PTPSI2140QDWQRQ1 [TI]

具有 2mA 雪崩额定值的汽车类 1200V、50mA 隔离开关

| DWQ | 11 | -40 to 125;
PTPSI2140QDWQRQ1
型号: PTPSI2140QDWQRQ1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有 2mA 雪崩额定值的汽车类 1200V、50mA 隔离开关

| DWQ | 11 | -40 to 125

开关
文件: 总39页 (文件大小:1934K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TPSI2140-Q1  
ZHCSQF3B APRIL 2022 REVISED JUNE 2023  
TPSI2140-Q1 2mA 雪崩额定值1200V50mA 汽车类隔离开关  
该器件的初级侧仅由 9mA 的输入电流供电并集成了  
一个失效防护 EN 引脚可防止对 VDD 电源反向供电  
1 特性  
• 符合汽车应用要求  
的任何可能性。在大多数应用中器件的 VDD 引脚应  
连接到 5V 20V 的系统电源并且器件的 EN 引脚  
应由逻辑高电平介2.1V 20V 之间GPIO 输出驱  
动。在其他应用中VDD EN 引脚可直接由系统电  
源或 GPIO 输出驱动。TPSI2140-Q1 的所有控制配置  
都不需要光继电器解决方案通常所需的其他外部元件,  
例如电阻器和/或低侧开关。  
AEC-Q100 140°C 125°CTA  
• 集成雪崩额MOSFET  
– 针对过压条件下的可靠性认证进行设计和认证,  
包括系统级电介质耐压测(Hi-Pot)  
IAVA = 2mA5s 脉冲),1mA60s 脉冲)  
1200V 关断电压  
RON = 130Ω(TJ = 25°C)  
TONTOFF < 700μs  
• 低初级侧电源电流  
次级侧都包含背对MOSFETS1 S2 的关断电  
压为 ±1.2 kVTPSI2140-Q1 MOSFET 的雪崩稳健性  
和热敏感封装设计使其能够可靠地支持系统级电介质耐  
压测试 (HiPot)并且无需任何外部元件即可承受高达  
2mA 的直流快速充电器浪涌电流。  
9mA 导通状态电流  
3.5 μA 关断状态电流  
功能安全型  
封装信息  
封装(1)  
– 可帮助进ISO 26262 IEC 61508 系统设计  
文档  
• 稳健可靠的隔离栅:  
封装尺寸标称值)  
器件型号  
TPSI2140-Q1  
10.3mm × 7.5mm  
SOIC 11 (DWQ)  
1000VRMS/1500VDC 工作电压下预计寿命超  
26 年  
(1) 如需了解所有可用封装请参阅数据表末尾的可订购产品附  
录。  
– 隔离额定VISO 3750VRMS/5300VDC  
– 峰值浪VIOSM 5000V  
± 100 V/ns CMTI典型值)  
SOIC 11 (DWQ) 封装具有宽引脚可提高  
热性能  
HV+  
+
-
RISO1  
TPSI2140-Q1  
4.5–20 V  
S1  
SM  
S2  
VDD  
HV-  
3–20 V  
Micro  
Insulation  
resistance to  
chassis  
GND  
EN  
ground  
– 爬电距离和间8mm初级-次级)  
– 爬电距离和间6mm开关端子之间)  
安全相关认证  
计划DIN VDE V 0884-11:2017-01  
计划UL 1577 组件认证计划  
2 应用  
VADC  
固态继电器  
RISO2  
混合动力、电动和动力传动系统  
电池管理系(BMS)  
能量存储系(ESS)  
太阳能  
TPSI2140-Q1 简化版应用原理图  
车载充电器  
电动汽车充电基础设施  
• 另请参阅与这些应用相关TI 参考设计。  
3 说明  
TPSI2140-Q1 是一款隔离式固态继电器专为高电压  
汽车和工业应用而设计。TPSI2140-Q1 TI 具有高可  
靠性的电容隔离技术和内部背对背 MOSFET 整合在一  
形成了一款完全集成式解决方案无需次级侧电  
源。  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SLVSFR3  
 
 
 
 
 
 
TPSI2140-Q1  
ZHCSQF3B APRIL 2022 REVISED JUNE 2023  
www.ti.com.cn  
Table of Contents  
8 Detailed Description......................................................12  
8.1 Overview...................................................................12  
8.2 Functional Block Diagram.........................................12  
8.3 Feature Description...................................................13  
8.4 Device Functional Modes..........................................14  
9 Application and Implementation..................................15  
9.1 Application Information............................................. 15  
9.2 Typical Application.................................................... 15  
9.3 Power Supply Recommendations.............................22  
9.4 Layout....................................................................... 22  
10 Device and Documentation Support..........................31  
10.1 接收文档更新通知................................................... 31  
10.2 支持资源..................................................................31  
10.3 Trademarks.............................................................31  
10.4 静电放电警告.......................................................... 31  
10.5 术语表..................................................................... 31  
11 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Pin Configuration and Functions...................................3  
5.1 Pin Functions.............................................................. 3  
6 Specifications.................................................................. 4  
6.1 Absolute Maximum Ratings........................................ 4  
6.2 ESD Ratings............................................................... 4  
6.3 Recommended Operating Conditions.........................5  
6.4 Thermal Information....................................................5  
6.5 Power Ratings.............................................................5  
6.6 Insulation Specifications............................................. 6  
6.7 Safety-Related Certifications...................................... 7  
6.8 Safety Limiting Values.................................................7  
6.9 Electrical Characteristics.............................................8  
6.10 Switching Characteristics........................................10  
7 Parameter Measurement Information.......................... 11  
Information.................................................................... 32  
4 Revision History  
以前版本的页码可能与当前版本的页码不同  
Changes from Revision A (November 2022) to Revision B (June 2023)  
Page  
• 将状态从预告信息 更改为量产数据 ................................................................................................................... 1  
• 更新了“特性”部分中的集成雪崩额定 MOSFET 说明以添加耐压测试说明.................................................. 1  
• 在“应用”部分中添加了能源存储系(ESS) 并更新了链接.............................................................................1  
Added reference to Layout Guidelines in the Avalanche Robustness section................................................. 13  
Updated Layout Guidelines to include further EMI considerations and clarified the high voltage and thermal  
considerations...................................................................................................................................................22  
Updated EVM images in Layout Example section to show the secondary side metallization for optimized  
thermals............................................................................................................................................................23  
Added Interlayer Stitch Capacitance Option for EMI and Thermal Optimization in Layout Example section...23  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSFR3  
2
Submit Document Feedback  
Product Folder Links: TPSI2140-Q1  
 
TPSI2140-Q1  
ZHCSQF3B APRIL 2022 REVISED JUNE 2023  
www.ti.com.cn  
5 Pin Configuration and Functions  
1
2
3
4
5
6
7
8
VDD  
11  
10  
9
S1  
SM  
S2  
GND  
EN  
NC/GND  
NC/GND  
NC/GND  
NC/GND  
GND  
5-1. TPSI2140-Q1 DWQ Package, 11-Pin SOIC (Top View)  
5.1 Pin Functions  
PIN NO.  
PIN NAME  
TYPE(1)  
DESCRIPTION  
1
2
VDD  
GND  
P
Power supply for primary side  
Ground supply for primary side  
Active high switch enable signal  
GND  
3
EN  
I
4
NC/GND  
NC/GND  
NC/GND  
NC/GND  
GND  
NC/GND  
NC/GND  
NC/GND  
NC/GND  
GND  
Internally connected, connect externally to ground or leave floating  
Internally connected, connect externally to ground or leave floating  
Internally connected, connect externally to ground or leave floating  
Internally connected, connect externally to ground or leave floating  
Internally connected to GND, connect externally to ground or leave floating  
Switch input  
5
6
7
8
9
S2  
I/O  
10  
11  
SM  
NC  
For thermal dissipation only, see Layout Guidelines for more information  
Switch input  
S1  
I/O  
(1) P = power, I = input, O = output, GND = ground, NC = no connect  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: TPSI2140-Q1  
English Data Sheet: SLVSFR3  
 
 
 
TPSI2140-Q1  
ZHCSQF3B APRIL 2022 REVISED JUNE 2023  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
PARAMETER  
MIN  
0.3  
0.3  
55  
2  
MAX  
20.7  
20.7  
55  
UNIT  
V
VVDD  
VEN  
Primary side supply voltage(2)  
Enable voltage(2)  
V
IS1,S2  
Switch current, S1/S2  
mA  
mA  
mA  
°C  
Repetitive avalanche rating, 5s pulse, S1/S2(3)  
Repetitive avalanche rating, 60s pulse, S1/S2(4)  
Junction temperature  
2
IAVA,S1,S2  
1
1  
TJ  
150  
150  
40  
65  
Tstg  
Storage temperature  
°C  
(1) Operation outside the Absolute Maximum Ratings may cause permanent device damage. Absolute Maximum Ratings do not imply  
functional operation of the device at these or any other conditions beyond those listed under Recommended Operating Conditions. If  
used outside the Recommended Operating Conditions but within the Absolute Maximum Ratings, the device may not be fully  
functional, and this may affect device reliability, functionality, performance, and shorten the device lifetime.  
(2) Voltage values are with respect to GND.  
(3) 5 minutes accumulated over lifetime in increments of no longer than 5 second periods, duty cycle < 33%  
(4) 5 minutes accumulated over lifetime in increments of no longer than 60 second periods, duty cycle < 10%  
6.2 ESD Ratings  
VALUE  
UNIT  
Human body model (HBM), per AEC  
Q100-002(1) HBM ESD Classification  
Level 2  
HBMPrim  
HBMSec  
CDM  
Primary Side Pins No. 1-8  
Secondary Side Pins No. 9-11  
All pins  
±2000  
V
Electrostatic discharge  
Human body model (HBM), per AEC  
Q100-002(1) HBM ESD Classification  
Level 1C  
±1500  
±750  
V
V
Charged device model (CDM), per AEC  
Q100-011  
Electrostatic discharge  
CDM ESD Classification Level C4  
(1) AEC Q100-002 indicates that HBM stressing must be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSFR3  
4
Submit Document Feedback  
Product Folder Links: TPSI2140-Q1  
 
 
 
 
 
 
 
 
TPSI2140-Q1  
ZHCSQF3B APRIL 2022 REVISED JUNE 2023  
www.ti.com.cn  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
MIN  
4.5  
NOM  
MAX  
20  
UNIT  
V
VVDD  
VEN  
VS2-S1  
IS1,S2  
TA  
Primary side supply voltage(1)  
Enable voltage(1)  
0
20  
V
Switch input voltage  
1200  
50  
V
1200  
50  
40  
40  
Switch current  
mA  
°C  
°C  
Ambient operating temperature  
Junction operating temperature  
125  
150  
TJ  
(1) Voltage values are with respect to GND.  
6.4 Thermal Information  
DEVICE  
THERMAL METRIC (1)  
DWQ (SOIC)  
UNIT  
11 PINS  
70  
RϴJA  
Junction-to-ambient thermal resistance  
Junction-to-ambient thermal resistance(2) (3)  
Junction-to-ambient thermal resistance(2) (4)  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RϴJA, EVM, 60S  
RϴJA, EVM, 5S  
RϴJB  
52  
30  
22  
RϴJC(top)  
ψJT  
Junction-to-case (top) thermal resistance  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
26  
14  
21  
ΨJB  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
(2) EVM PCB dimensions are 74.25mm x 43mm x 1mm. 4 layer PCB with 2oz Cu on layers 1,4 and 1oz Cu on layer 2,3.  
(3) Performance of EVM with power applied for 60s.  
(4) Performance of EVM with power applied for 5s.  
6.5 Power Ratings  
PARAMETER  
TEST CONDITIONS  
VVDD = 5 V,  
VEN = 5 V peak to peak,  
VS1-S2 = 1200V, RS1 = 500kΩ  
fEN = 1Hz square wave  
MIN  
TYP  
MAX  
31  
UNIT  
mW  
mW  
mW  
PD  
Maximum power dissipation, total  
Maximum power dissipation (primary)  
Maximum power dissipation (secondary)  
PD_P  
PD_S  
30  
1
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: TPSI2140-Q1  
English Data Sheet: SLVSFR3  
 
 
 
 
 
 
 
 
 
TPSI2140-Q1  
ZHCSQF3B APRIL 2022 REVISED JUNE 2023  
www.ti.com.cn  
UNIT  
6.6 Insulation Specifications  
PARAMETER  
TEST CONDITIONS  
VALUE  
IEC 60664-1  
CLR  
CPG  
External clearance(1)  
External Creepage(1)  
Shortest terminal-to-terminal distance through air  
>8  
>8  
mm  
mm  
Shortest terminal-to-terminal distance across the  
package surface  
DTI  
CTI  
Distance through the insulation  
Comparative tracking index  
Material Group  
Minimum internal gap (internal clearance)  
DIN EN 60112 (VDE 0303-11); IEC 60112  
According to IEC 60664-1  
>10.5  
>600  
I
µm  
V
I-IV  
I-III  
I-II  
Rated mains voltage 300 VRMS  
Rated mains voltage 600 VRMS  
Rated mains voltage 1000 VRMS  
Overvoltage category per IEC 60664-1  
DIN V VDE 0884-11:2017-01(2), IEC 60747-17:2020  
VIORM  
Maximum repetitive peak isolation voltage  
AC voltage (bipolar)  
1414  
1000  
1500  
5300  
6360  
VPK  
VRMS  
VDC  
VPK  
AC voltage (sine wave)  
VIOWM  
Maximum isolation working voltage  
DC voltage  
VTEST = VIOTM, t = 60 s (qualification)  
VTEST = 1.2 × VIOTM, t = 1 s (100% production)  
VIOTM  
Maximum transient isolation voltage  
Maximum surge isolation voltage(3)  
VPK  
Tested in oil per IEC 62638-1, 1.2/50 µs  
waveform, VTEST = 1.3 × VIOSM = 6500 VPK  
(qualification)  
VIOSM  
5000  
5  
VPK  
Method a: After I/O safety test subgroup 2/3,Vini  
VIOTM, tini = 60 s; Vpd(m) = 1.2 × VIORM = 1800  
VPK, tm = 10 s  
=
Method a: After environmental tests subgroup 1,  
qpd  
Apparent charge(4)  
Vini = VIOTM, tini = 60 s; Vpd(m) = 1.3 × VIORM  
1950 VPK, tm = 10 s  
=
pC  
5  
Method b1: At routine test (100% production) and  
preconditioning (type test), Vini = VIOTM, tini = 1 s;  
Vpd(m) = 1.5 × VIORM = 2250 VPK, tm = 1 s  
5  
CIO  
RIO  
Barrier capacitance, input to output(5)  
Insulation resistance, input to output(5)  
4
pF  
VIO = 0.4 × sin (2πft), f = 1 MHz  
VIO = 500 V, TA = 25°C  
>1012  
>1011  
>109  
2
VIO = 500 V, 100°C TA 125°C  
VIO = 500 V at TS = 150°C  
Ω
Pollution degree  
Climatic category  
40/150/21  
UL 1577  
VTEST = VISO, t = 60 s (qualification)  
VTEST = 1.2 × VISO, t = 1 s (100% production)  
VISO  
Withstand isolation voltage  
Withstand isolation voltage  
3750  
VRMS  
Misc.  
VISO  
5300  
VDC  
(1) Creepage and clearance requirements should be applied according to the specific equipment isolation standards of an application.  
Care should be taken to maintain the creepage and clearance distance of a board design to ensure that the mounting pads of the  
isolator on the printed-circuit board do not reduce this distance. Creepage and clearance on a printed-circuit board become equal in  
certain cases. Techniques such as inserting grooves, ribs, or both on a printed-circuit board are used to help increase these  
specifications.  
(2) This coupler is suitable for safe electrical insulation only within the safety ratings. Compliance with the safety ratings shall be ensured  
by means of suitable protective circuits.  
(3) Testing is carried out in air or oil to determine the intrinsic surge immunity of the isolation barrier.  
(4) Apparent charge is electrical discharge caused by a partial discharge (pd).  
(5) All pins on each side of the barrier tied together creating a two-pin device.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSFR3  
6
Submit Document Feedback  
Product Folder Links: TPSI2140-Q1  
 
 
 
 
 
 
TPSI2140-Q1  
ZHCSQF3B APRIL 2022 REVISED JUNE 2023  
www.ti.com.cn  
6.7 Safety-Related Certifications  
VDE  
CSA  
UL  
CQC  
TUV  
Plan to certify according to  
DIN V VDE V  
0884-11:2017-01  
Plan to certify according to  
UL 1577 Component  
Recognition Program  
Maximum transient  
isolation voltage, 5300  
VPK  
;
Not Planned, contact TI to  
Not Planned, contact TI to Not Planned, contact TI to  
Maximum repetitive peak request.  
isolation voltage, 1500  
Single protection, 3750  
VRMS  
request.  
request.  
VPK  
;
Maximum surge isolation  
voltage, 6000 VPK  
Certificate planned  
Certificate planned  
6.8 Safety Limiting Values  
PARAMETER(1) (2)  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
R
θJA = 70°C/W, VVDD = 20 V,  
Safety VDD Current  
77  
TJ = 150°C, TA = 25°C  
R
θJA = 70°C/W, VVDD = 20 V,  
Safety Switch Current (On State)  
71  
2.7  
1.5  
TJ = 150°C, TA = 25°C  
IS  
mA  
Safety Switch Current (Off State, 5  
second)  
RθJA, EVM, 5S (3) = 30°C/W, VVDD = 0 V,  
TJ = 150°C, TA = 25°C  
Safety Switch Current (Off State, 60  
second)  
RθJA, EVM, 60S (3) = 52°C/W, VVDD = 0 V,  
TJ = 150°C, TA = 25°C  
R
θJA = 70°C/W,  
PS  
TS  
Safety input, output, or total power  
Maximum safety temperature  
1.78  
150  
W
TJ = 150°C, TA = 25°C.  
°C  
(1) Safety limiting intends to minimize potential damage to the isolation barrier upon failure of input or output circuitry. A failure of the I/O  
can allow low resistance to ground or the supply and, without current limiting, dissipate sufficient power to overheat the die and  
damage the isolation barrier, potentially leading to secondary system failures.  
(2) The safety-limiting constraint is the maximum junction temperature specified in the data sheet. The power dissipation and junction-to-  
air thermal impedance of the device installed in the application hardware determines the junction temperature. The assumed junction-  
to-air thermal resistance in the Thermal Information table is that of a device installed on a high-K test board for leaded surface-mount  
packages. The power is the recommended maximum input voltage times the current. The junction temperature is then the ambient  
temperature plus the power times the junction-to-air thermal resistance.  
(3) Assuming PCB layout similar to EVM in Layout Guideline section.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: TPSI2140-Q1  
English Data Sheet: SLVSFR3  
 
 
 
 
 
 
TPSI2140-Q1  
ZHCSQF3B APRIL 2022 REVISED JUNE 2023  
www.ti.com.cn  
6.9 Electrical Characteristics  
Unless otherwise noted, all minimum/maximum specifications are over recommended operating conditions. All typical values  
are measured at TJ = 25C, VVDD = 5V, VEN = 5V.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
PRIMARY SIDE SUPPLY (VDD)  
VUVLO_R  
VUVLO_F  
VDD undervoltage threshold rising  
VDD undervoltage threshold falling  
VDD rising  
4
4.2  
4.1  
4.4  
4.3  
V
V
VDD falling  
3.9  
VDD undervoltage threshold  
hysteresis  
VUVLO_HYS  
40  
100  
150  
mV  
VDD current, device powered on  
VDD current, device powered on  
TJ = 25°C  
9
9
11  
12  
8
mA  
mA  
µA  
µA  
µA  
IVDD_ON  
40°C TJ 150°C  
VVDD = 5 V, VEN = 0 V, TJ = 25°C  
VVDD = 5 V, VEN = 0 V, TJ = 105°C  
VVDD = 5 V, VEN = 0 V, TJ = 125°C  
3.5  
4.5  
5.2  
11  
16  
VDD current, 5 V, device powered off  
VVDD = 5 V, VEN = 0 V, 40°C ≤  
TJ 150°C  
30  
µA  
IVDD_OFF  
VVDD = 20 V, VEN = 0 V, TJ = 25°C  
VVDD = 20 V, VEN = 0 V, TJ = 105°C  
VVDD = 20 V, VEN = 0 V, TJ = 125°C  
8
10  
11  
10.5  
17  
VDD current, 20 V, device powered  
off  
µA  
25  
VVDD = 20 V, VEN = 0 V, 40°C ≤  
TJ 150°C  
40  
FET CHARACTERISTICS (S1, S2)  
IO = 2 mA, TJ = 25°C  
130  
176  
192  
210  
175  
235  
250  
275  
300  
0.1  
0.5  
1.5  
6
IO = 2 mA, TJ = 85°C  
IO = 2 mA, TJ = 105°C  
RDSON  
On resistance  
Ω
IO = 2 mA, TJ = 125°C  
IO = 2 mA, 40°C TJ 150°C  
V = +/1200 V, TJ = 25°C  
V = +/1200 V, TJ = 85°C  
V = +/1200 V, TJ = 105°C  
V = +/1200 V, TJ = 125°C  
0.02  
Off leakage, 1200 V  
µA  
V = +/1200 V, 40°C TJ ≤  
150°C  
50  
IOFF  
0.02  
0.1  
0.3  
1
V = +/1000 V, TJ = 25°C  
V = +/1000 V, TJ = 85°C  
V = +/1000 V, TJ = 105°C  
V = +/1000 V, TJ = 125°C  
Off leakage, 1000 V  
Avalanche voltage  
µA  
V
4
V = +/1000 V, 40°C TJ ≤  
150°C  
35  
IO = 10 µA, TJ = 25°C  
1300  
1300  
1550  
1550  
VAVA  
IO = 100 µA, TJ = 150°C  
VS1 = 1000 V, VS2 = 0 V OR VS2  
1000 V, VS1 = 0 V  
=
VSM_OFF  
COSS  
SM voltage  
400  
600  
V
S1, S2 capacitance  
VS1,S2 = 0 V, SM float, F = 1 MHz  
75  
pF  
LOGIC-LEVEL INPUT (EN)  
VIL  
Input logic low voltage  
0.0  
2.1  
0.8  
20.0  
300  
V
V
VIH  
Input logic high voltage  
Input logic hysteresis  
VHYS  
100  
250  
mV  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSFR3  
8
Submit Document Feedback  
Product Folder Links: TPSI2140-Q1  
 
TPSI2140-Q1  
ZHCSQF3B APRIL 2022 REVISED JUNE 2023  
www.ti.com.cn  
6.9 Electrical Characteristics (continued)  
Unless otherwise noted, all minimum/maximum specifications are over recommended operating conditions. All typical values  
are measured at TJ = 25C, VVDD = 5V, VEN = 5V.  
PARAMETER  
TEST CONDITIONS  
MIN  
0.1  
2
TYP  
MAX UNIT  
IIL  
Input logic low current  
Input logic low current  
Input logic high current  
Input logic high current  
VDD fail-safe current  
VEN = 0 V  
0.1  
6.5  
50  
µA  
µA  
µA  
µA  
µA  
IIL  
VEN = 0.8 V  
4
22  
IIH  
VEN = 5 V  
10  
IIH  
VEN = 20 V  
100  
0.1  
175  
350  
0.1  
IVDD_FS  
VEN = 20 V, VVDD = 0 V  
Two point measurement, VEN = 0.5 V  
and VEN = 0.8 V  
RPD  
Pulldown resistance  
100  
200  
350  
kΩ  
NOISE IMMUNITY  
CMTI  
Common-mode transient immunity  
|VCM| = 1000 V  
100.0 V/ns  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: TPSI2140-Q1  
English Data Sheet: SLVSFR3  
TPSI2140-Q1  
ZHCSQF3B APRIL 2022 REVISED JUNE 2023  
www.ti.com.cn  
6.10 Switching Characteristics  
Unless otherwise noted, all minimum/maximum specifications are over recommended operating conditions. All typical values  
are measured at TA = 25C, VVDD = 5V, VEN = 5V.  
MODE  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
Switching Characteristics  
Input HI to Output voltage falling  
propagation delay  
tPD_ON  
tF  
100  
300  
100  
Output fall time  
20  
tON  
Input HI to Output LO delay  
160  
400  
µs  
EN switching  
VIN = 1000 V RL = 1 MΩ  
Input LO to Output voltage rising  
propagation delay  
tPD_OFF  
150  
200  
tR  
Output rise time  
50  
600  
700  
tOFF  
Input LO to Output HI delay  
200  
Input HI to Output voltage falling  
propagation delay  
tPD_ON  
tF  
240  
400  
100  
Output fall time  
20  
tON  
Input HI to Output LO delay  
260  
500  
µs  
EN and VDD  
switching  
VIN = 1000 V RL = 1 MΩ  
Input LO to Output voltage rising  
propagation delay  
tPD_OFF  
150  
200  
tR  
Output rise time  
50  
600  
700  
tOFF  
Input LO to Output HI delay  
200  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSFR3  
10  
Submit Document Feedback  
Product Folder Links: TPSI2140-Q1  
 
TPSI2140-Q1  
ZHCSQF3B APRIL 2022 REVISED JUNE 2023  
www.ti.com.cn  
7 Parameter Measurement Information  
VIN  
VIH  
1 M  
SW  
4.5–20 V  
VIN  
TPSI2140-Q1  
VIL  
0V  
VDD  
EN  
S1  
S2  
VIN  
90%  
IN  
VSW  
10%  
ttPD_HI  
t
ttFt  
ttPD_LO  
t
ttRt  
GND  
ttON  
t
ttOFF  
t
7-1. Timing Diagram, EN Switching  
VIN  
VIH  
1 M  
SW  
VIN  
TPSI2140-Q1  
VIL  
0V  
VIN  
VDD  
EN  
S1  
S2  
90%  
10%  
IN  
VSW  
ttPD_HI  
t
ttFt  
ttPD_LO  
t
ttRt  
GND  
ttON  
t
ttOFF  
t
7-2. Timing Diagram, EN and VDD Switching  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: TPSI2140-Q1  
English Data Sheet: SLVSFR3  
 
TPSI2140-Q1  
ZHCSQF3B APRIL 2022 REVISED JUNE 2023  
www.ti.com.cn  
8 Detailed Description  
8.1 Overview  
The TPSI2140-Q1 is an isolated solid state relay designed for high voltage automotive and industrial  
applications. TI's high reliability capacitive isolation technology in combination with back-to-back MOSFETs form  
a completely integrated solution requiring no secondary side power supply.  
As seen in the Functional Block Diagram, the primary side consists of a driver which delivers power and enable  
logic information to each of the internal MOSFETs on the secondary side. The on-board oscillator controls the  
frequency of the driver's operation and the Spread Spectrum Modulation (SSM) controller varies the driver  
frequency to improve system EMI performance. When the enable pin is brought HI and the VDD voltage is  
above the UVLO threshold, the oscillator starts and the driver sends power and a logic HI across the barrier.  
When the enable pin is brought LO or the VDD voltage falls below the UVLO threshold, the driver is disabled.  
The lack of activity communicates a logic LO to the secondary side and the MOSFETs are disabled.  
Each MOSFET on the secondary side has a dedicated full-bridge rectifier to form its local power supply and a  
receiver. The receiver determines the logic state delivered from the primary side through the capacitive isolation  
barrier and uses a slew rate controlled driver to drive the MOSFET's gate. Each receiver performs signal  
conditioning on the signals received across the barrier in order to filter common mode interference and ensure  
that the MOSFETs are controlled according to the logic sent by the primary side driver and the system.  
The avalanche robust MOSFETs and the thermal benefits of the widened pins on the 11 DWQ package enable  
the TPSI2140-Q1 to support dielectric withstand testing (HiPot) and DC fast charger surge currents of up to 2  
mA without requiring any external protection components.  
8.2 Functional Block Diagram  
S1  
VDD  
UVLO  
SiO2  
Based  
Capacitive  
Isolation  
Barrier  
Fail -  
Safe  
Input  
SM  
Control  
EN  
Oscillator  
GND  
S2  
8-1. TPSI2140-Q1 Block Diagram  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSFR3  
12  
Submit Document Feedback  
Product Folder Links: TPSI2140-Q1  
 
 
 
TPSI2140-Q1  
ZHCSQF3B APRIL 2022 REVISED JUNE 2023  
www.ti.com.cn  
8.3 Feature Description  
8.3.1 Avalanche Robustness  
When the voltage between the S1 and S2 pins exceeds +/-1200 V the secondary side MOSFETs could enter an  
avalanche mode of operation. The MOSFETs and the 11 DWQ package have been designed and qualified to be  
robust in this mode of operation to support Dielectric Withstand Testing (HiPot). To help ensure the thermal  
performance of the the system in this mode of operation, refer to the PCB Layout Guidelines.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: TPSI2140-Q1  
English Data Sheet: SLVSFR3  
 
 
TPSI2140-Q1  
ZHCSQF3B APRIL 2022 REVISED JUNE 2023  
www.ti.com.cn  
8.4 Device Functional Modes  
8-1. Device Functional Modes  
VDD  
EN  
L
S1-S2 State  
COMMENTS  
OFF  
ON  
VDD current is in OFF state range.  
VDD current is in ON state range.  
VDD current is in OFF state range.  
Powered Up(1)  
H
L
OFF  
Powered Down(2)  
Primary side analog is powered on, VDD current is between  
OFF state and ON state ranges.  
H
OFF  
(1) VDD VDD undervoltage rising threshold.  
(2) VDD VDD undervoltage falling threshold.  
Copyright © 2023 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: TPSI2140-Q1  
English Data Sheet: SLVSFR3  
 
 
 
TPSI2140-Q1  
ZHCSQF3B APRIL 2022 REVISED JUNE 2023  
www.ti.com.cn  
9 Application and Implementation  
备注  
以下应用部分中的信息不属TI 器件规格的范围TI 不担保其准确性和完整性。TI 的客 户应负责确定  
器件是否适用于其应用。客户应验证并测试其设计以确保系统功能。  
9.1 Application Information  
The TPSI2140-Q1 is a 1200-V, 50-mA automotive isolated switch optimized for high voltage switching in  
measurement applications, especially those that require switching across an isolation barrier or galvanically  
isolated domain. Common end equipments include energy storage systems (ESS), solar panel arrays, EV  
chargers, and EV battery management systems. The device enables the system designer to reduce cost and  
improve reliability by replacing mechanical relays and optically isolated devices.  
The TPSI2140-Q1's enable input is fail safe and does not need to be driven from the same domain as the VDD  
pin supply.  
The TPSI2140-Q1 supports an input voltage range of 4.5 V to 20 V on the VDD primary supply pin and a logic  
high of 2.1 V to 20 V on the enable pin. The secondary side supports high voltage switching from 1200 V to  
1200 V.  
TI Reference Designs  
The TI reference designs linked below are a helpful introduction to high voltage applications using the  
TPSI2140-Q1. To maximize the thermal performance of the TPSI2140-Q1 for dielectric withstand testing (HiPot),  
please follow the Layout Guidelines contained within this datasheet.  
TIDA-010232: High Voltage Insulation Monitoring  
TIDA-01513: Automotive High Voltage and Isolation Leakage Measurements  
9.2 Typical Application  
Insulation Resistance Monitoring  
In high voltage applications such as electric vehicle systems, the high voltage battery pack is intentionally  
isolated from the chassis domain of the car to protect the driver and prevent damage to electrical components.  
These systems actively monitor the integrity of this insulation to ensure the safety of the system throughout its  
lifetime. This active monitoring is referred to as insulation resistance monitoring (also known as isolation check,  
insulation check, isolation monitoring, insulation monitoring, and residual current monitoring (RCM)) and is  
performed by measuring the resistances from each of the battery terminals to the chassis ground, illustrated  
below as RISOP and RISON  
.
RISOP  
+
VPACK  
-
RISON  
9-1. Insulation Resistance Model  
There are multiple design architectures using the TPSI2140-Q1 to measure these insulation resistances, RISOP  
and RISON. Some architectures employ a microcontroller that performs measurements from the high voltage  
domain, which will be referred to in this document as the Battery V- Reference architecture. Others use a  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: TPSI2140-Q1  
English Data Sheet: SLVSFR3  
 
 
 
 
TPSI2140-Q1  
ZHCSQF3B APRIL 2022 REVISED JUNE 2023  
www.ti.com.cn  
microcontroller in the low voltage domain, which will be referred to in this document as the Chassis Ground  
Reference architecture. The primary difference between the two architectures is the node that the MCU uses as  
its GND reference. An example of a Battery V- MCU is the BQ79631-Q1 UIR sensor.  
Chassis Ground Reference  
Battery V- Reference  
RDIV1  
SW1  
RISOP  
SW1  
R3  
RISOP  
SW2  
MCU  
+
RDIV2  
RDIV3  
+
MCU  
VPACK  
-
ADC0 VDD  
VPACK  
-
RDIV1  
VDD  
ADC  
ADC1  
GND  
RISON  
GND  
RDIV2  
RISON  
SW2  
RDIV4  
9-2. Different MCU ADC Reference Examples  
The two following sections demonstrate the measurement algorithms and the systems of equations used to  
calculate the isolation resistances using each architecture.  
Battery V- Reference Example  
A Battery V- Reference architecture is shown below with the TPSI2140-Q1 illustrated as a switch (SW1 and  
SW2). SW2 initiates a connection between the chassis and PACK- and enables the measurement path to the  
ADC. SW1 initiates a connection between the chassis and the PACK+. RDIV1 and RDIV2 form a divider which  
scales the measured voltages down to the appropriate ADC range.  
SW1  
R3  
RISOP  
SW2  
+
MCU  
VPACK  
-
VDD  
ADC  
RDIV1  
RDIV2  
RISON  
GND  
9-3. Battery V- Reference Architecture  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSFR3  
16  
Submit Document Feedback  
Product Folder Links: TPSI2140-Q1  
TPSI2140-Q1  
ZHCSQF3B APRIL 2022 REVISED JUNE 2023  
www.ti.com.cn  
Two ADC measurements must be taken in order to obtain enough information to calculate the two unknown  
isolation resistances. The first measurement is taken with SW1 open and SW2 closed. The second  
measurement is taken with SW1 closed and SW2 closed. With these two measurements it is possible to solve  
the system of equations and calculate RISOP and RISON  
.
In the following example the voltage on the chassis ground is arbitrarily referred to as VRISONx  
.
For the first ADC measurement SW2 is closed as shown below and the following equations relate the ADC  
voltage to the other parameters in the system in this condition:  
VADC1 measurement 1: SW1 open, SW2 closed  
R
R
+ R  
ISON  
+ R  
DIV1  
DIV2  
+ R  
DIV2  
V
= V  
×
(1)  
(2)  
RISON1  
PACK  
R
R
ISOP  
ISON  
DIV1  
R
DIV2  
V
= V  
×
ADC1  
RISON1  
R
+ R  
DIV1  
DIV2  
SW1  
RISOP  
R3  
+
VPACK  
-
SW2  
MCU  
VDD  
ADC  
RDIV1  
RISON  
GND  
RDIV2  
9-4. Battery V- Reference Switch Positions for ADC1 Measurement  
For the second ADC measurement SW1 and SW2 are closed as shown below and the following equations relate  
the ADC voltage to the other parameters in the system in this condition:  
VADC2 measurement 2: SW1 closed, SW2 closed  
R
R
+ R  
ISON  
+ R  
DIV1  
DIV2  
+ R  
DIV2  
V
= V  
×
×
(3)  
(4)  
RISON2  
PACK  
R
R
R
ISOP  
3
ISON  
DIV1  
R
DIV2  
+ R  
V
= V  
ADC2  
RISON2  
R
DIV1  
DIV2  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: TPSI2140-Q1  
English Data Sheet: SLVSFR3  
TPSI2140-Q1  
ZHCSQF3B APRIL 2022 REVISED JUNE 2023  
www.ti.com.cn  
SW1  
RISOP  
R3  
SW2  
+
VPACK  
-
MCU  
VDD  
ADC  
RDIV1  
RISON  
GND  
RDIV2  
9-5. Battery V- Reference Switch Positions for ADC2 Measurement  
Chassis Ground Reference Example  
A Chassis Ground Reference architecture is shown below. SW1 and SW2 initiate connections to the PACK+ and  
PACK-, and enable their corresponding measurement paths to their ADCs through their corresponding resistor  
dividers. RDIV1, RDIV2, RDIV3, and RDIV4 scale the measured voltages down to the appropriate ADC ranges.  
This first measurement is taken with SW1 closed and SW2 open and the second measurement is taken with  
SW1 open and SW2 closed.  
VADC0: SW1 closed, SW2 open  
R
R
+ R  
R
ISOP  
R
DIV1  
+ R  
DIV2  
+ R  
ISON  
DIV2  
+ R  
V
= V  
= V  
PACK  
R
×
(5)  
(6)  
ADC1  
RDIV2  
R
DIV1  
DIV2  
ISOP  
DIV1  
DIV2  
VADC1: SW1 open, SW2 closed  
R
R
+ R  
DIV4  
R
ISON  
DIV3  
+ R  
DIV3  
+ R  
V
= V  
= − V  
PACK  
R
×
R
ADC2  
RDIV3  
R
+ R  
ISOP  
DIV3  
DIV4  
ISON  
DIV3  
DIV4  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSFR3  
18  
Submit Document Feedback  
Product Folder Links: TPSI2140-Q1  
TPSI2140-Q1  
ZHCSQF3B APRIL 2022 REVISED JUNE 2023  
www.ti.com.cn  
RDIV1  
RISOP  
SW1  
MCU  
RDIV2  
RDIV3  
+
ADC0 VDD  
ADC1  
VPACK  
-
GND  
RISON  
SW2  
RDIV4  
9-6. Chassis Ground Reference Switch Positions for ADC1 Measurement  
RDIV1  
RISOP  
SW1  
MCU  
RDIV2  
+
VPACK  
ADC0 VDD  
ADC1  
GND  
-
RDIV3  
RISON  
SW2  
RDIV4  
9-7. Chassis Ground Reference Switch Positions for ADC2 Measurement  
Battery V- Reference and Chassis Ground Reference Architectures with the TPSI2140-Q1  
The circuits in 9-8 and 9-9 demonstrate how to connect the TPSI2140-Q1 as a switch in each of the  
architectures above.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: TPSI2140-Q1  
English Data Sheet: SLVSFR3  
TPSI2140-Q1  
ZHCSQF3B APRIL 2022 REVISED JUNE 2023  
www.ti.com.cn  
RISO1  
TPSI2140-Q1  
VDD  
EN  
HV+  
S1  
S2  
MCU  
Insulation  
resistance to  
chassis  
GPIO  
+
-
ground  
ADC_IN  
GND  
GND  
RISO2  
HV-  
9-8. TPSI2140-Q1 Insulation Resistance Monitoring Battery V- Reference  
HV+  
+
RISO1  
TPSI2140-Q1  
-
VDD  
EN  
S1  
S2  
HV-  
Insulation  
resistance to  
chassis  
MCU  
GPIO  
ADC_IN  
GND  
ground  
GND  
RISO2  
9-9. TPSI2140-Q1 Insulation Resistance Monitoring Chassis Ground Reference  
9.2.1 Dielectric Withstand Testing (HiPot)  
The TPSI2140-Q1 is specifically designed to support dielectric withstand testing. In a high voltage system, a  
dielectric withstand test (HiPot) may be administered during the characterization, production or maintenance of  
the system to validate the reliability of the insulation barriers and galvanically isolated domains it contains. These  
withstand voltage tests intentionally stress the components spanning these domains and put them in an  
overvoltage condition. MOSFETs that are placed under these overvoltage conditions will enter avalanche mode  
and begin conducting current at a high voltage, dissipating high power and heating up. The design and  
qualification of the TPSI2140-Q1 was completed with this state in mind and supports up to 2 mA IAVA for 5  
seconds intervals and 1 mA IAVA for 60 second intervals.  
The dielectric withstand test voltage (VHiPot), the TPSI2140-Q1's avalanche voltage (VAVA), and the resistance  
(R) in series with the TPSI2140-Q1 should limit the avalanche current (IAVA) to the corresponding current limit  
depending on the test duration. In addition, the PCB design should follow the recommendations in the Layout  
Guidelines section to ensure adequate thermal performance to keep the junction temperature (TJ) below the  
absolute maximum rating of the TPSI2140-Q1.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSFR3  
20  
Submit Document Feedback  
Product Folder Links: TPSI2140-Q1  
 
 
 
TPSI2140-Q1  
ZHCSQF3B APRIL 2022 REVISED JUNE 2023  
www.ti.com.cn  
R
+
-
TPSI2140-Q1  
VHIPOT  
VDD  
EN  
S1  
S2  
VAVA  
1300V @25C  
>
2mA (5s)  
1mA (60s)  
IAVA  
=
GND  
9-10. Dielectric Withstand Test (HiPot) - Simplified Schematic  
9.2.2 Design Requirements  
9-1 lists the Design Requirements for a typical insulation resistance monitoring application using the Chassis  
Ground Reference architecture and the TPSI2140-Q1 for switching.  
9-1. Typical Design Parameters For Insulation Resistance Monitoring Using the TPSI2140-Q1 –  
Chassis Ground Reference Architecture  
PARAMETER  
VALUE  
1000 V  
5 V ±10 %  
3500 V  
5 s  
VPACK Voltage (maximum)  
Primary side supply (VVDD  
Dielectric withstand voltage test  
Surge voltage (IEC61000-3-5)  
)
2500 V  
9.2.3 Design Procedure - Chassis Ground Reference  
HV+  
HV-  
+
-
RISO1  
TPSI2140-Q1  
VDD  
EN  
S1  
S2  
Insulation  
resistance to  
chassis  
MCU  
GPIO  
ADC_IN  
GND  
ground  
GND  
RISO2  
9-11. Chassis Ground Reference  
RISO1 Selection  
In order to protect the TPSI2140-Q1, RISO1 must be sized to limit the current in an overvoltage condition. The  
amount of resistance required to protect the TPSI2140-Q1 depends on the amount of overvoltage applied. For  
example, during a dielectric withstand voltage test (HiPot) of 3500 V for 5 seconds, the S1 to S2 voltage will be  
clamped to 1300 V (VAVA minimum) by the TPSI2140-Q1 and the RISO1 resistance required to keep the current  
under 2 mA would be 1.1 MΩ.  
V
− V  
AVA  
HIPOT  
R
3500V − 1300V  
1.1 MΩ  
I
=
=
= 2 . 0mA  
(7)  
AVA  
ISO1  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: TPSI2140-Q1  
English Data Sheet: SLVSFR3  
 
TPSI2140-Q1  
ZHCSQF3B APRIL 2022 REVISED JUNE 2023  
www.ti.com.cn  
If the high potential test lasts for 60 seconds, the RISO1 resistance must be doubled to 2.2 MΩ to keep the  
current below 1 mA.  
DC Overvoltage  
2000 V  
RISO1 Minimum (5 second intervals)  
RISO1 Minimum (60 second intervals)  
350 kΩ  
600 kΩ  
1100 kΩ  
1500 kΩ  
700 kΩ  
1200 kΩ  
2200 kΩ  
3000 MΩ  
2500 V  
3500 V  
4300 V  
9.3 Power Supply Recommendations  
To ensure a reliable supply voltage, TI recommends that a 100-nF ceramic capacitor be placed between the  
VDD pin and the GND pin of the TPSI2140-Q1. The capacitor should be placed as close to the device's VDD pin  
as possible < 10 mm.  
9.4 Layout  
9.4.1 Layout Guidelines  
Component placement:  
Decoupling capacitors for the primary side VDD supply must be placed as close as possible to the device pins.  
EMI considerations:  
The TPSI2140-Q1 employs spread spectrum modulation (SSM) and in some systems, no additional system  
design considerations are required to meet the EMI performance needs.  
However, the system designer may choose to take additional measures to minimize EMI depending on the  
system requirements and safety preferences of the system designer. The measures listed below reduce  
emissions by providing a capacitive return path from the secondary side to the primary side or by increasing the  
common mode loop impedance with an inductive component on the primary side.  
Capacitive Return Paths:  
An interlayer stitching capacitance in the range of 10-20 pF can be implemented on the PCB. This zero-  
cost implementation is typically preferred as it also serves the purpose of thermal performance  
improvement if placed directly underneath the TPSI2140-Q1. Please see the Layout Example for more  
details.  
Most system designs already employ discrete Y capacitors or contain an amount of parasitic Y  
capacitance between the high voltage and low voltage domains. If this Y capacitance is located on the  
same board as the TPSI2140-Q1, they will act as a capacitive return path.  
Discrete high voltage capacitors could also be placed between the GND pin and the S1 or S2 terminals.  
Inductive Components:  
A pair of ferrite beads or a common mode choke with a high frequency impedance in the range of 10 kΩ  
may be placed in series with the system VDD pin and GND pin supply on the primary side of the  
TPSI2140-Q1.  
High-voltage considerations:  
The creepage from the primary side to the secondary side and from the creepage from the S1 pin to S2 pin of  
the TPSI2140-Q1 should be maintained according to system requirements. It is most likely that the system  
designer will avoid any top layer PCB routing underneath the body of the package or between the S1 and S2  
pins.  
Thermal considerations:  
If the system designer plans to use the TPSI2140-Q1 in avalanche mode, it is important for the PCB layout to be  
designed with thermal performance in mind. Proper PCB layout can help dissipate heat from the device to the  
PCB and keep the junction temperature (TJ) under the absolute maximum rating. Floating inner layer planes or  
Copyright © 2023 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: TPSI2140-Q1  
English Data Sheet: SLVSFR3  
 
 
 
 
TPSI2140-Q1  
ZHCSQF3B APRIL 2022 REVISED JUNE 2023  
www.ti.com.cn  
the planes used to implement a stitch capacitor can be drawn beneath the secondary side pins or directly  
beneath the TPSI2140-Q1 for improved heat dissipation. An example of this can be seen in the Layout Example.  
9.4.2 Layout Example  
Varying PCB implementations are possible depending on both the system EMI requirements and the system  
dielectric withstand testing (HiPot) parameters. The following sections detail the TPSI2140-Q1 EVM with  
Thermal Optimization with secondary side metallization for optimized thermal performance and the Interlayer  
Stitch Capacitance Option for EMI and Thermal Optimization.  
TPSI2140-Q1 EVM with Thermal Optimization  
The TPSI2140-Q1 EVM images below demonstrate a secondary side thermal metallization pattern and internal  
floating metal that provides thermal relief to the TPSI2140-Q1 during system dielectric withstand testing (HiPot).  
The TPSI2140-Q1 Secondary Side Layout Recommendation for Optimized Thermal Performance: Top Layer 1  
shows the top side creepage and clearance considerations.  
9-12. TPSI2140-Q1 EVM - Component View  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: TPSI2140-Q1  
English Data Sheet: SLVSFR3  
 
TPSI2140-Q1  
ZHCSQF3B APRIL 2022 REVISED JUNE 2023  
www.ti.com.cn  
9-13. TPSI2140-Q1 EVM - Layer 1  
9-14. TPSI2140-Q1 EVM - Layer 2  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSFR3  
24  
Submit Document Feedback  
Product Folder Links: TPSI2140-Q1  
TPSI2140-Q1  
ZHCSQF3B APRIL 2022 REVISED JUNE 2023  
www.ti.com.cn  
9-15. TPSI2140-Q1 EVM - Layer 3  
9-16. TPSI2140-Q1 EVM - Layer 4  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: TPSI2140-Q1  
English Data Sheet: SLVSFR3  
TPSI2140-Q1  
ZHCSQF3B APRIL 2022 REVISED JUNE 2023  
www.ti.com.cn  
7mm  
Top Layer  
1 VDD  
2 GND  
3 EN  
>3mm  
Maintain  
Creepage  
Distance of  
16mm  
>3mm  
TPSI2140-Q1  
9-17. TPSI2140-Q1 Secondary Side Layout Recommendation for Optimized Thermal Performance: Top  
Layer 1  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSFR3  
26  
Submit Document Feedback  
Product Folder Links: TPSI2140-Q1  
TPSI2140-Q1  
ZHCSQF3B APRIL 2022 REVISED JUNE 2023  
www.ti.com.cn  
7mm  
Layer 2  
Floating plane  
on inner layer for  
thermal relief  
16mm  
Plane overlaps  
pins on top side  
TPSI2140-Q1  
9-18. TPSI2140-Q1 Secondary Side Layout Recommendation for Optimized Thermal Performance:  
Inner Layer 2  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: TPSI2140-Q1  
English Data Sheet: SLVSFR3  
TPSI2140-Q1  
ZHCSQF3B APRIL 2022 REVISED JUNE 2023  
www.ti.com.cn  
7mm  
Layer 3  
Floating plane  
on inner layer for  
thermal relief  
16mm  
Plane overlaps  
pins on top side  
TPSI2140-Q1  
9-19. TPSI2140-Q1 Secondary Side Layout Recommendation for Optimized Thermal Performance:  
Inner Layer 3  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSFR3  
28  
Submit Document Feedback  
Product Folder Links: TPSI2140-Q1  
TPSI2140-Q1  
ZHCSQF3B APRIL 2022 REVISED JUNE 2023  
www.ti.com.cn  
Bottom Layer  
7mm  
Floating plane  
on bottom layer  
for thermal relief  
Plane overlaps  
pins on top side  
16mm  
TPSI2140-Q1  
9-20. TPSI2140-Q1 Secondary Side Layout Recommendation for Optimized Thermal Performance:  
Bottom Layer 4  
Interlayer Stitch Capacitance Option for EMI and Thermal Optimization  
The layout example below demonstrates an EMI optimized and thermally optimized PCB Design for high voltage  
switching applications. The overlapping metal layers beneath the TPSI2140-Q1 form an interlayer stitching  
capacitance between the primary side ground and the S2 pin and increase the board copper content, improving  
the thermal performance for dielectric withstand testing (HiPot). Using S1 or S2 as the secondary side interlayer  
stitching capacitance terminal is equally effective. Metal islands on the S1 and S2 pin on the top side and inner  
layers further improve the thermal performance. Care should be taken to maintain both the vertical and  
horizontal interlayer dielectric (ILD) spacings between high voltage terminals required by the system.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: TPSI2140-Q1  
English Data Sheet: SLVSFR3  
TPSI2140-Q1  
ZHCSQF3B APRIL 2022 REVISED JUNE 2023  
www.ti.com.cn  
VDD  
VDD  
GND  
EN  
S1  
SM  
S2  
C
MCU  
NC  
NC  
NC  
NC  
GND  
Primary Side  
Ground Plane  
9-21. TPSI2140-Q1 Layout with Interlayer Stitch Capacitance: Top Layer (1)  
S2  
Primary Side  
Ground Plane  
Top Side Package Outlines  
Maintain required  
ILD spacing  
9-22. TPSI2140-Q1 Layout with Interlayer Stitch Capacitance: Inner Layer (2,4)  
Maintain required  
ILD spacing  
S2  
Primary Side  
Ground Plane  
Top Side Package Outlines  
9-23. TPSI2140-Q1 Layout with Interlayer Stitch Capacitance: Inner Layer (3)  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSFR3  
30  
Submit Document Feedback  
Product Folder Links: TPSI2140-Q1  
TPSI2140-Q1  
ZHCSQF3B APRIL 2022 REVISED JUNE 2023  
www.ti.com.cn  
10 Device and Documentation Support  
TI offers an extensive line of development tools. Tools and software to evaluate the performance of the device,  
generate code, and develop solutions are listed below.  
10.1 接收文档更新通知  
要接收文档更新通知请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册即可每周接收产品信息更  
改摘要。有关更改的详细信息请查看任何已修订文档中包含的修订历史记录。  
10.2 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
10.3 Trademarks  
TI E2Eis a trademark of Texas Instruments.  
所有商标均为其各自所有者的财产。  
10.4 静电放电警告  
静电放(ESD) 会损坏这个集成电路。德州仪(TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理  
和安装程序可能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级大至整个器件故障。精密的集成电路可能更容易受到损坏这是因为非常细微的参  
数更改都可能会导致器件与其发布的规格不相符。  
10.5 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
31  
Product Folder Links: TPSI2140-Q1  
English Data Sheet: SLVSFR3  
 
 
 
 
 
 
TPSI2140-Q1  
ZHCSQF3B APRIL 2022 REVISED JUNE 2023  
www.ti.com.cn  
11 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSFR3  
32  
Submit Document Feedback  
Product Folder Links: TPSI2140-Q1  
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
7-Jul-2023  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPSI2140QDWQRQ1  
ACTIVE  
SOIC  
DWQ  
11  
2000 RoHS & Green  
NIPDAU  
Level-3-260C-168 HR  
-40 to 125  
2140Q  
Samples  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
19-Jun-2023  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TPSI2140QDWQRQ1  
SOIC  
DWQ  
11  
2000  
330.0  
16.4  
10.75 10.7  
2.7  
12.0  
16.0  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
19-Jun-2023  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SOIC DWQ 11  
SPQ  
Length (mm) Width (mm) Height (mm)  
350.0 350.0 43.0  
TPSI2140QDWQRQ1  
2000  
Pack Materials-Page 2  
PACKAGE OUTLINE  
DWQ0011A  
SOIC - 2.65 mm max height  
SMALL OUTLINE PACKAGE  
C
SEATING PLANE  
0.1 C  
10.63  
9.97  
TYP  
PIN 1 ID  
AREA  
A
11  
1
2x 4.173  
7x 1.27  
10.5  
10.1  
NOTE 3  
8.346  
0.51  
8x  
0.31  
8
9
1.05  
0.85  
3x  
7.6  
7.4  
NOTE 4  
2.65 max  
B
0.25  
C A B  
0.304  
0.204  
TYP  
0.25  
GAGE PLANE  
SEE DETAIL A  
0.3  
0.1  
0 - 8  
1.27  
0.4  
DETAIL A  
TYPICAL  
(1.4)  
4226292/B 12/2022  
NOTES:  
1. All linear dimensions are in millimeters. Dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.15 mm, per side.  
4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm, per side.  
5. Reference JEDEC registration MS-013.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DWQ0011A  
SOIC - 2.65 mm max height  
SMALL OUTLINE PACKAGE  
SYMM  
SYMM  
8x (2)  
3 X (2)  
11  
3x (1.15)  
8 x (1.65)  
8X (0.6)  
3x(1.65)  
1
1
11  
3x (1.15)  
8x (0.6)  
SYMM  
SYMM  
2x (4.173)  
2x(4.173)  
7X (1.27)  
7X (1.27)  
8
8
9
R0.075 TYP  
R0.075 TYP  
(9.3)  
(9.75)  
IPC-7351 NOMINAL  
7.3 mm CLEARANCE/CREEPAGE  
HV / ISOLATION OPTION  
8.1 mm CLEARANCE/CREEPAGE  
LAND PATTERN EXAMPLE  
SCALE:4X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL  
METAL  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
SOLDER MASK  
DEFINED  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
4226292/B 12/2022  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DWQ0011A  
SOIC - 2.65 mm max height  
SMALL OUTLINE PACKAGE  
SYMM  
SYMM  
8x (2)  
3 X (2)  
11  
3x (1.15)  
8 x (1.65)  
3x(1.65)  
11  
1
1
3x (1.15)  
8x (0.6)  
8X (0.6)  
SYMM  
SYMM  
2x (4.173)  
2x(4.173)  
7X (1.27)  
7X (1.27)  
8
8
9
R0.075 TYP  
R0.075 TYP  
(9.3)  
(9.75)  
IPC-7351 NOMINAL  
7.3 mm CLEARANCE/CREEPAGE  
HV / ISOLATION OPTION  
8.1 mm CLEARANCE/CREEPAGE  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE:4X  
4226292/B 12/2022  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

PTPSM365R6FRDN

3-65V 输入 1-13V 输出 0.6A 同步降压转换器电源模块 | RDN | 11 | -40 to 125
TI

PTPSM53604RDAR

采用小型 5.5mm x 5mm x 4mm Enhanced HotRod™ QFN 封装、具有小外形尺寸的 36V、4A 降压电源模块 | RDA | 15
TI

PTPSM82913RDUR

17-V VIN, 3-A low-noise and low-ripple buck module with integrated ferrite bead filter compensation | RDU | 28 | -40 to 125
TI

PTPSM831D31MOA

具有 AVS 和监控功能的 8V-14V 输入、120A + 40A 双输出 PMBus 模块 | MOA | 32 | -40 to 105
TI

PTPSM843A26RDGR

4-V to 18-V input, advanced current mode, 16-A synchronous SWIFT™ step-down power module | RDG | 25 | -40 to 125
TI

PTPSM843B22RDGR

4-V to 18-V input, advanced current mode, 20-A synchronous SWIFT™ step-down converter | RDG | 25 | -40 to 125
TI

PTPSM863252RDXR

3-V to 17-V input voltage, 3-A Eco-mode synchronous buck module | RDX | 7 | -40 to 125
TI

PTPSM863257RDXR

3-V to 17-V input voltage, 3-A forced-CCM synchronous buck module | RDX | 7 | -40 to 125
TI

PTQA420025N2AD

100-W 48-V INPUT ISOLATED DC/DC CONVERTER
TI

PTQA420025N2AS

100-W 48-V INPUT ISOLATED DC/DC CONVERTER
TI

PTQA420025N2AZ

100-W 48-V INPUT ISOLATED DC/DC CONVERTER
TI

PTQA420025P2AD

100-W 48-V INPUT ISOLATED DC/DC CONVERTER
TI