PGA205 [TI]

50µV 失调电压、G=1、2、4、8 可编程增益仪表放大器;
PGA205
型号: PGA205
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

50µV 失调电压、G=1、2、4、8 可编程增益仪表放大器

放大器 仪表 仪表放大器
文件: 总20页 (文件大小:379K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
®
PGA204  
PGA205  
Programmable Gain  
INSTRUMENTATION AMPLIFIER  
FEATURES  
DIGITALLY PROGRAMMABLE GAIN:  
DESCRIPTION  
The PGA204 and PGA205 are low cost, general pur-  
pose programmable-gain instrumentation amplifiers  
offering excellent accuracy. Gains are digitally se-  
lected: PGA204—1, 10, 100, 1000, and PGA205—1,  
2, 4, 8V/V. The precision and versatility, and low cost  
of the PGA204 and PGA205 make them ideal for a  
wide range of applications.  
PGA204: G=1, 10, 100, 1000V/V  
PGA205: G=1, 2, 4, 8V/V  
LOW OFFSET VOLTAGE: 50µV max  
LOW OFFSET VOLTAGE DRIFT: 0.25µV/°C  
LOW INPUT BIAS CURRENT: 2nA max  
LOW QUIESCENT CURRENT: 5.2mA typ  
NO LOGIC SUPPLY REQUIRED  
Gain is selected by two TTL or CMOS-compatible  
address lines, A0 and A1. Internal input protection can  
withstand up to ±40V on the analog inputs without  
damage.  
16-PIN PLASTIC DIP, SOL-16 PACKAGES  
The PGA204 and PGA205 are laser trimmed for very  
low offset voltage (50µV), drift (0.25µV/°C) and high  
common-mode rejection (115dB at G=1000). They op-  
erate with power supplies as low as ±4.5V, allowing use  
in battery operated systems. Quiescent current is 5mA.  
APPLICATIONS  
DATA ACQUISITION SYSTEM  
GENERAL PURPOSE ANALOG BOARDS  
MEDICAL INSTRUMENTATION  
The PGA204 and PGA205 are available in 16-pin  
plastic DIP, and SOL-16 surface-mount packages, speci-  
fied for the –40°C to +85°C temperature range.  
VO1 V+  
1
13  
PGA204  
PGA205  
VIN  
4
Over-Voltage  
Protection  
Feedback  
12  
A1  
25kΩ  
25kΩ  
16  
A1  
A0  
Digitally Selected  
Feedback Network  
A3  
VO  
15  
14  
11  
10  
Digital  
Ground  
A2  
Ref  
+
VIN  
5
Over-Voltage  
Protection  
25kΩ  
25kΩ  
6
7
9
8
VOS Adj  
VO2  
V–  
International Airport Industrial Park  
Mailing Address: PO Box 11400  
Cable: BBRCORP  
Tucson, AZ 85734  
Street Address: 6730 S. Tucson Blvd.  
Tucson, AZ 85706  
Tel: (520) 746-1111  
Twx: 910-952-1111  
Telex: 066-6491  
FAX: (520) 889-1510  
Immediate Product Info: (800) 548-6132  
©1991 Burr-Brown Corporation  
PDS-1176A  
Printed in U.S.A. October, 1993  
SBOS022  
SPECIFICATIONS  
ELECTRICAL  
PGA204 G=1, 10, 100, 1000V/V  
At TA = +25°C, VS = ±15V, and RL = 2kunless otherwise noted.  
PGA204BP, BU  
TYP  
PGA204AP, AU  
TYP  
PARAMETER  
CONDITIONS  
MIN  
MAX  
MIN  
MAX  
UNITS  
INPUT  
Offset Voltage, RTI  
vs Temperature  
TA=+25°C  
TA=TMIN to TMAX  
VS=±4.5V to ±18V  
±10+20/G ±50+100/G  
±0.1+0.5/G ±0.25+5/G  
±25+30/G ±125+500/G  
µV  
µV/°C  
µV/V  
µV/mo  
|| pF  
|| pF  
V
±0.25+5/G  
±1+10/G  
vs Power Supply  
0.5+2/G  
±0.2+0.5/G  
1010||6  
3+10/G  
*
*
*
*
*
*
Long-Term Stability  
Impedance, Differential  
Common-Mode  
Input Common-Mode Range  
Safe Input Voltage  
Common-Mode Rejection  
1010||6  
VO=0V (see text)  
±10.5  
±12.7  
*
±40  
*
V
V
CM=±10V, RS=1kΩ  
G=1  
80  
96  
110  
115  
99  
75  
90  
106  
106  
90  
dB  
dB  
dB  
dB  
G=10  
G=100  
G=1000  
114  
123  
123  
106  
110  
110  
BIAS CURRENT  
vs Temperature  
Offset Current  
±0.5  
±8  
±0.5  
±8  
±2  
±2  
*
*
*
*
±5  
nA  
pA/°C  
nA  
*
vs Temperature  
pA/°C  
NOISE, Voltage, RTI(1): f=10Hz  
f=100Hz  
G100, RS=0Ω  
G100, RS=0Ω  
G100, RS=0Ω  
G100, RS=0Ω  
16  
13  
13  
0.4  
*
*
*
*
nV/Hz  
nV/Hz  
nV/Hz  
µVp-p  
f=1kHz  
fB=0.1Hz to 10Hz  
Noise Current  
f=10Hz  
0.4  
0.2  
18  
*
*
*
pA/Hz  
pA/Hz  
pAp-p  
f=1kHz  
fB=0.1Hz to 10Hz  
GAIN, Error  
G=1  
G=10  
G=100  
G=1000  
G=1 to 1000  
G=1  
G=10  
G=100  
G=1000  
±0.005  
±0.01  
±0.01  
±0.02  
±2.5  
±0.0004  
±0.0004  
±0.0004  
±0.0008  
±0.024  
±0.024  
±0.024  
±0.05  
*
*
*
*
*
*
*
*
*
±0.05  
±0.05  
±0.05  
±0.1  
%
%
%
%
Gain vs Temperature  
Nonlinearity  
±10  
*
ppm/°C  
% of FSR  
% of FSR  
% of FSR  
% of FSR  
±0.001  
±0.002  
±0.002  
±0.01  
±0.002  
±0.004  
±0.004  
±0.02  
OUTPUT  
Voltage, Positive(2)  
Negative(2)  
Load Capacitance Stability  
Short Circuit Current  
IO=5mA, TMIN to TMAX  
IO=–5mA, TMIN to TMAX  
(V+)–1.5  
(V–)+1.5  
(V+)–1.3  
(V–)+1.3  
1000  
*
*
*
*
*
*
V
V
pF  
mA  
+23/–17  
FREQUENCY RESPONSE  
Bandwidth, –3dB  
G=1  
G=10  
G=100  
1
80  
10  
1
0.7  
22  
*
*
*
*
*
*
*
*
*
*
*
*
*
*
MHz  
kHz  
kHz  
kHz  
V/µs  
µs  
µs  
µs  
µs  
µs  
G=1000  
VO=±10V, G=10  
G=1  
Slew Rate  
Settling Time(3), 0.1%  
0.3  
*
G=10  
G=100  
G=1000  
G=1  
G=10  
23  
100  
1000  
23  
0.01%  
28  
µs  
µs  
µs  
µs  
G=100  
G=1000  
50% Overdrive  
140  
1300  
70  
Overload Recovery  
DIGITAL LOGIC  
Digital Ground Voltage, VDG  
Digital Low Voltage  
Digital Input Current  
Digital High Voltage  
V–  
V–  
(V+)–4  
DG+0.8V  
*
*
*
*
V
V
µA  
V
V
1
*
V
DG +2  
V+  
*
*
*
POWER SUPPLY, Voltage  
±4.5  
±15  
+5.2/–4.2  
±18  
±6.5  
*
*
*
V
mA  
Current  
VIN=0V  
±7.5  
TEMPERATURE RANGE  
Specification  
Operating  
–40  
–40  
+85  
+125  
*
*
*
*
°C  
°C  
θJA  
80  
*
°C/W  
* Specification same as PGA204BP.  
NOTES: (1) Input-referred noise voltage varies with gain. See typical curves. (2) Output voltage swing is tested for ±10V min on ±11.4V power supplies. (3) Includes  
time to switch to a new gain.  
®
PGA204/205  
2
SPECIFICATIONS  
ELECTRICAL  
PGA205 G=1, 2, 4, 8V/V  
At TA = +25°C, VS = ±15V, and RL = 2kunless otherwise noted.  
PGA205BP, BU  
TYP  
PGA205AP, AU  
TYP  
PARAMETER  
CONDITIONS  
MIN  
MAX  
MIN  
MAX  
UNITS  
INPUT  
Offset Voltage, RTI  
vs Temperature  
vs Power Supply  
Long-Term Stability  
Impedance, Differential  
Common-Mode  
Input Common-Mode Range  
Safe Input Voltage  
TA=+25°C  
TA=TMIN to TMAX  
VS=±4.5V to ±18V  
±10+20/G ±50+100/G  
±0.1+0.5/G ±0.25+5/G  
±25+30/G ±125+500/G  
µV  
µV/°C  
µV/V  
µV/mo  
||pF  
||pF  
V
±0.25+5/G  
±1+10/G  
0.5+2/G  
±0.2+0.5/G  
1010||6  
3+10/G  
*
*
*
*
*
*
1010||6  
VO=0V (see text)  
±10.5  
±12.7  
*
±40  
*
V
Common-Mode Rejection  
V
CM=±10V, RS=1kΩ  
G=1  
G=2  
G=4  
G=8  
80  
85  
90  
95  
94  
75  
80  
85  
89  
88  
94  
100  
106  
dB  
dB  
dB  
dB  
100  
106  
112  
BIAS CURRENT  
vs Temperature  
Offset Current  
±0.5  
±8  
±0.5  
±8  
±2  
±2  
*
*
*
*
±5  
nA  
pA/°C  
nA  
*
vs Temperature  
pA/°C  
Noise Voltage, RTI(1): f=10Hz  
f=100Hz  
G=8, RS=0Ω  
G=8, RS=0Ω  
G=8, RS=0Ω  
G=8, RS=0Ω  
19  
15  
15  
0.5  
*
*
*
*
nV/Hz  
nV/Hz  
nV/Hz  
µVp-p  
f=1kHz  
fB=0.1Hz to 10Hz  
Noise Current  
f=10Hz  
0.4  
0.2  
18  
*
*
*
pA/Hz  
pA/Hz  
pAp-p  
f=1kHz  
fB=0.1Hz to 10Hz  
GAIN, Error  
G=1  
G=2  
G=4  
G=8  
G=1 to 8  
G=1  
G=2  
G=4  
G=8  
±0.005  
±0.01  
±0.01  
±0.01  
±2.5  
±0.00024  
±0.00024  
±0.00024  
±0.00024  
±0.024  
±0.024  
±0.024  
±0.024  
±10  
±0.001  
±0.002  
±0.002  
±0.002  
*
*
*
*
*
*
*
*
*
±0.05  
±0.05  
±0.05  
±0.05  
*
±0.002  
±0.004  
±0.004  
±0.004  
%
%
%
%
Gain vs Temperature  
Nonlinearity  
ppm/°C  
% of FSR  
% of FSR  
% of FSR  
% of FSR  
OUTPUT  
Voltage, Positive(2)  
Negative(2)  
Load Capacitance Stability  
Short Circuit Current  
IO=5mA, TMIN to TMAX  
IO=–5mA, TMIN to TMAX  
(V+)–1.5  
(V–)+1.5  
(V+)–1.3  
(V–)+1.3  
1000  
*
*
*
*
*
*
V
V
pF  
mA  
+23/–17  
FREQUENCY RESPONSE  
Bandwidth, –3dB  
G=1  
G=2  
G=4  
1
*
*
*
*
*
*
*
*
*
*
*
*
*
*
MHz  
kHz  
kHz  
kHz  
V/µs  
µs  
µs  
µs  
µs  
µs  
400  
200  
100  
0.7  
22  
22  
23  
23  
23  
23  
25  
28  
70  
G=8  
Slew Rate  
Settling Time(3), 0.1%  
VO=±10V, G=8  
G=1  
0.3  
*
G=2  
G=4  
G=8  
G=1  
G=2  
G=4  
G=8  
0.01%  
µs  
µs  
µs  
µs  
Overload Recovery  
50% overdrive  
DIGITAL LOGIC INPUTS  
Digital Ground Voltage, VDG  
Digital Low Voltage  
V–  
V–  
(V+)–4  
DG+0.8V  
*
*
*
*
V
V
V
Digital Low Current  
Digital High Voltage  
1
*
µA  
V
V
DG+2  
V+  
*
*
*
POWER SUPPLY, Voltage  
±4.5  
±15  
+5.2/–4.2  
±18  
±6.5  
*
*
*
V
mA  
Current  
VIN=0V  
±7.5  
TEMPERATURE RANGE  
Specification  
Operating  
–40  
–40  
+85  
+125  
*
*
*
*
°C  
°C  
θJA  
80  
*
°C/W  
* Specification same as PGA204BP.  
NOTES: (1) Input-referred noise voltage varies with gain. See typical curves. (2) Output voltage swing is tested for ±10V min on ±11.4V power supplies. (3) Includes  
time to switch to a new gain.  
®
3
PGA204/205  
PACKAGE INFORMATION  
ABSOLUTE MAXIMUM RATINGS  
PACKAGE DRAWING  
NUMBER(1)  
Supply Voltage .................................................................................. ±18V  
Analog Input Voltage Range ............................................................. ±40V  
Logic Input Voltage Range .................................................................. ±VS  
Output Short-Circuit (to ground) .............................................. Continuous  
Operating Temperature ................................................. –40°C to +125°C  
Storage Temperature..................................................... –40°C to +125°C  
Junction Temperature .................................................................... +150°C  
Lead Temperature (soldering –10s) .............................................. +300°C  
MODEL  
PACKAGE  
PGA204AP  
PGA204BP  
PGA204AU  
PGA204BU  
16-Pin Plastic DIP  
16-Pin Plastic DIP  
SOL-16 Surface Mount  
SOL-16 Surface Mount  
180  
180  
211  
211  
PGA205AP  
PGA205BP  
PGA205AU  
PGA205BU  
16-Pin Plaseic DIP  
16-Pin Plastic DIP  
SOL-16 Surface Mount  
SOL-16 Surface Mount  
180  
180  
211  
211  
NOTE: (1) For detailed drawing and dimension table, please see end of data  
sheet, or Appendix D of Burr-Brown IC Data Book.  
ORDERING INFORMATION  
MODEL  
GAINS  
PACKAGE  
TEMPERATURE RANGE  
PGA204AP  
PGA204BP  
1, 10, 100, 1000V/V  
1, 10, 100, 1000V/V  
16-Pin Plastic DIP  
16-Pin Plastic DIP  
–40 to +85°C  
–40 to +85°C  
PGA204AU  
PGA204BU  
1, 10, 100, 1000V/V  
1, 10, 100, 1000V/V  
SOL-16 Surface-Mount  
SOL-16 Surface-Mount  
–40 to +85°C  
–40 to +85°C  
PGA205AP  
PGA205BP  
1, 2, 4, 8V/V  
1, 2, 4, 8V/V  
16-Pin Plastic DIP  
16-Pin Plastic DIP  
–40 to +85°C  
–40 to +85°C  
PGA205AU  
PGA205BU  
1, 2, 4, 8V/V  
1, 2, 4, 8V/V  
SOL-16 Surface-Mount  
SOL-16 Surface-Mount  
–40 to +85°C  
–40 to +85°C  
®
PGA204/205  
4
DICE INFORMATION  
PAD  
FUNCTION  
PAD  
FUNCTION  
9
VO2  
Ref  
1
2
3
4
5
6
7
8
VO1  
10  
11  
12  
13  
14  
15  
16  
VO  
Feedback  
V+  
Dig. Ground  
A0  
V–  
V+  
IN  
IN  
VOS Adj  
OS Adj  
V–  
V
A1  
Substrate Bias: Internally connected to V– power supply.  
MECHANICAL INFORMATION  
MILS (0.001")  
MILLIMETERS  
Die Size  
Die Thickness  
Min. Pad Size  
186 x 130 ±5  
20 ±3  
4.72 x 3.30 ±0.13  
0.51 ±0.08  
4 x 4  
0.1 x 0.1  
Backing  
Gold  
PGA204/205 DIE TOPOGRAPHY  
PIN CONFIGURATION  
ELECTROSTATIC  
DISCHARGE SENSITIVITY  
This integrated circuit can be damaged by ESD. Burr-Brown  
recommends that all integrated circuits be handled with ap-  
propriate precautions. Failure to observe proper handling and  
installation procedures can cause damage.  
Top View  
VO1  
NC  
NC  
1
2
3
4
5
6
7
8
16 A1  
15 A0  
14 Dig. Ground  
13 V+  
V–  
IN  
ESD damage can range from subtle performance degradation  
to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric  
changes could cause the device not to meet its published  
specifications.  
V+  
12 Feedback  
11 VO  
IN  
VOS Adjust  
VOS Adjust  
V–  
10 Ref  
9
VO2  
NC: No Internal Connection.  
®
5
PGA204/205  
TYPICAL PERFORMANCE CURVES  
At TA = +25°C, and VS = ±15V, unless otherwise noted.  
GAIN vs FREQUENCY  
COMMON-MODE REJECTION vs FREQUENCY  
140  
120  
100  
80  
G = 1k,100  
G = 10  
G=1k  
1k  
“B” Grade  
G = 1  
G=100  
100  
G = 1k  
G=10  
10  
G = 100  
G=1  
1
G = 10  
G = 1  
100k  
60  
40  
10  
100  
1k  
10k  
1M  
10  
100  
1k  
10k  
100k  
1M  
Frequency (Hz)  
Frequency (Hz)  
INPUT COMMON-MODE VOLTAGE RANGE  
vs OUTPUT VOLTAGE  
POSITIVE POWER SUPPLY REJECTION  
vs FREQUENCY  
15  
10  
5
140  
120  
100  
80  
G = 1k  
VD/2  
VO  
+
VD/2  
G = 100  
+
VCM  
0
(Any Gain)  
60  
G = 10  
G = 1  
A3 + Output  
Swing Limit  
A3 – Output  
Swing Limit  
–5  
–10  
–15  
40  
20  
0
–15  
–10  
–5  
0
5
10  
15  
10  
100  
1k  
10k  
100k  
1M  
Output Voltage (V)  
Frequency (Hz)  
NEGATIVE POWER SUPPLY REJECTION  
vs FREQUENCY  
INPUT- REFERRED NOISE VOLTAGE  
vs FREQUENCY  
140  
1k  
100  
10  
120  
100  
80  
60  
40  
20  
0
G = 1k  
G = 100  
G = 10  
G = 1  
G = 10  
G = 1  
G = 100, 1k  
G = 1k  
BW Limit  
1
10  
100  
1k  
10k  
100k  
1M  
1
10  
100  
1k  
10k  
Frequency (Hz)  
Frequency (Hz)  
®
PGA204/205  
6
TYPICAL PERFORMANCE CURVES (CONT)  
At TA = +25°C, and VS = ±15V, unless otherwise noted.  
INPUT-REFERRED  
OFFSET VOLTAGE WARM-UP vs TIME  
INPUT BIAS AND INPUT OFFSET CURRENT  
vs TEMPERATURE  
6
4
2
1
>
G
100  
2
±IB  
0
0
–2  
–4  
–6  
IOS  
–1  
–2  
0
15  
30  
45  
60  
75  
90  
105  
120  
–75  
–50  
–25  
0
25  
50  
75  
100  
125  
Time from Power Supply Turn-on (s)  
Temperature (°C)  
INPUT BIAS CURRENT  
INPUT BIAS CURRENT  
vs DIFFERENTIAL INPUT VOLTAGE  
vs COMMON-MODE INPUT VOLTAGE  
3
2
3
2
Both Inputs  
One Input  
|Ib1| + |Ib2  
|
1
1
Over-Voltage  
Protection  
0
0
Over-Voltage  
Protection  
Normal  
Operation  
–1  
–2  
–3  
–1  
–2  
–3  
G = 1  
G = 10  
One Input  
G = 100, 1k  
–30  
Both Inputs  
–30 –15  
–45  
–15  
0
15  
30  
45  
–45  
0
15  
30  
45  
Common-Mode Voltage (V)  
Differential Overload Voltage (V)  
MAXIMUM OUTPUT VOLTAGE vs FREQUENCY  
SLEW RATE vs TEMPERATURE  
32  
1.0  
0.8  
0.6  
0.4  
0.2  
0
28  
24  
20  
16  
12  
8
G 10  
G=8 or 10  
4
0
10  
100  
1k  
10k  
100k  
1M  
–75  
–50  
–25  
0
25  
50  
75  
100  
125  
Frequency (Hz)  
Temperature (°C)  
®
7
PGA204/205  
TYPICAL PERFORMANCE CURVES (CONT)  
At TA = +25°C, and VS = ±15V, unless otherwise noted.  
QUIESCENT CURRENT vs TEMPERATURE  
OUTPUT CURRENT LIMIT vs TEMPERATURE  
6.0  
5.5  
5.0  
4.5  
4.0  
30  
25  
20  
15  
10  
+|ICL  
|
–|ICL  
|
–75  
–50  
–25  
0
25  
50  
75  
100  
125  
–40  
–15  
10  
35  
60  
85  
Temperature (°C)  
Temperature (°C)  
QUIESCENT CURRENT  
vs POWER SUPPLY VOLTAGE  
POSITIVE OUTPUT SWING vs TEMPERATURE  
VS = ±15V  
5.2  
5.0  
4.5  
4.0  
3.5  
16  
14  
12  
10  
8
V+  
VS = 11.4  
VS = ±4.5  
6
4
V–  
2
0
0
±5  
±10  
±15  
±20  
–75  
–50  
–25  
0
25  
50  
75  
100  
125  
Power Supply Voltage (V)  
Temperature (°C)  
NEGATIVE OUTPUT SWING vs TEMPERATURE  
VS = ±15V  
–16  
–14  
–12  
–10  
–8  
VS = 11.4  
VS = ±4.5  
–6  
–4  
–2  
0
–75  
–50  
–25  
0
25  
50  
75  
100  
125  
Temperature (°C)  
®
PGA204/205  
8
TYPICAL PERFORMANCE CURVES (CONT)  
At TA = +25°C, and VS = ±15V, unless otherwise noted.  
SMALL-SIGNAL RESPONSE, G = 1  
LARGE-SIGNAL RESPONSE, G = 1  
+200mV  
–200mV  
+10V  
–10V  
SMALL-SIGNAL RESPONSE, G = 10  
LARGE-SIGNAL RESPONSE, G = 10  
+200mV  
–200mV  
+10V  
–10V  
SMALL-SIGNAL RESPONSE, G = 1000  
LARGE-SIGNAL RESPONSE, G = 1000  
+10V  
–10V  
+200mV  
–200mV  
®
9
PGA204/205  
TYPICAL PERFORMANCE CURVES (CONT)  
At TA = +25°C, and VS = ±15V, unless otherwise noted.  
INPUT-REFERRED NOISE,  
0.1 TO 10Hz, G = 1000  
NOISE, 0.1 TO 10Hz, G = 1  
0.5µV/Div  
0.2µV/Div  
1s/Div  
1s/Div  
be used to sense the output voltage directly at the load for  
best accuracy.  
APPLICATION INFORMATION  
Figure 1 shows the basic connections required for operation  
of the PGA204/205. Applications with noisy or high imped-  
ance power supplies may require decoupling capacitors  
close to the device pins as shown.  
The output is referred to the output reference (Ref) terminal  
which is normally grounded. This must be a low-impedance  
connection to assure good common-mode rejection. A resis-  
tance of 5in series with the Ref pin will cause a typical  
device to degrade to approximately 80dB CMR (G=1).  
DIGITAL INPUTS  
The digital inputs A0 and A1 select the gain according to the  
logic table in Figure 1. Logic “1” is defined as a voltage  
greater than 2V above digital ground potential (pin 14).  
Digital ground can be connected to any potential from the  
V– power supply to 4V less than V+. Digital ground is  
normally connected to ground. The digital inputs interface  
directly CMOS and TTL logic components.  
The PGA204/205 has an output feedback connection (pin  
12). Pin 12 must be connected to the output terminal (pin 11)  
for proper operation. The output Feedback connection can  
Approximately 1µA flows out of the digital input pins when  
a logic “0” is applied. Logic input current is nearly zero with  
a logic “1” input. A constant current of approximately  
+15V  
1µF  
VO1  
1
PGA204  
PGA205  
VIN  
4
Over-Voltage  
Protection  
Feedback  
A1  
12  
25kΩ  
25kΩ  
16  
Digitally Selected  
Feedback Network  
A3  
VO  
15  
14  
11  
V
O = G (VI+N – VIN  
)
Ref  
10  
A2  
+
VIN  
5
Over-Voltage  
Protection  
25kΩ  
25kΩ  
6
7
9
8
Sometimes shown in simplified form:  
1µF  
VOS  
Adj  
VO2  
GAIN  
VIN  
PGA204 PGA205 A1 A0  
PGA204  
VO  
1
1
2
4
8
0
0
1
1
0
1
0
1
+
+15V  
VIN  
10  
100  
1000  
A1 A0  
FIGURE 1. Basic Connections.  
®
PGA204/205  
10  
Some applications select gain of the PGA204/205 with  
switches or jumpers. Figure 2 shows pull-up resistors con-  
nected to assure a noise-free logic “1” when the switch,  
jumper or open-collector logic is open or off. Fixed-gain  
applications can connect the logic inputs directly to V+ or  
V– (or other valid logic level); no resistor is required.  
V+  
4
Over-Voltage  
Protection  
A1  
VIN  
100kΩ  
100kΩ  
16  
Digitally Selected  
Feedback Network  
15  
14  
OFFSET VOLTAGE  
Voltage offset of the PGA204/205 consists of two compo-  
nents—input stage offset and output stage offset. Both  
components are specified in the specification table in equa-  
tion form:  
+
A2  
VIN  
Over-Voltage  
Protection  
5
Switches, jumpers  
or open-collector  
logic output.  
6
7
9
Digital ground can  
alternatively be connected  
to V– power supply.  
VOS = VOSI + VOSO / G  
where:  
(1)  
VOS  
Adj  
VO2  
VOS total is the combined offset, referred to the input.  
FIGURE 2. Switch or Jumper-Selected Digital Inputs.  
VOSI is the offset voltage of the input stage, A1 and A2.  
VOSO is the offset voltage of the output difference  
amplifier, A3.  
1.3mA flows in the digital ground pin. It is good practice to  
return digital ground through a separate connection path so  
that analog ground is not affected by the digital ground  
current.  
VOSI and VOSO do not change with gain. The composite  
offset voltage VOS changes with gain because of the gain  
term in equation 1. Input stage offset dominates in high gain  
(G100); both sources of offset may contribute at low gain  
(G=1 to 10).  
The digital inputs, A0 and A1, are not latched; a change in  
logic inputs immediately selects a new gain. Switching time  
of the logic is approximately 1µs. The time to respond to  
gain change is effectively the time it takes the amplifier to  
settle to a new output voltage in the newly selected gain (see  
settling time specifications).  
OFFSET TRIMMING  
Both the input and output stages are laser trimmed for very  
low offset voltage and drift. Many applications require no  
external offset adjustment.  
Many applications use an external logic latch to access gain  
control data from a high speed data bus (see Figure 7). Using  
an external latch isolates the high speed digital bus from  
sensitive analog circuitry. Locate the latch circuitry as far as  
practical from analog circuitry.  
Figure 3 shows an optional input offset voltage trim circuit.  
This circuit should be used to adjust only the input stage  
offset voltage of the PGA204/205. Do this by programming  
VO1 V+  
1
13  
PGA204  
PGA205  
VIN  
4
Over-Voltage  
Protection  
Feedback  
A1  
12  
25kΩ  
25kΩ  
Resistors can be substituted  
for REF200. Power supply  
rejection will be degraded.  
16  
A1  
A0  
Digitally Selected  
Feedback Network  
A3  
15  
14  
11  
VO = G (VI+N – VIN) + VREF  
V+  
Digital  
Ground  
100µA  
VREF  
A2  
1/2 REF200  
+
VIN  
5
Over-Voltage  
Protection  
10  
25kΩ  
25kΩ  
100Ω  
100Ω  
OPA177  
6
7
9
8
10kΩ  
±10mV  
Adjustment Range  
VO2  
V–  
Input Offset  
200kΩ  
to 1MΩ  
Output Offset  
Adjustment  
Adjustment  
Trim Range  
±250µV  
100µA  
1/2 REF200  
V+  
V–  
FIGURE 3. Optional Offset Voltage Trim Circuit.  
®
11  
PGA204/205  
it to its highest gain and trimming the output voltage to zero  
with the inputs grounded. Drift performance usually im-  
proves slightly when the input offset is nulled with this  
procedure.  
Microphone,  
Hydrophone  
etc.  
PGA204  
Do not use the input offset adjustment to trim system offset  
or offset produced by a sensor. Nulling offset that is not  
produced by the input amplifiers will increase temperature  
drift by approximately 3.3µV/°C per 1mV of offset adjust-  
ment.  
47kΩ  
47kΩ  
Many applications that need input stage offset adjustment do  
not need output stage offset adjustment. Figure 3 also shows  
a circuit for adjusting output offset voltage. First, adjust the  
input offset voltage as discussed above. Then program the  
device for G=1 and adjust the output to zero. Because of the  
interaction of these two adjustments at G=8, the PGA205  
may require iterative adjustment.  
Thermocouple  
PGA204  
10kΩ  
The output offset adjustment can be used to trim sensor or  
system offsets without affecting drift. The voltage applied to  
the Ref terminal is summed with the output signal. Low  
impedance must be maintained at this node to assure good  
common-mode rejection. This is achieved by buffering the  
trim voltage with an op amp as shown.  
PGA204  
VR  
Center-tap provides  
bias current return.  
NOISE PERFORMANCE  
The PGA204/205 provides very low noise in most applica-  
tions. Low frequency noise is approximately 0.4µVp-p mea-  
sured from 0.1 to 10Hz. This is approximately one-tenth the  
noise of “low noise” chopper-stabilized amplifiers.  
Bridge  
PGA204  
Bias current return  
INPUT BIAS CURRENT RETURN PATH  
inherrently provided by source.  
The input impedance of the PGA204/205 is extremely high—  
approximately 1010. However, a path must be provided for  
the input bias current of both inputs. This input bias current  
is typically less than ±1nA (it can be either polarity due to  
cancellation circuitry). High input impedance means that  
this input bias current changes very little with varying input  
voltage.  
FIGURE 4. Providing an Input Common-Mode Current  
Path.  
INPUT COMMON-MODE RANGE  
The linear common-mode range of the input op amps of the  
PGA204/205 is approximately ±12.7V (or 2.3V from the  
power supplies). As the output voltage increases, however,  
the linear input range will be limited by the output voltage  
swing of the input amplifiers, A1 and A2. The common-  
mode range is related to the output voltage of the complete  
amplifier—see performance curve “Input Common-Mode  
Range vs Output Voltage”.  
Input circuitry must provide a path for this input bias current  
if the PGA204/205 is to operate properly. Figure 4 shows  
provisions for an input bias current path. Without a bias  
current return path, the inputs will float to a potential which  
exceeds the common-mode range of the PGA204/205 and  
the input amplifiers will saturate. If the differential source  
resistance is low, bias current return path can be connected  
to one input (see thermocouple example in Figure 4). With  
higher source impedance, using two resistors provides a  
balanced input with possible advantages of lower input  
offset voltage due bias current and better common-mode  
rejection.  
A combination of common-mode and differential input  
voltage can cause the output of A1 or A2 to saturate. Figure  
5 shows the output voltage swing of A1 and A2 expressed in  
terms of a common-mode and differential input voltages.  
Output swing capability of these internal amplifiers is the  
same as the output amplifier, A3. For applications where  
input common-mode range must be maximized, limit the  
output voltage swing by selecting a lower gain of the  
PGA204/205 (see performance curve “Input Common-Mode  
Voltage Range vs Output Voltage”). If necessary, add gain  
after the PGA204/205 to increase the voltage swing.  
Many sources or sensors inherently provide a path for input  
bias current (e.g. the bridge sensor shown in Figure 4).  
These applications do not require additional resistor(s) for  
proper operation.  
®
PGA204/205  
12  
VO1 V+  
13  
G • VD  
2
VCM  
1
PGA204  
PGA205  
4
Over-Voltage  
Protection  
Feedback  
12  
A1  
25kΩ  
25kΩ  
VD  
2
16  
A1  
A0  
Digitally Selected  
Feedback Network  
A3  
VO  
15  
14  
11  
10  
Digital  
Ground  
VD  
2
A2  
Ref  
5
Over-Voltage  
Protection  
VCM  
25kΩ  
25kΩ  
9
8
G • VD  
VCM  
+
VO2  
V–  
2
FIGURE 5. Voltage Swing of A1 and A2.  
Input-overload often produces an output voltage that appears  
normal. For example, consider an input voltage of +20V on  
one input and +40V on the other input will obviously exceed  
the linear common-mode range of both input amplifiers.  
Since both input amplifiers are saturated to the nearly the  
same output voltage limit, the difference voltage measured  
by the output amplifier will be near zero. The output of the  
PGA204/205 will be near 0V even though both inputs are  
overloaded.  
V+  
47kΩ  
47kΩ  
VIN  
A1  
A0  
PGA204  
PGA205  
+
VIN  
INPUT PROTECTION  
The inputs of the PGA204/205 are individually protected for  
voltages up to ±40V. For example, a condition of –40V on  
one input and +40V on the other input will not cause  
damage. Internal circuitry on each input provides low series  
impedance under normal signal conditions. To provide  
equivalent protection, series input resistors would contribute  
excessive noise. If the input is overloaded, the protection  
circuitry limits the input current to a safe value (approxi-  
mately 1.5mA). The typical performance curve “Input Bias  
Current vs Common-Mode Input Voltage” shows this input  
current limit behavior. The inputs are protected even if no  
power supply voltage is present.  
B
C
X
A
D
D1, D2: IN4148, IN914, etc.  
GAIN  
PGA204 PGA205  
SWITCH  
POSITION  
A
B
C
D
1
10  
100  
1000  
1
2
4
8
FIGURE 6. Switch-Selected PGIA.  
The information provided herein is believed to be reliable; however, BURR-BROWN assumes no responsibility for inaccuracies or omissions. BURR-BROWN assumes  
no responsibility for the use of this information, and all use of such information shall be entirely at the user’s own risk. Prices and specifications are subject to change  
without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. BURR-BROWN does not authorize or warrant  
any BURR-BROWN product for use in life support devices and/or systems.  
®
13  
PGA204/205  
+15V  
14  
VO1 V+  
13  
2
1
HI-509  
4
5
PGA204  
PGA205  
4
Over-Voltage  
Protection  
Feedback  
12  
A1  
8
VIN  
25kΩ  
25kΩ  
6
7
A1 16  
Digitally Selected  
Feedback Network  
A3  
A0  
VO  
15  
14  
13  
12  
11  
10  
9
+
VIN  
A2  
Ref  
11  
10  
5
Over-Voltage  
Protection  
25kΩ  
25kΩ  
6
7
9
8
A0 A1  
1 16  
3
15  
VOS  
Adj  
VO2  
V–  
–15V  
Data Out  
74HC574  
Data In  
To Address  
Decoding Logic  
CK  
Data Bus  
FIGURE 7. Multiplexed-Input Programmable Gain IA.  
A0 A1  
VO1  
VIN  
VI+N  
PGA204  
PGA205  
VO  
Ref  
VO2  
A1 A0  
220Ω  
20kΩ  
20kΩ  
OPA177  
FIGURE 8. Shield Drive Circuit.  
+
VIN  
A1  
A1  
PGA205  
PGA205  
AO  
VO  
AO  
VO  
PGA204  
PGA205  
VIN  
VIN  
+
Ref  
R1  
1MΩ  
C1  
0.1µF  
A1 A0  
GAIN A3  
A2  
A1 A0  
1
2
4
0
0
1
1
1
1
1
0
1
0
1
1
1
1
0
0
0
0
0
1
1
0
0
0
0
1
0
1
1
f–3dB  
=
2πR1C1  
OPA602  
= 1.59Hz  
8
16  
32  
64  
FIGURE 9. Binary Gain Steps, G=1 to G=64.  
FIGURE 10. AC-Coupled PGIA.  
®
PGA204/205  
14  
PACKAGE OPTION ADDENDUM  
www.ti.com  
29-Jun-2023  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
PGA204AP  
PGA204AU  
ACTIVE  
ACTIVE  
ACTIVE  
PDIP  
SOIC  
SOIC  
N
16  
16  
16  
25  
40  
RoHS & Green  
RoHS & Green  
Call TI  
N / A for Pkg Type  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
PGA204AP  
Samples  
Samples  
Samples  
DW  
DW  
NIPDAU  
Call TI  
-40 to 85  
-40 to 85  
PGA204AU  
PGA204AU  
PGA204AU/1K  
1000 RoHS & Green  
PGA204AU/1KE4  
PGA204AUE4  
PGA204BP  
LIFEBUY  
LIFEBUY  
ACTIVE  
SOIC  
SOIC  
PDIP  
DW  
DW  
N
16  
16  
16  
1000 RoHS & Green  
Call TI  
NIPDAU  
Call TI  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
N / A for Pkg Type  
-40 to 85  
-40 to 85  
PGA204AU  
PGA204AU  
PGA204BP  
40  
25  
RoHS & Green  
RoHS & Green  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
PGA204BU  
PGA204BU/1K  
PGA205AP  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
LIFEBUY  
SOIC  
SOIC  
PDIP  
SOIC  
SOIC  
PDIP  
SOIC  
SOIC  
DW  
DW  
N
16  
16  
16  
16  
16  
16  
16  
16  
40  
RoHS & Green  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
N / A for Pkg Type  
PGA204BU  
PGA204BU  
PGA205AP  
PGA205AU  
PGA205AU  
PGA205BP  
PGA205BU  
PGA205BU  
1000 RoHS & Green  
25  
40  
RoHS & Green  
RoHS & Green  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
PGA205AU  
DW  
DW  
N
Level-3-260C-168 HR  
Level-3-260C-168 HR  
N / A for Pkg Type  
PGA205AU/1K  
PGA205BP  
1000 RoHS & Green  
25  
40  
40  
RoHS & Green  
RoHS & Green  
RoHS & Green  
PGA205BU  
DW  
DW  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
PGA205BUG4  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
29-Jun-2023  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
9-Aug-2022  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
PGA204AU/1K  
PGA204BU/1K  
PGA205AU/1K  
SOIC  
SOIC  
SOIC  
DW  
DW  
DW  
16  
16  
16  
1000  
1000  
1000  
330.0  
330.0  
330.0  
16.4  
16.4  
16.4  
10.75 10.7  
10.75 10.7  
10.75 10.7  
2.7  
2.7  
2.7  
12.0  
12.0  
12.0  
16.0  
16.0  
16.0  
Q1  
Q1  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
9-Aug-2022  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
PGA204AU/1K  
PGA204BU/1K  
PGA205AU/1K  
SOIC  
SOIC  
SOIC  
DW  
DW  
DW  
16  
16  
16  
1000  
1000  
1000  
356.0  
356.0  
356.0  
356.0  
356.0  
356.0  
35.0  
35.0  
35.0  
Pack Materials-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
9-Aug-2022  
TUBE  
T - Tube  
height  
L - Tube length  
W - Tube  
width  
B - Alignment groove width  
*All dimensions are nominal  
Device  
Package Name Package Type  
Pins  
SPQ  
L (mm)  
W (mm)  
T (µm)  
B (mm)  
PGA204AP  
PGA204AU  
PGA204AUE4  
PGA204BP  
PGA204BU  
PGA205AP  
PGA205AU  
PGA205BP  
PGA205BU  
PGA205BUG4  
N
PDIP  
SOIC  
SOIC  
PDIP  
SOIC  
PDIP  
SOIC  
PDIP  
SOIC  
SOIC  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
25  
40  
40  
25  
40  
25  
40  
25  
40  
40  
506  
507  
507  
506  
507  
506  
507  
506  
507  
507  
13.97  
12.83  
12.83  
13.97  
12.83  
13.97  
12.83  
13.97  
12.83  
12.83  
11230  
5080  
5080  
11230  
5080  
11230  
5080  
11230  
5080  
5080  
4.32  
6.6  
DW  
DW  
N
6.6  
4.32  
6.6  
DW  
N
4.32  
6.6  
DW  
N
4.32  
6.6  
DW  
DW  
6.6  
Pack Materials-Page 3  
IMPORTANT NOTICE AND DISCLAIMER  
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE  
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”  
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY  
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD  
PARTY INTELLECTUAL PROPERTY RIGHTS.  
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate  
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable  
standards, and any other safety, security, regulatory or other requirements.  
These resources are subject to change without notice. TI grants you permission to use these resources only for development of an  
application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license  
is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you  
will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these  
resources.  
TI’s products are provided subject to TI’s Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with  
such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for  
TI products.  
TI objects to and rejects any additional or different terms you may have proposed. IMPORTANT NOTICE  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023, Texas Instruments Incorporated  

相关型号:

PGA205AD

Instrumentation Amplifier, 1 Func, BIPolar,
BB

PGA205AP

Programmable Gain INSTRUMENTATION AMPLIFIER
BB

PGA205AP

50µV 失调电压、G=1、2、4、8 可编程增益仪表放大器 | N | 16 | -40 to 85
TI

PGA205APG4

Programmable Gain Instrumentation Amplifier 16-PDIP -40 to 85
TI

PGA205AU

Programmable Gain INSTRUMENTATION AMPLIFIER
BB

PGA205AU

50µV 失调电压、G=1、2、4、8 可编程增益仪表放大器 | DW | 16 | -40 to 85
TI

PGA205AU-TR

Instrumentation Amplifier, 1 Func, 625uV Offset-Max, 1MHz Band Width, PDSO16,
BB

PGA205AU/1K

50µV 失调电压、G=1、2、4、8 可编程增益仪表放大器 | DW | 16 | -40 to 85
TI

PGA205AU/1KG4

Programmable Gain Instrumentation Amplifier 16-SOIC -40 to 85
TI

PGA205BP

Programmable Gain INSTRUMENTATION AMPLIFIER
BB

PGA205BP

50µV 失调电压、G=1、2、4、8 可编程增益仪表放大器 | N | 16 | -40 to 85
TI

PGA205BPG4

Programmable Gain Instrumentation Amplifier 16-PDIP -40 to 85
TI