POPA3S2859IRTWR [TI]

双通道 900MHz、2.2nV/√Hz 可编程增益跨阻放大器 | RTW | 24 | -40 to 125;
POPA3S2859IRTWR
型号: POPA3S2859IRTWR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

双通道 900MHz、2.2nV/√Hz 可编程增益跨阻放大器 | RTW | 24 | -40 to 125

放大器
文件: 总32页 (文件大小:2781K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
OPA3S2859  
ZHCSQB4A MAY 2022 REVISED AUGUST 2022  
OPA3S2859 双通900 MHz2.2 nV/√Hz 可编程增益跨阻放大器  
1 特性  
3 说明  
• 增益带宽积900 MHz  
• 内部可编程增益开关  
• 高阻FET 输入  
• 输入电压噪声2.2 nV/Hz  
• 压摆率350 V/μs  
OPA3S2859 是一款具有 CMOS 输入的宽带低噪声可  
编程增益放大器适用于宽带跨阻和电压放大器应用。  
当将该器件配置为跨阻放大器 (TIA) 0.9GHz 增益  
带宽积 (GBWP) 能够在低电容光电二极(PD) 应用中  
实现高闭环带宽。  
• 电源电压范围3.3V 5.25V  
• 静态电流22 mA/通道  
• 断电模IQ75 μA  
• 温度范围-40 °C 125 °C  
三个内部开关反馈路径以及一个可选的并行非开关反馈  
路径最多允许四个可选增益配置。与使用分立式外部开  
关的系统相比内部开关将最大限度地降低寄生影响,  
从而提高性能。每个开关针对 < 1 kΩ 到 > 100 kΩ 的  
反馈电阻值进行了优化适用于宽动态范围的应用。使  
用两线制并行接口控制两个通道的选定开关路径。对于  
所选的每个通道也可以通过施加锁存引脚来使增益路  
径保持恒定这随后会禁用所选通道的开关控制并防  
止通道更改增益。  
2 应用  
• 可切换的跨阻放大器  
• 智能弹药  
激光测距  
光时域反射(OTDR)  
• 硅光电倍增(SiPM) 缓冲放大器  
• 光电倍增管后置放大器  
• 高速可编程增益放大器  
封装信息(1)  
封装尺寸标称值)  
器件型号  
OPA3S2859  
封装  
WQFN (24)  
4.00mm × 4.00mm  
.
.
.
.
.
(1) 如需了解所有可用封装请参阅数据表末尾的封装选项附录。  
.
.
.
3
0
-3  
-6  
-9  
Þ VBIAS  
VS-  
VS+  
VS+  
PD  
INA+  
RF = 1 k  
RF = 10 k  
RF = 100 k  
-12  
-15  
0,1  
SEL1  
0,0  
œ
1,0  
+
LTCH_A  
1M  
10M  
100M  
Frequency (Hz)  
LTCH_B  
+
跨阻带宽与频率间的关系  
1,0  
œ
0,0  
SEL0  
VS+  
VS-  
0,1  
INB+  
Þ VBIAS  
方框图  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SBOSA13  
 
 
 
 
OPA3S2859  
ZHCSQB4A MAY 2022 REVISED AUGUST 2022  
www.ti.com.cn  
Table of Contents  
8.4 Device Functional Modes..........................................18  
9 Application and Implementation..................................20  
9.1 Application Information............................................. 20  
9.2 Typical Application.................................................... 20  
10 Power Supply Recommendations..............................22  
11 Layout...........................................................................22  
11.1 Layout Guidelines................................................... 22  
11.2 Layout Examples.....................................................22  
12 Device and Documentation Support..........................25  
12.1 Device Support....................................................... 25  
12.2 Documentation Support.......................................... 25  
12.3 接收文档更新通知................................................... 25  
12.4 支持资源..................................................................25  
12.5 Trademarks.............................................................25  
12.6 Electrostatic Discharge Caution..............................25  
12.7 术语表..................................................................... 25  
13 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Pin Configuration and Functions...................................3  
6 Specifications.................................................................. 5  
6.1 Absolute Maximum Ratings........................................ 5  
6.2 ESD Ratings............................................................... 5  
6.3 Recommended Operating Conditions.........................5  
6.4 Thermal Information....................................................5  
6.5 Electrical Characteristics.............................................6  
6.6 Switching Characteristics............................................8  
6.7 Typical Characteristics..............................................10  
7 Parameter Measurement Information..........................16  
8 Detailed Description......................................................17  
8.1 Overview...................................................................17  
8.2 Functional Block Diagram.........................................17  
8.3 Feature Description...................................................18  
Information.................................................................... 25  
4 Revision History  
以前版本的页码可能与当前版本的页码不同  
Changes from Revision * (September 2020) to Revision A (August 2022)  
Page  
• 将数据表的状态从预告信更改为量产数..................................................................................................... 1  
Copyright © 2022 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: OPA3S2859  
 
OPA3S2859  
ZHCSQB4A MAY 2022 REVISED AUGUST 2022  
www.ti.com.cn  
5 Pin Configuration and Functions  
22  
20  
19  
23  
21  
24  
VS-  
INA+  
SEL1  
1
2
3
4
18  
17  
VS+  
LTCH_A  
LTCH_B  
16  
15  
VS+  
PD  
Thermal  
Pad  
SEL0  
INB+  
5
6
VS+  
VS-  
14  
13  
5-1. RTW Package,  
24-Pin WQFN With Exposed Thermal Pad  
(Top View)  
5-1. Pin Functions  
PIN  
TYPE(1)  
DESCRIPTION  
NAME  
NO.  
23  
8
COM_A  
COM_B  
I
I
Photodiode input Channel A  
Photodiode input Channel B  
Feedback connection to Channel A TIA Gain Resistor (Low gain, optimized for gain in < 10 kΩ  
FB_A0  
FB_A1  
20  
21  
I
I
range)  
Feedback connection to Channel A TIA Gain Resistor  
(Mid gain, optimized for gain in 10 k100 krange)  
Feedback connection to Channel A TIA Gain Resistor (High gain, optimized for gain in > 100 kΩ  
FB_A2  
FB_B0  
22  
11  
I
I
range)  
Feedback connection to Channel B TIA Gain Resistor (Low gain, optimized for gain in < 10 kΩ  
range)  
Feedback connection to Channel B TIA Gain Resistor  
(Mid gain, optimized for gain in 10 k100 krange)  
FB_B1  
FB_B2  
10  
9
I
I
Feedback connection to Channel B TIA Gain Resistor (High gain, optimized for gain in > 100 kΩ  
range)  
INA-  
INA+  
INB-  
INB+  
24  
1
I
I
I
I
Negative (inverting) input for amplifier A  
Positive (noninverting) input for amplifier A  
Negative (inverting) input for amplifier B  
Positive (noninverting) input for amplifier B  
7
6
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: OPA3S2859  
 
OPA3S2859  
ZHCSQB4A MAY 2022 REVISED AUGUST 2022  
www.ti.com.cn  
5-1. Pin Functions (continued)  
PIN  
TYPE(1)  
DESCRIPTION  
NAME  
NO.  
Latch control input for Channel A. LTCH_A = logic high (default) = transparent mode, gain setting  
changes based on SEL0 and SEL1 pins are reflected at the output.  
LTCH_A = logic low = latch mode = changing SEL0 and SEL1 pins does not affect the gain  
configuration of amplifier.  
LTCH_A  
3
I
I
Latch control input for Channel B. LTCH_B = logic high (default) = transparent mode, gain setting  
changes based on SEL0 and SEL1 pins are reflected at the output.  
LTCH_B = logic low = latch mode = changing SEL0 and SEL1 pins does not affect the gain  
configuration of amplifier.  
LTCH_B  
4
PD  
15  
I
I
Power down pin. PD = logic high (default) = normal operation, PD = logic low = power down mode.  
TIA gain selection. SEL0 = logic high (default). See 5-2 for details.  
TIA gain selection. SEL1 = logic high (default). See 5-2 for details.  
Output of amplifier A  
SEL0  
SEL1  
VOUT_A  
VOUT_B  
VS-  
5
2
I
19  
O
O
I
12  
Output of amplifier B  
13, 18  
14, 16, 17  
Negative (lowest) power supply  
VS+  
I
Positive (highest) power supply  
Connect the thermal pad to the most negative power supply (pin 13 and 18) of the device under test  
(DUT).  
Thermal pad  
(1) I = input, O = output  
5-2. Select Pin Decoder  
SEL1  
LOW  
LOW  
SEL0  
HIGH  
LOW  
Gain  
Low Gain, optimized for gain in < 10 krange  
Mid Gain, optimized for gain in 10 k100 kΩ  
range  
HIGH  
LOW  
High Gain, optimized for gain in > 100 krange  
HIGH (Default)  
HIGH (Default)  
External Gain. All internal switches open  
Copyright © 2022 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: OPA3S2859  
 
 
OPA3S2859  
ZHCSQB4A MAY 2022 REVISED AUGUST 2022  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
(VS) 0.5  
(VS) 0.5  
MAX  
UNIT  
V
VS  
Total supply voltage (VS+ - VS-)  
Input voltage  
5.5  
VIN+, VIN-  
VID  
(VS+) + 0.5  
V
Differential input voltage  
Output voltage  
1
(VS+) + 0.5  
±4  
V
VOUT  
IIN  
IOUT  
TJ  
V
Continuous input current  
Continuous output current(2)  
Junction temperature  
Operating free-air temperature  
Storage temperature  
mA  
mA  
°C  
°C  
°C  
25  
150  
TA  
125  
40  
65  
Tstg  
150  
(1) Operation outside the Absolute Maximum Ratings may cause permanent device damage. Absolute maximum ratings do not imply  
functional operation of the device at these or any other conditions beyond those listed under Recommended Operating Conditions. If  
briefly operating outside the Recommended Operating Conditions but within the Absolute Maximum Ratings, the device may not  
sustain damage, but it may not be fully functional. Operating the device in this manner may affect device reliability, functionality,  
performance, and shorten the device lifetime.  
(2) Long-term continuous output current for electromigration limits  
6.2 ESD Ratings  
VALUE  
±1500  
±1000  
UNIT  
Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all pins(1)  
Electrostatic  
discharge  
V(ESD)  
V
Charged device model (CDM), per JEDEC specification JEDEC JS-002, all pins(2)  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
3.3  
NOM  
MAX  
5.25  
125  
UNIT  
V
VS  
TA  
Total supply voltage (VS+ - VS-)  
Ambient temperature  
5
°C  
40  
6.4 Thermal Information  
OPA3S2859  
THERMAL METRIC(1)  
RTW  
24 PINS  
52  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
39.6  
28.2  
1.8  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
ΨJT  
28.2  
13.3  
ΨJB  
RθJC(bot)  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: OPA3S2859  
 
 
 
 
 
 
 
 
 
 
OPA3S2859  
ZHCSQB4A MAY 2022 REVISED AUGUST 2022  
www.ti.com.cn  
6.5 Electrical Characteristics  
VS+ = 5 V, VS- = 0 V, RL = 200 Ω, output load is referenced to midsupply, input common-mode biased at midsupply, and TA  
+25°C (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
AC PERFORMANCE  
130  
40  
MHz  
MHz  
MHz  
MHz  
V/µs  
VOUT = 100 mVPP, Gain = 1 k, CIN= 4 pF  
VOUT = 100 mVPP, Gain = 10 k, CIN = 4 pF  
VOUT = 100 mVPP, Gain = 100k, Cin = 4 pF  
Small-signal transimpedance  
bandwidth(1)  
SSBW  
GBWP  
14  
Gain-bandwidth product  
Slew rate (10% - 90%)  
900  
350  
2.2  
VOUT = 2-V step  
f = 1 MHz  
en  
Input-referred voltage noise  
Closed-loop output impedance  
nV/Hz  
Ω
ZOUT  
f = 1 MHz  
0.02  
DC PERFORMANCE  
AOL  
VOS  
Open-loop voltage gain  
f = DC  
70  
76  
dB  
Input offset voltage  
TA = 25 °C  
±0.9  
8
mV  
8  
ΔVOS  
ΔT  
/
Input offset voltage drift  
TA = -40°C to +125°C  
µV/°C  
2  
IBN, IBI  
IBOS  
Input bias current(2)  
50  
50  
pA  
pA  
dB  
50  
-50  
67  
Input offset current(2)  
CMRR  
INPUTS  
CIN+  
Common-mode rejection ratio  
VCM = ±0.5 V (from midsupply)  
78  
Non-inverting input capacitance  
Inverting input capacitance (3)  
Common-mode input range (high)  
Common-mode input range (high)  
Common-mode input range (low)  
Common-mode input range (low)  
1.4  
3
pF  
pF  
V
CIN-  
VIH  
CMRR > 64 dB  
3.4  
1.7  
3.6  
1.9  
0
VIH  
CMRR > 64 dB , VS+ = 3.3 V  
CMRR > 64 dB  
V
VIL  
0.4  
0.4  
V
VIL  
CMRR > 64 dB , VS+ = 3.3 V  
0
V
OUTPUTS  
VOH  
Output voltage (high)  
TA = 25 °C  
3.95  
2.3  
4.1  
2.4  
V
V
VOH  
Output voltage (high)  
VS+ = 3.3 V, TA = 25 °C  
TA = 25 °C  
VOL  
Output voltage(low)  
1.1  
1.2  
V
VOL  
Output voltage(low)  
VS+ = 3.3 V, TA = 25 °C  
RL = 10 Ω, AOL > 52 dB  
1.05  
74  
1.15  
V
IO_LIN  
Linear output drive (source and sink)  
65  
mA  
CHANNEL-TO-CHANNEL MATCHING  
Crosstalk (output-referred)  
Offset voltage mismatch  
-70  
±1  
dB  
mV  
pA  
f = 1 MHz, Gain = 100 k, VOUT = 100 mVPP  
Offset current mismatch  
-20  
20  
Copyright © 2022 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: OPA3S2859  
 
OPA3S2859  
ZHCSQB4A MAY 2022 REVISED AUGUST 2022  
www.ti.com.cn  
6.5 Electrical Characteristics (continued)  
VS+ = 5 V, VS- = 0 V, RL = 200 Ω, output load is referenced to midsupply, input common-mode biased at midsupply, and TA  
+25°C (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
POWER SUPPLY  
VS+ = 5 V  
44  
51  
39  
85  
72  
53  
mA  
mA  
mA  
dB  
IQ  
Quiescent current (both channels)  
VS+ = 5 V, TA = +125°C  
VS+ = 5 V, TA = -40°C  
f = DC  
PSRR+ Power Supply Rejection Ratio  
PSRR- Power Supply Rejection Ratio  
POWER DOWN  
74  
68  
f = DC  
dB  
Voltage referenced to VS+, amplifier OFF  
below this voltage  
Disable voltage threshold  
VS+ - 1.5 VS+ - 1.3  
V
V
Voltage referenced to VS+, amplifier ON above  
this voltage  
Enable voltage threshold  
VS+ - 1.2 VS+ - 0.8  
Power-down quiescent current  
PD bias current  
75  
6
140  
µA  
µA  
µA  
ns  
VPD = VS- or VS+  
PD bias current  
VPD at switching threshold  
Time to VOUT = 90% of final value  
Time to VOUT = 10% of final value  
160  
90  
Turnon time delay  
Turnoff time delay  
330  
ns  
(1) CIN = Photodiode capacitance + PCB capacitance. Photodiode capacitance is 3.3 pF and estimated PCB capacitance is 0.7 pF.  
(2) Leakage currents from switches are not included in this measurement.  
(3) CIN- refers to the capacitance at the inverting input of the amplifier. CIN- = CIN-(CM) + CDIFF + Switch capacitance on the amplifier  
inverting pin (ON capacitance of the closed switch + OFF capacitance for open switches).  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: OPA3S2859  
 
 
 
OPA3S2859  
ZHCSQB4A MAY 2022 REVISED AUGUST 2022  
www.ti.com.cn  
6.6 Switching Characteristics  
VS+ = 5 V, VS- = 0 V, input common-mode biased at midsupply, RF0 = 1 kΩ, RF1 = 10 kΩ, RF2 = 100 kΩ, RL = 200 Ω, output  
load is referenced to midsupply, and TA +25°C (unless otherwise noted), see figure 7-1 for schematic configuration. (1) (2)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
GAIN SWITCHES  
SW0 OFF to SW1 ON  
160  
230  
80  
SW0 OFF to SW2 ON  
SW1 OFF to SW0 ON  
SW1 OFF to SW2 ON  
SW2 OFF to SW0 ON  
SW2 OFF to SW1 ON  
SWCOM0 ON; SWCOM1 and SWCOM2 OFF  
SWCOM1 ON; SWCOM0 and SWCOM2 OFF  
SWCOM2 ON; SWCOM0 and SWCOM1 OFF  
SWCOM0 , SWCOM1 and SWCOM2 OFF  
SW0 ON  
Switch transition-time (5)  
COM capacitance (3) (6)  
FB capacitance (5) (7)  
ns  
230  
80  
110  
1.3  
1.2  
1.2  
1.2  
1.9  
1.6  
1.5  
1.4  
1.2  
1.1  
80  
CCOM0  
CCOM1  
CCOM2  
CCOM_OPEN  
CFB0  
pF  
CFB1  
SW1 ON  
CFB2  
SW2 ON  
CFB0_OPEN  
CFB1_OPEN  
CFB2_OPEN  
RON_COM0  
RON_FB0  
RON_COM1  
RON_FB1  
RON_COM2  
RON_FB2  
SW0 OFF  
SW1 OFF  
SW2 OFF  
38  
125  
37  
On resistance (8) (9)  
Ω
375  
35  
SWCOM0 for Channel A and B  
SWFB0 for Channel A and B  
SWCOM1 for Channel A and B  
SWFB1 for Channel A and B  
SWCOM2 for Channel A and B  
SWFB2 for Channel A and B  
0.15  
0.4  
0.45  
0.07  
3
On resistance channel-to-channel  
matching (3) (4)  
Ω
0.12  
Copyright © 2022 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: OPA3S2859  
 
OPA3S2859  
ZHCSQB4A MAY 2022 REVISED AUGUST 2022  
www.ti.com.cn  
6.6 Switching Characteristics (continued)  
VS+ = 5 V, VS- = 0 V, input common-mode biased at midsupply, RF0 = 1 kΩ, RF1 = 10 kΩ, RF2 = 100 kΩ, RL = 200 Ω, output  
load is referenced to midsupply, and TA +25°C (unless otherwise noted), see figure 7-1 for schematic configuration. (1) (2)  
PARAMETER  
LOGIC PIN FUNCTION (LATCH, SEL)  
Logic low threshold  
Logic high threshold  
Bias current  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Logic low below the threshold voltage  
Logic high above the threshold voltage  
VPIN = VS- or VS+  
VS+ - 1.5 VS+ - 1.3  
V
V
VS+ - 1.2 VS+ - 0.8  
6
µA  
µA  
ns  
ns  
Bias current  
VPIN at switching threshold  
160  
Setup time  
100  
100  
Hold time  
(1) All the specifications apply for both Channels A and B, unless otherwise noted.  
(2) When switching from one gain condition to another, the new gain switches are closed before opening the previous gain switches  
(make-before-break).  
(3) SWCOM0, SWCOM1, SWCOM2 refer to switch on the common-mode side (COM) for the different gain options.  
(4) SWFB0, SWFB1, SWFB2 refer to switch on the feedback side (FB) for the different gain options.  
(5) SW0, SW1, SW2 refers to the two switches needed for a given gain condition. For example, SW0 refers to SWCOM0 and SWFB0  
.
(6) CCOM0, CCOM1, CCOM2 is the capacitance at the COM pin for different gain options. It is equal to ON capacitance of closed switch +  
OFF capacitance of open switches.  
(7) CFB0, CFB1, CFB2 is the capacitance at the FBX pin. It is equal to ON capacitance of the gain option selected (SWCOM0 + SWFB0  
capacitance).  
(8) RON_COM0, RON_COM1, RON_COM2, refer to ON resistance for the COM side switch.  
(9) RON_FB0, RON_FB1, RON_FB2, refer to ON resistance for the FB side switch.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: OPA3S2859  
 
 
 
 
 
 
 
 
 
OPA3S2859  
ZHCSQB4A MAY 2022 REVISED AUGUST 2022  
www.ti.com.cn  
6.7 Typical Characteristics  
VS+ = +2.5 V, VS-= -2.5 V, RL = 200 Ω, CIN = 4 pF, output load is referenced to mid-supply, input common-mode biased at  
mid-supply, and TA +25°C (unless otherwise noted)  
3
6
3
0
0
-3  
-3  
-6  
-6  
-9  
-9  
RL = 50  
RL = 100   
RL = 200   
RL = 400   
RF = 1 k  
RF = 10 k  
RF = 100 k  
-12  
-15  
-12  
-15  
1M  
10M  
100M  
1G  
1M  
10M  
100M  
Frequency (Hz)  
Frequency (Hz)  
VOUT = 100 mVPP, RF = 1 kΩ  
VOUT = 100 mVPP  
6-2. Small-Signal Frequency Response vs Output Load  
6-1. Small-Signal Frequency Response vs Gain  
6
6
3
0
3
0
RF = 1 k  
-3  
-6  
-3  
RF = 100 k  
-6  
-9  
-9  
125 C  
RF = 1 k  
85 C  
25 C  
-40 C  
RF = 10 k  
-12  
-12  
-15  
RF = 10 k  
RF = 100 k  
-15  
1M  
10M  
100M  
1G  
1M  
10M  
100M  
1G  
Frequency (Hz)  
Frequency (Hz)  
VOUT = 2 VPP  
VOUT = 100 mVPP  
6-4. Large-Signal Frequency Response vs Gain  
6-3. Small-Singal Frequency Response vs Ambient  
Temperature  
.
Small-Signal Response  
6-6. Closed-Loop Output Impedance vs Frequency  
6-5. Open-Loop Magnitude and Phase vs Frequency  
Copyright © 2022 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: OPA3S2859  
 
OPA3S2859  
ZHCSQB4A MAY 2022 REVISED AUGUST 2022  
www.ti.com.cn  
6.7 Typical Characteristics (continued)  
VS+ = +2.5 V, VS-= -2.5 V, RL = 200 Ω, CIN = 4 pF, output load is referenced to mid-supply, input common-mode biased at  
mid-supply, and TA +25°C (unless otherwise noted)  
0
100  
10  
1
RF = 1 k  
RF = 10 k  
RF = 100 k  
-20  
-40  
-60  
-80  
-100  
-120  
100k  
1M  
10M  
100M  
1k  
10k  
100k  
Frequency (Hz)  
1M  
10M  
100M  
Frequency (Hz)  
VOUT = 2 VPP  
.
6-7. Large-Signal Crosstalk vs Gain  
6-8. Voltage Noise Density vs Frequency  
1000  
100  
60  
40  
20  
0
125 C  
Input  
RF = 10 k  
85 C  
RF = 1 k  
RF = 10 k  
RF = 100 k  
25 C  
-40 C  
RF = 100 k  
RF = 1 k  
-20  
-40  
-60  
10  
2
10k  
100k  
1M  
10M  
100M  
Time (100 ns/div)  
Frequency (Hz)  
VOUT = 100 mVPP, RIN = RF Using 9-1 Test Circuit  
6-10. Small-Signal Transient Response  
.
6-9. Voltage Noise Density vs Ambient Temperature  
1.5  
4
3
Input  
Ideal Output  
RF = 1 k  
RF = 10 k  
1.25  
RF = 1 k  
1
RF = 10 k  
RF = 100 k  
0.75  
0.5  
2
1
0.25  
0
0
-0.25  
-0.5  
-0.75  
-1  
-1  
-2  
-3  
-4  
-1.25  
-1.5  
Time (100 ns/div)  
Time (100 ns/div)  
VOUT = 2 VPP, RIN = RF Using 9-1 Test Circuit  
2X Output Overdrive  
6-11. Large-Signal Transient Response  
6-12. Output Overload Reponse Low Gain Settings  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: OPA3S2859  
 
OPA3S2859  
ZHCSQB4A MAY 2022 REVISED AUGUST 2022  
www.ti.com.cn  
6.7 Typical Characteristics (continued)  
VS+ = +2.5 V, VS-= -2.5 V, RL = 200 Ω, CIN = 4 pF, output load is referenced to mid-supply, input common-mode biased at  
mid-supply, and TA +25°C (unless otherwise noted)  
4
3
3.5  
3
2.5  
2
1.5  
1
0.5  
0
Ideal Output  
RF = 100 k  
2
1
0
-0.5  
-1  
-1.5  
-2  
-2.5  
-3  
-3.5  
-1  
-2  
-3  
-4  
Power Down (PD)  
Output: RF= 1 k  
Output: RF= 10 k  
Output: RF= 100 k  
Time (50 ns/div)  
.
Time (1 s/div)  
2X Output Overdrive  
6-14. Turn-On Transient Response  
6-13. Output Overload Reponse High Gain Setting  
3.5  
100  
80  
60  
40  
20  
0
PSRR+  
PSRR  
Power Down (PD)  
Output: RF= 1 k  
Output: RF= 10 k  
Output: RF= 100 k  
3
2.5  
2
1.5  
1
0.5  
0
-0.5  
-1  
-1.5  
-2  
-2.5  
-3  
-20  
1k  
-3.5  
10k  
100k  
1M  
10M  
100M  
1G  
Time (50 ns/div)  
.
Frequency (Hz)  
.
6-15. Turn-Off Transient Response  
6-16. Power Supply Rejection Ratio vs Frequency  
55  
47.5  
45  
50  
45  
40  
35  
42.5  
40  
Unit 1  
Unit 2  
Unit 3  
Unit 1  
Unit 2  
Unit 3  
37.5  
3
3.25 3.5 3.75  
4
4.25 4.5 4.75  
5
5.25  
-60 -40 -20  
0
20 40 60 80 100 120 140 160  
Ambient Temperature (C)  
Total Supply Voltage (V)  
3 Typical Units  
3 Typical Units  
6-17. Quiescent Current (Both Channels) vs Supply Voltage  
6-18. Quiescent Current (Both Channels) vs Ambient  
Temperature  
Copyright © 2022 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: OPA3S2859  
OPA3S2859  
ZHCSQB4A MAY 2022 REVISED AUGUST 2022  
www.ti.com.cn  
6.7 Typical Characteristics (continued)  
VS+ = +2.5 V, VS-= -2.5 V, RL = 200 Ω, CIN = 4 pF, output load is referenced to mid-supply, input common-mode biased at  
mid-supply, and TA +25°C (unless otherwise noted)  
110  
105  
100  
95  
5
4
Unit 1  
Unit 2  
Unit 3  
3
2
90  
1
85  
80  
0
75  
-1  
-2  
-3  
-4  
-5  
70  
65  
Unit 1  
Unit 2  
Unit 3  
60  
55  
50  
-60 -40 -20  
0
20 40 60 80 100 120 140 160  
3
3.25 3.5 3.75  
4
4.25 4.5 4.75  
5
5.25  
Temperature (C)  
Total Supply Voltage (V)  
3 Typical Units  
3 Typical Units  
6-19. Quiescent Current (Amplifiers Disabled) vs Ambient  
6-20. Offset Voltage vs Supply Voltage  
Temperature  
5
4
5
4
Unit 1  
Unit 2  
Unit 3  
3
3
2
2
1
1
0
0
-1  
-2  
-1  
-2  
-3  
-4  
-5  
-3  
Unit 1  
Unit 2  
Unit 3  
-4  
-5  
-40 -20  
0
20  
40  
60  
80 100 120 140 160  
-2.5 -2 -1.5 -1 -0.5  
0
0.5  
1
1.5  
2
2.5  
Temperature (C)  
Common-Mode Voltage (V)  
3 Typical Units  
3 Typical Units  
6-21. Offset Voltage vs Ambient Temperature  
6-22. Offset Voltage vs Input Common-Mode Voltage  
5
4
5
TA = 125 C  
TA = 25 C  
TA = -40 C  
Unit 1  
Unit 2  
4
Unit 3  
3
3
2
2
1
1
0
0
-1  
-2  
-3  
-4  
-5  
-1  
-2  
-3  
-4  
-5  
-2.5 -2 -1.5 -1 -0.5  
0
0.5  
1
1.5  
2
2.5  
-2.5 -2 -1.5 -1 -0.5  
0
0.5  
1
1.5  
2
2.5  
Common-Mode Voltage (V)  
Output Voltage (V)  
.
3 Typical Units  
6-23. Offset Voltage vs Input Common-Mode Voltage vs  
6-24. Offset Voltage vs Output Swing  
Ambient Temperature  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: OPA3S2859  
OPA3S2859  
ZHCSQB4A MAY 2022 REVISED AUGUST 2022  
www.ti.com.cn  
6.7 Typical Characteristics (continued)  
VS+ = +2.5 V, VS-= -2.5 V, RL = 200 Ω, CIN = 4 pF, output load is referenced to mid-supply, input common-mode biased at  
mid-supply, and TA +25°C (unless otherwise noted)  
5
TA = 125 C  
4
TA = 25 C  
TA = -40 C  
1n  
100p  
10p  
3
2
1
0
-1  
-2  
-3  
-4  
-5  
1p  
Unit 1  
Unit 2  
Unit 3  
0.1p  
-40 -20  
0
20  
40  
60  
80 100 120 140 160  
-2.5 -2 -1.5 -1 -0.5  
0
0.5  
1
1.5  
2
2.5  
Temperature (C)  
Output Voltage (V)  
3 Typical Units  
.
6-26. Input Bias Current vs Ambient Temperature  
6-25. Offset Voltage vs Output Swing vs Ambient  
Temperature  
20  
0
Unit 1  
Unit 2  
Unit 3  
10  
TA = 125 C  
TA = 25 C  
TA = -40 C  
-0.25  
-0.5  
-0.75  
-1  
15  
5
0
-1.25  
-1.5  
-1.75  
-2  
-5  
-10  
-15  
-20  
-120  
-100  
-80  
-60  
-40  
-20  
0
-2.5  
-2  
-1.5  
-1  
-0.5  
0
0.5  
1
1.5  
Output Curent (mA)  
Common Mode Voltage (V)  
.
3 Typical Units  
6-28. Output Swing vs Sinking Current  
6-27. Input Bias Current vs Input Common-Mode Voltage  
2
1000  
750  
500  
250  
0
TA = 125 C  
TA = 25 C  
TA = -40 C  
1.75  
1.5  
1.25  
1
0.75  
0.5  
0.25  
0
39  
40  
41  
42  
43  
44  
45  
46  
0
10 20 30 40 50 60 70 80 90 100 110 120  
Output Current (mA)  
Quiescent Current (mA)  
.
µ = 42.2 mA, σ= 0.251 mA  
6-30. Quiescent Current (Both Channels) Distribution  
6-29. Output Swing vs Sourcing Current  
Copyright © 2022 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: OPA3S2859  
OPA3S2859  
ZHCSQB4A MAY 2022 REVISED AUGUST 2022  
www.ti.com.cn  
6.7 Typical Characteristics (continued)  
VS+ = +2.5 V, VS-= -2.5 V, RL = 200 Ω, CIN = 4 pF, output load is referenced to mid-supply, input common-mode biased at  
mid-supply, and TA +25°C (unless otherwise noted)  
1000  
750  
500  
250  
0
1000  
750  
500  
250  
0
-8 -7 -6 -5 -4 -3 -2 -1  
0
1
2
3
4
5
6
7
8
-8 -7 -6 -5 -4 -3 -2 -1  
0
1
2
3
4
5
6
7
8
Offset Voltage (mV)  
Offset Voltage (mV)  
µ = 0.450 mV, σ= 0.845 mV  
6-31. Offset Voltage Distribution Channel A  
600  
µ = 0.606 mV, σ= 0.754 mV  
6-32. Offset Voltage Distribution Channel B  
600  
500  
400  
300  
200  
100  
0
500  
400  
300  
200  
100  
0
-1  
-0.25  
0.5  
1.25  
2
2.75  
-1  
-0.25  
0.5  
1.25  
2
2.75  
Input Bias Current (pA)  
Input Bias Current (pA)  
µ = 0.896 pA, σ= 0.383 pA  
µ = 0.825 pA, σ= 0.386 pA  
6-33. Input Bias Current Distribution Channel A  
6-34. Input Bias Current Distribution Channel B  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: OPA3S2859  
OPA3S2859  
ZHCSQB4A MAY 2022 REVISED AUGUST 2022  
www.ti.com.cn  
7 Parameter Measurement Information  
The following figure shows the test setup configuration for OPA3S2859.  
RFB  
IN–  
FBx  
CIN-0/1/2  
RON_FB0/1/2  
SWFB0/1/2  
SWCOM0/1/2  
RON_COM0/1/2  
COMx  
+
VOUT  
CCOM0/1/2/OPEN  
CFB0/1/2/OPEN  
CIN+  
IN+  
7-1. Switching Characteristics Configuration  
Copyright © 2022 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: OPA3S2859  
 
 
OPA3S2859  
ZHCSQB4A MAY 2022 REVISED AUGUST 2022  
www.ti.com.cn  
8 Detailed Description  
8.1 Overview  
The OPA3S2859 features dual channel, high-speed, low noise, wide gain bandwidth amplifier with  
programmable gain switches to offer a compact, easy-to-use device for wideband transimpedance applications,  
high-speed data acquisition systems, and applications with weak signal inputs that require low-noise and high-  
gain front ends. Integrated switches allow for multiple gain settings on a single amplifier stage without the need  
for an additional multiplexer, therefore minimizing board parasitics.  
The OPA3S2859 is offered in a 4-mm × 4-mm, 24-pin WQFN package that features multiple feedback (FB) pins  
for different gain options to make simple feedback network connection between the amplifier output and inverting  
input. The three internally switched feedback paths along with an additional parallel non-switched feedback path  
allows for up to four selectable gain configurations.  
8.2 Functional Block Diagram  
SWCOM2  
SWFB2  
RON_COM2  
RON_FB2  
CCOM2  
CFB2  
SWCOM1  
SWFB1  
RON_COM1  
RON_FB1  
CCOM1  
CFB1  
SWCOM0  
SWFB0  
RON_COM0  
RON_FB0  
COM_A  
CCOM0  
CFB0  
CIN-  
+
VOUT_A  
INA+  
LATCH_A  
SEL0  
CIN+  
5.03 pF  
SEL1  
5.03 pF  
CIN+  
LATCH_B  
INB+  
+
VOUT_B  
SWCOM0  
SWFB0  
RON_COM0  
RON_FB0  
CIN-  
COM_B  
CCOM0  
CCOM1  
CCOM2  
CFB0  
SWCOM1  
SWFB1  
RON_COM1  
RON_FB1  
CFB1  
SWCOM2  
SWFB2  
RON_COM2  
RON_FB2  
CFB2  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: OPA3S2859  
 
 
 
OPA3S2859  
ZHCSQB4A MAY 2022 REVISED AUGUST 2022  
www.ti.com.cn  
8.3 Feature Description  
8.3.1 Programmable Gain  
The OPA3S2859 features integrated switches that can be used for implementing different gain configurations.  
The closed-loop bandwidth and noise of a TIA are affected by the transimpedance gain and photodiode  
capacitance. The OPA3S2859 has a higher bandwidth in its low-gain configuration for a given value of  
photodiode capacitance compared to the high-gain configuration. Increasing the gain of the TIA stage by a factor  
of X increases the output signal by a factor X, but the noise contribution from the resistor only increases by X.  
The input-referred noise density of the low-gain configuration is therefore higher than the input-referred noise  
density of the high-gain configuration.  
OPA3S2859 provides control for switching among three independently-configured external feedback networks  
using FB_x0, FB_x1, FB_x2 pins, and allows for up to four selectable gain configurations with an additional  
parallel non-switched feedback path. The internal switches minimize parasitic contributions to increase  
performance compared to external methods. Each switch is optimized for increasing feedback resistor values  
ranging from < 1 kΩto > 100 kΩfor wide dynamic range applications. The selected switch path is controlled for  
both channels using a 2-wire parallel interface (SEL0 and SEL1).  
In many systems it is typical that gain will switch sequentially (also known as adjacent gain switching). For  
example, the gain will switch low to medium to high or high to medium to low. When switching between adjacent  
gains, the switches feature make-before-break switching. When programmed to a different connection, the  
previous switch does not change to high impedance state until the new switch is closed (with a typical 80 ns to  
230 ns delay when both switches are closed). This feature helps the amplifier from not operating in an open-loop  
state when the switches are used in a switched-gain transimpedance configuration.  
8.3.2 Slew Rate  
The OPA3S2859 features a high slew rate of 350 V/µs. The slew rate is a critical parameter in high-speed pulse  
applications such as optical time-domain reflectometry (OTDR). As 6-11 shows, the high slew rate implies that  
the device accurately reproduces a 2-V, sub 100-ns pulse edge. The wide bandwidth and slew rate of the device  
make it an excellent amplifier for high-speed signal-chain front ends.  
8.3.3 Input and ESD Protection  
The OPA3S2859 is fabricated on a low-voltage, high-speed, BiCMOS process. The internal, junction breakdown  
voltages are low for these small geometry devices, and as a result, all device pins are protected with internal  
ESD protection diodes to the power supplies. There are two antiparallel diodes between the inputs of the  
amplifier that clamp the inputs during an overrange or fault condition.  
8.4 Device Functional Modes  
8.4.1 Split-Supply and Single-Supply Operation  
The OPA3S2859 can be configured with single-sided supplies or split-supplies without degrading performance.  
In either case, the thermal pad should be tied to the same voltage as VS-.  
8.4.2 Power-Down Mode  
The OPA3S2859 features a power-down mode to conserve power. Connecting the PD pin low disables the  
amplifier thereby reducing the quiescent current and places the output in a high-impedance state.  
PD pin has an internal pull up resistor. If the pin is left floating, then the device defaults to an ON state. The PD  
disable and enable threshold voltages are referenced to the positive supply (for more inforamtion refer to the  
Electrical Characteristics section). If the amplifier is configured with the positive supply at 5 V and the negative  
supply at ground, then the disable and enable threshold voltages are 3.5 V and 4.2 V, respectively. If the  
amplifier is configured with ±2.5 V supplies, then the threshold voltages are at 1 V and 1.7 V.  
Copyright © 2022 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: OPA3S2859  
 
 
OPA3S2859  
ZHCSQB4A MAY 2022 REVISED AUGUST 2022  
www.ti.com.cn  
8.4.3 Gain Select Mode (SEL)  
The OPA3S2859 features two pins SEL0 and SEL1 to choose between three different internal switch networks  
and an external option. The SELx disable and enable threshold voltages are with reference to the positive supply  
as shown in the Switching Characteristics table. Note: while the SELx logic will select the same switch  
configuration for channel A and B, the external components (feedback network) of channels A and B do not have  
to be exactly the same.  
When switching between different gain settings (feedback networks), the device has a transition time of only 80  
ns to 230 ns (typical) as shown in the Switching Characteristics table. In many systems, it is typical that gain will  
be stepped sequentially (for example, low to medium to high or high to medium to low). As provided in 5-2,  
the SELx logic assignment ensures that switching gains up or down involve only one input-pin transition,  
reducing the probability of unintended false codes during logic settling.  
8.4.4 Latch Mode  
OPA3S2859 features LTCH_A and LTCH_B pins which independently latch the gain configuration for Channel A  
and Channel B, respectively. If the latch control inputs are connected to logic high or floating, then the chosen  
feedback selection (through the SEL0 and SEL1 pins) applies to A and B analog channels immediately, this is  
also called transparent mode. If the latch control inputs are logic low, then changing the feedback selection  
(through the SEL0 and SEL1 pins) does not affect the gain configuration of the respective amplifier channel. 图  
8-1 shows the minimum timing requirements that should be met when using LTCH_x pins to latch gain  
configuration.  
As shown in 8-1, use the latch control input for each channel to separately control the feedback selection from  
the common SEL1 and SEL0 pins. The latch control inputs can also provide benefits in some cases where  
channel A and B need to have the same configuration. For example, any timing skew from SEL1 and SEL0 may  
result in unintended switch logic configurations for a short-duration resulting in transient output glitch when  
switching between different settings in transparent mode. Holding the LTCH_x pin low until the new selection  
value at the SEL pins have settled can minimize these intermediate glitch states.  
This feature is also useful in larger systems with multiple OPA3S2859 devices. The gain path can be set using  
common SEL0 and SEL1 signals for all the devices, and latch pins can be used to control the gain  
independently for each amplifier channel.  
The steps to update the gain settings in the following example configuration for Channel A only, are as follows:  
1. Set LTCH_B to logic low (latch mode), this way changes made on Channel A do not affect Channel B gain  
configuration.  
2. If LTCH_A is high (transparent mode), then use SEL0 and SEL1 pins to select the feedback network of  
interest. If LTCH_A is low, then toggle it to logic high and use SEL0 and SEL1 pins to select the feedback  
network of interest.  
3. To hold the selected gain, set LTCH_A to logic low. Ensure minimum setup time requirements (100 ns) are  
met between SELx selection to LTCH_A going low. Also, ensure that during the hold time (100 ns), no  
changes should be made on SELx pins. The minimum timing is based on internal device configuration. If  
needed, additional time must be added due to board layout parasitics and signal delays.  
4. Gain setting for channel A is now latched and any changes on the SELx pins will not change the gain  
configuration for channel A.  
Hold time  
SELx  
LTCH_x  
Setup time  
8-1. Timing Diagram  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: OPA3S2859  
 
OPA3S2859  
ZHCSQB4A MAY 2022 REVISED AUGUST 2022  
www.ti.com.cn  
9 Application and Implementation  
备注  
以下应用部分中的信息不属TI 器件规格的范围TI 不担保其准确性和完整性。TI 的客 户应负责确定  
器件是否适用于其应用。客户应验证并测试其设计以确保系统功能。  
9.1 Application Information  
The OPA3S2859 offers a unique combination of dual channel, wide bandwidth low noise amplifiers with  
integrated programmable gain switches. This combination makes this amplifier an excellent choice for  
photodiode transimpedance amplifier applications with variable gain needs.  
9.2 Typical Application  
9-1 shows the circuit used to measure transimpedance bandwidth of the OPA3S2859 with different feedback  
network setting options. This configuration imitates the impedance of the photodiode on the input of the TIA.  
100 k  
0.7 pF  
10 k  
1.5 pF  
1 k  
2.5 V  
0,1  
0,0  
RIN  
COM  
pin  
169  
+
1,0  
VOUT  
+
2.5 V  
9-1. OPA3S2859 Test Circuit  
9.2.1 Design Requirements  
The objective is to design a variable gain, low noise, wideband optical front-end transimpedance amplifier. The  
design requirements are as follows:  
Amplifier supply voltage: ± 2.5 V  
Transimpedance gain: 1 kΩ, 10 kΩ, or 100 kΩ  
Photodiode capacitance: CAPD = 3.3 pF (additional estimated PCB capacitance = 0.7 pF)  
Target bandwidth: 130 MHz, 40 MHz, or 14 MHz  
9.2.2 Detailed Design Procedure  
The OPA3S2859 meets the growing demand for wideband, low-noise photodiode amplifiers. The closed-loop  
bandwidth of a transimpedance amplifier is a function of the following:  
Copyright © 2022 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: OPA3S2859  
 
 
 
 
OPA3S2859  
ZHCSQB4A MAY 2022 REVISED AUGUST 2022  
www.ti.com.cn  
1. The total input capacitance (CIN). This total includes the photodiode capacitance, the input capacitance of  
the amplifier (common-mode and differential capacitance) and any stray capacitance from the PCB.  
2. The op amp gain bandwidth product (GBWP).  
3. The transimpedance gain (RF).  
9-1 shows the OPA3S2859 configured as programmable gain TIA using different feedback paths through the  
switch network. The feedback resistance (RF) and the input capacitance (CIN) form a zero in the noise gain that  
results in instability if left unchecked. To counteract the effect of the zero, a pole is inserted into the noise gain  
transfer function by adding the feedback capacitor (CF). The Transimpedance Considerations for High-Speed  
Amplifiers Application Report application report discusses theories and equations that show how to compensate  
a transimpedance amplifier for a particular transimpedance gain and input capacitance. The bandwidth and  
compensation equations from the application report are available in an Excel® calculator. What You Need To  
Know About Transimpedance Amplifiers Part 1 provides a link to the calculator.  
The equations and calculators in the referenced application report and blog posts are used to model the  
bandwidth (f3dB) and noise performance of the OPA3S2859 configured as a TIA. For this setup, to emulate an  
ideal current source, choose an RIN value that is 1 to 10x greater than RF so that the resulting low frequency  
noise gain is closer to 1 V/V than to 2 V/V (RF = 1 kΩ, 10 kΩ, or 100 kΩ, RIN = 10 kΩ, 100 kΩ, or 100 kΩ;  
respectively). 9-2 shows the resultant performance. To maximize bandwidth, make sure to reduce any stray  
parasitic capacitance from the PCB. Increasing RF results in lower bandwidth. To maximize the signal-to-noise  
ratio (SNR) in an optical front-end system, maximize the gain in the TIA stage.  
9.2.3 Application Curves  
3
0
-3  
-6  
-9  
RF = 1 k  
RF = 10 k  
RF = 100 k  
-12  
-15  
1M  
10M  
100M  
Frequency (Hz)  
9-2. Bandwidth vs Frequency  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: OPA3S2859  
 
OPA3S2859  
ZHCSQB4A MAY 2022 REVISED AUGUST 2022  
www.ti.com.cn  
10 Power Supply Recommendations  
The OPA3S2859 operates on supplies from 3.3 V to 5.25 V. The device operates on single-sided supplies, split  
and balanced bipolar supplies, and unbalanced bipolar supplies. Because the OPA3S2859 does not feature rail-  
to-rail inputs or outputs, the input common-mode and output swing ranges are limited at 3.3-V supplies.  
11 Layout  
11.1 Layout Guidelines  
Achieving optimum performance with a high-frequency amplifier, such as the OPA3S2859, requires careful  
attention to board layout parasitics and external component types. Recommendations that optimize performance  
include the following:  
Reduce capacitive coupling between feedback traces. Trace-to-trace capacitance between the three  
feedback connection traces can cause the traces to couple together at high frequency and effect the gain of  
the device. Particularly for high gain feedback configurations, capacitive coupling to feedback paths with  
lower gain can significantly reduce the bandwidth if not properly isolated. For example, in a circuit  
configuration with 100k, 10k, and 1k feedback elements, the 100k gain path can see over 66% reduction in  
bandwidth when using a non-optimized feedback layout. To properly isolate the feedback traces, it is  
important to space the traces out and pour ground plane between the traces to isolate their capacitance;  
additional trace length, however, does add further inductance and capacitance to the traces which can also  
effect performance. Therefore, it is important to balance the feedback area and trace length to best minimize  
the major parasitic effect. A good starting point is to use a design similar to the evaluation module with a  
feedback area of approximately 6 mm × 6 mm. This can then be adjusted depending on circuit limitations and  
needs.  
Minimize parasitic capacitance from the signal I/O pins to ac ground. Parasitic capacitance on the  
output pins can cause instability, where as parasitic capacitance on the input pin reduces the amplifier  
bandwidth. To reduce unwanted capacitance, cut out the power and ground traces under the signal input  
pins, output pins, and exterior feedback trace when possible. A small value isolation resistor between the  
DUT output and feedback network can also help reduce the parasitic loading caused by the feedback trace  
on the output. Otherwise, ground and power planes must be unbroken elsewhere on the board.  
Minimize the distance from the power-supply pins to the high-frequency bypass capacitors. Use high-  
quality, 100-pF to 0.1-µF, C0G and NPO-type decoupling capacitors with voltage ratings at least three times  
greater than the amplifiers maximum power supplies. Place the smallest value capacitors on the same side  
as the DUT. If space constraints force the larger value bypass capacitors to be placed on the opposite side of  
the PCB, use multiple vias on the supply and ground side of the capacitors. This configuration makes sure  
that there is a low-impedance path to the amplifiers power-supply pins across the amplifiers gain bandwidth  
specification. Avoid narrow power and ground traces to minimize inductance between the pins and the  
decoupling capacitors. Larger (2.2-µF to 6.8-µF) decoupling capacitors that are effective at lower frequency  
must be used on the supply pins. Place these decoupling capacitors further from the device. Share the  
decoupling capacitors among several devices in the same area of the printed circuit board (PCB).  
11.2 Layout Examples  
11-1 shows a typical layout around the OPA3S2859 based on the evaluation module. The smallest decoupling  
capacitors were placed as close as possible to the DUT with wide metal area to minimize inductance. Special  
attention was placed on the feedback network layout to optimize the design for a typical application using 1 k,  
10 k, and 100 kfeedback resistors. 11-2 shows more details. The black colored areas under the input and  
feedback traces show the voids cut in the ground plane underneath the traces to minimize capacitance to  
ground as much as possible.  
Copyright © 2022 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: OPA3S2859  
 
 
 
 
OPA3S2859  
ZHCSQB4A MAY 2022 REVISED AUGUST 2022  
www.ti.com.cn  
Ground plane  
removed under input,  
output, and feedback  
traces  
INA+  
SEL1  
VS-  
VS+  
VS+  
PD  
Decoupling  
capacitors placed  
close to DUT  
LTCH_A  
LTCH_B  
SEL0  
VS+  
VS-  
INB+  
Ground isolated  
feedback traces  
11-1. General Layout Example  
11-2 shows an example of a feedback network from the evaluation module optimized to reduce the capacitive  
coupling between the feedback and output traces. Ground plane is poured between each of the feedback traces  
and component footprints as much as possible for the best isolation. A small isoation resistor (RISO) is  
connected between the output and feedback trace to help isolate the trace capacitance from being directly  
connected to the DUT output. Additionally, the ground plane is removed from under the feedback trace to further  
reduce the parasitic capacitance to ground created by the additional trace length required for the feedback  
network.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: OPA3S2859  
 
OPA3S2859  
ZHCSQB4A MAY 2022 REVISED AUGUST 2022  
www.ti.com.cn  
ROUT  
Small resistor to  
RF2  
CF2  
isolate  
feedback trace  
from output  
RF0  
CF0  
Ground pour to  
minimize  
feedback trace  
coupling  
11-2. Feedback Network Layout Recommendations  
Copyright © 2022 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: OPA3S2859  
 
OPA3S2859  
ZHCSQB4A MAY 2022 REVISED AUGUST 2022  
www.ti.com.cn  
12 Device and Documentation Support  
12.1 Device Support  
12.1.1 Development Support  
Texas Instruments, Optical Front-End System Reference Design design guide  
Texas Instruments, LIDAR-Pulsed Time-of-Flight Reference Design Using High-Speed Data Converters  
design guide  
Texas Instruments, LIDAR Pulsed Time of Flight Reference Design design guide  
12.2 Documentation Support  
12.2.1 Related Documentation  
See the following for related documentation:  
Texas Instruments, OPA3S2859 Evaluation Module user's guide  
Texas Instruments, Transimpedance Considerations for High-Speed Amplifiers application report  
Texas Instruments, What You Need To Know About Transimpedance Amplifiers Part 1 blog  
Texas Instruments, What You Need To Know About Transimpedance Amplifiers Part 2 blog  
Texas Instruments, Training Video: How to Design Transimpedance Amplifier Circuits  
Texas Instruments, Training Video: High-Speed Transimpedance Amplifier Design Flow  
Texas Instruments, Training Video: How to Convert a TINA-TI Model into a Generic SPICE Model  
12.3 接收文档更新通知  
要接收文档更新通知请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册即可每周接收产品信息更  
改摘要。有关更改的详细信息请查看任何已修订文档中包含的修订历史记录。  
12.4 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
12.5 Trademarks  
TI E2Eis a trademark of Texas Instruments.  
Excel® is a registered trademark of Microsoft Corporation.  
所有商标均为其各自所有者的财产。  
12.6 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
12.7 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
13 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: OPA3S2859  
 
 
 
 
 
 
 
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
21-Aug-2022  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
OPA3S2859IRTWR  
POPA3S2859IRTWR  
ACTIVE  
ACTIVE  
WQFN  
WQFN  
RTW  
RTW  
24  
24  
3000 RoHS & Green  
3000 TBD  
NIPDAU  
Level-2-260C-1 YEAR  
Call TI  
-40 to 125  
-40 to 125  
O3S2859  
Samples  
Samples  
Call TI  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
21-Aug-2022  
OTHER QUALIFIED VERSIONS OF OPA3S2859 :  
Enhanced Product : OPA3S2859-EP  
NOTE: Qualified Version Definitions:  
Enhanced Product - Supports Defense, Aerospace and Medical Applications  
Addendum-Page 2  
GENERIC PACKAGE VIEW  
RTW 24  
4 x 4, 0.5 mm pitch  
WQFN - 0.8 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
This image is a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4224801/A  
www.ti.com  
PACKAGE OUTLINE  
WQFN - 0.8 mm max height  
PLASTIC QUAD FLATPACK-NO LEAD  
RTW0024B  
4.15  
3.85  
A
B
4.15  
3.85  
PIN 1 INDEX AREA  
C
0.8 MAX  
SEATING PLANE  
0.08 C  
0.05  
0.00  
(0.2) TYP  
2X 2.5  
EXPOSED  
THERMAL PAD  
12  
7
20X 0.5  
6
13  
25  
SYMM  
2X  
2.5  
2.45±0.1  
1
18  
0.3  
24X  
0.18  
19  
0.5  
24  
PIN 1 ID  
(OPTIONAL)  
0.1  
C A B  
SYMM  
0.05  
C
24X  
0.3  
4219135/B 11/2016  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
WQFN - 0.8 mm max height  
PLASTIC QUAD FLATPACK-NO LEAD  
RTW0024B  
(
2.45)  
SYMM  
24  
19  
24X (0.6)  
1
18  
24X (0.24)  
(0.97)  
25  
SYMM  
(3.8)  
20X (0.5)  
(R0.05)  
TYP  
13  
6
(Ø0.2) TYP  
VIA  
7
12  
(0.97)  
(3.8)  
LAND PATTERN EXAMPLE  
SCALE: 20X  
0.07 MAX  
ALL AROUND  
0.07 MIN  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4219135/B 11/2016  
NOTES: (continued)  
3. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).  
www.ti.com  
EXAMPLE STENCIL DESIGN  
WQFN - 0.8 mm max height  
PLASTIC QUAD FLATPACK-NO LEAD  
RTW0024B  
4X( 1.08)  
(0.64) TYP  
19  
24  
(R0.05) TYP  
24X (0.6)  
25  
1
18  
(0.64)  
TYP  
24X (0.24)  
SYMM  
(3.8)  
20X (0.5)  
13  
6
7
12  
METAL  
TYP  
SYMM  
(3.8)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD 25:  
78% PRINTED COVERAGE BY AREA UNDER PACKAGE  
SCALE: 20X  
4219135/B 11/2016  
NOTES: (continued)  
4. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

POPA4992IPWR

四路、40V、10.6MHz、轨至轨输入/输出、低失调电压、低噪声运算放大器 | PW | 14 | -40 to 125
TI

POPA4992QDRQ1

汽车类、四通道、40V、10.6MHz、轨到轨输入和输出、低失调电压、低噪声运算放大器 | D | 14 | -40 to 125
TI

POPA827AID

Low-Noise, High-Precision, JFET-Input, OPERATIONAL AMPLIFIER
BB

POPA828IDGNT

高速(45MHz 和 150V/μs)、36V、低噪声 (4nV/√Hz) RRO JFET 运算放大器 | DGN | 8 | -40 to 125
TI

POPA928DR

具有 RRIO 的高电压、毫微微安输入偏置精密 e-trim™ 运算放大器 | D | 8 | -40 to 85
TI

POPR27

Single-Turn Continuous Rotation Analog Displacement Sensor
VISHAY

POPR271103A345B

Single-Turn Continuous Rotation Analog Displacement Sensor
VISHAY

POPR271103B345B

Single-Turn Continuous Rotation Analog Displacement Sensor
VISHAY

POPR271103C345B

Single-Turn Continuous Rotation Analog Displacement Sensor
VISHAY

POPR271103D345B

Single-Turn Continuous Rotation Analog Displacement Sensor
VISHAY

POPR271472A345B

Single-Turn Continuous Rotation Analog Displacement Sensor
VISHAY

POPR271472B345B

Single-Turn Continuous Rotation Analog Displacement Sensor
VISHAY