REF2025AIDDCR [TI]

8ppm/°C 温漂、低功耗、双输出 Vref 和 Vref/2 电压基准 | DDC | 5 | -40 to 125;
REF2025AIDDCR
型号: REF2025AIDDCR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

8ppm/°C 温漂、低功耗、双输出 Vref 和 Vref/2 电压基准 | DDC | 5 | -40 to 125

光电二极管
文件: 总35页 (文件大小:4045K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
REF2025, REF2030, REF2033, REF2041  
ZHCSCM7E JULY 2018 REVISED FEBRUARY 2022  
REF20xx 低漂移、低功率、双路输出、VREF VREF/2 电压基准  
1 特性  
3 说明  
• 两个输出VREF VREF/2方便用于单电源系统  
• 出色的温漂性能:  
– –40°C 125°C 范围内8ppm/°C最大值)  
• 高初始精度±0.05%最大值)  
VREF VBIAS 跟踪过热:  
仅具有正向电源电压的应用通常需要使用一个处于模数  
转换器 (ADC) 输入范围中间位置的附加稳定电压来偏  
置输入双极信号。REF20xx 提供了一个可供 ADC 使  
用的基准电压 (VREF) 和一个可用于偏置输入双极信号  
的高精度电(VBIAS)。  
– –40°C 85°C 范围内6ppm/°C最大值)  
– –40°C 125°C 范围内7ppm/°C最大值)  
• 微型封装SOT 23-5  
• 低压降10 mV  
• 高输出电流±20mA  
• 低静态电流360μA  
• 线性调节3ppm/V  
• 负载调节8ppm/mA  
Matte-Sn (REF2025AISDDCR) Battelle  
REF20xx VREF VBIAS 输出端具有出色的温漂  
8ppm/°C和初始精度 (0.05%)同时可保持静  
态工作电流低于 430µA。此外VREF VBIAS 输出端  
在 –40°C 125°C 的温度范围内相互跟踪精度为  
6ppm/°C最大值。与分立式解决方案相比所有这  
些特性使得 REF20xx 提升了信号链的精度、节省了布  
板空间并降低了系统成本。仅 10mV 的超低压降允许  
器件在极低输入电压条件下工作这一特性在电池供电  
系统中非常适用。  
Class III 和类似严苛环境中的抗腐蚀性得以改进  
VREF VBIAS 电压具有同样出色的技术规范而且灌  
电流和拉电流能力同样强大。这些器件具有优异的长期  
稳定性和低噪声级别是高精度工业应用的理想选择。  
2 应用  
电表  
模拟输入模块  
模拟输出模块  
伺服驱动器控制模块  
断路器ACBMCCBVCB)  
临床数字温度计  
实验室和现场仪表  
电池测试  
器件信息  
(1)  
封装尺寸标称值)  
器件名称  
REF20xx  
SOT-23 (5)  
2.90mm × 1.60mm  
(1) 如需了解所有可用封装请参阅数据表末尾的可订购产品附  
录。  
Power  
Supply  
0.05  
0.04  
0.03  
VBIAS  
0.02  
0.01  
0
VIN+  
VOUT  
ADC  
INA213  
REF  
RSHUNT  
ISENSE  
-0.01  
-0.02  
VREF  
-0.03  
VIN-  
-0.04  
-0.05  
VBIAS  
1.5 V  
VREF  
3.0 V  
œ75 œ50 œ25  
0
25  
50  
75  
100 125 150  
Temperature (°C)  
C001  
REF2030  
V
REF VBIAS 与温度间的关系  
VIN  
EN  
GND  
应用示例  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SBOS600  
 
 
 
 
 
REF2025, REF2030, REF2033, REF2041  
ZHCSCM7E JULY 2018 REVISED FEBRUARY 2022  
www.ti.com.cn  
Table of Contents  
9.1 Overview...................................................................17  
9.2 Functional Block Diagram.........................................17  
9.3 Feature Description...................................................17  
9.4 Device Functional Modes..........................................18  
10 Applications and Implementation..............................19  
10.1 Application Information........................................... 19  
10.2 Typical Application.................................................. 20  
11 Power-Supply Recommendations..............................25  
12 Layout...........................................................................26  
12.1 Layout Guidelines................................................... 26  
12.2 Layout Example...................................................... 26  
13 Device and Documentation Support..........................27  
13.1 Documentation Support.......................................... 27  
13.2 接收文档更新通知................................................... 27  
13.3 支持资源..................................................................27  
13.4 Trademarks.............................................................27  
13.5 Electrostatic Discharge Caution..............................27  
13.6 术语表..................................................................... 27  
14 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Device Comparison Table...............................................3  
6 Pin Configuration and Functions...................................3  
Pin Functions.................................................................... 3  
7 Specifications.................................................................. 4  
7.1 Absolute Maximum Ratings........................................ 4  
7.2 ESD Ratings............................................................... 4  
7.3 Recommended Operating Conditions.........................4  
7.4 Thermal Information....................................................4  
7.5 Electrical Characteristics.............................................5  
7.6 Typical Characteristics................................................6  
8 Parameter Measurement Information..........................13  
8.1 Solder Heat Shift.......................................................13  
8.2 Long-Term Stability................................................... 14  
8.3 Thermal Hysteresis...................................................15  
8.4 Noise Performance................................................... 16  
9 Detailed Description......................................................17  
Information.................................................................... 27  
4 Revision History  
以前版本的页码可能与当前版本的页码不同  
Changes from Revision D (May 2018) to Revision E (January 2022)  
Page  
• 更新了“应用”部分........................................................................................................................................... 1  
• 更新了整个文档中的表格、图和交叉参考的编号格式.........................................................................................1  
Changed ESD Rating table: changed HBM rating from ±4000 V to ±2500 V.....................................................4  
Updated Long-term stability value...................................................................................................................... 5  
Added Long-Term Stability sub-section under Parameter Measurement Information section..........................14  
Changes from Revision C (January 2017) to Revision D (May 2018)  
Page  
Changed application information to include corrosion resistance advantages. ...............................................19  
Changes from Revision B (July 2014) to Revision C (January 2017)  
Page  
Added I/O column to Pin Functions table .......................................................................................................... 3  
Added Storage temperature parameter to Absolute Maximum Ratings table (moved from ESD Ratings table)  
............................................................................................................................................................................4  
Changed ESD Rating table: changed title, updated table format ...................................................................... 4  
Changes from Revision A (June 2014) to Revision B (July 2014)  
Page  
• 将器件状态从“量产数据”更改为“混合状态”................................................................................................ 1  
• 删除了“器件信息”表中的脚2...................................................................................................................... 1  
Deleted footnote from Device Comparison Table .............................................................................................. 3  
Added Thermal Information table....................................................................................................................... 4  
Changes from Revision * (May 2014) to Revision A (June 2014)  
Page  
• 更改了产品预发布数据表.................................................................................................................................... 1  
Copyright © 2022 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: REF2025 REF2030 REF2033 REF2041  
 
REF2025, REF2030, REF2033, REF2041  
ZHCSCM7E JULY 2018 REVISED FEBRUARY 2022  
www.ti.com.cn  
5 Device Comparison Table  
PRODUCT  
REF2025  
REF2030  
REF2033  
REF2041  
VREF  
2.5 V  
VBIAS  
1.25 V  
1.5 V  
3.0 V  
3.3 V  
1.65 V  
2.048 V  
4.096 V  
6 Pin Configuration and Functions  
5
VREF  
VBIAS  
GND  
EN  
1
2
3
4
VIN  
6-1. DDC Package SOT23-5 (Top View)  
Pin Functions  
PIN  
I/O  
DESCRIPTION  
NO.  
1
NAME  
VBIAS  
GND  
EN  
Output  
Bias voltage output (VREF / 2)  
Ground  
2
3
Input  
Input  
Output  
Enable (EN VIN 0.7 V, device enabled)  
Input supply voltage  
4
VIN  
5
VREF  
Reference voltage output (VREF)  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: REF2025 REF2030 REF2033 REF2041  
 
 
 
 
REF2025, REF2030, REF2033, REF2041  
ZHCSCM7E JULY 2018 REVISED FEBRUARY 2022  
www.ti.com.cn  
7 Specifications  
7.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
0.3  
0.3  
55  
MAX  
6
UNIT  
VIN  
Input voltage  
EN  
V
VIN + 0.3  
150  
Operating  
Temperature  
Junction, Tj  
150  
°C  
Storage, Tstg  
170  
65  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under  
Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device  
reliability.  
7.2 ESD Ratings  
VALUE  
±2500  
±1500  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
V(ESD)  
Electrostatic discharge  
V
Charged-device model (CDM), per JEDEC specification JESD22-C101(2)  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
7.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
NOM  
MAX  
UNIT  
VIN  
Supply input voltage range (IL = 0 mA, TA = 25°C)  
VREF + 0.02(1)  
5.5  
V
(1) See 7-28 in 7.6 for minimum input voltage at different load currents and temperature  
7.4 Thermal Information  
REF20xx  
THERMAL METRIC(1)  
DDC (SOT23)  
5 PINS  
193.6  
40.2  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
34.5  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
0.9  
ψJT  
34.3  
ψJB  
RθJC(bot)  
N/A  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
Copyright © 2022 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: REF2025 REF2030 REF2033 REF2041  
 
 
 
 
 
 
 
 
 
 
 
REF2025, REF2030, REF2033, REF2041  
ZHCSCM7E JULY 2018 REVISED FEBRUARY 2022  
www.ti.com.cn  
7.5 Electrical Characteristics  
At TA = 25°C, IL = 0 mA, and VIN = 5 V, unless otherwise noted. Both VREF and VBIAS have the same specifications.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
ACCURACY AND DRIFT  
Output voltage accuracy  
0.05%  
0.05%  
Output voltage temperature coefficient(1)  
±3  
±1.5  
±2  
±8 ppm/°C  
40°C TA 125°C  
±6  
40°C TA 85°C  
40°C TA 125°C  
VREF and VBIAS tracking over temperature(2)  
ppm/°C  
±7  
LINE AND LOAD REGULATION  
Line regulation  
3
8
35 ppm/V  
ΔVO(ΔVI)  
VREF + 0.02 V VIN 5.5 V  
0 mA IL 20 mA ,  
VREF + 0.6 V VIN 5.5 V  
Sourcing  
Sinking  
20  
Load regulation  
ppm/mA  
20  
ΔVO(ΔIL)  
0 mA IL 20 mA,  
VREF + 0.02 V VIN 5.5 V  
8
POWER SUPPLY  
360  
3.3  
430  
Active mode  
460  
5
40°C TA 125°C  
ICC  
Supply current  
µA  
Shutdown mode  
9
40°C TA 125°C  
Device in shutdown mode (EN = 0)  
Device in active mode (EN = 1)  
0
0.7  
VIN  
20  
600  
Enable voltage  
Dropout voltage  
V
VIN 0.7  
10  
mV  
IL = 20 mA  
ISC  
Short-circuit current  
Turn-on time  
50  
mA  
µs  
ton  
0.1% settling, CL = 1 µF  
500  
NOISE  
Low-frequency noise(3)  
12  
ppmPP  
0.1 Hz f 10 Hz  
ppm/√  
Hz  
Output voltage noise density  
f = 100 Hz  
0.25  
CAPACITIVE LOAD  
Stable output capacitor range  
0
10  
µF  
HYSTERESIS AND LONG TERM STABILITY  
Long-term stability(4)  
0 to 1000 hours  
25  
ppm  
ppm  
Cycle 1  
Cycle 2  
60  
35  
Output voltage hysteresis(5)  
25°C, 40°C, 125°C, 25°C  
(1) Temperature drift is specified according to the box method. See the 9.3 section for more details.  
(2) The VREF and VBIAS tracking over temperature specification is explained in more detail in the 9.3 section.  
(3) The peak-to-peak noise measurement procedure is explained in more detail in the 8.4 section.  
(4) Long-term stability measurement procedure is explained in more in detail in the 8.2 section.  
(5) The thermal hysteresis measurement procedure is explained in more detail in the 8.3 section.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: REF2025 REF2030 REF2033 REF2041  
 
 
 
 
 
 
 
REF2025, REF2030, REF2033, REF2041  
ZHCSCM7E JULY 2018 REVISED FEBRUARY 2022  
www.ti.com.cn  
7.6 Typical Characteristics  
At TA = 25°C, IL = 0 mA, VIN = 5-V power supply, CL = 0 µF, and 2.5-V output, unless otherwise noted.  
70  
60  
50  
40  
30  
20  
10  
0
50  
40  
30  
20  
10  
0
0
1
2
3
4
5
6
7
8
VREF Drift Distribution (ppm/°C)  
VREF Initial Accuracy (%)  
C010  
C008  
C004  
C015  
C015  
C016  
7-1. Initial Accuracy Distribution (VREF  
)
40°C TA 125°C  
7-2. Drift Distribution (VREF  
)
80  
70  
60  
50  
40  
30  
20  
10  
0
50  
40  
30  
20  
10  
0
0
1
2
3
4
5
6
7
8
VBIAS Drift Distribution (ppm/°C)  
VBIAS Initial Accuracy (%)  
7-3. Initial Accuracy Distribution (VBIAS  
)
40°C TA 125°C  
7-4. Drift Distribution (VBIAS  
)
40  
30  
20  
10  
0
60  
50  
40  
30  
20  
10  
0
0
1
2
3
4
5
6
VREF and VBIAS Tracking Over Temperature (ppm/°C)  
VREF and VBIAS Matching (ppm)  
7-5. VREF 2 × VBIAS Distribution  
40°C TA 85°C  
7-6. Distribution of VREF 2 × VBIAS Drift Tracking Over  
Temperature  
Copyright © 2022 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: REF2025 REF2030 REF2033 REF2041  
 
 
REF2025, REF2030, REF2033, REF2041  
ZHCSCM7E JULY 2018 REVISED FEBRUARY 2022  
www.ti.com.cn  
7.6 Typical Characteristics (continued)  
At TA = 25°C, IL = 0 mA, VIN = 5-V power supply, CL = 0 µF, and 2.5-V output, unless otherwise noted.  
60  
50  
40  
30  
20  
10  
0
50  
40  
30  
20  
10  
0
0
1
2
3
4
5
6
7
-0.0125 -0.01 -0.0075 -0.005 -0.0025  
0
0.0025  
VREF and VBIAS Tracking Over Temperature (ppm/°C)  
Solder Heat Shift Histogram - VREF (%)  
C017  
C041  
40°C TA 125°C  
Refer to the 8.1 section for more information.  
7-7. Distribution of VREF 2 × VBIAS Drift Tracking Over  
7-8. Solder Heat Shift Distribution (VREF  
)
Temperature  
60  
50  
40  
30  
20  
10  
0
0.05  
0.04  
0.03  
0.02  
0.01  
0
VBIAS  
-0.01  
-0.02  
-0.03  
-0.04  
-0.05  
VREF  
-0.0125 -0.01 -0.0075 -0.005 -0.0025  
0
0.0025  
œ75 œ50 œ25  
0
25  
50  
75  
100 125 150  
Solder Heat Shift Histogram - VBIAS (%)  
Temperature (°C)  
C001  
C040  
7-10. Output Voltage Accuracy (VREF) vs Temperature  
Refer to the 8.1 section for more information.  
7-9. Solder Heat Shift Distribution (VBIAS  
)
1000  
2.5005  
750  
500  
-40°C  
2.5000  
2.4995  
2.4990  
2.4985  
2.4980  
250  
25°C  
0
œ250  
œ500  
œ750  
œ1000  
125°C  
œ75 œ50 œ25  
0
25  
50  
75  
100 125 150  
œ20  
œ15  
œ10  
œ5  
0
Load Current (mA)  
5
10  
15  
20  
Temperature (°C)  
C003  
C038  
7-11. VREF 2 × VBIAS Tracking vs Temperature  
VREF output  
7-12. Output Voltage Change vs Load Current (VREF  
)
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: REF2025 REF2030 REF2033 REF2041  
REF2025, REF2030, REF2033, REF2041  
ZHCSCM7E JULY 2018 REVISED FEBRUARY 2022  
www.ti.com.cn  
7.6 Typical Characteristics (continued)  
At TA = 25°C, IL = 0 mA, VIN = 5-V power supply, CL = 0 µF, and 2.5-V output, unless otherwise noted.  
1.2503  
1.2501  
1.2499  
1.2497  
1.2495  
1.2493  
12  
11  
10  
9
-40°C  
8
7
25°C  
6
125°C  
15  
5
4
œ20  
œ15  
œ10  
œ5  
0
5
10  
20  
œ75 œ50 œ25  
0
25  
50  
75  
100 125 150  
Load Current (mA)  
Temperature (°C)  
C025  
C039  
VREF output  
IL = 20 mA  
VBIAS output  
7-14. Load Regulation Sourcing vs Temperature (VREF  
)
7-13. Output Voltage Change vs Load Current (VBIAS  
)
12  
11  
10  
9
12  
11  
10  
9
8
8
7
7
6
6
5
5
4
4
œ75 œ50 œ25  
0
25  
50  
75  
100 125 150  
œ75 œ50 œ25  
0
25  
50  
75  
100 125 150  
Temperature (°C)  
Temperature (°C)  
C020  
C021  
VBIAS output  
IL = 20 mA  
VREF output  
IL = 20 mA  
7-15. Load Regulation Sourcing vs Temperature (VBIAS  
)
7-16. Load Regulation Sinking vs Temperature (VREF  
)
12  
11  
10  
9
5
4.5  
4
8
3.5  
3
7
6
2.5  
2
5
4
œ75 œ50 œ25  
0
25  
50  
75  
100 125 150  
œ75 œ50 œ25  
0
25  
50  
75  
100 125 150  
Temperature (°C)  
IL = 20 mA  
Temperature (°C)  
C022  
C019  
VBIAS output  
VREF output  
7-18. Line Regulation vs Temperature (VREF  
)
7-17. Load Regulation Sinking vs Temperature (VBIAS  
)
Copyright © 2022 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: REF2025 REF2030 REF2033 REF2041  
REF2025, REF2030, REF2033, REF2041  
ZHCSCM7E JULY 2018 REVISED FEBRUARY 2022  
www.ti.com.cn  
7.6 Typical Characteristics (continued)  
At TA = 25°C, IL = 0 mA, VIN = 5-V power supply, CL = 0 µF, and 2.5-V output, unless otherwise noted.  
5
4.5  
4
100  
VBIAS  
80  
VREF  
3.5  
3
60  
40  
2.5  
2
20  
œ75 œ50 œ25  
0
25  
50  
75  
100 125 150  
1
10  
100  
1k  
10k  
100k  
Temperature (°C)  
Frequency (Hz)  
C018  
C026  
VBIAS output  
CL = 0 µF  
7-19. Line Regulation vs Temperature (VBIAS  
)
7-20. Power-Supply Rejection Ratio vs Frequency  
100  
VIN + 0.25 V  
VIN + 0.25 V  
VBIAS  
500 mV/div  
40 mV/div  
VIN - 0.25 V  
80  
VREF  
VREF  
60  
40  
20  
Time (500 µs/div)  
1
10  
100  
1k  
10k  
100k  
Frequency (Hz)  
C006  
C027  
CL = 1 µF  
7-22. Line Transient Response  
CL = 10 µF  
7-21. Power-Supply Rejection Ratio vs Frequency  
VIN + 0.25 V  
VIN + 0.25V  
500 mV/div  
40 mV/div  
+1 mA  
+1 mA  
VIN - 0.25V  
2 mA/div  
- 1 mA  
VREF  
VREF  
20 mV/div  
Time (500 µs/div)  
Time (500 µs/div)  
C006  
C032  
CL = 10 µF  
7-23. Line Transient Response  
CL = 1 µF  
IL = ±1-mA step  
7-24. Load Transient Response  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: REF2025 REF2030 REF2033 REF2041  
REF2025, REF2030, REF2033, REF2041  
ZHCSCM7E JULY 2018 REVISED FEBRUARY 2022  
www.ti.com.cn  
7.6 Typical Characteristics (continued)  
At TA = 25°C, IL = 0 mA, VIN = 5-V power supply, CL = 0 µF, and 2.5-V output, unless otherwise noted.  
+20 mA  
+20 mA  
+1 mA  
+1 mA  
40 mA/div  
2 mA/div  
-20 mA  
- 1 mA  
VREF  
VREF  
20 mV/div  
40 mV/div  
Time (500 µs/div)  
Time (500 µs/div)  
C037  
C031  
CL = 10 µF  
IL = ±1-mA step  
CL = 1 µF  
IL = ±20-mA step  
7-25. Load Transient Response  
7-26. Load Transient Response  
400  
300  
200  
100  
0
125°C  
+20 mA  
+20 mA  
40 mA/div  
40 mV/div  
25°C  
-20 mA  
œ40°C  
VREF  
Time (500 µs/div)  
œ30  
œ20  
œ10  
0
10  
20  
30  
Load Current (mA)  
C036  
C005  
CL = 10 µF  
IL = ±20-mA step  
7-28. Minimum Dropout Voltage vs Load Current  
7-27. Load Transient Response  
VIN  
VIN  
2 V/div  
2 V/div  
VREF  
VREF  
Time (100 µs/div)  
Time (100 µs/div)  
C033  
C034  
CL = 1 µF  
CL = 10 µF  
7-29. Turn-On Settling Time  
7-30. Turn-On Settling Time  
Copyright © 2022 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: REF2025 REF2030 REF2033 REF2041  
 
REF2025, REF2030, REF2033, REF2041  
ZHCSCM7E JULY 2018 REVISED FEBRUARY 2022  
www.ti.com.cn  
7.6 Typical Characteristics (continued)  
At TA = 25°C, IL = 0 mA, VIN = 5-V power supply, CL = 0 µF, and 2.5-V output, unless otherwise noted.  
500  
450  
400  
350  
300  
250  
200  
500  
450  
400  
350  
300  
250  
200  
œ75 œ50 œ25  
0
25  
50  
75  
100 125 150  
2
3
4
5
6
Temperature (°C)  
Input Voltage (V)  
C006  
C007  
7-31. Quiescent Current vs Temperature  
7-32. Quiescent Current vs Input Voltage  
Time (1 s/div)  
Time (1 s/div)  
C028  
C029  
VREF output  
VBIAS output  
7-33. 0.1-Hz to 10-Hz Noise (VREF  
)
7-34. 0.1-Hz to 10-Hz Noise (VBIAS)  
1
100  
10  
CL = 0 F  
CL = 0 µF  
CL = 1µF  
0.1  
1
CL = 4.7 F  
CL = 10 F  
0.1  
CL = 10 µF  
0.01  
0.01  
1
10  
100  
1k  
10k  
0.01  
0.1  
1
10  
100  
1k  
10k  
100k  
Frequency (Hz)  
Frequency (Hz)  
C024  
C030  
7-35. Output Voltage Noise Spectrum  
VREF output  
7-36. Output Impedance vs Frequency (VREF  
)
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: REF2025 REF2030 REF2033 REF2041  
REF2025, REF2030, REF2033, REF2041  
ZHCSCM7E JULY 2018 REVISED FEBRUARY 2022  
www.ti.com.cn  
7.6 Typical Characteristics (continued)  
At TA = 25°C, IL = 0 mA, VIN = 5-V power supply, CL = 0 µF, and 2.5-V output, unless otherwise noted.  
100  
10  
40  
35  
30  
25  
20  
15  
10  
5
CL = 0 F  
CL = 1µF  
1
CL = 10 F  
0.1  
0.01  
0
0.01  
0.1  
1
10  
100  
1k  
10k  
100k  
Thermal Hysterisis - VREF (ppm)  
Frequency (Hz)  
C023  
C013  
VBIAS output  
7-38. Thermal Hysteresis Distribution (VREF  
)
7-37. Output Impedance vs Frequency (VBIAS  
)
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
40  
35  
30  
25  
20  
15  
10  
5
0
-5  
0
-10  
0
100 200 300 400 500 600 700 800 900 1000  
Time (hr)  
Thermal Hysteresis - VBIAS (ppm)  
7-40. Long-Term Stability (First 1000 hours)  
C014  
7-39. Thermal Hysteresis Distribution (VBIAS  
)
Copyright © 2022 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: REF2025 REF2030 REF2033 REF2041  
REF2025, REF2030, REF2033, REF2041  
ZHCSCM7E JULY 2018 REVISED FEBRUARY 2022  
www.ti.com.cn  
8 Parameter Measurement Information  
8.1 Solder Heat Shift  
The materials used in the manufacture of the REF20xx have differing coefficients of thermal expansion, resulting  
in stress on the device die when the part is heated. Mechanical and thermal stress on the device die can cause  
the output voltages to shift, degrading the initial accuracy specifications of the product. Reflow soldering is a  
common cause of this error.  
In order to illustrate this effect, a total of 92 devices were soldered on four printed circuit boards [23 devices on  
each printed circuit board (PCB)] using lead-free solder paste and the paste manufacturer suggested reflow  
profile. The reflow profile is as shown in 8-1. The printed circuit board is comprised of FR4 material. The  
board thickness is 1.57 mm and the area is 171.54 mm × 165.1 mm.  
The reference and bias output voltages are measured before and after the reflow process; the typical shift is  
displayed in 8-2 and 8-3. Although all tested units exhibit very low shifts (< 0.01%), higher shifts are also  
possible depending on the size, thickness, and material of the printed circuit board. An important note is that the  
histograms display the typical shift for exposure to a single reflow profile. Exposure to multiple reflows, as is  
common on PCBs with surface-mount components on both sides, causes additional shifts in the output bias  
voltage. If the PCB is exposed to multiple reflows, the device should be soldered in the second pass to minimize  
its exposure to thermal stress.  
300  
250  
200  
150  
100  
50  
0
0
50  
100  
150  
200  
250  
300  
350  
400  
Time (seconds)  
C01  
8-1. Reflow Profile  
50  
40  
30  
20  
10  
0
60  
50  
40  
30  
20  
10  
0
-0.0125 -0.01 -0.0075 -0.005 -0.0025  
0
0.0025  
-0.0125 -0.01 -0.0075 -0.005 -0.0025  
0
0.0025  
Solder Heat Shift Histogram - VREF (%)  
Solder Heat Shift Histogram - VBIAS (%)  
C040  
C041  
8-3. Solder Heat Shift Distribution, VBIAS (%)  
8-2. Solder Heat Shift Distribution, VREF (%)  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: REF2025 REF2030 REF2033 REF2041  
 
 
 
 
 
REF2025, REF2030, REF2033, REF2041  
ZHCSCM7E JULY 2018 REVISED FEBRUARY 2022  
www.ti.com.cn  
8.2 Long-Term Stability  
The long term stability of the REF20xx was collected on 32 parts that were soldered onto Printed Circuit Boards  
without any slots or special layout considerations. The boards were then placed into an oven with air  
temperature maintained at TA = 35°C. The VREF output of the 32 parts was measured regularly. Typical long term  
stability is as shown in 8-4.  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
0
-5  
-10  
0
100 200 300 400 500 600 700 800 900 1000  
Time (hr)  
8-4. Long Term Stability 1000 hours (VREF  
)
Copyright © 2022 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: REF2025 REF2030 REF2033 REF2041  
 
 
 
REF2025, REF2030, REF2033, REF2041  
ZHCSCM7E JULY 2018 REVISED FEBRUARY 2022  
www.ti.com.cn  
8.3 Thermal Hysteresis  
Thermal hysteresis is measured with the REF20xx soldered to a PCB, similar to a real-world application.  
Thermal hysteresis for the device is defined as the change in output voltage after operating the device at 25°C,  
cycling the device through the specified temperature range, and returning to 25°C. Hysteresis can be expressed  
by 方程1:  
VPRE - VPOST  
VHYST  
=
ñ 106 (ppm)  
÷
÷
VNOM  
«
(1)  
where  
VHYST = thermal hysteresis (in units of ppm),  
VNOM = the specified output voltage,  
VPRE = output voltage measured at 25°C pre-temperature cycling, and  
VPOST = output voltage measured after the device has cycled from 25°C through the specified temperature  
range of 40°C to 125°C and returns to 25°C.  
Typical thermal hysteresis distribution is as shown in 8-5 and 8-6.  
40  
35  
30  
25  
20  
15  
10  
5
40  
35  
30  
25  
20  
15  
10  
5
0
0
Thermal Hysterisis - VREF (ppm)  
Thermal Hysteresis - VBIAS (ppm)  
C013  
C014  
8-5. Thermal Hysteresis Distribution (VREF  
)
8-6. Thermal Hysteresis Distribution (VBIAS  
)
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: REF2025 REF2030 REF2033 REF2041  
 
 
 
 
REF2025, REF2030, REF2033, REF2041  
ZHCSCM7E JULY 2018 REVISED FEBRUARY 2022  
www.ti.com.cn  
8.4 Noise Performance  
Typical 0.1-Hz to 10-Hz voltage noise can be seen in 8-7 and 8-8. Device noise increases with output  
voltage and operating temperature. Additional filtering can be used to improve output noise levels, although care  
should be taken to ensure the output impedance does not degrade ac performance. Peak-to-peak noise  
measurement setup is shown in 8-9.  
Time (1 s/div)  
Time (1 s/div)  
C028  
C029  
8-7. 0.1-Hz to 10-Hz Noise (VREF  
)
8-8. 0.1-Hz to 10-Hz Noise (VBIAS)  
10 k  
100 ꢁ  
40 mF  
VIN  
To scope  
VREF  
+
10 F  
EN  
1 kꢁ  
2-Pole High-pass  
4-Pole Low-pass  
0.1 Hz to 10 Hz Filter  
REF20xx  
0.1 F  
GND  
VBIAS  
8-9. 0.1-Hz to 10-Hz Noise Measurement Setup  
Copyright © 2022 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: REF2025 REF2030 REF2033 REF2041  
 
 
 
 
REF2025, REF2030, REF2033, REF2041  
ZHCSCM7E JULY 2018 REVISED FEBRUARY 2022  
www.ti.com.cn  
9 Detailed Description  
9.1 Overview  
The REF20xx are a family of dual-output, VREF and VBIAS (VREF / 2) band-gap voltage references. The 9.2  
section provides a block diagram of the basic band-gap topology and the two buffers used to derive the VREF  
and VBIAS outputs. Transistors Q1 and Q2 are biased such that the current density of Q1 is greater than that of  
Q2. The difference of the two base emitter voltages (VBE1 VBE2) has a positive temperature coefficient and is  
forced across resistor R5. The voltage is amplified and added to the base emitter voltage of Q2, which has a  
negative temperature coefficient. The resulting band-gap output voltage is almost independent of temperature.  
Two independent buffers are used to generate VREF and VBIAS from the band-gap voltage. The resistors R1, R2  
and R3, R4 are sized such that VBIAS = VREF / 2.  
e-Trimis a method of package-level trim for the initial accuracy and temperature coefficient of VREF and VBIAS  
,
implemented during the final steps of manufacturing after the plastic molding process. This method minimizes  
the influence of inherent transistor mismatch, as well as errors induced during package molding. e-Trim is  
implemented in the REF20xx to minimize the temperature drift and maximize the initial accuracy of both the VREF  
and VBIAS outputs.  
9.2 Functional Block Diagram  
R2  
R1  
R6  
R7  
VREF  
+
+
e-Trim  
R5  
+
+
R4  
VBE1 VBE2  
-
-
R3  
Q2  
VBIAS  
Q1  
+
e-Trim  
9.3 Feature Description  
9.3.1 VREF and VBIAS Tracking  
Most single-supply systems require an additional stable voltage in the middle of the analog-to-digital converter  
(ADC) input range to bias input bipolar signals. The VREF and VBIAS outputs of the REF20xx are generated from  
the same band-gap voltage as shown in the 9.2 section. Hence, both outputs track each other over the full  
temperature range of 40°C to 125°C with an accuracy of 7 ppm/°C (maximum). The tracking accuracy  
increases to 6 ppm/°C (maximum) when the temperature range is limited to 40°C to 85°C. The tracking error is  
calculated using the box method, as described by 方程2:  
VDIFF(MAX) - VDIFF (MIN)  
«
÷
Tracking Error =  
ñ106 (ppm)  
VREF ñTemperature Range  
(2)  
where  
VDIFF = VREF - 2VBIAS  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: REF2025 REF2030 REF2033 REF2041  
 
 
 
 
 
 
REF2025, REF2030, REF2033, REF2041  
ZHCSCM7E JULY 2018 REVISED FEBRUARY 2022  
www.ti.com.cn  
The tracking accuracy is as shown in 9-1.  
0.05  
0.04  
0.03  
0.02  
0.01  
0
VBIAS  
-0.01  
-0.02  
-0.03  
-0.04  
-0.05  
VREF  
œ75 œ50 œ25  
0
25  
50  
75  
100 125 150  
Temperature (°C)  
C001  
9-1. VREF and VBIAS Tracking vs Temperature  
9.3.2 Low Temperature Drift  
The REF20xx is designed for minimal drift error, which is defined as the change in output voltage over  
temperature. The drift is calculated using the box method, as described by 方程3:  
VREF(MAX)-VREF(MIN)  
«
÷
Drift =  
ñ106 (ppm)  
VREFñTemperature Range  
(3)  
9.3.3 Load Current  
The REF20xx family is specified to deliver a current load of ±20 mA per output. Both the VREF and VBIAS outputs  
of the device are protected from short circuits by limiting the output short-circuit current to 50 mA. The device  
temperature increases according to 方程4:  
TJ = TA +P RJA  
D
(4)  
where  
TJ = junction temperature (°C),  
TA = ambient temperature (°C),  
PD = power dissipated (W), and  
RθJA = junction-to-ambient thermal resistance (°C/W)  
The REF20xx maximum junction temperature must not exceed the absolute maximum rating of 150°C.  
9.4 Device Functional Modes  
When the EN pin of the REF20xx is pulled high, the device is in active mode. The device should be in active  
mode for normal operation. The REF20xx can be placed in a low-power mode by pulling the ENABLE pin low.  
When in shutdown mode, the output of the device becomes high impedance and the quiescent current of the  
device reduces to 5 µA in shutdown mode. See the 7.5 for logic high and logic low voltage levels.  
Copyright © 2022 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: REF2025 REF2030 REF2033 REF2041  
 
 
 
 
REF2025, REF2030, REF2033, REF2041  
ZHCSCM7E JULY 2018 REVISED FEBRUARY 2022  
www.ti.com.cn  
10 Applications and Implementation  
备注  
以下应用部分中的信息不属TI 器件规格的范围TI 不担保其准确性和完整性。TI 的客 户应负责确定  
器件是否适用于其应用。客户应验证并测试其设计以确保系统功能。  
10.1 Application Information  
The low-drift, bidirectional, single-supply, low-side, current-sensing solution, described in this section, can  
accurately detect load currents from 2.5 A to 2.5 A. The linear range of the output is from 250 mV to 2.75 V.  
Positive current is represented by output voltages from 1.5 V to 2.75 V, whereas negative current is represented  
by output voltages from 250 mV to 1.5 V. The difference amplifier is the INA213 current-shunt monitor, whose  
supply and reference voltages are supplied by the low-drift REF2030.  
Industrial applications with electronics in corrosive environments are susceptible to corrosive damage due to the  
exposure to heat, moisture, and corrosive gases. The combination of the following conditions in a given system  
lead to higher risk of corrosive damage:  
1. Ventilated enclosures exposing underlying PCB.  
2. PCBs not conformally coated.  
3. Exposed-lead components with plating susceptible to corrosion.  
4. Changes in plating techniques for RoHS compliance (e.g. removal of Pb (lead) and certain types of plating).  
To improve resistance to corrosion in harsh environments, the REF2025AISDDCR uses Matte-Sn plating with  
improved assembly process to reduce exposed Cu, leading to improved corrosion resistance in the Battelle  
Class III and similar harsh environments. The Sin the part number identifies this special plating option.  
REF2025 versions that do not have the Swill continue to be available in industry standard NiPdAu  
processing technique.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: REF2025 REF2030 REF2033 REF2041  
 
 
REF2025, REF2030, REF2033, REF2041  
ZHCSCM7E JULY 2018 REVISED FEBRUARY 2022  
www.ti.com.cn  
10.2 Typical Application  
10.2.1 Low-Side, Current-Sensing Application  
REF20xx  
VREF  
+
VIN  
Bandgap  
EN  
+
VBIAS  
+
VCC  
œ
GND  
REF  
V+  
ILOAD  
VREF  
ADC  
+
IN+  
+
OUT  
VBUS  
œ
RSHUNT  
VOUT  
IN-  
GND  
INA213B  
10-1. Low-Side, Current-Sensing Application  
Copyright © 2022 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: REF2025 REF2030 REF2033 REF2041  
 
 
REF2025, REF2030, REF2033, REF2041  
ZHCSCM7E JULY 2018 REVISED FEBRUARY 2022  
www.ti.com.cn  
10.2.1.1 Design Requirements  
The design requirements are as follows:  
1. Supply voltage: 5.0 V  
2. Load current: ±2.5 A  
3. Output: 250 mV to 2.75 V  
4. Maximum shunt voltage: ±25 mV  
10.2.1.2 Detailed Design Procedure  
Low-side current sensing is desirable because the common-mode voltage is near ground. Therefore, the current-  
sensing solution is independent of the bus voltage, VBUS. When sensing bidirectional currents, use a differential  
amplifier with a reference pin. This procedure allows for the differentiation between positive and negative  
currents by biasing the output stage such that it can respond to negative input voltages. There are a variety of  
methods for supplying power (V+) and the reference voltage (VREF, or VBIAS) to the differential amplifier. For a  
low-drift solution, use a monolithic reference that supplies both power and the reference voltage. 10-2 shows  
the general circuit topology for a low-drift, low-side, bidirectional, current-sensing solution. This topology is  
particularly useful when interfacing with an ADC; see 10-1. Not only do VREF and VBIAS track over  
temperature, but their matching is much better than alternate topologies. For a more detailed version of the  
design procedure, refer to TIDU357.  
REF20xx  
VREF  
+
VIN  
Bandgap  
EN  
+
VBIAS  
+
VCC  
œ
GND  
REF  
V+  
ILOAD  
+
IN+  
+
OUT  
VBUS  
œ
RSHUNT  
VSHUNT  
VOUT  
IN-  
GND  
INA213B  
10-2. Low-Drift, Low-side, Bidirectional, Current-Sensing Circuit Topology  
The transfer function for the circuit given in 10-2 is as shown in 方程5:  
VOUT = G • (êVSHUNT ) + VBIAS  
= G • (êILOAD RSHUNT) + VBIAS  
(5)  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: REF2025 REF2030 REF2033 REF2041  
 
 
REF2025, REF2030, REF2033, REF2041  
ZHCSCM7E JULY 2018 REVISED FEBRUARY 2022  
www.ti.com.cn  
10.2.1.2.1 Shunt Resistor  
As illustrated in 10-2, the value of VSHUNT is the ground potential for the system load. If the value of VSHUNT is  
too large, issues may arise when interfacing with systems whose ground potential is actually 0 V. Also, a value of  
VSHUNT that is too negative may violate the input common-mode voltage of the differential amplifier in addition to  
potential interfacing issues. Therefore, limiting the voltage across the shunt resistor is important. 方程6 can be  
used to calculate the maximum value of RSHUNT  
.
VSHUNT(max)  
RSHUNT(max)  
=
ILOAD(max)  
(6)  
Given that the maximum shunt voltage is ±25 mV and the load current range is ±2.5 A, the maximum shunt  
resistance is calculated as shown in 方程7.  
VSHUNT (max)  
25mV  
2.5A  
RSHUNT (max)  
=
=
=10mW  
ILOAD(max)  
(7)  
To minimize errors over temperature, select a low-drift shunt resistor. To minimize offset error, select a shunt  
resistor with the lowest tolerance. For this design, the Y14870R01000B9W resistor is used.  
10.2.1.2.2 Differential Amplifier  
The differential amplifier used for this design should have the following features:  
1. Single-supply (3 V),  
2. Reference voltage input,  
3. Low initial input offset voltage (VOS),  
4. Low-drift,  
5. Fixed gain, and  
6. Low-side sensing (input common-mode range below ground).  
For this design, a current-shunt monitor (INA213) is used. The INA21x family topology is shown in 10-3. The  
INA213B specifications can be found in the INA213 product data sheet.  
V+  
-
IN-  
OUT  
REF  
IN+  
+
GND  
Copyright © 2017, Texas Instruments Incorporated  
10-3. INA21x Current-Shunt Monitor Topology  
The INA213B is an excellent choice for this application because all the required features are included. In  
general, instrumentation amplifiers (INAs) do not have the input common-mode swing to ground that is essential  
for this application. In addition, INAs require external resistors to set their gain, which is not desirable for low-drift  
applications. Difference amplifiers typically have larger input bias currents, which reduce solution accuracy at  
Copyright © 2022 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: REF2025 REF2030 REF2033 REF2041  
 
 
 
REF2025, REF2030, REF2033, REF2041  
ZHCSCM7E JULY 2018 REVISED FEBRUARY 2022  
www.ti.com.cn  
small load currents. Difference amplifiers typically have a gain of 1 V/V. When the gain is adjustable, these  
amplifiers use external resistors that are not conducive to low-drift applications.  
10.2.1.2.3 Voltage Reference  
The voltage reference for this application should have the following features:  
1. Dual output (3.0 V and 1.5 V),  
2. Low drift, and  
3. Low tracking errors between the two outputs.  
For this design, the REF2030 is used. The REF20xx topology is as shown in the 9.2 section.  
The REF2030 is an excellent choice for this application because of its dual output. The temperature drift of  
8 ppm/°C and initial accuracy of 0.05% make the errors resulting from the voltage reference minimal in this  
application. In addition, there is minimal mismatch between the two outputs and both outputs track very well  
across temperature, as shown in 10-4 and 10-5.  
40  
30  
20  
10  
0
60  
50  
40  
30  
20  
10  
0
0
1
2
3
4
5
6
VREF and VBIAS Tracking Over Temperature (ppm/°C)  
VREF and VBIAS Matching (ppm)  
C016  
C004  
10-5. Distribution of VREF 2 × VBIAS Drift  
10-4. VREF 2 × VBIAS Distribution (At TA =  
Tracking Over Temperature  
25°C)  
10.2.1.2.4 Results  
10-1 summarizes the measured results.  
10-1. Measured Results  
ERROR  
UNCALIBRATED (%)  
CALIBRATED (%)  
±0.004  
Error across the full load current range (25°C)  
Error across the full load current range (40°C to 125°C)  
±0.0355  
±0.0522  
±0.0606  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: REF2025 REF2030 REF2033 REF2041  
 
 
REF2025, REF2030, REF2033, REF2041  
ZHCSCM7E JULY 2018 REVISED FEBRUARY 2022  
www.ti.com.cn  
10.2.1.3 Application Curves  
Performing a two-point calibration at 25°C removes the errors associated with offset voltage, gain error, and so  
forth. 10-6 to 10-8 show the measured error at different conditions. For a more detailed description on  
measurement procedure, calibration, and calculations, please refer to TIDU357.  
3
2.5  
2
800  
600  
-40°C  
0°C  
400  
200  
1.5  
1
0
25°C  
85°C  
œ200  
œ400  
œ600  
œ800  
0.5  
0
125°C  
-3  
-2  
-1  
0
1
2
3
œ3  
œ2  
œ1  
0
1
2
3
Load current (mA)  
Load current (mA)  
C00  
C00  
10-6. Measured Transfer Function  
10-7. Uncalibrated Error vs Load Current  
800  
-40°C  
0°C  
600  
400  
200  
0
25°C  
85°C  
œ200  
œ400  
œ600  
œ800  
125°C  
œ3  
œ2  
œ1  
0
1
2
3
Load current (mA)  
C00  
10-8. Calibrated Error vs Load Current  
Copyright © 2022 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: REF2025 REF2030 REF2033 REF2041  
 
 
REF2025, REF2030, REF2033, REF2041  
ZHCSCM7E JULY 2018 REVISED FEBRUARY 2022  
www.ti.com.cn  
11 Power-Supply Recommendations  
The REF20xx family of references feature an extremely low-dropout voltage. These references can be operated  
with a supply of only 20 mV above the output voltage. For loaded reference conditions, a typical dropout voltage  
versus load is shown in 11-1. A supply bypass capacitor ranging between 0.1 µF to 10 µF is recommended.  
400  
125°C  
300  
25°C  
œ40°C  
200  
100  
0
œ30  
œ20  
œ10  
0
10  
20  
30  
Load Current (mA)  
C005  
11-1. Dropout Voltage vs Load Current  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: REF2025 REF2030 REF2033 REF2041  
 
 
REF2025, REF2030, REF2033, REF2041  
ZHCSCM7E JULY 2018 REVISED FEBRUARY 2022  
www.ti.com.cn  
12 Layout  
12.1 Layout Guidelines  
12-1 shows an example of a PCB layout for a data acquisition system using the REF2030. Some key  
considerations are:  
Connect low-ESR, 0.1-μF ceramic bypass capacitors at VIN, VREF, and VBIAS of the REF2030.  
Decouple other active devices in the system per the device specifications.  
Using a solid ground plane helps distribute heat and reduces electromagnetic interference (EMI) noise  
pickup.  
Place the external components as close to the device as possible. This configuration prevents parasitic errors  
(such as the Seebeck effect) from occurring.  
Minimize trace length between the reference and bias connections to the INA and ADC to reduce noise  
pickup.  
Do not run sensitive analog traces in parallel with digital traces. Avoid crossing digital and analog traces if  
possible, and only make perpendicular crossings when absolutely necessary.  
12.2 Layout Example  
V+  
IN+  
Via to  
Input Power  
C
IN-  
GND  
REF  
C
OUT  
REF  
VREF  
VBIAS  
GND  
Via  
to GND  
Plane  
Analog Input  
C
C
Microcontroller  
A/D Input  
C
EN  
VIN  
DIG1  
AIN  
12-1. Layout Example  
Copyright © 2022 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: REF2025 REF2030 REF2033 REF2041  
 
 
 
 
REF2025, REF2030, REF2033, REF2041  
ZHCSCM7E JULY 2018 REVISED FEBRUARY 2022  
www.ti.com.cn  
13 Device and Documentation Support  
13.1 Documentation Support  
13.1.1 Related Documentation  
For related documentation see the following:  
INA21x Voltage Output, Low- or High-Side Measurement, Bidirectional, Zero-Drift Series, Current-Shunt  
Monitors (SBOS437)  
Low-Drift Bidirectional Single-Supply Low-Side Current Sensing Reference Design (TIDU357)  
13.2 接收文档更新通知  
要接收文档更新通知请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册即可每周接收产品信息更  
改摘要。有关更改的详细信息请查看任何已修订文档中包含的修订历史记录。  
13.3 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
13.4 Trademarks  
e-Trimis a trademark of Texas Instruments, Inc.  
TI E2Eis a trademark of Texas Instruments.  
所有商标均为其各自所有者的财产。  
13.5 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
13.6 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
14 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical packaging and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: REF2025 REF2030 REF2033 REF2041  
 
 
 
 
 
 
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
9-Mar-2021  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
REF2025AIDDCR  
REF2025AIDDCT  
REF2025AISDDCR  
REF2030AIDDCR  
REF2030AIDDCT  
REF2033AIDDCR  
REF2033AIDDCT  
REF2041AIDDCR  
REF2041AIDDCT  
ACTIVE SOT-23-THIN  
ACTIVE SOT-23-THIN  
ACTIVE SOT-23-THIN  
ACTIVE SOT-23-THIN  
ACTIVE SOT-23-THIN  
ACTIVE SOT-23-THIN  
ACTIVE SOT-23-THIN  
ACTIVE SOT-23-THIN  
ACTIVE SOT-23-THIN  
DDC  
DDC  
DDC  
DDC  
DDC  
DDC  
DDC  
DDC  
DDC  
5
5
5
5
5
5
5
5
5
3000 RoHS & Green  
250 RoHS & Green  
NIPDAU  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
GACM  
NIPDAU  
Call TI  
GACM  
1M98  
3000 RoHS & Green  
3000 RoHS & Green  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
GADM  
GADM  
GAEM  
GAEM  
GAFM  
GAFM  
250  
3000 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
250 RoHS & Green  
RoHS & Green  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
9-Mar-2021  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
10-Mar-2021  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
REF2025AIDDCR  
REF2025AIDDCT  
REF2025AISDDCR  
REF2030AIDDCR  
REF2030AIDDCT  
REF2033AIDDCR  
REF2033AIDDCT  
REF2041AIDDCR  
REF2041AIDDCT  
SOT-  
23-THIN  
DDC  
DDC  
DDC  
DDC  
DDC  
DDC  
DDC  
DDC  
DDC  
5
5
5
5
5
5
5
5
5
3000  
250  
179.0  
179.0  
180.0  
179.0  
179.0  
179.0  
179.0  
179.0  
179.0  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
3.2  
3.2  
3.2  
3.2  
3.2  
3.2  
3.2  
3.2  
3.2  
3.2  
3.2  
3.2  
3.2  
3.2  
3.2  
3.2  
3.2  
3.2  
1.4  
1.4  
1.4  
1.4  
1.4  
1.4  
1.4  
1.4  
1.4  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
Q3  
Q3  
Q3  
Q3  
Q3  
Q3  
Q3  
Q3  
Q3  
SOT-  
23-THIN  
SOT-  
23-THIN  
3000  
3000  
250  
SOT-  
23-THIN  
SOT-  
23-THIN  
SOT-  
23-THIN  
3000  
250  
SOT-  
23-THIN  
SOT-  
23-THIN  
3000  
250  
SOT-  
23-THIN  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
10-Mar-2021  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
REF2025AIDDCR  
REF2025AIDDCT  
REF2025AISDDCR  
REF2030AIDDCR  
REF2030AIDDCT  
REF2033AIDDCR  
REF2033AIDDCT  
REF2041AIDDCR  
REF2041AIDDCT  
SOT-23-THIN  
SOT-23-THIN  
SOT-23-THIN  
SOT-23-THIN  
SOT-23-THIN  
SOT-23-THIN  
SOT-23-THIN  
SOT-23-THIN  
SOT-23-THIN  
DDC  
DDC  
DDC  
DDC  
DDC  
DDC  
DDC  
DDC  
DDC  
5
5
5
5
5
5
5
5
5
3000  
250  
213.0  
213.0  
213.0  
213.0  
213.0  
213.0  
213.0  
213.0  
213.0  
191.0  
191.0  
191.0  
191.0  
191.0  
191.0  
191.0  
191.0  
191.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
3000  
3000  
250  
3000  
250  
3000  
250  
Pack Materials-Page 2  
PACKAGE OUTLINE  
DDC0005A  
SOT-23 - 1.1 max height  
S
C
A
L
E
4
.
0
0
0
SMALL OUTLINE TRANSISTOR  
3.05  
2.55  
1.1  
0.7  
1.75  
1.45  
0.1 C  
B
A
PIN 1  
INDEX AREA  
5
1
NOTE 4  
(0.15)  
0.95  
3.05  
2.75  
1.9  
2
3
(0.2)  
4
0.1  
TYP  
0.0  
0.5  
0.3  
5X  
0.2  
C A B  
0.25  
GAGE PLANE  
0.20  
0.12  
TYP  
0 -8 TYP  
C
SEATING PLANE  
0.6  
0.3  
TYP  
4220752/A 03/2023  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. Reference JEDEC MO-193.  
4. Support pin may differ or may not be present.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DDC0005A  
SOT-23 - 1.1 max height  
SMALL OUTLINE TRANSISTOR  
SYMM  
5X (1.1)  
5X (0.6)  
1
5
SYMM  
2
3
4X (0.95)  
4
(R0.05) TYP  
(2.7)  
LAND PATTERN EXAMPLE  
EXPLOSED METAL SHOWN  
SCALE:15X  
METAL UNDER  
SOLDER MASK  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL  
EXPOSED METAL  
EXPOSED METAL  
0.07 MIN  
ARROUND  
0.07 MAX  
ARROUND  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
SOLDERMASK DETAILS  
4220752/A 03/2023  
NOTES: (continued)  
4. Publication IPC-7351 may have alternate designs.  
5. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DDC0005A  
SOT-23 - 1.1 max height  
SMALL OUTLINE TRANSISTOR  
SYMM  
5X (1.1)  
5X (0.6)  
1
5
SYMM  
2
3
4X(0.95)  
4
(R0.05) TYP  
(2.7)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 THICK STENCIL  
SCALE:15X  
4220752/A 03/2023  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
7. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

REF2025AIDDCT

8ppm/°C 温漂、低功耗、双输出 Vref 和 Vref/2 电压基准 | DDC | 5 | -40 to 125
TI

REF2025AISDDCR

8ppm/°C 温漂、低功耗、双输出 Vref 和 Vref/2 电压基准 | DDC | 5 | -40 to 125
TI

REF2025QDDCRQ1

REF20xx-Q1 Low-Drift, Low-Power, Dual-Output, VREF and VREF / 2 Voltage References
TI

REF2030

3V Vref、低温漂、低功耗、双输出 Vref 和 Vref/2 电压基准
TI

REF2030-Q1

REF20xx-Q1 Low-Drift, Low-Power, Dual-Output, VREF and VREF / 2 Voltage References
TI

REF2030AIDDCR

3V Vref、低温漂、低功耗、双输出 Vref 和 Vref/2 电压基准 | DDC | 5 | -40 to 125
TI

REF2030AIDDCT

3V Vref、低温漂、低功耗、双输出 Vref 和 Vref/2 电压基准 | DDC | 5 | -40 to 125
TI

REF2030QDDCRQ1

REF20xx-Q1 Low-Drift, Low-Power, Dual-Output, VREF and VREF / 2 Voltage References
TI

REF2033

3.3V Vref、低温漂、低功耗、双输出 Vref 和 Vref/2 电压基准
TI

REF2033-Q1

REF20xx-Q1 Low-Drift, Low-Power, Dual-Output, VREF and VREF / 2 Voltage References
TI

REF2033AIDDCR

3.3V Vref、低温漂、低功耗、双输出 Vref 和 Vref/2 电压基准 | DDC | 5 | -40 to 125
TI

REF2033AIDDCT

3.3V Vref、低温漂、低功耗、双输出 Vref 和 Vref/2 电压基准 | DDC | 5 | -40 to 125
TI