PTCAN3413DR [TI]

3.3-V CAN FD transceiver with flexible IO and standby mode | D | 8 | -40 to 150;
PTCAN3413DR
型号: PTCAN3413DR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

3.3-V CAN FD transceiver with flexible IO and standby mode | D | 8 | -40 to 150

文件: 总42页 (文件大小:2055K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TCAN3413, TCAN3414  
ZHCSRW5 MARCH 2023  
TCAN341x 具有待机模式3.3V CAN 收发器  
1 特性  
3 说明  
3.3 V 单电源工作  
TCAN3413 and TCAN3414 是符合 ISO 11898-2:2016  
高速 CAN 规范物理层要求的控制器局域网 (CAN) FD  
收发器。  
– 无需使5V 稳压器从而节BOM 成本并减  
PCB 空间  
• 符ISO 11898-2:2016 物理层标准要求  
• 支持传CAN 和经优化CAN FD 性能数据速  
25 8Mbps)  
– 具有较短的对称传播延迟时间可增加时序裕量  
TCAN3413I/O 电压范围支持:  
1.7V 3.6V  
此类收发器具有经过认证的电磁兼容性 (EMC)适用  
于数据速率高达 5 兆位/(Mbps) 的传统 CAN 和  
CAN FD 网络。这些器件可以在更简单的网络中实现高  
8Mbps 的运行速度。TCAN3413 包括通过 VIO 引脚  
实现的内部逻辑电平转换。允许收发器 I/O 直接连接到  
1.8V2.5V 3.3V 逻辑电平。此类收发器支持低功耗  
待机模式并且可通过符合 ISO 11898-2:2016 所定义  
唤醒模(WUP) CAN 来唤醒。  
• 接收器共模输入电压±30V  
• 保护特性:  
– 总线故障保护±58V  
– 欠压保护  
TXD 显性超(DTO)  
– 热关断保(TSD)  
• 工作模式:  
此外该收发器支持热关断 (TSD)TXD 显性超时  
(DTO)、电源欠压检测和 ±58V 的总线故障保护。这些  
器件定义了电源欠压或浮动引脚情况下的失效防护行  
为。这些收发器采用业界通用的 SOIC-8VSON-8 和  
节省空间的小尺SOT-23 封装。  
– 正常模式  
– 支持远程唤醒请求功能的低功耗待机模式  
封装信息  
封装(1)  
SOIC (D)  
VSON (DRB)  
封装尺寸标称值)  
4.90mm x 3.91mm  
3.00mm x 3.00mm  
器件型号  
– 超低功耗关断模式:  
TCAN3414  
• 优化了未上电时的性能  
TCAN3413  
TCAN3414  
SOT-23 (DDF)(2) 2.90mm x 1.60mm  
– 总线和逻辑引脚为高阻抗运行总线或应用上无  
负载)  
– 支持热插拔在总线RXD 输出上可实现上电  
和断电无干扰运行  
(1) 如需了解所有可用封装请参阅数据表末尾的可订购产品附  
录。  
(2) 产品预发布  
• 小8 SOIC SOT-23 和无引线VSON-8 封  
提高了自动光学检(AOI) 能力  
3-1. 器件信息  
5  
超低功耗关断模式  
I/O 支持  
8  
器件型号  
TCAN3414  
2 应用  
具有远程唤醒功能的  
低功耗待机模式  
工厂自动化  
电网基础设施  
工业运输  
TCAN3413  
电机驱动器  
VOUT  
VIN  
VIN  
3.3 V Voltage  
Regulator  
3
VCC  
7
VDD  
CANH  
8
5
STB  
SHDN  
TCAN3414  
MCU  
4
1
CAN FD  
Controller  
RXD  
TXD  
6
CANL  
GND  
Optional:  
Terminating Node  
Optional: Filtering,  
Transient and ESD  
简化原理图  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SLLSFS8  
 
 
 
 
TCAN3413, TCAN3414  
ZHCSRW5 MARCH 2023  
www.ti.com.cn  
Table of Contents  
8.3 Feature Description...................................................14  
8.4 Device Functional Modes..........................................19  
9 Application and Implementation..................................22  
9.1 Application Information............................................. 22  
9.2 Typical Application.................................................... 22  
9.3 System Examples..................................................... 24  
9.4 Power Supply Recommendations.............................26  
9.5 Layout....................................................................... 27  
10 Device and Documentation Support..........................28  
10.1 接收文档更新通知................................................... 28  
10.2 支持资源..................................................................28  
10.3 Trademarks.............................................................28  
10.4 静电放电警告.......................................................... 28  
10.5 术语表..................................................................... 28  
11 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Pin Configuration and Functions...................................3  
6 Specifications.................................................................. 4  
6.1 绝对最大额定值...........................................................4  
6.2 ESD Ratings .............................................................. 4  
6.3 ESD Ratings, IEC Transients......................................4  
6.4 Recommended Operating Conditions.........................4  
6.5 Thermal Characteristics..............................................4  
6.6 Supply Characteristics................................................ 5  
6.7 Dissipation Ratings..................................................... 6  
6.8 Electrical Characteristics.............................................6  
6.9 Switching Characteristics............................................8  
7 Parameter Measurement Information.......................... 11  
8 Detailed Description......................................................14  
8.1 Overview...................................................................14  
8.2 Functional Block Diagram.........................................14  
Information.................................................................... 28  
11.1 Tape and Reel Information......................................29  
11.2 Mechanical Data..................................................... 31  
4 Revision History  
以前版本的页码可能与当前版本的页码不同  
DATE  
REVISION  
NOTES  
March 2023  
*
Initial Release  
Copyright © 2023 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: TCAN3413 TCAN3414  
English Data Sheet: SLLSFS8  
 
TCAN3413, TCAN3414  
ZHCSRW5 MARCH 2023  
www.ti.com.cn  
5 Pin Configuration and Functions  
TXD  
1
2
3
4
8
7
6
5
STB  
TXD  
1
2
3
4
8
7
6
5
STB  
GND  
CANH  
CANL  
SHDN,V  
GND  
CANH  
CANL  
V
V
CC  
RXD  
CC  
RXD  
SHDN,V  
IO  
IO  
Not to scale  
Not to scale  
5-1. DDF Package, 8-Pin SOT  
5-2. D Package, 8-Pin SOIC  
(Top View)  
(Top View)  
TXD  
1
2
3
4
8
7
6
5
STB  
GND  
CANH  
CANL  
Thermal  
Pad  
V
CC  
RXD  
SHDN,V  
IO  
Not to scale  
5-3. DRB Package, 8-Pin VSON  
(Top View)  
5-1. Pin Functions  
Pins  
Type(1)  
Description  
Name  
TXD  
GND  
VCC  
No.  
1
Digital Input CAN transmit data input; integrated pull-up  
2
G
Ground connection  
3.3 V supply voltage  
3
Supply  
RXD  
4
Digital Output CAN receive data output, tri-stated when device powered off  
Device in ultra-low power shutdown mode if pin is high; integrated pull-down (TCAN3414  
only)  
SHDN  
Digital Input  
5
VIO  
Supply  
Bus IO  
Bus IO  
I/O supply voltage (TCAN3413 only)  
Low-level CAN bus input/output line  
High-level CAN bus input/output line  
CANL  
CANH  
STB  
6
7
8
Digital Input Standby input for mode control; integrated pull-up  
Connect the thermal pad to any internal PCB ground plane using multiple vias for optimal  
thermal performance.  
Thermal Pad (VSON only)  
(1) I = Input, O = Output, I/O = Input or Output, G = Ground.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: TCAN3413 TCAN3414  
English Data Sheet: SLLSFS8  
 
 
TCAN3413, TCAN3414  
ZHCSRW5 MARCH 2023  
www.ti.com.cn  
6 Specifications  
6.1 绝对最大额定值  
在自然通风条件下的工作温度范围内除非另有说明((1)) ((2))  
最小值  
0.3  
0.3  
58  
最大值  
单位  
VCC  
6
V
电源电压  
VIO  
6
V
V
电源电I/O 电平转换器仅适用TCAN3413)  
CANH CANL CAN 线I/O 电压范围  
VBUS  
58  
CANH CANL 之间的最大差分电压  
VDIFF = (CANH - CANL)  
VDIFF  
58  
V
58  
VLogic_Input  
VRXD  
IO(RXD)  
TJ  
6
6
V
V
逻辑引脚输入电压TXDSTBSHDN)  
0.3  
0.3  
8  
逻辑输出电压范(RXD)  
RXD 输出电流  
结温  
8
mA  
°C  
°C  
-40  
165  
150  
TSTG  
65  
存储温度  
(1) 超出绝对最大额定值运行可能会对器件造成永久损坏。绝对最大额定值并不表示器件在这些条件下或在建议运行条件以外的任何其他条  
件下能够正常运行。如果超出建议工作条件但在绝对最大额定值范围内使用器件可能不会完全正常运行这可能影响器件的可靠性、  
功能和性能并缩短器件寿命。  
(2) 除差I/O 总线电压外的所有电压值都是相对于接地引脚的值。  
6.2 ESD Ratings  
VALUE  
UNIT  
HBM classification level 3A for  
all pins  
±4000  
V
Human-body model (HBM), per AEC Q100-002(1)  
HBM classification level 3B for  
global pins CANH and CANL  
with respect to GND  
VESD  
Electrostatic discharge  
±10000  
±750  
V
V
Charged-device model (CDM), per AEC Q100-011  
CDM classification level C5 for all pins  
(1) AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.  
6.3 ESD Ratings, IEC Transients  
VALUE  
UNIT  
VESD System level electrostatic discharge  
CANH, CANL w.r.t GND per IEC61000-4-2  
±12000  
V
6.4 Recommended Operating Conditions  
MIN  
3
NOM  
MAX  
UNIT  
V
VCC  
Supply voltage  
3.3  
3.6  
3.6  
VIO  
Supply voltage for I/O level shifter (only for TCAN3413)  
RXD terminal high-level output current  
RXD terminal low-level output current  
RXD terminal high-level output current (only for TCAN3413)  
RXD terminal low-level output current (only for TCAN3413)  
Junction temperature  
1.7  
2  
V
IOH(RXD)  
IOL(RXD)  
IOH(RXD)  
IOL(RXD)  
TJ  
mA  
mA  
mA  
mA  
°C  
2
1.5  
40  
1.5  
150  
6.5 Thermal Characteristics  
TCAN3413/3414  
DDF (SOT)  
THERMAL METRIC(1)  
UNIT  
/W  
D (SOIC)  
DRB (VSON)  
RΘJA  
Junction-to-ambient thermal resistance  
114.4  
122.9  
50.9  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLLSFS8  
4
Submit Document Feedback  
Product Folder Links: TCAN3413 TCAN3414  
 
 
 
 
 
 
 
 
 
TCAN3413, TCAN3414  
ZHCSRW5 MARCH 2023  
www.ti.com.cn  
6.5 Thermal Characteristics (continued)  
TCAN3413/3414  
DDF (SOT)  
THERMAL METRIC(1)  
UNIT  
D (SOIC)  
DRB (VSON)  
RΘJC(top)  
RΘJB  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
49.0  
58.0  
7.0  
51.7  
45.7  
1.3  
55.8  
23.2  
1.4  
/W  
/W  
/W  
/W  
/W  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
ΨJT  
57.1  
N/A  
45.4  
N/A  
23.2  
7.7  
ΨJB  
RΘJC(bot)  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
6.6 Supply Characteristics  
parameters valid over recommended operating conditions with -40TJ 150(Typical values are at VCC = 3.3 V; VIO  
3.3 V for TCAN3413, Device ambient maintained at 27) unless otherwise noted  
=
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
TXD = 0 V, STB = 0 V  
RL = 60 , CL = open  
See 7-1  
Dominant  
Dominant  
Recessive  
TBD  
55  
mA  
TXD = 0 V, STB = 0 V  
RL = 50 , CL = open  
See 7-1  
Supply current normal  
mode (TCAN3414)  
ICC  
TBD  
TBD  
60  
mA  
mA  
TXD = VCC, STB = 0 V  
RL = 50 , CL = open  
See 7-1  
8.2  
TXD = 0 V, STB = 0 V  
CANH = CANL = ±25 V  
RL = open, CL = open  
See 7-1  
Supply current normal  
mode (TCAN3414)  
Dominant with  
bus fault  
130  
mA  
µA  
TXD = STB = VIO, RL = 50 , CL = open,  
TJ <= 85 °C, See 7-1  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
2
3
Supply current standby mode (TCAN3413)  
TXD = STB = VIO, RL = 50 , CL = open,  
TJ <= 125 °C, See 7-1  
ICC  
TXD = STB = VIO, RL = 50 , CL = open,  
TJ <= 150 °C, See 7-1  
4
TXD = STB = VCC, RL = 50 , CL = open,  
TJ <= 85 °C, See 7-1  
15  
16  
17  
TXD = STB = VCC, RL = 50 , CL = open,  
TJ <= 125 °C, See 7-1  
Supply current standby mode (TCAN3414)  
µA  
TXD = STB = VCC, RL = 50 , CL = open,  
TJ <= 150 °C, See 7-1  
TXD = 0 V, STB = 0 V  
RL = 60 , CL = open  
RXD floating  
Dominant  
125  
25  
9
300  
48  
13  
14  
15  
I/O supply current normal  
mode  
TXD = VIO, STB = 0 V  
RL = 60 , CL = open  
RXD floating  
recessive  
IIO (only  
for  
TCAN34  
13)  
TXD = VIO, STB = VIO  
RL = 60 , CL = open  
RXD floating, TJ <= 85 °C  
µA  
TXD = VIO, STB = VIO  
RL = 60 , CL = open  
RXD floating, TJ <= 125 °C  
I/O supply current standby mode  
9
TXD = VIO, STB = VIO  
RL = 60 , CL = open  
RXD floating, TJ <= 150 °C  
9
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: TCAN3413 TCAN3414  
English Data Sheet: SLLSFS8  
 
 
TCAN3413, TCAN3414  
ZHCSRW5 MARCH 2023  
www.ti.com.cn  
6.6 Supply Characteristics (continued)  
parameters valid over recommended operating conditions with -40TJ 150(Typical values are at VCC = 3.3 V; VIO  
3.3 V for TCAN3413, Device ambient maintained at 27) unless otherwise noted  
=
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
SHDN = VCC, RXD floating, TXD =  
VCC, TJ <= 85 °C  
2
Supply current (VCC pin current), shutdown  
mode (TCAN3414)  
ICC  
µA  
SHDN = VCC, RXD floating, TXD =  
VCC, TJ <= 150 °C  
5
UVCC(R) Undervoltage detection VCC rising  
UVCC(F) Undervoltage detection on VCC falling  
Ramp up  
2.75  
2.65  
2.9  
V
Ramp down  
2.5  
1.4  
VHYS  
Hysteresis voltage on UVCC  
140  
1.6  
1.5  
mV  
(UVCC)  
UVIO(R)  
UVIO(F)  
Undervoltage detection VIO rising (TCAN3413) Ramp up  
1.65  
V
Undervoltage detection on VIO  
falling (TCAN3413)  
Ramp down  
VHYS(UVI  
Hysteresis voltage on UVIO  
100  
mV  
O)  
6.7 Dissipation Ratings  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
VCC = 3.3 V, TJ = 27°C, RL = 60Ω, CL_RXD = 15  
pF  
60  
mW  
TXD input = 250 kHz 50% duty cycle square  
wave  
Average power dissipation  
Normal mode  
PD  
VCC = 3.6 V, TJ = 150°C, RL = 50Ω, CL_RXD  
=
15 pF  
120  
mW  
°C  
TXD input = 2.5 MHz 50% duty cycle square  
wave  
TTSD  
Thermal shutdown temperature  
192  
10  
TTSD_HYS Thermal shutdown hysteresis  
6.8 Electrical Characteristics  
parameters valid over recommended operating conditions with -40TJ 150(Typical values are at VCC = 3.3 V, VIO  
3.3 V for TCAN3403, Device ambient maintained at 27) unless otherwise noted  
=
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
Driver Electrical Characteristics  
CANH  
CANL  
TXD = 0 V, STB, SHDN = 0 V  
50 RL 65 , CL = open  
See 7-2 and 8-3  
2.25  
0.5  
VCC  
V
V
Dominant output voltage  
normal mode  
VO(DOM)  
1.25  
TXD = VIO, STB, SHDN = 0 V  
RL = open (no load), CL = open  
See 7-2 and 8-3  
Recessive output voltage  
normal mode  
VO(REC)  
CANH and CANL  
1.5  
0.9  
1.9  
2.25  
V
TXD = 250 kHz, 1 MHz, 2.5 MHz, STB,  
SHDN = 0 V  
RL = 60, CSPLIT = 4.7 nF, CL = open  
Driver symmetry  
VSYM  
{(VO(CANH) + VO(CANL))/(VO(REC_CANH)  
VO(REC_CANL)  
+
1.1 V/V  
400 mV  
}
See 7-2 and 9-2  
STB, SHDN = 0 V  
RL = 60 , CL = open  
See 7-2 and 8-3  
DC output symmetry  
(CANHREC + CANLREC - CANHDOM - CANLDOM  
VSYM_DC  
400  
1.5  
)
TXD = 0 V, STB. SHDN = 0 V  
50 RL 65 , CL = open  
See 7-2 and 8-3  
3
3
V
V
V
CANH - CANL  
TXD = 0 V, STB, SHDN = 0 V  
45 RL 70 , CL = open  
See 7-2 and 8-3  
Differential output voltage  
normal mode  
Dominant  
VOD(DOM)  
1.4  
TXD = 0 V, STB, SHDN = 0 V  
RL = 2240 , CL = open  
See 7-2 and 8-3  
CANH - CANL  
1.5  
3.4  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLLSFS8  
6
Submit Document Feedback  
Product Folder Links: TCAN3413 TCAN3414  
 
 
TCAN3413, TCAN3414  
ZHCSRW5 MARCH 2023  
www.ti.com.cn  
6.8 Electrical Characteristics (continued)  
parameters valid over recommended operating conditions with -40TJ 150(Typical values are at VCC = 3.3 V, VIO  
3.3 V for TCAN3403, Device ambient maintained at 27) unless otherwise noted  
=
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
TXD = VIO, STB, SHDN = 0 V  
RL = 60 , CL = open  
See 7-2 and 8-3  
CANH - CANL  
CANH - CANL  
12 mV  
120  
Differential output voltage  
normal mode  
Recessive  
VOD(REC)  
TXD = VIO, STB, SHDN = 0 V  
RL = open, CL = open  
50 mV  
50  
See 7-2 and 8-3  
CANH  
-0.1  
-0.1  
-0.2  
0.1  
0.1  
0.2  
V
V
V
TXD = STB = VIO  
RL = open , CL = open  
See 7-2 and 8-3  
Bus output voltage standby  
mode  
VO(STB)  
CANL  
CANH - CANL  
See 7-7 and 8-3, V(CANH) = -15 V to  
40 V, CANL = open, TXD = 0 V  
115 mA  
115 mA  
115  
115  
7  
Short-circuit bus output current, dominant,  
normal mode  
IOS(DOM)  
See 7-7 and 8-3 , V(CAN_L) = -15 V to  
40 V, CANH = open, TXD = 0 V  
See 7-7 and 8-3 , V(CANH) = -27 V to  
32 V, CANL = open, STB=0, TXD = VIO  
7
7
mA  
mA  
Short-circuit steady-state output current,  
recessive, normal mode  
IOS(REC)  
See 7-7 and 8-3 , V(CANL) = -27 V to  
32 V, CANH = open, STB = 0, TXD = VIO  
7  
Receiver Electrical Characteristics  
See 7-3 and 8-6  
-30 V VCM 30 V, STB, SHDN= 0 V  
VIT  
Input threshold voltage normal mode  
500  
400  
900 mV  
See 7-3 and 8-6  
-30 V VCM 30 V, SHDN= 0 V, STB=  
VIO  
Input threshold standby mode, TCAN3414  
Input threshold standby mode, TCAN3413  
1150 mV  
See 7-3 and 8-6  
VIO = 3 V to 3.6 V, -30 V VCM 30 V,  
STB= VIO  
VIT(STB)  
400  
400  
1150 mV  
1150 mV  
See 7-3 and 8-6  
VIO = 1.7 V to 1.9 V, 2.25 V to 2.75 V, -12  
V VCM 12 V, STB= VIO  
Normal mode dominant state differential input  
voltage range  
See 7-3 and 8-6  
-30 V VCM 30 V, STB, SHDN= 0 V  
VDOM  
0.9  
-4  
9
V
V
Normal mode recessive state differential input  
voltage range  
See 7-3 and 8-6  
-30 V VCM 30 V, STB, SHDN= 0 V  
VREC  
0.5  
See 7-3 and 8-6  
SHDN= 0 V, STB = VIO, -30 V VCM  
30 V  
Standby mode dominant state differential input  
voltage range  
VDOM(STB)  
1.15  
-4  
9
V
See 7-3 and 8-6  
SHDN = 0 V, STB = VIO, -30 V VCM  
30 V  
Standby mode recessive state differential input  
voltage range  
VREC(STB)  
0.4  
V
Hysteresis voltage for input threshold normal  
mode  
See 7-3 and 8-6  
-30 V VCM 30 V, STB, SHDN= 0 V  
VHYS  
90  
mV  
Common mode range normal and standby  
modes  
VCM  
30  
5
V
See 7-3 and 8-6  
30  
ILKG(IOFF)  
CI  
Unpowered bus input leakage current  
Input capacitance to ground (CANH or CANL)  
Differential input capacitance  
CANH = CANL = 5 V, VCC = VIO = GND  
µA  
40 pF  
20 pF  
TXD = VIO  
,
CID  
RID  
Differential input resistance  
25  
13  
50  
25  
kΩ  
kΩ  
TXD = VIO, STB = 0 V -30 V VCM 30  
V, Delta V/Delta I  
Single ended input resistance  
(CANH or CANL)  
RIN  
Input resistance matching  
[1 (RIN(CANH) / RIN(CANL))] × 100 %  
RIN(M)  
V(CAN_H) = V(CAN_L) = 5 V  
1
%
1  
TXD Terminal (CAN Transmit Data Input)  
VIH  
VIH  
High-level input voltage  
High-level input voltage  
TCAN3414  
TCAN3413  
0.7 VCC  
0.7 VIO  
V
V
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: TCAN3413 TCAN3414  
English Data Sheet: SLLSFS8  
TCAN3413, TCAN3414  
ZHCSRW5 MARCH 2023  
www.ti.com.cn  
6.8 Electrical Characteristics (continued)  
parameters valid over recommended operating conditions with -40TJ 150(Typical values are at VCC = 3.3 V, VIO  
3.3 V for TCAN3403, Device ambient maintained at 27) unless otherwise noted  
=
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
VIL  
Low-level input voltage  
TCAN3414  
TCAN3413  
0.3 VCC  
0.3 VIO  
1
V
VIL  
Low-level input voltage  
V
IIH  
High-level input leakage current  
Low-level input leakage current  
Unpowered leakage current  
Input capacitance  
TXD = VCC = VIO = 3.6 V  
0
-100  
0
µA  
µA  
µA  
pF  
2.5  
200  
1  
IIL  
TXD = 0 V, VCC = VIO = 3.6 V  
TXD = 3.6 V, VCC = VIO = 0 V  
20  
ILKG(OFF)  
CI  
1
6
RXD Terminal (CAN Receive Data Output)  
TCAN3414  
See 7-3 , IO = 2 mA  
VOH  
VOH  
VOL  
High-level output voltage  
High-level output voltage  
Low-level output voltage  
0.8 VCC  
0.8 VIO  
V
V
V
See 7-3 , IO = 1.5 mA, TCAN3413  
TCAN3414  
See 7-3 , IO = 2 mA  
0.2 VCC  
TCAN3413  
See 7-3 , IO = 1.5 mA  
VOL  
Low-level output voltage  
0.2 VIO  
1
V
ILKG(OFF)  
Unpowered leakage current  
RXD = 3.6 V, VCC = VIO = 0 V  
0
µA  
1  
STB Terminal (Standby Mode Input)  
VIH  
High-level input voltage  
TCAN3414  
0.7 VCC  
0.7 VIO  
V
V
VIH  
High-level input voltage  
TCAN3413  
VIL  
Low-level input voltage  
TCAN3414  
0.3 VCC  
0.3 VIO  
2
V
VIL  
Low-level input voltage  
TCAN3413  
V
IIH  
High-level input leakage current  
Low-level input leakage current  
Unpowered leakage current  
VCC = VIO = STB = 3.6 V  
VCC = VIO = 3.6 V, STB = 0 V  
STB = 3.6V, VCC= VIO = 0 V  
µA  
µA  
µA  
2  
20  
1  
IIL  
2  
ILKG(OFF)  
0
1
SHDN Terminal (Shutdown mode input)  
VIH  
High-level input voltage  
TCAN3414  
0.7 VCC  
V
V
VIL  
Low-level input voltage  
TCAN3414  
0.3 VCC  
IIH  
High-level input leakage current  
Low-level input leakage current  
Unpowered leakage current  
VCC = VIO = SHDN = 3.6 V  
VCC = VIO = 3.6 V, SHDN = 0 V  
SHDN = 3.6 V, VCC= VIO = 0 V  
2
2  
1  
5.5 µA  
IIL  
2
1
µA  
µA  
ILKG(OFF)  
0
6.9 Switching Characteristics  
parameters valid over recommended operating conditions with -40TJ 150(Typical values are at VCC = 3.3 V, VIO  
3.3 V for TCAN3403, Device ambient maintained at 27) unless otherwise noted  
=
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
120  
126  
140  
MAX  
180  
190  
210  
UNIT  
Device Switching Characteristics  
See 7-4, normal mode, VCC = VIO = 3  
V to 3.6 V, RL = 60 , CL = 100 pF,  
CL(RXD) = 15 pF  
ns  
TCAN3414, TCAN3413  
See 7-4 , normal mode, VCC = 3 to  
3.6 V, VIO = 2.25 V to 2.75 V, RL = 60 ,  
CL = 100 pF, CL(RXD) = 15 pF  
TCAN3413  
Total loop delay, driver input (TXD) to receiver  
output (RXD), recessive to dominant  
tPROP(LOOP1)  
ns  
See 7-4 , normal mode, VCC = 3 to 3.6  
V, VIO = 1.71 V to 1.89 V, RL = 60 , CL  
100 pF, CL(RXD) = 15 pF  
TCAN3413  
=
ns  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLLSFS8  
8
Submit Document Feedback  
Product Folder Links: TCAN3413 TCAN3414  
 
TCAN3413, TCAN3414  
ZHCSRW5 MARCH 2023  
www.ti.com.cn  
6.9 Switching Characteristics (continued)  
parameters valid over recommended operating conditions with -40TJ 150(Typical values are at VCC = 3.3 V, VIO  
3.3 V for TCAN3403, Device ambient maintained at 27) unless otherwise noted  
=
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
See 7-4 , normal mode, VCC = VIO = 3  
V to 3.6 V, RL = 60 , CL = 100 pF,  
CL(RXD) = 15 pF  
95  
180  
ns  
TCAN3414, TCAN3413  
See 7-4 , normal mode, VCC = 3 to 3.6  
Total loop delay, driver input (TXD) to receiver  
output (RXD), dominant to recessive  
V, VIO = 2.25 V to 2.75 V, RL = 60 , CL  
100 pF, CL(RXD) = 15 pF  
TCAN3413  
=
tPROP(LOOP2)  
101  
115  
190  
210  
ns  
ns  
See 7-4 , normal mode, VCC = 3 to 3.6  
V, VIO = 1.71 V to 1.89 V, RL = 60 , CL  
100 pF, CL(RXD) = 15 pF  
TCAN3413  
=
See Figure8-5 in TCAN1044A datasheet  
See 7-5  
Mode change time, from normal to standby or from  
standby to normal  
tMODE  
tSHDN1  
tSHDN2  
30  
40  
µs  
µs  
µs  
With TXD: low, Time from SHDN pin (low  
to high edge 50%) to RXD going from  
low to high 50%  
Mode change time from normal mode to shutdown  
mode  
With TXD low, time from SHDN pin (high  
to low edge 50%) to RXD going from  
high to low 50%  
Mode change time from shutdown mode to normal  
mode  
200  
tWK_FILTER  
Filter time for a valid wake-up pattern  
Bus wake-up timeout value  
0.5  
0.8  
1.8  
6
µs  
See 8-5  
tWK_TIMEOUT  
ms  
Driver Switching Characteristics  
See 7-2 , STB, SHDN = 0 V, RL = 60  
, CL = 100 pF, VCC = VIO = 3 V to 3.6 V  
TCAN3414, TCAN3413  
65  
67  
100  
110  
ns  
ns  
See 7-2 ,STB, SHDN = 0 V, RL = 60  
, CL = 100 pF, VCC = 3 to 3.6 V, VIO  
2.25 V to 2.75 V  
=
Propagation delay time, low-to-high TXD edge to  
driver recessive (dominant to recessive)  
tprop(TxD-busrec)  
TCAN3413  
See 7-2 ,STB, SHDN = 0 V, RL = 60  
, CL = 100 pF, VCC = 3 to 3.6 V, VIO  
1.71 V to 1.89 V  
TCAN3413  
=
71  
46  
48  
110  
100  
110  
ns  
ns  
ns  
See 7-2 , STB, SHDN = 0 V, RL = 60  
, CL = 100 pF, VCC = VIO = 3 V to 3.6 V  
TCAN3414, TCAN3413  
See 7-2 ,STB, SHDN = 0 V, RL = 60  
, CL = 100 pF, VCC = 3 to 3.6 V, VIO  
2.25 V to 2.75 V  
=
Propagation delay time, high-to-low TXD edge to  
driver dominant (recessive to dominant)  
tprop(TxD-busdom)  
TCAN3413  
See 7-2 ,STB, SHDN = 0 V, RL = 60  
, CL = 100 pF, VCC = 3 to 3.6 V, VIO  
1.71 V to 1.89 V  
TCAN3413  
=
53  
110  
28  
ns  
ns  
, STB, SHDN = 0 V, RL = 60 , CL = 100  
pF, See 7-2  
tsk(p)  
Pulse skew (|tprop(TxD-busrec) - tprop(TxD-busdom)|)  
3.5  
tR  
tF  
Differential output signal rise time  
Differential output signal fall time  
25  
30  
57  
50  
ns  
ns  
See 7-2 , STB, SHDN = 0 V, RL = 60  
, CL = 100 pF  
See 7-6 , STB, SHDN = 0 V, RL = 60  
, CL = 100 pF  
tTXD_DTO  
Dominant timeout  
1.2  
4.0  
ms  
Receiver Switching Characteristics  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: TCAN3413 TCAN3414  
English Data Sheet: SLLSFS8  
TCAN3413, TCAN3414  
ZHCSRW5 MARCH 2023  
www.ti.com.cn  
6.9 Switching Characteristics (continued)  
parameters valid over recommended operating conditions with -40TJ 150(Typical values are at VCC = 3.3 V, VIO  
3.3 V for TCAN3403, Device ambient maintained at 27) unless otherwise noted  
=
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
See 7-3 , STB, SHDN = 0 V,  
CL(RXD) = 15 pF, VCC = VIO = 3 V to 3.6 V  
TCAN3414, TCAN3413  
55  
90  
ns  
See 7-3 , STB, SHDN = 0 V, CL(RXD)  
15 pF, VCC = 3 to 3.6 V, VIO = 2.25 V to  
2.75 V  
=
Propagation delay time, bus recessive input to RXD  
high output (dominant to recessive)  
60  
90  
ns  
tprop(busrec-RXD)  
TCAN3413  
See 7-3 , STB, SHDN = 0 V, CL(RXD)  
15 pF, VCC = 3 to 3.6 V, VIO = 1.71 V to  
1.89 V  
=
70  
45  
51  
102  
90  
ns  
ns  
ns  
TCAN3413  
See 7-3 , STB, SHDN = 0 V,  
CL(RXD) = 15 pF, VCC = VIO = 3 V to 3.6 V  
TCAN3414, TCAN3413  
See 7-3 , STB, SHDN = 0 V, CL(RXD)  
15 pF, VCC = 3 to 3.6 V, VIO = 2.25 V to  
2.75 V  
=
Propagation delay time, bus dominant input to RXD  
low output (recessive to dominant)  
90  
tprop(busdom-RXD)  
TCAN3413  
See 7-3 , STB, SHDN = 0 V, CL(RXD)  
15 pF, VCC = 3 to 3.6 V, VIO = 1.71 V to  
1.89 V  
=
60  
100  
ns  
TCAN3413  
tR  
tF  
RXD output signal rise time  
RXD output signal fall time  
8
7
25  
28  
ns  
ns  
See 7-3 , STB, SHDN = 0 V  
CL(RXD) = 15 pF  
FD Timing Characteristics  
Bit time on CAN bus output pins with tBIT(TXD) = 500  
450  
160  
85  
525  
205  
130  
ns  
ns  
ns  
ns  
Bit time on CAN bus output pins with tBIT(TXD) = 200 See 7-4 , STB, SHDN = 0 V, RL = 60  
ns  
tBIT(BUS)  
, CL = 100 pF, CL(RXD) = 15 pF  
Bit time on CAN bus output pins with tBIT(TXD) = 125  
ns(1)  
Bit time on RXD output pins with tBIT(TXD) = 500 ns  
Bit time on RXD output pins with tBIT(TXD) = 200 ns  
Bit time on RXD output pins with tBIT(TXD) = 125 ns(1)  
Receiver timing symmetry with tBIT(TXD) = 500 ns  
Receiver timing symmetry with tBIT(TXD) = 200 ns  
Receiver timing symmetry with tBIT(TXD) = 125 ns(1)  
410  
130  
75  
540  
210  
135  
20  
ns  
ns  
ns  
ns  
ns  
ns  
See 7-4 , STB, SHDN = 0 V, RL = 60  
, CL = 100 pF, CL(RXD) = 15 pF  
tBIT(RXD)  
-50  
-40  
-40  
See 7-4 , STB, SHDN = 0 V, RL = 60  
, CL = 100 pF, CL(RXD) = 15 pF  
ΔtREC = tBIT(RXD) - tBIT(BUS)  
10  
ΔtREC  
10  
(1) Min/Max limits based on characterization.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLLSFS8  
10  
Submit Document Feedback  
Product Folder Links: TCAN3413 TCAN3414  
 
TCAN3413, TCAN3414  
ZHCSRW5 MARCH 2023  
www.ti.com.cn  
7 Parameter Measurement Information  
CANH  
TXD  
RL  
CL  
CANL  
7-1. ICC Test Circuit  
CANH  
RL  
50%  
50%  
TXD  
TXD  
CL  
VOD  
VCC  
VO(CANH)  
tpLD  
tpHR  
0 V  
CANL  
90%  
10%  
0.9 V  
VO(CANL)  
VOD  
0.5 V  
tR  
tF  
7-2. Driver Test Circuit and Measurement  
CANH  
1.5V  
0.9V  
VID  
IO  
RXD  
0.5V  
0V  
VID  
tpDL  
tpRH  
CL_RXD  
VOH  
VO  
CANL  
90%  
VO(RXD)  
50%  
10%  
VOL  
tF  
tR  
7-3. Receiver Test Circuit and Measurement  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: TCAN3413 TCAN3414  
English Data Sheet: SLLSFS8  
 
 
 
 
TCAN3413, TCAN3414  
ZHCSRW5 MARCH 2023  
www.ti.com.cn  
TXD  
VI  
70%  
tLOOP1  
30%  
30%  
CANH  
0 V  
TXD  
VI  
RL  
CL  
tBIT(TXD)  
5 x tBIT(TXD)  
CANL  
tBIT(BUS)  
STB  
0 V  
900 mV  
500 mV  
RXD  
+
VDIFF  
VO  
CL_RXD  
œ
RXD  
VOH  
70%  
30%  
VOL  
tBIT(RXD)  
tLOOP2  
7-4. Transmitter and Receiver Timing Test Circuit and Measurement  
CANH  
VIH  
TXD  
STB  
CL  
0V  
RL  
STB  
50%  
CANL  
VI  
0V  
tMODE  
RXD  
VOH  
VO  
CL_RXD  
RXD  
50%  
VOL  
7-5. tMODE Test Circuit and Measurement  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLLSFS8  
12  
Submit Document Feedback  
Product Folder Links: TCAN3413 TCAN3414  
 
 
TCAN3413, TCAN3414  
ZHCSRW5 MARCH 2023  
www.ti.com.cn  
VIH  
CANH  
TXD  
TXD  
0V  
RL  
CL  
VOD  
VOD(D)  
CANL  
0.9V  
VOD  
0.5V  
0V  
tTXD_DTO  
7-6. TXD Dominant Timeout Test Circuit and Measurement  
200 s  
IOS  
CANH  
TXD  
VBUS  
IOS  
CANL  
VBUS  
VBUS  
0V  
or  
0V  
VBUS  
VBUS  
7-7. Driver Short-Circuit Current Test and Measurement  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: TCAN3413 TCAN3414  
English Data Sheet: SLLSFS8  
 
 
TCAN3413, TCAN3414  
ZHCSRW5 MARCH 2023  
www.ti.com.cn  
8 Detailed Description  
8.1 Overview  
The TCAN341x devices are 3.3 V CAN FD transceivers with robust EMC performance. The devices are data  
rate agnostic making them backward compatible for supporting classical CAN applications while also supporting  
CAN FD networks up to 8 Mbps. The devices have standby mode support which puts the transceiver in low  
current consumption mode. Upon receiving valid wake-up pattern on CAN bus, the device signals to the micro-  
controller through the RXD pin. The MCU can then place the device in normal mode using STB pin.  
TCAN3414 supports ultra-low power shutdown mode where most of the internal blocks are disabled. This  
feature is optimized for battery-powered applications. TCAN3413 supports VIO pin for low voltage logic level  
interface. It can be interfaced to 1.8 V, 2.5 V or 3.3 V micro controllers.  
8.2 Functional Block Diagram  
VCC  
3
SHDN or VIO  
5
VCC or VIO  
7
6
CANH  
CANL  
TSD  
Dominant  
time-out  
TXD  
STB  
1
8
VCC or VIO  
Shutdown  
Mode Select  
UVP  
VCC or VIO  
MUX  
4
Logic Output  
RXD  
WUP Monitor  
Low Power Receiver  
2
GND  
8-1. Block Diagram  
8.3 Feature Description  
8.3.1 Pin Descripton  
8.3.1.1 TXD  
The TXD input is a logic-level signal from a CAN controller to the transceiver. The signal is referenced to VCC for  
the TCAN3414, or to VIO for the TCAN3413.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLLSFS8  
14  
Submit Document Feedback  
Product Folder Links: TCAN3413 TCAN3414  
 
 
 
 
TCAN3413, TCAN3414  
ZHCSRW5 MARCH 2023  
www.ti.com.cn  
8.3.1.2 GND  
GND is the ground pin of the transceiver. The pin must be connected to the PCB ground.  
8.3.1.3 VCC  
VCC provides the 3.3 V power supply to the CAN transceiver.  
8.3.1.4 RXD  
The RXD output is a logic-level signal from the CAN transceiver to the CAN controller. The signal is referenced  
to VCC for TCAN3414 and VIO for TCAN3413. For TCAN3413, the pin is only driven once VIO is present.  
When a CAN bus wake-up event takes place, RXD is driven low.  
8.3.1.5 VIO (TCAN3413 only)  
The VIO pin provides the digital I/O voltage to match the CAN controller voltage thus avoiding the requirement for  
a level shifter. It supports voltages from 1.7 V to 3.6 V providing a wide range of controller support.  
8.3.1.6 CANH and CANL  
The CANH and CANL pins are the CAN high and CAN low differential bus pins. These pins are internally  
connected to the CAN transmitter, receiver and the low-power wake-up receiver.  
8.3.1.7 STB (Standby)  
The STB pin is an input pin used for mode control of the transceiver. The STB pin can be supplied from either  
the system processor or from a static system voltage source. STB pin has default pull-up resistor on-chip. So if  
the pin is left floating or pulled high externally, device is in standby mode. If normal mode is the only intended  
mode of operation, the STB pin can be tied directly to GND.  
8.3.2 CAN Bus States  
The CAN bus has two logical states during operation: recessive and dominant. See 8-2 and 8-3.  
A dominant bus state occurs when the bus is driven differentially and corresponds to a logic low on the TXD and  
RXD pins. A recessive bus state occurs when the bus is biased to approximately VCC/2 via the high-resistance  
internal input resistors (RIN) of the receiver and corresponds to a logic high on the TXD and RXD pins.  
A dominant state overwrites the recessive state during arbitration. Multiple CAN nodes may be transmitting a  
dominant bit at the same time during arbitration, and in this case, the differential voltage of the bus is greater  
than the differential voltage of a single driver.  
The TCAN341x transceivers implement a low-power standby (STB) mode which enables a third bus state where  
the bus pins are weakly biased to ground via the high resistance internal resistors of the receiver. See 8-2 and  
8-3.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: TCAN3413 TCAN3414  
English Data Sheet: SLLSFS8  
TCAN3413, TCAN3414  
ZHCSRW5 MARCH 2023  
www.ti.com.cn  
Normal Mode  
Standby Mode  
CANH  
1.9 V  
VDIFF  
VDIFF  
CANL  
Recessive  
Dominant  
Recessive  
Time, t  
8-2. Bus States  
CANH  
1.9 V  
GND  
A
B
RXD  
Bias  
Unit  
CANL  
A. A - Normal Mode B - Standby Mode  
8-3. Simplified Recessive Common Mode Bias Unit and Receiver  
8.3.3 TXD Dominant Timeout (DTO)  
During normal mode, the only mode where the CAN driver is active, the TXD DTO circuit prevents the local node  
from blocking network communication in the event of a hardware or software failure where TXD is held dominant  
longer than the timeout period tTXD_DTO. The TXD DTO circuit is triggered by a falling edge on TXD. If no rising  
edge is seen before the timeout period of the circuit, tTXD_DTO, the CAN driver is disabled. This frees the bus for  
communication between other nodes on the network. The CAN driver is reactivated when a recessive signal is  
seen on the TXD pin, thus clearing the dominant time out. The receiver remains active and biased to  
approximately 1.9 V and the RXD output reflects the activity on the CAN bus during the TXD DTO fault.  
The minimum dominant TXD time allowed by the TXD DTO circuit limits the minimum possible transmitted data  
rate of the device. The CAN protocol allows a maximum of eleven successive dominant bits (on TXD) for the  
worst case, where five successive dominant bits are followed immediately by an error frame. The minimum  
transmitted data rate may be calculated using 方程1 .  
Minimum Data Rate = 11 bits / tTXD_DTO = 11 bits / 1.2 ms = 9.2 kbps  
(1)  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLLSFS8  
16  
Submit Document Feedback  
Product Folder Links: TCAN3413 TCAN3414  
 
 
 
TCAN3413, TCAN3414  
ZHCSRW5 MARCH 2023  
www.ti.com.cn  
Fault is repaired & transmission capability  
restored  
TXD fault stuck dominant: example PCB failure or bad software  
tTXD_DTO  
TXD (driver)  
Driver disabled freeing bus for other nodes  
Normal CAN communication  
Bus would be —stuck dominant“ blocking communication for the whole network but TXD DTO  
prevents this and frees the bus for communication after the time tTXD_DTO  
.
CAN Bus Signal  
tTXD_DTO  
Communication from other bus node(s)  
Communication from repaired node  
RXD (receiver)  
Communication from local node  
Communication from other bus node(s)  
Communication from repaired local node  
8-4. Example Timing Diagram for TXD Dominant Timeout  
8.3.4 CAN Bus short-circuit current limiting  
The devices have several protection features that limit the short-circuit current when a CAN bus line is shorted.  
These include CAN driver current limiting in the dominant and recessive states, and TXD dominant state timeout  
which prevents permanently having the higher short-circuit current of a dominant state in case of a system fault.  
During CAN communication the bus switches between the dominant and recessive states, thus the short-circuit  
current may be viewed as either the current during each bus state or as a DC average current. When selecting  
termination resistors or a common-mode choke for the CAN design the average power rating, IOS(AVG), should be  
used. The percentage dominant is limited by the TXD DTO and the CAN protocol which has forced state  
changes and recessive bits due to bit stuffing, control fields, and interframe space. This makes sure there is a  
minimum amount of recessive time on the bus even if the data field contains a high percentage of dominant bits.  
The average short-circuit current of the bus depends on the ratio of recessive to dominant bits and their  
respective short-circuit currents. The average short-circuit current may be calculated using 方程2.  
IOS(AVG) = % Transmit x [(% REC_Bits x IOS(SS)_REC) + (% DOM_Bits x IOS(SS)_DOM)] + [% Receive x IOS(SS)_REC  
]
(2)  
Where:  
IOS(AVG) is the average short-circuit current  
% Transmit is the percentage the node is transmitting CAN messages  
% Receive is the percentage the node is receiving CAN messages  
% REC_Bits is the percentage of recessive bits in the transmitted CAN messages  
% DOM_Bits is the percentage of dominant bits in the transmitted CAN messages  
IOS(SS)_REC is the recessive steady state short-circuit current  
IOS(SS)_DOM is the dominant steady state short-circuit current  
The short circuit current and the possible fault cases of the network should be taken into consideration when  
sizing the power supply used to generate the transceivers VCC supply.  
8.3.5 Thermal Shutdown (TSD)  
If the junction temperature of the devices exceed the thermal shutdown threshold, TTSD, the device turns off the  
CAN driver circuitry and blocks the TXD to bus transmission path. The shutdown condition is cleared when the  
junction temperature of the device drops below TTSD. The CAN bus pins are biased to ~ 1.9 V during a TSD fault  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: TCAN3413 TCAN3414  
English Data Sheet: SLLSFS8  
 
 
TCAN3413, TCAN3414  
ZHCSRW5 MARCH 2023  
www.ti.com.cn  
and the receiver to RXD path remains operational. The TCAN341x TSD circuit includes hysteresis which  
prevents the CAN driver output from oscillating during a TSD fault.  
8.3.6 Undervoltage Lockout  
The supply pins, VCC and VIO, have undervoltage detection that places the device into a protected state. This  
protects the bus during an undervoltage event on either supply pin.  
8-1. Undervoltage Lockout - TCAN3414  
VCC  
DEVICE STATE  
BUS  
RXD PIN  
Normal if STB = GND and SHDN  
= GND  
> UVVCC  
> UVVCC  
Per TXD  
Mirrors bus  
Standby mode if STB = High and  
SHDN = GND  
Weak biased to GND  
VCC, Remote wake request  
See Remote Wake Request via  
Wake-Up Pattern (WUP) in  
Standby Mode  
> UVVCC  
< UVVCC  
Shutdown mode if SHDN = High  
Protected  
Weak biased to GND  
High impedance  
VCC  
High impedance  
8-2. Undervoltage Lockout - TCAN3413  
VCC  
VIO  
DEVICE STATE  
BUS  
RXD PIN  
> UVVCC  
< UVVCC  
> UVVIO  
> UVVIO  
Normal  
Per TXD  
Mirrors bus  
STB = High: Standby Mode  
Weak biased to GND  
VIO: Remote wake request  
See Remote Wake Request via  
Wake-Up Pattern (WUP) in Standby  
Mode  
STB =Low: Protected Mode  
Protected  
High impedance  
High impedance  
High impedance  
Recessive  
> UVVCC  
< UVVCC  
< UVVIO  
< UVVIO  
High impedance  
High impedance  
Protected  
Once the undervoltage condition is cleared and tMODE or tSHDN2 has expired, the TCAN341x transitions to normal  
mode. The host controller again sends and receives CAN traffic.  
8.3.7 Unpowered Device  
For unpowered conditions, the TCAN341x is designed to be a passive or no load to the CAN bus. This is  
because the bus pins were designed to have low leakage currents to not load the bus. This design consideration  
is critical if some nodes of the network are unpowered while the rest of the network remains operational.  
For unpowered scenario, the logic pins also have low leakage currents so they do not load other circuits which  
may remain powered.  
8.3.8 Floating pins  
The TCAN341x devices have internal pull-up/pull-down resistors on critical pins which place the device into  
known states if the pin floats. This internal bias should not be relied upon by design though, especially in noisy  
environments, but instead should be considered a failsafe protection feature.  
When a CAN controller supporting open-drain outputs is used, an adequate external pull-up resistor must be  
chosen. This makes sure the TXD output of the CAN controller maintains acceptable bit time to the input of the  
CAN transceiver. See 8-3 for details on pin bias conditions.  
8-3. Pin Bias  
Pin  
Pull-up or Pull-down  
Comment  
Weakly biases TXD towards recessive to prevent bus blockage or  
TXD DTO triggering  
TXD  
Pull-up  
Weakly biases STB towards low-power standby mode to prevent  
excessive system power  
STB  
Pull-up  
Copyright © 2023 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: TCAN3413 TCAN3414  
English Data Sheet: SLLSFS8  
 
TCAN3413, TCAN3414  
ZHCSRW5 MARCH 2023  
www.ti.com.cn  
8-3. Pin Bias (continued)  
Pin  
Pull-up or Pull-down  
Comment  
Weakly biases SHDN towards normal mode to allow normal  
communication. SHDN pin has higher priority than STB for  
TCAN3414.  
SHDN  
Pull-down  
8.4 Device Functional Modes  
8.4.1 Operating Modes  
The TCAN341x has two main operating modes; normal mode and standby mode. Operating mode selection is  
made by applying a high or low level to the STB pin. TCAN3414 has a third mode: shutdown activated through  
SHDN pin. Pulling SHDN pin high disables most internal blocks and puts the device in lowest power  
consumption mode.  
8-4. Operating Modes for STB pin  
STB  
High  
Low  
Device Mode  
Driver  
Disabled  
Enabled  
Receiver  
RXD Pin  
High (recessive) until valid WUP  
is received  
See Remote Wake Request via  
Wake-Up Pattern (WUP) in  
Standby Mode  
Low current standby mode with  
bus wake-up  
Low-power receiver and bus  
monitor enable  
Normal Mode  
Enabled  
Mirrors bus state  
8.4.2 Normal Mode  
This is the normal operating mode of the TCAN341x. The CAN driver and receiver are fully operational and CAN  
communication is bi-directional. The driver is translating a digital input on the TXD input to a differential output on  
the CANH and CANL bus pins. The receiver is translating the differential signal from CANH and CANL to a  
digital output on the RXD output.  
8.4.3 Standby Mode  
This is the low-power mode of the TCAN341x. The CAN driver and main receiver are switched off and bi-  
directional CAN communication is not possible. The low-power receiver and bus monitor circuits are enabled to  
allow for RXD wake-up requests via the CAN bus. A wake-up request is output to RXD as shown in Remote  
Wake Request via Wake-Up Pattern (WUP) in Standby Mode. The local CAN protocol controller should monitor  
RXD for transitions (high-to-low) and reactivate the device to normal mode by pulling the STB pin low. The CAN  
bus pins are weakly pulled to GND in this mode; see See 8-2 and 8-3.  
For TCAN3413 in standby mode, only the VIO supply is required; therefore, the VCC may be switched off for  
additional system level current savings.  
8.4.3.1 Remote Wake Request via Wake-Up Pattern (WUP) in Standby Mode  
The TCAN341x devices support a remote wake-up request that is used to indicate to the host controller that the  
bus is active and the node should return to normal operation.  
The device uses the multiple filtered dominant wake-up pattern (WUP) from the ISO 11898-2:2016 standard to  
qualify bus activity. Once a valid WUP has been received, the wake request is indicated to the controller by a  
falling edge and low period corresponding to a filtered dominant on the RXD output of the device.  
The WUP consists of a filtered dominant pulse, followed by a filtered recessive pulse, and finally by a second  
filtered dominant pulse. The first filtered dominant initiates the WUP, and the bus monitor then waits on a filtered  
recessive; other bus traffic does not reset the bus monitor. Once a filtered recessive is received the bus monitor  
is waiting for a filtered dominant and again, other bus traffic does not reset the bus monitor. Immediately upon  
reception of the second filtered dominant the bus monitor recognizes the WUP and drives the RXD output low  
every time an additional filtered dominant signal is received from the bus.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: TCAN3413 TCAN3414  
English Data Sheet: SLLSFS8  
 
 
TCAN3413, TCAN3414  
ZHCSRW5 MARCH 2023  
www.ti.com.cn  
For a dominant or recessive to be considered filtered, the bus must be in that state for more than the tWK_FILTER  
time. Due to variability in tWK_FILTER the following scenarios are applicable. Bus state times less than  
tWK_FILTER(MIN) are never detected as part of a WUP and thus no wake request is generated. Bus state times  
between tWK_FILTER(MIN) and tWK_FILTER(MAX) may be detected as part of a WUP and a wake-up request may be  
generated. Bus state times greater than tWK_FILTER(MAX) are always detected as part of a WUP; therefore, a wake  
request is always generated. See 8-5 for the timing diagram of the wake-up pattern.  
The pattern and tWK_FILTER time used for the WUP prevents noise and bus stuck dominant faults from causing  
false wake-up requests while allowing any valid message to initiate a wake-up request.  
The ISO 11898-2:2016 standard has defined times for a short and long wake-up filter time. The tWK_FILTER timing  
for the device has been picked to be within the minimum and maximum values of both filter ranges. This timing  
has been chosen such that a single bit time at 500 kbps, or two back-to-back bit times at 1 Mbps triggers the  
filter in either bus state. Any CAN frame at 500 kbps or less would contain a valid WUP.  
For an additional layer of robustness and to prevent false wake-ups, the device implements a wake-up timeout  
feature. For a remote wake-up event to successfully occur, the entire WUP must be received within the timeout  
value t tWK_TIMEOUT. If not, the internal logic is reset and the transceiver remains in its current state without  
waking up. The full pattern must then be transmitted again, conforming to the constraints mentioned in this  
section. See 8-5 for the timing diagram of the wake-up pattern with wake timeout feature.  
Bus Wake via RXD  
Wake Up Pattern (WUP) received in t < tWK_Timeout  
Request  
Filtered  
Dominant  
Filtered  
Dominant  
Filtered  
Recessive  
Waiting for  
Filtered  
Dominant  
Waiting for  
Filtered  
Recessive  
Bus  
Bus VDiff  
RXD  
tWK_FILTER  
tWK_FILTER  
tWK_FILTER  
tWK_FILTER  
Filtered Dominant RXD Output  
Bus Wake Via RXD Requests  
8-5. Wake-Up Pattern (WUP) with tWK_TIMEOUT  
8.4.4 Driver and Receiver Function  
The TCAN341x logic I/O supports CMOS levels with respect to either VCC for 3.3-V systems (TCAN3414) or VIO  
(TCAN3413) for compatibility with MCUs that support 1.8-V, 2.5-V, or 3.3-V systems.  
8-5. Driver Function Table  
Bus Outputs  
Device Mode  
TXD Input(1)  
Driven Bus State(2)  
CANH  
CANL  
Low  
High  
Low  
Dominant  
Normal  
High or open  
High impedance  
High impedance  
High impedance  
High impedance  
High impedance  
High impedance  
Biased recessive  
Biased to ground  
Biased to ground  
Standby  
X
X
Shutdown  
(1) X = irrelevant  
(2) For bus state and bias See 8-2 and 8-3.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLLSFS8  
20  
Submit Document Feedback  
Product Folder Links: TCAN3413 TCAN3414  
 
 
 
TCAN3413, TCAN3414  
ZHCSRW5 MARCH 2023  
www.ti.com.cn  
8-6. Receiver Function Table Normal and Standby Mode  
Device Mode  
Bus State  
Dominant  
Undefined  
RXD Pin  
Low  
CAN Differential Inputs VID = VCANH VCANL  
VID 0.9 V  
0.5 V < VID < 0.9 V  
Undefined  
Normal  
Recessive  
High  
VID 0.5 V  
Dominant  
Undefined  
Recessive  
Open  
VID 1.15 V  
0.4 V < VID < 1.15 V  
VID 0.4 V  
High  
Low if a remote wake event  
Standby  
Any  
occurred See 8-5  
High  
Open (VID 0 V)  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: TCAN3413 TCAN3414  
English Data Sheet: SLLSFS8  
 
TCAN3413, TCAN3414  
ZHCSRW5 MARCH 2023  
www.ti.com.cn  
9 Application and Implementation  
备注  
以下应用部分中的信息不属TI 器件规格的范围TI 不担保其准确性和完整性。TI 的客 户应负责确定  
器件是否适用于其应用。客户应验证并测试其设计以确保系统功能。  
9.1 Application Information  
The TCAN341x transceivers can be used in applications with a host controller or FPGA that includes the link  
layer portion of the CAN protocol. 9-1 shows a typical configuration for 3.3-V controller applications. The bus  
termination is shown for illustrative purposes.  
9.2 Typical Application  
VOUT  
VIN  
VIN  
3.3 V Voltage  
Regulator  
3
VCC  
7
VDD  
CANH  
8
5
STB  
SHDN  
TCAN3414  
MCU  
4
1
CAN FD  
Controller  
RXD  
TXD  
6
CANL  
GND  
Optional:  
Terminating Node  
Optional: Filtering,  
Transient and ESD  
9-1. Transceiver Application Using 3.3-V I/O Connections  
9.2.1 Design Requirements  
9.2.1.1 CAN Termination  
Termination may be a single 120-Ω resistor at each end of the bus, either on the cable or in a terminating node.  
If filtering and stabilization of the common-mode voltage of the bus is desired then split termination may be used,  
see 9-2. Split termination improves the electromagnetic emissions behavior of the network by filtering higher-  
frequency common-mode noise that may be present on the differential signal lines.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLLSFS8  
22  
Submit Document Feedback  
Product Folder Links: TCAN3413 TCAN3414  
 
 
 
 
 
TCAN3413, TCAN3414  
ZHCSRW5 MARCH 2023  
www.ti.com.cn  
Standard Termination  
Split Termination  
CANH  
CANH  
RTERM/2  
RTERM  
TCAN Transceiver  
TCAN Transceiver  
CSPLIT  
RTERM/2  
CANL  
CANL  
9-2. CAN Bus Termination Concepts  
9.2.2 Detailed Design Procedures  
9.2.2.1 Bus Loading, Length and Number of Nodes  
A typical CAN application may have a maximum bus length of 40 meters and maximum stub length of 0.3 m.  
However, with careful design, users can have longer cables, longer stub lengths, and many more nodes to a  
bus. A high number of nodes requires a transceiver with high input impedance such as the TCAN341x.  
Many CAN organizations and standards have scaled the use of CAN for applications outside the original ISO  
11898-2 standard. The organizations made system level trade off decisions for data rate, cable length, and  
parasitic loading of the bus. Examples of these CAN systems level specifications are ARINC 825, CANopen,  
DeviceNet, SAE J2284, SAE J1939, and NMEA 2000.  
A CAN network system design is a series of tradeoffs. In the ISO 11898-2:2016 specification the driver  
differential output is specified with a bus load that can range from 50 Ω to 65 Ω where the differential output  
must be greater than 1.5 V. The TCAN341x family is specified to meet the 1.5-V requirement down to 50 Ω and  
is specified to meet 1.4-V differential output at 45-Ω bus load. The differential input resistance of the TCAN341x  
is a minimum of 22 kΩ. If 55 TCAN341x transceivers are in parallel on a bus, this is equivalent to a 400-Ω  
differential load in parallel with the nominal 60-Ω bus termination which gives a total bus load of approximately  
52 Ω. Therefore, the TCAN341x family theoretically supports over 50 transceivers on a single bus segment.  
However, for a CAN network design margin must be given for signal loss across the system and cabling,  
parasitic loadings, timing, network imbalances, ground offsets, and signal integrity thus a practical maximum  
number of nodes is often lower. Bus length may also be extended beyond 40 meters by careful system design  
and data rate tradeoffs. For example, CANopen network design guidelines allow the network to be up to 1 km  
with changes in the termination resistance, cabling, less than 64 nodes and significantly lowered data rate.  
This flexibility in CAN network design is one of the key strengths of the various extensions and additional  
standards that have been built on the original ISO 11898-2 CAN standard. However, when using this flexibility,  
the CAN network system designer must take the responsibility of good network design to for robust network  
operation.  
See the application report SLLA270: Controller Area Network Physical layer requirements. This document  
discusses in detail all system design physical layer parameters.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: TCAN3413 TCAN3414  
English Data Sheet: SLLSFS8  
 
TCAN3413, TCAN3414  
ZHCSRW5 MARCH 2023  
www.ti.com.cn  
Node 1  
Node 2  
Node 3  
Node n  
(with termination)  
System Controller  
System Controller  
System Controller  
System Controller  
CAN FD  
Controller  
CAN FD  
Controller  
CAN FD  
Controller  
CAN FD  
Controller  
TCAN1043  
RTERM  
TCAN3413  
TCAN1044A  
TCAN3414  
9-3. Typical CAN Bus  
9.3 System Examples  
The TCAN341x CAN transceiver is typically used in applications with a host controller or FPGA that includes the  
link layer portion of the CAN protocol. A 1.8-V or 2.5-V application is shown in 9-4. The bus termination is  
shown for illustrative purposes.  
VOUT  
VIN  
VIN  
3.3 V Voltage  
Regulator  
3
VCC  
7
CANH  
8
STB  
MCU  
TCAN3413  
VIN  
4
1
CAN FD  
Controller  
RXD  
TXD  
6
1.8 V / 2.5 V  
Regulator  
CANL  
VDD  
GND  
VIO  
5
VOUT  
Optional:  
Terminating Node  
Optional: Filtering,  
Transient and ESD  
9-4. Typical Transceiver Application Using 1.8-V, 2.5-V I/O Connections  
9.3.1 ISO 11898-2 Compatibility of TCAN341x Family of 3.3-V CAN Transceivers  
9.3.1.1 Introduction  
Many users value the low power consumption of operating their CAN transceivers from a 3.3-V supply. However,  
some are concerned about the interoperability with 5 V supplied transceivers on the same bus. This section tries  
to address those concerns.  
9.3.1.2 Differential Signal  
CAN is a differential bus where complementary signals are sent over two wires and the voltage difference  
between the two wires defines the logical state of the bus. The differential CAN receiver monitors this voltage  
difference and outputs the bus state with a single ended logic level output signal.  
The CAN driver creates the differential voltage between CANH and CANL in the dominant state. The dominant  
differential output of the TCAN341x is greater than 1.5 V and less than 3 V across a 60-Ωload as defined by the  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLLSFS8  
24  
Submit Document Feedback  
Product Folder Links: TCAN3413 TCAN3414  
 
 
TCAN3413, TCAN3414  
ZHCSRW5 MARCH 2023  
www.ti.com.cn  
ISO 11898-2 standard. These are the same limiting values for 5 V supplied CAN transceivers. The bus  
termination resistors drive the recessive bus state and not the CAN driver.  
A CAN receiver is required to output a recessive state when less than 500 mV of differential voltage exists on the  
bus, and a dominant state when more than 900 mV of differential voltage exists on the bus. The CAN receiver  
must do this with common-mode input voltages from 12 V to 12 V. The TCAN341x device receivers meet and  
exceed these receiver input specifications.  
9.3.1.3 Common-Mode Signal  
A common-mode signal is an average voltage of the two signal wires that the differential receiver rejects. The  
common-mode signal comes from the CAN driver, ground noise, and coupled bus noise. The TCAN341x family  
has the recessive bias voltage set to 1.9V. This is intentional to match the common mode of recessive output  
with the common mode of dominant output signal from TCAN341x. Furthermore, TCAN341x has special design  
techniques for optimum EMC performance in a heterogeneous bus consisting of TCAN341x and 5 V CAN  
transceivers.  
9.3.1.4 Interoperability of 3.3-V CAN in 5-V CAN Systems  
The 3.3-V supplied TCAN341xx family of CAN transceivers are fully compatible with 5-V CAN transceivers. The  
minimum differential output voltage is the same, and the receivers have the same input threshold specifications.  
The only slight difference is in the recessive common mode output voltage which is little lower for 3.3-V CAN  
transceiver than 5-V supplied transceiver. But this does not impact regular functionality. Furthermore, special  
design techniques in TCAN341x provide optimum EMC performance in heterogeneous network consisting of  
TCAN341x and 5 V supplied CAN transceivers.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: TCAN3413 TCAN3414  
English Data Sheet: SLLSFS8  
TCAN3413, TCAN3414  
ZHCSRW5 MARCH 2023  
www.ti.com.cn  
9.4 Power Supply Recommendations  
The TCAN3414 transceiver is designed to operate with a main VCC input voltage supply range between 3 V and  
3.6 V.  
The TCAN3413 implements an I/O level shifting supply input, VIO, designed for a range between 1.8 V and 3.6  
V.  
Both the VCC and VIO inputs must be well regulated. In addition to the power supply filtering a decoupling  
capacitance, typically 100 nF, should be placed near the CAN transceiver main VCC and VIO supply pins.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLLSFS8  
26  
Submit Document Feedback  
Product Folder Links: TCAN3413 TCAN3414  
 
TCAN3413, TCAN3414  
ZHCSRW5 MARCH 2023  
www.ti.com.cn  
9.5 Layout  
Robust and reliable CAN node designs may require special layout techniques depending on the application and  
design requirements. Since transient disturbances have high frequency content and a wide bandwidth, high-  
frequency layout techniques should be applied during PCB design.  
9.5.1 Layout Guidelines  
Place the protection and filtering circuitry close to the bus connector, J1, to prevent transients, ESD, and  
noise from propagating onto the board. This layout example shows an optional transient voltage suppression  
(TVS) diode, D1, which may be implemented if the system-level requirements exceed the specified rating of  
the transceiver. This example also shows optional bus filter capacitors C4 and C5.  
Design the bus protection components in the direction of the signal path. Do not force the transient current to  
divert from the signal path to reach the protection device.  
Decoupling capacitors should be placed as close as possible to the supply pins VCC and VIO of transceiver.  
Use at least two vias for supply and ground connections of bypass capacitors and protection devices to  
minimize trace and via inductance.  
备注  
High-frequency current follows the path of least impedance and not the path of least resistance.  
This layout example shows how split termination could be implemented on the CAN node. The termination is  
split into two resistors, R2 and R3, with the center or split tap of the termination connected to ground via  
capacitor C3. Split termination provides common mode filtering for the bus. See 9.2.1.1, and 8.3.4 for  
information on termination concepts and power ratings needed for the termination resistor(s).  
9.5.2 Layout Example  
µC V  
R1  
TXD  
GND  
VCC  
STB  
C4  
STB  
R2  
R3  
CANH  
CANL  
VIO  
GND  
VCC  
C3  
GND  
Choke  
C1  
D1  
J1  
RXD  
µC V  
C2  
C5  
9-5. Layout Example  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: TCAN3413 TCAN3414  
English Data Sheet: SLLSFS8  
 
TCAN3413, TCAN3414  
ZHCSRW5 MARCH 2023  
www.ti.com.cn  
10 Device and Documentation Support  
10.1 接收文档更新通知  
要接收文档更新通知请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册即可每周接收产品信息更  
改摘要。有关更改的详细信息请查看任何已修订文档中包含的修订历史记录。  
10.2 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
10.3 Trademarks  
TI E2Eis a trademark of Texas Instruments.  
所有商标均为其各自所有者的财产。  
10.4 静电放电警告  
静电放(ESD) 会损坏这个集成电路。德州仪(TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理  
和安装程序可能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级大至整个器件故障。精密的集成电路可能更容易受到损坏这是因为非常细微的参  
数更改都可能会导致器件与其发布的规格不相符。  
10.5 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
11 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLLSFS8  
28  
Submit Document Feedback  
Product Folder Links: TCAN3413 TCAN3414  
 
 
 
 
 
 
 
TCAN3413, TCAN3414  
ZHCSRW5 MARCH 2023  
www.ti.com.cn  
11.1 Tape and Reel Information  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
Reel  
Diameter  
(mm)  
Reel  
Width W1  
(mm)  
Package  
Type  
Package  
Drawing  
A0  
(mm)  
B0  
(mm)  
K0  
(mm)  
P1  
(mm)  
W
(mm)  
Pin1  
Quadrant  
Device  
Pins  
SPQ  
SOT-23-  
THN  
PTCAN3413DDFR  
DDF  
8
3000  
180.0  
8.4  
3.2  
3.2  
1.4  
4.0  
8.0  
Q3  
PTCAN3413DRBR  
PTCAN3413DR  
VSON  
SOIC  
DRB  
D
8
8
3000  
2500  
330.0  
330.0  
12.4  
12.4  
3.3  
6.4  
3.3  
5.2  
1.1  
2.1  
8.0  
8.0  
12.0  
12.0  
Q1  
Q1  
SOT-23-  
THN  
PTCAN3414DDFR  
DDF  
8
3000  
180.0  
8.4  
3.2  
3.2  
1.4  
4.0  
8.0  
Q3  
PTCAN3414DRBR  
PTCAN3414DR  
VSON  
SOIC  
DRB  
D
8
8
3000  
2500  
330.0  
330.0  
12.4  
12.4  
3.3  
6.4  
3.3  
5.2  
1.1  
2.1  
8.0  
8.0  
12.0  
12.0  
Q1  
Q1  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: TCAN3413 TCAN3414  
English Data Sheet: SLLSFS8  
 
TCAN3413, TCAN3414  
ZHCSRW5 MARCH 2023  
www.ti.com.cn  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
Device  
Package Type  
SOT-23-THN  
VSON  
Package Drawing Pins  
SPQ  
3000  
3000  
2500  
3000  
3000  
2500  
Length (mm) Width (mm)  
Height (mm)  
35.0  
PTCAN3413DDFR  
PTCAN3413DRBR  
PTCAN3413DR  
PTCAN3414DDFR  
PTCAN3414DRBR  
PTCAN3414DR  
DDF  
DRB  
D
8
8
8
8
8
8
210.0  
367.0  
356.0  
210.0  
367.0  
356.0  
185.0  
367.0  
356.0  
185.0  
367.0  
356.0  
35.0  
SOIC  
35.0  
SOT-23-THN  
VSON  
DDF  
DRB  
D
35.0  
35.0  
SOIC  
35.0  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLLSFS8  
30  
Submit Document Feedback  
Product Folder Links: TCAN3413 TCAN3414  
TCAN3413, TCAN3414  
ZHCSRW5 MARCH 2023  
www.ti.com.cn  
11.2 Mechanical Data  
PACKAGE OUTLINE  
D0008B  
SOIC - 1.75 mm max height  
SCALE 2.800  
SMALL OUTLINE INTEGRATED CIRCUIT  
C
SEATING PLANE  
.228-.244 TYP  
[5.80-6.19]  
.004 [0.1] C  
A
PIN 1 ID AREA  
6X .050  
[1.27]  
8
1
2X  
.189-.197  
[4.81-5.00]  
NOTE 3  
.150  
[3.81]  
4X (0 -15 )  
4
5
8X .012-.020  
[0.31-0.51]  
B
.150-.157  
[3.81-3.98]  
NOTE 4  
.069 MAX  
[1.75]  
.010 [0.25]  
C A B  
.005-.010 TYP  
[0.13-0.25]  
4X (0 -15 )  
SEE DETAIL A  
.010  
[0.25]  
.004-.010  
[0.11-0.25]  
0 - 8  
.016-.050  
[0.41-1.27]  
DETAIL A  
TYPICAL  
.041  
[1.04]  
4221445/C 02/2019  
NOTES:  
1. Linear dimensions are in inches [millimeters]. Dimensions in parenthesis are for reference only. Controlling dimensions are in inches.  
Dimensioning and tolerancing per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed .006 [0.15], per side.  
4. This dimension does not include interlead flash.  
5. Reference JEDEC registration MS-012, variation AA.  
www.ti.com  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
31  
Product Folder Links: TCAN3413 TCAN3414  
English Data Sheet: SLLSFS8  
 
TCAN3413, TCAN3414  
ZHCSRW5 MARCH 2023  
www.ti.com.cn  
EXAMPLE BOARD LAYOUT  
D0008B  
SOIC - 1.75 mm max height  
SMALL OUTLINE INTEGRATED CIRCUIT  
8X (.055)  
[1.4]  
8X (.061 )  
[1.55]  
SEE  
DETAILS  
SEE  
DETAILS  
SYMM  
SYMM  
1
1
8
8
8X (.024)  
[0.6]  
8X (.024)  
[0.6]  
SYMM  
SYMM  
(R.002 ) TYP  
[0.05]  
(R.002 )  
[0.05]  
TYP  
5
5
4
4
6X (.050 )  
[1.27]  
6X (.050 )  
[1.27]  
(.213)  
[5.4]  
(.217)  
[5.5]  
HV / ISOLATION OPTION  
.162 [4.1] CLEARANCE / CREEPAGE  
IPC-7351 NOMINAL  
.150 [3.85] CLEARANCE / CREEPAGE  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:6X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
EXPOSDE  
METAL  
EXPOSED  
METAL  
.0028 MIN  
[0.07]  
ALL AROUND  
.0028 MAX  
[0.07]  
ALL AROUND  
SOLDER MASK  
DEFINED  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
4221445/C 02/2019  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLLSFS8  
32  
Submit Document Feedback  
Product Folder Links: TCAN3413 TCAN3414  
TCAN3413, TCAN3414  
ZHCSRW5 MARCH 2023  
www.ti.com.cn  
EXAMPLE STENCIL DESIGN  
D0008B  
SOIC - 1.75 mm max height  
SMALL OUTLINE INTEGRATED CIRCUIT  
8X (.061 )  
[1.55]  
8X (.055)  
[1.4]  
SYMM  
SYMM  
1
1
8
8
8X (.024)  
[0.6]  
8X (.024)  
[0.6]  
SYMM  
SYMM  
(R.002 ) TYP  
[0.05]  
(R.002 )  
[0.05]  
TYP  
5
5
4
4
6X (.050 )  
[1.27]  
6X (.050 )  
[1.27]  
(.217)  
[5.5]  
(.213)  
[5.4]  
HV / ISOLATION OPTION  
.162 [4.1] CLEARANCE / CREEPAGE  
IPC-7351 NOMINAL  
.150 [3.85] CLEARANCE / CREEPAGE  
SOLDER PASTE EXAMPLE  
BASED ON .005 INCH [0.127 MM] THICK STENCIL  
SCALE:6X  
4221445/C 02/2019  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
33  
Product Folder Links: TCAN3413 TCAN3414  
English Data Sheet: SLLSFS8  
TCAN3413, TCAN3414  
ZHCSRW5 MARCH 2023  
www.ti.com.cn  
PACKAGE OUTLINE  
DDF0008A  
SOT-23 - 1.1 mm max height  
S
C
A
L
E
4
.
0
0
0
PLASTIC SMALL OUTLINE  
C
2.95  
2.65  
SEATING PLANE  
TYP  
PIN 1 ID  
AREA  
0.1 C  
A
6X 0.65  
8
1
2.95  
2.85  
NOTE 3  
2X  
1.95  
4
5
0.4  
0.2  
8X  
0.1  
C A  
B
1.65  
1.55  
B
1.1 MAX  
0.20  
0.08  
TYP  
SEE DETAIL A  
0.25  
GAGE PLANE  
0.1  
0.0  
0 - 8  
0.6  
0.3  
DETAIL A  
TYPICAL  
4222047/B 11/2015  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.15 mm per side.  
www.ti.com  
Copyright © 2023 Texas Instruments Incorporated  
34  
Submit Document Feedback  
Product Folder Links: TCAN3413 TCAN3414  
English Data Sheet: SLLSFS8  
TCAN3413, TCAN3414  
ZHCSRW5 MARCH 2023  
www.ti.com.cn  
EXAMPLE BOARD LAYOUT  
DDF0008A  
SOT-23 - 1.1 mm max height  
PLASTIC SMALL OUTLINE  
8X (1.05)  
SYMM  
1
8
8X (0.45)  
SYMM  
6X (0.65)  
5
4
(R0.05)  
TYP  
(2.6)  
LAND PATTERN EXAMPLE  
SCALE:15X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
SOLDER MASK  
DEFINED  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
4222047/B 11/2015  
NOTES: (continued)  
4. Publication IPC-7351 may have alternate designs.  
5. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
35  
Product Folder Links: TCAN3413 TCAN3414  
English Data Sheet: SLLSFS8  
TCAN3413, TCAN3414  
ZHCSRW5 MARCH 2023  
www.ti.com.cn  
EXAMPLE STENCIL DESIGN  
DDF0008A  
SOT-23 - 1.1 mm max height  
PLASTIC SMALL OUTLINE  
8X (1.05)  
SYMM  
(R0.05) TYP  
1
8
8X (0.45)  
SYMM  
6X (0.65)  
5
4
(2.6)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE:15X  
4222047/B 11/2015  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
7. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
Copyright © 2023 Texas Instruments Incorporated  
36  
Submit Document Feedback  
Product Folder Links: TCAN3413 TCAN3414  
English Data Sheet: SLLSFS8  
TCAN3413, TCAN3414  
ZHCSRW5 MARCH 2023  
www.ti.com.cn  
PACKAGE OUTLINE  
VSON - 1 mm max height  
DRB0008J  
PLASTIC QUAD FLAT PACK- NO LEAD  
3.1  
2.9  
B
A
PIN 1 INDEX AREA  
3.1  
2.9  
0.1 MIN  
(0.13)  
SECTION A-A  
TYPICAL  
1 MAX  
C
SEATING PLANE  
0.05  
0.00  
0.08  
C
1.75  
1.55  
(0.2) TYP  
6X 0.65  
(0.19)  
4
5
SYMM  
9
2.5  
2.3  
1.95  
1
8
0.36  
8X  
0.26  
0.1  
0.05  
PIN 1 ID  
(OPTIONAL)  
C
A B  
SYMM  
C
0.5  
0.3  
8X  
4225036/A 06/2019  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for optimal thermal and mechanical performance.  
www.ti.com  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
37  
Product Folder Links: TCAN3413 TCAN3414  
English Data Sheet: SLLSFS8  
TCAN3413, TCAN3414  
ZHCSRW5 MARCH 2023  
www.ti.com.cn  
EXAMPLE BOARD LAYOUT  
DRB0008F  
VSON - 1 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
(1.6)  
SYMM  
8X (0.6)  
1
8
8X (0.3)  
(2.4)  
(0.95)  
6X (0.65)  
4
5
(R0.05) TYP  
(0.55)  
( 0.2) VIA  
TYP  
(2.8)  
LAND PATTERN EXAMPLE  
SCALE:20X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
4222121/C 10/2016  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
Copyright © 2023 Texas Instruments Incorporated  
38  
Submit Document Feedback  
Product Folder Links: TCAN3413 TCAN3414  
English Data Sheet: SLLSFS8  
TCAN3413, TCAN3414  
ZHCSRW5 MARCH 2023  
www.ti.com.cn  
EXAMPLE STENCIL DESIGN  
VSON - 1 mm max height  
DRB0008J  
PLASTIC QUAD FLAT PACK- NO LEAD  
(2.8)  
2X  
(1.51)  
8X (0.6)  
8X (0.31)  
SYMM  
1
8
2X  
(1.06)  
6X (0.65)  
SYMM  
(1.95)  
(0.63)  
9
(R0.05) TYP  
4
5
METAL  
TYP  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD  
81% PRINTED COVERAGE BY AREA  
SCALE: 20X  
4225036/A 06/2019  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
39  
Product Folder Links: TCAN3413 TCAN3414  
English Data Sheet: SLLSFS8  
PACKAGE OPTION ADDENDUM  
www.ti.com  
2-Jul-2023  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
PTCAN3413DDFR  
PTCAN3413DR  
ACTIVE SOT-23-THIN  
DDF  
D
8
8
8
8
8
8
3000  
2500  
3000  
3000  
2500  
3000  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
-40 to 150  
-40 to 150  
-40 to 150  
-40 to 150  
-40 to 150  
-40 to 150  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
ACTIVE  
ACTIVE  
SOIC  
SON  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
PTCAN3413DRBR  
PTCAN3414DDFR  
PTCAN3414DR  
DRB  
DDF  
D
ACTIVE SOT-23-THIN  
ACTIVE  
ACTIVE  
SOIC  
SON  
PTCAN3414DRBR  
DRB  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
2-Jul-2023  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

PTCAN3413DRBR

3.3-V CAN FD transceiver with flexible IO and standby mode | DRB | 8 | -40 to 150
TI

PTCAN3414DR

3.3-V CAN FD transceiver with shut-down and standby mode | D | 8 | -40 to 150
TI

PTCAN3414DRBR

3.3-V CAN FD transceiver with shut-down and standby mode | DRB | 8 | -40 to 150
TI

PTCCL-145-V

145 V PTC Thermistors for Overload Protection
VISHAY

PTCCL-145V

145 V PTC Thermistors for Overload Protection
VISHAY

PTCCL-265-V

265 V PTC Thermistors for Overload Protection
VISHAY

PTCCL-265V

265 V PTC Thermistors for Overload Protection
VISHAY

PTCCL-30-V

30 V to 60 V PTC Thermistors for Overload Protection
VISHAY

PTCCL-30V

30 V to 60 V PTC Thermistors for Overload Protection
VISHAY

PTCCL-600V

600 V / 1000 V PTC Thermistors for Overload Protection
VISHAY

PTCCL05H100SBE

PTC RESET FUSE 600V RADIAL
VISHAY

PTCCL05H110HBE

265 V PTC Thermistors for Overload Protection
VISHAY