PT3668 [TI]

30-A Dual Output Isolated DC/DC Converter; 30 -A双输出隔离式DC / DC转换器
PT3668
型号: PT3668
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

30-A Dual Output Isolated DC/DC Converter
30 -A双输出隔离式DC / DC转换器

转换器
文件: 总15页 (文件大小:309K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PT3660 Series  
30-A Dual Output Isolated  
DC/DC Converter  
SLTS181 OCTOBER 2002  
Features  
Dual Outputs  
Dual Logic On/Off Control  
Over-Temperature Shutdown  
Over-Voltage Protection  
(Coordinated Shutdown)  
Under-Voltage Lockout  
Input Differential EMI Filter  
Solderable Copper Case  
Safety Approvals:  
UL1950  
(Independantly Regulated)  
Power-up/Down Sequencing  
Input Voltage Range:  
36V to 75V  
1500 VDC Isolation  
Temp Range: –40° to 100°C  
High Efficiency: 88%  
Fixed Frequency Operation  
Over-Current Protection  
(Both Outputs)  
CSA 22.2 950  
Description  
Ordering Information  
protection, and an input under-  
voltage lockout. In addition, both  
output voltages are designed to meet  
the power-up/power-down sequenc-  
ing requirements of popular DSP  
ICs.  
The PT3660 series is housed in  
space-saving solderable copper case.  
The package does not require a  
heatsink and is available in both  
vertical and horizontal configura-  
tions, including surface mount. The  
‘N’ configuration occupies less than 2  
in² of PCB area.  
Pt. No.  
Vo1/Vo2  
The PT3660 Excalibur™ Series  
is a 30-A rated, dual-output isolated  
DC/DC converter that combines  
state-of-the-art power conversion  
technology with unparalleled flex-  
ibility. These modules operate from  
a standard telecom (–48V) central  
office (CO) supply to produce two  
independantly regulated outputs.  
The PT3660 series is characterized  
with high efficiencies and ultra-fast  
transient response, and incorporates  
many features to facilitate system  
integration. These include a flexible  
“On/Off” enable control, output  
current limit, over-temperature  
PT3661o  
PT3662o  
PT3663o  
PT3665o  
PT3666o  
PT3667o  
PT3668o  
= 5.0/3.3 Volts  
= 3.3/2.5 Volts  
= 3.3/1.8 Volts  
= 3.3/1.5 Volts  
= 2.5/1.8 Volts  
= 5.0/1.8 Volts  
= 3.3/1.2 Volts  
PT Series Suffix  
(PT1234x)  
Case/Pin  
Order  
Package  
Configuration  
Suffix  
Code  
Vertical  
Horizontal  
SMD  
N
A
C
(EKD)  
(EKA)  
(EKC)  
This product is pin-compatible  
with the PT4660 series.  
(Reference the applicable package code draw-  
ing for the dimensions and PC board layout)  
Typical Application  
V1 Adjust  
V2 Adjust  
20  
13  
Vo 2 adj  
Vo1 adj  
Vo 1  
Vo 2  
+VIN  
9–12  
Vo1  
1
3
+Vin  
21–24  
Vo2  
PT3660  
L
O
A
D
L
O
A
D
EN 1*  
4
EN  
2
–V IN  
C O M  
2
14–19  
–Vin  
COM  
* Inverted logic  
For technical support and more information, see inside back cover or visit www.ti.com  
PT3660 Series  
30-A Dual Output Isolated  
DC/DC Converter  
SLTS181 OCTOBER 2002  
Pin-Out Information  
Pin Function  
On/Off Logic  
Pin 3 Pin 4  
Output Status  
Pin  
Function  
Pin  
Function  
1
2
3
4
5
6
7
8
9
+V  
-V  
10  
+Vo1  
in  
19  
COM  
1
0
×
×
1
0
Off  
On  
Off  
11  
12  
13  
14  
15  
16  
17  
18  
+Vo1  
in  
20  
21  
22  
23  
24  
25  
26  
Vo2 Adjust  
+Vo2  
EN 1  
+Vo1  
EN 2  
Vo1 Adjust  
COM  
COM  
COM  
COM  
COM  
+Vo2  
TEMP  
+Vo2  
Notes:  
Logic 1 =Open collector  
Logic 0 = –Vin (pin 2) potential  
AUX  
+Vo2  
Do Not Connect  
Do Not Connect  
+Vo1  
Do Not Connect  
Do Not Connect  
For positive Enable function, connect pin 3  
to pin 2 and use pin 4.  
For negative Enable function, leave pin 4  
open and use pin 3.  
Note: Shaded functions indicate signals that are  
referenced to the input (-Vin) potential.  
Pin Descriptions  
+Vin: The positive input supply for the module with  
respect to –Vin. When powering the module from a  
–48V telecom central office supply, this input is  
connected to the primary system ground.  
voltage, and is independant of the enable logic status.  
(Note: A load impedance of less than 1Mwill adversly  
affect the module’s over-temperature shutdown threshold.  
Use a high-impedance input when monitoring this  
signal.)  
–Vin: The negative input supply for the module, and  
the 0VDC reference for the EN 1, EN 2, TEMP, and  
AUX signals. When the module is powered from a  
+48V supply, this input is connected to the 48V–Return.  
AUX: Produces a regulated output voltage of 11.6V  
5%, which is referenced to –Vin. The current drawn  
from the pin must be limited to 10mA. The voltage  
may be used to indicate the output status of the  
module to a primary referenced circuit, or power a  
low-current amplifer.  
EN 1: The negative logic input that enables the  
module output. This pin is TTL compatible and  
referenced to –Vin. A logic ‘0’ at this pin enables the  
modules outputs. A logic ‘1’ or high impedance  
disables the modules outputs. If not used, the pin  
must be connected to –Vin.  
Vo1: The higher regulated output voltage, which is  
referenced to the COM node.  
Vo2: The lower regulated output voltage, which is  
EN 2: The positive logic input that enables the  
module output. This pin is TTL compatible and  
referenced to –Vin. A logic ‘1’ or high impedance  
enables the modules outputs. If not used, the pin  
should be left open circuit.  
referenced to the COM node.  
COM: The secondary return reference for the modules  
two regulated output voltages. It is DC isolated from  
the input supply pins.  
Vo1 Adjust: Using a single resistor, this pin allows Vo1  
to be adjusted higher or lower than the preset value.  
If not used, this pin should be left open circuit.  
TEMP: This is the output voltage produced by the  
modules internal temperature sensor. The voltage at  
this pin is referenced to –Vin and rises approximately  
10mV/°C from an intital value of 0.1VDC at –40°C  
(Vtemp =0.5 + 0.01·Tsense). The signal is available  
whenever the module is supplied with a valid input  
Vo2 Adjust: Using a single resistor, this pin allows Vo2  
to be adjusted higher or lower than the preset value.  
If not used, this pin should be left open circuit.  
For technical support and more information, see inside back cover or visit www.ti.com  
PT3660 Series  
30-A Dual Output Isolated  
DC/DC Converter  
SLTS181 OCTOBER 2002  
Specifications (Unless otherwise stated, Ta =25°C, Vin =48V, & Io1=Io2=10A)  
PT3660 SERIES  
Typ  
Characteristics  
Symbols  
Conditions  
Min  
Max  
Units  
Output Current  
Io1, Io2  
Vo1  
Vo1 3.3V  
Vo1 =5.0V  
All voltages  
Vo1 3.3V  
Vo1 =5.0V  
0
0
0
0
0
15  
10  
15  
30  
25  
A
A
A
Vo2  
Io1+Io2  
Total (both outputs)  
Input Voltage Range  
Set Point Voltage Tolerance  
Temperature Variation  
Line Regulation  
Vin  
Votol  
Regtemp  
Regline  
Regload  
36  
48  
1
0.5  
5
2
2
2
2
75  
2
10  
10  
10  
10  
5
V
%Vo  
%Vo  
mV  
–40 to +100°C Case, Io1 =Io2 =0A  
Over Vin range with Io1=Io2=5A  
1A Io1 Io1max, Io2 =1A  
1A Io2 Io1max, Io1 =1A  
1A Io2 Io1max, Io1 =1A  
1A Io1 Io1max, Io2 =1A  
Includes set-point, line load,  
–40°C to +100°C case  
Load Regulation  
Vo1  
Vo2  
Vo1  
Vo2  
Vo1  
Vo2  
PT3661  
PT3662  
PT3663  
PT3665  
PT3666  
PT3667  
PT3668  
mV  
mV  
Cross Regulation  
Total Output Variation  
Efficiency  
Regcross  
Votol  
η
2
2
3
3
%Vo  
88  
87  
86  
86  
85  
88  
86  
%
Vo Ripple (pk-pk)  
V
r
Io1=Io2=5A, 20MHz bandwidth  
Vo=5V  
Vo<5V  
75  
50  
mVpp  
Transient Response  
ttr  
1A/µs load step from 50% to 100% Iomax  
(either output)  
25  
100  
µSec  
%Vo  
6.0  
Current Limit  
Output Rise Time  
Output Over-Voltage Protection  
Switching Frequency  
Under-Voltage-Lockout  
ILIM  
ton  
OVP  
fs  
Each output with other unloaded  
At turn-on to within 90% of Vo  
Either output; shutdown and latch off  
15.5  
280  
30  
18  
5
125  
34  
32  
10  
320  
36  
A
mSec  
%Vo  
kHz  
(1)  
UVLO  
Rising  
Falling  
V
Internal Input Capacitance  
Cin  
2
µF  
On/Off Control  
Input High Voltage  
Input Low Voltage  
Input Low Current  
Referenced to –Vin  
VIH  
VIL  
IIL  
3.5  
0
0.8  
V
(2)  
0
0.5  
3
5
mA  
mA  
µF  
Standby Current  
Iin standby  
Cout  
Viso  
C iso  
Riso  
Pins 2, 3, & 4 connected  
Per each output  
External Output Capacitance  
Primary/Secondary Isolation  
5,000  
1500  
V
1500  
pF  
MΩ  
10  
(3)  
(3)  
Temperature Sense  
Vtemp  
Output voltage at temperatures:-  
–40°C  
100°C  
0.1  
1.5  
V
(4)  
Operating Temperature Range  
Over-Temperature Protection  
Solder Reflow Temperature  
Storage Temperature  
Mechanical Shock  
Mechanical Vibration  
T
OTP  
Treflow  
Over Vin range  
Case temperature (auto restart)  
Surface temperature of module pins or case  
–40  
100  
–40  
500  
85  
°C  
°C  
°C  
°C  
Gs  
a
(5)  
215  
125  
T
s
Per Mil-STD-883D, Method 2002.3  
Per Mil-STD-883D, Method 2007.2, Suffix N  
(6)  
(6)  
10  
Gs  
20–2,000Hz  
Suffixes A, C  
20  
Weight  
Flammability  
90  
grams  
Materials meet UL 94V-0  
Notes: (1) This is a fixed parameter. Adjusting Vo1 or Vo2 higher will increase the module’s sensitivity to over-voltage detection. For more information, see the  
application note on output voltage adjustment.  
(2) The EN1 and EN2 control inputs (pins 3 & 4) have internal pull-ups and may be controlled with an open-collector (or open-drain) transistor. Both  
inputs are diode protected and can be connected to +Vin. The maximum open-circuit voltage is 5.4V.  
(3) Voltage output at “TEMP” pin is defined by the equation:- VTEMP = 0.5 + 0.01·T, where T is in °C. See pin descriptions for more information.  
(4) See SOA curves or consult the factory for the appropriate derating.  
(5) During solder reflow of SMD package version do not elevate the module case, pins, or internal component temperatures above a peak of 215°C. For  
further guidance refer to the application note, “Reflow Soldering Requirements for Plug-in Power Surface Mount Products,” (SLTA051).  
(6) The case pins on the through-holed package types (suffixes N & A) must be soldered. For more information see the applicable package outline drawing.  
For technical support and more information, see inside back cover or visit www.ti.com  
Typical Characteristics  
PT3661  
30-A Dual Output Isolated  
DC/DC Converter  
SLTS181 OCTOBER 2002  
PT3661 (V1/V2 =5.0V/3.3V); Vin =48V (See Notes A & B)  
Efficiency vs I1out; I2out @1A, 3A, and 6A  
Power Dissipation vs (Io1 + Io2)  
20  
16  
12  
8
100  
90  
I
2 out  
80  
70  
60  
50  
6
3
1
4
0
0
6
12  
18  
24  
30  
0
3
6
9
12  
15  
Io1 + Io2 (A)  
I1 out (A)  
Safe Operating Area: (Io1 + Io2)  
Efficiency vs I1out; I2out @9A, 12A, and 15A  
90  
80  
70  
60  
50  
40  
30  
20  
100  
90  
80  
70  
60  
50  
Airflow  
I2 out  
9
300LFM  
200LFM  
100LFM  
Nat conv  
12  
15  
0
5
10  
15  
20  
25  
30  
0
3
6
9
12  
15  
Io1 + Io2 (A)  
I1 out (A)  
Cross Regulation: V1out vs I2out @I1out =1A  
5.05  
5.025  
5
4.975  
4.95  
0
3
6
9
12  
15  
I2 out (A)  
Cross Regulation: V2out vs I1out @I2out =1A  
3.32  
3.31  
3.3  
3.29  
3.28  
0
3
6
9
12  
15  
I1 out (A)  
Note A: All Characteristic data in the above graphs has been developed from actual products tested at 25°C. This data is considered typical data for the converter.  
Note B: SOA curves represent operating conditions at which internal components are at or below manufacturer’s maximum rated operating temperatures.  
For technical support and more information, see inside back cover or visit www.ti.com  
Typical Characteristics  
PT3662—48V  
30-A Dual Output Isolated  
DC/DC Converter  
SLTS181 OCTOBER 2002  
PT3662 (V1/V2 =3.3V/2.5V); Vin =48V (See Notes A & B)  
Efficiency vs I1out; I2out @1A, 3A, and 6A  
Power Dissipation vs (Io1 + Io2)  
90  
20  
16  
12  
8
85  
I2 out  
6
3
1
80  
75  
70  
4
0
0
3
6
9
12  
15  
0
6
12  
18  
24  
30  
I1 out (A)  
Io1 + Io2 (A)  
Safe Operating Area: (Io1 + Io2)  
Efficiency vs I1out; I2out @9A, 12A, and 15A  
90  
85  
80  
75  
70  
90  
80  
70  
60  
50  
40  
30  
20  
Airflow  
I2 out  
300LFM  
200LFM  
100LFM  
Nat conv  
9
12  
15  
0
3
6
9
12  
15  
0
5
10  
15  
20  
25  
30  
I1 out (A)  
Io1 + Io2 (A)  
Cross Regulation: V1out vs I2out @I1out =1A  
3.36  
3.33  
3.30  
3.27  
3.24  
0
3
6
9
12  
15  
I2 out (A)  
Cross Regulation: V2out vs I1out @I2out =1A  
2.530  
2.515  
2.500  
2.485  
2.470  
0
3
6
9
12  
15  
I1 out (A)  
Note A: All Characteristic data in the above graphs has been developed from actual products tested at 25°C. This data is considered typical data for the converter.  
Note B: SOA curves represent operating conditions at which internal components are at or below manufacturer’s maximum rated operating temperatures.  
For technical support and more information, see inside back cover or visit www.ti.com  
Typical Characteristics  
PT366348V  
30-A Dual Output Isolated  
DC/DC Converter  
SLTS181 OCTOBER 2002  
PT3663 (V1/V2 =3.3V/1.8V); Vin =48V (See Notes A & B)  
Efficiency vs I1out; I2out @1A, 3A, and 6A  
Power Dissipation vs (Io1 + Io2)  
90  
20  
16  
12  
8
85  
I2 out  
6
80  
75  
70  
3
1
4
0
0
3
6
9
12  
15  
0
6
12  
18  
24  
30  
I1 out (A)  
Io1 + Io2 (A)  
Safe Operating Area: (Io1 + Io2)  
Efficiency vs I1out; I2out @9A, 12A, and 15A  
90  
85  
80  
75  
70  
90  
80  
70  
60  
50  
40  
30  
20  
Airflow  
I2 out  
300LFM  
200LFM  
100LFM  
Nat Conv  
9
12  
15  
0
5
10  
15  
20  
25  
30  
0
3
6
9
12  
15  
Io1 + Io2 (A)  
Iout (A)  
Cross Regulation: V1out vs I2out @I1out =1A  
3.36  
3.34  
3.32  
3.3  
3.28  
3.26  
3.24  
0
3
6
9
12  
15  
I2 out (A)  
Cross Regulation: V2out vs I1out @I2out =1A  
1.82  
1.81  
1.8  
1.79  
1.78  
0
3
6
9
12  
15  
I2 out (A)  
Note A: All Characteristic data in the above graphs has been developed from actual products tested at 25°C. This data is considered typical data for the converter.  
Note B: SOA curves represent operating conditions at which internal components are at or below manufacturer’s maximum rated operating temperatures.  
For technical support and more information, see inside back cover or visit www.ti.com  
Typical Characteristics  
PT366548V  
30-A Dual Output Isolated  
DC/DC Converter  
SLTS181 OCTOBER 2002  
PT3665 (V1/V2 =3.3V/1.5V); Vin =48V (See Notes A & B)  
Efficiency vs I1out; I2out @1A, 3A, and 6A  
Power Dissipation vs (Io1 + Io2)  
100  
20  
16  
12  
8
90  
I2 out  
80  
6
3
1
70  
60  
50  
4
0
0
3
6
9
12  
15  
0
6
12  
18  
24  
30  
I1 out (A)  
Io1 + Io2 (A)  
Safe Operating Area: (Io1 + Io2)  
Efficiency vs I1out; I2out @9A, 12A, and 15A  
100  
90  
80  
70  
60  
50  
90  
80  
70  
60  
50  
40  
30  
20  
Airflow  
I2 out  
9
300LFM  
200LFM  
100LFM  
Nat Conv  
12  
15  
0
3
6
9
12  
15  
0
5
10  
15  
20  
25  
30  
I2 out (A)  
Io1 + Io2 (A)  
Cross Regulation: V1out vs I2out @I1out =1A  
3.32  
3.31  
3.3  
3.29  
3.28  
0
3
6
9
12  
15  
I2 out (A)  
Cross Regulation: V2out vs I1out @I2out =1A  
1.51  
1.505  
1.5  
1.495  
1.49  
0
3
6
9
12  
15  
I1 out (A)  
Note A: All Characteristic data in the above graphs has been developed from actual products tested at 25°C. This data is considered typical data for the converter.  
Note B: SOA curves represent operating conditions at which internal components are at or below manufacturer’s maximum rated operating temperatures.  
For technical support and more information, see inside back cover or visit www.ti.com  
Typical Characteristics  
PT366648V  
30-A Dual Output Isolated  
DC/DC Converter  
SLTS181 OCTOBER 2002  
PT3666 (V1/V2 =2.5V/1.8V); Vin =48V (See Notes A & B)  
Efficiency vs I1out; I2out @1A, 3A, and 6A  
Power Dissipation vs I1out and I2out  
100  
10  
8
90  
I2 out  
80  
6
6
3
1
70  
4
60  
50  
2
0
0
3
6
9
12  
15  
0
3
6
9
12  
15  
I1 out (A)  
Io1 + Io2 (A)  
Efficiency vs I1out; I2out @9A, 12A, and 15A  
Safe Operating Area: (Io1 + Io2)  
100  
90  
80  
70  
60  
50  
90  
80  
70  
60  
50  
40  
30  
20  
Airflow  
I2 out  
300LFM  
200LFM  
100LFM  
Nat Conv  
9
12  
15  
0
3
6
9
12  
15  
0
5
10  
15  
20  
25  
30  
I1 out (A)  
Io1 + Io2 (A)  
Cross Regulation: V1out vs I2out @I1out =1A  
2.52  
2.51  
2.5  
2.49  
2.48  
0
3
6
9
12  
15  
I2 out (A)  
Cross Regulation: V2out vs I1out @I2out =1A  
1.81  
1.805  
1.8  
1.795  
1.79  
0
3
6
9
12  
15  
I1 out (A)  
Note A: All Characteristic data in the above graphs has been developed from actual products tested at 25°C. This data is considered typical data for the converter.  
Note B: SOA curves represent operating conditions at which internal components are at or below manufacturer’s maximum rated operating temperatures.  
For technical support and more information, see inside back cover or visit www.ti.com  
Typical Characteristics  
PT366748V  
30-A Dual Output Isolated  
DC/DC Converter  
SLTS181 OCTOBER 2002  
PT3667 (V1/V2 =5V/1.8V); Vin =48V (See Notes A & B)  
Efficiency vs I1out; I2out @1A, 3A, and 6A  
Power Dissipation vs (Io1 + Io2)  
100  
20  
16  
12  
8
90  
I2 out  
80  
6
3
1
70  
60  
50  
4
0
0
3
6
9
12  
15  
0
6
12  
18  
24  
30  
I1 out (A)  
Io1 + Io2 (A)  
Safe Operating Area: (Io1 + Io2)  
Efficiency vs I1out; I2out @9A, 12A, and 15A  
90  
80  
70  
60  
50  
40  
30  
20  
100  
90  
80  
70  
60  
50  
Airflow  
I2 out  
9
300LFM  
200LFM  
100LFM  
Nat conv  
12  
15  
0
3
6
9
12  
15  
0
5
10  
15  
20  
25  
30  
I1 out (A)  
Io1 + Io2 (A)  
Cross Regulation: V1out vs I2out @I1out =1A  
5.02  
5.01  
5
4.99  
4.98  
0
3
6
9
12  
15  
I2 out (A)  
Cross Regulation: V2out vs I1out @I2out =1A  
1.81  
1.805  
1.8  
1.795  
1.79  
0
3
6
9
12  
15  
I1 out (A)  
Note A: All Characteristic data in the above graphs has been developed from actual products tested at 25°C. This data is considered typical data for the converter.  
Note B: SOA curves represent operating conditions at which internal components are at or below manufacturer’s maximum rated operating temperatures.  
For technical support and more information, see inside back cover or visit www.ti.com  
Typical Characteristics  
PT366848V  
30-A Dual Output Isolated  
DC/DC Converter  
SLTS181 OCTOBER 2002  
PT3668 (V1/V2 =3.3V/1.2V); Vin =48V (See Notes A & B)  
Efficiency vs I1out; I2out @1A, 3A, and 6A  
Power Dissipation vs (Io1 + Io2)  
100  
20  
16  
12  
8
90  
I
2 out  
80  
70  
60  
50  
6
3
1
4
0
0
6
12  
18  
24  
30  
0
3
6
9
12  
15  
Io1 + Io2 (A)  
I1 out (A)  
Efficiency vs I1out; I2out @9A, 12A, and 15A  
Safe Operating Area: (Io1 + Io2)  
90  
80  
70  
60  
50  
40  
30  
20  
100  
90  
80  
70  
60  
50  
Airflow  
I2 out  
300LFM  
200LFM  
100LFM  
Nat Conv  
9
12  
15  
0
5
10  
15  
20  
25  
30  
0
3
6
9
12  
15  
Io1 + Io2 (A)  
I1 out (A)  
Cross Regulation: V1out vs I2out @I1out =1A  
3.32  
3.31  
3.3  
3.29  
3.28  
0
3
6
9
12  
15  
I2 out (A)  
Cross Regulation: V2out vs I1out @I2out =1A  
1.21  
1.205  
1.2  
1.195  
1.19  
0
3
6
9
12  
15  
I1 out (A)  
Note A: All Characteristic data in the above graphs has been developed from actual products tested at 25°C. This data is considered typical data for the converter.  
Note B: SOA curves represent operating conditions at which internal components are at or below manufacturer’s maximum rated operating temperatures.  
For technical support and more information, see inside back cover or visit www.ti.com  
Application Notes  
PT3660, PT4660 & PT4680 Series  
Operating Features & System Considerations for the  
PT3660/4660/4680 Dual-Output Converters  
Under-Voltage Lock-Out  
Over-Current Protection  
The dual-outputs of the PT3660, PT4660, and PT4680  
series of DC/DC converters have independent output  
voltage regulation and current limit control. Applying a  
load current in excess of the current limit threshold at  
either output will cause the respective output voltage to  
drop. However, the voltage at Vo2 is derived from Vo1.  
Therefore a current limit fault on Vo1 will also cause Vo2  
to drop. Conversely, a current limit fault applied to Vo2  
will only cause Vo2 voltage to drop, and Vo1 will remain  
in regulation.  
The Under-Voltage Lock-Out (UVLO) circuit prevents  
operation of the converter whenever the input voltage to  
the module is insufficient to maintain output regulation.  
The UVLO has approximately 2V of hysterisis. This is  
to prevent oscillation with a slowly changing input volt-  
age. Below the UVLO threshold the module is off and  
the enable control inputs, EN1 and EN2 are inoperative.  
Primary-Secondary Isolation  
The PT4460/80 and PT3660 series of DC/DC converters  
incorporate electrical isolation between the input termi-  
nals (primary) and the output terminals (secondary). All  
converters are production tested to a withstand voltage  
of 1500VDC. The isolation complies with UL60950 and  
EN60950, and the requirements for operational isolation.  
This allows the converter to be configured for either a  
positive or negative input voltage source.  
The current limit circuitry incorporates a limited amount  
of foldback. The fault current flowing into an absolute  
short circuit is therefore slightly less than the current  
limit threshold. Recovery from a current limit fault is  
automatic and the converter will not be damaged by a  
continuous short circuit at either output.  
Output Over-Voltage Protection  
The regulation control circuitry for these modules is  
located on the secondary (output) side of the isolation  
barrier. Control signals are passed between the primary  
and secondary sides of the converter via a proprietory  
magnetic coupling scheme. This eliminates the use of  
opto-couplers. The data sheet ‘Pin Descriptions’ and  
‘Pin-Out Information’ provides guidance as to which  
reference (primary or secondary) that must be used for  
each of the external control signals.  
Each output is monitored for over voltage (OV). For fail  
safe operation and redundancy, the OV fault detection  
circuitry uses a separate reference to the voltage regula-  
tion circuits. The OV threshold is fixed, and set nominally  
25% higher than the set-point output voltage. If either  
output exceeds the threshold, the converter is shutdown  
and must be actively reset. The OV protection circuit  
can be reset by momentarily turning the converter off.  
This is accomplished by either cycling one of the output  
enable control pins (EN1 or EN2), or by removing the  
input power to the converter. Note: If Vo1 or Vo2 is adjusted  
to a higher voltage, the margin between the respective steady-  
state output voltage and its OV threshold is reduced. This can  
make the module sensitive to OV fault detection, that may  
result from random noise and load transients.  
Fuse Requirements  
To comply with safety agency requirements, these con-  
verters must be operated with an external input fuse.  
A fast-acting 250-V fuse is required. Table 1-1 gives  
the recommended current rating for the product series  
being used.  
Over-Temperature Protection  
Table 1-1; Recommended Fuse Rating  
The converter has an internal temperature sensor. At a  
case temperature of approximately 115°C the converter  
will shut down, and will automatically restart when the  
temperature returns to about 100°C. The analog voltage  
generated by the sensor is also made available at the  
‘TEMP’ output (pin 5), and can be monitored by the  
host system for diagnostic purposes. Consult the ‘Pin  
Descriptions’ section of the data sheet for further infor-  
mation on this feature.  
Product  
Series  
Input  
Bus  
Total  
Iout  
Fuse  
Rating  
PT4660  
PT4680  
PT3660  
48V  
24V  
48V  
20A  
20A  
30A  
7A  
10A  
7A  
For technical support and more information, see inside back cover or visit www.ti.com  
Application Notes  
PT3660, PT4660 & PT4680 Series  
the outputs of the converter. An example of this configu-  
ration is detailed in Figure 2-2. Note: The converter will  
only produce and output voltage if a valid input voltage is  
applied to Vin.  
Using the On/Off Enable Controls on the PT3660/  
4660/4680 Series of Dual-Output Converters  
The PT3660/4660 (48V input) and PT4680 (24V input)  
series of dual-output DC/DC converters incorporate  
both positive and negative logic Output Enable controls.  
EN1 (pin 3) is the positive enable input, and EN2 (pin 4)  
is the negative enable input. Both inputs are TTL logic  
compatible, and are electrically referenced to -Vin (pin 2)  
on the primary (input) side of the converter. A pull-up  
resistor is not required, but may be added if desired.  
Adding a pull-up resistor from either input, up to +Vin,  
will not damage the converter.  
Figure 2-2; Negative Enable Configuration  
3
EN 1*  
4
EN  
2
PT4660  
1
=Outputs On  
BSS138  
– VIN  
Automatic (UVLO) Power-Up  
2
–Vin  
Connecting EN1 (pin 3) to -Vin (pin 2) and leaving EN2  
(pin 4) open-circuit configures the converter for automatic  
power up. (See data sheet “Typical Application”). The  
converter control circuitry incorporates an “Under Voltage  
Lockout” (UVLO) function, which disables the output  
until the minimum specified input voltage is present at  
Vin. (See data sheet Specifications). The UVLO circuitry  
ensures a clean transition during power-up and power-  
down, allowing the converter to tolerate a slow-rising  
input voltage. For most applications EN1 and EN2, can  
be configured for automatic power-up.  
On/Off Output Voltage Sequencing  
The output voltages from these dual-output DC/DC  
converters are independantly regulated, and are inter-  
nally sequenced to meet the power-up requirements of  
popular microprocessor and DSP chipsets. Figure 2-3  
shows the waveforms from a PT4661 after the converter  
is enabled at t=0s. During power-up, the Vo1 and Vo2  
voltage waveforms typically track within 0.4V prior to  
Vo2 reaching regulation. The waveforms were measured  
with a 5-Adc resistive load at each output, and with a  
48-VDC input source applied. The converter typically  
produces a fully regulated output within 25ms. The  
actual turn-on time will vary slightly with input voltage,  
but the power-up sequence is independent of the load at  
either output.  
Positive Output Enable (Negative Inhibit)  
To configure the converter for a positive enable function,  
connect EN1 (pin 3) to -Vin (pin 2), and apply the system  
On/Off control signal to EN2 (pin 4). In this configura-  
tion, a logic ‘0’ (-Vin potential) applied to pin 4 disables  
the converter outputs. An example of this configuration  
is detailed in Figure 2-1.  
Figure 2-1; Positive Enable Configuration  
Figure 2-3; Vo1, Vo2 Power-Up Sequence  
Vo1 (2V/Div)  
Vo2 (2V/Div)  
3
EN 1*  
4
EN  
2
PT4660  
IIN (0.5A/Div)  
1
=Outputs Off  
VIN  
BSS138  
2
–Vin  
0
5
10  
15  
20  
25  
30  
35  
t (milliseconds)  
During turn-off, both outputs drop rapidly due to the  
discharging effect of actively switched rectifiers. The  
voltage at Vo1 remains higher than Vo2 during this  
period. The discharge time is typically 100µs, but will  
vary with the amount of external load capacitance.  
Negative Output Enable (Positive Inhibit)  
To configure the converter for a negative enable function,  
EN2 (pin 4) is left open circuit, and the system On/Off  
control signal is applied to EN1 (pin 3). A logic ‘0’ (-Vin  
potential) must then be applied to pin 3 in order to enable  
For technical support and more information, see inside back cover or visit www.ti.com  
Application Notes  
PT3660, PT4660 & PT4680 Series  
Adjusting the Output Voltage of the PT3660,  
PT4660, and PT4680 Dual-Output Converters  
3.Vo must always be at least 0.3V lower than Vo1.  
2
4. The over-voltage protection threshold is fixed, and is set  
nominally 25% above the set-point output voltage.  
Adjusting Vo1 or Vo2 higher will reduce the voltage  
margin between the respective steady-state output  
voltage and its over-voltage (OV) protection threshold.  
This could make the module sensitive to OV fault  
detection, as a result of random noise and load tran-  
sients.  
The dual output voltages from the PT3660/PT4660  
(48V Bus), and PT4680 (24V Bus) series of DC/DC  
converters can be independently adjusted by up to 10%,  
higher or lower than the factory trimmed pre-set voltage.  
The adjustment requires the addition of a single external  
1
resistor . Table 3-1 gives the adjustment range of Vo1  
and Vo2 for each model in the series as Va(min) and  
Va(max).  
Note: An OV fault is a latched condition that shuts down  
both outputs of the converter. The fault can only be cleared  
by cycling one of the Enable control pins (EN1* / EN2), or  
by momentarily removing the input power to the module.  
Vo1 Adjust Down: Add a resistor (R1), between pin 13  
2
(V1 Adj) and pin 12 (Vo1) .  
5.Never connect capacitors to either theAdVjoust or  
1
Vo1 Adjust Up: To increase the output, add a resistor R2  
Vo2 Adjust pins. Any capacitance added to these control  
pins will affect the stability of the respective regulated  
output.  
2, 4  
between pin 13 (V1 Adj) and pin 14 (COM)  
.
Vo2 Adjust Down: Add a resistor (R3) between pin 20  
2
(V2 Adj) and pin 21 (Vo2) .  
The adjust up and adjust down resistor values can also be  
calculated using the following formulas. Be sure to select  
the correct formula parameter from Table 3-1 for the  
output and model being adjusted.  
Vo2 Adjust Up: Add a resistor R4 between pin 20  
(V2 Adj) and pins 19 (COM)  
2, 4  
.
Ko (Va – Vr )  
Vr (Vo – Va)  
Refer to Figure 3-1 and Table 3-2 for both the placement and  
value of the required resistor.  
(R1) or (R3)  
R2 or R4  
=
=
– Rs  
– Rs  
k  
kΩ  
Ko  
Va – Vo  
Notes:  
1.Adjust resistors are not required ifanVdoVo2 are to  
1
remain at their respective nominal set-point voltage.  
In this case, V1 Adj (pin 13) and V2 Adj (pin 20) are  
left open-circuit  
Where: Vo = Original output voltage, (Vo1 or Vo2)  
Va = Adjusted output voltage  
Vr = The reference voltage from Table 3-1  
Ko = The multiplier constant in Table 3-1  
Rs = The series resistance from Table 3-1  
2.Use only  
a single 1% resistor in eith(eRr1) tohreR2  
location to adjust Vo1, and in the (R3) or R4 location  
to adjust Vo2. Place the resistor as close to the converter  
as possible.  
Figure 3-1; Placement of Output Adjust Resistors  
Vo1  
Vo2  
9–12  
Vo 1  
Vo 2  
+ VIN  
1
+Vin  
21–24  
(R1)  
(R3)  
PT4660  
13  
20  
Vo 1 adj  
Vo 2 adj  
L
O
A
D
L
O
A
D
3
EN 1*  
4
EN  
2
– VIN  
2
–Vin  
R 2  
R 4  
C O M  
14–19  
COM  
*
Inverted logic  
For technical support and more information, see inside back cover or visit www.ti.com  
Application Notes continued  
PT3660, PT4660 & PT4680 Series  
Table 3-1; ADJUSTMENT RANGE AND FORMULA PARAMETERS  
Vo1 Bus  
Vo2 Bus (2)  
PT4681  
PT4661  
(R3)/R4  
24V Bus Pt.# PT4681/7  
48V Bus Pt.# PT4661/7  
PT4682/3/5  
PT4662/3/5  
(R1)/R2  
PT4688  
PT4668  
(R1)/R2  
PT4686  
PT4666  
(R1)/R2  
PT4682  
PT4662  
(R3)/R4  
PT4683/6/7  
PT4663/6/7  
(R3)/R4  
PT4685  
PT4665  
(R3)/R4  
PT4688  
PT4668  
(R3)/R4  
Adj. Resistor  
(R1)/R2  
Vo(nom)  
Va(min)  
Va(max)  
Vr  
Ko (V·k)  
Rs (k)  
5.0V  
4.5V  
5.5V  
2.5V  
1.248  
20.0  
3.3V  
2.97V  
3.63V  
1.65V  
8.234  
20.0  
3.3V  
2.97V  
3.63V  
2.5V  
10.96  
4.99  
2.5V  
2.25V  
2.75V  
1.25  
6.24  
20.0  
3.3V  
2.97V  
3.63V  
1.5V  
1.8  
2.5V  
2.25V  
2.75V  
1.5V  
2.0  
1.8V  
1.62V  
1.98V  
1.5V  
1.9  
1.5V  
1.35  
1.65  
TBD  
TBD  
TBD  
1.2V  
1.08  
1.32  
0.6V  
0.726  
4.22  
4.99  
3.32  
3.32  
Table 3-2a; ADJUSTMENT RESISTOR VALUES, Vo1  
24V Bus Pt.# PT4681/7  
48V Bus Pt.# PT4661/7  
PT4682/3/5  
PT4662/3/5  
(R1)/R2  
PT4688  
PT4668  
(R1)/R2  
PT4686  
PT4666  
(R1)/R2  
Adj. Resistor  
(R1)/R2  
Vo(nom)  
Va(req’d)  
5.5  
5.4  
5.3  
5.2  
5.1  
5.0  
5.0V  
3.3V  
3.3V  
2.5V  
Va(req’d)  
3.6  
Va(req’d)  
7.4kΩ  
14.3kΩ  
25.7kΩ  
48.6kΩ  
117.0kΩ  
31.5kΩ  
40.7kΩ  
55.9kΩ  
86.3kΩ  
178.0kΩ  
5.0kΩ  
11.2kΩ  
21.6kΩ  
42.4kΩ  
105.0kΩ  
2.75  
2.7  
2.65  
2.6  
2.55  
2.5  
5.0kΩ  
11.2kΩ  
21.6kΩ  
42.4kΩ  
105.0kΩ  
3.54  
3.48  
3.42  
3.36  
3.3  
3.24  
3.18  
3.12  
3.06  
3.0  
(112.0k)  
(43.6k)  
(20.8k)  
(9.3k)  
(49.1k)  
(19.9k)  
(10.1k)  
(5.2k)  
4.9  
4.8  
4.7  
4.6  
(99.8)kΩ  
(37.4)kΩ  
(16.6)kΩ  
(6.2)kΩ  
(0.0)  
2.45  
2.4  
2.35  
2.3  
(99.8k)  
(37.4k)  
(16.6k)  
(6.2k)  
(2.5k)  
(2.3k)  
2.25  
(0.0k)  
4.5  
R1/R3 = (Blue), R2/R4 = Black  
Table 3-2b; ADJUSTMENT RESISTOR VALUES, Vo2  
24V Bus Pt.# PT4681  
48V Bus Pt.# PT4661  
PT4682  
PT4662  
(R3)/R4  
PT4683/6/7  
PT4663/6/7  
(R3)/R4  
PT4685  
PT4665  
(R3)/R4  
PT4688  
PT4668  
(R3)/R4  
Adj. Resistor  
(R3)/R4  
Vo(nom)  
Va(req’d)  
3.6  
3.54  
3.48  
3.42  
3.36  
3.3  
3.3V  
2.5V  
1.8V  
1.5V  
1.2V  
Va(req’d)  
1.95  
1.9  
1.85  
1.8  
1.0kΩ  
2.5kΩ  
5.0kΩ  
10.0kΩ  
25.0kΩ  
9.4kΩ  
15.7kΩ  
34.7kΩ  
1.75  
1.7  
(3.0)kΩ  
3.24  
3.18  
3.12  
3.06  
3.0  
2.75  
2.7  
2.65  
2.6  
2.55  
2.5  
2.45  
2.4  
2.35  
2.3  
2.25  
(29.8)kΩ  
(11.8)kΩ  
(5.8)kΩ  
(2.8)kΩ  
(1.0)kΩ  
1.65  
1.6  
1.55  
1.5  
1.45  
1.4  
1.35  
1.3  
1.275  
1.25  
1.225  
1.2  
1.175  
1.15  
1.125  
1.1  
TBD  
TBD  
TBD  
(TBD)  
(TBD)  
(TBD)  
4.7kΩ  
6.7kΩ  
10.0kΩ  
16.7kΩ  
36.7kΩ  
3.0kΩ  
5.5kΩ  
10.3kΩ  
24.8kΩ  
(22.0)kΩ  
(8.7)kΩ  
(4.2)kΩ  
(2.0)kΩ  
(0.7)kΩ  
(23.6)kΩ  
(9.1)kΩ  
(4.3)kΩ  
(1.8)kΩ  
R1/R3 = (Blue), R2/R4 = Black  
For technical support and more information, see inside back cover or visit www.ti.com  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,  
enhancements, improvements, and other changes to its products and services at any time and to discontinue  
any product or service without notice. Customers should obtain the latest relevant information before placing  
orders and should verify that such information is current and complete. All products are sold subject to TI’s terms  
and conditions of sale supplied at the time of order acknowledgment.  
TI warrants performance of its hardware products to the specifications applicable at the time of sale in  
accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI  
deems necessary to support this warranty. Except where mandated by government requirements, testing of all  
parameters of each product is not necessarily performed.  
TI assumes no liability for applications assistance or customer product design. Customers are responsible for  
their products and applications using TI components. To minimize the risks associated with customer products  
and applications, customers should provide adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right,  
copyright, maskworkright, orotherTIintellectualpropertyrightrelatingtoanycombination, machine, orprocess  
in which TI products or services are used. Information published by TI regarding third–party products or services  
does not constitute a license from TI to use such products or services or a warranty or endorsement thereof.  
Use of such information may require a license from a third party under the patents or other intellectual property  
of the third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of information in TI data books or data sheets is permissible only if reproduction is without  
alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction  
of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for  
such altered documentation.  
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that  
product or service voids all express and any implied warranties for the associated TI product or service and  
is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.  
Mailing Address:  
Texas Instruments  
Post Office Box 655303  
Dallas, Texas 75265  
Copyright 2002, Texas Instruments Incorporated  

相关型号:

PT368

DIODE MODULE 30A/800V/1000V
NIEC

PT36CB010

Programmable Delay Line
ETC

PT36CB020

Programmable Delay Line
ETC

PT36CB030

Programmable Delay Line
ETC

PT36CB050

Programmable Delay Line
ETC

PT36CB100

Programmable Delay Line
ETC

PT36CB150

Programmable Delay Line
ETC

PT36CB200

Programmable Delay Line
ETC

PT36CB400

Programmable Delay Line
ETC

PT36CB500

Programmable Delay Line
ETC

PT370

COMPACT, STEM TYPE PHOTOTRANSISTOR
SHARP

PT370024

Miniature Relay
TE