PTMUX6219RQXR [TI]

具有 1.8V 逻辑控制的 36V 低导通电阻、2:1、单通道多路复用器 | RQX | 8 | -40 to 125;
PTMUX6219RQXR
型号: PTMUX6219RQXR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有 1.8V 逻辑控制的 36V 低导通电阻、2:1、单通道多路复用器 | RQX | 8 | -40 to 125

复用器
文件: 总50页 (文件大小:2396K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TMUX6219  
ZHCSM12D SEPTEMBER 2020 REVISED AUGUST 2022  
1.8V 逻辑电平TMUX621936VRon2:1 (SPDT) 开关  
1 特性  
3 说明  
• 双电源电压范围±4.5 V ±18 V  
• 单电源电压范围4.5V 36V  
• 低导通电阻2.1 Ω  
TMUX6219 是一款互补金属氧化物半导体 (CMOS) 开  
采用单通道 2:1 (SPDT) 配置。此器件在单电源  
4.5V 36V、双电源±4.5V ±18V或非对称  
电源VDD = 5VVSS = 8V供电时均能正常运  
行。TMUX6219 可在源极 (Sx) 和漏极 (D) 引脚上支持  
VSS VDD 范围的双向模拟和数字信号。  
• 低电荷注入-10 pC  
• 大电流支持330 mA最大值(VSSOP)  
• 大电流支持440 mA最大值(WSON)  
• –40°C +125°C 工作温度  
1.8 V 逻辑电平  
失效防护逻辑  
轨到轨运行  
可以通过控制 EN 引脚来启用或禁用 TMUX6219。当  
禁用时两个信号路径开关都被关闭。当启用时SEL  
引脚可用于打开信号路径 1S1 D或信号路径 2  
S2 D。所有逻辑控制输入均支持 1.8 V VDD  
的逻辑电平因此当器件在有效电源电压范围内运行  
可确保 TTL CMOS 逻辑兼容性。失效防护逻辑  
电路允许先在控制引脚上施加电压然后在电源引脚上  
施加电压从而保护器件免受潜在的损害。  
双向信号路径  
• 先断后合开关  
2 应用  
工厂自动化和工业控制  
可编程逻辑控制(PLC)  
模拟输入模块  
半导体测试  
交流充电站  
超声波扫描仪  
患者监护和诊断  
光纤网络  
光学测试设备  
远程无线电单元  
有线网络  
数据采集系统  
燃气表  
流量变送器  
TMUX6219 是精密开关和多路复用器系列器件。这些  
器件具有非常低的导通和关断泄漏电流以及较低的电荷  
注入因此可用于高精度测量应用。  
器件信息(1)  
封装尺寸标称值)  
器件型号  
TMUX6219  
封装  
VSSOP (8) (DGK)  
WSON (8) (RQX)  
3.00mm × 3.00mm  
3.00mm × 2.00mm  
(1) 如需了解所有可用封装请参阅数据表末尾的可订购产品附  
录。  
VSS  
VDD  
S1  
S2  
D
Decoder  
EN SEL  
TMUX6219 方框图  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SCDS420  
 
 
 
 
TMUX6219  
www.ti.com.cn  
ZHCSM12D SEPTEMBER 2020 REVISED AUGUST 2022  
Table of Contents  
7.7 tON (VDD) Time............................................................29  
7.8 Propagation Delay.................................................... 29  
7.9 Charge Injection........................................................30  
7.10 Off Isolation.............................................................30  
7.11 Crosstalk................................................................. 31  
7.12 Bandwidth............................................................... 31  
7.13 THD + Noise........................................................... 32  
7.14 Power Supply Rejection Ratio (PSRR)...................32  
8 Detailed Description......................................................33  
8.1 Overview...................................................................33  
8.2 Functional Block Diagram.........................................33  
8.3 Feature Description...................................................33  
8.4 Device Functional Modes..........................................35  
8.5 Truth Tables.............................................................. 35  
9 Application and Implementation..................................36  
9.1 Application Information............................................. 36  
9.2 Typical Application.................................................... 36  
10 Power Supply Recommendations..............................37  
11 Layout...........................................................................38  
11.1 Layout Guidelines................................................... 38  
11.2 Layout Example...................................................... 38  
12 Device and Documentation Support..........................40  
12.1 Documentation Support.......................................... 40  
12.2 Receiving Notification of Documentation Updates..40  
12.3 支持资源..................................................................40  
12.4 Trademarks.............................................................40  
12.5 Electrostatic Discharge Caution..............................40  
12.6 术语表..................................................................... 40  
13 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Pin Configuration and Functions...................................3  
6 Specifications.................................................................. 4  
6.1 Absolute Maximum Ratings........................................ 4  
6.2 ESD Ratings............................................................... 4  
6.3 Thermal Information....................................................4  
6.4 Recommended Operating Conditions.........................5  
6.5 Source or Drain Continuous Current...........................5  
6.6 ±15 V Dual Supply: Electrical Characteristics ............6  
6.7 ±15 V Dual Supply: Switching Characteristics ...........7  
6.8 36 V Single Supply: Electrical Characteristics ........... 9  
6.9 36 V Single Supply: Switching Characteristics ........ 10  
6.10 12 V Single Supply: Electrical Characteristics ....... 12  
6.11 12 V Single Supply: Switching Characteristics .......13  
6.12 +5 V / -8 V Dual Supply: Electrical  
Characteristics ............................................................15  
6.13 +5 V / -8 V Dual Supply: Switching  
Characteristics ............................................................16  
6.14 ±5 V Dual Supply: Electrical Characteristics ..........17  
6.15 ±5 V Dual Supply: Switching Characteristics .........18  
6.16 Typical Characteristics............................................20  
7 Parameter Measurement Information..........................26  
7.1 On-Resistance.......................................................... 26  
7.2 Off-Leakage Current................................................. 26  
7.3 On-Leakage Current................................................. 27  
7.4 Transition Time......................................................... 27  
7.5 tON(EN) and tOFF(EN) .................................................. 28  
7.6 Break-Before-Make...................................................28  
Information.................................................................... 40  
4 Revision History  
以前版本的页码可能与当前版本的页码不同  
Changes from Revision C (June 2022) to Revision D (July 2022)  
Page  
RQX 封装状态从预发更改为正在供...................................................................................................... 1  
Added +5 V / -8 V electrical and switching characteristics tables.....................................................................15  
Changes from Revision B (January 2021) to Revision C (June 2022)  
Page  
Added the RQX package details to the Pin Configuration and Functions section..............................................3  
Changes from Revision A (October 2020) to Revision B (January 2021)  
Page  
• 将文档状态从预告信更改为量产数.............................................................................................................1  
Copyright © 2022 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: TMUX6219  
 
TMUX6219  
www.ti.com.cn  
ZHCSM12D SEPTEMBER 2020 REVISED AUGUST 2022  
5 Pin Configuration and Functions  
D
S1  
1
2
3
4
8
7
6
5
S2  
D
S1  
1
2
3
4
8
7
6
5
S2  
VSS  
SEL  
EN  
Thermal  
Pad  
VSS  
SEL  
EN  
GND  
VDD  
GND  
VDD  
Not to scale  
5-2. RQX Package,  
8-Pin WSON  
Not to scale  
5-1. DGK Package,  
8-Pin VSSOP  
(Top View)  
(Top View)  
5-1. Pin Functions  
PIN  
DGK  
1
TYPE(1)  
RQX  
DESCRIPTION(2)  
NAME  
D
1
2
3
I/O  
I/O  
P
Drain pin. Can be an input or output.  
Source pin 1. Can be an input or output.  
Ground (0 V) reference  
S1  
2
GND  
3
Positive power supply. This pin is the most positive power-supply potential. For reliable operation,  
connect a decoupling capacitor ranging from 0.1 µF to 10 µF between VDD and GND.  
VDD  
4
4
P
Active high logic enable, has internal pull-up resistor. When this pin is low, all switches are turned off.  
When this pin is high, the SEL logic input determine which switch is turned on.  
EN  
5
6
5
6
I
I
SEL  
Logic control input, has internal pull-down resistor. Controls the switch connection as shown in 8.5.  
Negative power supply. This pin is the most negative power-supply potential. In single-supply  
applications, this pin can be connected to ground. For reliable operation, connect a decoupling  
capacitor ranging from 0.1 µF to 10 µF between VSS and GND.  
VSS  
7
8
7
8
P
S2  
I/O  
Source pin 2. Can be an input or output.  
The thermal pad is not connected internally. It is recommended that the pad be tied to GND or VSS  
for best performance.  
Thermal Pad  
(1) I = input, O = output, I/O = input and output, P = power.  
(2) Refer to 8.4 for what to do with unused pins.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: TMUX6219  
 
 
 
 
TMUX6219  
www.ti.com.cn  
ZHCSM12D SEPTEMBER 2020 REVISED AUGUST 2022  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1) (2)  
MIN  
MAX  
UNIT  
V
38  
VDD VSS  
VDD  
Supply voltage  
38  
V
0.5  
38  
VSS  
0.5  
V
VSEL or VEN  
ISEL or IEN  
VS or VD  
IIK  
Logic control input pin voltage (SEL, EN)(3)  
Logic control input pin current (SEL, EN)(3)  
Source or drain voltage (Sx, D)(3)  
Diode clamp current(3)  
38  
V
0.5  
30  
VDD+0.5  
30  
mA  
V
30  
VSS0.5  
30  
mA  
mA  
°C  
°C  
°C  
IS or ID (CONT)  
TA  
Source or drain continuous current (Sx, D)  
Ambient temperature  
IDC + 10 %(4)  
150  
55  
65  
Tstg  
Storage temperature  
150  
TJ  
Junction temperature  
150  
Total power dissipation(5)  
Ptot  
460  
mW  
(1) Stresses beyond those listed under Absolute Maximum Rating may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under  
Recommended Operating Condition. Exposure to absolute-maximum-rated conditions for extended periods may affect device  
reliability.  
(2) All voltages are with respect to ground, unless otherwise specified.  
(3) Pins are diode-clamped to the power-supply rails. Over voltage signals must be voltage and current limited to maximum ratings.  
(4) Refer to Source or Drain Continuous Current table for IDC specifications.  
(5) For DGK package: Ptot derates linearily above TA = 70°C by 6.7mW/°C.  
6.2 ESD Ratings  
VALUE  
UNIT  
Human body model (HBM), per ANSI/ESDA/  
JEDEC JS-001, all pins(1)  
±2000  
V(ESD)  
Electrostatic discharge  
V
Charged device model (CDM), per JEDEC  
specification JESD22-C101, all pins(2)  
±500  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Thermal Information  
TMUX6219  
DGK (VSSOP)  
8 PINS  
152.1  
TMUX6219  
RQX (WSON)  
8 PINS  
62.9  
THERMAL METRIC(1)  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
48.4  
54.0  
73.2  
31.0  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
4.1  
0.8  
ΨJT  
71.8  
30.9  
ΨJB  
RθJC(bot)  
N/A  
23.4  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
Copyright © 2022 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: TMUX6219  
 
 
 
 
 
 
 
 
 
 
 
 
TMUX6219  
www.ti.com.cn  
ZHCSM12D SEPTEMBER 2020 REVISED AUGUST 2022  
6.4 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
4.5  
4.5  
VSS  
0
NOM  
MAX  
36  
UNIT  
V
(1)  
Power supply voltage differential  
VDD VSS  
VDD  
Positive power supply voltage  
36  
V
VS or VD  
VSEL or VEN  
IS or ID (CONT)  
TA  
Signal path input/output voltage (source or drain pin) (Sx, D)  
Address or enable pin voltage  
VDD  
36  
V
V
(2)  
Source or drain continuous current (Sx, D)  
Ambient temperature  
IDC  
mA  
°C  
125  
40  
(1) VDD and VSS can be any value as long as 4.5 V (VDD VSS) 36 V, and the minimum VDD is met.  
(2) Refer to Source or Drain Continuous Current table for IDC specifications.  
6.5 Source or Drain Continuous Current  
at supply voltage of VDD ± 10%, VSS ± 10 % (unless otherwise noted)  
CONTINUOUS CURRENT PER CHANNEL (IDC  
PACKAGE TEST CONDITIONS  
±15 V Dual Supply  
)
TA = 25°C  
TA = 85°C  
270  
TA = 125°C  
UNIT  
440  
130  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
+36 V Single Supply(1)  
+12 V Single Supply  
±5 V Dual Supply  
440  
330  
330  
230  
330  
300  
240  
240  
180  
270  
200  
200  
140  
210  
190  
160  
160  
120  
130  
105  
105  
90  
RQX (WSON)  
DGK (VSSOP)  
+5 V Single Supply  
±15 V Dual Supply  
+36 V Single Supply(1)  
+12 V Single Supply  
±5 V Dual Supply  
120  
110  
100  
100  
80  
+5 V Single Supply  
(1) Specified for nominal supply voltage only.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: TMUX6219  
 
 
 
 
 
TMUX6219  
www.ti.com.cn  
MAX UNIT  
ZHCSM12D SEPTEMBER 2020 REVISED AUGUST 2022  
6.6 ±15 V Dual Supply: Electrical Characteristics  
VDD = +15 V ± 10%, VSS = 15 V ±10%, GND = 0 V (unless otherwise noted)  
Typical at VDD = +15 V, VSS = 15 V, TA = 25(unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
TA  
MIN  
TYP  
ANALOG SWITCH  
25°C  
2.1  
2.9  
3.8  
Ω
Ω
Ω
Ω
Ω
Ω
Ω
Ω
Ω
VS = 10 V to +10 V  
ID = 10 mA  
Refer to On-Resistance  
RON  
On-resistance  
40°C to +85°C  
40°C to +125°C  
25°C  
4.5  
0.05  
0.5  
0.25  
0.3  
VS = 10 V to +10 V  
ID = 10 mA  
Refer to On-Resistance  
On-resistance mismatch between  
channels  
40°C to +85°C  
40°C to +125°C  
25°C  
ΔRON  
0.35  
0.6  
VS = 10 V to +10 V  
IS = 10 mA  
Refer to On-Resistance  
0.7  
RON FLAT On-resistance flatness  
RON DRIFT On-resistance drift  
40°C to +85°C  
40°C to +125°C  
0.85  
VS = 0 V, IS = 10 mA  
Refer to On-Resistance  
0.01  
0.05  
40°C to +125°C  
/°C  
25°C  
0.2  
1.6  
nA  
nA  
VDD = 16.5 V, VSS = 16.5 V  
Switch state is off  
VS = +10 V / 10 V  
0.2  
1.6  
40°C to +85°C  
IS(OFF)  
Source off leakage current(1)  
VD = 10 V / + 10 V  
Refer to Off-Leakage Current  
40  
nA  
40°C to +125°C  
40  
25°C  
0.05  
0.04  
1
3
nA  
nA  
VDD = 16.5 V, VSS = 16.5 V  
Switch state is off  
VS = +10 V / 10 V  
VD = 10 V / + 10 V  
Refer to Off-Leakage Current  
1  
3  
40°C to +85°C  
ID(OFF)  
Drain off leakage current(1)  
60  
nA  
40°C to +125°C  
60  
25°C  
1
2
nA  
nA  
nA  
1  
2  
VDD = 16.5 V, VSS = 16.5 V  
Switch state is on  
VS = VD = ±10 V  
IS(ON)  
ID(ON)  
Channel on leakage current(2)  
40°C to +85°C  
40°C to +125°C  
Refer to On-Leakage Current  
50  
50  
LOGIC INPUTS (SEL / EN pins)  
VIH  
VIL  
IIH  
Logic voltage high  
1.3  
0
36  
0.8  
1
V
40°C to +125°C  
40°C to +125°C  
40°C to +125°C  
40°C to +125°C  
40°C to +125°C  
Logic voltage low  
V
Input leakage current  
Input leakage current  
Logic input capacitance  
0.005  
µA  
µA  
pF  
IIL  
1 0.005  
CIN  
3
POWER SUPPLY  
25°C  
30  
3
40  
48  
62  
10  
15  
25  
µA  
µA  
µA  
µA  
µA  
µA  
VDD = 16.5 V, VSS = 16.5 V  
Logic inputs = 0 V, 5 V, or VDD  
IDD  
VDD supply current  
40°C to +85°C  
40°C to +125°C  
25°C  
VDD = 16.5 V, VSS = 16.5 V  
Logic inputs = 0 V, 5 V, or VDD  
ISS  
VSS supply current  
40°C to +85°C  
40°C to +125°C  
(1) When VS is positive, VD is negative, or when VS is negative, VD is positive.  
(2) When VS is at a voltage potential, VD is floating, or when VD is at a voltage potential, VS is floating.  
Copyright © 2022 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: TMUX6219  
 
 
 
TMUX6219  
www.ti.com.cn  
ZHCSM12D SEPTEMBER 2020 REVISED AUGUST 2022  
6.7 ±15 V Dual Supply: Switching Characteristics  
VDD = +15 V ± 10%, VSS = 15 V ±10%, GND = 0 V (unless otherwise noted)  
Typical at VDD = +15 V, VSS = 15 V, TA = 25(unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
TA  
MIN  
TYP  
MAX UNIT  
25°C  
120  
175  
190  
210  
170  
185  
200  
180  
195  
210  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ms  
ms  
ms  
VS = 10 V  
RL = 300 Ω, CL = 35 pF  
Refer to Transition Time  
tTRAN  
Transition time from control input  
40°C to +85°C  
40°C to +125°C  
25°C  
VS = 10 V  
100  
100  
50  
RL = 300 Ω, CL = 35 pF  
Refer to Turn-on and Turn-off  
Time  
tON  
Turn-on time from enable  
Turn-off time from enable  
Break-before-make time delay  
40°C to +85°C  
40°C to +125°C  
25°C  
(EN)  
VS = 10 V  
RL = 300 Ω, CL = 35 pF  
Refer to Turn-on and Turn-off  
Time  
tOFF  
40°C to +85°C  
40°C to +125°C  
25°C  
(EN)  
VS = 10 V,  
RL = 300 Ω, CL = 35 pF  
Refer to Break-Before-Make  
1
1
tBBM  
40°C to +85°C  
40°C to +125°C  
25°C  
0.19  
0.2  
VDD rise time = 100 ns  
RL = 300 Ω, CL = 35 pF  
Refer to Turn-on (VDD) Time  
Device turn on time  
(VDD to output)  
TON (VDD)  
40°C to +85°C  
40°C to +125°C  
0.2  
RL = 50 Ω, CL = 5 pF  
Refer to Propagation Delay  
tPD  
Propagation delay  
Charge injection  
25°C  
25°C  
700  
ps  
VD = 0 V, CL = 1 nF  
Refer to Charge Injection  
QINJ  
pC  
10  
RL = 50 Ω, CL = 5 pF  
VS = 0 V, f = 100 kHz  
Refer to Off Isolation  
OISO  
Off-isolation  
Off-isolation  
Crosstalk  
25°C  
25°C  
25°C  
25°C  
dB  
dB  
dB  
dB  
75  
55  
RL = 50 Ω, CL = 5 pF  
VS = 0 V, f = 1 MHz  
Refer to Off Isolation  
OISO  
RL = 50 Ω, CL = 5 pF  
VS = 0 V, f = 100 kHz  
Refer to Crosstalk  
XTALK  
117  
106  
RL = 50 Ω, CL = 5 pF  
VS = 0 V, f = 1MHz  
Refer to Crosstalk  
XTALK  
Crosstalk  
RL = 50 Ω, CL = 5 pF  
VS = 0 V  
Refer to Bandwidth  
BW  
IL  
25°C  
25°C  
40  
MHz  
dB  
3dB Bandwidth  
RL = 50 Ω, CL = 5 pF  
VS = 0 V, f = 1 MHz  
Insertion loss  
0.18  
VPP = 0.62 V on VDD and VSS  
RL = 50 Ω, CL = 5 pF,  
f = 1 MHz  
ACPSRR AC Power Supply Rejection Ratio  
25°C  
25°C  
dB  
%
64  
Refer to ACPSRR  
VPP = 15 V, VBIAS = 0 V  
RL = 10 kΩ, CL = 5 pF,  
f = 20 Hz to 20 kHz  
THD+N  
Total Harmonic Distortion + Noise  
0.0005  
Refer to THD + Noise  
CS(OFF)  
CD(OFF)  
Source off capacitance  
Drain off capacitance  
VS = 0 V, f = 1 MHz  
VS = 0 V, f = 1 MHz  
25°C  
25°C  
33  
48  
pF  
pF  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: TMUX6219  
 
TMUX6219  
www.ti.com.cn  
ZHCSM12D SEPTEMBER 2020 REVISED AUGUST 2022  
VDD = +15 V ± 10%, VSS = 15 V ±10%, GND = 0 V (unless otherwise noted)  
Typical at VDD = +15 V, VSS = 15 V, TA = 25(unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
TA  
MIN  
TYP  
MAX UNIT  
CS(ON)  
CD(ON)  
,
On capacitance  
VS = 0 V, f = 1 MHz  
25°C  
148  
pF  
Copyright © 2022 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: TMUX6219  
TMUX6219  
www.ti.com.cn  
ZHCSM12D SEPTEMBER 2020 REVISED AUGUST 2022  
6.8 36 V Single Supply: Electrical Characteristics  
VDD = +36 V ± 10%, VSS = 0 V, GND = 0 V (unless otherwise noted)  
Typical at VDD = +36 V, VSS = 0 V, TA = 25(unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
TA  
MIN  
TYP  
MAX UNIT  
ANALOG SWITCH  
25°C  
2.5  
3.2  
4.2  
4.9  
0.2  
0.25  
0.3  
1
Ω
Ω
Ω
Ω
Ω
Ω
Ω
Ω
Ω
VS = 0 V to 30 V  
ID = 10 mA  
Refer to On-Resistance  
RON  
On-resistance  
40°C to +85°C  
40°C to +125°C  
25°C  
0.1  
0.3  
VS = 0 V to 30 V  
ID = 10 mA  
Refer to On-Resistance  
On-resistance mismatch between  
channels  
40°C to +85°C  
40°C to +125°C  
25°C  
ΔRON  
VS = 0 V to 30 V  
IS = 10 mA  
Refer to On-Resistance  
1.5  
2
RON FLAT On-resistance flatness  
RON DRIFT On-resistance drift  
40°C to +85°C  
40°C to +125°C  
VS = 18 V, IS = 10 mA  
Refer to On-Resistance  
0.009  
0.05  
40°C to +125°C  
/°C  
VDD = 39.6 V, VSS = 0 V  
Switch state is off  
VS = 30 V / 1 V  
25°C  
0.3  
3.5  
nA  
nA  
0.3  
3.5  
40°C to +85°C  
IS(OFF)  
Source off leakage current(1)  
VD = 1 V / 30 V  
Refer to Off-Leakage Current  
60  
nA  
40°C to +125°C  
60  
VDD = 39.6 V, VSS = 0 V  
Switch state is off  
VS = 30 V / 1 V  
VD = 1 V / 30 V  
Refer to Off-Leakage Current  
25°C  
0.05  
0.05  
1
nA  
nA  
1  
6.2  
40°C to +85°C  
6.2  
ID(OFF)  
Drain off leakage current(1)  
80  
nA  
40°C to +125°C  
80  
25°C  
0.4  
4.5  
70  
nA  
nA  
nA  
VDD = 39.6 V, VSS = 0 V  
Switch state is on  
VS = VD = 30 V or 1 V  
Refer to On-Leakage Current  
0.4  
4.5  
70  
IS(ON)  
ID(ON)  
Channel on leakage current(2)  
40°C to +85°C  
40°C to +125°C  
LOGIC INPUTS (SEL / EN pins)  
VIH  
VIL  
IIH  
Logic voltage high  
1.3  
0
36  
0.8  
1
V
40°C to +125°C  
40°C to +125°C  
40°C to +125°C  
40°C to +125°C  
40°C to +125°C  
Logic voltage low  
V
Input leakage current  
Input leakage current  
Logic input capacitance  
0.005  
µA  
µA  
pF  
IIL  
1 0.005  
CIN  
3
POWER SUPPLY  
25°C  
28  
50  
58  
70  
µA  
µA  
µA  
VDD = 39.6 V, VSS = 0 V  
Logic inputs = 0 V, 5 V, or VDD  
IDD  
VDD supply current  
40°C to +85°C  
40°C to +125°C  
(1) When VS is 30 V, VD is 1 V, or when VS is 1 V, VD is 30 V.  
(2) When VS is at a voltage potential, VD is floating, or when VD is at a voltage potential, VS is floating.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: TMUX6219  
 
 
 
TMUX6219  
www.ti.com.cn  
MAX UNIT  
ZHCSM12D SEPTEMBER 2020 REVISED AUGUST 2022  
6.9 36 V Single Supply: Switching Characteristics  
VDD = +36 V ± 10%, VSS = 0 V, GND = 0 V (unless otherwise noted)  
Typical at VDD = +36 V, VSS = 0 V, TA = 25(unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
TA  
MIN  
TYP  
25°C  
110  
170  
185  
200  
180  
190  
200  
180  
195  
200  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ms  
ms  
ms  
VS = 18 V  
RL = 300 Ω, CL = 35 pF  
Refer to Transition Time  
tTRAN  
Transition time from control input  
40°C to +85°C  
40°C to +125°C  
25°C  
VS = 18 V  
110  
90  
RL = 300 Ω, CL = 35 pF  
Refer to Turn-on and Turn-off  
Time  
tON  
Turn-on time from enable  
Turn-off time from enable  
Break-before-make time delay  
40°C to +85°C  
40°C to +125°C  
25°C  
(EN)  
VS = 18 V  
RL = 300 Ω, CL = 35 pF  
Refer to Turn-on and Turn-off  
Time  
tOFF  
40°C to +85°C  
40°C to +125°C  
25°C  
(EN)  
44  
VS = 18 V,  
RL = 300 Ω, CL = 35 pF  
Refer to Break-Before-Make  
1
1
tBBM  
40°C to +85°C  
40°C to +125°C  
25°C  
0.17  
0.19  
0.19  
VDD rise time = 100 ns  
RL = 300 Ω, CL = 35 pF  
Refer to Turn-on (VDD) Time  
Device turn on time  
(VDD to output)  
TON (VDD)  
40°C to +85°C  
40°C to +125°C  
RL = 50 Ω, CL = 5 pF  
Refer to Propagation Delay  
tPD  
Propagation delay  
Charge injection  
25°C  
25°C  
920  
ps  
VD = 18 V, CL = 1 nF  
Refer to Charge Injection  
QINJ  
pC  
13  
RL = 50 Ω, CL = 5 pF  
VS = 6 V, f = 100 kHz  
Refer to Off Isolation  
OISO  
Off-isolation  
Off-isolation  
Crosstalk  
25°C  
25°C  
25°C  
25°C  
dB  
dB  
dB  
dB  
75  
55  
RL = 50 Ω, CL = 5 pF  
VS = 6 V, f = 1 MHz  
Refer to Off Isolation  
OISO  
RL = 50 Ω, CL = 5 pF  
VS = 6 V, f = 100 kHz  
Refer to Crosstalk  
XTALK  
117  
106  
RL = 50 Ω, CL = 5 pF  
VS = 6 V, f = 1MHz  
Refer to Crosstalk  
XTALK  
Crosstalk  
RL = 50 Ω, CL = 5 pF  
VS = 6 V,  
Refer to Bandwidth  
BW  
IL  
25°C  
25°C  
38  
MHz  
dB  
3dB Bandwidth  
RL = 50 Ω, CL = 5 pF  
VS = 6 V, f = 1 MHz  
Insertion loss  
0.19  
VPP = 0.62 V on VDD and VSS  
RL = 50 Ω, CL = 5 pF,  
f = 1 MHz  
ACPSRR AC Power Supply Rejection Ratio  
25°C  
25°C  
dB  
%
60  
Refer to ACPSRR  
VPP =18 V, VBIAS = 18 V  
RL = 10 kΩ, CL = 5 pF,  
f = 20 Hz to 20 kHz  
THD+N  
Total Harmonic Distortion + Noise  
0.0004  
Refer to THD + Noise  
CS(OFF)  
CD(OFF)  
Source off capacitance  
Drain off capacitance  
VS = 6 V, f = 1 MHz  
VS = 6 V, f = 1 MHz  
25°C  
25°C  
35  
49  
pF  
pF  
Copyright © 2022 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: TMUX6219  
 
TMUX6219  
www.ti.com.cn  
ZHCSM12D SEPTEMBER 2020 REVISED AUGUST 2022  
VDD = +36 V ± 10%, VSS = 0 V, GND = 0 V (unless otherwise noted)  
Typical at VDD = +36 V, VSS = 0 V, TA = 25(unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
TA  
MIN  
TYP  
MAX UNIT  
CS(ON),  
CD(ON)  
On capacitance  
VS = 6 V, f = 1 MHz  
25°C  
146  
pF  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: TMUX6219  
TMUX6219  
www.ti.com.cn  
MAX UNIT  
ZHCSM12D SEPTEMBER 2020 REVISED AUGUST 2022  
6.10 12 V Single Supply: Electrical Characteristics  
VDD = +12 V ± 10%, VSS = 0 V, GND = 0 V (unless otherwise noted)  
Typical at VDD = +12 V, VSS = 0 V, TA = 25(unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
TA  
MIN  
TYP  
ANALOG SWITCH  
25°C  
4.6  
6
7.5  
8.4  
0.2  
0.32  
0.35  
2
Ω
Ω
Ω
Ω
Ω
Ω
Ω
Ω
Ω
VS = 0 V to 10 V  
ID = 10 mA  
Refer to On-Resistance  
RON  
On-resistance  
40°C to +85°C  
40°C to +125°C  
25°C  
0.08  
1.2  
VS = 0 V to 10 V  
ID = 10 mA  
Refer to On-Resistance  
On-resistance mismatch between  
channels  
40°C to +85°C  
40°C to +125°C  
25°C  
ΔRON  
VS = 0 V to 10 V  
IS = 10 mA  
Refer to On-Resistance  
2.2  
2.4  
RON FLAT On-resistance flatness  
RON DRIFT On-resistance drift  
40°C to +85°C  
40°C to +125°C  
VS = 6 V, IS = 10 mA  
Refer to On-Resistance  
0.017  
0.05  
40°C to +125°C  
/°C  
VDD = 13.2 V, VSS = 0 V  
Switch state is off  
VS = 10 V / 1 V  
25°C  
0.5  
2
nA  
nA  
0.5  
2  
40°C to +85°C  
IS(OFF)  
Source off leakage current(1)  
VD = 1 V / 10 V  
Refer to Off-Leakage Current  
30  
nA  
40°C to +125°C  
30  
VDD = 13.2 V, VSS = 0 V  
Switch state is off  
VS = 10 V / 1 V  
VD = 1 V / 10 V  
Refer to Off-Leakage Current  
25°C  
0.05  
0.05  
0.5  
3
nA  
nA  
0.5  
3  
40°C to +85°C  
ID(OFF)  
Drain off leakage current(1)  
50  
nA  
40°C to +125°C  
50  
25°C  
1.5  
3
nA  
nA  
nA  
VDD = 13.2 V, VSS = 0 V  
Switch state is on  
VS = VD = 10 V or 1 V  
Refer to On-Leakage Current  
1.5  
3  
IS(ON)  
ID(ON)  
Channel on leakage current(2)  
40°C to +85°C  
40°C to +125°C  
40  
40  
LOGIC INPUTS (SEL / EN pins)  
VIH  
VIL  
IIH  
Logic voltage high  
1.3  
0
36  
0.8  
1
V
40°C to +125°C  
40°C to +125°C  
40°C to +125°C  
40°C to +125°C  
40°C to +125°C  
Logic voltage low  
V
Input leakage current  
Input leakage current  
Logic input capacitance  
0.005  
µA  
µA  
pF  
IIL  
1 0.005  
CIN  
3
POWER SUPPLY  
25°C  
10  
35  
45  
55  
µA  
µA  
µA  
VDD = 13.2 V, VSS = 0 V  
Logic inputs = 0 V, 5 V, or VDD  
IDD  
VDD supply current  
40°C to +85°C  
40°C to +125°C  
(1) When VS is 10 V, VD is 1 V, or when VS is 1 V, VD is 10 V.  
(2) When VS is at a voltage potential, VD is floating, or when VD is at a voltage potential, VS is floating.  
Copyright © 2022 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: TMUX6219  
 
 
 
TMUX6219  
www.ti.com.cn  
ZHCSM12D SEPTEMBER 2020 REVISED AUGUST 2022  
6.11 12 V Single Supply: Switching Characteristics  
VDD = +12 V ± 10%, VSS = 0 V, GND = 0 V (unless otherwise noted)  
Typical at VDD = +12 V, VSS = 0 V, TA = 25(unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
TA  
MIN  
TYP  
MAX UNIT  
25°C  
180  
185  
215  
235  
180  
210  
230  
210  
235  
250  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ms  
ms  
ms  
VS = 8 V  
RL = 300 Ω, CL = 35 pF  
Refer to Transition Time  
tTRAN  
Transition time from control input  
40°C to +85°C  
40°C to +125°C  
25°C  
VS = 8 V  
120  
130  
40  
RL = 300 Ω, CL = 35 pF  
Refer to Turn-on and Turn-off  
Time  
tON  
Turn-on time from enable  
Turn-off time from enable  
Break-before-make time delay  
40°C to +85°C  
40°C to +125°C  
25°C  
(EN)  
VS = 8 V  
RL = 300 Ω, CL = 35 pF  
Refer to Turn-on and Turn-off  
Time  
tOFF  
40°C to +85°C  
40°C to +125°C  
25°C  
(EN)  
VS = 8 V,  
RL = 300 Ω, CL = 35 pF  
Refer to Break-Before-Make  
1
1
tBBM  
40°C to +85°C  
40°C to +125°C  
25°C  
0.19  
0.2  
VDD rise time = 100 ns  
RL = 300 Ω, CL = 35 pF  
Refer to Turn-on (VDD) Time  
Device turn on time  
(VDD to output)  
TON (VDD)  
40°C to +85°C  
40°C to +125°C  
0.2  
RL = 50 Ω, CL = 5 pF  
Refer to Propagation Delay  
tPD  
Propagation delay  
Charge injection  
25°C  
25°C  
740  
ps  
VD = 6 V, CL = 1 nF  
Refer to Charge Injection  
QINJ  
pC  
6  
RL = 50 Ω, CL = 5 pF  
VS = 6 V, f = 100 kHz  
Refer to Off Isolation  
OISO  
Off-isolation  
Off-isolation  
Crosstalk  
25°C  
25°C  
25°C  
25°C  
dB  
dB  
dB  
dB  
75  
55  
RL = 50 Ω, CL = 5 pF  
VS = 6 V, f = 1 MHz  
Refer to Off Isolation  
OISO  
RL = 50 Ω, CL = 5 pF  
VS = 6 V, f = 100 kHz  
Refer to Crosstalk  
XTALK  
117  
106  
RL = 50 Ω, CL = 5 pF  
VS = 6 V, f = 1 MHz  
Refer to Crosstalk  
XTALK  
Crosstalk  
RL = 50 Ω, CL = 5 pF  
VS = 6 V  
Refer to Bandwidth  
BW  
IL  
25°C  
25°C  
42  
MHz  
dB  
3dB Bandwidth  
RL = 50 Ω, CL = 5 pF  
VS = 6 V, f = 1 MHz  
Insertion loss  
0.3  
VPP = 0.62 V on VDD and VSS  
RL = 50 Ω, CL = 5 pF,  
f = 1 MHz  
ACPSRR AC Power Supply Rejection Ratio  
25°C  
25°C  
dB  
%
65  
Refer to ACPSRR  
VPP = 6 V, VBIAS = 6 V  
RL = 10 kΩ, CL = 5 pF,  
f = 20 Hz to 20 kHz  
THD+N  
Total Harmonic Distortion + Noise  
0.0009  
Refer to THD + Noise  
CS(OFF)  
CD(OFF)  
Source off capacitance  
Drain off capacitance  
VS = 6 V, f = 1 MHz  
VS = 6 V, f = 1 MHz  
25°C  
25°C  
38  
56  
pF  
pF  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: TMUX6219  
 
TMUX6219  
www.ti.com.cn  
ZHCSM12D SEPTEMBER 2020 REVISED AUGUST 2022  
VDD = +12 V ± 10%, VSS = 0 V, GND = 0 V (unless otherwise noted)  
Typical at VDD = +12 V, VSS = 0 V, TA = 25(unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
TA  
MIN  
TYP  
MAX UNIT  
CS(ON)  
CD(ON)  
,
On capacitance  
VS = 6 V, f = 1 MHz  
25°C  
150  
pF  
Copyright © 2022 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: TMUX6219  
TMUX6219  
www.ti.com.cn  
ZHCSM12D SEPTEMBER 2020 REVISED AUGUST 2022  
6.12 +5 V / -8 V Dual Supply: Electrical Characteristics  
VDD = +5 V ± 10%, VSS = 8 V ±10%, GND = 0 V (unless otherwise noted)  
Typical at VDD = +5 V, VSS = 5 V, TA = 25(unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
TA  
MIN  
TYP  
MAX UNIT  
ANALOG SWITCH  
25°C  
4.2  
5.5  
6.8  
VDD = +5 V, VSS = 8 V  
VS = VDD to VSS  
ID = 10 mA  
Refer to On-Resistance  
Ω
Ω
Ω
Ω
Ω
Ω
Ω
Ω
Ω
RON  
On-resistance  
40°C to +85°C  
40°C to +125°C  
25°C  
7.6  
0.1  
1
0.23  
0.27  
0.35  
1.5  
VS = VDD to VSS  
ID = 10 mA  
Refer to On-Resistance  
On-resistance mismatch between  
channels  
40°C to +85°C  
40°C to +125°C  
25°C  
ΔRON  
VS = VDD to VSS  
ID = 10 mA  
Refer to On-Resistance  
1.7  
RON FLAT  
On-resistance flatness  
40°C to +85°C  
40°C to +125°C  
2
VS = 0 V, IS = 10 mA  
Refer to On-Resistance  
RON DRIFT On-resistance drift  
0.019  
0.1  
40°C to +125°C  
/°C  
25°C  
0.3  
3
nA  
nA  
VDD = +5.5 V, VSS = 8.8 V  
Switch state is off  
VS = VDD - 1 / VSS + 1  
VD = VSS + 1 / VDD - 1  
Refer to Off-Leakage Current  
0.3  
3  
40°C to +85°C  
IS(OFF)  
Source off leakage current(1)  
50  
nA  
40°C to +125°C  
50  
25°C  
0.1  
0.1  
0.5  
3
nA  
nA  
VDD = +5.5 V, VSS = 8.8 V  
Switch state is off  
VS = VDD - 1 / VSS + 1  
VD = VSS + 1 / VDD - 1  
Refer to Off-Leakage Current  
0.5  
3  
40°C to +85°C  
ID(OFF)  
Drain off leakage current(1)  
55  
nA  
40°C to +125°C  
55  
25°C  
0.5  
3
nA  
nA  
nA  
0.5  
3  
VDD = +5.5 V, VSS = 8.8 V  
Switch state is on  
VS = VD = VDD - 1 / VSS + 1  
Refer to On-Leakage Current  
IS(ON)  
ID(ON)  
Channel on leakage current(2)  
40°C to +85°C  
40°C to +125°C  
40  
40  
LOGIC INPUTS (SEL / EN pins)  
VIH  
VIL  
IIH  
Logic voltage high  
1.3  
0
44  
0.8  
1
V
40°C to +125°C  
40°C to +125°C  
40°C to +125°C  
40°C to +125°C  
40°C to +125°C  
Logic voltage low  
V
Input leakage current  
Input leakage current  
Logic input capacitance  
0.005  
µA  
µA  
pF  
IIL  
1 0.005  
CIN  
3
POWER SUPPLY  
25°C  
24  
1
30  
37  
42  
5
µA  
µA  
µA  
µA  
µA  
µA  
VDD = +5.5 V, VSS = 8.8 V  
Logic inputs = 0 V, 5 V, or VDD  
IDD  
VDD supply current  
40°C to +85°C  
40°C to +125°C  
25°C  
VDD = +5.5 V, VSS = 8.8 V  
Logic inputs = 0 V, 5 V, or VDD  
8
ISS  
VSS supply current  
40°C to +85°C  
40°C to +125°C  
12  
(1) When VS is positive, VD is negative, or when VS is negative, VD is positive.  
(2) When VS is at a voltage potential, VD is floating, or when VD is at a voltage potential, VS is floating.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: TMUX6219  
 
 
 
 
TMUX6219  
www.ti.com.cn  
ZHCSM12D SEPTEMBER 2020 REVISED AUGUST 2022  
6.13 +5 V / -8 V Dual Supply: Switching Characteristics  
VDD = +5 V ± 10%, VSS = 5 V ±10%, GND = 0 V (unless otherwise noted)  
Typical at VDD = +5 V, VSS = 5 V, TA = 25(unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
TA  
MIN  
TYP  
MAX UNIT  
25°C  
180  
190  
220  
240  
180  
215  
240  
220  
245  
270  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ms  
ms  
ms  
VS = 3 V  
RL = 300 Ω, CL = 35 pF  
Refer to Transition Time  
tTRAN  
Transition time from control input  
40°C to +85°C  
40°C to +125°C  
25°C  
120  
130  
60  
VS = 3 V  
tON  
Turn-on time from enable  
Turn-off time from enable  
Break-before-make time delay  
40°C to +85°C  
40°C to +125°C  
25°C  
RL = 300 Ω, CL = 35 pF  
Refer to Turn-on and Turn-off Time  
(EN)  
VS = 3 V  
tOFF  
40°C to +85°C  
40°C to +125°C  
25°C  
RL = 300 Ω, CL = 35 pF  
Refer to Turn-on and Turn-off Time  
(EN)  
VS = 3 V,  
RL = 300 Ω, CL = 35 pF  
Refer to Break-Before-Make  
1
1
tBBM  
40°C to +85°C  
40°C to +125°C  
25°C  
0.19  
0.19  
0.19  
VDD rise time = 1us  
RL = 300 Ω, CL = 35pF  
Refer to Turn-on (VDD) Time  
Device turn on time  
(VDD to output)  
1
1
TON (VDD)  
40°C to +85°C  
40°C to +125°C  
RL = 50 Ω, CL = 5 pF  
Refer to Propagation Delay  
tPD  
Propagation delay  
Charge injection  
25°C  
25°C  
650  
14  
ps  
VD = 0 V, CL = 1 nF  
Refer to Charge Injection  
QINJ  
pC  
RL = 50 Ω, CL = 5 pF  
VS = 0 V, f = 100 kHz  
Refer to Off Isolation  
OISO  
Off-isolation  
Off-isolation  
Crosstalk  
25°C  
25°C  
25°C  
25°C  
dB  
dB  
dB  
dB  
75  
55  
80  
70  
RL = 50 Ω, CL = 5 pF  
VS = 0 V, f = 1 MHz  
Refer to Off Isolation  
OISO  
RL = 50 Ω, CL = 5 pF  
VS = 0 V, f = 100 kHz  
Refer to Crosstalk  
XTALK  
RL = 50 Ω, CL = 5 pF  
VS = 0 V, f = 1MHz  
Refer to Crosstalk  
XTALK  
Crosstalk  
RL = 50 Ω, CL = 5 pF  
VS = 0 V,  
Refer to Bandwidth  
BW  
IL  
25°C  
25°C  
42  
MHz  
dB  
3dB Bandwidth  
RL = 50 Ω, CL = 5 pF  
VS = 0 V, f = 1 MHz  
Insertion loss  
0.3  
VPP = 0.62 V on VDD and VSS  
RL = 50 Ω, CL = 5 pF,  
f = 1 MHz  
ACPSRR AC Power Supply Rejection Ratio  
25°C  
25°C  
dB  
%
68  
Refer to ACPSRR  
VPP = 5 V, VBIAS = 0 V  
RL = 10 kΩ, CL = 5 pF,  
f = 20 Hz to 20 kHz  
THD+N  
Total Harmonic Distortion + Noise  
0.001  
Refer to THD + Noise  
CS(OFF)  
CD(OFF)  
Source off capacitance  
Drain off capacitance  
VS = 0 V, f = 1 MHz  
VS = 0 V, f = 1 MHz  
25°C  
25°C  
36  
53  
pF  
pF  
CS(ON),  
CD(ON)  
On capacitance  
VS = 0 V, f = 1 MHz  
25°C  
142  
pF  
Copyright © 2022 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: TMUX6219  
 
TMUX6219  
www.ti.com.cn  
ZHCSM12D SEPTEMBER 2020 REVISED AUGUST 2022  
6.14 ±5 V Dual Supply: Electrical Characteristics  
VDD = +5 V ± 10%, VSS = 5 V ±10%, GND = 0 V (unless otherwise noted)  
Typical at VDD = +5 V, VSS = 5 V, TA = 25(unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
TA  
MIN  
TYP  
MAX UNIT  
ANALOG SWITCH  
25°C  
4
7.2  
8.6  
VDD = +4.5 V, VSS = 4.5 V  
VS = 4.5 V to +4.5 V  
ID = 10 mA  
Ω
Ω
40°C to +85°C  
RON  
On-resistance  
10  
0.3  
40°C to +125°C  
25°C  
Ω
Ω
Ω
Ω
Ω
Ω
Ω
Refer to On-Resistance  
0.1  
1.3  
VS = 4.5 V to +4.5 V  
ID = 10 mA  
Refer to On-Resistance  
On-resistance mismatch between  
channels  
0.35  
0.4  
40°C to +85°C  
40°C to +125°C  
25°C  
ΔRON  
2.2  
VS = 4.5 V to +4.5 V  
ID = 10 mA  
Refer to On-Resistance  
2.5  
RON FLAT On-resistance flatness  
RON DRIFT On-resistance drift  
40°C to +85°C  
40°C to +125°C  
2.8  
VS = 0 V, IS = 10 mA  
Refer to On-Resistance  
0.019  
0.05  
40°C to +125°C  
/°C  
25°C  
0.3  
1
nA  
nA  
VDD = +5.5 V, VSS = 5.5 V  
Switch state is off  
VS = +4.5 V / 4.5 V  
0.3  
1  
40°C to +85°C  
IS(OFF)  
Source off leakage current(1)  
VD = 4.5 V / + 4.5 V  
Refer to Off-Leakage Current  
30  
nA  
40°C to +125°C  
30  
25°C  
0.05  
0.05  
0.4  
3
nA  
nA  
VDD = +5.5 V, VSS = 5.5 V  
Switch state is off  
VS = +4.5 V / 4.5 V  
VD = 4.5 V / + 4.5 V  
Refer to Off-Leakage Current  
0.4  
3  
40°C to +85°C  
ID(OFF)  
Drain off leakage current(1)  
50  
nA  
40°C to +125°C  
50  
25°C  
0.4  
3
nA  
nA  
nA  
0.4  
3  
VDD = +5.5 V, VSS = 5.5 V  
Switch state is on  
VS = VD = ±4.5 V  
IS(ON)  
ID(ON)  
Channel on leakage current(2)  
40°C to +85°C  
40°C to +125°C  
Refer to On-Leakage Current  
40  
40  
LOGIC INPUTS (SEL / EN pins)  
VIH  
VIL  
IIH  
Logic voltage high  
1.3  
0
36  
0.8  
1
V
40°C to +125°C  
40°C to +125°C  
40°C to +125°C  
40°C to +125°C  
40°C to +125°C  
Logic voltage low  
V
Input leakage current  
Input leakage current  
Logic input capacitance  
0.005  
µA  
µA  
pF  
IIL  
1 0.005  
CIN  
3
POWER SUPPLY  
25°C  
20  
35  
40  
50  
5
µA  
µA  
µA  
µA  
µA  
µA  
VDD = +5.5 V, VSS = 5.5 V  
Logic inputs = 0 V, 5 V, or VDD  
IDD  
VDD supply current  
40°C to +85°C  
40°C to +125°C  
25°C  
0.001  
VDD = +5.5 V, VSS = 5.5 V  
Logic inputs = 0 V, 5 V, or VDD  
8
ISS  
VSS supply current  
40°C to +85°C  
40°C to +125°C  
15  
(1) When VS is positive, VD is negative, or when VS is negative, VD is positive.  
(2) When VS is at a voltage potential, VD is floating, or when VD is at a voltage potential, VS is floating.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: TMUX6219  
 
 
 
TMUX6219  
www.ti.com.cn  
MAX UNIT  
ZHCSM12D SEPTEMBER 2020 REVISED AUGUST 2022  
6.15 ±5 V Dual Supply: Switching Characteristics  
VDD = +5 V ± 10%, VSS = 5 V ±10%, GND = 0 V (unless otherwise noted)  
Typical at VDD = +5 V, VSS = 5 V, TA = 25(unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
TA  
MIN  
TYP  
25°C  
300  
400  
490  
550  
300  
350  
380  
280  
330  
350  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ms  
ms  
ms  
VS = 3 V  
RL = 300 Ω, CL = 35 pF  
Refer to Transition Time  
tTRAN  
Transition time from control input  
40°C to +85°C  
40°C to +125°C  
25°C  
VS = 3 V  
220  
210  
50  
RL = 300 Ω, CL = 35 pF  
Refer to Turn-on and Turn-off  
Time  
tON  
Turn-on time from enable  
Turn-off time from enable  
Break-before-make time delay  
40°C to +85°C  
40°C to +125°C  
25°C  
(EN)  
VS = 3 V  
RL = 300 Ω, CL = 35 pF  
Refer to Turn-on and Turn-off  
Time  
tOFF  
40°C to +85°C  
40°C to +125°C  
25°C  
(EN)  
VS = 3 V,  
RL = 300 Ω, CL = 35 pF  
Refer to Break-Before-Make  
1
1
tBBM  
40°C to +85°C  
40°C to +125°C  
25°C  
0.19  
0.19  
0.19  
VDD rise time = 100 ns  
RL = 300 Ω, CL = 35pF  
Refer to Turn-on (VDD) Time  
Device turn on time  
(VDD to output)  
1
1
TON (VDD)  
40°C to +85°C  
40°C to +125°C  
RL = 50 Ω, CL = 5 pF  
Refer to Propagation Delay  
tPD  
Propagation delay  
Charge injection  
25°C  
25°C  
650  
ps  
VD = 0 V, CL = 1 nF  
Refer to Charge Injection  
QINJ  
pC  
5  
RL = 50 Ω, CL = 5 pF  
VS = 0 V, f = 100 kHz  
Refer to Off Isolation  
OISO  
Off-isolation  
Off-isolation  
Crosstalk  
25°C  
25°C  
25°C  
25°C  
dB  
dB  
dB  
dB  
75  
55  
RL = 50 Ω, CL = 5 pF  
VS = 0 V, f = 1 MHz  
Refer to Off Isolation  
OISO  
RL = 50 Ω, CL = 5 pF  
VS = 0 V, f = 100 kHz  
Refer to Crosstalk  
XTALK  
117  
106  
RL = 50 Ω, CL = 5 pF  
VS = 0 V, f = 1 MHz  
Refer to Crosstalk  
XTALK  
Crosstalk  
RL = 50 Ω, CL = 5 pF  
VS = 0 V,  
Refer to Bandwidth  
BW  
IL  
25°C  
25°C  
43  
MHz  
dB  
3dB Bandwidth  
RL = 50 Ω, CL = 5 pF  
VS = 0 V, f = 1 MHz  
Insertion loss  
0.35  
VPP = 0.62 V on VDD and VSS  
RL = 50 Ω, CL = 5 pF,  
f = 1 MHz  
ACPSRR AC Power Supply Rejection Ratio  
25°C  
25°C  
dB  
%
68  
Refer to ACPSRR  
VPP = 5 V, VBIAS = 0 V  
RL = 10 kΩ, CL = 5 pF,  
f = 20 Hz to 20 kHz  
THD+N  
Total Harmonic Distortion + Noise  
0.001  
Refer to THD + Noise  
CS(OFF)  
CD(OFF)  
Source off capacitance  
Drain off capacitance  
VS = 0 V, f = 1 MHz  
VS = 0 V, f = 1 MHz  
25°C  
25°C  
40  
60  
pF  
pF  
Copyright © 2022 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: TMUX6219  
 
TMUX6219  
www.ti.com.cn  
ZHCSM12D SEPTEMBER 2020 REVISED AUGUST 2022  
VDD = +5 V ± 10%, VSS = 5 V ±10%, GND = 0 V (unless otherwise noted)  
Typical at VDD = +5 V, VSS = 5 V, TA = 25(unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
TA  
MIN  
TYP  
MAX UNIT  
CS(ON),  
CD(ON)  
On capacitance  
VS = 0 V, f = 1 MHz  
25°C  
150  
pF  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: TMUX6219  
TMUX6219  
www.ti.com.cn  
ZHCSM12D SEPTEMBER 2020 REVISED AUGUST 2022  
6.16 Typical Characteristics  
at TA = 25°C  
4
VDD = 18 V, VSS = –18 V  
VDD = 15 V, VSS = –15 V  
VDD = 13.5 V, VSS = 13.5 V  
3.5  
3
2.5  
2
1.5  
1
-20  
-15  
-10  
-5  
0
5
10  
15  
20  
VS or VD - Source or Drain Voltage (V)  
6-1. On-Resistance vs Source or Drain Voltage Dual  
6-2. On-Resistance vs Source or Drain Voltage Dual  
Supply  
Supply  
5
VDD = 36 V, VSS = 0 V  
VDD = 24 V, VSS = 0 V  
VDD = 18 V, VSS = 0 V  
4
3
2
1
0
4
8
12  
16  
20  
24  
28  
32  
36  
VS or VD - Source or Drain Voltage (V)  
6-4. On-Resistance vs Source or Drain Voltage Single  
6-3. On-Resistance vs Source or Drain Voltage Single  
Supply  
Supply  
12  
TA = 125C  
TA = 85C  
11  
TA = 25C  
TA = -40C  
10  
9
8
7
6
5
4
3
2
1
-8 -7 -6 -5 -4 -3 -2 -1  
0
1
2
3
4
5
VS or VD - Source or Drain Voltage (V)  
VDD = 15 V, VSS = 15 V  
VDD = 5 V, VSS = 8 V  
6-5. On-Resistance vs Temperature  
6-6. On-Resistance vs Temperature  
Copyright © 2022 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: TMUX6219  
 
TMUX6219  
www.ti.com.cn  
ZHCSM12D SEPTEMBER 2020 REVISED AUGUST 2022  
6.16 Typical Characteristics (continued)  
at TA = 25°C  
VDD = 12 V, VSS = 0 V  
VDD = 5 V, VSS = 5 V  
6-8. On-Resistance vs Temperature  
6-7. On-Resistance vs Temperature  
15  
10  
5
ID(OFF) VS/VD = –4.5 V/4.5 V  
ID(OFF) VS/VD = 4.5 V/–4.5 V  
ION –4.5 V  
ION 4.5 V  
IS(OFF) VS/VD = –4.5 V/4.5 V  
IS(OFF) VS/VD = 4.5 V/–4.5 V  
0
-5  
-10  
-15  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
VDD = 36 V, VSS = 0 V  
VDD = 5 V, VSS = 5 V  
6-9. On-Resistance vs Temperature  
6-10. Leakage Current vs Temperature  
VDD = 36 V, VSS = 0 V  
VDD = 15 V, VSS = 15 V  
6-12. Leakage Current vs Temperature  
6-11. Leakage Current vs Temperature  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: TMUX6219  
TMUX6219  
www.ti.com.cn  
ZHCSM12D SEPTEMBER 2020 REVISED AUGUST 2022  
6.16 Typical Characteristics (continued)  
at TA = 25°C  
50  
45  
40  
35  
30  
25  
20  
15  
VDD = 15 V, VSS = –15 V  
VDD = 5 V, VSS = –5 V  
VDD = 12 V, VSS = 0 V  
VDD = 5 V, VSS = 0 V  
0
4
8
12  
16  
20  
24  
28  
32  
36  
Logic Voltage (V)  
VDD = 12 V, VSS = 0 V  
6-13. Leakage Current vs Temperature  
6-14. Supply Current vs Logic Voltage  
100  
80  
VDD = 15 V, VSS = –15 V  
VDD = 5 V, VSS = –5 V  
VDD = 15 V, VSS = –15 V  
VDD = 5 V, VSS = –5 V  
80  
60  
40  
20  
0
60  
40  
20  
0
-20  
-40  
-60  
-20  
-40  
-20  
-15  
-10  
-5  
0
5
10  
15  
20  
-20  
-15  
-10  
-5  
0
5
10  
15  
20  
Source Voltage (V)  
Drain Voltage (V)  
6-15. Charge Injection vs Source Voltage Dual Supply  
6-16. Charge Injection vs Drain Voltage Dual Supply  
130  
120  
VDD = 36 V, VSS = 0 V  
VDD = 36 V, VSS = 0 V  
VDD = 20 V, VSS = 0 V  
VDD = 15 V, VSS = 0 V  
VDD = 12 V, VSS = 0 V  
110  
100  
80  
60  
40  
20  
0
VDD = 20 V, VSS = 0 V  
VDD = 15 V, VSS = 0 V  
VDD = 12 V, VSS = 0 V  
VDD = 5 V, VSS = 0 V  
90  
VDD = 5 V, VSS = 0 V  
70  
50  
30  
10  
-10  
-30  
-50  
-70  
-20  
-40  
-60  
0
4
8
12  
16  
20  
24  
28  
32  
36  
0
4
8
12  
16  
20  
24  
28  
32  
36  
Source Voltage (V)  
Drain Voltage (V)  
D018  
6-18. Charge Injection vs Drian Voltage Single Supply  
6-17. Charge Injection vs Source Voltage Single Supply  
Copyright © 2022 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: TMUX6219  
TMUX6219  
www.ti.com.cn  
ZHCSM12D SEPTEMBER 2020 REVISED AUGUST 2022  
6.16 Typical Characteristics (continued)  
at TA = 25°C  
120  
115  
110  
105  
100  
95  
Transiton_Falling  
Transiton_Rising  
90  
85  
80  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
VDD = 36 V, VSS = 0 V  
VDD = 15 V, VSS = 15 V  
6-20. TTRANSITION vs Temperature  
6-19. TTRANSITION vs Temperature  
120  
115  
110  
105  
100  
95  
T(OFF)  
T(ON)  
90  
85  
80  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
VDD = 15 V, VSS = 15 V  
VDD = 36 V, VSS = 0 V  
6-21. TON and TOFF vs Temperature  
6-22. TON and TOFF vs Temperature  
0
VDD = 15V, VSS = –15V  
VDD = 36V, VSS = 0V  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
-120  
-130  
-140  
100  
1k  
10k  
100k  
1M  
10M  
100M  
Frequency (Hz)  
Switch ON (EN = 1)  
6-24. Crosstalk vs Frequency  
6-23. Off-Isolation vs Frequency  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: TMUX6219  
TMUX6219  
www.ti.com.cn  
ZHCSM12D SEPTEMBER 2020 REVISED AUGUST 2022  
6.16 Typical Characteristics (continued)  
at TA = 25°C  
0.002  
0.001  
VDD = 15 V, VSS = –15 V  
VDD = 5 V, VSS = –5V  
0.0008  
0.0007  
0.0006  
0.0005  
0.0004  
0.0003  
10  
100  
1k  
10k  
Frequency (Hz)  
Switch OFF (EN = 0)  
6-25. Crosstalk vs Frequency  
6-26. THD+N vs Frequency (Dual Supply)  
VDD = 15 V, VSS = 15 V  
6-27. THD+N vs Frequency (Single Supply)  
6-28. On Response vs Frequency  
VDD = +15 V, VSS = 15 V  
VDD = +15 V, VSS = 15 V  
6-29. ACPSRR vs Frequency  
6-30. Capacitance vs Source Voltage or Drain Voltage  
Copyright © 2022 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: TMUX6219  
TMUX6219  
www.ti.com.cn  
ZHCSM12D SEPTEMBER 2020 REVISED AUGUST 2022  
6.16 Typical Characteristics (continued)  
at TA = 25°C  
VDD = 12 V, VSS = 0 V  
6-31. Capacitance vs Source Voltage or Drain Voltage  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: TMUX6219  
TMUX6219  
www.ti.com.cn  
ZHCSM12D SEPTEMBER 2020 REVISED AUGUST 2022  
7 Parameter Measurement Information  
7.1 On-Resistance  
The on-resistance of a device is the ohmic resistance between the source (Sx) and drain (D) pins of the device.  
The on-resistance varies with input voltage and supply voltage. The symbol RON is used to denote on-  
resistance. 7-1 shows the measurement setup used to measure RON. Voltage (V) and current (ISD) are  
measured using the following setup, where RON is computed as RON = V / ISD  
:
V
ISD  
Sx  
Dx  
VS  
RON  
7-1. On-Resistance  
7.2 Off-Leakage Current  
There are two types of leakage currents associated with a switch during the off state:  
1. Source off-leakage current.  
2. Drain off-leakage current.  
Source leakage current is defined as the leakage current flowing into or out of the source pin when the switch is  
off. This current is denoted by the symbol IS(OFF)  
Drain leakage current is defined as the leakage current flowing into or out of the drain pin when the switch is off.  
This current is denoted by the symbol ID(OFF)  
7-2 shows the setup used to measure both off-leakage currents.  
.
.
VDD  
VSS  
VDD  
VSS  
Is (OFF)  
ID (OFF)  
S1  
S2  
S1  
S2  
A
D
D
A
VS  
VS  
VD  
VD  
GND  
GND  
IS(OFF)  
ID(OFF)  
7-2. Off-Leakage Measurement Setup  
Copyright © 2022 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: TMUX6219  
 
 
 
 
 
TMUX6219  
www.ti.com.cn  
ZHCSM12D SEPTEMBER 2020 REVISED AUGUST 2022  
7.3 On-Leakage Current  
Source on-leakage current is defined as the leakage current flowing into or out of the source pin when the switch  
is on. This current is denoted by the symbol IS(ON)  
.
Drain on-leakage current is defined as the leakage current flowing into or out of the drain pin when the switch is  
on. This current is denoted by the symbol ID(ON)  
.
Either the source pin or drain pin is left floating during the measurement. 7-3 shows the circuit used for  
measuring the on-leakage current, denoted by IS(ON) or ID(ON)  
.
VDD  
VSS  
VDD  
VSS  
Is (ON)  
ID (ON)  
S1  
S2  
S1  
S2  
N.C.  
A
D
D
A
N.C.  
VS  
VS  
VS  
GND  
GND  
IS(ON)  
ID(ON)  
7-3. On-Leakage Measurement Setup  
7.4 Transition Time  
Transition time is defined as the time taken by the output of the device to rise or fall 90% after the address signal  
has risen or fallen past the logic threshold. The 90% transition measurement is utilized to provide the timing of  
the device. System level timing can then account for the time constant added from the load resistance and load  
capacitance. 7-4 shows the setup used to measure transition time, denoted by the symbol tTRANSITION  
.
VDD  
VSS  
0.1 µF  
0.1 µF  
VS  
3 V  
0 V  
VDD  
VSS  
VSEL  
tr < 20 ns  
tf < 20 ns  
50%  
50%  
S1  
S2  
D
Output  
CL  
tTRANSITION  
tTRANSITION  
90%  
RL  
SEL  
Output  
10%  
GND  
VSEL  
0 V  
7-4. Transition-Time Measurement Setup  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: TMUX6219  
 
 
 
 
TMUX6219  
www.ti.com.cn  
ZHCSM12D SEPTEMBER 2020 REVISED AUGUST 2022  
7.5 tON(EN) and tOFF(EN)  
Turn-on time is defined as the time taken by the output of the device to rise to 90% after the enable has risen  
past the logic threshold. The 90% measurement is utilized to provide the timing of the device. System level  
timing can then account for the time constant added from the load resistance and load capacitance. 7-5  
shows the setup used to measure turn-on time, denoted by the symbol tON(EN)  
.
Turn-off time is defined as the time taken by the output of the device to fall to 10% after the enable has fallen  
past the logic threshold. The 10% measurement is utilized to provide the timing of the device. System level  
timing can then account for the time constant added from the load resistance and load capacitance. 7-5  
shows the setup used to measure turn-off time, denoted by the symbol tOFF(EN)  
.
VDD  
VSS  
0.1 µF  
0.1 µF  
3 V  
VDD  
VSS  
VEN  
tr < 20 ns  
tf < 20 ns  
50%  
50%  
S1  
S2  
VS  
0 V  
D
Output  
CL  
tON  
tOFF  
90%  
RL  
EN  
Output  
10%  
GND  
VEN  
0 V  
7-5. Turn-On and Turn-Off Time Measurement Setup  
7.6 Break-Before-Make  
Break-before-make delay is a safety feature that prevents two inputs from connecting when the device is  
switching. The output first breaks from the on-state switch before making the connection with the next on-state  
switch. The time delay between the break and the make is known as break-before-make delay. 7-6 shows the  
setup used to measure break-before-make delay, denoted by the symbol tOPEN(BBM)  
.
VDD  
VSS  
0.1 µF  
0.1 µF  
3 V  
VDD  
VSS  
VSEL  
tr < 20 ns  
tf < 20 ns  
S1  
S2  
VS  
0 V  
D
Output  
CL  
RL  
80%  
SEL  
Output  
0 V  
tBBM  
1
tBBM 2  
VSEL  
GND  
tOPEN (BBM) = min ( tBBM 1, tBBM 2)  
7-6. Break-Before-Make Delay Measurement Setup  
Copyright © 2022 Texas Instruments Incorporated  
28  
Submit Document Feedback  
Product Folder Links: TMUX6219  
 
 
 
 
TMUX6219  
www.ti.com.cn  
ZHCSM12D SEPTEMBER 2020 REVISED AUGUST 2022  
7.7 tON (VDD) Time  
The tON (VDD) time is defined as the time taken by the output of the device to rise to 90% after the supply has  
risen past the supply threshold. The 90% measurement is used to provide the timing of the device turning on in  
the system. 7-7 shows the setup used to measure turn on time, denoted by the symbol tON (VDD)  
.
VSS  
0.1 µF  
0.1 µF  
VDD  
Supply  
Ramp  
VDD  
VDD  
VSS  
tr = 10 µs  
4.5 V  
VS  
S2  
S1  
0 V  
D
Output  
CL  
tON  
90%  
RL  
EN  
Output  
3 V  
SEL  
GND  
0 V  
7-7. tON (VDD) Time Measurement Setup  
7.8 Propagation Delay  
Propagation delay is defined as the time taken by the output of the device to rise or fall 50% after the input signal  
has risen or fallen past the 50% threshold. 7-8 shows the setup used to measure propagation delay, denoted  
by the symbol tPD  
.
VDD  
VSS  
0.1 µF  
0.1 µF  
250 mV  
Input  
VDD  
S1  
S2  
VSS  
50%  
50%  
tr < 40 ps  
(VS)  
tf < 40 ps  
50 Ω  
VS  
0 V  
D
Output  
CL  
tPD  
1
tPD 2  
RL  
Output  
0 V  
50%  
50%  
GND  
tProp Delay = max ( tPD 1, tPD 2)  
7-8. Propagation Delay Measurement Setup  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: TMUX6219  
 
 
 
 
TMUX6219  
www.ti.com.cn  
ZHCSM12D SEPTEMBER 2020 REVISED AUGUST 2022  
7.9 Charge Injection  
The TMUX6219 has a transmission-gate topology. Any mismatch in capacitance between the NMOS and PMOS  
transistors results in a charge injected into the drain or source during the falling or rising edge of the gate signal.  
The amount of charge injected into the source or drain of the device is known as charge injection, and is  
denoted by the symbol QC. 7-9 shows the setup used to measure charge injection from source (Sx) to drain  
(D).  
VDD  
VSS  
0.1 µF  
0.1 µF  
3 V  
VEN  
VDD  
VSS  
tr < 20 ns  
tf < 20 ns  
Output  
S1  
S2  
D
0 V  
VD  
CL  
N.C.  
Output  
VD  
EN  
VOUT  
QINJ = CL ×  
VOUT  
VEN  
GND  
7-9. Charge-Injection Measurement Setup  
7.10 Off Isolation  
Off isolation is defined as the ratio of the signal at the drain pin (D) of the device when a signal is applied to the  
source pin (Sx) of an off-channel. 7-10 shows the setup used to measure, and the equation used to calculate  
off isolation.  
VDD  
VSS  
0.1 µF  
0.1 µF  
Network Analyzer  
VDD  
VSS  
VS  
S1  
D
50  
VOUT  
VSIG  
50  
S2  
50  
GND  
7-10. Off Isolation Measurement Setup  
Copyright © 2022 Texas Instruments Incorporated  
30  
Submit Document Feedback  
Product Folder Links: TMUX6219  
 
 
 
 
TMUX6219  
www.ti.com.cn  
ZHCSM12D SEPTEMBER 2020 REVISED AUGUST 2022  
7.11 Crosstalk  
Crosstalk is defined as the ratio of the signal at the drain pin (D) of a different channel, when a signal is applied  
at the source pin (Sx) of an on-channel. 7-11 shows the setup used to measure, and the equation used to  
calculate crosstalk.  
VDD  
VSS  
0.1 µF  
0.1 µF  
Network Analyzer  
VDD  
VSS  
VS  
S1  
S2  
D
50  
VOUT  
50  
50  
VSIG  
GND  
7-11. Crosstalk Measurement Setup  
7.12 Bandwidth  
Bandwidth is defined as the range of frequencies that are attenuated by less than 3 dB when the input is applied  
to the source pin (Sx) of an on-channel, and the output is measured at the drain pin (D) of the device. 7-12  
shows the setup used to measure bandwidth.  
VDD  
VSS  
0.1 µF  
0.1 µF  
Network Analyzer  
VDD  
VSS  
VS  
S1  
D
50  
VOUT  
VSIG  
50  
S2  
50  
GND  
7-12. Bandwidth Measurement Setup  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
31  
Product Folder Links: TMUX6219  
 
 
 
 
TMUX6219  
www.ti.com.cn  
ZHCSM12D SEPTEMBER 2020 REVISED AUGUST 2022  
7.13 THD + Noise  
The total harmonic distortion (THD) of a signal is a measurement of the harmonic distortion, and is defined as  
the ratio of the sum of the powers of all harmonic components to the power of the fundamental frequency at the  
mux output.  
The on-resistance of the device varies with the amplitude of the input signal and results in distortion when the  
drain pin is connected to a low-impedance load. Total harmonic distortion plus noise is denoted as THD + N.  
VDD  
VSS  
0.1 µF  
0.1 µF  
VDD  
VSS  
Audio Precision  
S1  
D
40  
VOUT  
VS  
RL  
Other  
Sx pins  
50  
GND  
7-13. THD + N Measurement Setup  
7.14 Power Supply Rejection Ratio (PSRR)  
PSRR measures the ability of a device to prevent noise and spurious signals that appear on the supply voltage  
pin from coupling to the output of the switch. The DC voltage on the device supply is modulated by a sine wave  
of 620 mVPP. The ratio of the amplitude of signal on the output to the amplitude of the modulated signal is the  
ACPSRR. A high ratio represents a high degree of tolerance to supply rail variation.  
This helps stabilize the supply and immediately filter as much of the supply noise as possible.  
VDD  
Network Analyzer  
VSS  
DC Bias  
Injector  
With and Without  
Capacitor  
50  
0.1 µF  
0.1 µF  
VDD  
S1  
VSS  
620 mVPP  
VIN  
VBIAS  
50 Ω  
S2  
50 Ω  
VOUT  
D
CL  
RL  
GND  
7-14. ACPSRR Measurement Setup  
Copyright © 2022 Texas Instruments Incorporated  
32  
Submit Document Feedback  
Product Folder Links: TMUX6219  
 
 
 
 
TMUX6219  
www.ti.com.cn  
ZHCSM12D SEPTEMBER 2020 REVISED AUGUST 2022  
8 Detailed Description  
8.1 Overview  
The TMUX6219 is a 2:1, 1-channel switch. Each input is turned on or turned off based on the state of the select  
line and enable pin.  
8.2 Functional Block Diagram  
VSS  
VDD  
S1  
S2  
D
Decoder  
EN SEL  
8-1. TMUX6219 Functional Block Diagram  
8.3 Feature Description  
8.3.1 Bidirectional Operation  
The TMUX6219 conducts equally well from source (Sx) to drain (D) or from drain (D) to source (Sx). Each  
channel has very similar characteristics in both directions and supports both analog and digital signals.  
8.3.2 Rail to Rail Operation  
The valid signal path input or output voltage for TMUX6219 ranges from VSS to VDD  
.
8.3.3 1.8 V Logic Compatible Inputs  
The TMUX6219 has 1.8-V logic compatible control for all logic control inputs. 1.8-V logic level inputs allows the  
TMUX6219 to interface with processors that have lower logic I/O rails and eliminates the need for an external  
translator, which saves both space and BOM cost. For more information on 1.8 V logic implementations refer to  
Simplifying Design with 1.8 V logic Muxes and Switches.  
8.3.4 Fail-Safe Logic  
The TMUX6219 supports Fail-Safe Logic on the control input pins (EN and SEL) allowing for operation up to 36  
V above ground, regardless of the state of the supply pins. This feature allows voltages on the control pins to be  
applied before the supply pin, protecting the device from potential damage. Fail-Safe Logic minimizes system  
complexity by removing the need for power supply sequencing on the logic control pins. For example, the Fail-  
Safe Logic feature allows the logic input pins of the TMUX6219 to be ramped to +36 V while VDD and VSS = 0 V.  
The logic control inputs are protected against positive faults of up to +36 V in powered-off condition, but do not  
offer protection against negative overvoltage conditions.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
33  
Product Folder Links: TMUX6219  
 
 
 
 
 
 
 
 
TMUX6219  
www.ti.com.cn  
ZHCSM12D SEPTEMBER 2020 REVISED AUGUST 2022  
8.3.5 Latch-Up Immune  
Latch-up is a condition where a low impedance path is created between a supply pin and ground. This condition  
is caused by a trigger (current injection or overvoltage), but once activated, the low impedance path remains  
even after the trigger is no longer present. This low impedance path may cause system upset or catastrophic  
damage due to excessive current levels. The latch-up condition typically requires a power cycle to eliminate the  
low impedance path.  
The TMUX62xx family of devices are constructed on Silicon on Insulator (SOI) based process where an oxide  
layer is added between the PMOS and NMOS transistor of each CMOS switch to prevent parasitic structures  
from forming. The oxide layer is also known as an insulating trench and prevents triggering of latch up events  
due to overvoltage or current injections. The latch-up immunity feature allows the TMUX62xx family of switches  
and multiplexers to be used in harsh environments.  
8.3.6 Ultra-Low Charge Injection  
The TMUX6219 has a transmission gate topology, as shown in 8-2. Any mismatch in the stray capacitance  
associated with the NMOS and PMOS causes an output level change whenever the switch is opened or closed.  
OFF ON  
CGDN  
CGSN  
D
S
CGSP  
CGDP  
OFF ON  
8-2. Transmission Gate Topology  
The TMUX6219 contains specialized architecture to reduce charge injection on the source (Sx). To further  
reduce charge injection in a sensitive application, a compensation capacitor (Cp) can be added on the drain (D).  
This will ensure that excess charge from the switch transition will be pushed into the compensation capacitor on  
the drain (D) instead of the source (Sx). As a general rule, Cp should be 20× larger than the equivalent load  
capacitance on the source (Sx). 8-3 shows charge injection variation with source voltage with different  
compensation capacitors on the Drain side.  
8-3. Charge Injection Compensation  
Copyright © 2022 Texas Instruments Incorporated  
34  
Submit Document Feedback  
Product Folder Links: TMUX6219  
 
 
TMUX6219  
www.ti.com.cn  
ZHCSM12D SEPTEMBER 2020 REVISED AUGUST 2022  
8.4 Device Functional Modes  
When the EN pin of the TMUX6219 is pulled high, one of the switches is closed based on the state of the SEL  
pin. When the EN pin is pulled low, both of the switches are in an open state regardless of the state of the SEL  
pin. The control pins can be as high as 36 V.  
The TMUX6219 can be operated without any external components except for the supply decoupling capacitors.  
The EN pin has an internal pull-up resistor of 4 MΩ and SEL pin has internal pull-down resistor of 4 MΩ. If  
unused, the EN pin must be tied to VDD and SEL pin must be tied to GND to ensure the device does not  
consume additional current as highlighted in Implications of Slow or Floating CMOS Inputs. Unused signal path  
inputs (S1, S2, or D) should be connected to GND.  
8.5 Truth Tables  
8-1 provides the truth tables for the TMUX6219.  
8-1. TMUX6219 Truth Table  
EN SEL  
Selected Source Connected To Drain (D) Pin  
0
1
1
X(1)  
All sources are off (HI-Z)  
0
S1  
S2  
1
(1) X denotes do not care.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
35  
Product Folder Links: TMUX6219  
 
 
 
 
 
TMUX6219  
www.ti.com.cn  
ZHCSM12D SEPTEMBER 2020 REVISED AUGUST 2022  
9 Application and Implementation  
备注  
以下应用部分中的信息不属TI 器件规格的范围TI 不担保其准确性和完整性。TI 的客 户应负责确定  
器件是否适用于其应用。客户应验证并测试其设计以确保系统功能。  
9.1 Application Information  
TMUX6219 is part of the precision switches and multiplexers family of devices. TMUX6219 offers low RON, low  
on and off leakage currents and ultra-low charge injection performance. These properties make TMUX6219 ideal  
for implementing high precision industrial systems requiring selection of one of two inputs or outputs.  
9.2 Typical Application  
9.2.1 Power Amplifier Gate Driver  
One application of the TMUX6219 is for input control of a power amplifier gate driver. Utilizing a switch allows a  
system to control when the DAC is connected to the power amplifier and can stop biasing the power amplifier by  
switching the gate to VSS. The wide dual supply range of ±4.5 V to ±18 V allows the switch to work with GaN  
power amplifiers, and the wide single supply range 4.5 V to 36 V works well with LDMOS power amplifiers.  
9-1 shows the TMUX6219 configured for control of the power amplifier gate driver in GaN application.  
8 V  
Output  
voltage  
DAC  
VDD  
RF Tx/Rx  
TMUX6219  
œ12 V/0 V  
1.8 V  
œ12 V  
RF Input  
MCU  
0 V to 1.8 V  
VSS  
9-1. Power Amplifier Gate Driver  
9.2.2 Design Requirements  
For the design example, use the parameters listed in 9-1.  
9-1. Design Parameters  
VALUES  
PARAMETERS  
GAN application  
8 V  
LDMOS application  
Supply (VDD  
)
5 V  
0 V  
Supply (VSS  
)
12 V  
MUX I/O signal range  
Control logic thresholds  
EN  
0 V to 5 V (Rail-to-Rail)  
1.8 V compatiable (up to VDD  
12 V to 8 V (Rail-to-Rail)  
1.8 V compatiable (up to VDD  
)
)
EN pulled high to enable the switch  
EN pulled high to enable the switch  
Copyright © 2022 Texas Instruments Incorporated  
36  
Submit Document Feedback  
Product Folder Links: TMUX6219  
 
 
 
 
 
TMUX6219  
www.ti.com.cn  
ZHCSM12D SEPTEMBER 2020 REVISED AUGUST 2022  
9.2.3 Detailed Design Procedure  
The application shown in 9-1 demonstrates how to toggle between the DAC output and low signal voltage for  
control of a GaN power amplifier using a single control input. The DAC output is utilized to bias the gate of the  
power amplifier and can be disconnected from the circuit using the select pin of the switch. The TMUX6219 can  
support 1.8 V logic signals on the control input, allowing the device to interface with low logic controls of an  
FPGA or MCU. The TMUX6219 can operate without any external components except for the supply decoupling  
capacitors. The select pin has an internal pull-down resistor to prevent floating input logic. All inputs to the switch  
must fall within the recommended operating conditions of the TMUX6219 including signal range and continuous  
current. For this design with a positive supply of 8 V on VDD and negative supply of 12 V on VSS, the signal  
range can be 8 V to 12 V. The maximum continuous current (IDC) can be up to 330 mA as shown in the  
Recommended Operating Conditions table for wide-range current measurement.  
9.2.4 Application Curve  
The low on and off leakage currents of TMUX6219 and ultra-low charge injection performance make this device  
ideal for implementing high precision industrial systems. 9-2 shows the plot for the charge injection versus  
source voltage for the TMUX6219.  
80  
VDD = 15 V, VSS = –15 V  
VDD = 5 V, VSS = –5 V  
60  
40  
20  
0
-20  
-40  
-20  
-15  
-10  
-5  
0
5
10  
15  
20  
Drain Voltage (V)  
9-2. Charge Injection vs Drain Voltage  
10 Power Supply Recommendations  
The TMUX6219 operates across a wide supply range of of ±4.5 V to ±18 V (4.5 V to 36 V in single-supply  
mode). As shown in 9-1, the device also performs well with asymmetrical supplies such as VDD = 5 V and VSS  
= 8 V.  
Power-supply bypassing improves noise margin and prevents switching noise propagation from the supply rails  
to other components. Good power-supply decoupling is important to achieve optimum performance. For  
improved supply noise immunity, use a supply decoupling capacitor ranging from 0.1 μF to 10 μF at both the  
VDD and VSS pins to ground. Place the bypass capacitors as close to the power supply pins of the device as  
possible using low-impedance connections. TI recommends using multi-layer ceramic chip capacitors (MLCCs)  
that offer low equivalent series resistance (ESR) and inductance (ESL) characteristics for power-supply  
decoupling purposes. For very sensitive systems, or for systems in harsh noise environments, avoiding the use  
of vias for connecting the capacitors to the device pins may offer superior noise immunity. The use of multiple  
vias in parallel lowers the overall inductance and is beneficial for connections to power and ground planes.  
Always ensure the ground (GND) connection is established before supplies are ramped.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
37  
Product Folder Links: TMUX6219  
 
 
TMUX6219  
www.ti.com.cn  
ZHCSM12D SEPTEMBER 2020 REVISED AUGUST 2022  
11 Layout  
11.1 Layout Guidelines  
When a PCB trace turns a corner at a 90° angle, a reflection can occur. A reflection occurs primarily because of  
the change of width of the trace. At the apex of the turn, the trace width increases to 1.414 times the width. This  
increase upsets the transmission-line characteristics, especially the distributed capacitance and selfinductance  
of the trace which results in the reflection. Not all PCB traces can be straight and therefore some traces must  
turn corners. 11-1 shows progressively better techniques of rounding corners. Only the last example (BEST)  
maintains constant trace width and minimizes reflections.  
WORST  
BETTER  
BEST  
2W  
1W min.  
W
11-1. Trace Example  
Route high-speed signals using a minimum of vias and corners which reduces signal reflections and impedance  
changes. When a via must be used, increase the clearance size around it to minimize its capacitance. Each via  
introduces discontinuities in the signals transmission line and increases the chance of picking up interference  
from the other layers of the board. Be careful when designing test points, through-hole pins are not  
recommended at high frequencies.  
11-2 illustrates an example of a PCB layout with the TMUX6219. Some key considerations are as follows:  
Decouple the supply pins with a 0.1-µF and 1 µF capacitor, and place the lowest value capacitor as close to  
the pin as possible. Make sure that the capacitor voltage rating is sufficient for the supply voltage.  
Keep the input lines as short as possible.  
Use a solid ground plane to help reduce electromagnetic interference (EMI) noise pickup.  
Do not run sensitive analog traces in parallel with digital traces. Avoid crossing digital and analog traces if  
possible, and only make perpendicular crossings when necessary.  
Using multiple vias in parallel will lower the overall inductance and is beneficial for connection to ground  
planes.  
11.2 Layout Example  
S2  
VSS  
SEL  
EN  
D
TMUX6219  
S1  
GND  
VDD  
Wide (low inductance)  
trace for power  
C
C
Wide (low inductance)  
trace for power  
Via to ground plane  
11-2. TMUX6219DGK Layout Example  
Copyright © 2022 Texas Instruments Incorporated  
38  
Submit Document Feedback  
Product Folder Links: TMUX6219  
 
 
 
 
 
TMUX6219  
www.ti.com.cn  
ZHCSM12D SEPTEMBER 2020 REVISED AUGUST 2022  
Wide (low inductance)  
trace for power  
S2  
D
VSS  
SEL  
EN  
S1  
GND  
VSS  
Wide (low inductance)  
trace for power  
Via to ground plane  
11-3. TMUX6219RQX Layout Example  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
39  
Product Folder Links: TMUX6219  
TMUX6219  
www.ti.com.cn  
ZHCSM12D SEPTEMBER 2020 REVISED AUGUST 2022  
12 Device and Documentation Support  
12.1 Documentation Support  
12.1.1 Related Documentation  
For related documentation, see the following:  
Texas Instruments, Improve Stability Issues with Low CON Multiplexers application brief  
Texas Instruments, Improving Signal Measurement Accuracy in Automated Test Equipment application brief  
Texas Instruments, Multiplexers and Signal Switches Glossary application report  
Texas Instruments, QFN/SON PCB Attachment application report  
Texas Instruments, Quad Flatpack No-Lead Logic Packages application report  
Texas Instruments, Simplifying Design with 1.8 V logic Muxes and Switches application brief  
Texas Instruments, System-Level Protection for High-Voltage Analog Multiplexers application report  
Texas Instruments, True Differential, 4 x 2 MUX, Analog Front End, Simultaneous-Sampling ADC Circuit  
application report  
12.2 Receiving Notification of Documentation Updates  
To receive notification of documentation updates, navigate to the device product folder on ti.com. In the upper  
right corner, click on Alert me to register and receive a weekly digest of any product information that has  
changed. For change details, review the revision history included in any revised document.  
12.3 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
12.4 Trademarks  
TI E2Eis a trademark of Texas Instruments.  
所有商标均为其各自所有者的财产。  
12.5 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
12.6 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
13 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2022 Texas Instruments Incorporated  
40  
Submit Document Feedback  
Product Folder Links: TMUX6219  
 
 
 
 
 
 
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
11-Nov-2022  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
PTMUX6219RQXR  
TMUX6219DGKR  
TMUX6219RQXR  
ACTIVE  
ACTIVE  
ACTIVE  
WSON  
VSSOP  
WSON  
RQX  
DGK  
RQX  
8
8
8
2500  
TBD  
Call TI  
Call TI  
-40 to 125  
-40 to 125  
-40 to 125  
Samples  
Samples  
Samples  
2500 RoHS & Green  
2500 RoHS & Green  
NIPDAU  
NIPDAU  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
X219  
H219  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
11-Nov-2022  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
OTHER QUALIFIED VERSIONS OF TMUX6219 :  
Automotive : TMUX6219-Q1  
NOTE: Qualified Version Definitions:  
Automotive - Q100 devices qualified for high-reliability automotive applications targeting zero defects  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
19-Aug-2022  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TMUX6219DGKR  
VSSOP  
DGK  
8
2500  
330.0  
12.4  
5.3  
3.4  
1.4  
8.0  
12.0  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
19-Aug-2022  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
VSSOP DGK  
SPQ  
Length (mm) Width (mm) Height (mm)  
366.0 364.0 50.0  
TMUX6219DGKR  
8
2500  
Pack Materials-Page 2  
PACKAGE OUTLINE  
RQX0008A  
WSON - 0.8 mm max height  
S
C
A
L
E
5
.
0
0
0
PLASTIC SMALL OUTLINE - NO LEAD  
3.1  
2.9  
A
B
PIN 1 INDEX AREA  
2.1  
1.9  
0.8  
0.7  
C
SEATING PLANE  
0.08 C  
0.05  
0.00  
1.8 0.1  
SYMM  
EXPOSED  
THERMAL PAD  
(0.2) TYP  
4
5
SYMM  
1.65 0.1  
9
2X 1.5  
6X 0.5  
8
1
PIN 1 ID  
0.3  
0.2  
8X  
0.45  
0.35  
8X  
0.1  
0.05  
C A B  
4225821/A 04/2020  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
RQX0008A  
WSON - 0.8 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
(1.8)  
SEE SOLDER MASK  
DETAIL  
8X (0.6)  
SYMM  
8X (0.25)  
1
8
(1.65)  
9
SYMM  
6X (0.5)  
(0.575)  
(R0.05) TYP  
5
4
(
0.2) TYP  
VIA  
(2.8)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE: 20X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
METAL UNDER  
SOLDER MASK  
METAL EDGE  
EXPOSED METAL  
SOLDER MASK  
OPENING  
EXPOSED  
METAL  
SOLDER MASK  
OPENING  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4225821/A 04/2020  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
RQX0008A  
WSON - 0.8 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
8X (0.6)  
(1.63)  
8
1
8X (0.25)  
SYMM  
(1.51)  
9
6X (0.5)  
(R0.05) TYP  
4
5
SYMM  
(2.8)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 MM THICK STENCIL  
SCALE: 20X  
EXPOSED PAD 9  
83% PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE  
4225821/A 04/2020  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
VISHAY