REF35409QDBVR [TI]

650nA 静态电流、12ppm/°C 温漂、超低功耗精密电压基准 | DBV | 6 | -40 to 125;
REF35409QDBVR
型号: REF35409QDBVR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

650nA 静态电流、12ppm/°C 温漂、超低功耗精密电压基准 | DBV | 6 | -40 to 125

文件: 总38页 (文件大小:2340K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
REF35  
ZHCSPK8A DECEMBER 2021 REVISED AUGUST 2022  
REF35 超低功耗高精度电压基准  
1 特性  
3 说明  
• 超低静态电流:  
REF35 是毫微功耗、低漂移、高精度基准器件系列。  
REF35 列具有 ±0.05% 始精度型功耗为  
650nA。该器件的温度系数 (12ppm/°C) 和长期稳定性  
1000 小时内为 40ppm有助于提高系统稳定性和可  
靠性。凭借低功耗以及高精度规格此器件适用于多种  
便携式应用和低电流应用。  
650nA典型值)  
• 初始精度±0.05%最大值)  
• 温度系数:  
12ppm/°C(−40°C 105°C 时的最大值)  
• 输1/f 噪声0.1Hz 10Hz):3.3ppmP-P  
NR 引脚可降低噪声  
EN 引脚可降低关断电流消耗  
• 长期稳定性1k 小时内40ppm  
• 热迟滞70ppm  
REF35 可提供高达 10mA 电流噪声为 3.3ppmp-p  
负载调节为 20ppm/mA。借助这一功能集REF35 可  
为精密传感器和 12 16 位数据转换器提供强大的低  
噪声高精度电源。  
• 额定温度范围-40°C +105°C  
• 工作温度范围-55°C +125°C  
• 输出电流+10mA,−5mA  
• 输入电压VREF + VDO 6V  
• 输出电压选项:  
1.024V1.2V1.25V1.6V1.8V2.048V、  
2.5V3.0V3.3V4.096V5.0V  
• 小6 SOT23 封装  
此系列的额定工作温度范围为 -40°C 105°C并且  
-55°C 125°C 也可以正常运行。凭借宽温度范  
此系列适用于工业应用。  
REF35 提供 1.024V 5.0V 的宽输出电压范围。该器  
件具有节省空间的 6 引脚 SOT-23 4 引脚 WCSP 封  
装选项。有关可用的电压和封装选项请联系您当地的  
TI 销售代表。  
• 尺寸超小4 WCSP 封装  
封装信息  
器件型号  
(1)  
封装尺寸标称值)  
2.90mm × 1.60mm  
1.05mm × 0.84mm  
2 应用  
SOT-23 (6)  
WCSP (4) (2)  
REF35xxx  
流量变送器  
血糖监控  
伺服驱动器控制模块  
电能质量分析仪  
故障指示灯  
示波器  
(1) 如需了解所有可用电压选项和封装请参阅数据表末尾的可订  
购产品附录。  
(2) 产品预发布。  
过程分析  
光学模块  
Connection Diagram  
Typical Application Use Cases  
REF35  
REF35  
REF35  
EN  
Input  
Output  
Current  
SENSE  
VIN  
REF  
ADC / DAC  
VREF  
NR  
VDD  
GND  
1 μF  
0.1 μF  
V
GND  
REF35  
GND  
Optional  
GND  
GND  
GND  
GND  
Amplifier Biasing  
CSA, INA, DFA etc  
Sensor power supply  
Bridge, Thermocouple etc  
Data Converter power supply  
REF35 用例  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SNAS809  
 
 
 
 
 
REF35  
www.ti.com.cn  
ZHCSPK8A DECEMBER 2021 REVISED AUGUST 2022  
Table of Contents  
9 Detailed Description......................................................19  
9.1 Overview...................................................................19  
9.2 Functional Block Diagram.........................................19  
9.3 Feature Description...................................................19  
9.4 Device Functional Modes .........................................20  
10 Application and Implementation................................22  
10.1 Application Information........................................... 22  
10.2 Typical Applications................................................ 22  
10.3 Power Supply Recommendations...........................25  
10.4 Layout..................................................................... 25  
11 Device and Documentation Support..........................27  
11.1 Documentation Support.......................................... 27  
11.2 接收文档更新通知................................................... 27  
11.3 支持资源..................................................................27  
11.4 Trademarks............................................................. 27  
11.5 Electrostatic Discharge Caution..............................27  
11.6 术语表..................................................................... 27  
12 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Device Comparison.........................................................3  
6 Pin Configuration and Functions...................................3  
7 Specifications.................................................................. 4  
7.1 Absolute Maximum Ratings........................................ 4  
7.2 ESD Ratings............................................................... 4  
7.3 Recommended Operating Conditions.........................4  
7.4 Thermal Information....................................................4  
7.5 Electrical Characteristics.............................................5  
7.6 Typical Characteristics................................................7  
8 Parameter Measurement Information..........................12  
8.1 Solder Heat Shift.......................................................12  
8.2 Temperature Coefficient............................................13  
8.3 Long-Term Stability................................................... 13  
8.4 Thermal Hysteresis...................................................14  
8.5 Noise Performance................................................... 15  
8.6 Power Dissipation..................................................... 18  
Information.................................................................... 27  
4 Revision History  
以前版本的页码可能与当前版本的页码不同  
Changes from Revision * (December 2021) to Revision A (August 2022)  
Page  
• 量产数据发布...................................................................................................................................................... 1  
Copyright © 2022 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: REF35  
 
REF35  
www.ti.com.cn  
ZHCSPK8A DECEMBER 2021 REVISED AUGUST 2022  
5 Device Comparison  
PRODUCT  
VREF  
SOT-23 (6)  
WCSP (4) (1)  
REF35102QDBVR  
REF35120QDBVR  
REF35125QDBVR  
REF35160QDBVR  
REF35180QDBVR  
REF35205QDBVR  
REF35250QDBVR  
REF35300QDBVR  
REF35330QDBVR  
REF35409QDBVR  
REF35500QDBVR  
REF35102YBHR  
REF35120YBHR  
REF35125YBHR  
REF35160YBHR  
REF35180YBHR  
REF35205YBHR  
REF35250YBHR  
REF35300YBHR  
REF35330YBHR  
REF35409YBHR  
REF35500YBHR  
1.024 V  
1.2 V  
1.25 V  
1.6 V  
1.8 V  
2.048 V  
2.5 V  
3.0 V  
3.3 V  
4.096 V  
5.0 V  
(1) Product preview. Contact local TI support for samples.  
6 Pin Configuration and Functions  
VREF  
A1  
VIN  
A2  
GND  
GND  
EN  
1
VREF  
NR  
6
5
4
2
3
GND  
B1  
EN  
B2  
VIN  
Not to scale  
6-1. DBV Package  
6-Pin SOT-23  
Top View  
Not to scale  
Preview only  
6-2. YBH Package  
4-Pin WCSP  
Top View  
6-1. Pin Functions  
PIN  
TYPE  
DESCRIPTION  
NAME  
GND  
GND  
EN  
SOT-23  
WCSP  
1
2
3
4
5
6
B1  
-
Ground  
Ground  
Input  
Device ground connection  
Device ground connection  
B2  
A2  
-
Enable connection. Enables or disables the device.  
Input supply voltage connection  
VIN  
Power  
Output  
Output  
NR  
Noise reduction pin. Connect a capacitor to reduce noise.  
Reference voltage output  
VREF  
A1  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: REF35  
 
 
 
REF35  
www.ti.com.cn  
ZHCSPK8A DECEMBER 2021 REVISED AUGUST 2022  
7 Specifications  
7.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted) (1)  
MIN  
0.3  
0.3  
0.3  
MAX  
6.5  
UNIT  
V
Input voltage  
IN  
Enable voltage  
EN  
VREF  
ISC  
TA  
IN + 0.3 (2)  
IN + 0.3 (2)  
20  
V
Output voltage  
V
Output short circuit current  
Operating temperature range  
Storage temperature range  
mA  
°C  
°C  
125  
55  
65  
Tstg  
170  
(1) Operation outside the Absolute Maximum Ratings may cause permanent device damage. Absolute Maximum Ratings do not imply  
functional operation of the device at these or any other conditions beyond those listed under Recommended Operating Conditions. If  
used outside the Recommended Operating Conditions but within the Absolute Maximum Ratings, the device may not be fully  
functional, and this may affect device reliability, functionality, performance, and shorten the device lifetime.  
(2) IN + 0.3 V or 6.5 V, whichever is lower  
7.2 ESD Ratings  
VALUE  
UNIT  
Human body model (HBM), per ANSI/ESDA/JEDEC JS-001,  
all pins (1)  
±2000  
V(ESD)  
Electrostatic discharge  
V
Charged device model (CDM), per ANSI/ESDA/JEDEC  
JS-002, all pins (2)  
±750  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
7.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
NOM  
MAX  
6
UNIT  
(2)  
IN  
EN  
IL  
Input voltage (1)  
Enable voltage  
VOUT + VDO  
V
V
0
5  
IN  
Output current  
10  
mA  
°C  
TA  
Operating temperature  
25  
125  
40  
(1) For VREF = 1.024 V to 1.5 V, minimum VIN = 1.7 V  
(2) VDO = Dropout voltage  
7.4 Thermal Information  
REF35  
DBV (SOT-23)  
6 PINS  
164.4  
THERMAL METRIC(1)  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
102.5  
59.6  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
44.0  
ΨJT  
59.4  
ΨJB  
RθJC(bot)  
N/A  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
Copyright © 2022 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: REF35  
 
 
 
 
 
 
 
 
 
 
 
 
REF35  
www.ti.com.cn  
ZHCSPK8A DECEMBER 2021 REVISED AUGUST 2022  
7.5 Electrical Characteristics  
At VIN = VREF + 0.5 V, VEN = VIN, CL = 10 µF, CIN = 0.1 µF, IL = 0 mA, minimum and maximum specifications at TA = 40to  
125, typical specifications TA = 25; unless otherwise noted  
PARAMETER  
TEST CONDITION  
MIN  
TYP  
MAX  
UNIT  
ACCURACY AND DRIFT  
Output voltage accuracy  
0.05  
12  
%
TA = 25℃  
0.05  
Output voltage  
temperature coefficient  
40TA 105℃  
ppm/℃  
LINE AND LOAD REGULATION  
VREF < 2.5 V; VIN = VREF + VDO to VINMAX;40℃  
TA 105℃  
40  
160  
120  
ppm/V  
ppm/V  
ΔVREF  
ΔVIN  
/
Line regulation  
Load regulation  
V
REF 2.5 V; VIN = VREF + VDO to VINMAX;40℃  
40  
20  
40  
TA 105℃  
IL = 0 mA to 10 mA,  
VIN = VREF + VDO  
Source  
Sink  
60 ppm/mA  
350 ppm/mA  
ΔVREF  
ΔIL  
/
IL = 0 mA to 5 mA,  
VIN = VREF + VDO  
POWER SUPPLY  
VIN  
Input voltage (1)  
VREF + VDO  
6
0.9  
1.3  
2.6  
0.1  
0.5  
V
0.65  
TA = 25℃  
Active mode  
40TA 85℃  
40TA 125℃  
TA = 25℃  
IQ  
Quiescent current  
µA  
Shutdown mode  
40TA 125℃  
Active mode (EN = 1 or Float)  
Shutdown mode (EN = 0)  
VEN = VIN  
0.7 x VIN  
VEN  
IEN  
Enable pin voltage  
Enable pin current  
Dropout voltage  
V
0.3 x VIN  
0.1  
0.05  
uA  
mV  
IL = 5 mA  
120  
VDO  
IL = 10 mA  
250  
Short circuit current,  
Sourcing  
ISC  
ISC  
33  
21  
mA  
mA  
VREF = 0 V, TA = 25℃  
VREF = VIN V, TA = 25℃  
Short circuit current,  
Sinking  
TURN-ON TIME  
tON  
Turn-on time (2)  
0.1% settling, CL = 1 µF, VREF = 2.5 V  
2
ms  
NOISE  
en  
Output voltage noise  
Low-frequency noise  
0.7  
3.8  
3.3  
ppmrms  
ppmp-p  
ppmp-p  
ƒ= 10 Hz to 1 kHz, CL = 1 µF  
ƒ= 0.1 Hz to 10 Hz, VREF 2.5 V  
ƒ= 0.1 Hz to 10 Hz, VREF < 2.5 V  
enp-p  
HYSTERESIS AND LONG-TERM STABILITY  
Long-term stability  
0 to 1000h at 35°C  
40  
70  
ppm  
ppm  
Output voltage  
hysteresis  
25°C, 40°C, 105°C, 25°C (cycle 1)  
25°C, 40°C, 105°C, 25°C (cycle 2)  
25°C, 40°C, 85°C, 25°C (cycle 1)  
25°C, 40°C, 85°C, 25°C (cycle 2)  
Output voltage  
hysteresis  
20  
50  
13  
ppm  
ppm  
ppm  
Output voltage  
hysteresis  
Output voltage  
hysteresis  
STABLE CAPACITANCE RANGE  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: REF35  
 
REF35  
www.ti.com.cn  
ZHCSPK8A DECEMBER 2021 REVISED AUGUST 2022  
At VIN = VREF + 0.5 V, VEN = VIN, CL = 10 µF, CIN = 0.1 µF, IL = 0 mA, minimum and maximum specifications at TA = 40to  
125, typical specifications TA = 25; unless otherwise noted  
PARAMETER  
TEST CONDITION  
MIN  
TYP  
MAX  
UNIT  
Input capacitor range  
0.1  
µF  
Output capacitor  
range (3)  
0.1  
10  
µF  
(1) For VREF = 1.024 V to 1.5 V, minimum VIN = 1.7 V  
(2) Scales linearly with VREF  
(3) ESR for the capacitor <= 400 mΩ  
.
Copyright © 2022 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: REF35  
 
 
 
REF35  
www.ti.com.cn  
ZHCSPK8A DECEMBER 2021 REVISED AUGUST 2022  
7.6 Typical Characteristics  
at TA = 25°C, VIN = VEN = VREF + 0.3 V, IL = 0 mA, CL = 10 µF, CIN = 0.1 µF (unless otherwise noted)  
1000  
50  
VREF = 5V  
VREF = 2.5V  
VREF = 1.25V  
40C to 85C  
40C to 105C  
750  
500  
250  
0
40  
30  
20  
10  
0
-250  
-40  
0
40  
80  
120  
Temperature (C)  
0
1
2
3
4
5
6
7
8
9
10 11  
.
Temperature Coefficient (ppm/C)  
7-2. Temperature Coefficient Distribution (VREF = 1.25 V)  
7-1. Output Voltage Drift vs Free-Air Temperature  
60  
50  
40C to 85C  
40C to 105C  
40C to 85C  
40C to 105C  
48  
36  
24  
12  
0
40  
30  
20  
10  
0
0
1
2
3
4
5
6
7
8
9
10 11  
0
1
2
3
4
5
6
7
8
9
10 11  
Temperature Coefficient (ppm/C)  
7-4. Temperature Coefficient Distribution (VREF = 5.0 V)  
Temperature Coefficient (ppm/C)  
7-3. Temperature Coefficient Distribution (VREF = 2.5 V)  
60  
40  
CL = 10uF  
CL = 1uF  
48  
36  
24  
12  
0
32  
24  
16  
8
0
-0.05  
-0.03  
-0.01  
Initial Accuracy (%)  
7-5. Initial Accuracy Distribution  
0.01  
0.03  
0.05  
1.2  
2
2.8 3.6 4.4 5.2  
6
6.8 7.6 8.4 9.2 10 10.8  
Noise Bin (ppmp-p  
)
7-6. 0.1 Hz to 10 Hz Noise Distribution  
(VREF = 1.25 V, CNR = Open, IL = 0 mA)  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: REF35  
 
REF35  
www.ti.com.cn  
ZHCSPK8A DECEMBER 2021 REVISED AUGUST 2022  
7.6 Typical Characteristics (continued)  
at TA = 25°C, VIN = VEN = VREF + 0.3 V, IL = 0 mA, CL = 10 µF, CIN = 0.1 µF (unless otherwise noted)  
40  
32  
24  
16  
8
40  
32  
24  
16  
8
CL= 10uF  
CL = 1uF  
CL = 10uF  
CL = 1uF  
0
0
1.2  
2
2.8 3.6 4.4 5.2  
6
6.8 7.6 8.4 9.2 10 10.8  
1.2  
2
2.8 3.6 4.4 5.2  
6
6.8 7.6 8.4 9.2 10 10.8  
Noise Bin (ppmp-p  
)
Noise Bin (ppmp-p)  
7-7. 0.1 Hz to 10 Hz Noise Distribution  
7-8. 0.1 Hz to 10 Hz Noise Distribution  
(VREF = 2.5 V, CNR = Open, IL = 0 mA)  
(VREF = 5 V, CNR = Open, IL = 0 mA)  
40  
32  
24  
16  
8
80  
CNR = Open  
CNR = 1uF  
CNR = 10uF  
IL = 0mA  
IL = 1mA  
IL = 10mA  
64  
48  
32  
16  
0
0
1.2  
2
2.8 3.6 4.4 5.2  
6
6.8 7.6 8.4 9.2 10 10.8  
1.2  
2
2.8 3.6 4.4 5.2  
6
6.8 7.6 8.4 9.2 10 10.8  
Noise Bin (ppmp-p  
)
Noise Bin (ppmp-p)  
7-9. 0.1 Hz to 10 Hz Noise Distribution  
(VREF = 2.5 V, CL = 1 μF, IL = 0 mA)  
7-10. 0.1 Hz to 10 Hz Noise Distribution  
(VREF = 2.5 V, CL = 1 μF, CNR = Open)  
750  
600  
450  
300  
150  
0
1000  
800  
600  
400  
200  
0
CL = 0.1F  
CL = 0.1F  
CL = 1F  
CL = 1F  
CL = 10F  
CL = 10F  
10  
100  
1000  
Frequency (Hz)  
10000  
100000  
10  
100  
1000  
Frequency (Hz)  
10000  
100000  
7-12. Noise Density vs Frequency  
7-11. Noise Density vs Frequency  
(VREF = 2.5 V, IL = 0 mA)  
(VREF = 1.25 V, IL = 0 mA)  
Copyright © 2022 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: REF35  
REF35  
www.ti.com.cn  
ZHCSPK8A DECEMBER 2021 REVISED AUGUST 2022  
7.6 Typical Characteristics (continued)  
at TA = 25°C, VIN = VEN = VREF + 0.3 V, IL = 0 mA, CL = 10 µF, CIN = 0.1 µF (unless otherwise noted)  
0
-2  
-4  
-6  
-8  
-10  
-40  
0
40  
80  
120  
Temperature (C)  
7-13. Noise Density vs Frequency  
7-14. Load Regulation (Sourcing 10 mA) vs Free-Air  
(VREF = 5 V, IL = 0 mA)  
Temperature  
75  
60  
45  
30  
15  
0
IL = 1 mA  
IL = -1 mA  
VREF (50 mV/div)  
Time (1 ms/div)  
-40  
0
40  
80  
120  
Temperature (C)  
7-16. Load Transient Response  
(VREF = 2.5 V, CL = 10 μF)  
7-15. Load Regulation (Sinking 5 mA) vs Free-Air  
Temperature  
IL = 10 mA  
IL = 1 mA  
IL = -5 mA  
IL = -1 mA  
VREF (400 mV/div)  
VREF (100 mV/div)  
Time (1 ms/div)  
Time (1 ms/div)  
7-17. Load Transient Response  
(VREF = 2.5 V, CL = 10 μF)  
7-18. Load Transient Response  
(VREF = 2.5 V, CL = 1 μF)  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: REF35  
REF35  
www.ti.com.cn  
ZHCSPK8A DECEMBER 2021 REVISED AUGUST 2022  
7.6 Typical Characteristics (continued)  
at TA = 25°C, VIN = VEN = VREF + 0.3 V, IL = 0 mA, CL = 10 µF, CIN = 0.1 µF (unless otherwise noted)  
IL = 1mA  
IL = 10 mA  
IL = -5 mA  
IL = -1mA  
VREF (600 mV/div)  
VREF (90mV/div)  
Time (1ms/div)  
Time (1ms/div)  
7-19. Load Transient Response  
(VREF = 2.5 V, CL = 1 μF)  
7-20. Load Transient Response  
(VREF = 1.25 V, CL = 1 μF)  
50  
40  
30  
20  
10  
0
IL = 10 mA  
IL = -5 mA  
VREF (650 mV/div)  
Time (1ms/div)  
-40  
0
40  
80  
120  
Temperature (C)  
7-21. Load Transient Response  
(VREF = 1.25 V, CL = 1 μF)  
7-22. Line Regulation vs Free-Air Temperature  
VIN (4.3V/div)  
VIN (3V/div)  
IL = 0mA (100mV/div)  
IL = 0mA (160mV/div)  
IL = 1mA (160mV/div)  
IL = 1mA (100mV/div)  
Time (1ms/div)  
Time (1ms/div)  
7-23. Line Transient Response  
(VREF = 1.25 V, CL = 1 μF)  
7-24. Line Transient Response  
(VREF = 2.5 V, CL = 1 μF)  
Copyright © 2022 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: REF35  
REF35  
www.ti.com.cn  
ZHCSPK8A DECEMBER 2021 REVISED AUGUST 2022  
7.6 Typical Characteristics (continued)  
at TA = 25°C, VIN = VEN = VREF + 0.3 V, IL = 0 mA, CL = 10 µF, CIN = 0.1 µF (unless otherwise noted)  
10000  
1000  
100  
10  
120  
90  
60  
30  
0
CL = 0.1 F  
CL = 1 F  
CIN=0.1F, CL=1F  
CL = 10 F  
1
0.05  
10  
100  
1000  
10000 100000 1000000 1E+7  
10  
100  
1000  
10000 100000 1000000 1E+7  
Frequency (Hz)  
Frequency (Hz)  
7-26. Output Impedance  
7-25. Power Supply Rejection Ratio  
(VREF = 2.5 V, IL = 0 mA)  
2.5  
2
1.5  
1
0.5  
0
-40  
0
40  
80  
120  
Temperature (C)  
7-28. Dropout Voltage vs Free-Air Temperature  
200  
7-27. Quiescent Current vs Free-Air Temperature  
60  
160  
120  
80  
48  
36  
24  
12  
0
40  
0
-40  
-80  
-120  
-160  
-200  
0
400  
800  
1200  
1600  
2000  
-0.03  
-0.02  
-0.01  
Solder Heat Shift %  
7-29. Solder Heat Shift Distribution  
0
0.01  
0.02  
0.03  
Time (hr)  
7-30. Long Term Stability - 2000 hours (VREF  
)
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: REF35  
 
REF35  
www.ti.com.cn  
ZHCSPK8A DECEMBER 2021 REVISED AUGUST 2022  
8 Parameter Measurement Information  
8.1 Solder Heat Shift  
The materials used in the manufacture of the REF35 have differing coefficients of thermal expansion, resulting in  
stress on the device die when the part is heated. Mechanical and thermal stress on the device die can cause the  
output voltages to shift, degrading the initial accuracy specifications of the product. Reflow soldering is a  
common cause of this error.  
To illustrate this effect, a total of 32 devices were soldered on one printed circuit board using lead-free solder  
paste and the paste manufacturer suggested reflow profile. 8-1 shows the reflow profile. The printed circuit  
board is comprised of FR4 material. The board thickness is 1.66 mm and the area is  
174 mm × 135 mm.  
300  
250  
200  
150  
100  
50  
0
0
50  
100  
150  
200  
250  
300  
350  
400  
Time (seconds)  
C01  
8-1. Reflow Profile  
The reference output voltage is measured before and after the reflow process; 8-2 shows the typical shift.  
Although all tested units exhibit very low shifts (< 0.03%), higher shifts are also possible depending on the size,  
thickness, and material of the printed circuit board (PCB). An important note is that the histograms display the  
typical shift for exposure to a single reflow profile. Exposure to multiple reflows, as is common on PCBs with  
surface-mount components on both sides, causes additional shifts in the output bias voltage. If the PCB is  
exposed to multiple reflows, the device must be soldered in the last pass to minimize its exposure to thermal  
stress.  
60  
48  
36  
24  
12  
0
-0.03  
-0.02  
-0.01  
0
0.01  
0.02  
0.03  
Solder Heat Shift %  
8-2. Solder Heat Shift Distribution, VREF (%)  
Copyright © 2022 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: REF35  
 
 
 
 
REF35  
www.ti.com.cn  
ZHCSPK8A DECEMBER 2021 REVISED AUGUST 2022  
8.2 Temperature Coefficient  
The REF35 is designed and tested for a low output voltage temperature coefficient. The temperature coefficient  
is defined as the change in output voltage over temperature. The temperature coefficient is calculated using the  
box method in which a box is formed by the minimum/maximum values for the nominal output voltage over the  
operating temperature range. REF35 has a low maximum temperature coefficient of 12 ppm/°C from 40°C to  
+105°C. The box method specifies limits for the temperature error but does not specify the exact shape and  
slope of the device under test. Due to temperature curvature correction to achieve low-temperature drift, the  
temperature drift is expected to be non-linear. See TI's Analog Design Journal, Precision voltage references, for  
more information on the box method. Use 方程1 for the box method.  
VREF(MAX) - VREF(MIN)  
Drift =  
ì106  
«
÷
÷
VREF(25èC) ìTemperature Range  
(1)  
8-3 shows a typical voltage versus temperature curves for various reference voltages. 8-4 shows the  
distribution of temperature coefficients for REF35250 devices.  
1000  
60  
VREF = 5V  
VREF = 2.5V  
VREF = 1.25V  
40C to 85C  
40C to 105C  
750  
500  
250  
0
48  
36  
24  
12  
0
-250  
-40  
0
40  
80  
120  
Temperature (C)  
0
1
2
3
4
5
6
7
8
9
10 11  
Temperature Coefficient (ppm/C)  
8-3. Output Voltage Drift Vs Free-Air  
8-4. Temperature Coefficient Distribution  
Temperature  
8.3 Long-Term Stability  
One of the key performance parameters of the REF35 references is long-term stability also known as long-term  
drift. The long-term stability value is tested in a setup that reflects standard PCB board manufacturing practices.  
The boards are made of standard FR4 material and the board does not have special cuts or grooves around the  
devices to relieve the mechanical stress of the PCB. The devices and boards in this test do not undergo high  
temperature burn in post-soldering prior to testing. These conditions reflect a real world use case scenario and  
common manufacturing techniques.  
During the long-term stability testing, precautions are taken to ensure that only the long-term stability drift is  
measured. The boards are maintained at 35°C in an oil bath. The oil bath ensures that the temperature is  
constant across the device over time compared to an air oven. The measurements are captured every 30  
minutes with a calibrated 8.5 digit multimeter.  
The typical long-term stability characteristic is expressed as a deviation of the reference voltage output over  
time.  
8-5 shows that the typical drift value for the REF35 6-pin SOT-23 package is 40 ppm from 0 to 1000 hours  
and 55 ppm from 0 to 2000 hours. It is important to understand that long-term stability is not ensured by design  
and that the value is typical. The REF35 will experience the highest drift in the initial 1000 hr. Subsequent  
deviation is typically lower than first 1000 hr.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: REF35  
 
 
 
 
REF35  
www.ti.com.cn  
ZHCSPK8A DECEMBER 2021 REVISED AUGUST 2022  
200  
160  
120  
80  
40  
0
-40  
-80  
-120  
-160  
-200  
0
400  
800  
1200  
1600  
2000  
Time (hr)  
8-5. Long Term Stability - 2000 hours (VREF  
)
8.4 Thermal Hysteresis  
Thermal hysteresis is measured with the REF35 soldered to a PCB, similar to a real-world application. Thermal  
hysteresis for the device is defined as the change in output voltage after operating the device at 25°C, cycling  
the device through the specified temperature range, and returning to 25°C. The PCB was baked at 150°C for 30  
minutes before thermal hysteresis was measured. Use 方程2 to calculate the thermal hysteresis:  
«
÷
| VPRE - VPOST  
VNOM  
|
VHYST  
=
ì106 ppm  
(
)
(2)  
where  
VHYST = thermal hysteresis (in units of ppm)  
VNOM = the specified output voltage  
VPRE = output voltage measured at 25°C pre-temperature cycling  
VPOST = output voltage measured after the device has cycled from 25°C through the specified temperature  
range of 40°C to +85°C or 40°C to +105°C and returns to 25°C.  
The graphs below show the typical thermal hysteresis distribution across various temperature ranges in two  
cycles.  
Copyright © 2022 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: REF35  
 
 
 
REF35  
www.ti.com.cn  
ZHCSPK8A DECEMBER 2021 REVISED AUGUST 2022  
50  
50  
40  
30  
20  
10  
0
40  
30  
20  
10  
0
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
0
10  
20  
30  
40  
50  
60  
70  
Thermal Hysteresis - Cycle 1 (ppm)  
Thermal Hysteresis - Cycle 2 (ppm)  
8-6. Thermal Hysteresis Distribution  
40ºC to 85ºC, Cycle 1  
8-7. Thermal Hysteresis Distribution  
40ºC to 85ºC, Cycle 2  
30  
24  
18  
12  
6
50  
40  
30  
20  
10  
0
0
20 30 40 50 60 70 80 90 100 110 120 130  
Thermal Hysteresis - Cycle 1 (ppm)  
0
10  
20  
30  
40  
50  
60  
70  
80  
Thermal Hysteresis - Cycle 2 (ppm)  
8-8. Thermal Hysteresis Distribution  
40ºC to 105ºC, Cycle 1  
8-9. Thermal Hysteresis Distribution  
40ºC to 105ºC, Cycle 2  
8.5 Noise Performance  
The reference pin output noise is categorized as low frequency and broadband noise. The following sections  
describe these categories in detail.  
8.5.1 Low-Frequency (1/f) Noise  
Flicker noise, also known as 1/f noise, is a low-frequency noise that affects the device output voltage which can  
affect precision measurements in ADCs. This noise increases proportionally with output voltage and operating  
temperature. Noise is measured by filtering the output from 0.1 Hz to 10 Hz. The 1/f noise is an extremely low  
value, therefore the frequency of interest must be amplified and band-pass filtered. This is done by using a high-  
pass filter to block the DC voltage. The resulting noise is then amplified by a gain of 1000. The bandpass filter is  
created by a series of high-pass and low-pass filter that adds additional gain to make it more visible on a  
oscilloscope as shown in 8-10. 8-11 shows the effect of flicker noise over 10 second for REF35250. Flicker  
noise must be tested in a Faraday cage enclosure to block environmental noise.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: REF35  
 
REF35  
www.ti.com.cn  
ZHCSPK8A DECEMBER 2021 REVISED AUGUST 2022  
Supply  
VIN  
VREF  
EN  
CIN  
Low Noise  
Preamplifier  
G = 1000  
High-pass  
Filter  
Fc = 0.07Hz  
Buffer  
REF35xxx  
CL  
NR  
GND  
Optional  
GND  
2nd Order  
Low-pass  
Filter  
2nd Order  
High-pass  
Filter  
2nd Order  
Low-pass  
Filter  
Oscilloscope  
Fc = 10Hz  
G = 1  
Fc = 0.1Hz  
G = 10  
Fc = 10Hz  
G = 10  
8-10. Low-Frequency (1/f) Noise Test Setup  
GND  
Time (1sec/div)  
8-11. 0.1 Hz to 10 Hz Voltage Noise  
8-12 shows the typical 1/f noise (0.1 Hz to 10 Hz) distribution across various load conditions. REF35 device  
also offers noise reduction functionality by adding an optional capacitor between NR (pin 5) and ground pins.  
8-13 shows the typical 1/f noise (0.1 Hz to 10 Hz) distribution across REF35 devices with various capacitance  
between NR pin and GND.  
Copyright © 2022 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: REF35  
 
 
REF35  
www.ti.com.cn  
ZHCSPK8A DECEMBER 2021 REVISED AUGUST 2022  
80  
40  
32  
24  
16  
8
IL = 0mA  
IL = 1mA  
IL = 10mA  
CNR = Open  
CNR = 1uF  
CNR = 10uF  
64  
48  
32  
16  
0
0
1.2  
2
2.8 3.6 4.4 5.2  
6
6.8 7.6 8.4 9.2 10 10.8  
1.2  
2
2.8 3.6 4.4 5.2  
6
6.8 7.6 8.4 9.2 10 10.8  
Noise Bin (ppmp-p  
)
Noise Bin (ppmp-p)  
8-12. 0.1 Hz to 10 Hz Noise Distribution vs Load 8-13. 0.1 Hz to 10 Hz Noise Distribution vs NR  
Conditions Capacitance  
8.5.2 Broadband Noise  
Broadband noise is a noise that appears at higher frequency compared to 1/f noise. The broadband noise is  
measured by high-pass filtering the output of the reference device, followed by a gain stage and measuring the  
result on a spectrum analyzer as shown in 8-14.  
Supply  
VIN  
VREF  
High-pass  
EN  
CIN  
Spectrum  
Analyzer  
Amplifier  
G = 11  
Filter  
Fc = 10Hz  
G = 11  
REF35xxx  
GND  
CL  
NR  
Optional  
GND  
8-14. Broadband Noise Test Setup  
For noise sensitive designs, a low-pass filter can be used to reduce broadband output noise. When designing a  
low-pass filter, take special care to ensure the output impedance of the filter does not degrade AC performance.  
This can occur in RC low-pass filters where a large series resistance can impact the load transients due to  
output current fluctuations. The REF35 device also offers noise reduction functionality by adding an optional  
capacitor between NR (pin 5) and ground pins. 8-15 and 8-16 show the noise spectrum for REF35250 and  
REF35500 devices respectively across various load capacitance.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: REF35  
 
 
REF35  
www.ti.com.cn  
ZHCSPK8A DECEMBER 2021 REVISED AUGUST 2022  
1000  
CL = 0.1F  
CL = 1F  
CL = 10F  
800  
600  
400  
200  
0
10  
100  
1000  
10000  
100000  
Frequency (Hz)  
8-15. Noise Spectrum 10 Hz to 100 kHz (VREF = 8-16. Noise Spectrum 10 Hz to 100 kHz (VREF = 5  
2.5 V) V)  
8.6 Power Dissipation  
The REF35 voltage references are capable of source up to 10 mA and sink up to 5 mA of load current across the  
rated input voltage range. However, when used in applications subject to high ambient temperatures, the input  
voltage and load current must be carefully monitored to ensure that the device does not exceeded its maximum  
power dissipation rating. The maximum power dissipation of the device can be calculated with 方程3:  
TJ = TA +P ì RqJA  
D
(3)  
where  
PD is the device power dissipation  
TJ is the device junction temperature  
TA is the ambient temperature  
RθJA is the package (junction-to-air) thermal resistance  
Because of this relationship, acceptable load current in high temperature conditions may be less than the  
maximum current-sourcing capability of the device. In no case should the device be operated outside of its  
maximum power rating because doing so can result in premature failure or permanent damage to the device.  
Copyright © 2022 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: REF35  
 
 
 
REF35  
www.ti.com.cn  
ZHCSPK8A DECEMBER 2021 REVISED AUGUST 2022  
9 Detailed Description  
9.1 Overview  
The REF35 is family of ultra-low current, low-noise, precision band-gap voltage references that are specifically  
designed for excellent initial voltage accuracy and drift. The Functional Block Diagram is a simplified block  
diagram of the REF35 showing basic band-gap topology.  
9.2 Functional Block Diagram  
VIN  
VIN  
Rp  
EN  
Digital  
Core  
EN  
Control  
Rp for  
Open Drain  
EN control  
R
Band-Gap  
Core  
Buffer  
VREF  
GND  
NR  
9.3 Feature Description  
9.3.1 Supply Voltage  
The REF35 family of references features an extremely low dropout voltage. For 10 mA loaded conditions, a  
maximum dropout voltage is 250 mV. 7-28 shows a typical dropout voltage (VDO) versus load current. The  
device supports operation with input voltage range from VREF + VDO to 6 V. The typical quiescent current is 650  
nA and maximum quiescent current over temperature is only 2.6 μA. The low dropout voltage coupled with  
ultra-low current enable the operation across multiple battery powered applications.  
9.3.2 EN Pin  
The REF35 family supports device enable and disable functionality through logic level control on EN pin. The EN  
pin of REF35 does not use an internal pull-up resistor. Instead, the pin uses new 'clean EN' technology. This  
allows the EN pin to be in a no connect condition at start-up, and no extra current is drawn from the supply when  
the EN pin is pulled low in shutdown mode. When EN pin is pulled high or left unconnected at start-up, the  
device is in active mode. When EN pin is driven by an open-drain output, a pull-up resistor to VIN is required.  
The device must be in active mode for normal operation. The EN pin must not be pulled higher than VIN supply  
voltage.  
The device can be placed in shutdown mode by pulling the EN pin low. When in shutdown mode, the output of  
the device becomes high impedance and the quiescent current of the device drops to 100 nA at room  
temperature. When changing the device state from shutdown to active state, ensure the EN pin is not left  
floating.  
Also note that for applications where EN pin is no-connect, total parasitic capacitance on EN pin should be  
restricted within 30 pF.  
See the Electrical Characteristics table for logic high and logic low voltage levels.  
9.3.3 NR Pin  
The REF35 pin allows access to the band-gap through the NR pin. Placing a capacitor from the NR pin to GND  
creates a low-pass filter in combination with the internal resistance of 60 k. Leakage of the capacitance directly  
impacts the accuracy and temperature drift. If NR functionality is used, choose a low leakage capacitor. A  
capacitance of 1 μF creates a low-pass filter with corner frequency around 2.7 Hz. Such a filter decreases the  
overall noise on the VREF pin. Higher capacitance results in a lower filter cut off frequency, further reducing  
output noise. Please note, using the capacitor on NR pin also increases start-up time.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: REF35  
 
 
 
 
 
REF35  
www.ti.com.cn  
ZHCSPK8A DECEMBER 2021 REVISED AUGUST 2022  
9.4 Device Functional Modes  
9.4.1 Basic Connections  
9-1 shows the typical connections for the REF35. TI recommends a supply bypass capacitor (CIN) ranging  
from 0.1 μF to 10 μF. A 0.1 μF to 10 μF output capacitor (CL) must be connected from REF to GND. The  
equivalent series resistance (ESR) value of CL must be lower than 400 mto ensure output stability.  
EN  
AVDD  
REF  
CL  
VIN  
REF35  
VREF  
NR  
CIN  
GND  
GND  
Optional  
GND  
GND  
GND  
9-1. Basic Connections  
9.4.2 Start-Up  
9-2 shows the start-up behavior of REF35250 device with 1 μF load capacitance. REF35 device ensures the  
output voltage settles to the expected output voltage within specified accuracy without oscillations. The start-up  
time is dependent on the output voltage variant, output capacitance and NR pin capacitance. Higher capacitance  
leads to longer start-up time.  
VIN (1.5V/div)  
VREF (1.25V/div)  
Time (5 ms/div)  
9-2. REF35250 Start-Up Behavior, CL = 1 μF  
9.4.3 Output Transient Behavior  
The REF35 output buffer is capable of sourcing 10 mA load current as well as sink 5 mA of load current. The  
output stage is designed using class AB architecture with ultra-low quiescent current. This architecture avoids  
the dead zone around the no load condition. The output buffer uses a fast start-up implementation to achieve  
2ms typical turn-on time at CL = 1 μF and no-load current condition.  
9-3 and 9-4 show the output settling behavior for light load transient and high load transient respectively.  
Copyright © 2022 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: REF35  
 
 
 
REF35  
www.ti.com.cn  
ZHCSPK8A DECEMBER 2021 REVISED AUGUST 2022  
IL = 100A  
IL = 10mA  
IL = 0A  
IL = 1mA  
VREF (10mV/div)  
VREF (75mV/div)  
Time (1ms/div)  
Time (1ms/div)  
9-4. Load Transient Response 1 mA to 10 mA,  
CL = 1 μF  
9-3. Load Transient Response 0 μA to 100 μA,  
CL = 1 μF  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: REF35  
 
REF35  
www.ti.com.cn  
ZHCSPK8A DECEMBER 2021 REVISED AUGUST 2022  
10 Application and Implementation  
备注  
Information in the following applications sections is not part of the TI component specification, and TI  
does not warrant its accuracy or completeness. TIs customers are responsible for determining  
suitability of components for their purposes. Customers should validate and test their design  
implementation to confirm system functionality.  
10.1 Application Information  
REF35 with low current consumption and class leading performance specifications is suitable reference for  
multiple applications. The device can also be used as a precision low noise power supply to sensor or data  
converter instead of traditional LDO or DC/DC based power supply. Basic applications includes positive/negative  
voltage reference and data acquisition systems. The table below shows the typical application of REF35 and its  
companion ADC/DAC.  
10-1. Typical Applications and Companion ADC/DAC  
APPLICATIONS  
ADC/DAC  
ADS7028, DAC8881, ADS1287, ADS7953  
ADS7028, ADS7128, ADS7138  
ADS124S08  
PLC - DCS  
Rack Server  
Field Transmitters - Pressure, Flow  
Optical Module, Optical Line Card  
Medical Blood Glucose Meter  
Power quality analyzer  
ADS7068, ADS7138  
ADS1112  
ADC3662  
Thermal imaging  
ADC3541  
10.2 Typical Applications  
10.2.1 Negative Reference Voltage  
For applications requiring a negative and positive reference voltage, the REF35 and OPA735 can be used to  
provide a dual-supply reference from a 5 V supply. 10-1 shows the REF35250 used to provide a 2.5 V supply  
reference voltage. The low drift performance of the REF35250 complements the low offset voltage and zero drift  
of the OPA735 to provide an accurate solution for split-supply applications. Take care to match the temperature  
coefficients of R1 and R2.  
+5 V  
4
3
5
REF35250  
+2.5 V  
6
1
2
R2  
10 k  
+5 V  
-
OPA735  
+
-2.5 V  
-5 V  
GND  
10-1. REF35 and OPA735 Create Positive and Negative Reference Voltages  
Copyright © 2022 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: REF35  
 
 
 
 
REF35  
www.ti.com.cn  
ZHCSPK8A DECEMBER 2021 REVISED AUGUST 2022  
10.2.2 Precision Power Supply and Reference  
10-2 shows the basic configuration for the REF35 device as precision power supply to ADS7038 data  
converter which uses its power supply AVDD as reference. Connect bypass capacitors according to the  
guidelines in the Input and Output Capacitors section.  
+6 V  
0.1 μF  
1 μF  
4
REF35500  
6
3
1
2
5
GND  
10 μF  
0.1 μF  
AVDD  
ADS7038  
-
Input  
+
0 V to 5 V  
GND  
GND  
10-2. Basic Reference Connection  
10.2.2.1 Design Requirements  
A detailed design procedure is described based on a design example. For this design example, use the  
parameters listed in 10-2 as the input parameters.  
10-2. Design Example Parameters  
DESIGN PARAMETER  
VALUE  
0 V - 5 V  
12-bit  
Input voltage range VIN  
Output resolution  
REF35 input capacitor  
REF35 output capacitor  
1 µF  
10 µF  
10.2.2.2 Detailed Design Procedure  
10.2.2.2.1 Selection of Reference  
The REF35500 reference is selected for this design. The REF35500 device operates of very low quiescent  
current while offering ±0.05% initial accuracy and very low noise. These parameters help improve system  
accuracy as compared to external LDO based power supply. The 5 V reference voltage supports the 0 V to 5 V  
input range specification.  
10.2.2.2.2 Input and Output Capacitors  
A 1 μF to 10 μF electrolytic or ceramic capacitor can be connected to the input to improve transient response  
in applications where the supply voltage may fluctuate.  
A ceramic capacitor of at least a 0.1 μF must be connected to the output to improve stability and help filter out  
high frequency noise. Add an additional 10 μF capacitor in parallel to improve transient performance in  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: REF35  
 
 
 
REF35  
www.ti.com.cn  
ZHCSPK8A DECEMBER 2021 REVISED AUGUST 2022  
response to sudden changes in load current; however, keep in mind that doing so increases the start-up time of  
the device.  
Best performance and stability is attained with low-ESR, low-inductance ceramic chip-type output capacitors  
(X5R, X7R, or similar). If using an electrolytic capacitor on the output, place a 0.1 μF ceramic capacitor in  
parallel to reduce overall ESR on the output. Place the input and output capacitors as close as possible to the  
device.  
10.2.2.2.3 Selection of ADC  
ADS7038 12-bit 8 channel multiplexed ADC is chosen for this application. The ADC offers low current operation  
with averaging mode to increase the resolution to 16-bit with internal averaging modes while operating with slow  
sampling speed.  
10.2.2.3 Application Curves  
10-3 and 10-3 show the captured measurement results for various DC inputs. The ADC output is captured  
and analyzed for output accuracy error and code spread with REF35500 as power supply versus LDO as power  
supply.  
REF35 offers better accuracy and lower noise than the LDO device at lower quiescent current. This results in  
lower error in measurement as well as lower ADC output code variation across various OSR settings.  
10-3. DC Input Performance Test Results  
REF35500  
LDO  
INPUT V  
ADC OSR SETTING  
ERROR  
0.01 mV  
0.3 mV  
CODE SPREAD  
ERROR  
8.9 mV  
CODE SPREAD  
48 LSB  
16 LSB  
6 LSB  
1.0 V  
0
8
32 LSB  
10 LSB  
6 LSB  
9.21 mV  
9.26 mV  
22.89 mV  
23.63 mV  
23.41 mV  
37.84 mV  
38.62 mV  
38.09 mV  
128  
0
0.38 mV  
0.69 mV  
1.44 mV  
1.17 mV  
2.27 mV  
3.01 mV  
2.46 mV  
2.5 V  
4 V  
32 LSB  
10 LSB  
3 LSB  
64 LSB  
18 LSB  
5 LSB  
8
128  
0
32 LSB  
24 LSB  
3 LSB  
48 LSB  
24 LSB  
17 LSB  
8
128  
Copyright © 2022 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: REF35  
 
REF35  
www.ti.com.cn  
ZHCSPK8A DECEMBER 2021 REVISED AUGUST 2022  
50  
40  
30  
20  
10  
0
REF35-OSR0  
REF35-OSR8  
REF35-OSR128  
LDO-OSR0  
LDO-OSR8  
LDO-OSR128  
0
1
2
3
4
5
Input voltage (V)  
10-3. Error vs Input Voltage  
10.3 Power Supply Recommendations  
The REF35 family of references feature an extremely low-dropout voltage. These references can be operated  
with a supply of only 50 mV above the output voltage at no load. TI recommends a supply bypass capacitor  
ranging between 0.1 µF to 10 µF.  
10.4 Layout  
10.4.1 Layout Guidelines  
10-4 shows an example of a PCB layout for a data acquisition system using the REF35. Some key  
considerations are:  
Connect low-ESR, 0.1 μF ceramic bypass capacitors at VIN, VREF of the REF35.  
Decouple other active devices in the system per the device specifications.  
Using a solid ground plane helps distribute heat and reduces electromagnetic interference (EMI) noise  
pickup.  
Place the external components as close to the device as possible.  
Do not run sensitive analog traces in parallel with digital traces. Avoid crossing digital and analog traces if  
possible, and only make perpendicular crossings when absolutely necessary.  
10-5 shows the pin compatibility with TI REF30xx, REF31xx and REF33xx series references in the 3-pin  
SOT-23 package when using the REF35xxx family footprint. You must rotate the REF30xx, REF31xx and  
REF33xx reference devices by 180º before assembly.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: REF35  
 
 
 
REF35  
www.ti.com.cn  
ZHCSPK8A DECEMBER 2021 REVISED AUGUST 2022  
10.4.2 Layout Examples  
C
C
GND  
GND  
EN  
1
VREF  
NR  
GND  
GND (Pin 3) GND  
EN  
1
VREF OUT (Pin 2)  
6
5
4
6
5
4
REF35  
REF30  
REF31  
REF33  
NR  
2
3
2
3
VIN  
VIN  
IN (Pin 1)  
C Optional  
C Optional  
C
C
Not to scale  
Not to scale  
10-4. Layout Example  
10-5. Pin Compatibility With REF30xx, REF31xx  
and REF33xx  
Copyright © 2022 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: REF35  
 
REF35  
www.ti.com.cn  
ZHCSPK8A DECEMBER 2021 REVISED AUGUST 2022  
11 Device and Documentation Support  
11.1 Documentation Support  
11.1.1 Related Documentation  
For related documentation see the following:  
Texas Instruments, INA21x Voltage Output, Low- or High-Side Measurement, Bidirectional, Zero-Drift Series,  
Current-Shunt Monitors data sheet  
Texas Instruments, Low-Drift Bidirectional Single-Supply Low-Side Current Sensing Reference Design  
Texas Instruments, Precision voltage references Analog Design Journal  
11.2 接收文档更新通知  
要接收文档更新通知请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册即可每周接收产品信息更  
改摘要。有关更改的详细信息请查看任何已修订文档中包含的修订历史记录。  
11.3 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
11.4 Trademarks  
TI E2Eis a trademark of Texas Instruments.  
所有商标均为其各自所有者的财产。  
11.5 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
11.6 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
12 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical packaging and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: REF35  
 
 
 
 
 
 
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
19-May-2023  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
PREF35180YBHR  
REF35102QDBVR  
REF35120QDBVR  
REF35125QDBVR  
REF35160QDBVR  
REF35170QDBVR  
REF35180QDBVR  
REF35205QDBVR  
REF35250QDBVR  
REF35300QDBVR  
REF35330QDBVR  
REF35360QDBVR  
REF35409QDBVR  
REF35500QDBVR  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
DSBGA  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
YBH  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
4
6
6
6
6
6
6
6
6
6
6
6
6
6
3000  
TBD  
Call TI  
Call TI  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
NIPDAUAG  
NIPDAUAG  
NIPDAUAG  
NIPDAUAG  
NIPDAUAG  
NIPDAUAG  
NIPDAUAG  
NIPDAUAG  
NIPDAUAG  
NIPDAUAG  
NIPDAUAG  
NIPDAUAG  
NIPDAUAG  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
2RTI  
2RVI  
2RUI  
2UII  
31QI  
2J2I  
2UKI  
2RSI  
2SLI  
2ULI  
31RI  
2UMI  
2RWI  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
19-May-2023  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
6-Mar-2023  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
REF35102QDBVR  
REF35120QDBVR  
REF35125QDBVR  
REF35160QDBVR  
REF35170QDBVR  
REF35180QDBVR  
REF35205QDBVR  
REF35250QDBVR  
REF35300QDBVR  
REF35330QDBVR  
REF35360QDBVR  
REF35409QDBVR  
REF35500QDBVR  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
6
6
6
6
6
6
6
6
6
6
6
6
6
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
3.23  
3.23  
3.23  
3.23  
3.23  
3.23  
3.23  
3.23  
3.23  
3.23  
3.23  
3.23  
3.23  
3.17  
3.17  
3.17  
3.17  
3.17  
3.17  
3.17  
3.17  
3.17  
3.17  
3.17  
3.17  
3.17  
1.37  
1.37  
1.37  
1.37  
1.37  
1.37  
1.37  
1.37  
1.37  
1.37  
1.37  
1.37  
1.37  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
Q3  
Q3  
Q3  
Q3  
Q3  
Q3  
Q3  
Q3  
Q3  
Q3  
Q3  
Q3  
Q3  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
6-Mar-2023  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
REF35102QDBVR  
REF35120QDBVR  
REF35125QDBVR  
REF35160QDBVR  
REF35170QDBVR  
REF35180QDBVR  
REF35205QDBVR  
REF35250QDBVR  
REF35300QDBVR  
REF35330QDBVR  
REF35360QDBVR  
REF35409QDBVR  
REF35500QDBVR  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
6
6
6
6
6
6
6
6
6
6
6
6
6
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
213.0  
213.0  
213.0  
213.0  
213.0  
213.0  
213.0  
213.0  
213.0  
213.0  
213.0  
213.0  
213.0  
191.0  
191.0  
191.0  
191.0  
191.0  
191.0  
191.0  
191.0  
191.0  
191.0  
191.0  
191.0  
191.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
Pack Materials-Page 2  
PACKAGE OUTLINE  
DBV0006A  
SOT-23 - 1.45 mm max height  
S
C
A
L
E
4
.
0
0
0
SMALL OUTLINE TRANSISTOR  
C
3.0  
2.6  
0.1 C  
1.75  
1.45  
B
1.45 MAX  
A
PIN 1  
INDEX AREA  
1
2
6
5
2X 0.95  
1.9  
3.05  
2.75  
4
3
0.50  
6X  
0.25  
C A B  
0.15  
0.00  
0.2  
(1.1)  
TYP  
0.25  
GAGE PLANE  
0.22  
0.08  
TYP  
8
TYP  
0
0.6  
0.3  
TYP  
SEATING PLANE  
4214840/C 06/2021  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. Body dimensions do not include mold flash or protrusion. Mold flash and protrusion shall not exceed 0.25 per side.  
4. Leads 1,2,3 may be wider than leads 4,5,6 for package orientation.  
5. Refernce JEDEC MO-178.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DBV0006A  
SOT-23 - 1.45 mm max height  
SMALL OUTLINE TRANSISTOR  
PKG  
6X (1.1)  
1
6X (0.6)  
6
SYMM  
5
2
3
2X (0.95)  
4
(R0.05) TYP  
(2.6)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:15X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
EXPOSED METAL  
EXPOSED METAL  
0.07 MIN  
ARROUND  
0.07 MAX  
ARROUND  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4214840/C 06/2021  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DBV0006A  
SOT-23 - 1.45 mm max height  
SMALL OUTLINE TRANSISTOR  
PKG  
6X (1.1)  
1
6X (0.6)  
6
SYMM  
5
2
3
2X(0.95)  
4
(R0.05) TYP  
(2.6)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE:15X  
4214840/C 06/2021  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
PACKAGE OUTLINE  
YBH0004  
DSBGA - 0.4 mm max height  
SCALE 12.000  
DIE SIZE BALL GRID ARRAY  
A
D
B
E
BALL A1  
CORNER  
C
0.4 MAX  
SEATING PLANE  
0.05 C  
0.16  
0.10  
BALL TYP  
0.4  
TYP  
B
SYMM  
0.4  
TYP  
A
1
2
0.225  
0.185  
4X  
0.015  
SYMM  
C A B  
4224051/A 11/2017  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
YBH0004  
DSBGA - 0.4 mm max height  
DIE SIZE BALL GRID ARRAY  
(0.4) TYP  
4X ( 0.2)  
2
1
A
B
SYMM  
(0.4) TYP  
SYMM  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE: 50X  
0.05 MIN  
0.05 MAX  
METAL UNDER  
SOLDER MASK  
(
0.2)  
METAL  
(
0.2)  
EXPOSED  
METAL  
SOLDER MASK  
OPENING  
EXPOSED  
METAL  
SOLDER MASK  
OPENING  
SOLDER MASK  
DEFINED  
(PREFERRED)  
NON-SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
NOT TO SCALE  
4224051/A 11/2017  
NOTES: (continued)  
3. Final dimensions may vary due to manufacturing tolerance considerations and also routing constraints.  
See Texas Instruments Literature No. SNVA009 (www.ti.com/lit/snva009).  
www.ti.com  
EXAMPLE STENCIL DESIGN  
YBH0004  
DSBGA - 0.4 mm max height  
DIE SIZE BALL GRID ARRAY  
(0.4) TYP  
(R0.05) TYP  
4X ( 0.21)  
1
2
A
B
SYMM  
(0.4) TYP  
METAL  
TYP  
SYMM  
SOLDER PASTE EXAMPLE  
BASED ON 0.075 mm THICK STENCIL  
SCALE: 50X  
4224051/A 11/2017  
NOTES: (continued)  
4. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY