SE370C702 [TI]

8-BIT MICROCONTROLLER; 8位微控制器
SE370C702
型号: SE370C702
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

8-BIT MICROCONTROLLER
8位微控制器

微控制器
文件: 总50页 (文件大小:744K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TMS370Cx0x  
8-BIT MICROCONTROLLER  
SPNS029C – SEPTEMBER 1995 – REVISED FEBRUARY 1997  
FZ AND FN PACKAGES  
(TOP VIEW)  
CMOS/EEPROM/EPROM Technologies on  
a Single Device  
– Mask-ROM Devices for High-Volume  
Production  
– One-Time-Programmable (OTP) EPROM  
Devices for Low Volume Production  
– Reprogrammable EPROM Devices for  
Prototyping Purposes  
Internal System Memory Configurations  
– On-Chip Program Memory Versions  
– ROM: 8K Bytes  
4
3
2
1
28 27 26  
25  
5
XTAL2/CLKIN  
SCITXD  
SCICLK  
SCIRXD  
T1IC/CR  
T1PWM  
T1EVT  
MC  
6
XTAL1  
A6  
24  
23  
22  
21  
20  
19  
7
8
A5  
9
A4  
10  
11  
A3  
A2  
– EPROM: 8K Bytes  
12 13 14 15 16 1718  
– Data EEPROM: 256 Bytes  
– Static RAM: 256 Bytes Usable as  
Registers  
Flexible Operating Features  
– Low-Power Modes: STANDBY and HALT  
– Commercial, Industrial, and Automotive  
Temperature Ranges  
Serial Communications Interface 1 (SCI1)  
– Asynchronous Mode: 156K bps  
Maximum at 5 MHz SYSCLK  
– Isosynchronous Mode: 25M bps  
Maximum at 5 MHz SYSCLK  
– Clock Options  
– Divide-by-4 (0.5 to 5 MHz SYSCLK)  
– Divide-by-1 (2 to 5 MHz SYSCLK)  
Phase-Locked Loop (PLL)  
– Full Duplex, Double-Buffered Receiver  
(RX) and Transmitter (TX)  
– Two Multiprocessor Communication  
Formats  
– Supply Voltage (V ) 5 V ±10%  
CC  
TMS370 Series Compatibility  
16-Bit General-Purpose Timer  
– Software Configurable as  
a 16-Bit Event Counter, or  
– Register-to-Register Architecture  
– 256 General-Purpose Registers  
– 14 Powerful Addressing Modes  
– Instructions Upwardly Compatible With  
All TMS370 Devices  
CMOS/TTL Compatible I/O Pins/Packages  
– All Peripheral Function Pins Software  
Configurable for Digital I/O  
– 21 Bidirectional Pins, 1 Input Pin  
– 28-Pin Plastic and Ceramic Leaded Chip  
Carrier Packages  
Workstation/Personal Computed-Based  
Development System  
a 16-Bit Pulse Accumulator, or  
a 16-Bit Input Capture Functions, or  
Two Compare Registers, or a  
Self-Contained Pulse-Width-Modulation  
(PWM) Function  
– Software Programmable Input Polarity  
– Eight-Bit Prescaler, Providing a 24-Bit  
Real-Time Timer  
On-Chip 24-Bit Watchdog Timer  
– EPROM/OTP Devices: Standard  
Watchdog  
– Mask-ROM Devices: Hard Watchdog,  
Simple Counter, or Standard Watchdog  
Flexible Interrupt Handling  
– Two Software-Programmable Interrupt  
Levels  
– C Compiler and C Source Debugger  
– Real-time In-Circuit Emulation  
– Extensive Breakpoint/Trace Capability  
– Multi-Window User Interface  
– Microcontroller Programmer  
– Global- and Individual-Interrupt Masking  
– Programmable Rising or Falling Edge  
Detect  
– Individual Interrupt Vectors  
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of  
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
Copyright 1997, Texas Instruments Incorporated  
PRODUCTION DATA information is current as of publication date.  
Products conform to specifications per the terms of Texas Instruments  
standard warranty. Production processing does not necessarily include  
testing of all parameters.  
1
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx0x  
8-BIT MICROCONTROLLER  
SPNS029C – SEPTEMBER 1995 – REVISED FEBRUARY 1997  
Pin Descriptions  
28 PINS  
LCC  
DESCRIPTION  
I/O  
NAME  
NO.  
A0  
A1  
A2  
A3  
A4  
A5  
A6  
A7  
14  
13  
11  
10  
9
8
7
3
I / O  
Port A is a general-purpose bidirectional I/O port.  
D3  
D4  
D5  
D6  
D7  
28  
26  
15  
1
I / O  
Port D is a general-purpose bidirectional I/O port. D3 is also configurable as SYSCLK.  
2
INT1  
INT2  
INT3  
16  
17  
18  
I
External interrupt (non-maskable or maskable)/general-purpose input pin  
External maskable interrupt input/general-purpose bidirectional pin  
External maskable interrupt input/general-purpose bidirectional pin  
I / O  
I / O  
T1IC/CR  
T1PWM  
T1EVT  
22  
21  
20  
Timer1 input capture/counter reset input pin /general-purpose bidirectional pin  
Timer1 PWM output pin/general-purpose bidirectional pin  
Timer1 external event input pin/general-purpose bidirectional pin  
I / O  
I / O  
SCITXD  
SCIRXD  
SCICLK  
25  
23  
24  
SCI transmit data output pin, general-purpose bidirectional pin  
SCI receive data input pin/general-purpose bidirectional pin  
SCI bidirectional serial clock pin/general-purpose bidirectional pin  
System reset bidirectional pin; as input pin, RESET initializes the microcontroller; as open-drain output,  
RESET indicates that an internal failure was detected by watchdog or oscillator fault circuit.  
RESET  
MC  
27  
19  
I / O  
I
Mode control input pin; enables EEPROM write protection override (WPO) mode, also EPROM V  
PP  
XTAL2/CLKIN  
XTAL1  
5
6
I
O
Internal oscillator crystal input/External clock source input  
Internal oscillator output for crystal  
V
V
4
Positive supply voltage  
Ground reference  
CC  
12  
SS  
I = input, O = output  
The three-pin SCI configuration is referred to as SCI1.  
2
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx0x  
8-BIT MICROCONTROLLER  
SPNS029C – SEPTEMBER 1995 – REVISED FEBRUARY 1997  
functional block diagram  
XTAL2/  
CLKIN  
INT1  
INT2  
INT3  
XTAL1  
MC  
RESET  
Clock Options:  
Divide-By-4 Or  
Divide-By-1 (PLL)  
System  
Control  
Interrupts  
SCIRXD  
SCITXD  
SCICLK  
Serial  
Communications  
Interface 1  
RAM  
256 Bytes  
CPU  
Program Memory  
ROM: 8K Bytes  
EPROM: 8K Bytes  
Data EEPROM  
0 or 256 Bytes  
T1IC/CR  
T1EVT  
Timer 1  
T1PWM  
Watchdog  
V
CC  
Port A  
8
Port D  
V
SS  
5
description  
The TMS370C002, TMS370C302, TMS370C702, and SE370C702 devices are members of the TMS370 family  
of single-chip 8-bit microcontrollers. Unless otherwise noted, the term TMS370Cx0x refers to these devices.  
The TMS370 family provides cost-effective real-time system control through integration of advanced peripheral  
function modules and various on-chip memory configurations.  
The TMS370Cx0x family of devices is implemented using high-performance silicon-gate CMOS EPROM and  
EEPROM technologies. Low-operating power, wide-operating temperature range, and noise immunity of  
CMOS technology coupled with the high performance and extensive on-chip peripheral functions make the  
TMS370Cx0x devices attractive in system designs for automotive electronics, industrial motors, computer  
peripheral controls, telecommunications, and consumer applications.  
All TMS370Cx0x devices contain the following on-chip peripheral modules:  
Serial communications interface 1 (SCI1)  
One 16-bit general-purpose timer with an 8-bit prescaler  
One 24-bit general-purpose watchdog timer  
Table 1 provides a memory configuration overview of the TMS370Cx0x devices.  
3
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx0x  
8-BIT MICROCONTROLLER  
SPNS029C – SEPTEMBER 1995 – REVISED FEBRUARY 1997  
description (continued)  
Table 1. Memory Configurations  
PROGRAM MEMORY  
(BYTES)  
DATA MEMORY  
(BYTES)  
DEVICE  
28-PIN PACKAGE  
ROM  
EPROM  
RAM  
EEPROM  
TMS370C002A  
TMS370C302A  
TMS370C702  
8K  
256  
256  
256  
256  
256  
FN – PLCC  
FN – PLCC  
FN – PLCC  
FZ – CLCC  
8K  
8K  
8K  
256  
SE370C702  
256  
System evaluators and development are for use only in prototype environment and their reliability has not been characterized.  
The suffix letter (A) appended to the device name (shown in the first column of Table 1) indicates the  
configuration of the device. ROM and EPROM devices have different configurations as indicated in Table 2.  
ROM devices with the suffix letter A are configured through a programmable contact during manufacture.  
Table 2. Suffix Letter Configuration  
DEVICE  
WATCHDOG TIMER  
Standard  
CLOCK  
LOW-POWER MODE  
EPROM without A  
Divide-by-4 (standard oscillator)  
Enabled  
Standard  
Divide-by-4 or  
Divide-by-1 (PLL)  
ROM A  
Hard  
Enabled or disabled  
Simple  
The 8K bytes of mask-programmable ROM in the associated TMS370Cx0x devices are replaced in the  
TMS370C702 with 8K bytes of EPROM. All other available memory and on-chip peripherals are identical, with  
the exception of no data EEPROM on the TMS370C302 devices. The one-time programmable (OTP)  
(TMS370C702) device and reprogrammable device (SE370C702) are available.  
TMS370C702 OTP devices are available in plastic packages. This microcontroller is effective to use for  
immediate production updates for other members of the TMS370Cx0x family or for low-volume production runs  
when the mask charge or cycle time for low-cost mask ROM devices is not practical.  
The SE370C702 has a windowed ceramic package to allow reprogramming of the program EPROM memory  
during the development-prototyping phase of design. The SE370C702 devices allow quick updates to  
breadboards and prototype systems while iterating initial designs.  
The TMS370Cx0x family provides two low-power modes (STANDBY and HALT) for applications where  
low-power consumption is critical. Both modes stop all CPU activity (that is, no instructions are executed). In  
the STANDBY mode, the internal oscillator and the general purpose timer remain active. In the HALT mode,  
all device activity is stopped. The device retains all RAM data and peripheral configuration bits throughout both  
low-power modes.  
The TMS370Cx0x features advanced register-to-register architecture that allows direct arithmetic and logical  
operations without requiring an accumulator (for example, ADD R24, R47; add the contents of register 24 to  
the contents of register 47 and store the result in register 47). The TMS370Cx0x family is fully  
instruction-set-compatible, providing easy transition between members of the TMS370 8-bit microcontroller  
family.  
The TMS370Cx0x devices have two operational modes of serial communications provided by the SCI1 module.  
The SCI1 allows standard RS-232-C communications with other common data transmission equipment.  
4
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx0x  
8-BIT MICROCONTROLLER  
SPNS029C – SEPTEMBER 1995 – REVISED FEBRUARY 1997  
description (continued)  
The TMS370Cx0x family provides the system designer with an economical, efficient solution to real-time control  
applications. The TMS370 family compact development tool (CDT ) solves the challenge of efficiently  
developing the software and hardware required to design the TMS370Cx0x into an ever-increasing number of  
complex applications. The application source code can be written in assembly and C-language, and the output  
code can be generated by the linker. The TMS370 family CDT development tool can communicate through a  
standard RS-232-C interface with an existing personal computer. This allows the use of the personal computer  
editors and software utilities already familiar to the designer. The TMS370 family CDT emphasizes ease-of-use  
through extensive menus and screen windowing so that a system designer with minimal training can begin  
developing software. Precise real-time in-circuit emulation and extensive symbolic debug and analysis tools  
ensure efficient software and hardware implementation as well as reduced time-to-market cycle.  
The TMS370Cx0x family together with the TMS370 family CDT370, design kit, starter kit, software tools, the  
SE370C712 reprogrammable devices, comprehensive product documentation, and customer support provide  
a complete solution to the needs of the system designer.  
central processing unit (CPU)  
The CPU used on the TMS370Cx0x device is the high-performance 8-bit TMS370 CPU module. The ’x0x  
implements an efficient register-to-register architecture that eliminates the conventional accumulator  
bottleneck. The complete ’x0x instruction map is shown in Table 15 in the TMS370Cx0x instruction set overview  
section.  
The ’370Cx0x CPU architecture provides the following components:  
CPU registers:  
A stack pointer that points to the last entry in the memory stack  
A status register that monitors the operation of the instructions and contains the global interrupt enable bits  
A program counter (PC) that points to the memory location of the next instruction to be executed  
Figure 1 illustrates the CPU registers and memory blocks.  
CDT is a trademark of Texas Instruments Incorporated.  
5
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx0x  
8-BIT MICROCONTROLLER  
SPNS029C – SEPTEMBER 1995 – REVISED FEBRUARY 1997  
central processing unit (CPU) (continued)  
Program Counter  
15  
0
Legend:  
C=Carry  
Stack Pointer (SP)  
7
0
N=Negative  
Z=Zero  
V=Overflow  
IE2=Level 2 interrupts Enable  
IE1=Level 1 interrupts Enable  
Status Register (ST)  
C
7
N
6
Z
5
V
4
IE2 IE1  
3
2
1
0
RAM (Includes 256-Byte Registers File)  
0000h  
00FFh  
0100h  
100Fh  
1010h  
256-Byte RAM (0000h - 00FFh)  
0000h  
Reserved  
R0(A)  
R1(B)  
Peripheral File  
Reserved  
0001h  
0002h  
0003h  
105Fh  
1060h  
R2  
R3  
1EFFh  
1F00h  
256-Byte Data EEPROM  
1FFFh  
2000h  
5FFFh  
6000h  
Not Available  
R127  
007Fh  
8K-Byte ROM/EPROM (6000h7FFFh)  
7FBFh  
7FC0h  
Interrupts and Reset Vectors;  
Trap Vectors  
R255  
7FFFh  
00FFh  
Reserved means the address space is reserved for future expansion.  
Not available means the address space is not accessible.  
Figure 1. Programmer’s Model  
A memory map that includes:  
256-byte general-purpose RAM that can be used for data memory storage, program instructions,  
general-purpose register, or the stack  
A peripheral file that provides access to all internal peripheral modules, system-wide control functions and  
EEPROM/EPROM programming control  
256-byte EEPROM module that provides in-circuit programmability and data retention in power-off  
conditions  
8K-byte ROM or 8K-byte EPROM program memory  
stack pointer (SP)  
The SP is an 8-bit CPU register. Stack operates as a last-in, first-out, read/write memory. The stack is used  
typically to store the return address on subroutine calls as well as the status-register contents during interrupt  
sequences.  
The SP points to the last entry or top of the stack. The SP is incremented automatically before data is pushed  
onto the stack and decremented after data is popped from the stack. The stack can be placed anywhere in the  
on-chip RAM memory.  
6
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx0x  
8-BIT MICROCONTROLLER  
SPNS029C – SEPTEMBER 1995 – REVISED FEBRUARY 1997  
central processing unit (CPU) (continued)  
status register (ST)  
The ST monitors the operation of the instructions and contains the global-interrupt-enable bits. The ST register  
includes four status bits (condition flags) and two interrupt-enable bits:  
The four status bits indicate the outcome of the previous instruction; conditional instructions (for example,  
the conditional jump instructions) use the status bits to determine program flow.  
The two interrupt enable bits control the two interrupt levels.  
The ST register, status-bit notation, and status-bit definitions are shown in Table 3.  
Table 3. Status Registers (ST)  
7
C
6
N
5
Z
4
V
3
2
1
0
IE2  
IE1  
Reserved  
Reserved  
RW-0  
RW-0  
RW-0  
RW-0  
RW-0  
RW-0  
R = read, W = write, 0 = value after reset  
program counter (PC)  
The contents of the PC point to the memory location of the next instruction to be executed. The PC consists  
of two 8-bit registers in the CPU: the program counter high (PCH) and program counter low (PCL). These  
registers contain the most significant byte and least significant byte of a 16-bit address.  
During reset, the contents of the reset vector (7FFEh, 7FFFh) are loaded into the program counter. The PCH  
(MSbyte of the PC) is loaded with the contents of memory location 7FFEh, and the PCL (LSbyte of the PC) is  
loaded with the contents of memory location 7FFFh. Figure 2 shows this operation using an example value of  
6000h as the contents of the reset vector.  
Program Counter (PC)  
Memory  
PCH  
60  
PCL  
00  
0000h  
60  
00  
7FFEh  
7FFFh  
Figure 2. Program Counter After Reset  
memory map  
The TMS370Cx0x architecture is based on the Von Neuman architecture, where the program memory and data  
memory share a common address space. All peripheral input/output is memory mapped in this same common  
address space. As shown in Figure 3, the TMS370Cx0x provides memory-mapped RAM, ROM, Data  
EEPROM, input/output pins, peripheral functions, and system interrupt vectors.  
The peripheral file contains all input/output port control, peripheral status and control, EEPROM, EPROM, and  
system-wide control functions. The peripheral file is located between 1010h to 105Fh and is divided logically  
intofiveperipheral-fileframesof16byteseach. Eachon-chipperipheralisassignedtoaseparateframethrough  
which peripheral control and data information is passed.  
7
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx0x  
8-BIT MICROCONTROLLER  
SPNS029C – SEPTEMBER 1995 – REVISED FEBRUARY 1997  
central processing unit (CPU) (continued)  
Peripheral File Control Registers  
System Control  
1010h101Fh  
1020h102Fh  
1030h103Fh  
1040h104Fh  
1050h105Fh  
0000h  
Digital Port Control  
256-Byte RAM  
(Register File/Stack)  
Reserved  
00FFh  
0100h  
Timer 1 Peripheral Control  
SCI1 Peripheral Control  
Reserved  
100Fh  
1010h  
Peripheral File  
105Fh  
1060h  
Reserved  
1EFFh  
1F00h  
Vectors  
256-Byte Data EEPROM  
1FFFh  
2000h  
Trap 15–0  
7FC0h7FDFh  
7FE0h7FEFh  
Not Available  
Reserved  
5FFFh  
Serial Communications Interface TX 7FF0h7FF1h  
Serial Communications Interface RX 7FF2h7FF3h  
6000h  
6FFFh  
7000h  
8K-Byte ROM/EPROM  
(6000h7FFFh)  
Timer 1  
7FF4h7FF5h  
7FF6h7FF7h  
7FF8h7FF9h  
7FFAh7FFBh  
7FFCh7FFDh  
7FFEh7FFFh  
77FFh  
7800h  
7FBFh  
7FC0h  
Reserved  
Interrupts and Reset Vectors;  
Trap Vectors  
Interrupt 3  
Interrupt 2  
Interrupt 1  
Reset  
7FFFh  
8000h  
Not Available  
FFFFh  
Reserved means the address space is reserved for future expansion.  
Not available means the address space is not accessible.  
Figure 3. TMS370Cx0x Memory Map  
RAM/register file (RF)  
Locations within the RAM address space can serve as the RF, general-purpose read/write memory, program  
memory, or the stack instructions. The TMS370Cx0x devices contain 256 bytes of internal memory-mapped  
RAM beginning at location 0000h (R0) and continuing through location 00FFh (R255) which is shown in  
Figure 1.  
The first two registers, R0 and R1, are also called register A and B, respectively. Some instructions implicitly  
use register A or B; for example, the instruction LDSP (load SP) assumes that the value to be loaded into the  
stack pointer is contained in register B. Registers A and B are the only registers cleared on reset.  
peripheral file (PF)  
The TMS370Cx0x control registers contain all the registers necessary to operate the system and peripheral  
modules on the device. The instruction set includes some instructions that access the PF directly. These  
instructions designate the register by the number of the PF relative to 1000h, preceded by P0 for a hexadecimal  
designator or P for a decimal designator. For example, the system control register 0 (SCCR0) is located at  
address 1010h; its peripheral file hexadecimal designator is P010, and its decimal designator is P16. Table 4  
shows the TMS370Cx0x PF address map.  
8
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx0x  
8-BIT MICROCONTROLLER  
SPNS029C – SEPTEMBER 1995 – REVISED FEBRUARY 1997  
peripheral file (PF) (continued)  
Table 4. TMS370Cx0x Peripheral File Address Map  
PERIPHERAL FILE  
ADDRESS RANGE  
DESCRIPTION  
DESIGNATOR  
P000P00F  
P010P01F  
P020P02F  
P030P03F  
P040P04F  
P050P05F  
P060P0FF  
1000h100Fh  
1010h101Fh  
1020h102Fh  
1030h103Fh  
1040h104Fh  
1050h105Fh  
1060h10FFh  
Reserved  
System and EPROM/EEPROM control registers  
Digital I/O port control registers  
Reserved  
Timer 1 registers  
Serial communications interface registers  
Reserved  
data EEPROM  
The TMS370Cx0x devices, containing 256 bytes of data EEPROM, have their memory mapped beginning at  
location 1F00h and continuing through location 1FFFh. Writing to the data EEPROM module is controlled by  
the data EEPROM control register (DEECTL) and the write-protection register (WPR). Programming algorithm  
examples are available in the TMS370 Family User’s Guide (literature number SPNU127) or the TMS370  
Family Data Manual (literature number SPNS014B). The data EEPROM features include the following:  
Programming:  
Bit-, byte-, and block-write/erase modes  
Internal charge pump circuitry. No external EEPROM programming voltage supply is needed.  
Control register: Data EEPROM programming is controlled by the DEECTL located in the PF frame  
beginning at location P01A. See Table 5.  
In-circuit programming capability. There is no need to remove the device to program.  
Write protection. Writes to the data EEPROM are disabled during the following conditions.  
Reset. All programming of the data EEPROM module is halted.  
Write protection active. There is one write-protect bit per 32-byte EEPROM block.  
Low-power mode operation  
Write protection can be overridden by applying 12 V to MC.  
Table 5. Data EEPROM and Program EPROM Control Registers Memory Map  
ADDRESS  
P01A  
SYMBOL  
DEECTL  
NAME  
Data EEPROM control register  
Reserved  
P01B  
P01C  
EPCTL  
Program EPROM control register  
9
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx0x  
8-BIT MICROCONTROLLER  
SPNS029C – SEPTEMBER 1995 – REVISED FEBRUARY 1997  
program EPROM  
The TMS370C702 device contains 8K bytes of EPROM, mapped, at location 6000h and continuing through  
location 7FFFh as shown in Figure 3. Memory addresses 7FF0h through 7FFFh are reserved for interrupt and  
reset vectors. Trap vectors, used with TRAP0 through TRAP15 instructions, are located between addresses  
7FC0h and 7FDFh. Reading the program EPROM modules is identical to reading other internal memory. During  
programming, the EPROM is controlled by the EPROM control register (EPCTL). The program EPROM module  
features include:  
Programming  
In-circuit programming capability if V is applied to MC  
PP  
Control register: EPROM programming is controlled by the EPROM control register (EPCTL) located in  
the peripheral file (PF) frame at location P01Ch as shown in Table 5.  
Write protection: Writes to the program EPROM are disabled under the following conditions:  
Reset halts all programming to the EPROM module.  
Low-power modes  
13 V not applied to MC  
program ROM  
The program read-only memory (ROM) consists of 8K bytes of mask-programmable ROM. The program ROM  
is used for permanent storage of data or instructions. Memory addresses 7FF0h through 7FFFh are reserved  
for interrupt and reset vectors. Trap vectors, used with TRAP0 through TRAP15 instructions, are located  
between addresses 7FC0h and 7FDFh. Programming of the mask ROM is performed at the time of device  
fabrication. Refer to Figure 3 for ROM memory map.  
system reset  
The system reset operation ensures an orderly start-up sequence for the TMS370Cx0x CPU-based device.  
There are up to three different actions that can cause a system reset to the device. Two of these actions are  
internally generated, while one (RESET pin) is controlled externally. These actions are as follows:  
External RESET pin. A low-level signal can trigger an external reset. To ensure a reset, the external signal  
should be held low for one SYSCLK cycle. Signals of less than one SYSCLK can generate a reset. See the  
TMS370 Family User’s Guide (literature number SPNU127) for more information.  
Watchdog (WD) timer. A watchdog-generated reset occurs if an improper value is written to the WD key  
register, or if the re-initialization does not occur before the watchdog timer times out . See the TMS370  
Family User’s Guide (literature number SPNU127) for more information.  
Oscillator reset. Reset occurs when the oscillator operates outside the recommended operating range. See  
the TMS370 Family User’s Guide (literature number SPNU127) for more information.  
Once a reset source is activated, the external RESET pin is driven (active) low for a minimum of eight SYSCLK  
cycles. This allows the ’x0x device to reset external system components. Additionally, if a cold start (V  
is off  
CC  
for several hundred milliseconds) condition or oscillator failure occurs or the RESET pin is held low, then the  
reset logic holds the device in a reset state for as long as these actions are active.  
After a reset, the program can check the oscillator fault flag (OSC FLT FLAG, SCCR0.4), the cold start flag  
(COLD START, SCCR0.7), and the watchdog reset (WD OVRFL INT FLAG, T1CTL2.5) to determine the source  
of the reset. A reset does not clear these flags. Table 6 lists the reset sources.  
10  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx0x  
8-BIT MICROCONTROLLER  
SPNS029C – SEPTEMBER 1995 – REVISED FEBRUARY 1997  
system reset (continued)  
Table 6. Reset Sources  
REGISTER  
SCCR0  
ADDRESS  
1010h  
PF  
BIT NO.  
CONTROL BIT  
COLD START  
SOURCE OF RESET  
Cold (power-up)  
P010  
P010  
P04A  
7
4
5
SCCR0  
1010h  
OSC FLT FLAG  
Oscillator out of range  
Watchdog timer timeout  
T1CTL2  
104Ah  
WD OVRFL INT FLAG  
Once a reset is activated, the following sequence of events occurs:  
1. The CPU registers are initialized: ST = 00h, SP = 01h (reset state).  
2. Registers A and B are initialized to 00h (no other RAM is changed).  
3. The contents of the LSbyte of the reset vector (07FFh) are read and stored in the PCL.  
4. The contents of the MSbyte of the reset vector (07FEh) are read and stored in the PCH.  
5. Program execution begins with an opcode fetch from the address pointed to the PC.  
The reset sequence takes 20 SYSCLK cycles from the time the reset pulse is released until the first opcode  
fetch. During a reset, RAM contents (except for registers A and B) remain unchanged, and the module control  
register bits are initialized to their reset state.  
11  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx0x  
8-BIT MICROCONTROLLER  
SPNS029C – SEPTEMBER 1995 – REVISED FEBRUARY 1997  
interrupts  
The TMS370 family software programmable interrupt structure permits flexible on-chip and external interrupt  
configurations to meet real-time interrupt-driven application requirements. The hardware interrupt structure  
incorporates two priority levels as shown in Figure 4. Interrupt level 1 has a higher priority than interrupt  
level 2. The two priority levels can be masked independently by the global-interrupt mask bits (IE1 and IE2) of  
the status register.  
EXT INT 3  
INT 3  
EXT INT 2  
INT 2  
INT3 PRI  
TIMER1  
Overflow  
INT2 PRI  
Compare1  
EXT INT1  
CPU  
Ext Edge  
INT1  
Compare2  
Input Capture  
Watchdog  
NMI  
Priority  
Logic  
INT1 PRI  
T1 PRI  
STATUS REG  
IE1  
IE2  
Level 1 INT  
Level 2 INT  
Enable  
SCI INT  
TX  
TXRDY  
RX  
RXPRI  
BRKDT  
TXPRI  
RXRDY  
Figure 4. Interrupt Control  
Each system interrupt is configured independently to either the high- or low-priority chain by the application  
program during system initialization. Within each interrupt chain, the interrupt priority is fixed by the position of  
the system interrupt. However, since each system interrupt is configured selectively on either the high- or  
low-priority interrupt chain, the application program can elevate any system interrupt to the highest priority.  
Arbitration between the two priority levels is performed within the CPU. Arbitration within each of the priority  
12  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx0x  
8-BIT MICROCONTROLLER  
SPNS029C – SEPTEMBER 1995 – REVISED FEBRUARY 1997  
interrupts (continued)  
chains is performed within the peripheral modules to support interrupt expansion for future modules.  
Pending-interrupts are serviced upon completion of current instruction execution, depending on their interrupt  
mask and priority conditions.  
The TMS370Cx0x has six hardware system interrupts(plusRESET)asshowninTable 7. Each system interrupt  
has a dedicated vector located in program memory through which control is passed to the interrupt service  
routines. A system interrupt can have multiple interrupt sources. All of the interrupt sources are individually  
maskable by local interrupt enable control bits in the associated peripheral file. Each interrupt source FLAG bit  
is individually readable for software polling or for determining which interrupt source generated the associated  
system interrupt.  
Three of the system interrupts are generated by on-chip peripheral functions, and three external interrupts are  
supported. Software configuration of the external interrupts is performed through the INT1, INT2, and INT3  
control registers in peripheral file frame 1. Each external interrupt is individually software configurable for input  
polarity (rising or falling edge) for ease of system interface. External interrupt INT1 is software configurable as  
either a maskable or non-maskable interrupt. When INT1 is configured as non-maskable, it cannot be masked  
by the individual- or global-enable-mask bits. The INT1 NMI bit is protected during non-privileged operation and,  
therefore, should be configured during the initialization sequence following reset. To maximize pin flexibility,  
external interrupts INT2 and INT3 can be software-configured as general-purpose input/output pins if the  
interrupt function is not required (INT1 can be similarly configured as an input pin).  
Table 7. Hardware System Interrupts  
SYSTEM  
INTERRUPT  
VECTOR  
ADDRESS  
INTERRUPT SOURCE  
External RESET  
Watchdog Overflow  
Oscillator Fault Detect  
INTERRUPT FLAG  
COLD START  
WD OVRFL INT FLAG  
OSC FLT FLAG  
PRIORITY  
RESET  
7FFEh, 7FFFh  
1
External INT1  
External INT2  
External INT3  
INT1 FLAG  
INT2 FLAG  
INT3 FLAG  
INT1  
INT2  
INT3  
7FFCh, 7FFDh  
7FFAh, 7FFBh  
7FF8h, 7FF9h  
2
3
4
Timer 1 Overflow  
T1 OVRFL INT FLAG  
T1C1 INT FLAG  
T1C2 INT FLAG  
T1EDGE INT FLAG  
T1IC1 INT FLAG  
WD OVRFL INT FLAG  
Timer 1 Compare 1  
Timer 1 Compare 2  
Timer 1 External Edge  
Timer 1 Input Capture 1  
Watchdog Overflow  
§
T1INT  
7FF4h, 7FF5h  
5
SCI RX Data Register Full  
SCI RX Break Detect  
RXRDY FLAG  
BRKDT FLAG  
RXINT  
7FF2h, 7FF3h  
7FF0h, 7FF1h  
6
7
SCI TX Data Register Empty  
TXRDY FLAG  
TXINT  
§
Relative priority within an interrupt level  
Release microcontroller from STANDBY and HALT low-power modes.  
Release microcontroller from STANDBY low-power mode.  
privileged operation and EEPROM write protection override  
The TMS370Cx0x family has significant flexibility to enable the designer to software configure the system and  
peripherals to meet the requirements of a variety of applications. The nonprivileged mode of operation ensures  
the integrity of the system configuration, once it is defined for an application. Following a hardware reset, the  
TMS370Cx0x operates in the privileged mode, where all peripheral file registers have unrestricted read/write  
access, and the application program configures the system during the initialization sequence following reset.  
As the last step of system initialization, the PRIVILEGE DISABLE bit (SCCR2.0) is set to 1 to enter the  
13  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx0x  
8-BIT MICROCONTROLLER  
SPNS029C – SEPTEMBER 1995 – REVISED FEBRUARY 1997  
privileged operation and EEPROM WPO (continued)  
nonprivileged mode, thus disabling write operations to specific configuration control bits within the peripheral  
file. Table8liststhesystemconfigurationbitswhicharewrite-protectedduringthenonprivilegedmodeandmust  
be configured by software prior to exiting the privileged mode.  
Table 8. Privileged Bits  
REGISTER  
CONTROL BIT  
PF AUTO WAIT  
NAME  
LOCATION  
P010.5  
P010.6  
SCCR0  
OSC POWER  
P011.2  
P011.4  
MEMORY DISABLE  
AUTOWAIT DISABLE  
SCCR1  
SCCR2  
P012.0  
P012.1  
P012.3  
P012.4  
P012.6  
P012.7  
PRIVILEGE DISABLE  
INT1 NMI  
CPU STEST  
BUS STEST  
PWRDWN/IDLE  
HALT/STANDBY  
P05F.4  
P05F.5  
P05F.6  
P05F.7  
SCI ESPEN  
SCIRX PRIORITY  
SCITX PRIORITY  
SCI STEST  
SCIPRI  
T1PRI  
P04F.6  
P04F.7  
T1 PRIORITY  
T1 STEST  
The privileged bits are shown in a bold typeface in Table 10.  
The write protect override (WPO) mode is an external hardware method of overriding the write protection  
registers (WPR) of data EEPROM on the TMS370Cx0x. WPO mode is entered by applying a 12-V input to the  
MC pin after the RESET pin input goes high (logic 1). The high voltage (+ 12 V) on the MC pin during the WPO  
mode is not the programming voltage for the data EEPROM or program EPROM. All EEPROM programming  
voltages are generated on-chip. The WPO mode provides hardware system level capability to modify the  
content of data EEPROM while the device remains in the application but only while requiring a 12-V external  
input on the MC pin (normally not available in the end application except in a service or diagnostic environment).  
low-power and IDLE modes  
The TMS370Cx0x devices have two low-power modes (STANDBY and HALT) and an IDLE mode. For  
mask-ROM devices, low-power modes can be disabled permanently through a programmable contact at the  
time the mask is manufactured.  
The STANDBY and HALT low-power modes significantly reduce power consumption by reducing or stopping  
the activity of the various on-chip peripherals when processing is not required. Each of the low-power modes  
is entered by executing the IDLE instruction when the PWRDWN/IDLE bit in SCCR2 has been set to 1. The  
HALT/STANDBY bit in SCCR2 controls the low-power mode selection.  
In the STANDBY mode (HALT/STANDBY = 0), all CPU activity and most peripheral module activity stops;  
however, the oscillator, internal clocks, timer 1 and the receive-start bit detection circuit of the serial  
communications interface remain active. System processing is suspended until a qualified interrupt (hardware  
RESET, external interrupt on INT1, INT2, INT3, timer 1 interrupt, or low level on the receive pin of the SCI1) is  
detected.  
14  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx0x  
8-BIT MICROCONTROLLER  
SPNS029C – SEPTEMBER 1995 – REVISED FEBRUARY 1997  
low-power and IDLE modes (continued)  
In the HALT mode (HALT/STANDBY = 1), the TMS370Cx0x is placed in its lowest power-consumption mode.  
The oscillator and internal clocks are stopped, causing all internal activity to be halted. System activity is  
suspended until a qualified interrupt (hardware RESET, external interrupt on the INT1, INT2, INT3, or low level  
on the receive pin of the SCI1) is detected. The power-down mode selection bits are summarized in Table 9.  
Table 9. Low-Power/Idle Control Bits  
POWER-DOWN CONTROL BITS  
MODE SELECTED  
PWRDWN/IDLE  
(SCCR2.6)  
HALT/STANDBY  
(SCCR2.7)  
1
0
1
STANDBY  
HALT  
1
0
X
IDLE  
Don’t care  
When low-power modes are disabled through a programmable contact in the mask-ROM devices, writing to the  
SCCR2.6-7 bits are ignored. In addition, if an idle instruction executes when low-power modes are disabled  
through a programmable contact, the device always enters the IDLE mode.  
To provide a method of always exiting low-power modes for mask-ROM devices, INT1 is enabled automatically  
as a nonmaskable interrupt (NMI) during low-power modes when the hard watchdog mode is selected. This  
means that the NMI is generated always, regardless of the interrupt enable flags.  
The following information is preserved throughout both the STANDBY and HALT modes: RAM (register file),  
CPUregisters(stackpointer, program counter, andstatusregister), I/Opindirectionandoutputdata, andstatus  
registers of all on-chip peripheral functions. Since all CPU instruction processing stops during the STANDBY  
and HALT modes, the clocking of the watchdog timer is inhibited.  
clock modules  
The ’x0x family provides two clock options that are referred to as divide-by-1 (phase-locked loop) and  
divide-by-4 (standard oscillator). Both the divide-by-1 and divide-by-4 options are configurable during the  
manufacturing process of a TMS370 microcontroller. The ’x0x ROM-masked devices offer both options to meet  
system engineering requirements. Only one of the two clock options is allowed on each ROM device. The ’702A  
EPROM has only the divide-by-4.  
The divide-by-1 clock module option provides the capability for reduced electromagnetic interference (EMI) with  
no added cost.  
The divide-by-1 clock module option provides a one-to-one match of the external resonator frequency (CLKIN)  
to the internal system clock (SYSCLK) frequency, whereas the divide-by-4 option produces a SYSCLK which  
is one-fourth of the frequency of the external resonator. Inside of the divide-by-1 module, the frequency of the  
external resonator is multiplied by four, and the clock module then divides the resulting signal by four to provide  
the four-phased internal system clock signals. The resulting SYSCLK is equal to the resonator frequency.  
15  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx0x  
8-BIT MICROCONTROLLER  
SPNS029C – SEPTEMBER 1995 – REVISED FEBRUARY 1997  
clock modules (continued)  
These are formulated as follows:  
external resonator frequency  
CLKIN  
4
Divide-by-4 : SYSCLK  
Divide-by-1 : SYSCLK  
4
external resonator frequency  
4
4
CLKIN  
The main advantage of choosing a divide-by-1 oscillator is the improved EMI performance. The harmonics of  
low-speed resonators extend through less of the emissions spectrum than the harmonics of faster resonators.  
The divide-by-1 option provides the capability of reducing the resonator speed by four times, resulting in a  
steeper decay of emissions produced by the oscillator.  
system configuration registers  
Table 10 contains system configuration and control functions and registers for controlling EEPROM  
programming. The privileged bits are shown in a bold typeface and shaded areas.  
Table 10. Peripheral File Frame 1: System Configuration Registers  
PF  
BIT 7  
BIT 6  
BIT 5  
BIT 4  
BIT 3  
BIT 2  
BIT 1  
BIT 0  
REG  
COLD  
START  
OSC  
POWER  
PF AUTO  
WAIT  
OSC FLT  
FLAG  
MC PIN  
WPO  
MC PIN  
DATA  
µP/µC  
MODE  
P010  
SCCR0  
AUTO  
WAIT  
DISABLE  
MEMORY  
DISABLE  
P011  
SCCR1  
SCCR2  
HALT/  
STANDBY  
PWRDWN/  
IDLE  
BUS  
STEST  
CPU  
STEST  
INT1  
NMI  
PRIVILEGE  
DISABLE  
P012  
P013  
to  
Reserved  
P016  
INT1  
FLAG  
INT1  
PIN DATA  
INT1  
POLARITY  
INT1  
PRIORITY  
INT1  
ENABLE  
P017  
P018  
P019  
INT1  
INT2  
INT2  
FLAG  
INT2  
PIN DATA  
INT2  
DATA DIR  
INT2  
DATA OUT  
INT2  
POLARITY  
INT2  
PRIORITY  
INT2  
ENABLE  
INT3  
FLAG  
INT3  
PIN DATA  
INT3  
DATA DIR  
INT3  
DATA OUT  
INT3  
POLARITY  
INT3  
PRIORITY  
INT3  
ENABLE  
INT3  
P01A  
P01B  
P01C  
BUSY  
BUSY  
AP  
W1W0  
W0  
EXE  
EXE  
DEECTL  
Reserved  
VPPS  
EPCTL  
P01D  
P01E  
P01F  
Reserved  
16  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx0x  
8-BIT MICROCONTROLLER  
SPNS029C – SEPTEMBER 1995 – REVISED FEBRUARY 1997  
digital port control registers  
Peripheral file frame 2 contains the digital I/O pin configuration and control registers. Table 11showsthespecific  
addresses, registers, and control bits within this peripheral file frame.  
Table 11. Peripheral File Frame 2: Digital Port Control Registers  
PF  
P020  
P021  
P022  
P023  
BIT 7  
BIT 6  
BIT 5  
BIT 4  
BIT 3  
Reserved  
BIT 2  
BIT 1  
BIT 0  
REG  
APORT1  
APORT2  
ADATA  
ADIR  
Port A Control Register 2 (must be 0)  
Port A Data  
Port A Direction  
P024  
to  
Reserved  
P02B  
P02C  
P02D  
P02E  
P02F  
Port D Control Register 1 (must be 0)  
DPORT1  
DPORT2  
DDATA  
DDIR  
Port D Control Register 2 (must be 0)  
Port D Data  
Port D Direction  
To configure pin D3 as SYSCLK, set port D control register 2 = 08h.  
Table 12. Port Configuration Register Setup  
abcd  
00q1  
abcd  
00y0  
PORT  
PIN  
A
D
0 – 7  
3 – 7  
Data OUT q  
Data OUT q  
Data In y  
Data In y  
a = Port x Control Register 1  
b = Port x Control Register 2  
c = Data  
d = Direction  
17  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx0x  
8-BIT MICROCONTROLLER  
SPNS029C – SEPTEMBER 1995 – REVISED FEBRUARY 1997  
programmable timer 1  
The programmable Timer 1 (T1) module of the TMS370Cx0x provides the designer with the enhanced timer  
resources required to perform real-time system control. The T1 module contains the general-purpose timer and  
the watchdog (WD) timer. The two independent 16-bit timers (T1 and WD) allow program selection of input clock  
sources (real-time, external event, or pulse accumulate) with multiple 16-bit registers (input capture and  
compare) for special timer function control. The timer 1 module includes three external device pins that can be  
used for multiple counter functions (operation mode dependent) or used as general-purpose I/O pins. The T1  
module block diagram is shown in Figure 5.  
Edge  
Select  
16-Bit  
Capt/Comp  
T1IC/CR  
Register  
16-Bit  
Counter  
PWM  
Toggle  
MUX  
T1PWM  
16  
16-Bit  
Compare  
Register  
Interrupt  
Logic  
8-Bit  
Prescaler  
T1EVT  
Interrupt  
Logic  
16-Bit  
MUX  
Watchdog Counter  
(Aux. Timer)  
Figure 5. Timer 1 Block Diagram  
Three T1 I/O pins  
T1IC/CR: Timer 1 input capture / counter reset input pin, or general-purpose bidirectional I/O pin  
T1PWM: Timer 1 pulse-width-modulation (PWM) output pin, or general-purpose bidirectional I/O pin  
T1EVT: Timer 1 event input pin, or general-purpose bidirectional I/O pin  
Two operation modes:  
Dual-compare mode: Provides PWM signal  
Capture/compare mode: Provides input capture pin  
One 16-bit general-purpose resettable counter  
One 16-bit compare register with associated compare logic  
One 16-bit capture/compare register, which, depending on the mode of operation, operates as either a  
capture or compare register.  
One 16-bit watchdog counter can be used as an event counter, a pulse accumulator, or an interval timer  
if watchdog feature is not needed.  
Prescaler/clock sources that determine one of eight clock sources for general-purpose timer  
18  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx0x  
8-BIT MICROCONTROLLER  
SPNS029C – SEPTEMBER 1995 – REVISED FEBRUARY 1997  
programmable timer 1 (continued)  
Selectable edge-detection circuitry that, depending on the mode of operation, senses active transitions on  
the input capture pins (T1IC1/CR)  
Interrupts that can be generated on the occurrence of:  
A capture  
A compare equal  
A counter overflow  
An external edge detection  
Sixteen timer 1 module control registers located in the PF frame beginning at address P040.  
The T1 module control registers are illustrated in Table 13.  
19  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx0x  
8-BIT MICROCONTROLLER  
SPNS029C – SEPTEMBER 1995 – REVISED FEBRUARY 1997  
programmable timer 1 (continued)  
Table 13. Timer 1 Module Register Memory Map  
PF  
BIT 7  
BIT 6  
BIT 5  
BIT 4  
BIT 3  
BIT 2  
BIT 1  
BIT 0  
REG  
Modes: Dual-Compare and Capture/Compare  
P040 Bit 15  
P041 Bit 7  
P042 Bit 15  
P043 Bit 7  
P044 Bit 15  
P045 Bit 7  
P046 Bit 15  
P047 Bit 7  
P048 Bit 7  
T1Counter MSbyte  
T1 Counter LSbyte  
Bit 8 T1CNTR  
Bit 0  
Compare Register MSbyte  
Compare Register LSbyte  
Bit 8 T1C  
Bit 0  
Capture/Compare Register MSbyte  
Capture/Compare Register LSbyte  
Watchdog Counter MSbyte  
Watchdog Counter LSbyte  
Watchdog Reset Key  
Bit 8 T1CC  
Bit 0  
Bit 8 WDCNTR  
Bit 0  
Bit 0 WDRST  
WD OVRFL WD INPUT  
WD INPUT  
SELECT1  
WD INPUT  
SELECT0  
T1 INPUT  
SELECT2  
T1 INPUT  
SELECT1  
T1 INPUT  
SELECT0  
P049  
P04A  
T1CTL1  
T1CTL2  
TAP SEL  
SELECT2  
WD OVRFL WD OVRFL WD OVRFL  
T1 OVRFL  
INT ENA  
T1 OVRFL  
INT FLAG  
T1  
RST ENA  
INT ENA  
INT FLAG  
SW RESET  
Mode: Dual-Compare  
T1EDGE  
INT FLAG  
T1C2  
INT FLAG  
T1C1  
INT FLAG  
T1EDGE  
INT ENA  
T1C2  
INT ENA  
T1C1  
INT ENA  
P04B  
P04C  
T1CTL3  
T1CTL4  
T1  
MODE=0  
T1C1  
OUT ENA  
T1C2  
OUT ENA  
T1C1  
RST ENA  
T1CR  
OUT ENA  
T1EDGE  
POLARITY  
T1CR  
RST ENA  
T1EDGE  
DET ENA  
Mode: Capture/Compare  
T1EDGE  
T1C1  
INT FLAG  
T1EDGE  
INT ENA  
T1C1  
INT ENA  
P04B  
P04C  
T1CTL3  
T1CTL4  
INT FLAG  
T1  
T1C1  
T1C1  
RST ENA  
T1EDGE  
POLARITY  
T1EDGE  
DET ENA  
MODE = 1  
OUT ENA  
Modes: Dual-Compare and Capture/Compare  
T1EVT  
DATA IN  
T1EVT  
T1EVT  
T1EVT  
DATA DIR  
P04D  
P04E  
T1PC1  
T1PC2  
T1PRI  
DATA OUT FUNCTION  
T1IC/CR T1IC/CR  
DATA OUT FUNCTION  
T1PWM  
DATA IN  
T1PWM  
DATA OUT FUNCTION  
T1PWM  
T1PWM  
DATA DIR  
T1IC/CR  
DATA IN  
T1IC/CR  
DATA DIR  
T1  
P04F T1 STEST  
PRIORITY  
Once the WD OVRFL RST ENA bit is set, these bits cannot be changed until a reset; this applies only to the standard  
watchdogandtothesimplecounter. Inthehardwatchdog, thesebitscanbemodifiedatanytime;theWDINPUTSELECT2  
bits are ignored.  
20  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx0x  
8-BIT MICROCONTROLLER  
SPNS029C – SEPTEMBER 1995 – REVISED FEBRUARY 1997  
programmable timer 1 (continued)  
Figure 6 shows the timer 1 capture/compare mode block diagram. The annotations on the diagram identify the  
register and the bit(s) in the peripheral frame. For example, the actual address of T1CTL2.0 is 104Ah, bit 0, in  
the T1CTL2 register.  
T1CC.15-0  
16-Bit  
LSB  
T1C1  
OUT ENA  
Capt/Comp  
Register  
Prescale  
Clock  
Source  
MSB  
T1PC2.7-4  
T1PWM  
T1CTL4.6  
T1CNTR.15-0  
LSB  
MSB  
16-Bit  
Counter  
16  
T1 PRIORITY  
0
1
T1C1 INT FLAG  
T1CTL3.5  
T1PRI.6  
Level 1 Int  
Level 2 Int  
Compare=  
Reset  
T1CTL3.0  
T1C.15-0  
T1 SW  
RESET  
T1C1 INT ENA  
16-Bit  
LSB  
T1C1  
RST ENA  
Compare  
Register  
T1CTL2.0  
MSB  
T1 OVRFL INT FLAG  
T1CTL2.3  
T1CTL4.4  
T1CTL2.4  
T1 OVRFL INT ENA  
T1PC2.3-0  
T1IC/CR  
T1EDGE DET ENA  
T1EDGE INT FLAG  
T1CTL3.7  
Edge  
Select  
T1CTL4.0  
T1CTL3.2  
T1EDGE INT ENA  
T1CTL4.2  
T1EDGE POLARITY  
Figure 6. Capture/Compare Mode  
21  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx0x  
8-BIT MICROCONTROLLER  
SPNS029C – SEPTEMBER 1995 – REVISED FEBRUARY 1997  
programmable timer 1 (continued)  
Figure 7 shows the timer 1 dual-compare mode block diagram. The annotations on the diagram identify the  
register and the bit(s) in the peripheral frame. For example, the actual address of T1CTL2.0 is 104Ah, bit 0, in  
the T1CTL2 register.  
T1CC.15-0  
16-Bit  
Capt/Comp  
Register  
T1C2 INT FLAG  
T1CTL3.6  
LSB  
Prescaler  
Clock  
Source  
MSB  
Output  
Enable  
T1CTL3.1  
T1C2 INT ENA  
T1CTL4.5  
Compare=  
T1CNTR.15-0  
T1PC2.7-4  
T1PWM  
T1C2 OUT ENA  
T1CTL4.6  
LSB  
MSB  
16-Bit  
Counter  
16  
T1C1 INT FLAG  
T1CTL3.5  
T1CTL3.0  
Reset  
Compare=  
T1C1 OUT ENA  
T1CTL4.3  
T1C1  
RST ENA  
T1C.15-0  
T1 SW  
RESET  
T1C1 INT ENA  
16-Bit  
Compare  
Register  
LSB  
T1CTL4.4  
T1CR OUT ENA  
T1CTL2.0  
MSB  
T1 OVRFL INT FLAG  
T1CTL2.3  
T1CTL2.4  
T1 OVRFL INT ENA  
T1CTL4.1  
T1CR  
RST ENA  
T1PC2.3-0  
T1IC/CR  
Edge  
Select  
T1 PRIORITY  
T1PRI.6  
0
1
T1CTL4.0  
Level 1 Int  
Level 2 Int  
T1EDGE INT FLAG  
T1CTL3.7  
T1EDGE DET ENA  
T1CTL4.2  
T1CTL3.2  
T1EDGE INT ENA  
T1EDGE POLARITY  
Figure 7. Dual-Compare Mode  
22  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx0x  
8-BIT MICROCONTROLLER  
SPNS029C – SEPTEMBER 1995 – REVISED FEBRUARY 1997  
programmable timer 1 (continued)  
The TMS370Cx0x device includes a 24-bit watchdog (WD) timer, contained in the timer 1 module, which can  
be programmed as an event counter, pulse accumulator, or interval timer if the watchdog function is not used.  
The WD function is to monitor software and hardware operation and to implement a system reset when the WD  
counter is not properly serviced (WD counter overflow or WD counter is re-initialized by an incorrect value). The  
WD can be configured as one of three mask options as follows:  
Standard watchdog configuration (see Figure 8) – for EPROM and mask-ROM devices:  
Watchdog mode  
Ten different WD overflow rates ranging from 6.55 ms to 3.35 s at 5-MHz SYSCLK  
AWDresetkey(WDRST)registerisusedtoclearthewatchdogcounter(WDCNTR)whenacorrect  
value is written.  
Generates a system reset if an incorrect value is written to the watchdog reset key or if the counter  
overflows  
Awatchdog overflow flag (WD OVRFL INT FLAG) bit that indicates whether the WD timer initiated a  
system reset  
Non-watchdog mode  
Watchdog timer can be configured as an event counter, a pulse accumulator, or an interval timer  
WDCNTR.15-0  
WD OVRFL  
INT FLAG  
T1CTL2.6  
16-Bit  
WatchdogCounter  
T1CTL2.5  
Interrupt  
WD OVRFL  
INT ENA  
Reset  
Clock  
Prescaler  
T1CTL2.7  
T1CTL1.7  
WD OVRFL  
TAP SEL  
System Reset  
WD OVRFL  
RST ENA  
Watchdog Reset Key  
WDRST.7-0  
Figure 8. Standard watchdog  
23  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx0x  
8-BIT MICROCONTROLLER  
SPNS029C – SEPTEMBER 1995 – REVISED FEBRUARY 1997  
programmable timer 1 (continued)  
Hard watchdog configuration (see Figure 9) – for mask-ROM devices:  
Eight different WD overflow rates ranging from 26.2 ms to 3.35 s at 5-MHz SYSCLK  
A WD reset key (WDRST) register is used to clear the watchdog counter (WDCNTR) when a correct  
value is written.  
Generates a system reset if an incorrect value is written to the watchdog reset key or if the counter  
overflows.  
Automatic activation of the WD timer upon power-up reset  
INT1 is enabled as a nonmaskable interrupt during low-power modes.  
A watchdog overflow flag (WD OVRFL INT FLAG) bit that indicates whether the WD timer initiated a  
system reset  
WDCNTR.15-0  
WD OVRFL  
INT FLAG  
16-Bit  
Watchdog Counter  
T1CTL2.5  
Reset  
Clock  
Prescaler  
T1CTL1.7  
WD OVRFL  
TAP SEL  
System Reset  
Watchdog Reset Key  
WDRST.7-0  
Figure 9. Hard Watchdog  
Simple counter configuration – for mask-ROM devices only (see Figure 10)  
Simple counter can be configured as an event counter, pulse accumulator, or an internal timer.  
24  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx0x  
8-BIT MICROCONTROLLER  
SPNS029C – SEPTEMBER 1995 – REVISED FEBRUARY 1997  
programmable timer 1 (continued)  
WDCNTR.15-0  
WD OVFL  
INT FLAG  
T1CTL2.6  
16-Bit  
Watchdog Counter  
T1CTL2.5  
Interrupt  
WD OVRFL  
INT ENA  
Reset  
Clock  
Prescaler  
T1CTL1.7  
WD OVRFL  
TAP SEL  
Watchdog Reset Key  
WDRST.7-0  
Figure 10. Simple Counter  
serial communications interface 1 (SCI1) module  
The TMS370Cx0x devices include a serial communications interface 1 (SCI1) module. The SCI1 module  
supports digital communications between the TMS370 devices and other asynchronous peripherals and uses  
thestandardnon-return-zeroformat(NRZ)format. TheSCI1’sreceiverandtransmitteraredoublebuffered, and  
each has its own separate enable and interrupt bits. Both can be operated independently or simultaneously in  
the full duplex mode. To ensure data integrity, the SCI1 checks received data for break detection, parity, overrun,  
and framing errors. The speed of bit rate (baud) is programmable to over 65,000 different speeds through a  
16-bit baud-select register.  
Features of the SCI1 module include:  
Three external pins:  
SCITXD: SCI transmit-output pin or general-purpose bidirectional I/O pin  
SCIRXD: SCI receive-input pin or general-purpose bidirectional I/O pin  
SCICLK: SCI bidirectional serial-clock pin, or general-purpose bidirectional I/O pin  
Two communications modes: asynchronous and isosynchronous  
Baud rate: 64K different programmable rates  
Asynchronous mode: 3 bps to 156K bps at 5-MHz SYSCLK  
SYSCLK  
(BAUD REG 1) 32  
ASYNCHRONOUS BAUD  
Isosynchronous mode: 39 bps to 2.5M bps at 5-MHz SYSCLK  
SYSCLK  
(BAUD REG 1)  
ISOSYNCHRONOUS BAUD  
2
Isosynchronous = Isochronous  
25  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx0x  
8-BIT MICROCONTROLLER  
SPNS029C – SEPTEMBER 1995 – REVISED FEBRUARY 1997  
serial communications interface 1 (SCI1) module (continued)  
Data word format:  
One start bit  
Data word length programmable from one to eight bits  
Optional even/odd/no parity bit  
One or two stop bits  
Four error-detection flags: parity, overrun, framing, and break detection  
Two wake-up multiprocessor modes: Idle-line and address bit  
Half or full-duplex operation  
Double-buffered receiver and transmitter operations  
Transmitter and receiver operations can be accomplished through either interrupt-driven or  
polled-algorithms with status flags:  
Transmitter: TXRDY flag (transmitter buffer register is ready to receive another character) and TX  
EMPTY flag (Transmitter shift register is empty)  
Receiver: RXRDY flag (receive buffer register ready to receive another character), BRKDT flag (break  
condition occurred), and RX ERROR monitoring four interrupt conditions  
Separate enable bits for transmitter and receiver interrupts  
NRZ (non return-to-zero) format  
Eleven SCI1 module control registers, located in control register frame beginning at address P050h  
26  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx0x  
8-BIT MICROCONTROLLER  
SPNS029C – SEPTEMBER 1995 – REVISED FEBRUARY 1997  
serial communications interface 1 (SCI1) module (continued)  
The SCI1 module control registers are illustrated in Table 14.  
Table 14. SCI1 Module Control Register Memory Map  
PF  
BIT 7  
BIT 6  
BIT 5  
BIT 4  
BIT 3  
BIT 2  
BIT 1  
BIT 0  
REG  
EVEN/ODD  
PARITY  
PARITY  
ENABLE  
ASYNC/  
ISOSYNC  
ADDRESS/  
IDLE WUP  
SCI  
CHAR2  
P050 STOP BITS  
SCI CHAR1 SCI CHAR0 SCICCR  
SCI SW  
RESET  
P051  
P052  
P053  
P054  
P055  
CLOCK  
BAUDC  
BAUD4  
TXWAKE  
BAUDB  
BAUD3  
SLEEP  
BAUDA  
BAUD2  
TXENA  
BAUD9  
BAUD1  
RXENA  
BAUD8  
SCICTL  
BAUDF  
(MSB)  
BAUDE  
BAUD6  
TX EMPTY  
RXRDY  
BAUDD  
BAUD5  
BAUD MSB  
BAUD LSB  
TXCTL  
BAUD0  
(LSB)  
BAUD7  
TXRDY  
SCI TX  
INT ENA  
RX  
ERROR  
SCI RX  
INT ENA  
BRKDT  
FE  
OE  
PE  
RXWAKE  
RXCTL  
P056  
P057  
P058  
P059  
Reserved  
RXDT7  
TXDT7  
RXDT6  
TXDT6  
RXDT5  
TXDT5  
RXDT4  
RXDT3  
RXDT2  
TXDT2  
RXDT1  
TXDT1  
RXDT0  
TXDT0  
RXBUF  
TXBUF  
Reserved  
TXDT4  
TXDT3  
P05A  
P05B  
P05C  
Reserved  
SCICLK  
DATA IN  
SCICLK  
SCICLK  
SCICLK  
DATA DIR  
P05D  
P05E  
SCIPC1  
SCIPC2  
SCIPRI  
DATA OUT FUNCTION  
SCIRXD SCIRXD  
DATA OUT FUNCTION  
SCITXD  
DATA IN  
SCITXD  
SCITXD  
SCITXD  
SCIRXD  
DATA IN  
SCIRXD  
DATA DIR  
DATA OUT FUNCTION DATA DIR  
SCITX  
PRIORITY  
SCIRX  
PRIORITY  
SCI  
ESPEN  
P05F SCI STEST  
27  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx0x  
8-BIT MICROCONTROLLER  
SPNS029C – SEPTEMBER 1995 – REVISED FEBRUARY 1997  
serial communications interface 1 (SCI1) module (continued)  
The SCI1 module block diagram is illustrated in Figure 11.  
TXBUF.7–0  
TXWAKE  
SCICTL.3  
Frame Format and Mode  
SCI TX Interrupt  
SCITX PRIORITY  
Transmit Data  
Buffer Reg.  
PARITY  
EVEN/ODD ENABLE  
1
0
1
SCIPRI.6  
SCI TX INT ENA  
TXRDY  
TXCTL.7  
Level 1 INT  
Level 2 INT  
SCICCR.6 SCICCR.5  
WUT  
TXCTL.0  
8
TX EMPTY  
TXCTL.6  
SCIPC2.7–4  
SCITXD  
TXENA  
SCITXD  
TXSHF Reg.  
BAUD MSB. 7–0  
SCICTL.1  
Baud Rate  
MSbyte Reg.  
CLOCK  
SCIPC1.3–0  
SCICLK  
SYSCLK  
SCICTL.4  
BAUD LSB. 7–0  
Baud Rate  
LSbyte Reg.  
SCIPC2.3–0  
SCIRXD  
SCIRXD  
RXSHF Reg.  
RXWAKE  
RXCTL.1  
SCIRX PRIORITY  
SCI RX Interrupt  
RXENA  
0
1
SCIPRI.5  
SCI RX INT ENA  
RXCTL.0  
RXRDY  
RXCTL.6  
Level 1 INT  
Level 2 INT  
RX ERROR  
SCICTL.0  
8
RXCTL.4–2  
FE OE PE  
RXCTL.7  
ERR  
BRKDT  
Receive Data  
Buffer Reg.  
RXCTL.5  
RXBUF.7–0  
Figure 11. SCI1 Block Diagram  
instruction set overview  
Table 15 provides an opcode-to-instruction cross-reference of all 73 instructions and 274 opcodes of the  
‘370Cx0x instruction set. The numbers at the top of this table represent the most significant nibble of the opcode  
while the numbers at the left side of the table represent the least significant nibble. The instructions for these  
two opcode nibbles contain the mnemonic, operands, and byte/cycle particular to that opcode.  
For example, the opcode B5h points to the CLR A instruction. This instruction contains one byte and executes  
in eight SYSCLK cycles.  
28  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
Table 15. TMS370 Family Opcode/Instruction Map  
MSN  
0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F
JMP  
#ra  
2/7  
INCW  
#ra,Rd  
3/11  
MOV  
Ps,A  
2/8  
CLRC  
TST A  
1/9  
/
MOV  
A,B  
1/9  
MOV  
A,Rd  
2/7  
TRAP  
15  
1/14  
LDST  
n
2/6  
0
1
2
3
4
5
JN  
ra  
2/5  
MOV  
A,Pd  
2/8  
MOV  
B,Pd  
2/8  
MOV  
Rs,Pd  
3/10  
MOV  
Ps,B  
2/7  
MOV  
B,Rd  
2/7  
TRAP  
14  
1/14  
MOV  
#ra[SP],A  
2/7  
JZ  
ra  
2/5  
MOV  
Rs,A  
2/7  
MOV  
#n,A  
2/6  
MOV  
Rs,B  
2/7  
MOV  
Rs,Rd  
3/9  
MOV  
#n,B  
2/6  
MOV  
B,A  
1/8  
MOV  
#n,Rd  
3/8  
MOV  
Ps,Rd  
3/10  
DEC  
A
1/8  
DEC  
B
1/8  
DEC  
Rd  
2/6  
TRAP  
13  
1/14  
MOV  
A,*ra[SP]  
2/7  
JC  
ra  
2/5  
AND  
Rs,A  
2/7  
AND  
#n,A  
2/6  
AND  
Rs,B  
2/7  
AND  
Rs,Rd  
3/9  
AND  
#n,B  
2/6  
AND  
B,A  
1/8  
AND  
#n,Rd  
3/8  
AND  
A,Pd  
2/9  
AND  
B,Pd  
2/9  
AND  
#n,Pd  
3/10  
INC  
A
1/8  
INC  
B
1/8  
INC  
Rd  
2/6  
TRAP  
12  
1/14  
CMP  
*n[SP],A  
2/8  
JP  
ra  
2/5  
OR  
Rs,A  
2/7  
OR  
#n,A  
2/6  
OR  
Rs,B  
2/7  
OR  
Rs,Rd  
3/9  
OR  
#n,B  
2/6  
OR  
B,A  
1/8  
OR  
#n,Rd  
3/8  
OR  
A,Pd  
2/9  
OR  
B,Pd  
2/9  
OR  
#n,Pd  
3/10  
INV  
A
1/8  
INV  
B
1/8  
INV  
Rd  
2/6  
TRAP  
11  
1/14  
extend  
inst,2  
opcodes  
JPZ  
ra  
2/5  
XOR  
Rs,A  
2/7  
XOR  
#n,A  
2/6  
XOR  
Rs,B  
2/7  
XOR  
Rs,Rd  
3/9  
XOR  
#n,B  
2/6  
XOR  
B,A  
1/8  
XOR  
#n,Rd  
3/8  
XOR  
A,Pd  
2/9  
XOR  
B,Pd  
2/9  
XOR  
#n,Pd  
3/10  
CLR  
A
1/8  
CLR  
B
1/8  
CLR  
Rn  
2/6  
TRAP  
10  
1/14  
L
S
N
JNZ  
ra  
2/5  
BTJO  
Rs,A,ra  
3/9  
BTJO  
#n,A,ra  
3/8  
BTJO  
Rs,B,ra  
3/9  
BTJO  
Rs,Rd,ra  
4/11  
BTJO  
#n,B,ra  
3/8  
BTJO  
B,A,ra  
2/10  
BTJO  
#n,Rd,ra  
4/10  
BTJO  
A,Pd,ra  
3/11  
BTJO  
B,Pd,ra  
3/10  
BTJO  
#n,Pd,ra  
4/11  
XCHB  
A
1/10  
XCHB A /  
TST B  
1/10  
XCHB  
Rn  
2/8  
TRAP  
9
1/14  
IDLE  
1/6  
6
JNC  
ra  
2/5  
BTJZ  
Rs.,A,ra  
3/9  
BTJZ  
#n,A,ra  
3/8  
BTJZ  
Rs,B,ra  
3/9  
BTJZ  
Rs,Rd,ra  
4/11  
BTJZ  
#n,B,ra  
3/8  
BTJZ  
B,A,ra  
2/10  
BTJZ  
#n,Rd,ra  
4/10  
BTJZ  
A,Pd,ra  
3/10  
BTJZ  
B,Pd,ra  
3/10  
BTJZ  
#n,Pd,ra  
4/11  
SWAP  
A
1/11  
SWAP  
B
1/11  
SWAP  
Rn  
2/9  
TRAP  
8
1/14  
MOV  
#n,Pd  
3/10  
7
8
JV  
ra  
2/5  
ADD  
Rs,A  
2/7  
ADD  
#n,A  
2/6  
ADD  
Rs,B  
2/7  
ADD  
Rs,Rd  
3/9  
ADD  
#n,B  
2/6  
ADD  
B,A  
1/8  
ADD  
#n,Rd  
3/8  
MOVW  
#16,Rd  
4/13  
MOVW  
Rs,Rd  
3/12  
MOVW  
#16[B],Rpd  
4/15  
PUSH  
A
1/9  
PUSH  
B
1/9  
PUSH  
Rd  
2/7  
TRAP  
7
1/14  
SETC  
1/7  
JL  
ra  
2/5  
ADC  
Rs,A  
2/7  
ADC  
#n,A  
2/6  
ADC  
Rs,B  
2/7  
ADC  
Rs,Rd  
3/9  
ADC  
#n,B  
2/6  
ADC  
B,A  
1/8  
ADC  
#n,Rd  
3/8  
JMPL  
lab  
3/9  
JMPL  
*Rp  
2/8  
JMPL  
*lab[B]  
3/11  
POP  
A
1/9  
POP  
B
1/9  
POP  
Rd  
2/7  
TRAP  
6
1/14  
RTS  
9
A
B
1/9  
JLE  
ra  
2/5  
SUB  
Rs,A  
2/7  
SUB  
#n,A  
2/6  
SUB  
Rs,B  
2/7  
SUB  
Rs,Rd  
3/9  
SUB  
#n,B  
2/6  
SUB  
B,A  
1/8  
SUB  
#n,Rd  
3/8  
MOV  
& lab,A  
3/10  
MOV  
*Rp,A  
2/9  
MOV  
*lab[B],A  
3/12  
DJNZ  
A,#ra  
2/10  
DJNZ  
B,#ra  
2/10  
DJNZ  
Rd,#ra  
3/8  
TRAP  
5
1/14  
RTI  
1/12  
JHS  
ra  
2/5  
SBB  
Rs,A  
2/7  
SBB  
#n,A  
2/6  
SBB  
Rs,B  
2/7  
SBB  
Rs,Rd  
3/9  
SBB  
#n,B  
2/6  
SBB  
B,A  
1/8  
SBB  
#n,Rd  
3/8  
MOV  
A, & lab  
3/10  
MOV  
A, *Rp  
2/9  
MOV  
A,*lab[B]  
3/12  
COMPL  
A
1/8  
COMPL  
B
1/8  
COMPL  
Rd  
2/6  
TRAP  
4
1/14  
PUSH  
ST  
1/8  
All conditional jumps (opcodes 01–0F), BTJO, BTJZ, and DJNZ instructions use two additional cycles if the branch is taken. The BTJO, BTJZ, and DJNZ  
instructions have a relative address as the last operand.  
Table 15. TMS370 Family Opcode/Instruction Map (Continued)  
MSN  
0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F
JNV  
ra  
2/5  
MPY  
Rs,A  
2/46  
MPY  
#n,A  
2/45  
MPY  
Rs,B  
2/46  
MPY  
Rs,Rd  
3/48  
MPY  
#n,B  
2/45  
MPY  
B,A  
1/47  
MPY  
#n,Rs  
3/47  
BR  
lab  
3/9  
BR  
*Rp  
2/8  
BR  
*lab[B]  
3/11  
RR  
A
1/8  
RR  
B
1/8  
RR  
Rd  
2/6  
TRAP  
3
1/14  
POP  
ST  
1/8  
C
D
E
F
JGE  
ra  
2/5  
CMP  
Rs,A  
2/7  
CMP  
#n,A  
2/6  
CMP  
Rs,B  
2/7  
CMP  
Rs,Rd  
3/9  
CMP  
#n,B  
2/6  
CMP  
B,A  
1/8  
CMP  
#n,Rd  
3/8  
CMP  
& lab,A  
3/11  
CMP  
*Rp,A  
2/10  
CMP  
*lab[B],A  
3/13  
RRC  
A
1/8  
RRC  
B
1/8  
RRC  
Rd  
2/6  
TRAP  
2
1/14  
LDSP  
L
S
N
1/7  
JG  
ra  
2/5  
DAC  
Rs,A  
2/9  
DAC  
#n,A  
2/8  
DAC  
Rs,B  
2/9  
DAC  
Rs,Rd  
3/11  
DAC  
#n,B  
2/8  
DAC  
B,A  
1/10  
DAC  
#n,Rd  
3/10  
CALL  
lab  
3/13  
CALL  
*Rp  
2/12  
CALL  
*lab[B]  
3/15  
RL  
A
1/8  
RL  
B
1/8  
RL  
Rd  
2/6  
TRAP  
1
1/14  
STSP  
1/8  
JLO  
ra  
2/5  
DSB  
Rs,A  
2/9  
DSB  
#n,A  
2/8  
DSB  
Rs,B  
2/9  
DSB  
Rs,Rd  
3/11  
DSB  
#n,B  
2/8  
DSB  
B,A  
1/10  
DSB  
#n,Rd  
3/10  
CALLR  
lab  
3/15  
CALLR  
*Rp  
2/14  
CALLR  
*lab[B]  
3/17  
RLC  
A
1/8  
RLC  
B
1/8  
RLC  
Rd  
2/6  
TRAP  
0
1/14  
NOP  
1/7  
MOVW  
*n[Rn]  
4/15  
DIV  
Rn.A  
3/14-63  
Second byte of two-byte instructions (F4xx):  
F4  
F4  
F4  
F4  
F4  
F4  
F4  
F4  
8
9
JMPL  
*n[Rn]  
4/16  
Legend:  
MOV  
*n[Rn],A  
4/17  
A
B
C
D
E
F
*
&
#
=
=
=
Indirect addressing operand prefix  
Direct addressing operand prefix  
immediate operand  
MOV  
A,*n[Rn]  
4/16  
#16 = immediate 16-bit number  
lab  
n
Pd  
Pn  
Ps  
ra  
Rd  
Rn  
Rp  
=
=
=
=
=
=
=
=
=
16-label  
immediate 8-bit number  
Peripheral register containing destination type  
Peripheral register  
Peripheral register containing source byte  
Relative address  
Register containing destination type  
Register file  
Register pair  
BR  
*n[Rn]  
4/16  
CMP  
*n[Rn],A  
4/18  
CALL  
*n[Rn]  
4/20  
Rpd= Destination register pair  
Rps = Source Register pair  
Rs  
= Register containing source byte  
CALLR  
*n[Rn]  
4/22  
All conditional jumps (opcodes 01–0F), BTJO, BTJZ, and DJNZ instructions use two additional cycles if the branch is taken. The BTJO, BTJZ, and DJNZ  
instructions have a relative address as the last operand.  
TMS370Cx0x  
8-BIT MICROCONTROLLER  
SPNS029C – SEPTEMBER 1995 – REVISED FEBRUARY 1997  
development system support  
The TMS370 family development support tools include an assembler, a C compiler, a linker, and compact  
development tool, and an EEPROM/UVEPROM programmer.  
Assembler/linker (Part No. TMDS3740850–02 for PC)  
Includes extensive macro capability  
Allows high-speed operation  
Provides format conversion utilities for popular formats  
ANSI C Compiler (Part No. TMDS3740855–02 for PC, Part No. TMDS3740555–09 for HP700 , Sun-3  
or Sun-4 )  
Generates assembly code for the TMS370 that can be inspected easily  
Improves code execution speed and reduces code size with optional optimizer pass  
Enables direct reference to the TMS370’s port registers by using a naming convention  
Provides flexibility in specifying the storage for data objects  
Interfaces C functions and assembly functions easily  
Includes assembler and linker  
CDT370 (compact development tool) real-time in-circuit emulation  
Base (Part Number EDSCDT370 – for PC, requires cable)  
Cable for 28-pin PLCC (Part No. EDSTRG28PLCC02)  
Includes EEPROM and EPROM programming support  
Allows inspection and modification of memory locations  
Allows uploading/downloading program and data memory  
Executes programs and software routines  
Includes 1024 samples trace buffer  
Provides single-step executable instructions  
Uses software breakpoints to halt program execution at selected address  
Microcontroller programmer  
Base (Part No. TMDS3760500A – for PC, requires programmer head)  
Single unit head for 28-pin PLCC (Part No. TMDS3780510A)  
Personal computer based, window/function-key-oriented user interface for ease of use and rapid  
learning environment  
HP700 is a trademark of Hewlett-Packard Company.  
Sun-3 and Sun-4 are trademarks of Sun Microsystems, Inc.  
31  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx0x  
8-BIT MICROCONTROLLER  
SPNS029C – SEPTEMBER 1995 – REVISED FEBRUARY 1997  
development system support (continued)  
Design kit (Part No. TMDS3770110 – for PC)  
Includes TMS370 Application Board and TMS370 Assembler diskette and documentation  
Supports quick evaluation of TMS370 functionality  
Provides capability to upload and download code  
Provides capability to execute programs and software routines, and to single-step executable  
instructions  
Provides software breakpoints to halt program execution at selected addresses  
Includes wire-wrap prototype area  
Includes reverse assembler  
Starter Kit (Part No. TMDS37000 – for PC)  
Includes TMS370 Assembler diskette and documentation  
Includes TMS370 Simulator  
Includes programming adapter board and programming software  
Does not include (to be supplied by the user):  
+ 5 V power supply  
ZIF sockets  
Nine-pin RS232 cable  
32  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx0x  
8-BIT MICROCONTROLLER  
SPNS029C – SEPTEMBER 1995 – REVISED FEBRUARY 1997  
device numbering conventions  
Figure 12 illustrates the numbering and symbol nomenclature for the TMS370Cx0x family.  
TMS 370 C  
7
0
2
A FN T  
Prefix: TMS = Standard prefix for fully qualified devices  
SE = System evaluator that is used for  
prototyping purpose.  
Family: 370 = TMS370 8-Bit Microcontroller Family  
Technology:  
C = CMOS  
Program Memory Types:  
0 = Mask ROM  
3 = Mask ROM, No Data EEPROM  
7 = EPROM  
Device Type:  
0 = ’x0x devices containing the following modules:  
— Timer 1  
— Serial Communications Interface 1 (SCI1)  
Memory Size:  
2 = 8K bytes  
Temperature Ranges:  
A = –40°C to 85°C  
L =  
0°C to 70°C  
T = –40°C to 105°C  
Packages:  
FN = Plastic Leaded Chip Carrier  
FZ = Ceramic Leaded Chip Carrier  
ROM and EPROM Option:  
A = For ROM device, the watchdog timer can be configured  
as one of the three different mask options:  
– A standard watchdog  
– A hard watchdog  
– A simple watchdog  
The clock mask option can be either:  
– Divide-by-4 clock  
– Divide-by-1 (PLL) clock  
The low-power modes can be either:  
– Enabled  
– Disabled  
NONE = For EPROM device, a standard watchdog, a  
divide-by-4 clock, and low-power modes are enabled.  
Figure 12. TMS370Cx0x Family Nomenclature  
33  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx0x  
8-BIT MICROCONTROLLER  
SPNS029C – SEPTEMBER 1995 – REVISED FEBRUARY 1997  
device part numbers  
Table 16 provides all of the ’x0x devices available. The device part number nomenclature is designed to assist  
ordering. Upon ordering, the customer must specify not only the device part number, but also the clock and  
watchdog timer options desired. Each device can have only one of the three possible watchdog timer options  
and one of the two clock options. The options to be specified pertain solely to orders involving ROM devices.  
Table 16. Device Part Numbers  
DEVICE PART NUMBERS  
FOR 28 PINS (LCC)  
TMS370C002AFNA  
TMS370C002AFNL  
TMS370C002AFNT  
TMS370C302AFNA  
TMS370C302AFNL  
TMS370C302AFNT  
TMS370C702FNT  
SE370C702FZT  
System evaluators are for use in prototype environment and their  
reliability has not been characterized.  
34  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx0x  
8-BIT MICROCONTROLLER  
SPNS029C – SEPTEMBER 1995 – REVISED FEBRUARY 1997  
new code release form  
Figure 13 shows a sample of the new code release form.  
NEW CODE RELEASE FORM  
TEXAS INSTRUMENTS  
DATE:  
TMS370 MICROCONTROLLER PRODUCTS  
To release a new customer algorithm to TI incorporated into a TMS370 family microcontroller, complete this form and submit with the following information:  
1. A ROM description in object form on Floppy Disk, Modem XFR, or EPROM (Verification file will be returned via same media)  
2. An attached specification if not using TI standard specification as incorporated in TI’s applicable device data book.  
Company Name:  
Street Address:  
Street Address:  
City:  
Contact Mr./Ms.:  
Phone: (  
)
Ext.:  
State  
Zip  
Customer Purchase Order Number:  
Customer Print Number *Yes:  
No:  
*If Yes: Customer must provide ”print” to TI w/NCRF for approval before ROM  
code processing starts.  
#
Customer Part Number:  
Customer Application:  
(Std. spec to be followed)  
TMS370 Device:  
TI Customer ROM Number:  
(provided by Texas Instruments)  
CONTACT OPTIONS FOR THE ’A’ VERSION TMS370 MICROCONTROLLERS  
OSCILLATOR FREQUENCY  
Low Power Modes  
[] Enabled  
[] Disabled  
Watchdog counter  
[] Standard  
[] Hard Enabled  
[] Simple Counter  
Clock Type  
[] Standard (/4)  
[] PLL (/1)  
MIN  
TYP  
MAX  
[] External Drive (CLKIN)  
[] Crystal  
[] Ceramic Resonator  
NOTE:  
Non ’A’ version ROM devices of the TMS370 microcontrollers will have the  
“Low-powermodesEnabled”, “Divide-by-4Clock, andStandardWatchdog  
options. See the TMS370 Family User’s Guide (literature number SPNU127)  
or the TMS370 Family Data Manual (literature number SPNS014B).  
[] Supply Voltage MIN:  
(std range: 4.5V to 5.5V)  
MAX:  
TEMPERATURE RANGE  
PACKAGE TYPE  
[] ’L’:  
[] ’A’:  
[] ’T’:  
0° to 70°C (standard)  
–40° to 85°C  
–40° to 105°C  
[] ’N’ 28-pin PDIP  
[] “FN” 28-pin PLCC  
[] “N” 40-pin PDIP  
[] “FN” 44-pin PLCC  
[] “FN” 68-pin PLCC  
[] “NM” 64-pin PSDIP  
[] “NJ” 40-pin PSDIP (formerly known as N2)  
SYMBOLIZATION  
BUS EXPANSION  
[] TI standard symbolization  
[] YES  
[] NO  
[] TI standard w/customer part number  
[] Customer symbolization  
(per attached spec, subject to approval)  
NON-STANDARD SPECIFICATIONS:  
ALL NON-STANDARDS SPECIFICATIONS MUST BE APPROVED BY THE TI ENGINEERING STAFF: If the customer requires expedited production material  
(i.e., product which must be started in process prior to prototype approval and full production release) and non-standard spec issues are not resolved to the  
satisfaction of both the customer and TI in time for a scheduled shipment, the specification parameters in question will be processed/tested to the standard  
TI spec. Any such devices which are shipped without conformance to a mutually approved spec, will be identified by a ’P’ in the symbolization preceding the  
TI part number.  
RELEASE AUTHORIZATION:  
This document, including any referenced attachments, is and will be the controlling document for all orders placed for this TI custom device. Any changes must  
be in writing and mutually agreed to by both the customer and TI. The prototype cycletime commences when this document is signed off and the verification  
code is approved by the customer.  
1. Customer:  
Date:  
2. TI: Field Sales:  
Marketing:  
Prod. Eng.:  
Proto. Release:  
Figure 13. Sample New Code Release Form  
35  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx0x  
8-BIT MICROCONTROLLER  
SPNS029C – SEPTEMBER 1995 – REVISED FEBRUARY 1997  
Table 17. Peripheral File Frame Compilation  
Table 17 is a collection of all the peripheral file frames used in the ’Cx0x (provided for a quick reference).  
PF  
BIT 7  
BIT 6  
BIT 5  
BIT 4  
BIT 3  
BIT 2  
BIT 1  
BIT 0  
REG  
System Configuration Registers  
COLD  
START  
OSC  
POWER  
PF AUTO  
WAIT  
OSC FLT  
FLAG  
MC PIN  
WPO  
MC PIN  
DATA  
µP/µC  
MODE  
P010  
P011  
P012  
SCCR0  
SCCR1  
SCCR2  
AUTO  
WAIT  
DISABLE  
MEMORY  
DISABLE  
HALT/  
STANDBY  
PWRDWN/  
IDLE  
BUS  
STEST  
CPU  
STEST  
INT1  
NMI  
PRIVILEGE  
DISABLE  
P013  
to  
Reserved  
P016  
INT1  
FLAG  
INT1  
PIN DATA  
INT1  
POLARITY  
INT1  
PRIORITY  
INT1  
ENABLE  
P017  
P018  
P019  
INT1  
INT2  
INT2  
FLAG  
INT2  
PIN DATA  
INT2  
DATA DIR  
INT2  
DATA OUT  
INT2  
POLARITY  
INT2  
PRIORITY  
INT2  
ENABLE  
INT3  
FLAG  
INT3  
PIN DATA  
INT3  
DATA DIR  
INT3  
DATA OUT  
INT3  
POLARITY  
INT3  
PRIORITY  
INT3  
ENABLE  
INT3  
P01A  
P01B  
P01C  
BUSY  
BUSY  
AP  
W1W0  
W0  
EXE  
EXE  
DEECTL  
Reserved  
VPPS  
EPCTL  
P01D  
P01E  
P01F  
Reserved  
Digital Port Control Registers  
P020  
P021  
P022  
P023  
Reserved  
APORT1  
APORT2  
ADATA  
ADIR  
Port A Control Register 2 (must be 0)  
Port A Data  
Port A Direction  
P024  
to  
Reserved  
P02B  
P02C  
P02D  
P02E  
P02F  
Port D Control Register 1 (must be 0)  
DPORT1  
DPORT2  
DDATA  
DDIR  
Port D Control Register 2 (must be 0)  
Port D Data  
Port D Direction  
Timer Module Register Memory Map  
Modes: Dual-Compare and Capture/Compare  
P040 Bit 15  
P041 Bit 7  
P042 Bit 15  
P043 Bit 7  
T1Counter MSbyte  
T1 Counter LSbyte  
Bit 8 T1CNTR  
Bit 0  
Compare Register MSbyte  
Compare Register LSbyte  
Bit 8 T1C  
Bit 0  
To configure pin D3 as SYSCLK, set port D control register 2 = 08h.  
36  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx0x  
8-BIT MICROCONTROLLER  
SPNS029C – SEPTEMBER 1995 – REVISED FEBRUARY 1997  
Table 17. Peripheral File Frame Compilation (Continued)  
PF  
BIT 7  
BIT 6  
BIT 5  
BIT 4  
BIT 3  
BIT 2  
BIT 1  
BIT 0  
REG  
Modes: Dual-Compare and Capture/Compare (Continued)  
P044 Bit 15  
P045 Bit 7  
P046 Bit 15  
P047 Bit 7  
P048 Bit 7  
Capture/Compare Register MSbyte  
Capture/Compare Register LSbyte  
Watchdog Counter MSbyte  
Watchdog Counter LSbyte  
Watchdog Reset Key  
Bit 8 T1CC  
Bit 0  
Bit 8 WDCNTR  
Bit 0  
Bit 0 WDRST  
WD OVRFL  
TAP SEL  
WD INPUT  
SELECT2  
WD INPUT  
SELECT1  
WD INPUT  
SELECT0  
T1 INPUT  
SELECT2  
T1 INPUT  
SELECT1  
T1 INPUT  
SELECT0  
P049  
P04A  
T1CTL1  
T1CTL2  
WD OVRFL  
WD OVRFL  
INT ENA  
WD OVRFL  
INT FLAG  
T1 OVRFL  
INT ENA  
T1 OVRFL  
INT FLAG  
T1  
RST ENA  
SW RESET  
Mode: Dual-Compare  
T1EDGE  
INT FLAG  
T1C2  
INT FLAG  
T1C1  
INT FLAG  
T1EDGE  
INT ENA  
T1C2  
INT ENA  
T1C1  
INT ENA  
P04B  
T1CTL3  
T1CTL4  
T1C1  
OUT ENA  
T1C2  
OUT ENA  
T1C1  
RST ENA  
T1CR  
OUT ENA  
T1EDGE  
POLARITY  
T1CR  
RST ENA  
T1EDGE  
DET ENA  
P04C T1 MODE=0  
Mode: Capture/Compare  
T1EDGE  
T1C1  
INT FLAG  
T1EDGE  
INT ENA  
T1C1  
INT ENA  
P04B  
P04C  
T1CTL3  
T1CTL4  
INT FLAG  
T1  
T1C1  
T1C1  
RST ENA  
T1EDGE  
POLARITY  
T1EDGE  
DET ENA  
MODE = 1  
OUT ENA  
Modes: Dual-Compare and Capture/Compare  
T1EVT  
DATA IN  
T1EVT  
DATA OUT  
T1EVT  
FUNCTION  
T1EVT  
DATA DIR  
P04D  
P04E  
P04F  
T1PC1  
T1PC2  
T1PRI  
T1PWM  
DATA IN  
T1PWM  
DATA OUT  
T1PWM  
FUNCTION  
T1PWM  
DATA DIR  
T1IC/CR  
DATA IN  
T1IC/CR  
DATA OUT  
T1IC/CR  
FUNCTION  
T1IC/CR DATA  
DIR  
T1  
T1 STEST  
PRIORITY  
SCI1 Module Control Memory Map  
EVEN/ODD  
PARITY  
PARITY  
ENABLE  
ASYNC/  
ISOSYNC  
ADDRESS/  
IDLE WUP  
P050 STOP BITS  
SCI CHAR2  
SLEEP  
SCI CHAR1  
TXENA  
SCI CHAR0  
RXENA  
SCICCR  
SCICTL  
SCI SW  
RESET  
P051  
CLOCK  
TXWAKE  
BAUDF  
(MSB)  
P052  
P053  
P054  
BAUDE  
BAUD6  
BAUDD  
BAUD5  
BAUDC  
BAUD4  
BAUDB  
BAUD3  
BAUDA  
BAUD2  
BAUD9  
BAUD1  
BAUD8  
BAUD MSB  
BAUD7  
TXRDY  
BAUD0 (LSB) BAUD LSB  
SCI TX  
TXCTL  
TX EMPTY  
INT ENA  
RX  
ERROR  
SCI RX  
RXCTL  
P055  
RXRDY  
RXDT6  
BRKDT  
RXDT5  
FE  
OE  
PE  
RXWAKE  
RXDT1  
INT ENA  
P056  
P057  
P058  
Reserved  
RXDT7  
RXDT4  
RXDT3  
RXDT2  
RXDT0  
RXBUF  
Reserved  
Once the WD OVRFL RST ENA bit is set, these bits cannot be changed until a reset; this applies only to the standard  
watchdog and to simple counter. In the hard watchdog, these bits can be modified at any time; the WD INPUT SELECT2  
bits are ignored.  
37  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx0x  
8-BIT MICROCONTROLLER  
SPNS029C – SEPTEMBER 1995 – REVISED FEBRUARY 1997  
Table 17. Peripheral File Frame Compilation (Continued)  
PF  
BIT 7  
BIT 6  
BIT 5  
BIT 4  
BIT 3  
BIT 2  
BIT 1  
BIT 0  
REG  
SCI1 Module Control Memory Map (Continued)  
P059  
TXDT7  
TXDT6  
TXDT5  
TXDT4  
TXDT3  
Reserved  
TXDT2  
TXDT1  
TXDT0  
TXBUF  
P05A  
P05B  
P05C  
SCICLK  
DATA IN  
SCICLK  
DATA OUT  
SCICLK  
FUNCTION  
SCICLK DATA  
DIR  
P05D  
P05E  
SCIPC1  
SCIPC2  
SCIPRI  
SCITXD  
DATA IN  
SCITXD  
DATA OUT  
SCITXD  
FUNCTION  
SCITXD  
DATA DIR  
SCIRXD  
DATA IN  
SCIRXD  
DATA OUT  
SCIRXD  
FUNCTION  
SCIRXD DATA  
DIR  
SCITX  
PRIORITY  
SCIRX  
PRIORITY  
SCI  
ESPEN  
P05F SCI STEST  
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)  
Supply voltage range,V  
(see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.6 V to 7 V  
CC  
Input voltage range, All pins except MC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.6 V to 7 V  
MC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.6 V to 14 V  
Input clamp current, I (V < 0 or V > V  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±20 mA  
(V < 0 or V > V ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±20 mA  
IK  
I
I
CC)  
Output clamp current, I  
OK  
O
O
CC  
Continuous output current per buffer, I (V = 0 to V ) (see Note 2) . . . . . . . . . . . . . . . . . . . . . . . . . ±10 mA  
O
O
CC)  
Maximum I  
current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170 mA  
CC  
Maximum I current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 170 mA  
SS  
Continuous power dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 500 mW  
Operating free-air temperature range, T L version . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0°C to 70°C  
A:  
A version . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 40°C to 85°C  
T version . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 40°C to 105°C  
Storage temperature range, T  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65°C to 150°C  
stg  
Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and  
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not  
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
NOTES: 1. Unless otherwise noted, all voltage values are with respect to V  
.
SS  
2. Electrical characteristics are specified with all output buffers loaded with specified I current. Exceeding the specified I current in  
O
O
any buffer can affect the levels on other buffers.  
38  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx0x  
8-BIT MICROCONTROLLER  
SPNS029C – SEPTEMBER 1995 – REVISED FEBRUARY 1997  
recommended operating conditions  
MIN  
4.5  
3
NOM  
MAX  
5.5  
UNIT  
V
Supply voltage (see Note 1)  
5
V
V
CC  
RAM data-retention supply voltage (see Note 3)  
All pins except MC  
5.5  
V
V
SS  
0.8  
Low-level input voltage  
V
V
IL  
MC, normal operation  
V
SS  
0.3  
All pins except MC, XTAL2/CLKIN, and  
RESET  
2
V
CC  
V
V
High-level input voltage  
IH  
XTAL2/CLKIN  
0.8 V  
0.7 V  
V
CC  
CC  
CC  
RESET  
V
CC  
13  
EEPROM write protect override (WPO)  
11.7  
13  
12  
MC (mode control) voltage  
EPROM programming voltage (V  
Microcomputer  
L version  
)
13.2  
13.5  
0.3  
70  
V
MC  
PP  
V
SS  
0
T
A
Operating free-air temperature  
A version  
– 40  
– 40  
85  
°C  
T version  
105  
NOTES: 1. Unless otherwise noted, all voltage values are with respect to V  
.
SS  
3. RESET must be activated externally when V  
CC  
or SYSCLK is not within the recommended operating range.  
39  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx0x  
8-BIT MICROCONTROLLER  
SPNS029C – SEPTEMBER 1995 – REVISED FEBRUARY 1997  
electrical characteristics over recommended operating free-air temperature range (unless  
otherwise noted)  
PARAMETER  
Low-level output voltage  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
V
V
I
I
I
= 1.4 mA  
= 50 µA  
= 2 mA  
0.4  
V
OL  
OL  
OH  
OH  
0.9 V  
CC  
High-level output voltage  
Input current  
V
OH  
2.4  
0 V V 0.3 V  
10  
I
µA  
0.3 V < V 13 V  
650  
I
MC  
I
I
See Note 4  
50  
mA  
12 V V 13 V  
I
I/O pins  
0 V V V  
± 10  
µA  
mA  
µA  
I
CC  
I
I
Low-level output current  
High-level output current  
V
OL  
V
OH  
V
OH  
= 0.4 V  
1.4  
– 50  
– 2  
OL  
= 0.9 V  
= 2.4 V  
CC  
OH  
mA  
See Notes 5 and 6  
SYSCLK = 5 MHz  
20  
13  
5
36  
25  
11  
Supply current (operating mode)  
OSC POWER bit = 0 (see Note 7)  
See Notes 5 and 6  
SYSCLK = 3 MHz  
mA  
mA  
See Notes 5 and 6  
SYSCLK = 0.5 MHz  
See Notes 5 and 6  
SYSCLK = 5 MHz  
10  
6.5  
2
17  
11  
Supply current (STANDBY mode)  
OSC POWER bit = 0 (see Note 8)  
See Notes 5 and 6  
SYSCLK = 3 MHz  
I
CC  
See Notes 5 and 6  
SYSCLK = 0.5 MHz  
3.5  
8.6  
3.0  
30  
See Notes 5 and 6  
SYSCLK = 3 MHz  
4.5  
1.5  
1
Supply current (STANDBY mode)  
OSC POWER bit = 1 (see Note 9)  
mA  
See Notes 5 and 6  
SYSCLK = 0.5 MHz  
See Note 5  
XTAL2/CLKIN < 0.2 V  
Supply current (HALT mode)  
µA  
NOTES: 4. Input current I  
is a maximum of 50 mA only when programming EPROM.  
PP  
5. Single chip mode, ports configured as inputs or outputs with no load. All inputs 0.2 V or V  
– 0.2 V.  
CC  
6. XTAL2/CLKIN is driven with an external square wave signal with 50% duty cycle and rise and fall times less than 10 ns. Current  
can be higher with a crystal oscillator. At 5 MHz SYSCLK, this extra current = 0.01 mA x (total load capacitance + crystal capacitance  
in pF).  
7. Maximum operating current = 5.6 (SYSCLK) + 8 mA.  
8. Maximum standby current = 3 (SYSCLK) + 2 mA. (OSC POWER bit = 0).  
9. Maximum standby current = 2.24 (SYSCLK) + 1.9 mA. (OSC POWER bit = 1, only valid up to 3 MHz of SYSCLK).  
40  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx0x  
8-BIT MICROCONTROLLER  
SPNS029C – SEPTEMBER 1995 – REVISED FEBRUARY 1997  
XTAL2/CLKIN  
XTAL1  
XTAL2/CLKIN  
XTAL1  
C3 (see Note B)  
C1  
C2 (see Note B)  
Crystal/Ceramic  
Resonator  
(see Note A)  
External  
Clock Signal  
(see Note B)  
NOTES: A. The crystal/ceramic resonator frequency is four times the reciprocal of the system clock period.  
B. The values of C1 and C2 are typically 15 pF and C3 is typically 50 pF. See the manufacturer’s recommendations for ceramic  
resonators.  
Figure 14. Recommended Crystal/Clock Connections  
Load Voltage  
1.2 kΩ  
V
O
20 pF  
Case 1: V = V  
= 2.4 V; Load Voltage = 0 V  
= 0.4 V; Load Voltage = 2.1 V  
O
OH  
OL  
Case 2: V = V  
O
NOTE A: All measurements are made with the pin loading as shown unless otherwise noted. All measurements are made with XTAL2/CLKIN  
driven by an external square wave signal with a 50% duty cycle and rise and fall times less than 10 ns unless otherwise stated.  
Figure 15. Typical Output Load Circuit (See Note A)  
V
CC  
V
CC  
300 Ω  
30 Ω  
Pin Data  
6 kΩ  
Output  
Enable  
I/O  
INT1  
20 Ω  
20 Ω  
GND  
GND  
Figure 16. Typical Buffer Circuitry  
41  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx0x  
8-BIT MICROCONTROLLER  
SPNS029C – SEPTEMBER 1995 – REVISED FEBRUARY 1997  
PARAMETER MEASUREMENT INFORMATION  
timing parameter symbology  
Timing parameter symbols have been created in accordance with JEDEC Standard 100. In order to shorten the  
symbols, some of the pin names and other related terminology have been abbreviated as follows:  
AR  
B
Array  
SC  
SYSCLK  
Byte  
SCC SCICLK  
CI  
XTAL2/CLKIN  
TXD  
SCITXD  
RXD SCIRXD  
Lowercase subscripts and their meanings are:  
c
d
f
cycle time (period)  
delay time  
fall time  
su  
v
setup time  
valid time  
w
pulse duration (width)  
r
rise time  
The following additional letters are used with these meanings:  
H
L
High  
Low  
Valid  
V
All timings are measured between high and low measurement points as indicated in Figure 17 and Figure 18.  
0.8 V  
V (High)  
2 V (High)  
CC  
0.8 V (Low)  
0.8 V (Low)  
Figure 17. XTAL2/CLKIN Measurement Points  
Figure 18. General Measurement Points  
42  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx0x  
8-BIT MICROCONTROLLER  
SPNS029C – SEPTEMBER 1995 – REVISED FEBRUARY 1997  
external clocking requirements for divide-by-4 clock (see Note 10 and Figure 19)  
NO.  
1
MIN  
MAX  
UNIT  
ns  
t
t
t
t
Pulse duration, XTAL2/CLKIN (see Note 11)  
Rise time, XTAL2/CLKIN  
20  
w(Cl)  
2
30  
30  
100  
20  
5
ns  
r(Cl)  
3
Fall time, XTAL2/CLKIN  
ns  
f(CI)  
4
Delay time, XTAL2/CLKIN rise to SYSCLK fall  
Crystal operating frequency  
ns  
d(CIH-SCL)  
CLKIN  
2
MHz  
MHz  
SYSCLK  
Internal system clock operating frequency  
0.5  
SYSCLK = CLKIN/4  
NOTES: 10. For V and V , refer to recommended operating conditions.  
IL IH  
11. This pulse can be either a high pulse, which extends from the earliest valid high to the final valid high in an XTAL2/CLKIN cycle, or  
a low pulse, which extends from the earliest valid low to the final valid low in an XTAL2/CLKIN cycle.  
1
XTAL2/CLKIN  
2
3
4
SYSCLK  
Figure 19. External Clock Timing for Divide-by-4  
external clocking requirements for divide-by-1 clock (PLL) (see Note 10 and Figure 20)  
NO.  
1
MIN  
MAX  
UNIT  
ns  
t
t
t
t
Pulse duration, XTAL2/CLKIN (see Note 11)  
Rise time, XTAL2/CLKIN  
20  
w(Cl)  
2
30  
30  
100  
5
ns  
r(Cl)  
3
Fall time, XTAL2/CLKIN  
ns  
f(CI)  
4
Delay time, XTAL2/CLKIN rise to SYSCLK rise  
Crystal operating frequency  
ns  
d(CIH-SCH)  
CLKIN  
2
2
MHz  
MHz  
SYSCLK  
Internal system clock operating frequency  
5
SYSCLK = CLKIN/1  
NOTES: 10. For V and V , refer to recommended operating conditions.  
IL IH  
11. This pulse can be either a high pulse, which extends from the earliest valid high to the final valid high in an XTAL2/CLKIN cycle, or  
a low pulse, which extends from the earliest valid low to the final valid low in an XTAL2/CLKIN cycle.  
1
XTAL2/CLKIN  
4
2
3
SYSCLK  
Figure 20. External Clock Timing for Divide-by-1  
43  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx0x  
8-BIT MICROCONTROLLER  
SPNS029C – SEPTEMBER 1995 – REVISED FEBRUARY 1997  
switching characteristics and timing requirements (see Note 12 and Figure 21)  
NO.  
PARAMETER  
MIN  
200  
200  
MAX  
2000  
500  
UNIT  
Divide-by-4  
Divide-by-1  
5
t
c
Cycle time, SYSCLK (system clock)  
ns  
6
7
t
t
Pulse duration, SYSCLK low  
Pulse duration, SYSCLK high  
0.5 t –20  
0.5 t  
c
ns  
ns  
w(SCL)  
c
0.5 t  
0.5 t + 20  
c
w(SCH)  
c
NOTE 12: t = system-clock cycle time = 1/SYSCLK  
c
5
7
6
SYSCLK  
Figure 21. SYSCLK Timing  
general purpose output signal switching time requirements (see Figure 22)  
MIN NOM  
MAX  
UNIT  
ns  
t
t
Rise time  
Fall time  
30  
30  
r
ns  
f
t
r
t
f
Figure 22. Signal Switching Time  
recommended EEPROM timing requirements for programming  
MIN  
10  
MAX  
UNIT  
ms  
t
t
Pulse duration, programming signal to ensure valid data is stored (byte mode)  
Pulse duration, programming signal to ensure valid data is stored (array mode)  
w(PGM)B  
20  
ms  
w(PGM)AR  
recommended EPROM operating conditions for programming  
MIN NOM  
MAX  
6
UNIT  
V
V
V
Supply voltage  
4.75  
13  
5.5  
13.2  
30  
CC  
Supply voltage at MC pin  
13.5  
50  
5
V
PP  
I
Supply current at MC pin during programming (V  
= 13 V)  
mA  
PP  
PP  
Divide-by-4  
Divide-by-1  
0.5  
2
SYSCLK  
System clock operating frequency  
MHz  
5
recommended EPROM timing requirements for programming  
MIN NOM  
0.40 0.50  
MAX  
UNIT  
t
Pulse duration, programming signal (see Note 13)  
3
ms  
w(EPGM)  
NOTE 13: Programming pulse is active when both EXE (EPCTL.0) and V  
(EPCTL.6) are set.  
PPS  
44  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx0x  
8-BIT MICROCONTROLLER  
SPNS029C – SEPTEMBER 1995 – REVISED FEBRUARY 1997  
SCI1 isosynchronous mode timing characteristics and requirements for internal clock  
(see Note 12 and Figure 23)  
NO.  
24  
25  
26  
27  
28  
29  
30  
MIN  
2t  
MAX  
UNIT  
ns  
t
t
t
t
t
t
t
Cycle time, SCICLK  
131072t  
c
c(SCC)  
c
Pulse duration, SCICLK low  
t
c
t
c
– 45  
– 45  
0.5t  
0.5t  
+45  
+45  
ns  
w(SCCL)  
c(SCC)  
Pulse duration, SCICLK high  
ns  
w(SCCH)  
c(SCC)  
60  
Delay time, SCITXD valid after SCICLK low  
Valid time, SCITXD data valid after SCICLK high  
Setup time, SCIRXD to SCICLK high  
Valid time, SCIRXD data valid after SCICLK high  
– 50  
ns  
d(SCCL-TXDV)  
v(SCCH-TXD)  
su(RXD-SCCH)  
v(SCCH-RXD)  
t
– 50  
ns  
w(SCCH)  
0.25 t + 145  
c
ns  
0
ns  
NOTE 12: t = system-clock cycle time = 1/SYSCLK  
c
24  
26  
25  
SCICLK  
28  
27  
Data Valid  
SCITXD  
29  
30  
Data Valid  
SCIRXD  
Figure 23. SCI1 Isosynchronous Mode Timing for Internal Clock  
45  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx0x  
8-BIT MICROCONTROLLER  
SPNS029C – SEPTEMBER 1995 – REVISED FEBRUARY 1997  
SCI1 isosynchronous mode timing characteristics and requirements for external clock  
(see Note 12 and Figure 24)  
NO.  
31  
32  
33  
34  
35  
36  
37  
MIN  
10t  
MAX  
UNIT  
ns  
t
t
t
t
t
t
t
Cycle time, SCICLK  
c(SCC)  
c
Pulse duration, SCICLK low  
4.25t + 120  
ns  
w(SCCL)  
c
Pulse duration, SCICLK high  
t
c
+ 120  
ns  
w(SCCH)  
Delay time, SCITXD valid after SCICLK low  
Valid time, SCITXD data valid after SCICLK high  
Setup time, SCIRXD to SCICLK high  
Valid time, SCIRXD data after SCICLK high  
4.25t + 145  
ns  
d(SCCL-TXDV)  
v(SCCH-TXD)  
su(RXD-SCCH)  
v(SCCH-RXD)  
c
t
ns  
w(SCCH)  
40  
ns  
2t  
c
ns  
NOTE 12: t = system-clock cycle time = 1/SYSCLK  
c
31  
33  
32  
SCICLK  
35  
34  
Data Valid  
SCITXD  
36  
37  
Data Valid  
SCIRXD  
Figure 24. SCI1 Isosynchronous Timing for External Clock  
Table 18 is designed to aid the user in referencing a device part number to a mechanical drawing. The table  
shows a cross-reference of the device part number to the TMS370 generic package name and the associated  
mechanical drawing by drawing number and name.  
Table 18. TMS370Cx0x Family Package Type and Mechanical Cross-Reference  
PKG TYPE  
(mil pin spacing)  
PKG TYPE NO. AND  
MECHANICAL NAME  
TMS370 GENERIC NAME  
DEVICE PART NUMBERS  
TMS370C002AFNA  
TMS370C002AFNL  
TMS370C002AFNT  
TMS370C302AFNA  
TMS370C302AFNL  
TMS370C302AFNT  
TMS370C702FNT  
FN – 28 pin  
(50-mil pin spacing)  
PLASTIC LEADED CHIP CARRIER  
(PLCC)  
FN(S-PQCC-J**) PLASTIC J-LEADED  
CHIP CARRIER  
FZ – 28 pin  
(50-mil pin spacing)  
CERAMIC LEADED CHIP CARRIER  
(CLCC)  
FZ(S-CQCC-J**) J-LEADED CERAMIC  
CHIP CARRIER  
SE370C702FZT  
46  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx0x  
8-BIT MICROCONTROLLER  
SPNS029C – SEPTEMBER 1995 – REVISED FEBRUARY 1997  
MECHANICAL DATA  
FN (S-PQCC-J**)  
PLASTIC J-LEADED CHIP CARRIER  
20 PIN SHOWN  
Seating Plane  
0.004 (0,10)  
0.180 (4,57) MAX  
0.120 (3,05)  
D
0.090 (2,29)  
D1  
0.020 (0,51) MIN  
3
1
19  
0.032 (0,81)  
0.026 (0,66)  
4
18  
D2/E2  
D2/E2  
E
E1  
8
14  
0.021 (0,53)  
0.013 (0,33)  
0.007 (0,18)  
0.050 (1,27)  
9
13  
M
0.008 (0,20) NOM  
D/E  
D1/E1  
D2/E2  
NO. OF  
PINS  
**  
MIN  
0.385 (9,78)  
MAX  
MIN  
MAX  
MIN  
MAX  
0.395 (10,03)  
0.350 (8,89)  
0.356 (9,04)  
0.141 (3,58)  
0.191 (4,85)  
0.291 (7,39)  
0.341 (8,66)  
0.169 (4,29)  
0.219 (5,56)  
0.319 (8,10)  
0.369 (9,37)  
20  
28  
44  
52  
68  
84  
0.485 (12,32) 0.495 (12,57) 0.450 (11,43) 0.456 (11,58)  
0.685 (17,40) 0.695 (17,65) 0.650 (16,51) 0.656 (16,66)  
0.785 (19,94) 0.795 (20,19) 0.750 (19,05) 0.756 (19,20)  
0.985 (25,02) 0.995 (25,27) 0.950 (24,13) 0.958 (24,33) 0.441 (11,20) 0.469 (11,91)  
1.185 (30,10) 1.195 (30,35) 1.150 (29,21) 1.158 (29,41) 0.541 (13,74) 0.569 (14,45)  
4040005/B 03/95  
NOTES: A. All linear dimensions are in inches (millimeters).  
B. This drawing is subject to change without notice.  
C. Falls within JEDEC MS-018  
47  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx0x  
8-BIT MICROCONTROLLER  
SPNS029C – SEPTEMBER 1995 – REVISED FEBRUARY 1997  
MECHANICAL DATA  
FZ (S-CQCC-J**)  
J-LEADED CERAMIC CHIP CARRIER  
28 LEAD SHOWN  
0.040 (1,02)  
45°  
Seating Plane  
0.180 (4,57)  
0.155 (3,94)  
0.140 (3,55)  
A
B
1
0.120 (3,05)  
26  
4
25  
5
0.050 (1,27)  
C
(at Seating  
Plane)  
A
B
0.032 (0,81)  
0.026 (0,66)  
0.020 (0,51)  
0.014 (0,36)  
19  
11  
18  
12  
0.025 (0,64) R TYP  
0.040 (1,02) MIN  
0.120 (3,05)  
0.090 (2,29)  
A
B
C
JEDEC  
NO. OF  
PINS**  
OUTLINE  
MIN  
MAX  
MIN  
MAX  
MIN  
MAX  
0.485  
0.495  
0.430  
0.455  
0.410  
0.430  
MO-087AA  
MO-087AB  
MO-087AC  
MO-087AD  
28  
44  
52  
68  
(12,32)  
(12,57)  
(10,92)  
(11,56)  
(10,41)  
(10,92)  
0.685  
0.695  
0.630  
0.655  
0.610  
0.630  
(17,40)  
(17,65)  
(16,00)  
(16,64)  
(15,49)  
(16,00)  
0.785  
0.795  
0.730  
0.765  
0.680  
0.740  
(19,94)  
(20,19)  
(18,54)  
(19,43)  
(17,28)  
(18,79)  
0.985  
0.995  
0.930  
0.955  
0.910  
0.930  
(25,02)  
(25,27)  
(23,62)  
(24,26)  
(23,11)  
(23,62)  
4040219/B 03/95  
NOTES: A. All linear dimensions are in inches (millimeters).  
B. This drawing is subject to change without notice.  
C. This package can be hermetically sealed with a ceramic lid using glass frit.  
48  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
PACKAGE OPTION ADDENDUM  
www.ti.com  
4-May-2009  
PACKAGING INFORMATION  
Orderable Device  
Status (1)  
Package Package  
Pins Package Eco Plan (2) Lead/Ball Finish MSL Peak Temp (3)  
Qty  
Type  
JLCC  
PLCC  
Drawing  
SE370C702FZT  
OBSOLETE  
OBSOLETE  
FZ  
28  
28  
TBD  
TBD  
Call TI  
Call TI  
Call TI  
Call TI  
TMS370C702FNT  
FN  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in  
a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2)  
Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check  
http://www.ti.com/productcontent for the latest availability information and additional product content details.  
TBD: The Pb-Free/Green conversion plan has not been defined.  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements  
for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered  
at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.  
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and  
package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS  
compatible) as defined above.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame  
retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)  
(3)  
MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder  
temperature.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is  
provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the  
accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take  
reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on  
incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited  
information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI  
to Customer on an annual basis.  
Addendum-Page 1  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements,  
and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should  
obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are  
sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.  
TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard  
warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where  
mandated by government requirements, testing of all parameters of each product is not necessarily performed.  
TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and  
applications using TI components. To minimize the risks associated with customer products and applications, customers should provide  
adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right,  
or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information  
published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a  
warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual  
property of the third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied  
by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive  
business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional  
restrictions.  
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all  
express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not  
responsible or liable for any such statements.  
TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably  
be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing  
such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and  
acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products  
and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be  
provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in  
such safety-critical applications.  
TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are  
specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military  
specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at  
the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.  
TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are  
designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated  
products in automotive applications, TI will not be responsible for any failure to meet such requirements.  
Following are URLs where you can obtain information on other Texas Instruments products and application solutions:  
Products  
Amplifiers  
Applications  
Audio  
Automotive  
Broadband  
Digital Control  
Medical  
Military  
Optical Networking  
Security  
amplifier.ti.com  
dataconverter.ti.com  
www.dlp.com  
www.ti.com/audio  
Data Converters  
DLP® Products  
DSP  
Clocks and Timers  
Interface  
www.ti.com/automotive  
www.ti.com/broadband  
www.ti.com/digitalcontrol  
www.ti.com/medical  
www.ti.com/military  
www.ti.com/opticalnetwork  
www.ti.com/security  
www.ti.com/telephony  
www.ti.com/video  
dsp.ti.com  
www.ti.com/clocks  
interface.ti.com  
logic.ti.com  
power.ti.com  
microcontroller.ti.com  
www.ti-rfid.com  
Logic  
Power Mgmt  
Microcontrollers  
RFID  
Telephony  
Video & Imaging  
Wireless  
RF/IF and ZigBee® Solutions www.ti.com/lprf  
www.ti.com/wireless  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2009, Texas Instruments Incorporated  

相关型号:

SE370C702FZA

8-BIT, UVPROM, MICROCONTROLLER, CQCC28
TI

SE370C702FZL

8-BIT, UVPROM, MICROCONTROLLER, CQCC28
TI

SE370C702FZT

8-BIT MICROCONTROLLER
TI

SE370C702JNA

8-BIT, UVPROM, MICROCONTROLLER, CDIP64
TI

SE370C702JNL

8-BIT, UVPROM, MICROCONTROLLER, CDIP64
TI

SE370C702JNT

8-BIT, UVPROM, MICROCONTROLLER, CDIP64
TI

SE370C702YYZ

TMS370 MICROCONTROLLER FAMILY DATA BOOK
TI

SE370C710AFZL

8-BIT, UVPROM, MICROCONTROLLER, CQCC28
TI

SE370C710FZS

8-Bit Microcontroller
ETC

SE370C712A

8-BIT MICROCONTROLLER
TI

SE370C712AFZA

8-BIT, UVPROM, MICROCONTROLLER, CQCC28
TI

SE370C712AFZL

暂无描述
TI