METAL UNDER  
SOLDER MASK  
SOLDER MASK  
OPENING  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
4226412/A 11/2020  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
8. This package is designed to be soldered to a thermal pad on the board. See technical brief, Powerpad thermally enhanced package,  
Texas Instruments Literature No. SLMA002 (www.ti.com/lit/slma002) and SLMA004 (www.ti.com/lit/slma004).  
9. Vias are optional depending on application, refer to device data sheet. It is recommended that vias under paste be filled,  
plugged or tented.  
10. Size of metal pad may vary due to creepage requirement.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
TM  
PAP0064F  
PowerPAD TQFP - 1.2 mm max height  
PLASTIC QUAD FLATPACK  
(6.5)  
BASED ON  
0.125 THICK STENCIL  
SYMM  
SEE TABLE FOR  
DIFFERENT OPENINGS  
FOR OTHER STENCIL  
THICKNESSES  
64  
49  
64X (1.5)  
1
48  
64X (0.3)  
(R0.05) TYP  
SYMM  
65  
(11.4)  
60X (0.5)  
33  
16  
METAL COVERED  
BY SOLDER MASK  
17  
32  
(11.4)  
SOLDER PASTE EXAMPLE  
EXPOSED PAD  
100% PRINTED SOLDER COVERAGE BY AREA  
SCALE:6X  
STENCIL  
THICKNESS  
SOLDER STENCIL  
OPENING  
0.1  
7.27 X 7.27  
6.5 X 6.5 (SHOWN)  
5.93 X 5.93  
0.125  
0.15  
0.175  
5.49 X 5.49  
4226412/A 11/2020  
NOTES: (continued)  
11. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
12. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
IMPORTANT NOTICE AND DISCLAIMER  
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE  
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”  
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY  
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD  
PARTY INTELLECTUAL PROPERTY RIGHTS.  
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate  
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable  
standards, and any other safety, security, regulatory or other requirements.  
These resources are subject to change without notice. TI grants you permission to use these resources only for development of an  
application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license  
is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you  
will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these  
resources.  
TI’s products are provided subject to TI’s Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with  
such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for  
TI products.  
TI objects to and rejects any additional or different terms you may have proposed. IMPORTANT NOTICE  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023, Texas Instruments Incorporated  

相关型号:

PCM4204PAPR

HIGH PERFORMANCE 24 BIT 216KHZ SAMPLING FOUR CHANNEL AUDIO ANALOG TO DIGITAL CONVERTER
BB

PCM4204PAPR

118dB SNR 4 通道音频 ADC | PAP | 64 | -10 to 70
TI

PCM4204PAPT

HIGH PERFORMANCE 24 BIT 216KHZ SAMPLING FOUR CHANNEL AUDIO ANALOG TO DIGITAL CONVERTER
BB

PCM4204PAPT

118dB SNR 4 通道音频 ADC | PAP | 64 | -10 to 70
TI

PCM4204PAPTG4

118dB SNR 4-Channel Audio ADC 64-HTQFP -10 to 70
TI

PCM4220

High-Performance, Two-Channel, 24-Bit, 216kHz Sampling Multi-Bit Delta-Sigma Analog-to-Digital Converter
TI

PCM4220PFB

High-Performance, Two-Channel, 24-Bit, 216kHz Sampling Multi-Bit Delta-Sigma Analog-to-Digital Converter
TI

PCM4220PFBG4

High-Performance, Two-Channel, 24-Bit, 216kHz Sampling Multi-Bit Delta-Sigma Analog-to-Digital Converter
TI

PCM4220PFBR

High-Performance, Two-Channel, 24-Bit, 216kHz Sampling Multi-Bit Delta-Sigma Analog-to-Digital Converter
TI

PCM4220PFBRG4

High-Performance, Two-Channel, 24-Bit, 216kHz Sampling Multi-Bit Delta-Sigma Analog-to-Digital Converter
TI

PCM4222

High-Performance, Two-Channel, 24-Bit, 216kHz Sampling Multi-Bit Delta-Sigma Analog-to-Digital Converter
BB

PCM4222

具有 PCM/DSD 和调制器输出的 124dB SNR 立体声音频 ADC
TI