PDR54450QDDARQ1 [TI]

汽车级 5.5V 至 36V 输入、5A、500kHz 降压转换器 | DDA | 8 | -40 to 150;
PDR54450QDDARQ1
型号: PDR54450QDDARQ1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

汽车级 5.5V 至 36V 输入、5A、500kHz 降压转换器 | DDA | 8 | -40 to 150

转换器
文件: 总29页 (文件大小:2238K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LMR54450-Q1, LMR54430-Q1  
ZHCSR84 NOVEMBER 2022  
LMR544x0-Q1 汽车5A 3A 宽输入范围降压转换器  
1 特性  
3 说明  
• 符合面向汽车应用AEC-Q100 标准  
LMR54450-Q1 LMR54430-Q1 是高输出电流 PWM  
转换器集成了低电阻高侧 N 沟道 MOSFET。集成的  
功能包括高性能误差放大器可在瞬态条件下提供高稳  
压精度、欠压锁定电路用于防止在输入电压达到  
5.5V 前启动、内部设置的软启动电路用于限制浪  
涌电流以及电压前馈电路用于改进瞬态响应。通  
过使EN 引脚关断电源电流通常可减少13μA。  
其他特性包括高电平有效使能端、过流限制、过压保护  
和热关断。为降低设计复杂性并减少外部组件数量反  
馈环路进行了内部补偿。  
– 器件温度等140°C +125°C 环境工作  
温度范围  
功能安全型  
可提供用于功能安全系统设计的文档  
5.5V 36V 的宽输入电压范围  
• 高5A 的持续峰值6A输出电流  
• 通85mMOSFET 开关实现大90% 的高  
效率  
• 宽输出电压范围可调节为低1.22V初始精度  
1.5%  
• 内部补偿最大限度地减少了外部器件数量  
• 适用于小型滤波器尺寸的固400kHz MW 频  
段开关频率  
13μA 关断电源电流典型值)  
• 通过输入电压前馈改进线路调整和瞬态响应  
• 系统受过流限制、过压保护和热关断的保护  
• –40°C 150°C 的工作结温范围  
• 采用小型热增强8 SOIC PowerPAD集成  
电路封装  
LMR54450-Q1 LMR54430-Q1 器件采用热增强型 8  
引脚 SOIC PowerPAD 集成电路封装。TI 提供评估模  
块和软件工具有助于实现高性能电源设计可满足迫  
切的器件开发周期要求。  
器件信息  
封装尺寸标  
封装(1)  
器件型号  
电流额定值  
称值)  
LMR54450-Q1  
LMR54430-Q1  
5A  
3A  
DDA  
HSOIC8)  
4.89mm ×  
3.90mm  
2 应用  
(1) 如需了解所有可用封装请参阅数据表末尾的可订购产品附  
录。  
信息娱乐系统与仪表组  
车身电子装置和照明  
电池充电器  
VOUT = 5 V  
IOUT(max) = 5 A or 3 A  
L
VIN = 5.5 V 36 V  
VIN  
SW  
CBOOT  
COUT  
CIN  
D1  
RFBT  
EN  
PG  
SS  
BOOT  
FB  
RFBT  
GND  
典型电路原理图  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SLVSGK7  
 
 
 
LMR54450-Q1, LMR54430-Q1  
ZHCSR84 NOVEMBER 2022  
www.ti.com.cn  
Table of Contents  
7.4 Device Functional Modes..........................................11  
8 Application and Implementation..................................12  
8.1 Application Information............................................. 12  
8.2 Typical Application.................................................... 12  
8.3 Power Supply Recommendations.............................19  
8.4 Layout....................................................................... 19  
9 Device and Documentation Support............................21  
9.1 Device Support......................................................... 21  
9.2 接收文档更新通知..................................................... 21  
9.3 支持资源....................................................................21  
9.4 Trademarks...............................................................21  
9.5 Electrostatic Discharge Caution................................21  
9.6 术语表....................................................................... 21  
10 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Pin Configuration and Functions...................................3  
6 Specifications.................................................................. 4  
6.1 Absolute Maximum Ratings........................................ 4  
6.2 ESD Ratings............................................................... 4  
6.3 Recommended Operating Conditions.........................4  
6.4 Thermal Information (DDA Package)..........................4  
6.5 Electrical Characteristics.............................................5  
6.6 System Characteristics............................................... 6  
6.7 Typical Characteristics................................................7  
7 Detailed Description........................................................9  
7.1 Overview.....................................................................9  
7.2 Functional Block Diagram...........................................9  
7.3 Feature Description...................................................10  
Information.................................................................... 21  
10.1 Tape and Reel Information......................................22  
4 Revision History  
以前版本的页码可能与当前版本的页码不同  
DATE  
REVISION  
NOTES  
November 2022  
*
Initial release  
Copyright © 2022 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: LMR54450-Q1 LMR54430-Q1  
 
LMR54450-Q1, LMR54430-Q1  
www.ti.com.cn  
ZHCSR84 NOVEMBER 2022  
5 Pin Configuration and Functions  
1
8
BOOT  
SW  
7
6
5
PG  
SS  
FB  
2
3
4
VIN  
GND  
EN  
PowerPad  
(Pin 9)  
5-1. 8-Pin SOIC DDA Package (Top View)  
5-1. Pin Functions  
PIN  
TYPE  
DESCRIPTION  
(1)  
NAME  
NO.  
Boost capacitor for the high-side FET gate driver. Connect a 10-nF, low-ESR capacitor from BOOT pin to SW  
pin.  
BOOT  
1
P
A
Open-drain power-good monitor output that asserts low if the FB voltage is not within the specified window  
thresholds. A 10-kΩto 100-kΩpullup resistor to a suitable voltage is required. If not used, PG can be left  
PG  
2
open.  
Soft-start control pin. Connect to a capacitor to ground for increased soft-start time beyond that provided by  
internal soft start. Float this pin to enable fixed internal soft-start time of 8 ms.  
SS  
FB  
3
4
A
A
Feedback input to the converter. Connect a resistor divider to set the output voltage. Never short this terminal  
to ground during operation.  
On and off control. Below 0.5-V, the device stops switching. Precision enable allows the pin to be used as an  
adjustable input voltage UVLO. Connect an external resistor divider between this pin, VIN and GND to create  
an external UVLO. Float the pin to enable.  
EN  
5
A
GND  
VIN  
SW  
6
7
8
9
G
P
P
P
System ground pin. Connect to PowerPAD.  
Input supply voltage. Bypass VIN pin to GND pin close to device package with a high-quality, low-ESR  
ceramic capacitor.  
Source of the high-side power MOSFET. Connected to external inductor and diode.  
Electrical ground and heat sink connection. Solder directly to system ground plane. GND pin must be  
connected to the exposed pad for proper operation.  
PowerPAD  
(1) A = analog, P = power, G = ground  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: LMR54450-Q1 LMR54430-Q1  
 
 
LMR54450-Q1, LMR54430-Q1  
ZHCSR84 NOVEMBER 2022  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
Over operating junction temperature range (unless otherwise noted) (1)  
MIN  
0.3  
0.3  
0.3  
0.3  
0.3  
0.6  
1.2  
0
MAX  
40  
7
UNIT  
V
Input voltage  
Input voltage  
Input voltage  
Input voltage  
Output voltage  
Output voltage  
Output voltage  
Output voltage  
Source current  
Source current  
Source current  
Sink current  
TJ  
VIN to GND  
EN to GND  
V
FB to GND  
3
V
SS to GND  
5.0  
6
V
BOOT to SW  
V
SW to GND, DC  
SW to GND, transient < 10ns  
PGOOD to GND  
SW  
40  
V
V
7
V
Internally Limited  
A
SW Leakage current  
SS  
10  
20  
µA  
µA  
mA  
°C  
°C  
PGOOD  
70  
Operating junction temperature  
Storage temperature  
150  
150  
40  
65  
Tstg  
(1) Operation outside the Absolute Maximum Ratings may cause permanent device damage. Absolute Maximum Ratings do not imply  
functional operation of the device at these or any other conditions beyond those listed under Recommended Operating Conditions. If  
used outside the Recommended Operating Conditions but within the Absolute Maximum Ratings, the device may not be fully  
functional, and this may affect device reliability, functionality, performance, and shorten the device lifetime.  
6.2 ESD Ratings  
VALUE  
UNIT  
Human body model (HBM), per AEC Q100-002 HBM  
ESD Classification Level 2(1)  
±2000  
V(ESD)  
Electrostatic discharge  
V
Charged device model (CDM), per AEC Q100-011 CDM  
ESD Classification Level C5  
±750  
(1) AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.  
6.3 Recommended Operating Conditions  
Over operating junction temperature range (unless otherwise noted)  
MIN  
NOM  
MAX  
36  
UNIT  
Input voltage  
Input voltage  
Input voltage  
Output voltage  
Load current  
Input voltage range  
EN  
5.5  
V
V
V
V
A
5.5  
6.5  
16  
PG  
0
1.221  
0
VOUT range  
IOUT range  
5
Power Good input current  
capability  
2
mA  
°C  
Operating junction temperature  
-40  
150  
6.4 Thermal Information (DDA Package)  
LMR544X0 -Q1  
DDA (HSOIC)  
8 PINs  
THERMAL METRIC(1)  
UNIT  
RθJA  
Junction-to-ambient thermal resistance (LMR54450EVM) (2)  
Junction-to-ambient thermal resistance (JESD 51-7) (3)  
Junction-to-case (top) thermal resistance  
41.2  
°C/W  
°C/W  
°C/W  
RθJA  
45.3  
RθJC(top)  
46  
Copyright © 2022 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: LMR54450-Q1 LMR54430-Q1  
 
 
 
 
 
 
 
LMR54450-Q1, LMR54430-Q1  
www.ti.com.cn  
ZHCSR84 NOVEMBER 2022  
6.4 Thermal Information (DDA Package) (continued)  
LMR544X0 -Q1  
THERMAL METRIC(1)  
DDA (HSOIC)  
UNIT  
8 PINs  
22  
RθJB  
ψJT  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
5.1  
21.4  
1.9  
ψJB  
RθJC(bot)  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics  
(2) Refer to the EVM User's Guide for board layout and additional information. For thermal design information please see the Maximum  
Ambient Temperature section.  
(3) The value of RΘJA given in this table is only valid for comparison with other packages and cannot be used for design purposes. These  
values were calculated in accordance with JESD 51-7, and simulated on a 4-layer JEDEC board. They do not represent the  
performance obtained in an actual application. For example, the EVM RΘJA = TBD /W. For design information please see the  
Maximum Ambient Temperature section.  
6.5 Electrical Characteristics  
TJ = 40°C to +150°C, VIN = 5.5 V to 36 V. Typical values are at TJ = 25°C and VIN = 12 V (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
SUPPLY  
IQ(VIN)  
VIN quiescent current  
Non-switching, VFB = 2V  
0.865  
12.5  
1.15  
25  
mA  
µA  
ISD(VIN)  
VIN shutdown supply current  
Shutdown, VEN = 0 V  
5
UVLO  
VINUVLO(R)  
VINUVLO(H)  
VIN UVLO rising threshold  
VIN UVLO hysteresis  
VVIN rising  
5.3  
5.5  
V
V
0.35  
REFERENCE VOLTAGE  
VFB  
FB voltage  
TJ = 25°C  
1.202  
1.196  
1.221  
1.221  
1.239  
1.245  
50  
V
V
VFB  
FB voltage  
TJ = 40°C to 150°C  
VFB = 1.221 V  
IFB(LKG)  
FB input leakage current  
nA  
SWITCHING FREQUENCY  
fSW  
Switching frequency  
320  
400  
480  
1.3  
kHz  
ENABLE  
VEN(R)  
EN voltage rising threshold  
EN voltage falling threshold  
EN voltage hysteresis  
V
V
VEN(F)  
0.5  
1.5  
VEN(H)  
0.203  
2.36  
V
IEN(P1)  
EN pin pull-up current  
4
µA  
STARTUP  
ISS  
Soft-start charge current  
VSS = 0 V  
10  
8
µA  
ms  
tSS_INT  
Internal fixed soft-start time  
From VOUT= 0% to VOUT= 100%  
6.6  
10  
BOOT CIRCUIT  
VBOOT-SW(UV_R)  
BOOT-SW UVLO rising threshold  
VBOOT-SW rising  
1.857  
V
OVERCURRENT PROTECTION  
IHS(OC) LMR54450: High-side peak current limit  
IHS(OC)  
6.0  
4.0  
13  
7.5  
5.0  
16  
9.0  
6.0  
20  
A
A
LMR54430: High-side peak current limit  
Hiccup time before re-start  
ms  
POWER GOOD  
VPGTH_UR  
Power Good threshold  
Power Good threshold  
FB rising, PG high to low (OV event)  
109.5%  
107.5%  
112.5%  
110.5%  
115.5%  
113.5%  
FB falling, PG low to high (Recovery from  
OV event)  
VPGTH_UF  
FB rising, PG low to high (Vout enters  
regulation during startup)  
VPGTH_LR  
VPGTH_LF  
Power Good threshold  
Power Good threshold  
91%  
89%  
94%  
92%  
97%  
95%  
FB falling, PG high to low (UV event)  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: LMR54450-Q1 LMR54430-Q1  
 
 
 
 
LMR54450-Q1, LMR54430-Q1  
ZHCSR84 NOVEMBER 2022  
www.ti.com.cn  
6.5 Electrical Characteristics (continued)  
TJ = 40°C to +150°C, VIN = 5.5 V to 36 V. Typical values are at TJ = 25°C and VIN = 12 V (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
µA  
PG pin Leakage current when open drain  
output is high  
IPG(LKG)  
VPG = 5 V  
1.5  
tPG  
PG de-glitch filter  
60  
170  
155  
2
µs  
RPG  
Power Good on-resistance  
Minimum input voltage for valid PG function  
PG logic low output  
VIN = 5.5V, VFB = 1.5V, VEN = 1.5V  
75  
V
V
V
VIN-PG  
VPG  
VIN = 2V, VEN = 0V, IPG = 50uA  
VIN = 5.5V, VEN = 0V, IPG = 2mA  
0.2  
0.4  
VPG  
PG logic low output  
POWER STAGE  
RDSON(HS)  
RDSON(HS)  
tON(min)  
tOFF(min)  
High-side MOSFET on-resistance  
High-side MOSFET on-resistance  
Minimum ON pulse width  
VIN = 12 V, VBOOT-SW = 4.5 V  
VIN = 5.5 V, VBOOT-SW = 4.0 V  
83  
84  
159  
164  
200  
mΩ  
mΩ  
ns  
150  
200  
Minimum OFF pulse width  
ns  
THERMAL SHUTDOWN  
TJ(SD)  
Thermal shutdown threshold  
Thermal shutdown hysteresis  
Temperature rising  
152  
163  
14  
°C  
°C  
TJ(HYS)  
6.6 System Characteristics  
The following specifications apply only to the typical applications circuit, with nominal component values. Specifications in the  
typical (TYP) column apply to TJ = 25°C only. Specifications in the minimum (MIN) and maximum (MAX) columns apply to the  
case of typical components over the temperature range of TJ = 40°C to 150°C. These specifications are not ensured by  
production testing.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
SUPPLY  
ISUPPLY  
Input supply current when in regulation  
VIN = 12V, VOUT = 5V, IOUT = 0 A  
1.4  
mA  
OUTPUT VOLTAGE  
VDROP Dropout voltage (VIN-VOUT  
VOUT = 5V, IOUT = 5A, Dropout at -1% of  
regulation  
)
1300  
mV  
Load Regulation  
Line Regulation  
VOUT = 3.3 V, VIN = 12 V, IOUT = 0 A to full load  
VOUT = 3.3 V, VIN = 5.5 V to 36 V, IOUT = 1 A  
1
1
mV  
mV  
VOUT = 3.3 V, VIN = 12 V, IOUT = 2.5 A to 5 A @  
2.5 A/us.  
Load Transient Magnitude  
80  
mV  
EFFICIENCY  
Efficiency  
VIN = 13.5V, VOUT = 5V, IOUT = 2.5 A  
92 %  
η5V  
Copyright © 2022 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: LMR54450-Q1 LMR54430-Q1  
 
LMR54450-Q1, LMR54430-Q1  
www.ti.com.cn  
ZHCSR84 NOVEMBER 2022  
6.7 Typical Characteristics  
Unless otherwise specified, VIN = 13.5 V  
940  
920  
900  
880  
860  
840  
820  
VIN = 13.5 V  
VIN = 24 V  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
Junction Temperature (C)  
6-1. Oscillator Frequency vs Junction Temperature  
6-2. Non-Switching Quiescent Current vs Junction  
Temperature  
16  
15  
14  
13  
12  
8.4  
8
7.6  
7.2  
6.8  
6.4  
6
11  
VIN = 13.5 V  
VIN = 24 V  
10  
-50  
-25  
0
25  
50  
75  
100 125  
150  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
Junction Temperature (C)  
Junction Temperature (C)  
6-3. Shutdown Quiescent Current vs Input Voltage  
6-4. High-side Current Limit vs Junction Temperature  
1.25  
160  
1.24  
1.23  
1.22  
1.21  
1.2  
140  
120  
100  
80  
1.19  
60  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
Junction Temperature (C)  
Junction Temperature (C)  
6-5. Voltage Reference vs Junction Temperature  
6-6. On Resistance vs Junction Temperature  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: LMR54450-Q1 LMR54430-Q1  
 
LMR54450-Q1, LMR54430-Q1  
ZHCSR84 NOVEMBER 2022  
www.ti.com.cn  
6.7 Typical Characteristics (continued)  
Unless otherwise specified, VIN = 13.5 V  
10  
160  
150  
140  
130  
120  
110  
100  
9
8
7
-50  
-25  
0
25  
50  
75  
100  
125  
150  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
Junction Temperature (C)  
Junction Temperature (C)  
6-7. Internal Soft-Start Time vs Junction Temperature  
6-8. Minimum Controllable On Time vs Junction Temperature  
180  
175  
170  
165  
160  
155  
150  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
Junction Temperature (C)  
6-9. Minimum Controllable Off-Time vs Junction Temperature  
Copyright © 2022 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: LMR54450-Q1 LMR54430-Q1  
LMR54450-Q1, LMR54430-Q1  
www.ti.com.cn  
ZHCSR84 NOVEMBER 2022  
7 Detailed Description  
7.1 Overview  
LMR54450-Q1 and LMR54430-Q1 are 36-V, 5-A and 3-A, step-down (buck) regulators with an integrated high-  
side n-channel MOSFET. These devices implement constant-frequency voltage-mode control with voltage feed  
forward for improved line regulation and line transient response. Internal compensation reduces design  
complexity and external component count.  
The integrated 83-mΩhigh-side MOSFET supports high-efficiency power-supply designs capable of delivering 5  
A of continuous current to a load when the LMR54450-Q1 is used and 3 A of continuous current when the  
LMR54430-Q1 is used. Gate-drive bias voltage for the integrated high-side MOSFET is supplied by a bootstrap  
capacitor connected from the BOOT to SW pins. These devices reduce external component count by integrating  
the bootstrap recharge diode.  
LMR54450-Q1 and LMR54430-Q1 devices have a default input start-up voltage of 5.3 V typical. The EN pin can  
be used to disable the LMR54450-Q1 or LMR54430-Q1 reducing the supply current to 13 µA. An internal pullup  
current source enables operation when the EN pin is floating. Also included is an internal soft-start circuit that  
slows the output rise time during startup to reduce in rush current and output voltage overshoot. Start-up time  
can be further reduced using a capacitor between SS and ground.  
Minimum output voltage is determined by the device 1.221-V feedback reference. Output overvoltage transients  
are minimized by an Overvoltage Protection (OVP) comparator. When the OVP comparator is activated, the  
high-side MOSFET is turned off and remains off until the output voltage is less than 112.5% of the desired output  
voltage.  
Internal cycle-by-cycle overcurrent protection limits the peak current in the integrated high-side MOSFET. For  
continuous overcurrent fault conditions, the LMR54450-Q1 or LMR54430-Q1 enter hiccup mode overcurrent  
limiting. Thermal protection protects the device from overheating.  
7.2 Functional Block Diagram  
VIN  
SS  
5 µA  
Shutdown  
HICCUP  
BOOT  
1.221 V Bandgap  
Reference  
Boot  
Regulator  
VREF  
UVLO  
So Start  
ENABLE  
EN  
Shutdown  
Shutdown  
Shutdown  
Thermal  
Z1  
FB  
Protec on  
Shutdown  
Error  
Ampli er  
Z2  
VIN  
Ramp  
Generator  
Feed Forward  
Gain = 25  
GND  
HICCUP  
Shutdown  
Oscillator  
Shutdown  
PWM  
Comparator  
Overcurrent  
Protec on  
POWERPAD  
PG  
POWER GOOD  
CONTROL  
Shutdown  
Gate Drive  
Control  
Gate  
Driver  
OVP  
FB  
112.5% VREF  
+
-
Shutdown  
SW  
BOOT  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: LMR54450-Q1 LMR54430-Q1  
 
 
 
LMR54450-Q1, LMR54430-Q1  
ZHCSR84 NOVEMBER 2022  
www.ti.com.cn  
7.3 Feature Description  
7.3.1 Oscillator Frequency  
An internal free running oscillator sets the PWM switching frequency at 400 kHz. The 400-kHz switching  
frequency is comfortably below the MW frequency band while still allowing small output inductance and  
capacitance.  
7.3.2 Voltage Reference  
The voltage reference system produces a precision reference signal by scaling the output of a temperature  
stable band-gap circuit. The band-gap and scaling circuits are trimmed during production testing to an output of  
1.221 V at room temperature.  
7.3.3 Enable (EN) and Soft Start  
The EN pin provides electrical on and off control of the regulator. After the EN pin voltage exceeds the threshold  
voltage, the regulator starts operation and the internal soft start begins to ramp. If the EN pin voltage is pulled  
below the threshold voltage, the regulator stops switching and the internal soft start resets. Connecting the pin to  
ground or to any voltage less than 0.5 V disables the regulator and activate shutdown mode. The quiescent  
current of the LMR54450-Q1 and LMR4430-Q1 in shutdown mode is typically 13 μA.  
The EN pin has an internal pullup current source, allowing the user to float the EN pin. If an application requires  
controlling the EN pin, use open-drain or open-collector output logic to interface with the pin. To limit the start-up  
inrush current, an internal soft-start circuit is used to ramp up the reference voltage from 0 V to its final value,  
linearly. The internal slow-start time is 8 ms typically. Soft-start timing can be further slowed by connecting a  
capacitor to the SS pin which sources current and monitors voltage creating a ramp. Reference follows the  
slower of the internal ramp or external ramp.  
7.3.4 Undervoltage Lockout (UVLO)  
The LMR54450-Q1 and LMR54430-Q1 incorporate a UVLO circuit to keep these devices disabled when VIN  
(input voltage) is below the UVLO start voltage threshold. During power-up, internal circuits are held inactive and  
both internal and external soft start are grounded until VIN exceeds UVLO start threshold voltage, VINUVLO(R)  
.
After UVLO start threshold voltage is reached, the internal soft start is released and device start-up begins. The  
device operates until VIN falls below the UVLO stop threshold voltage. Typical hysteresis in the UVLO  
comparator is 330 mV.  
7.3.5 Boost Capacitor (BOOT)  
Connect a 10-nF, low-ESR ceramic capacitor between the BOOT pin and SW pin. This capacitor provides the  
gate-drive voltage for the high-side MOSFET. TI recommends X7R or X5R grade dielectrics due to their stable  
values over temperature.  
7.3.6 Output Feedback (FB) and Internal Compensation  
The output voltage of the regulator is set by feeding back the center point voltage of an external resistor divider  
network to the FB pin. In steady-state operation, the FB pin voltage must be equal to the voltage reference 1.221  
V.  
The LMR54450-Q1 and LMR54430-Q1 implement internal compensation to simplify the regulator design.  
Because these parts use voltage mode control, a type 3 compensation network has been designed on chip to  
provide a high crossover frequency and a high phase margin for good stability. See Intermal Compensation  
Network for more details.  
7.3.7 Voltage Feed-Forward  
The internal voltage feed-forward provides a constant DC power stage gain despite any variations with the input  
voltage. This greatly simplifies stability analysis and improves line transient response. Voltage feed-forward  
circuitry varies peak ramp voltage making it proportional to input voltage so that the modulator together with  
power stage included is constant.  
Typical gain of LMR54450-Q1 and LMR54430-Q1 is 25.  
Copyright © 2022 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: LMR54450-Q1 LMR54430-Q1  
 
LMR54450-Q1, LMR54430-Q1  
www.ti.com.cn  
ZHCSR84 NOVEMBER 2022  
7.3.8 Pulse-Width-Modulation (PWM) Control  
The regulator employs a fixed frequency pulse width modulation (PWM) control method. First, the feedback  
voltage (FB pin voltage) is compared to the constant voltage reference by the high-gain error amplifier and  
compensation network to produce a error voltage. Then, the error voltage is compared to the ramp voltage by  
the PWM comparator. In this way, the error voltage magnitude is converted to a pulse width which is the duty  
cycle. Finally, the PWM output is fed into the gate-drive circuit to control the on-time of the high-side MOSFET.  
7.3.9 Overcurrent Limiting  
Overcurrent limiting is implemented by sensing the drain-to-source voltage across the high-side MOSFET. The  
drain to source voltage is then compared to a voltage level representing the overcurrent threshold limit. If the  
drain-to-source voltage exceeds the overcurrent threshold limit, the overcurrent indicator is set true. The system  
ignores the overcurrent indicator for the leading edge blanking time at the beginning of each cycle to avoid any  
turn-on noise glitches.  
After overcurrent indicator is set true, overcurrent limiting is triggered. The high-side MOSFET is turned off for  
the rest of the cycle after a propagation delay. The overcurrent limiting mode is called cycle-by-cycle current  
limiting.  
Sometimes under serious overload conditions such as short circuit, the overcurrent runaway can still happen  
when using cycle-by-cycle current limiting. A second mode of current limiting is used, that is, hiccup mode  
overcurrent limiting. During hiccup mode overcurrent limiting, the voltage reference is grounded and the high-  
side MOSFET is turned off for the hiccup time. After the hiccup time duration is complete, the regulator restarts  
under control of the soft-start circuit.  
7.3.10 Overvoltage Protection  
The LMR54450-Q1 and LMR54430-Q1 have an overvoltage protection (OVP) circuit to minimize voltage  
overshoot when recovering from output fault conditions. The OVP circuit includes an overvoltage comparator to  
compare the FB pin voltage and a threshold of 112.5% × VREF. After the FB pin voltage is higher than the  
threshold, the high-side MOSFET is forced off. When the FB pin voltage drops lower than the threshold, the  
high-side MOSFET is enabled again.  
7.3.11 Thermal Shutdown  
Both the LMR54450-Q1 and LMR54430-Q1 protect themselves from overheating with an internal thermal  
shutdown circuit. If the junction temperature exceeds their thermal shutdown trip point, TJ(SD), their voltage  
reference is grounded and their high-side MOSFET is turned off. The part is restarted under control of the soft-  
start circuit automatically when the junction temperature drops 14°C below the thermal shutdown trip point.  
7.4 Device Functional Modes  
7.4.1 Operation near Minimum Input Voltage  
The device is recommended to operate with input voltages above 5.5 V. The typical VIN UVLO threshold is 5.3 V  
and the device can operate at input voltages down to the UVLO voltage. At input voltages below the actual  
UVLO voltage the device does not switch. If EN is floating or externally pulled up to greater up than 1.3 V, when  
V(VIN) passes the UVLO threshold the device becomes active. Switching is enabled and the soft-start sequence  
is initiated. The LMR54450-Q1 or LMR54430-Q1 device starts linearly ramping up the internal reference voltage  
from 0 V to its final value over the internal soft-start time.  
7.4.2 Operation With EN Control  
The enable start threshold voltage is 1.3-V maximum. With EN held below the 0.5-V minimum stop threshold  
voltage the device is disabled and switching is inhibited even if VIN is above its UVLO threshold. The IC  
quiescent current is reduced in this state. If the EN voltage is increased above the threshold while VIN is above  
its UVLO threshold, the device becomes active. Switching is enabled and the soft-start sequence is initiated. The  
LMR54450-Q1 or LMR54430-Q1 device starts linearly ramping up the internal reference voltage from 0 V to its  
final value over the internal soft-start time.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: LMR54450-Q1 LMR54430-Q1  
 
LMR54450-Q1, LMR54430-Q1  
ZHCSR84 NOVEMBER 2022  
www.ti.com.cn  
8 Application and Implementation  
备注  
Information in the following applications sections is not part of the TI component specification, and TI  
does not warrant its accuracy or completeness. TIs customers are responsible for determining  
suitability of components for their purposes, as well as validating and testing their design  
implementation to confirm system functionality.  
8.1 Application Information  
The LMR54450-Q1 device is a 36-V, 5-A, step-down regulator with an integrated high-side MOSFET. If a 3-A  
design is desired, use the LMR54430-Q1. The LMR54450-Q1 is typically used to convert a higher DC voltage to  
a lower DC voltage with a maximum available output current of 5 A. Example applications are: High Density  
Point-of-Load Regulators, LCD and Plasma Displays, Battery Chargers, and 12-V and 24-V Distributed Power  
Systems. Use the following design procedure to select component values for either the LMR54450-Q1 or  
LMR54430-Q1 device. This procedure illustrates the design of these high-frequency switching regulators.  
8.2 Typical Application  
8-1 shows the schematic for a typical LMR54450-Q1 application. The LMR54450-Q1 can provide up to 5-A  
output current at a nominal output voltage of 5 V. For proper thermal performance, the exposed PowerPAD  
integrated circuit package underneath the device must be soldered down to the printed-circuit board.  
VOUT = 5 V  
IOUT(max) = 5 A or 3 A  
L
VIN = 5.5 V 36 V  
VIN  
SW  
CBOOT  
COUT  
CIN  
D1  
RFBT  
EN  
PG  
SS  
BOOT  
FB  
RFBT  
GND  
8-1. Application Circuit, 12 V to 5.0 V  
8.2.1 Design Requirements  
To begin the design process a few parameters must be decided upon. These requirements are typically  
determined at the system levels. This example is designed to the following known parameters:  
8-1. Design Parameters  
DESIGN PARAMETER  
Input voltage range  
Output voltage  
EXAMPLE VALUE  
13.5 V (5.5 V to 36 V)  
5 V  
Output current rating  
Operating frequency  
5-A continuous  
400 kHz  
Copyright © 2022 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: LMR54450-Q1 LMR54430-Q1  
 
 
 
 
LMR54450-Q1, LMR54430-Q1  
www.ti.com.cn  
ZHCSR84 NOVEMBER 2022  
8.2.2 Detailed Design Procedure  
The following design procedure can be used to select component values for the LMR54450-Q1 or LMR54430-  
Q1. Alternately, use the WEBENCH® software to generate a complete design. The WEBENCH software uses an  
iterative design procedure and accesses a comprehensive database of components when generating a design.  
This section presents a simplified discussion of the design process.  
8.2.2.1 Switching Frequency  
The switching frequency for the LMR54450-Q1 and LMR54430-Q1 are internally set to 400 kHz. Adjusting the  
switching frequency is not possible.  
8.2.2.2 Output Voltage Setpoint  
The output voltage is set by a resistor divider (RFBB and RFBT) from the output to the FB pin. Calculate the RFBB  
resistor value for the output voltage of 5 V using 方程1.  
R
V
× 1.221  
FBT  
R
=
(1)  
FBB  
1.221  
OUT  
For any design, start with an RFBT value of 10 k.  
8.2.2.3 Input Capacitors  
The LMR54450-Q1 requires an input decoupling capacitor and, depending on the application, a bulk input  
capacitor. The minimum recommended decoupling capacitance is 4.7 μF. A high-quality ceramic type X5R or  
X7R is required. For some applications, a smaller value decoupling capacitor can be used, so long as the input  
voltage and current ripple ratings are not exceeded. The voltage rating must be greater than the maximum input  
voltage, including ripple.  
This input ripple voltage can be approximated by 方程2:  
I
× 0.25  
× F  
SW  
OUT MAX  
V  
=
+
I
× ESR  
MAX  
(2)  
IN  
OUT MAX  
C
BULK  
where  
IOUT(MAX) is the maximum load current  
FSW is the switching frequency  
CBULK is the input capacitor value  
ESRMAX is the maximum series resistance of the input capacitor  
For this design, the input capacitance consists of two 4.7-μF capacitors, C1 and C4, in parallel. An additional  
high frequency bypass capacitor, C5 is also used.  
The maximum RMS ripple current also must be checked. For worst case conditions, this can be approximated by  
方程3:  
I
OUT MAX  
I
=
(3)  
CIN  
2
In this case, the input ripple voltage are 281 mV and the RMS ripple current is 2.5 A. The maximum voltage  
across the input capacitors are VIN max plus delta VIN/2. The chosen input decoupling capacitor is rated for 50  
V and the ripple current capacity is greater than 2.5 A each, providing ample margin. Make sure that the  
maximum ratings for voltage and current are not exceeded under any circumstance.  
Additionally some bulk capacitance can be needed, especially if the LMR54450-Q1 circuit is not located within  
about 2 inches from the input voltage source. The value for this capacitor is not critical but it also must be rated  
to handle the maximum input voltage including ripple voltage and must filter the output so that input ripple  
voltage is acceptable.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: LMR54450-Q1 LMR54430-Q1  
 
 
 
LMR54450-Q1, LMR54430-Q1  
ZHCSR84 NOVEMBER 2022  
www.ti.com.cn  
8.2.2.4 Output Filter Components  
Two components must be selected for the output filter, L1 and C2. Because the LMR54450-Q1 is an internally  
compensated device, a limited range of filter component types and values can be supported.  
8.2.2.5 Inductor Selection  
To calculate the minimum value of the output inductor, use 方程4.  
V
×
V
V  
OUT  
OUT MAX  
× K  
IN MAX  
× I × F  
L
=
(4)  
MIN  
V
IN MAX  
IND OUT SW MIN  
KIND is a coefficient that represents the amount of inductor ripple current relative to the maximum output current.  
Three things must be considered when determining the amount of ripple current in the inductor: the peak to peak  
ripple current affects the output ripple voltage amplitude, the ripple current affects the peak switch current and  
the amount of ripple current determines at what point the circuit becomes discontinuous. For designs using the  
LMR54450-Q1, KIND of 0.2 to 0.3 yields good results. Low-output ripple voltages can be obtained when paired  
with the proper output capacitor, the peak switch current is well below the current limit set point and relatively  
low-load currents can be sourced before discontinuous operation.  
For this design example use KIND = 0.2 and the minimum inductor value is calculated to be 10.8 μH. A higher  
standard value is 15 μH, which is used in this design.  
For the output filter inductor , make sure that the RMS current and saturation current ratings not be exceeded.  
The RMS inductor current can be found from 方程5.  
2
V
×
V
V  
OUT  
IN MAX  
× L × F  
OUT  
SW MIN  
2
1
12  
I
=
I
+
×
(5)  
L RMS  
OUT MAX  
V
IN MAX  
OUT  
The peak inductor current can be determined with 方程6.  
V
×
V
V  
OUT  
+
OUT MAX  
1.6 × V  
IN MAX  
× L  
OUT  
× F  
SW MIN  
I
= I  
(6)  
L PK  
IN MAX  
OUT  
For this design, the RMS inductor current is 5.004 A, and the peak inductor current is 5.34 A. The chosen  
inductor is a Wurth (7447709150) 15μH. It has a minimum rated current of 6.5 A and saturation current of 8 A.  
In general, inductor values for use with the LMR54450-Q1 are in the range of 10 μH to 100 μH.  
8.2.2.6 Capacitor Selection  
The important design factors for the output capacitor are DC voltage rating, ripple current rating, and equivalent  
series resistance (ESR). The DC voltage and ripple current ratings cannot be exceeded. The ESR is important  
because along with the inductor ripple current it determines the amount of output ripple voltage. The actual value  
of the output capacitor is not critical, but some practical limits do exist. Consider the relationship between the  
desired closed-loop crossover frequency of the design and LC corner frequency of the output filter. Due to the  
design of the internal compensation, keeping the closed-loop crossover frequency in the range 3 kHz to 30 kHz  
is desirable as this frequency range has adequate phase boost to allow for stable operation. For this design  
example, assume that the intended closed-loop crossover frequency is between 2590 Hz and 24 kHz and also  
below the ESR zero of the output capacitor. Under these conditions, the closed-loop crossover frequency is  
related to the LC corner frequency by 方程7:  
2
F
LC  
F
=
(7)  
CO  
85 × V  
OUT  
And the desired output capacitor value for the output filter to 方程8:  
Copyright © 2022 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: LMR54450-Q1 LMR54430-Q1  
 
 
 
 
LMR54450-Q1, LMR54430-Q1  
www.ti.com.cn  
ZHCSR84 NOVEMBER 2022  
1
× F  
C
=
(8)  
OUT  
3357 × L  
× V  
CO OUT  
OUT  
For a desired crossover of 12 kHz and a 15-μH inductor, the calculated value for the output capacitor is 330  
μF. The capacitor type must be chosen so that the ESR zero is above the loop crossover. The maximum ESR  
must follow 方程9:  
1
ESR  
=
(9)  
MAX  
2 × C  
× F  
CO  
OUT  
The maximum ESR of the output capacitor also determines the amount of output ripple as specified in the initial  
design parameters. The output ripple voltage is the inductor ripple current times the ESR of the output filter.  
Check that the maximum specified ESR as listed in the capacitor data sheet results in an acceptable output  
ripple voltage detailed in 方程10:  
ESR  
× V  
×
V
V  
MAX  
OUT  
IN MAX  
× L × F  
OUT  
SW  
V
=
(10)  
PP MAX  
N
× V  
C
IN MAX  
OUT  
where  
• ΔVPP is the desired peak-to-peak output ripple.  
NC is the number of parallel output capacitors.  
FSW is the switching frequency.  
For this design example, a single 330-μF output capacitor is chosen for C3. The calculated RMS ripple current  
is 143 mA and the maximum ESR required is 40 m. A capacitor that meets these requirements is a Sanyo  
Poscap 10TPB330M, rated at 10 V with a maximum ESR of 35 mand a ripple current rating of 3 A. An  
additional small 0.1-μF ceramic bypass capacitor, C6 is also used in this design.  
The minimum ESR of the output capacitor must also be considered. For good phase margin, the ESR zero when  
the ESR is at a minimum must not be too far above the internal compensation poles at 24 kHz and 54 kHz.  
The selected output capacitor must also be rated for a voltage greater than the desired output voltage plus one  
half the ripple voltage. Any derating amount must also be included. The maximum RMS ripple current in the  
output capacitor is given by 方程11:  
V
C
×
V
V  
OUT  
× V  
IN MAX  
× L  
OUT  
× F  
1
12  
I
=
×
(11)  
COUT RMS  
N
IN MAX  
OUT  
SW  
where  
NC is the number of output capacitors in parallel.  
FSW is the switching frequency.  
Other capacitor types can be used with the LMR54450-Q1, depending on the needs of the application.  
8.2.2.7 Boot Capacitor  
Connect a 0.01-μF high-quality MLCC capacitor between the BOOT pin and SW pin. This capacitor provides  
the gate-drive voltage for the high-side MOSFET. TI recommends X7R or X5R grade dielectrics due to their  
stable values over temperature.  
8.2.2.8 Catch Diode  
The LMR54450-Q1 is designed to operate using an external catch diode between SW and GND. The selected  
diode must meet the absolute maximum ratings for the application: Reverse voltage must be higher than the  
maximum voltage at the SW pin, which is VINMAX + 0.5 V. Peak current must be greater than IOUTMAX plus on half  
the peak to peak inductor current. Forward voltage drop must be small for higher efficiencies. Note that the catch  
diode conduction time is typically longer than the high-side FET on-time, so attention paid to diode parameters  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: LMR54450-Q1 LMR54430-Q1  
 
 
 
 
LMR54450-Q1, LMR54430-Q1  
ZHCSR84 NOVEMBER 2022  
www.ti.com.cn  
can make a marked improvement in overall efficiency. Additionally, check that the device chosen is capable of  
dissipating the power losses. For this design, a Diodes, Inc. B540A is chosen, with a reverse voltage of 40 V,  
forward current of 5 A, and a forward voltage drop of 0.475 V.  
8.2.2.9 Output Voltage Limitations  
Due to the internal design of the LMR54450-Q1, there are both upper and lower output voltage limits for any  
given input voltage. The upper limit of the output voltage set point is constrained by the maximum duty cycle of  
92% and is given by 方程12:  
V
= D  
×
V
I  
× R  
V  
I
× R V  
D
(12)  
OUT MAX  
MAX  
IN MIN  
OUT MAX  
DS1  
D
OUT MAX  
L
where  
VIN(MIN) = minimum input voltage  
DMAX = maximum duty cycle  
RDS1 = high-side on resistance  
IOUT(MAX) = maximum load current  
VD = catch diode forward voltage.  
RL= output inductor series resistance.  
This equation assumes maximum on resistance for the internal high-side FET. The maximum output voltage is  
limited to either 16 V or to the calculated value in 方程12, whichever is lower.  
The lower limit is constrained by the minimum controllable on time which can be as high as 200 ns. The  
approximate minimum output voltage for a given input voltage and minimum load current is given by 方程13:  
V
= 0.072 ×  
V
I  
× R  
+ V  
I
× R V  
D
(13)  
OUT MIN  
IN MAX  
OUT MIN  
DS1  
D
OUT MIN  
L
where  
VIN(MAX) = maximum input voltage  
RDS1 = high-side on resistance  
IOUT(MIN) = minimum load current  
VD = catch diode forward voltage.  
RL= output inductor series resistance.  
This equation assumes nominal on resistance for the high-side FET and accounts for worst case variation of  
operating frequency set point. Any design operating near the operational limits of the device must be carefully  
checked to assure proper functionality.  
8.2.2.10 Internal Compensation Network  
The design equations given in the example circuit can be used to generate circuits using the LMR54450-Q1.  
These designs are based on certain assumptions and tend to always select output capacitors within a limited  
range of ESR values. If a different capacitor type is desired, it can be possible to fit one to the internal  
compensation of the LMR54450-Q1. 方程式 14 details the nominal frequency response of the internal voltage-  
mode type-III compensation network:  
s
s
1 +  
× 1 +  
2 × F  
2 × F  
Z1  
Z2  
H s =  
(14)  
s
s
s
s
×
1 +  
×
1 +  
× 1 +  
2 × F  
2 × F  
2 × F  
2 × F  
P0  
P1  
P2  
P3  
where  
Zeroes: FZ1 = 2170 Hz, FZ2 = 2590 Hz  
Poles: FP0 = 2165 Hz, FP1 = 24 kHz, FP2 = 54 kHz, FP3 = 440 kHz  
Fp3 represents the non-ideal parasitics effect.  
Copyright © 2022 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: LMR54450-Q1 LMR54430-Q1  
 
 
 
 
LMR54450-Q1, LMR54430-Q1  
www.ti.com.cn  
ZHCSR84 NOVEMBER 2022  
Using this information along with the desired output voltage, feed-forward gain, and output filter characteristics,  
the closed-loop transfer function can be derived.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: LMR54450-Q1 LMR54430-Q1  
LMR54450-Q1, LMR54430-Q1  
ZHCSR84 NOVEMBER 2022  
www.ti.com.cn  
8.2.3 Application Curves  
Unless otherwise specified, the following conditions apply: Device: LMR54450-Q1, VIN = 13.5 V, VOUT = 5 V, FSW  
= 400 kHz, TA = 25 C. The circuit and appropriate BOM are detailed in the EVM User's Guide.  
100  
95  
90  
85  
80  
75  
70  
5.06  
5.04  
5.02  
5
VIN = 13.5 V  
VIN = 24 V  
VIN = 36 V  
4.98  
4.96  
4.94  
VIN = 13.5 V  
VIN = 24 V  
VIN = 36 V  
0
1
2
3
4
5
0
1
2
3
4
5
Output Current (A)  
Output Current (A)  
8-2. Efficiency vs Output Current  
8-4. Output Ripple at 2.5-A Load  
8-6. Start-up Performance  
8-3. Efficiency vs Output Current  
8-5. Short-Circuit Recovery (Hiccup-Mode)  
8-7. Shutdown Performance  
Copyright © 2022 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: LMR54450-Q1 LMR54430-Q1  
LMR54450-Q1, LMR54430-Q1  
www.ti.com.cn  
ZHCSR84 NOVEMBER 2022  
8-8. Transient Response, IOUT 1.25 A to 3.75 A (TR = TF= 1 us)  
8.3 Power Supply Recommendations  
The device is designed to operate from an input voltage supply range between 5.5 V and 36 V. This input supply  
must be well regulated. If the input supply is located more than a few inches from the LMR54450-Q1 or  
LMR54430-Q1 converter additional bulk capacitance can be required in addition to the ceramic bypass  
capacitors. An electrolytic capacitor with a value of 100 μF is a typical choice.  
8.4 Layout  
8.4.1 Layout Guidelines  
Connect a low-ESR ceramic bypass capacitor to the VIN pin. Take care to minimize the loop area formed by the  
bypass capacitor connections, the VIN pin, and the LMR54450-Q1 or LMR54430-Q1 ground pin. The best way  
to do this is to extend the top-side ground area from under the device adjacent to the VIN trace, and place the  
bypass capacitor as close as possible to the VIN pin. The minimum recommended bypass capacitance is 4.7-  
μF ceramic with a X5R or X7R dielectric.  
There must be a ground area on the top layer directly underneath the IC, with an exposed area for connection to  
the PowerPAD integrated circuit package. Use vias to connect this ground area to any internal ground planes.  
Use additional vias at the ground side of the input and output filter capacitors as well. The GND pin must be tied  
to the PCB ground by connecting it to the ground area under the device as shown below.  
The SW pin must be routed to the output inductor, catch diode and boot capacitor. Because the SW connection  
is the switching node, the inductor must be located very close to the SW pin and the area of the PCB conductor  
minimized to prevent excessive capacitive coupling. The catch diode must also be placed close to the device to  
minimize the output current loop area. Connect the boot capacitor between the phase node and the BOOT pin  
as shown. Keep the boot capacitor close to the IC and minimize the conductor trace lengths. The component  
placements and connections shown work well, but other connection routings can also be effective.  
Connect the output filter capacitors as shown between the VOUT trace and GND. Keep the loop formed by the  
SW pin, Lout, Cout and GND as small as is practical.  
Connect the VOUT trace to the FB pin using the resistor divider network to set the output voltage. Do not route  
this trace too close to the SW trace. Due to the size of the IC package and the device pin-out, the trace can need  
to be routed under the output capacitor. Alternately, the routing can be done on an alternate layer if a trace under  
the output capacitor is not desired.  
If using the grounding scheme shown in 8-9, use a via connection to a different layer to route to the EN pin.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: LMR54450-Q1 LMR54430-Q1  
 
 
LMR54450-Q1, LMR54430-Q1  
ZHCSR84 NOVEMBER 2022  
www.ti.com.cn  
8.4.2 Layout Example  
BOOT CAPACITOR  
VOUT  
OUTPUT  
INDUCTOR  
BOOT  
SW  
VIN  
PGOOD  
VIN  
RESISTOR  
PG  
SS  
OUTPUT  
FILTER  
CAPACITOR  
CATCH  
DIODE  
White  
GND  
EN  
INPUT  
FILTER  
CAPACITOR  
SOFT-START  
CAPACITOR  
FB  
Route VIN trace under the catch diode and  
output capacitor or on another layer  
RESISTOR DIVIDER  
TOP SIDE GROUND AREA  
8-9. Design Layout  
Copyright © 2022 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: LMR54450-Q1 LMR54430-Q1  
 
LMR54450-Q1, LMR54430-Q1  
www.ti.com.cn  
ZHCSR84 NOVEMBER 2022  
9 Device and Documentation Support  
9.1 Device Support  
9.1.1 第三方产品免责声明  
TI 发布的与第三方产品或服务有关的信息不能构成与此类产品或服务或保修的适用性有关的认可不能构成此  
类产品或服务单独或与任TI 产品或服务一起的表示或认可。  
9.2 接收文档更新通知  
要接收文档更新通知请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册即可每周接收产品信息更  
改摘要。有关更改的详细信息请查看任何已修订文档中包含的修订历史记录。  
9.3 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
9.4 Trademarks  
PowerPADand TI E2Eare trademarks of Texas Instruments.  
WEBENCH® is a registered trademark of Texas Instruments.  
所有商标均为其各自所有者的财产。  
9.5 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
9.6 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
10 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: LMR54450-Q1 LMR54430-Q1  
 
 
 
 
 
 
 
 
LMR54450-Q1, LMR54430-Q1  
ZHCSR84 NOVEMBER 2022  
www.ti.com.cn  
10.1 Tape and Reel Information  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
Reel  
Diameter  
(mm)  
Reel  
Width W1  
(mm)  
Package  
Type  
Package  
Drawing  
A0  
(mm)  
B0  
(mm)  
K0  
(mm)  
P1  
(mm)  
W
(mm)  
Pin1  
Quadrant  
Device  
Pins  
SPQ  
PLMR54450QDDARQ1  
HSOIC  
DDA  
8
2500  
330.0  
12.8  
6.4  
5.2  
2.1  
8
12  
Q1  
Copyright © 2022 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: LMR54450-Q1 LMR54430-Q1  
 
LMR54450-Q1, LMR54430-Q1  
www.ti.com.cn  
ZHCSR84 NOVEMBER 2022  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
Device  
PDR54450QDDARQ1  
Package Type  
Package Drawing Pins  
DDA  
SPQ  
Length (mm) Width (mm)  
366.0 364.0  
Height (mm)  
HSOIC  
8
2500  
50.0  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: LMR54450-Q1 LMR54430-Q1  
LMR54450-Q1, LMR54430-Q1  
ZHCSR84 NOVEMBER 2022  
www.ti.com.cn  
PACKAGE OUTLINE  
PowerPADTM SOIC - 1.7 mm max height  
DDA0008J  
S
C
A
L
E
2
.
4
0
0
PLASTIC SMALL OUTLINE  
C
6.2  
5.8  
TYP  
SEATING PLANE  
PIN 1 ID  
AREA  
A
0.1 C  
6X 1.27  
8
1
2X  
5.0  
4.8  
3.81  
NOTE 3  
4
5
0.51  
8X  
0.31  
4.0  
3.8  
1.7 MAX  
B
0.1  
C A  
B
NOTE 4  
0.25  
0.10  
TYP  
SEE DETAIL A  
5
4
EXPOSED  
THERMAL PAD  
0.25  
GAGE PLANE  
3.1  
2.5  
0.15  
0.00  
0 - 8  
1.27  
0.40  
1
8
DETAIL A  
TYPICAL  
2.6  
2.0  
4221637/B 03/2016  
PowerPAD is a trademark of Texas Instruments.  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.15 mm per side.  
4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.  
5. Reference JEDEC registration MS-012, variation BA.  
www.ti.com  
Copyright © 2022 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: LMR54450-Q1 LMR54430-Q1  
LMR54450-Q1, LMR54430-Q1  
www.ti.com.cn  
ZHCSR84 NOVEMBER 2022  
EXAMPLE BOARD LAYOUT  
PowerPADTM SOIC - 1.7 mm max height  
DDA0008J  
PLASTIC SMALL OUTLINE  
(2.95)  
NOTE 9  
SOLDER MASK  
DEFINED PAD  
(2.6)  
SOLDER MASK  
OPENING  
SEE DETAILS  
8X (1.55)  
1
8
8X (0.6)  
(3.1)  
SOLDER MASK  
OPENING  
SYMM  
(1.3)  
TYP  
(4.9)  
NOTE 9  
6X (1.27)  
5
4
(
0.2) TYP  
VIA  
METAL COVERED  
BY SOLDER MASK  
SYMM  
(5.4)  
(1.3) TYP  
LAND PATTERN EXAMPLE  
SCALE:10X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
METAL UNDER  
SOLDER MASK  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL  
SOLDER MASK  
DEFINED  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
4221637/B 03/2016  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
8. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
numbers SLMA002 (www.ti.com/lit/slma002) and SLMA004 (www.ti.com/lit/slma004).  
9. Size of metal pad may vary due to creepage requirement.  
www.ti.com  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: LMR54450-Q1 LMR54430-Q1  
LMR54450-Q1, LMR54430-Q1  
ZHCSR84 NOVEMBER 2022  
www.ti.com.cn  
EXAMPLE STENCIL DESIGN  
PowerPADTM SOIC - 1.7 mm max height  
DDA0008J  
PLASTIC SMALL OUTLINE  
(2.6)  
BASED ON  
0.125 THICK  
STENCIL  
8X (1.55)  
1
8
8X (0.6)  
(3.1)  
SYMM  
BASED ON  
0.127 THICK  
STENCIL  
6X (1.27)  
5
4
SEE TABLE FOR  
METAL COVERED  
BY SOLDER MASK  
SYMM  
(5.4)  
DIFFERENT OPENINGS  
FOR OTHER STENCIL  
THICKNESSES  
SOLDER PASTE EXAMPLE  
EXPOSED PAD  
100% PRINTED SOLDER COVERAGE BY AREA  
SCALE:10X  
STENCIL  
THICKNESS  
SOLDER STENCIL  
OPENING  
0.1  
2.91 X 3.47  
2.6 X 3.1 (SHOWN)  
2.37 X 2.83  
0.125  
0.150  
0.175  
2.20 X 2.62  
4221637/B 03/2016  
NOTES: (continued)  
10. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
11. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
Copyright © 2022 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: LMR54450-Q1 LMR54430-Q1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
17-Dec-2022  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
PDR54450QDDARQ1  
ACTIVE SO PowerPAD  
DDA  
8
2500  
TBD  
Call TI  
Call TI  
-40 to 150  
Samples  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
GENERIC PACKAGE VIEW  
DDA 8  
PowerPADTM SOIC - 1.7 mm max height  
PLASTIC SMALL OUTLINE  
Images above are just a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4202561/G  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

PDR5G

5A GLASS PASSIVATED RECTIFIER
DIODES

PDR5G-13

5A GLASS PASSIVATED RECTIFIER
DIODES

PDR5G_1

5A GLASS PASSIVATED RECTIFIER
DIODES

PDR5K

PDR5K - Industry first 5A/750V rectifier in a PowerDi-5 package
DIODES

PDR5K-13

Rectifier Diode, 1 Phase, 1 Element, 5A, 750V V(RRM), Silicon, GREEN, PLASTIC PACKAGE-3
DIODES

PDR5KF-13

Rectifier Diode, 1 Phase, 1 Element, 5A, 800V V(RRM), Silicon,
DIODES

PDR7.5102J250L4BULK

Film Capacitor, Polypropylene, 250V, 5% +Tol, 5% -Tol, 0.001uF, Through Hole Mount, RADIAL LEADED
KEMET

PDR7.5102J400L4BULK

Film Capacitor, Polypropylene, 400V, 5% +Tol, 5% -Tol, 0.001uF, Through Hole Mount, RADIAL LEADED
KEMET

PDR7.5102J630L4BULK

Film Capacitor, Polypropylene, 630V, 5% +Tol, 5% -Tol, 0.001uF, Through Hole Mount, RADIAL LEADED
KEMET

PDR7.5103J250L4BULK

Film Capacitor, Polypropylene, 250V, 5% +Tol, 5% -Tol, 0.01uF, Through Hole Mount, RADIAL LEADED
KEMET

PDR7.5103J400L4BULK

Film Capacitor, Polypropylene, 400V, 5% +Tol, 5% -Tol, 0.01uF, Through Hole Mount, RADIAL LEADED
KEMET

PDR7.5103J630L4BULK

Film Capacitor, Polypropylene, 630V, 5% +Tol, 5% -Tol, 0.01uF, Through Hole Mount, RADIAL LEADED
KEMET