SE370C712AJDT [TI]

8-BIT MICROCONTROLLER;
SE370C712AJDT
型号: SE370C712AJDT
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

8-BIT MICROCONTROLLER

可编程只读存储器 时钟 CD 微控制器 外围集成电路
文件: 总50页 (文件大小:730K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TMS370Cx1x  
8-BIT MICROCONTROLLER  
SPNS012F – MAY 1987 – REVISED FEBRUARY 1997  
JD AND N PACKAGES  
(TOP VIEW)  
CMOS/EEPROM/EPROM Technologies on  
a Single Device  
– Mask-ROM Devices for High-Volume  
Production  
– One-Time-Programmable (OTP) EPROM  
Devices for Low-Volume Production  
– Reprogrammable-EPROM Devices for  
Prototyping Purposes  
Internal System Memory Configurations  
– On-Chip Program Memory Versions  
– ROM: 2K, 4K, or 8K Bytes  
D6  
D7  
A7  
1
2
3
4
5
6
7
8
9
28 D3  
27 RESET  
26 D4  
V
25 SPISOMI  
24 SPICLK  
23 SPISIMO  
22 T1IC/CR  
21 T1PWM  
20 T1EVT  
19 MC  
CC  
XTAL2/CLKIN  
XTAL1  
A6  
A5  
A4  
A3 10  
A2 11  
18 INT3  
– EPROM: 8K Bytes  
V
12  
17 INT2  
SS  
A1 13  
16 INT1  
– Data EEPROM: 256 Bytes  
– Static RAM: 128 or 256 Bytes Usable as  
Registers  
A0 14  
15 D5  
FZ AND FN PACKAGES  
(TOP VIEW)  
Flexible Operating Features  
– Low-Power Modes: STANDBY and HALT  
– Commercial, Industrial, and Automotive  
Temperature Ranges  
4
3
2
1
28 27 26  
25  
– Clock Options  
5
XTAL2/CLKIN  
SPISOMI  
SPICLK  
SPISIMO  
T1IC/CR  
T1PWM  
T1EVT  
– Divide-by-1 (2 MHz–5 MHz SYSCLK)  
Phase-Locked Loop (PLL)  
– Divide-by-4 (0.5 MHz–5 MHz SYSCLK)  
6
XTAL1  
A6  
24  
23  
22  
21  
20  
19  
7
8
A5  
9
– Supply Voltage (V ) 5 V ±10%  
A4  
CC  
10  
11  
A3  
16-Bit General Purpose Timer  
– Software Configurable as  
a 16-Bit Event Counter, or  
A2  
MC  
12 13 14 15 16 1718  
a 16-Bit Pulse Accumulator, or  
a 16-Bit Input Capture Functions, or  
Two Compare Registers, or a  
Self-Contained PWM Function  
– Software Programmable Input Polarity  
– 8-Bit Prescaler, Providing a 24-Bit  
Real-Time Timer  
– Synchronous Master/Slave Operation  
TMS370 Series Compatibility  
– Register-to-Register Architecture  
– 128 or 256 General-Purpose Registers  
– 14 Powerful Addressing Modes  
– Instructions Upwardly Compatible With  
All TMS370 Devices  
CMOS/TTL Compatible I/O Pins/Packages  
– All Peripheral Function Pins Software  
Configurable for Digital I/O  
– 21 Bidirectional Pins, 1 Input Pin  
– 28-Pin Plastic and Ceramic DIP, or  
Leaded Chip Carrier (LCC) Packages  
Workstation/PC-Based Development  
System  
– C Compiler and C Source Debugger  
– Real-Time In-Circuit Emulation  
– Extensive Breakpoint/Trace Capability  
– Multi-Window User Interface  
On-Chip 24-Bit Watchdog Timer  
– EPROM/OTP Devices:  
– EPROM ’712A Standard Watchdog  
– EPROM ’712B Hard Watchdog  
– Mask-ROM Devices: Hard Watchdog,  
Simple Counter, or Standard Watchdog  
Flexible Interrupt Handling  
– Two Software Programmable Interrupt  
Levels  
– Global-and Individual-Interrupt Masking  
– Programmable Rising- or Falling-Edge  
Detect  
– Individual Interrupt Vectors  
Serial Peripheral Interface (SPI)  
– Variable-Length High-Speed Shift  
Register  
– Microcontroller Programmer  
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of  
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
Copyright 1997, Texas Instruments Incorporated  
PRODUCTION DATA information is current as of publication date.  
Products conform to specifications per the terms of Texas Instruments  
standard warranty. Production processing does not necessarily include  
testing of all parameters.  
1
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx1x  
8-BIT MICROCONTROLLER  
SPNS012F – MAY 1987 – REVISED FEBRUARY 1997  
Pin Descriptions  
28 PINS  
DIP and LCC  
DESCRIPTION  
I/O  
NAME NO.  
A0  
A1  
A2  
A3  
A4  
A5  
A6  
A7  
14  
13  
11  
10  
9
8
7
3
I / O  
Port A is a general-purpose bidirectional I/O port.  
D3  
D4  
D5  
D6  
D7  
28  
26  
15  
1
I / O  
Port D is a general-purpose bidirectional I/O port. D3 is also configurable as SYSCLK.  
2
INT1  
INT2  
INT3  
16  
17  
18  
I
External interrupt (non-maskable or maskable)/general-purpose input pin  
External maskable interrupt input/general-purpose bidirectional pin  
External maskable interrupt input/general-purpose bidirectional pin  
I / O  
I / O  
T1IC/CR  
T1PWM  
T1EVT  
22  
21  
20  
Timer1 input capture/counter reset input pin /general-purpose bidirectional pin  
Timer1 PWM output pin/general-purpose bidirectional pin  
Timer1 external event input pin/general-purpose bidirectional pin  
I / O  
I / O  
SPISOMI  
SPISIMO  
SPICLK  
25  
23  
24  
SPI slave output pin, master input pin/general-purpose bidirectional pin  
SPI slave input pin, master output pin/general-purpose bidirectional pin  
SPI bidirectional serial clock pin/general-purpose bidirectional pin  
System reset bidirectional pin; as input pin, RESET initializes the microcontroller; as open-drain output,  
RESET indicates that an internal failure was detected by watchdog or oscillator fault circuit.  
RESET  
MC  
27  
19  
I / O  
I
Mode control input pin; enables EEPROM write protection override (WPO) mode, also EPROM V  
PP  
XTAL2/CLKIN  
XTAL1  
5
6
I
O
Internal oscillator crystal input/External clock source input  
Internal oscillator output for crystal  
V
V
4
Positive supply voltage  
Ground reference  
CC  
12  
SS  
I = input, O = output  
2
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx1x  
8-BIT MICROCONTROLLER  
SPNS012F – MAY 1987 – REVISED FEBRUARY 1997  
functional block diagram  
XTAL2/  
CLKIN  
INT1  
INT2  
INT3  
XTAL1  
MC  
RESET  
Clock Options:  
Divide-By-4 or  
Divide-By-1 (PLL)  
System  
Control  
Interrupts  
SPISOMI  
SPISIMO  
SPICLK  
Serial  
Peripheral  
Interface  
RAM  
128 or 256 Bytes  
CPU  
Program Memory  
ROM: 2K, 4K, or 8K Bytes  
EPROM: 8K Bytes  
Data EEPROM  
0 or 256 Bytes  
T1IC/CR  
T1EVT  
Timer 1  
T1PWM  
Watchdog  
V
CC  
Port A  
8
Port D  
V
SS  
5
description  
The TMS370C010, TMS370C012, TMS370C311, TMS370C310, TMS370C312, TMS370C712, and  
SE370C712 devices are members of the TMS370 family of single-chip 8-bit microcontrollers. Unless otherwise  
noted, the term TMS370Cx1x refers to these devices. The TMS370 family provides cost-effective real-time  
system control through integration of advanced peripheral-function modules and various on-chip memory  
configurations.  
The TMS370Cx1x family of devices is implemented using high-performance silicon-gate CMOS EPROM and  
EEPROM technologies. Low-operating power, wide-operating temperature range, and noise immunity of  
CMOS technology coupled with the high performance and extensive on-chip peripheral functions make the  
TMS370Cx1x devices attractive for system designs for automotive electronics, industrial motors, computer  
peripheral controls, telecommunications, and consumer applications.  
All TMS370Cx1x devices contain the following on-chip peripheral modules:  
Serial peripheral interface (SPI)  
One 24-bit general-purpose watchdog timer  
One 16-bit general-purpose timer with an 8-bit prescaler  
3
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx1x  
8-BIT MICROCONTROLLER  
SPNS012F – MAY 1987 – REVISED FEBRUARY 1997  
description (continued)  
Table 1 provides a memory configuration overview of the TMS370Cx1x devices.  
Table 1. Memory Configurations  
PROGRAM MEMORY  
(BYTES)  
DATA MEMORY  
(BYTES)  
DEVICE  
28 PIN PACKAGES  
ROM  
EPROM  
RAM  
EEPROM  
FN – PLCC  
N – PDIP  
TMS370C010A  
TMS370C012A  
TMS370C311A  
TMS370C310A  
TMS370C312A  
4K  
128  
256  
128  
128  
128  
256  
256  
256  
FN – PLCC  
N – PDIP  
8K  
2K  
4K  
8K  
8K  
8K  
256  
FN – PLCC  
N – PDIP  
FN – PLCC  
N – PDIP  
FN – PLCC  
N – PDIP  
TMS370C712A,  
TMS370C712B  
FN – PLCC  
N –PDIP  
256  
256  
SE370C712A ,  
FZ – CLCC  
JD – CDIP  
SE370C712B  
System evaluators and development are for use only in prototype environment and their reliability has not been characterized.  
The suffix letter (A or B) appended to the device names shown in the device column of Tables 1 and 2 indicates  
the configuration of the device. ROM or EPROM devices have different configurations as indicated in Table 2.  
ROM devices with the suffix letter A are configured through a programmable contact during manufacture.  
Table 2. Suffix Letter Configuration  
DEVICE  
WATCHDOG TIMER  
Standard  
Hard  
CLOCK  
LOW-POWER MODE  
Enabled  
EPROM A  
EPROM B  
Divide-by-4 (Standard oscillator)  
Divide-by-1 (PLL)  
Enabled  
Standard  
Hard  
ROM A  
Divide-by-4 or Divide-by-1 (PLL)  
Enabled or disabled  
Simple  
Refer to the “device numbering conventions” section for device nomenclature and to the “device part numbers” section for ordering.  
The 2K bytes, 4K bytes, and 8K bytes of mask-programmable ROM in the associated TMS370Cx1x devices  
are replaced in the TMS370C712 with 8K bytes of EPROM. All other available memory and on-chip peripherals  
are identical, with the exception of no data EEPROM on the TMS370C311, TMS370C310, and TMS370C312  
devices. The OTP (TMS370C712) device and reprogrammable (SE370C712) device are available.  
TMS370C712 OTP devices are available in plastic packages. This microcontroller is effective to use for  
immediate production updates for other members of the TMS370Cx1x family or for low volume production runs  
when the mask charge or cycle time for the low-cost mask ROM devices is not practical.  
The SE370C712 has a windowed ceramic package to allow reprogramming of the program EPROM memory  
during the development/prototyping phase of design. The SE370C712 devices allow quick updates to  
breadboards and prototype systems while iterating initial designs.  
4
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx1x  
8-BIT MICROCONTROLLER  
SPNS012F – MAY 1987 – REVISED FEBRUARY 1997  
description (continued)  
The TMS370Cx1x family provides two low-power modes (STANDBY and HALT) for applications where  
low-power consumption is critical. Both modes stop all CPU activity (that is, no instructions are executed). In  
the STANDBY mode, the internal oscillator and the general-purpose timer remain active. In the HALT mode,  
all device activity is stopped. The device retains all RAM data and peripheral configuration bits throughout both  
low-power modes.  
The TMS370Cx1x features advanced register-to-register architecture that allows direct arithmetic and logical  
operations without requiring an accumulator (for example, ADD R24, R47; add the contents of register 24 to  
the contents of register 47 and store the result in register 47). The TMS370Cx1x family is fully  
instruction-set-compatible, providing easy transition between members of the TMS370 8-bit microcontroller  
family.  
The SPI provides a convenient method of serial interaction for high-speed communications between simpler  
shift register-type devices, such as display drivers, analog-to-digital (A/D) converters, PLL, input/output (I/O)  
expansion, or other microcontrollers in the system.  
The TMS370Cx1x family provides the system designer with economical, efficient solution to real-time control  
applications. The TMS370 family extended development system (XDS ) and compact development tool  
(CDT ) solve the challenge of efficiently developing the software and hardware required to design the  
TMS370Cx1x into an ever-increasing number of complex applications. The application source code can be  
written in assembly and C language, and the output code can be generated by the linker. The TMS370 family  
XDS development tool communicates through a standard RS-232-C interface with an existing personal  
computer. This allows the use of the PC’s editors and software utilities already familiar to the designer. The  
TMS370familyXDSemphasizesease-of-usethroughextensivemenusandscreenwindowingsothatasystem  
designer can begin developing software with minimal training. Precise real-time, in-circuit emulation and  
extensive symbolic debug and analysis tools ensure efficient software and hardware implementation as well  
as reducing the time-to-market cycle.  
The TMS370Cx1x family together with the TMS370 family XDS22, CDT370, design kit, starter kit, software  
tools, the SE370C712 reprogrammable devices, comprehensive product documentation, and customer  
support provide a complete solution to the needs of the system designer.  
central processing unit (CPU)  
The CPU on the TMS370Cx1x device is the high-performance 8-bit TMS370 CPU module. The ’x1x implements  
an efficient register-to-register architecture that eliminates the conventional accumulator bottleneck. The  
complete ’x1x instruction map is shown in Table 17 in the TMS370Cx1x instruction set overview section.  
The ’370Cx1x CPU architecture provides the following components:  
CPU registers:  
A stack pointer that points to the last entry in the memory stack  
A status register that monitors the operation of the instructions and contains the global interrupt-enable bits  
A program counter (PC) that points to the memory location of the next instruction to be executed  
XDS and CDT are trademarks of Texas Instruments Incorporated.  
5
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx1x  
8-BIT MICROCONTROLLER  
SPNS012F – MAY 1987 – REVISED FEBRUARY 1997  
central processing unit (CPU) (continued)  
Figure 1 illustrates the CPU registers and memory blocks.  
Program Counter  
15  
0
Legend:  
Stack Pointer (SP)  
7
0
C=Carry  
N=Negative  
Status Register (ST)  
Z=Zero  
C
7
N
6
Z
5
V
4
IE2 IE1  
V=Overflow  
IE2=Level 2 interrupts Enable  
IE1=Level 1 interrupts Enable  
3
2
1
0
RAM (Includes up to 256-Byte Registers File)  
0000h  
0000h  
R0(A)  
R1(B)  
128-Byte RAM (0000h–007Fh)  
256-Byte RAM (0000h–00FFh)  
007Fh  
0080h  
0001h  
0002h  
0003h  
00FFh  
0100h  
100Fh  
1010h  
104Fh  
1050h  
1EFFh  
1F00h  
1FFFh  
2000h  
Reserved  
R2  
R3  
Peripheral File  
Reserved  
256-Byte Data EEPROM  
Not Available  
5FFFh  
6000h  
R127  
8K-Byte ROM/EPROM (6000h7FFFh)  
4K-Byte ROM (7000h7FFFh)  
007Fh  
6FFFh  
7000h  
77FFh  
7800h  
2K-Byte ROM (7800h7FFFh)  
7FBFh  
7FC0h  
Interrupts and Reset Vectors;  
Trap Vectors  
R255  
7FFFh  
00FFh  
Reserved means the address space is reserved for future expansion.  
Not available means the address space is not accessible.  
Figure 1. Programmer’s Model  
A memory map includes:  
128- or 256-byte general-purpose RAM that can be used for data memory storage, program instructions,  
general purpose register, or the stack  
A peripheral file that provides access to all internal peripheral modules, system-wide control functions, and  
EEPROM/EPROM programming control  
256-byte EEPROM module, that provides in-circuit programmability and data retention in power-off  
conditions  
2K-, 4K-, or 8K-byte ROM or 8K-byte EPROM  
stack pointer (SP)  
The SP is an 8-bit CPU register. Stack operates as a last-in, first-out, read/write memory. Typically, the stack  
isusedtostorethereturnaddressonsubroutinecallsaswellasthestatusregister(ST)contentsduringinterrupt  
sequences.  
The SP points to the last entry or top of the stack. The SP is incremented automatically before data is pushed  
onto the stack and decremented after data is popped from the stack. The stack can be placed anywhere in the  
on-chip RAM.  
6
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx1x  
8-BIT MICROCONTROLLER  
SPNS012F – MAY 1987 – REVISED FEBRUARY 1997  
central processing unit (CPU) (continued)  
status register (ST)  
The ST monitors the operation of the instructions and contains the global interrupt-enable bits. The ST includes  
four status bits (condition flags) and two interrupt-enable bits.  
The four status bits indicate the outcome of the previous instruction; conditional instructions (for example,  
the conditional-jump instructions) use the status bits to determine program flow.  
The two interrupt-enable bits control the two interrupt levels.  
The ST, status-bit notation, and status-bit definitions are shown in Table 3.  
Table 3. Status Registers  
7
C
6
N
5
Z
4
V
3
2
1
0
IE2  
IE1  
Reserved  
Reserved  
RW-0  
RW-0  
RW-0  
RW-0  
RW-0  
RW-0  
R = read, W = write, 0 = value after reset  
program counter (PC)  
The contents of the PC point to the memory location of the next instruction to be executed. The PC consists  
of two 8-bit registers in the CPU: the program counter high (PCH) and program counter low (PCL). These  
registers contains the most significant byte (MSbyte) and least significant byte (LSbyte) of a 16-bit address.  
During reset, the contents of the reset vector (7FFEh, 7FFFh) are loaded into the PC. The PCH (MSbyte of the  
PC) is loaded with the contents of memory location 7FFEh, and the PCL (LSbyte of the PC) is loaded with the  
contents of memory location 7FFFh. Figure 2 shows this operation using an example value of 6000h as the  
contents of the reset vector.  
Program Counter (PC)  
Memory  
PCH  
60  
PCL  
00  
0000h  
60  
00  
7FFEh  
7FFFh  
Figure 2. Program Counter After Reset  
memory map  
The TMS370Cx1x architecture is based on the Von Neuman architecture, where the program memory and data  
memory share a common address space. All peripheral input/output is memory mapped in this same common  
addressspace. AsshowninFigure3, theTMS370Cx1xprovidesmemory-mappedRAM, ROM, dataEEPROM,  
I/O pins, peripheral functions, and system-interrupt vectors.  
The peripheral file contains all I/O port control, peripheral status and control, EEPROM, EPROM, and  
system-wide control functions. The peripheral file is located between 1010h to 104Fh and is divided logically  
intofourperipheralfileframesof16byteseach. Eachon-chipperipheralisassignedtoaseparateframethrough  
which peripheral control and data information is passed.  
7
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx1x  
8-BIT MICROCONTROLLER  
SPNS012F – MAY 1987 – REVISED FEBRUARY 1997  
TMS370Cx1x CPU (continued)  
Peripheral File Control Registers  
System Control  
1010h – 101Fh  
1020h – 102Fh  
1030h – 103Fh  
0000h  
Digital Port Control  
SPI Control  
128-Byte RAM  
(Register File/Stack)  
007Fh  
0080h  
256-Byte RAM  
Timer 1 Peripheral Control  
1040h – 104Fh  
(Register File/Stack)  
00FFh  
0100h  
100Fh  
1010h  
Reserved  
Peripheral File  
104Fh  
1050h  
Reserved  
1EFFh  
1F00h  
256-Byte Data EEPROM  
1FFFh  
2000h  
Vectors  
Not Available  
Trap 15–0  
7FC0h – 7FDFh  
7FE0h – 7FF3h  
7FF4h – 7FF5h  
5FFFh  
Reserved  
6000h  
6FFFh  
7000h  
8K Bytes Start at 6000h  
4K Bytes Start at 7000h  
Timer 1  
Serial Peripheral Interface  
Interrupt 3  
77FFh  
7800h  
7FBFh  
7FC0h  
7FF6h – 7FF7h  
7FF8h – 7FF9h  
7FFAh – 7FFBh  
7FFCh – 7FFDh  
7FFEh – 7FFFh  
2K Bytes Start at 7800h  
Interrupts and Reset Vectors;  
Trap Vectors  
Interrupt 2  
7FFFh  
8000h  
Interrupt 1  
Reset  
Not Available  
FFFFh  
Reserved means that the address space is reserved for future expansion.  
Not available means that the address space is not accessible.  
Figure 3. TMS370Cx1x Memory Map  
RAM/register file (RF)  
Locations within the RAM address space can serve as the RF, general-purpose read/write memory, program  
memory, or the stack instructions. The TMS370Cx10, TMS370Cx11, and TMS370C312 contain 128 bytes of  
internal RAM mapped beginning at location 0000h (R0) and continuing through location 007Fh (R127) which  
is shown in Table 4 along with ’712 devices.  
Table 4. RAM Memory Map  
’x10, ’x11 AND ’312  
128 bytes  
’712  
RAM size  
256 bytes  
Memory mapped  
0000h007Fh  
0000h00FFh  
The first two registers, R0 and R1, are also called register A and B, respectively. Some instructions implicitly  
use register A or B; for example, the instruction LDSP (load SP) assumes that the value to be loaded into the  
stack pointer is contained in register B. Registers A and B are the only registers cleared on reset.  
8
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx1x  
8-BIT MICROCONTROLLER  
SPNS012F – MAY 1987 – REVISED FEBRUARY 1997  
peripheral file (PF)  
The TMS370Cx1x control registers contain all the registers necessary to operate the system and peripheral  
modules on the device. The instruction set includes some instructions that access the PF directly. These  
instructions designate the register by the number of the PF relative to 1000h, preceded by P0 for a hexadecimal  
designator or P for a decimal designator. For example, the system-control register 0 (SCCR0) is located at  
address 1010h; its peripheral file hexadecimal designator is P010, and its decimal designator is P16. Table 5  
shows the TMS370Cx1x PF address map.  
Table 5. TMS370Cx1x Peripheral File Address Map  
PERIPHERAL FILE  
ADDRESS RANGE  
DESCRIPTION  
DESIGNATOR  
P000P00F  
P010P01F  
P020P02F  
P030P03F  
P040P04F  
P050P0FF  
1000h100Fh  
1010h101Fh  
1020h102Fh  
1030h103Fh  
1040h104Fh  
1050h10FFh  
Reserved  
System and EPROM/EEPROM control registers  
Digital I/O port control registers  
SPI registers  
Timer 1 registers  
Reserved  
data EEPROM  
TheTMS370Cx1xdevices, containing256bytesofdataEEPROM, havememorymappedbeginningatlocation  
1F00h and continuing through location 1FFFh. Writing to the data EEPROM module is controlled by the data  
EEPROM control register (DEECTL) and the write-protection register (WPR). Programming algorithm  
examples are available in the TMS370 Family User’s Guide (literature number SPNU127) or the  
TMS370FamilyDataManual(literaturenumberSPNS014B). ThedataEEPROMfeaturesincludethefollowing:  
Programming:  
Bit-, byte-, and block-write/erase modes  
Internal charge pump circuitry. No external EEPROM programming voltage supply is needed.  
Control register: Data EEPROM programming is controlled by the DEECTL located in the PF frame  
beginning at location P01A. See Table 6.  
In-circuit programming capability. There is no need to remove the device to program.  
Write protection. Writes to the data EEPROM are disabled during the following conditions.  
Reset. All programming of the data EEPROM module is halted.  
Write protection active. There is one write-protect bit per 32-byte EEPROM block.  
Low-power mode operation  
Write protection can be overridden by applying 12 V to MC.  
Table 6. Data EEPROM and PROGRAM EPROM Control Registers Memory Map  
ADDRESS  
P01A  
SYMBOL  
DEECTL  
NAME  
Data EEPROM Control Register  
Reserved  
P01B  
P01C  
EPCTL  
Program EPROM Control Register  
9
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx1x  
8-BIT MICROCONTROLLER  
SPNS012F – MAY 1987 – REVISED FEBRUARY 1997  
program EPROM  
The TMS370C712 device contains 8K bytes of EPROM mapped, beginning at location 6000h and continuing  
through location 7FFFh as shown in Figure 3. Reading the program EPROM modules is identical to reading  
other internal memory. During programming, the EPROM is controlled by the EPROM control register (EPCTL).  
The program EPROM module features include:  
Programming  
In-circuit programming capability if V is applied to MC  
PP  
Control register: EPROM programming is controlled by the EPROM control register (EPCTL) located in  
the peripheral file (PF) frame at location P01Ch as shown in Table 6.  
Write protection: Writes to the program EPROM are disabled under the following conditions:  
Reset: All programming to the EPROM module is halted  
Low-power modes  
13 V not applied to MC  
program ROM  
The program ROM consists of 2K to 8K bytes of mask programmable read-only memory (see Table 7). The  
program ROM is used for permanent storage of data or instructions. Programming of the mask ROM is  
performed at the time of device fabrication.  
Table 7. Program ROM Memory Map  
’x11  
’x10  
’x12  
ROM size  
2K bytes  
4K bytes  
8K bytes  
Memory mapped  
7800h7FFFh  
7000h7FFFh  
6000h7FFFh  
system reset  
The system-reset operation ensures an orderly start-up sequence for the TMS370Cx1x CPU-based device.  
There are up to three different actions that can cause a system reset to the device. Two of these actions are  
generated internally, while one (RESET pin) is controlled externally. These actions are as follows:  
Watchdog (WD) timer. A watchdog-generated reset occurs if an improper value is written to the WD key  
register, or if the re-initialization does not occur before the watchdog timer timeout . See the TMS370 Family  
User’s Guide (literature number SPNU127) for more information.  
Oscillator reset. Reset occurs when the oscillator operates outside of the recommended operating range.  
See the TMS370 Family User’s Guide (literature number SPNU127) for more information.  
External RESET pin. A low level signal can trigger an external reset. To ensure a reset, the external signal  
should be held low for one SYSCLK cycle. Signals of less than one SYSCLK can generate a reset. See the  
TMS370 Family User’s Guide (literature number SPNU127) for more information.  
Once a reset source is activated, the external RESET pin is driven (active) low for a minimum of eight SYSCLK  
cycles. This allows the ’x1x device to reset external system components. Additionally, if a cold start (V  
is off  
CC  
for several hundred milliseconds) condition or oscillator failure occurs or the RESET pin is held low, then the  
reset logic holds the device in a reset state for as long as these actions are active.  
Memory addresses 7FF8h through 7FFFh are reserved for interrupt and reset vectors. Trap vectors, used with TRAP0 through TRAP15  
instructions are located between addresses 7FC0h and 7FDFh.  
10  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx1x  
8-BIT MICROCONTROLLER  
SPNS012F – MAY 1987 – REVISED FEBRUARY 1997  
system reset (continued)  
After a reset, the program can check the oscillator-fault flag (OSC FLT FLAG, SCCR0.4), the cold-start flag  
(COLD START, SCCR0.7) and the watchdog reset (WD OVRFL INT FLAG, T1CTL2.5) to determine the source  
of the reset. A reset does not clear these flags. Table 8 depicts the reset sources.  
Table 8. Reset Sources  
REGISTER  
SCCR0  
ADDRESS  
1010h  
PF  
BIT NO.  
CONTROL BIT  
COLD START  
SOURCE OF RESET  
Cold (power-up)  
P010  
P010  
P04A  
7
4
5
SCCR0  
T1CTL2  
1010h  
OSC FLT FLAG  
Oscillator out of range  
Watchdog timer timeout  
104Ah  
WD OVRFL INT FLAG  
Once a reset is activated, the following sequence of events occurs:  
1. The CPU registers are initialized: ST = 00h, SP = 01h (reset state).  
2. Register A and B are initialized to 00h (no other RAM is changed).  
3. The contents of the LSbyte of the reset vector (07FFh) are read and stored in the PCL.  
4. The contents of the MSbyte of the reset vector (07FEh) are read and stored in the PCH.  
5. Program execution begins with an opcode fetch from the address pointed to the PC.  
The reset sequence takes 20 SYSCLK cycles from the time the reset pulse is released until the first opcode  
fetch. During a reset, RAM contents (except for registers A and B) remain unchanged, and the module control  
register bits are initialized to their reset state.  
11  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx1x  
8-BIT MICROCONTROLLER  
SPNS012F – MAY 1987 – REVISED FEBRUARY 1997  
interrupts  
The TMS370 family software-programmable interrupt structure permits flexible on-chip and external interrupt  
configurations to meet real-time interrupt-driven application requirements. The hardware interrupt structure  
incorporates two priority levels as shown in Figure 4. Interrupt level 1 has a higher priority than interrupt  
level 2. The two priority levels can be masked independently by the global interrupt mask bits (IE1 and IE2) of  
the ST.  
EXT INT 3  
INT 3  
EXT INT 2  
TIMER1  
INT 2  
Overflow  
INT3 PRI  
Compare1  
Ext Edge  
INT2 PRI  
Compare2  
Input Capture  
Watchdog  
EXT INT1  
CPU  
INT1  
NMI  
Priority  
Logic  
INT1 PRI  
T1 PRI  
STATUS REG  
IE1  
Level 1 INT  
Level 2 INT  
IE2  
Enable  
SPI INT  
SPI PRI  
SPI  
Figure 4. Interrupt Control  
Each system interrupt is configured independently to either the high- or low-priority chain by the application  
program during system initialization. Within each interrupt chain, the interrupt priority is fixed by the position of  
the system interrupt. However, since each system interrupt is selectively configured on either the high- or  
low-priority-interrupt chain, the application program can elevate any system interrupt to the highest priority.  
Arbitration between the two priority levels is performed within the CPU. Arbitration within each of the priority  
12  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx1x  
8-BIT MICROCONTROLLER  
SPNS012F – MAY 1987 – REVISED FEBRUARY 1997  
interrupts (continued)  
chains is performed within the peripheral modules to support interrupt expansion for future modules.  
Pending-interrupts are serviced upon completion of current instruction execution, depending on their interrupt  
mask and priority conditions.  
The TMS370Cx1x has five hardware system interrupts (plus RESET) as shown in Table 9. Each system  
interrupt has a dedicated vector located in program memory through which control is passed to the interrupt  
service routines. A system interrupt may have multiple interrupt sources. All of the interrupt sources are  
individuallymaskablebylocalinterruptenablecontrolbitsintheassociatedperipheralfile. Eachinterruptsource  
FLAG bit is individually readable for software polling or to determine which interrupt source generated the  
associated system interrupt.  
Two of the system interrupts are generated by on-chip peripheral functions, and three external interrupts are  
supported. Software configuration of the external interrupts is performed through the INT1, INT2, and INT3  
control registers in peripheral file frame 1. Each external interrupt is individually software configurable for input  
polarity (rising or falling edge) for ease of system interface. External interrupt INT1 is software configurable as  
either a maskable or non-maskable interrupt. When INT1 is configured as non-maskable, it cannot be masked  
by the individual or global enable mask bits. The INT1 NMI bit is protected during non-privileged operation and,  
therefore, should be configured during the initialization sequence following reset. To maximize pin flexibility,  
external interrupts INT2 and INT3 can be software configured as general purpose input/output pins if the  
interrupt function is not required (INT1 can be similarly configured as an input pin).  
Table 9. Hardware System Interrupts  
SYSTEM  
INTERRUPT  
VECTOR  
ADDRESS  
INTERRUPT SOURCE  
External RESET  
Watchdog Overflow  
Oscillator Fault Detect  
INTERRUPT FLAG  
COLD START  
WD OVRFL INT FLAG  
OSC FLT FLAG  
PRIORITY  
RESET  
7FFEh, 7FFFh  
1
External INT1  
External INT2  
External INT3  
INT1 FLAG  
INT2 FLAG  
INT3 FLAG  
INT1  
INT2  
INT3  
7FFCh, 7FFDh  
7FFAh, 7FFBh  
7FF8h, 7FF9h  
2
3
4
SPI Receiver (Rx)/Transmitter (Tx) Data  
Complete  
SPI INT FLAG  
SPIINT  
7FF6h, 7FF7h  
5
Timer 1 Overflow  
T1 OVRFL INT FLAG  
T1C1 INT FLAG  
T1C2 INT FLAG  
T1EDGE INT FLAG  
T1IC1 INT FLAG  
WD OVRFL INT FLAG  
Timer 1 Compare 1  
Timer 1 Compare 2  
Timer 1 External Edge  
Timer 1 Input Capture 1  
Watchdog Overflow  
§
T1INT  
7FF4h, 7FF5h  
6
Relative priority within an interrupt level  
§
Release microcontroller from STANDBY and HALT low-power modes  
Release microcontroller from STANDBY low-power mode  
privileged operation and EEPROM write protection override  
The TMS370Cx1x family is designed with significant flexibility to enable the designer to software-configure the  
system and peripherals to meet the requirements of a variety of applications. The nonprivileged mode of  
operation ensures the integrity of the system configuration, once it is defined for an application. Following a  
hardware reset, the TMS370Cx1x operates in the privileged mode, where all peripheral file registers have  
unrestricted read/write access, and the application program configures the system during the initialization  
sequence following reset. As the last step of system initialization, the PRIVILEGE DISABLE bit (SCCR2.0) is  
13  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx1x  
8-BIT MICROCONTROLLER  
SPNS012F – MAY 1987 – REVISED FEBRUARY 1997  
privileged operation and EEPROM write protection override (continued)  
set to 1 to enter the nonprivileged mode, disabling write operations to specific configuration-control bits within  
thePF. Table 10displaysthesystem-configurationbitswhicharewrite-protectedduringthenonprivilegedmode  
and must be configured by software prior to exiting the privileged mode.  
Table 10. Privilege Bits  
REGISTER  
CONTROL BIT  
OSC POWER  
NAME  
SCCRO  
LOCATION  
P010.6  
P011.2  
P011.4  
MEMORY DISABLE  
AUTOWAIT DISABLE  
SCCR1  
P012.0  
P012.1  
P012.3  
P012.4  
P012.6  
P012.7  
PRIVILEGE DISABLE  
INT1 NMI  
CPU STEST  
BUS STEST  
PWRDWN/IDLE  
HALT/STANDBY  
SCCR2  
P03F.5  
P03F.6  
P03F.7  
SPI ESPEN  
SPI PRIORITY  
SPI STEST  
SPIPRI  
T1PRI  
P04F.6  
P04F.7  
T1 PRIORITY  
T1 STEST  
The privilege bits are shown in a bold typeface in the peripheral file  
frame 1 section.  
The write protect override (WPO) mode provides an external hardware method of overriding the write protection  
registers (WPRs) of data EEPROM on the TMS370Cx1x. WPO mode is entered by applying a 12-V input to the  
MC pin after the RESET pin input goes high (logic 1). The high voltage on the MC pin during the WPO mode  
is not the programming voltage for the data EEPROM or Program EPROM. All EEPROM programming voltages  
are generated on-chip. The WPO mode provides hardware system level capability to modify the content of data  
EEPROM while the device remains in the application but only while requiring a 12 V external input on the MC  
pin (normally not available in the end application except in a service or diagnostic environment).  
low-power and IDLE modes  
The TMS370Cx1x devices have two low-power modes (STANDBY and HALT) and an IDLE mode. For  
mask-ROM devices, low-power modes can be disabled permanently through a programmable contact at the  
time when the mask is manufactured.  
The STANDBY and HALT low-power modes significantly reduce power consumption by reducing or stopping  
the activity of the various on-chip peripherals when processing is not required. Each of the low-power modes  
is entered by executing the IDLE instruction when the PWRDWN/IDLE bit in SCCR2 has been set to 1. The  
HALT/STANDBY bit in SCCR2 controls the low-power mode selection.  
In the STANDBY mode (HALT/STANDBY = 0), all CPU activity and most peripheral module activity is stopped;  
however, the oscillator, internal clocks, and Timer 1 remain active. System processing is suspended until a  
qualified interrupt (hardware RESET, external interrupt on INT1, INT2, INT3, or timer 1 interrupt) is detected.  
In the HALT mode (HALT/STANDBY = 1), the TMS370Cx1x is placed in its lowest power consumption mode.  
The oscillator and internal clocks are stopped, causing all internal activity to be halted. System activity is  
suspended until a qualified interrupt (hardware RESET, external interrupt on the INT1, INT2, or INT3) is  
detected. The power-down mode-selection bits are summarized in Table 11.  
14  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx1x  
8-BIT MICROCONTROLLER  
SPNS012F – MAY 1987 – REVISED FEBRUARY 1997  
low-power and IDLE modes (continued)  
Table 11. Low-Power/Idle Control Bits  
POWER-DOWN CONTROL BITS  
MODE SELECTED  
PWRDWN/IDLE  
(SCCR2.6)  
HALT/STANDBY  
(SCCR2.7)  
1
0
1
STANDBY  
HALT  
1
0
X
IDLE  
Don’t care  
When low-power modes are disabled through a programmable contact in the mask-ROM devices, writing to the  
SCCR2.6-7 bits is ignored. In addition, if an IDLE instruction is executed when low-power modes are disabled  
through a programmable contact, the device always enters the IDLE mode.  
To provide a method for always exiting low-power modes for mask-ROM devices, INT1 is enabled automatically  
as a nonmaskable interrupt (NMI) during low-power modes when the hard watchdog mode is selected. This  
means that the NMI is generated always, regardless of the interrupt enable flags.  
The following information is preserved throughout both the STANDBY and HALT modes: RAM (register file),  
CPU registers (SP, PC, and ST), I/O pin direction and output data, and status registers of all on-chip peripheral  
functions. Since all CPU instruction processing is stopped during the STANDBY and HALT modes, the clocking  
of the WD timer is inhibited.  
clock modules  
The ’x1x family provides two clock options that are referred to as divide-by-1 (phase-locked loop) and  
divide-by-4 (standard oscillator). Both the divide-by-1 and divide-by-4 options are configurable during the  
manufacturing process of a TMS370 MCU. The ’x1x masked ROM devices offer both options to meet system  
engineering requirements. Only one of the two clock options is allowed on each ROM device. The ’712A  
EPROM has only the divide-by-4, while the ’712B has divide-by-1.  
The divide-by-1 clock module option provides the capability for reduced electromagnetic interference (EMI) with  
no added cost.  
The divide-by-1 provides a one-to-one match of the external resonator frequency (CLKIN) to the internal system  
clock (SYSCLK) frequency, whereas the divide-by-4 produces a SYSCLK which is one-fourth the frequency of  
the external resonator. Inside of the divide-by-1 module, the frequency of the external resonator is multiplied  
by four, and the clock module then divides the resulting signal by four to provide the four-phased internal system  
clock signals. The resulting SYSCLK is equal to the resonator frequency. These are formulated as follows:  
external resonator frequency  
4
CLKIN  
4
Divide-by-4 option : SYSCLK  
Divide-by-1 option : SYSCLK  
external resonator frequency  
4
4
CLKIN  
The main advantage of choosing a divide-by-1 oscillator is the improved EMI performance. The harmonics of  
low-speed resonators extend through fewer of the emissions spectrum than the harmonics of faster resonators.  
The divide-by-1 provides the capability of reducing the resonator speed by four times, and this results in a  
steeper decay of emissions produced by the oscillator.  
15  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx1x  
8-BIT MICROCONTROLLER  
SPNS012F – MAY 1987 – REVISED FEBRUARY 1997  
system configuration registers  
Table 12 contains system-configuration and control functions and registers for controlling EEPROM  
programming. The privileged bits are shown in a bold typeface and shaded areas.  
Table 12. Peripheral File Frame 1: System-Configuration Registers  
PF  
BIT 7  
BIT 6  
BIT 5  
BIT 4  
BIT 3  
BIT 2  
BIT 1  
BIT 0  
REG  
COLD  
START  
OSC  
POWER  
PF AUTO  
WAIT  
OSC FLT  
FLAG  
MC PIN  
WPO  
MC PIN  
DATA  
µP/µC  
MODE  
P010  
SCCR0  
AUTO  
WAIT  
DISABLE  
MEMORY  
DISABLE  
P011  
SCCR1  
SCCR2  
HALT/  
STANDBY  
PWRDWN/  
IDLE  
BUS  
STEST  
CPU  
STEST  
INT1  
NMI  
PRIVILEGE  
DISABLE  
P012  
P013  
to  
Reserved  
P016  
INT1  
FLAG  
INT1  
PIN DATA  
INT1  
POLARITY  
INT1  
PRIORITY  
INT1  
ENABLE  
P017  
P018  
P019  
INT1  
INT2  
INT2  
FLAG  
INT2  
PIN DATA  
INT2  
DATA DIR  
INT2  
DATA OUT  
INT2  
POLARITY  
INT2  
PRIORITY  
INT2  
ENABLE  
INT3  
FLAG  
INT3  
PIN DATA  
INT3  
DATA DIR  
INT3  
DATA OUT  
INT3  
POLARITY  
INT3  
PRIORITY  
INT3  
ENABLE  
INT3  
P01A  
P01B  
P01C  
BUSY  
BUSY  
AP  
W1W0  
W0  
EXE  
EXE  
DEECTL  
Reserved  
V
PPS  
EPCTL  
P01D  
P01E  
P01F  
Reserved  
16  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx1x  
8-BIT MICROCONTROLLER  
SPNS012F – MAY 1987 – REVISED FEBRUARY 1997  
digital port control registers  
Peripheralfileframe2containsthedigitalI/Opinconfigurationandcontrolregisters. Table 13 shows thespecific  
addresses, registers, and control bits within this peripheral file frame. Table 14 shows the port configuration  
register setup.  
Table 13. Peripheral File Frame 2: Digital Port-Control Registers  
PF  
P020  
P021  
P022  
P023  
BIT 7  
BIT 6  
BIT 5  
BIT 4  
BIT 3  
Reserved  
BIT 2  
BIT 1  
BIT 0  
REG  
APORT1  
APORT2  
ADATA  
ADIR  
Port A Control Register 2 (must be 0)  
Port A Data  
Port A Direction  
P024  
to  
Reserved  
P02B  
P02C  
P02D  
P02E  
P02F  
Port D Control Register 1 (must be 0)  
DPORT1  
DPORT2  
DDATA  
DDIR  
Port D Control Register 2 (must be 0)  
Port D Data  
Port D Direction  
D3 as SYSCLK, set port D control register 2 = 08h.  
Table 14. Port Configuration Register Setup  
abcd  
00q1  
abcd  
00y0  
PORT  
PIN  
A
D
0 – 7  
3 – 7  
Data Out q  
Data Out q  
Data In y  
Data In y  
a = Port x Control Register 1  
b = Port x Control Register 2  
c = Data  
d = Direction  
17  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx1x  
8-BIT MICROCONTROLLER  
SPNS012F – MAY 1987 – REVISED FEBRUARY 1997  
programmable timer 1  
The programmable Timer 1 (T1) module of the TMS370Cx1x provides the designer with the enhanced timer  
resources required to perform real-time system control. The T1 module contains the general-purpose timer and  
the watchdog (WD) timer. The two independent 16-bit timers, T1 and WD, allow program selection of input clock  
sources (real-time, external event, or pulse accumulate) with multiple 16-bit registers (input capture and  
compare) for special timer function control. The Timer 1 module includes three external device pins that can  
be used for multiple counter functions (operation-mode dependent), or used as general-purpose I/O pins. The  
T1 module block diagram is shown in Figure 5.  
Edge  
Select  
16-Bit  
Capt/Comp  
T1IC/CR  
Register  
16-Bit  
Counter  
PWM  
Toggle  
MUX  
T1PWM  
16  
16-Bit  
Compare  
Register  
Interrupt  
Logic  
8-Bit  
Prescaler  
T1EVT  
Interrupt  
Logic  
16-Bit  
MUX  
WatchdogCounter  
(Aux. Timer)  
Figure 5. Timer 1 Block Diagram  
Three T1 I/O pins  
T1IC/CR: T1 input capture / counter-reset input pin, or general-purpose bidirectional I/O pin  
T1PWM: T1 pulse-width-modulation (PWM) output pin, or general-purpose bidirectional I/O pin  
T1EVT: T1 event input pin, or general-purpose bidirectional I/O pin  
Two operational modes:  
Dual-compare mode: Provides PWM signal  
Capture/compare mode: Provides input capture pin  
One 16-bit general-purpose resettable counter  
One 16-bit compare register with associated compare logic  
One 16-bit capture/compare register, which, depending on the mode of operation, operates as either  
capture or compare registers.  
One 16-bit WD counter can be used as an event counter, a pulse accumulator, or an interval timer if WD  
feature is not needed.  
Prescaler/clock sources that determine one of eight clock sources for general-purpose timer  
18  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx1x  
8-BIT MICROCONTROLLER  
SPNS012F – MAY 1987 – REVISED FEBRUARY 1997  
programmable timer 1 (continued)  
Selectable edge-detection circuitry that, depending on the mode of operation, senses active transitions on  
the input capture pins (T1IC/CR)  
Interrupts that can be generated on the occurrence of:  
A capture  
A compare equal  
A counter overflow  
An external edge detection  
Sixteen T1 module control registers located in the PF frame beginning at address P040  
The T1 module control registers are illustrated in Table 15.  
19  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx1x  
8-BIT MICROCONTROLLER  
SPNS012F – MAY 1987 – REVISED FEBRUARY 1997  
programmable timer 1 (continued)  
Table 15. Timer 1 Module Register Memory Map  
PF  
BIT 7  
BIT 6  
BIT 5  
BIT 4  
BIT 3  
BIT 2  
BIT 1  
BIT 0  
REG  
Modes: Dual-Compare and Capture/Compare  
P040 Bit 15  
P041 Bit 7  
P042 Bit 15  
P043 Bit 7  
P044 Bit 15  
P045 Bit 7  
P046 Bit 15  
P047 Bit 7  
P048 Bit 7  
T1Counter MSbyte  
T1 Counter LSbyte  
Bit 8 T1CNTR  
Bit 0  
Compare Register MSbyte  
Compare Register LSbyte  
Bit 8 T1C  
Bit 0  
Capture/Compare Register MSbyte  
Capture/Compare Register LSbyte  
Watchdog Counter MSbyte  
Watchdog Counter LSbyte  
Watchdog Reset Key  
Bit 8 T1CC  
Bit 0  
Bit 8 WDCNTR  
Bit 0  
Bit 0 WDRST  
WD OVRFL WD INPUT WD INPUT WD INPUT  
T1 INPUT  
SELECT2  
T1 INPUT  
SELECT1  
T1 INPUT  
SELECT0  
P049  
P04A  
T1CTL1  
T1CTL2  
TAP SEL  
SELECT2  
SELECT1  
SELECT0  
WD OVRFL WD OVRFL WD OVRFL T1 OVRFL  
T1 OVRFL  
INT FLAG  
T1  
RST ENA  
INT ENA  
INT FLAG  
INT ENA  
SW RESET  
Mode: Dual-Compare  
T1EDGE  
INT FLAG  
T1C2  
INT FLAG  
T1C1  
INT FLAG  
T1EDGE  
INT ENA  
T1C2  
INT ENA  
T1C1  
INT ENA  
P04B  
P04C  
T1CTL3  
T1CTL4  
T1  
T1C1  
T1C2  
T1C1  
T1CR  
OUT ENA  
T1EDGE  
POLARITY  
T1CR  
RST ENA  
T1EDGE  
DET ENA  
MODE=0  
OUT ENA  
OUT ENA  
RST ENA  
Mode: Capture/Compare  
T1EDGE  
T1C1  
INT FLAG  
T1EDGE  
INT ENA  
T1C1  
INT ENA  
P04B  
P04C  
T1CTL3  
T1CTL4  
INT FLAG  
T1  
T1C1  
T1C1  
RST ENA  
T1EDGE  
POLARITY  
T1EDGE  
DET ENA  
MODE = 1  
OUT ENA  
Modes: Dual-Compare and Capture/Compare  
T1EVT  
DATA IN  
T1EVT  
T1EVT  
T1EVT  
DATA DIR  
P04D  
P04E  
T1PC1  
T1PC2  
T1PRI  
DATA OUT FUNCTION  
T1IC/CR T1IC/CR  
DATA OUT FUNCTION  
T1PWM  
DATA IN  
T1PWM  
DATA OUT FUNCTION  
T1PWM  
T1PWM  
DATA DIR  
T1IC/CR  
DATA IN  
T1IC/CR  
DATA DIR  
T1  
P04F T1 STEST  
PRIORITY  
Once the WD OVRFL RST ENA bit is set, these bits cannot be changed until a reset; this applies only to the standard  
watchdog and to simple counter. In the hard watchdog, these bits can be modified at any time; the WD INPUT SELECT2  
bits are ignored.  
20  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx1x  
8-BIT MICROCONTROLLER  
SPNS012F – MAY 1987 – REVISED FEBRUARY 1997  
programmable timer 1 (continued)  
Figure 6 shows the Timer 1 capture/compare mode block diagram. The annotations on the diagram identify the  
register and the bit(s) in the PF. For example, the actual address of T1CTL2.0 is 104Ah, bit 0, in the T1CTL2  
register.  
T1CC.15-0  
16-Bit  
LSB  
T1C1  
OUT ENA  
Capt/Comp  
Register  
Prescale  
Clock  
Source  
MSB  
T1PC2.7-4  
T1PWM  
T1CTL4.6  
T1CNTR.15–0  
LSB  
MSB  
16-Bit  
Counter  
16  
T1 PRIORITY  
0
1
T1C1 INT FLAG  
T1CTL3.5  
T1PRI.6  
Level 1 Int  
Level 2 Int  
Compare=  
Reset  
T1CTL3.0  
T1C.15-0  
T1 SW  
RESET  
T1C1 INT ENA  
16-Bit  
LSB  
T1C1  
RST ENA  
Compare  
Register  
T1CTL2.0  
MSB  
T1 OVRFL INT FLAG  
T1CTL2.3  
T1CTL4.4  
T1CTL2.4  
T1 OVRFL INT ENA  
T1PC2.3-0  
T1IC/CR  
T1EDGE DET ENA  
T1EDGE INT FLAG  
T1CTL3.7  
Edge  
Select  
T1CTL4.0  
T1CTL3.2  
T1EDGE INT ENA  
T1CTL4.2  
T1EDGE POLARITY  
Figure 6. Capture/Compare Mode  
21  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx1x  
8-BIT MICROCONTROLLER  
SPNS012F – MAY 1987 – REVISED FEBRUARY 1997  
programmable timer 1 (continued)  
Figure 7 shows the Timer 1 dual-compare mode block diagram. The annotations on the diagram identify the  
register and the bit(s) in the peripheral frame. For example, the actual address of T1CTL2.0 is 104Ah, bit 0, in  
the T1CTL2 register.  
T1CC.15-0  
16-Bit  
Capt/Comp  
Register  
T1C2 INT FLAG  
T1CTL3.6  
LSB  
Prescaler  
Clock  
Source  
MSB  
Output  
Enable  
T1CTL3.1  
T1C2 INT ENA  
T1CTL4.5  
Compare=  
T1CNTR.15-0  
T1PC2.7-4  
T1PWM  
T1C2 OUT ENA  
T1CTL4.6  
LSB  
MSB  
16-Bit  
Counter  
16  
T1C1 INT FLAG  
T1CTL3.5  
T1CTL3.0  
Reset  
Compare=  
T1C1 OUT ENA  
T1CTL4.3  
T1C1  
RST ENA  
T1C.15-0  
T1 SW  
RESET  
T1C1 INT ENA  
16-Bit  
Compare  
Register  
LSB  
T1CTL4.4  
T1CR OUT ENA  
T1CTL2.0  
MSB  
T1 OVRFL INT FLAG  
T1CTL2.3  
T1CTL2.4  
T1 OVRFL INT ENA  
T1CTL4.1  
T1CR  
RST ENA  
T1PC2.3-0  
T1IC/CR  
Edge  
Select  
T1 PRIORITY  
T1PRI.6  
0
1
T1CTL4.0  
T1EDGE INT FLAG  
T1CTL3.7  
Level 1 Int  
Level 2 Int  
T1EDGE DET ENA  
T1CTL4.2  
T1CTL3.2  
T1EDGE INT ENA  
T1EDGE POLARITY  
Figure 7. Dual-Compare Mode  
22  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx1x  
8-BIT MICROCONTROLLER  
SPNS012F – MAY 1987 – REVISED FEBRUARY 1997  
programmable timer 1 (continued)  
The TMS370Cx1x device includes a 24-bit WD timer, contained in the T1 module, which can be programmed  
as an event counter, pulse accumulator, or interval timer if the WD function is not used. The WD function is to  
monitor software and hardware operation and to implement a system reset when the WD counter is not properly  
serviced (WD counter overflow or WD counter is re-initialized by an incorrect value). The WD can be configured  
as one of three mask options as follows: standard watchdog, hard WD, or simple counter.  
Standard watchdog configuration (see Figure 8) for ’C712A EPROM and mask-ROM devices:  
Watchdog mode  
Ten different WD overflow rates ranging from 6.55 ms to 3.35 s at 5-MHz SYSCLK  
AWDresetkey(WDRST)registerisusedtoclearthewatchdogcounter(WDCNTR)whenacorrect  
value is written.  
Generates a system reset if an incorrect value is written to the WD reset key or if the counter  
overflows  
A WD overflow flag (WD OVRFL INT FLAG) bit that indicates whether the WD timer initiated a  
system reset  
Non-watchdog mode  
Watchdog timer can be configured as an event counter, pulse accumulator or an interval timer  
WDCNTR.15-0  
WD OVRFL  
INT FLAG  
T1CTL2.6  
16-Bit  
Watchdog Counter  
T1CTL2.5  
Interrupt  
WD OVRFL  
INT ENA  
Reset  
Clock  
Prescaler  
T1CTL1.7  
T1CTL2.7  
WD OVRFL  
TAP SEL  
System Reset  
WD OVRFL  
RST ENA  
Watchdog Reset Key  
WDRST.7-0  
Figure 8. Standard Watchdog  
23  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx1x  
8-BIT MICROCONTROLLER  
SPNS012F – MAY 1987 – REVISED FEBRUARY 1997  
programmable timer 1 (continued)  
Hard watchdog configuration (see Figure 9) for ’C712B EPROM and mask-ROM devices:  
Eight different WD overflow rates ranging from 26.2 ms to 3.35 s at 5-MHz SYSCLK  
A WD reset key (WDRST) register is used to clear the watchdog counter (WDCNTR) when a correct  
value is written.  
Generates a system reset if an incorrect value is written to the WDRST or if the counter overflows  
A WD overflow flag (WD OVRFL INT FLAG) bit that indicates whether the WD timer initiated a system  
reset  
Automatic activation of the WD timer upon power-up reset  
INT1 is enabled as a nonmaskable interrupt during low power modes.  
WDCNTR.15-0  
WD OVRFL  
INT FLAG  
16-Bit  
Watchdog Counter  
T1CTL2.5  
Reset  
Clock  
Prescaler  
T1CTL1.7  
System Reset  
WD OVRFL  
TAP SEL  
Watchdog Reset Key  
WDRST.7-0  
Figure 9. Hard Watchdog  
24  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx1x  
8-BIT MICROCONTROLLER  
SPNS012F – MAY 1987 – REVISED FEBRUARY 1997  
programmable timer 1 (continued)  
Simple counter configuration (see Figure 10) for mask-ROM devices only  
Simple counter can be configured as an event counter, pulse accumulator, or an internal timer.  
WDCNTR.15-0  
WD OVFL  
16-Bit  
Watchdog Counter  
T1CTL2.6  
INT FLAG  
Interrupt  
T1CTL2.5  
WD OVRFL  
INT ENA  
Reset  
Clock  
Prescaler  
T1CTL1.7  
WD OVRFL  
TAP SEL  
Watchdog Reset Key  
WDRST.7-0  
Figure 10. Simple Counter  
serial peripheral interface  
The SPI is a high-speed synchronous serial I/O port that allows a serial bit stream of programmed length (one  
to eight bits) to be shifted into and out of the device at a programmable bit transfer rate. The SPI normally is  
used for communications between the microcontroller and external peripherals or another microcontroller.  
Typical applications include external I/O or peripheral expansion by way of devices such as shift registers,  
display drivers, and A/D converters. Multi-device communications are supported by the master/slave operation  
of the SPI. The SPI module features include the following:  
Three external pins  
SPISOMI: SPI slave output/master input pin or general-purpose bidirectional I/O pin  
SPISIMO: SPI slave input/master output pin or general-purpose bidirectional I/O pin  
SPICLK: SPI serial clock pin or general-purpose bidirectional I/O pin  
Two operational modes: Master and slave  
Baud rate: Eight different programmable rates  
Maximum baud rate in master mode: 2.5M bps at 5-MHz SYSCLK  
SYSCLK  
2
SPI BAUD RATE  
2b  
where b=bit rate in SPICCR.5-3 (range 0–7)  
Maximum baud rate in slave mode: 625K bps at 5-MHz SYSCLK  
for maximum slave SPI BAUD RATE < SYSCLK/8  
Data word format: one to eight data bits  
Simultaneous receiver and transmitter operations (transmit function can be disabled in software)  
25  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx1x  
8-BIT MICROCONTROLLER  
SPNS012F – MAY 1987 – REVISED FEBRUARY 1997  
serial peripheral interface (continued)  
Transmitter and receiver operations are accomplished through either interrupt-driven or polled algorithms.  
Seven SPI module control registers located in control register frame beginning at address P030h  
The SPI module-control registers are illustrated in Table 16.  
Table 16. SPI Module-Control Register Memory Map  
PF  
BIT 7  
BIT 6  
BIT 5  
BIT 4  
BIT 3  
BIT 2  
BIT 1  
BIT 0  
REG  
SPI SW  
RESET  
CLOCK  
POLARITY  
SPI BIT  
RATE2  
SPI BIT  
RATE1  
SPI BIT  
RATE0  
SPI  
CHAR2  
SPI  
CHAR1  
SPI  
CHAR0  
P030  
SPICCR  
RECEIVER  
OVERRUN  
SPI INT  
FLAG  
MASTER/  
SLAVE  
SPI INT  
ENA  
P031  
TALK  
SPICTL  
P032  
to  
Reserved  
P036  
P037  
P038  
P039  
RCVD7  
SDAT7  
RCVD6  
SDAT6  
RCVD5  
SDAT5  
RCVD4  
SDAT4  
RCVD3  
RCVD2  
SDAT2  
RCVD1  
SDAT1  
RCVD0  
SDAT0  
SPIBUF  
SPIDAT  
Reserved  
SDAT3  
P03A  
to  
Reserved  
P03C  
SPICLK  
DATA IN  
SPICLK  
SPICLK  
SPICLK  
DATA DIR  
P03D  
P03E  
P03F  
SPIPC1  
SPIPC2  
SPIPRI  
DATA OUT FUNCTION  
SPISOMI SPISOMI  
DATA OUT FUNCTION  
SPISIMO  
DATA IN  
SPISIMO  
DATA OUT FUNCTION  
SPISIMO  
SPISIMO  
DATA DIR  
SPISOMI  
DATA IN  
SPISOMI  
DATA DIR  
SPI  
STEST  
SPI  
PRIORITY  
SPI  
ESPEN  
26  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx1x  
8-BIT MICROCONTROLLER  
SPNS012F – MAY 1987 – REVISED FEBRUARY 1997  
serial peripheral interface (continued)  
The SPI block diagram is illustrated in Figure 11.  
RECEIVER  
SPIBUF.7-0  
OVERRUN  
SPIBUF Buffer  
SPICTL.7  
Register  
SPIPRI.6  
8
SPICTL.0  
SPI INT FLAG  
SPICTL.6  
0
Level 1 INT  
1
Level 2 INT  
SPIINT ENA  
SPIPC2.7-4  
SPISIMO  
SPIDAT  
Data Register  
SPIDAT.7-0  
SPICTL.1  
TALK  
SPIPC2.3-0  
SPISOMI  
State Control  
SPICCR.2-0  
MASTER/SLAVE  
SPI CHAR  
SPICTL.2  
2
1
0
SPIPC1.3-0  
SPICLK  
System  
Clock  
SPICCR.6  
CLOCK POLARITY  
SPICCR.5-3  
5
4
3
SPI BIT RATE  
The diagram is shown in the slave mode.  
Figure 11. SPI Block Diagram  
instruction set overview  
Table 17 provides an opcode to instruction cross reference of all 73 instructions and 274 opcodes of the  
‘370Cx1x instruction set. The numbers at the top of this table represent the most significant nibble of the opcode  
whilethenumbersattheleftsideofthetablerepresenttheleastsignificantnibble(LBN). Theinstructionofthese  
two opcode nibbles contains the mnemonic, operands, and byte/cycle particular to that opcode.  
For example, the opcode B5h points to the CLR A instruction. This instruction contains one byte and executes  
in eight SYSCLK cycles.  
27  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
Table 17. TMS370 Family Opcode/Instruction Map  
MSN  
0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F
JMP  
ra  
2/7  
INCW  
#n,Rd  
3/11  
MOV  
Ps,A  
2/8  
CLRC /  
TST A  
1/9  
MOV  
A,B  
1/9  
MOV  
A,Rd  
2/7  
TRAP  
15  
1/14  
LDST  
n
2/6  
0
1
2
3
4
5
6
7
8
9
A
B
JN  
ra  
2/5  
MOV  
A,Pd  
2/8  
MOV  
B,Pd  
2/8  
MOV  
Rs,Pd  
3/10  
MOV  
Ps,B  
2/7  
MOV  
B,Rd  
2/7  
TRAP  
14  
1/14  
MOV  
*n[SP],A  
2/7  
JZ  
ra  
2/5  
MOV  
Rs,A  
2/7  
MOV  
#n,A  
2/6  
MOV  
Rs,B  
2/7  
MOV  
Rs,Rd  
3/9  
MOV  
#n,B  
2/6  
MOV  
B,A  
1/8  
MOV  
#n,Rd  
3/8  
MOV  
Ps,Rd  
3/10  
DEC  
A
1/8  
DEC  
B
1/8  
DEC  
Rn  
2/6  
TRAP  
13  
1/14  
MOV  
A,*n[SP]  
2/7  
JC  
ra  
2/5  
AND  
Rs,A  
2/7  
AND  
#n,A  
2/6  
AND  
Rs,B  
2/7  
AND  
Rs,Rd  
3/9  
AND  
#n,B  
2/6  
AND  
B,A  
1/8  
AND  
#n,Rd  
3/8  
AND  
A,Pd  
2/9  
AND  
B,Pd  
2/9  
AND  
#n,Pd  
3/10  
INC  
A
1/8  
INC  
B
1/8  
INC  
Rn  
2/6  
TRAP  
12  
1/14  
CMP  
*n[SP],A  
2/8  
JP  
ra  
2/5  
OR  
Rs,A  
2/7  
OR  
#n,A  
2/6  
OR  
Rs,B  
2/7  
OR  
Rs,Rd  
3/9  
OR  
#n,B  
2/6  
OR  
B,A  
1/8  
OR  
#n,Rd  
3/8  
OR  
A,Pd  
2/9  
OR  
B,Pd  
2/9  
OR  
#n,Pd  
3/10  
INV  
A
1/8  
INV  
B
1/8  
INV  
Rn  
2/6  
TRAP  
11  
1/14  
extend  
inst,2  
opcodes  
JPZ  
ra  
2/5  
XOR  
Rs,A  
2/7  
XOR  
#n,A  
2/6  
XOR  
Rs,B  
2/7  
XOR  
Rs,Rd  
3/9  
XOR  
#n,B  
2/6  
XOR  
B,A  
1/8  
XOR  
#n,Rd  
3/8  
XOR  
A,Pd  
2/9  
XOR  
B,Pd  
2/9  
XOR  
#n,Pd  
3/10  
CLR  
A
1/8  
CLR  
B
1/8  
CLR  
Rn  
2/6  
TRAP  
10  
1/14  
L
S
N
JNZ  
ra  
2/5  
BTJO  
Rs,A,ra  
3/9  
BTJO  
#n,A,ra  
3/8  
BTJO  
Rs,B,ra  
3/9  
BTJO  
Rs,Rd,ra  
4/11  
BTJO  
#n,B,ra  
3/8  
BTJO  
B,A,ra  
2/10  
BTJO  
#n,Rd,ra  
4/10  
BTJO  
A,Pd,ra  
3/11  
BTJO  
B,Pd,ra  
3/10  
BTJO  
#n,Pd,ra  
4/11  
XCHB  
A
1/10  
XCHB A /  
TST B  
1/10  
XCHB  
Rn  
2/8  
TRAP  
9
1/14  
IDLE  
1/6  
JNC  
ra  
2/5  
BTJZ  
Rs.,A,ra  
3/9  
BTJZ  
#n,A,ra  
3/8  
BTJZ  
Rs,B,ra  
3/9  
BTJZ  
Rs,Rd,ra  
4/11  
BTJZ  
#n,B,ra  
3/8  
BTJZ  
B,A,ra  
2/10  
BTJZ  
#n,Rd,ra  
4/10  
BTJZ  
A,Pd,ra  
3/10  
BTJZ  
B,Pd,ra  
3/10  
BTJZ  
#n,Pd,ra  
4/11  
SWAP  
A
1/11  
SWAP  
B
1/11  
SWAP  
Rn  
2/9  
TRAP  
8
1/14  
MOV  
#n,Pd  
3/10  
JV  
ra  
2/5  
ADD  
Rs,A  
2/7  
ADD  
#n,A  
2/6  
ADD  
Rs,B  
2/7  
ADD  
Rs,Rd  
3/9  
ADD  
#n,B  
2/6  
ADD  
B,A  
1/8  
ADD  
#n,Rd  
3/8  
MOVW  
#16,Rd  
4/13  
MOVW  
Rs,Rd  
3/12  
MOVW  
#16[B],Rd  
4/15  
PUSH  
A
1/9  
PUSH  
B
1/9  
PUSH  
Rs  
2/7  
TRAP  
7
1/14  
SETC  
1/7  
JL  
ra  
2/5  
ADC  
Rs,A  
2/7  
ADC  
#n,A  
2/6  
ADC  
Rs,B  
2/7  
ADC  
Rs,Rd  
3/9  
ADC  
#n,B  
2/6  
ADC  
B,A  
1/8  
ADC  
#n,Rd  
3/8  
JMPL  
lab  
3/9  
JMPL  
*Rd  
2/8  
JMPL  
*lab[B]  
3/11  
POP  
A
1/9  
POP  
B
1/9  
POP  
Rd  
2/7  
TRAP  
6
1/14  
RTS  
1/9  
JLE  
ra  
2/5  
SUB  
Rs,A  
2/7  
SUB  
#n,A  
2/6  
SUB  
Rs,B  
2/7  
SUB  
Rs,Rd  
3/9  
SUB  
#n,B  
2/6  
SUB  
B,A  
1/8  
SUB  
#n,Rd  
3/8  
MOV  
& lab,A  
3/10  
MOV  
*Rs,A  
2/9  
MOV  
*lab[B],A  
3/12  
DJNZ  
A,ra  
2/10  
DJNZ  
B,ra  
2/10  
DJNZ  
Rn,ra  
3/8  
TRAP  
5
1/14  
RTI  
1/12  
JHS  
ra  
2/5  
SBB  
Rs,A  
2/7  
SBB  
#n,A  
2/6  
SBB  
Rs,B  
2/7  
SBB  
Rs,Rd  
3/9  
SBB  
#n,B  
2/6  
SBB  
B,A  
1/8  
SBB  
#n,Rd  
3/8  
MOV  
A, & lab  
3/10  
MOV  
A, *Rd  
2/9  
MOV  
A,*lab[B]  
3/12  
COMPL  
A
1/8  
COMPL  
B
1/8  
COMPL  
Rn  
2/6  
TRAP  
4
1/14  
PUSH  
ST  
1/8  
All conditional jumps (opcodes 010F), BTJO, BTJZ, and DJNZ instructions use two additional cycles if the branch is taken. The BTJO, BTJZ, and DJNZ  
instructions have a relative address as the last operand.  
Table 17. TMS370 Family Opcode/Instruction Map (Continued)  
MSN  
0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F
JNV  
ra  
2/5  
MPY  
Rs,A  
2/46  
MPY  
#n,A  
2/45  
MPY  
Rs,B  
2/46  
MPY  
Rs,Rd  
3/48  
MPY  
#n,B  
2/45  
MPY  
B,A  
1/47  
MPY  
#n,Rs  
3/47  
BR  
lab  
3/9  
BR  
*Rd  
2/8  
BR  
*lab[B]  
3/11  
RR  
A
1/8  
RR  
B
1/8  
RR  
Rn  
2/6  
TRAP  
3
1/14  
POP  
ST  
1/8  
C
D
E
F
JGE  
ra  
2/5  
CMP  
Rs,A  
2/7  
CMP  
#n,A  
2/6  
CMP  
Rs,B  
2/7  
CMP  
Rs,Rd  
3/9  
CMP  
#n,B  
2/6  
CMP  
B,A  
1/8  
CMP  
#n,Rd  
3/8  
CMP  
& lab,A  
3/11  
CMP  
*Rs,A  
2/10  
CMP  
*lab[B],A  
3/13  
RRC  
A
1/8  
RRC  
B
1/8  
RRC  
Rn  
2/6  
TRAP  
2
1/14  
LDSP  
1/7  
L
S
N
JG  
ra  
2/5  
DAC  
Rs,A  
2/9  
DAC  
#n,A  
2/8  
DAC  
Rs,B  
2/9  
DAC  
Rs,Rd  
3/11  
DAC  
#n,B  
2/8  
DAC  
B,A  
1/10  
DAC  
#n,Rd  
3/10  
CALL  
lab  
3/13  
CALL  
*Rd  
2/12  
CALL  
*lab[B]  
3/15  
RL  
A
1/8  
RL  
B
1/8  
RL  
Rn  
2/6  
TRAP  
1
1/14  
STSP  
1/8  
JLO  
ra  
2/5  
DSB  
Rs,A  
2/9  
DSB  
#n,A  
2/8  
DSB  
Rs,B  
2/9  
DSB  
Rs,Rd  
3/11  
DSB  
#n,B  
2/8  
DSB  
B,A  
1/10  
DSB  
#n,Rd  
3/10  
CALLR  
lab  
3/15  
CALLR  
*Rd  
2/14  
CALLR  
*lab[B]  
3/17  
RLC  
A
1/8  
RLC  
B
1/8  
RLC  
Rn  
2/6  
TRAP  
0
1/14  
NOP  
1/7  
MOVW  
*n[Rn]  
4/15  
DIV  
Rn.A  
3/14-63  
Second byte of two-byte instructions (F4xx):  
F4  
F4  
F4  
F4  
F4  
F4  
F4  
F4  
8
9
JMPL  
*n[Rn]  
4/16  
Legend:  
MOV  
*n[Rn],A  
4/17  
A
B
C
D
E
F
*
&
#
=
=
=
Indirect addressing operand prefix  
Direct addressing operand prefix  
immediate operand  
MOV  
A,*n[Rn]  
4/16  
#16 = immediate 16-bit number  
lab  
n
Pd  
Pn  
Ps  
ra  
Rd  
Rn  
Rp  
=
=
=
=
=
=
=
=
=
16-label  
immediate 8-bit number  
Peripheral register containing destination type  
Peripheral register  
Peripheral register containing source byte  
Relative address  
Register containing destination type  
Register file  
Register pair  
BR  
*n[Rn]  
4/16  
CMP  
*n[Rn],A  
4/18  
CALL  
*n[Rn]  
4/20  
Rpd= Destination register pair  
Rps = Source Register pair  
CALLR  
*n[Rn]  
4/22  
Rs  
= Register containing source byte  
All conditional jumps (opcodes 010F), BTJO, BTJZ, and DJNZ instructions use two additional cycles if the branch is taken. The BTJO, BTJZ, and DJNZ  
instructions have a relative address as the last operand.  
TMS370Cx1x  
8-BIT MICROCONTROLLER  
SPNS012F – MAY 1987 – REVISED FEBRUARY 1997  
development system support  
The TMS370 family development support tools include an assembler, a C-compiler, a linker, an in-circuit  
emulator XDS/22, CDT and an EEPROM/UVEPROM programmer.  
Assembler/linker (Part No. TMDS3740850–02 for PC)  
Includes extensive macro capability  
Provides high-speed operation  
Includes format conversion utilities for popular formats  
ANSI C Compiler (Part No. TMDS3740855–02 for PC, Part No. TMDS3740555–09 for HP700 , Sun-3  
or Sun-4 )  
Generate assembly code for the TMS370 that can be inspected easily  
Improves code execution speed and reduces code size with optional optimizer pass  
Enables direct reference the TMS370’s port registers by using a naming convention  
Provides flexibility in specifying the storage for data objects  
Interfaces C functions and assembly functions easily  
Includes assembler and linker  
CDT370 (Compact Development Tool) real-time in-circuit emulation  
Base (Part Number EDSCDT370 – for PC, requires cable)  
Cable for 28-pin DIP (Part No. EDSTRG28DIL)  
Cable for 28-pin PLCC (Part No. EDSTRG28PLCC)  
EEPROM and EPROM programming support  
Allows inspection and modification of memory locations  
Includes compatibility to upload/download program and data memory  
Execute programs and software routines  
Includes 1024 samples trace buffer  
Includes single-step executable instructions  
Uses software breakpoints to halt program execution at selected address  
XDS/22 in-circuit emulator  
Base (Part Number TMDS3762210 for PC, requires cable)  
Cable for 28-pin DIP/PLCC (Part No. TMDS3788828)  
Contains all the features of the CDT370 described previously but does not have the capability to  
program the data EEPROM and program EPROM  
Contains sophisticated breakpoint trace and timing hardware that provides up to 2047 qualified trace  
samples with symbolic disassembly  
Allowsqualificationofbreakpointsbyaddressand/ordataonanytypeofmemoryacquisition. Uptofour  
levels of events can be combined to cause a breakpoint  
HP700 is a trademark of Hewlett-Packard Company.  
Sun-3 and Sun-4 are trademarks of Sun Microsystems, Incorporated.  
30  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx1x  
8-BIT MICROCONTROLLER  
SPNS012F – MAY 1987 – REVISED FEBRUARY 1997  
development system support (continued)  
Provides timers for analyzing total and average time in routines  
Contains an eight-line logic probe for adding visibility of external signals to the breakpoint qualifier and  
to trace display  
Microcontroller programmer  
Base (Part No. TMDS3760500A – for PC, requires programmer head)  
Single unit head for 28-pin PLCC (Part No. TMDS3780510A)  
Single unit head for 28-pin DIP (Part No. TMDS3780511A)  
PC-based, window/function-key-orienteduserinterfaceforeaseofuseandrapidlearningenvironment  
Design kit (Part No. TMDS3770110 – for PC)  
Includes TMS370 Application Board and TMS370 Assembler diskette and documentation  
Supports quick evaluation of TMS370 functionality  
Capability to upload and download code  
Capability to execute programs and software routines, and to single-step executable instructions  
Software breakpoints to halt program execution at selected addresses  
Wire-wrap prototype area  
Reverse assembler  
Starter Kit (Part No. TMDS37000 – for PC)  
Includes TMS370 Assembler diskette and documentation  
Includes TMS370 Simulator  
Includes programming adapter board and programming software  
Does not include (to be supplied by the user)  
+ 5 V power supply  
ZIF sockets  
Nine-pin RS232 cable  
31  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx1x  
8-BIT MICROCONTROLLER  
SPNS012F – MAY 1987 – REVISED FEBRUARY 1997  
device numbering conventions  
Figure 12 illustrates the numbering and symbol nomenclature for the TMS370Cx1x family.  
TMS 370 C  
7
1
2
A FN L  
Prefix: TMS = Standard prefix for fully qualified devices  
SE = System evaluator (window EPROM) that is used for  
prototyping purpose.  
Family: 370 = TMS370 8-Bit Microcontroller Family  
Technology:  
C = CMOS  
Program Memory Types:  
0 = Mask ROM  
3 = Mask ROM, No Data EEPROM  
7 = EPROM  
Device Type:  
1 = ’x1x device containing the following modules:  
– Timer 1  
– Serial Peripheral Interface  
Memory Size:  
0 = 4K bytes  
1 = 2K bytes  
2 = 8K bytes  
Temperature Ranges:  
Packages:  
A = –40°C to 85°C  
L =  
0°C to 70°C  
T = –40°C to 105°C  
FN = Plastic Leaded Chip Carrier  
FZ = Ceramic Leaded Chip Carrier  
N = Plastic Dual-In-Line  
JD = Ceramic Dual-in-Line  
ROM and EPROM Option:  
A = For ROM device, the watchdog timer can be configured  
as one of the three different mask options:  
– A standard watchdog  
– A hard watchdog  
– A simple watchdog  
The clock can be either:  
– Divide-by-4 clock  
– Divide-by-1 (PLL) clock  
The low-power modes can be either:  
– Enabled  
– Disabled  
A = For EPROM device, a standard watchdog, a divide-by-  
4 clock, and low-power modes are enabled  
B = For EPROM device, a hard watchdog, a divide-by-1  
(PLL) clock, and low-power modes are enabled.  
Figure 12. TMS370Cx1x Family Nomenclature  
32  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx1x  
8-BIT MICROCONTROLLER  
SPNS012F – MAY 1987 – REVISED FEBRUARY 1997  
device part numbers  
Table 18 provides all of the ’x1x devices available. The device part number nomenclature is designed to assist  
ordering. Upon ordering, the customer must specify not only the device part number, but also the clock and  
watchdog timer options desired. Each device can have only one of the three possible watchdog timer options  
and one of the two clock options. The options to be specified pertain solely to orders involving ROM devices.  
Table 18. Device Part Numbers  
DEVICES PART NUMBERS  
FOR 28 PINS (LCC)  
DEVICES PART NUMBERS  
FOR 28 PINS (DIP)  
TMS370C010AFNA  
TMS370C010AFNL  
TMS370C010AFNT  
TMS370C010ANA  
TMS370C010ANL  
TMS370C010ANT  
TMS370C012AFNA  
TMS370C012AFNL  
TMS370C012AFNT  
TMS370C012ANA  
TMS370C012ANL  
TMS370C012ANT  
TMS370C310AFNA  
TMS370C310AFNL  
TMS370C310AFNT  
TMS370C310ANA  
TMS370C310ANL  
TMS370C310ANT  
TMS370C311AFNA  
TMS370C311AFNL  
TMS370C311AFNT  
TMS370C311ANA  
TMS370C311ANL  
TMS370C311ANT  
TMS370C312AFNA  
TMS370C312AFNL  
TMS370C312AFNT  
TMS370C312ANA  
TMS370C312ANL  
TMS370C312ANT  
TMS370C712AFNT  
TMS370C712BFNT  
TMS370C712ANT  
TMS370C712BNT  
SE370C712AFZT  
SE370C712BFZT  
SE370C712AJDT  
SE370C712BJDT  
System evaluators are for use in prototype environment and their  
reliability has not been characterized.  
33  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx1x  
8-BIT MICROCONTROLLER  
SPNS012F – MAY 1987 – REVISED FEBRUARY 1997  
new code release form  
Figure 13 shows a sample of the new code release form.  
NEW CODE RELEASE FORM  
TEXAS INSTRUMENTS  
DATE:  
TMS370 MICROCONTROLLER PRODUCTS  
To release a new customer algorithm to TI incorporated into a TMS370 family microcontroller, complete this form and submit with the following information:  
1. A ROM description in object form on Floppy Disk, Modem XFR, or EPROM (Verification file will be returned via same media)  
2. An attached specification if not using TI standard specification as incorporated in TI’s applicable device data book.  
Company Name:  
Street Address:  
Street Address:  
City:  
Contact Mr./Ms.:  
Phone: (  
)
Ext.:  
State  
Zip  
Customer Purchase Order Number:  
Customer Print Number *Yes:  
No:  
*If Yes: Customermust provide ”print” to TI w/NCRF for approvalbefore ROM  
code processing starts.  
#
Customer Part Number:  
Customer Application:  
(Std. spec to be followed)  
TMS370 Device:  
TI Customer ROM Number:  
(provided by Texas Instruments)  
CONTACT OPTIONS FOR THE ’A’ VERSION TMS370 MICROCONTROLLERS  
OSCILLATOR FREQUENCY  
Low Power Modes  
[] Enabled  
[] Disabled  
Watchdog counter  
[] Standard  
[] Hard Enabled  
[] Simple Counter  
Clock Type  
[] Standard (/4)  
[] PLL (/1)  
MIN  
TYP  
MAX  
[] External Drive (CLKIN)  
[] Crystal  
[] Ceramic Resonator  
NOTE:  
Non ’A’ version ROM devices of the TMS370 microcontrollers will have the  
“Low-powermodesEnabled”, “Divide-by-4Clock, andStandardWatchdog  
options. See the TMS370 Family User’s Guide (literature number SPNU127)  
or the TMS370 Family Data Manual (literature number SPNS014B).  
[] Supply Voltage MIN:  
(std range: 4.5V to 5.5V)  
MAX:  
TEMPERATURE RANGE  
PACKAGE TYPE  
[] ’L’:  
[] ’A’:  
[] ’T’:  
0° to 70°C (standard)  
–40° to 85°C  
–40° to 105°C  
[] ’N’ 28-pin PDIP  
[] “FN” 28-pin PLCC  
[] “N” 40-pin PDIP  
[] “FN” 44-pin PLCC  
[] “FN” 68-pin PLCC  
[] “NM” 64-pin PSDIP  
[] “NJ” 40-pin PSDIP (formerly known as N2)  
SYMBOLIZATION  
BUS EXPANSION  
[] TI standard symbolization  
[] YES  
[] NO  
[] TI standard w/customer part number  
[] Customer symbolization  
(per attached spec, subject to approval)  
NON-STANDARD SPECIFICATIONS:  
ALL NON-STANDARDS SPECIFICATIONS MUST BE APPROVED BY THE TI ENGINEERING STAFF: If the customer requires expedited production material  
(i.e., product which must be started in process prior to prototype approval and full production release) and non-standard spec issues are not resolved to the  
satisfaction of both the customer and TI in time for a scheduled shipment, the specification parameters in question will be processed/tested to the standard  
TI spec. Any such devices which are shipped without conformance to a mutually approved spec, will be identified by a ’P’ in the symbolization preceding the  
TI part number.  
RELEASE AUTHORIZATION:  
This document, including any referenced attachments, is and will be the controlling document for all orders placed for this TI custom device. Any changes must  
be in writing and mutually agreed to by both the customer and TI. The prototype cycletime commences when this document is signed off and the verification  
code is approved by the customer.  
1. Customer:  
Date:  
2. TI: Field Sales:  
Marketing:  
Prod. Eng.:  
Proto. Release:  
Figure 13. Sample New Code Release Form  
34  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx1x  
8-BIT MICROCONTROLLER  
SPNS012F – MAY 1987 – REVISED FEBRUARY 1997  
Table 19 is a collection of all the peripheral file frames used in the ’Cx1x (provided for a quick reference).  
Table 19. Peripheral File Frame Compilation  
PF  
BIT 7  
BIT 6  
BIT 5  
BIT 4  
BIT 3  
BIT 2  
BIT 1  
BIT 0  
REG  
System Configuration Registers  
COLD  
START  
OSC  
POWER  
PF AUTO  
WAIT  
OSC FLT  
FLAG  
MC PIN  
WPO  
MC PIN  
DATA  
µP/µC  
MODE  
P010  
P011  
P012  
SCCR0  
SCCR1  
SCCR2  
AUTO  
WAIT  
DISABLE  
MEMORY  
DISABLE  
HALT/  
STANDBY  
PWRDWN/  
IDLE  
BUS  
STEST  
CPU  
STEST  
INT1  
NMI  
PRIVILEGE  
DISABLE  
P013  
to  
Reserved  
P016  
INT1  
FLAG  
INT1  
PIN DATA  
INT1  
POLARITY  
INT1  
PRIORITY  
INT1  
ENABLE  
P017  
P018  
P019  
INT1  
INT2  
INT2  
FLAG  
INT2  
PIN DATA  
INT2  
DATA DIR  
INT2  
DATA OUT  
INT2  
POLARITY  
INT2  
PRIORITY  
INT2  
ENABLE  
INT3  
FLAG  
INT3  
PIN DATA  
INT3  
DATA DIR  
INT3  
DATA OUT  
INT3  
POLARITY  
INT3  
PRIORITY  
INT3  
ENABLE  
INT3  
P01A  
P01B  
P01C  
BUSY  
BUSY  
AP  
W1W0  
W0  
EXE  
EXE  
DEECTL  
Reserved  
VPPS  
EPCTL  
P01D  
P01E  
P01F  
Reserved  
Digital Port Control Registers  
P020  
P021  
P022  
P023  
Reserved  
APORT1  
APORT2  
ADATA  
ADIR  
Port A Control Register 2 (must be 0)  
Port A Data  
Port A Direction  
P024  
to  
Reserved  
P02B  
P02C  
P02D  
P02E  
P02F  
Port D Control Register 1 (must be 0)  
DPORT1  
DPORT2  
DDATA  
DDIR  
Port D Control Register 2 (must be 0)  
Port D Data  
Port D Direction  
SPI Module Control Register Memory Map  
SPI SW  
RESET  
CLOCK  
POLARITY  
SPI BIT  
RATE2  
SPI BIT  
RATE1  
SPI BIT  
RATE0  
SPI  
CHAR2  
SPI  
CHAR1  
SPI  
CHAR0  
P030  
P031  
SPICCR  
SPICTL  
RECEIVER  
OVERRUN  
SPI INT  
FLAG  
MASTER/  
SLAVE  
SPI INT  
ENA  
TALK  
P032  
to  
Reserved  
P036  
P037  
P038  
RCVD7  
RCVD6  
RCVD5  
RCVD4  
RCVD3  
Reserved  
RCVD2  
RCVD1  
RCVD0  
SPIBUF  
D3 as SYSCLK, set port D control register 2 = 08h.  
35  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx1x  
8-BIT MICROCONTROLLER  
SPNS012F – MAY 1987 – REVISED FEBRUARY 1997  
Table 19. Peripheral File Frame Compilation (Continued)  
PF  
BIT 7  
BIT 6  
BIT 5  
BIT 4  
BIT 3  
BIT 2  
BIT 1  
BIT 0  
REG  
P039  
SDAT7  
SDAT6  
SDAT5  
SDAT4  
SDAT3  
SDAT2  
SDAT1  
SDAT0  
SPIDAT  
P03A  
to  
Reserved  
P03C  
SPICLK  
DATA IN  
SPICLK  
DATA OUT  
SPICLK  
FUNCTION  
SPICLK  
DATA DIR  
P03D  
P03E  
P03F  
SPIPC1  
SPIPC2  
SPIPRI  
SPISIMO  
DATA IN  
SPISIMO  
DATA OUT  
SPISIMO  
FUNCTION  
SPISIMO  
DATA DIR  
SPISOMI  
DATA IN  
SPISOMI  
DATA OUT  
SPISOMI  
FUNCTION  
SPISOMI  
DATA DIR  
SPI  
STEST  
SPI  
RIORITY  
SPI  
ESPEN  
Timer1 Module Register Memory Map  
Modes: Dual-Compare and Capture/Compare  
P040 Bit 15  
P041 Bit 7  
P042 Bit 15  
P043 Bit 7  
P044 Bit 15  
P045 Bit 7  
P046 Bit 15  
P047 Bit 7  
P048 Bit 7  
T1Counter MSbyte  
T1 Counter LSbyte  
Bit 8 T1CNTR  
Bit 0  
Compare Register MSbyte  
Compare Register LSbyte  
Capture/Compare Register MSbyte  
Capture/Compare Register LSbyte  
Watchdog Counter MSbyte  
Watchdog Counter LSbyte  
Watchdog Reset Key  
Bit 8 T1C  
Bit 0  
Bit 8 T1CC  
Bit 0  
Bit 8 WDCNTR  
Bit 0  
Bit 0 WDRST  
WD OVRFL  
TAP SEL  
WD INPUT  
SELECT2  
WD INPUT  
SELECT1  
WD INPUT  
SELECT0  
T1 INPUT  
SELECT2  
T1 INPUT  
SELECT1  
T1 INPUT  
SELECT0  
P049  
P04A  
T1CTL1  
T1CTL2  
WD OVRFL  
WD OVRFL  
INT ENA  
WD OVRFL  
INT FLAG  
T1 OVRFL  
INT ENA  
T1 OVRFL  
INT FLAG  
T1  
RST ENA  
SW RESET  
Mode: Dual-Compare  
T1EDGE  
INT FLAG  
T1C2  
INT FLAG  
T1C1  
INT FLAG  
T1EDGE  
INT ENA  
T1C2  
INT ENA  
T1C1  
INT ENA  
P04B  
T1CTL3  
T1CTL4  
T1C1  
OUT ENA  
T1C2  
OUT ENA  
T1C1  
RST ENA  
T1CR  
OUT ENA  
T1EDGE  
POLARITY  
T1CR  
RST ENA  
T1EDGE  
DET ENA  
P04C T1 MODE=0  
Mode: Capture/Compare  
T1EDGE  
T1C1  
INT FLAG  
T1EDGE  
INT ENA  
T1C1  
INT ENA  
P04B  
P04C  
T1CTL3  
T1CTL4  
INT FLAG  
T1  
T1C1  
T1C1  
RST ENA  
T1EDGE  
POLARITY  
T1EDGE  
DET ENA  
MODE = 1  
OUT ENA  
Modes: Dual-Compare and Capture/Compare  
T1EVT  
DATA IN  
T1EVT  
DATA OUT  
T1EVT  
FUNCTION  
T1EVT  
DATA DIR  
P04D  
P04E  
P04F  
T1PC1  
T1PC2  
T1PRI  
T1PWM  
DATA IN  
T1PWM  
DATA OUT  
T1PWM  
FUNCTION  
T1PWM  
DATA DIR  
T1IC/CR  
DATA IN  
T1IC/CR  
DATA OUT  
T1IC/CR  
FUNCTION  
T1IC/CR DATA  
DIR  
T1  
T1 STEST  
PRIORITY  
Once the WD OVRFL RST ENA bit is set, these bits cannot be changed until a reset; this applies only to the standard  
watchdog and to simple counter. In the hard watchdog, these bits can be modified at any time; the WD INPUT SELECT2  
bits are ignored.  
36  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx1x  
8-BIT MICROCONTROLLER  
SPNS012F – MAY 1987 – REVISED FEBRUARY 1997  
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)  
Supply voltage range,V  
(see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.6 V to 7 V  
CC  
Input voltage range, All pins except MC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.6 V to 7 V  
MC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.6 V to 14 V  
Input clamp current, I (V < 0 or V > V  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±20 mA  
(V < 0 or V > V ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±20 mA  
IK  
I
I
CC)  
Output clamp current, I  
OK  
O
O
CC  
Continuous output current per buffer, I (V = 0 to V ) (see Note 2) . . . . . . . . . . . . . . . . . . . . . . . . . ±10 mA  
O
O
CC)  
Maximum I  
current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170 mA  
CC  
Maximum I current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 170 mA  
SS  
Continuous power dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 500 mW  
Operating free-air temperature range, T : L version . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0°C to 70°C  
A
A version . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40°C to 85°C  
T version . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40°C to 105°C  
Storage temperature range, T  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65°C to 150°C  
stg  
Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and  
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not  
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
NOTES: 1. Unless otherwise noted, all voltage values are with respect to V  
.
SS  
2. Electrical characteristics are specified with all output buffers loaded with specified I current. Exceeding the specified I current in  
O
O
any buffer can affect the levels on other buffers.  
recommended operating conditions  
MIN  
4.5  
3
NOM  
MAX  
5.5  
UNIT  
V
Supply voltage (see Note 1)  
5
V
V
CC  
RAM data-retention supply voltage (see Note 3)  
All pins except MC  
MC, normal operation  
5.5  
V
V
SS  
0.8  
Low-level input voltage  
High-level input voltage  
V
V
IL  
V
SS  
0.3  
All pins except MC, XTAL2/CLKIN, and  
RESET  
2
V
CC  
V
V
IH  
XTAL2/CLKIN  
0.8 V  
0.7 V  
V
CC  
CC  
CC  
RESET  
V
CC  
13  
EEPROM write protect override (WPO)  
11.7  
13  
12  
MC (mode control) voltage  
EPROM programming voltage (V  
Microcomputer  
L version  
)
13.2  
13.5  
0.3  
70  
V
MC  
PP  
V
SS  
0
T
A
Operating free-air temperature  
A version  
– 40  
– 40  
85  
°C  
T version  
105  
NOTES: 1. Unless otherwise noted, all voltage values are with respect to V  
.
SS  
3. RESET must be externally activated when V  
CC  
or SYSCLK is not within the recommended operating range.  
37  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx1x  
8-BIT MICROCONTROLLER  
SPNS012F – MAY 1987 – REVISED FEBRUARY 1997  
electrical characteristics over recommended operating free-air temperature range (unless  
otherwise noted)  
PARAMETER  
Low-level output voltage  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
V
V
I
I
I
= 1.4 mA  
= 50 µA  
= 2 mA  
0.4  
V
OL  
OL  
OH  
OH  
0.9 V  
CC  
High-level output voltage  
Input current  
V
OH  
2.4  
0 V V 0.3 V  
10  
I
µA  
0.3 V < V 13 V  
650  
I
MC  
I
I
See Note 4  
50  
mA  
12 V V 13 V  
I
I/O pins  
0 V V V  
± 10  
µA  
mA  
µA  
I
CC  
I
I
Low-level output current  
High-level output current  
V
OL  
V
OH  
V
OH  
= 0.4 V  
1.4  
– 50  
– 2  
OL  
= 0.9 V  
= 2.4 V  
CC  
OH  
mA  
See Notes 5 and 6  
SYSCLK = 5 MHz  
20  
13  
5
36  
25  
11  
Supply current (operating mode)  
OSC POWER bit = 0 (see Note 7)  
See Notes 5 and 6  
SYSCLK = 3 MHz  
mA  
mA  
See Notes 5 and 6  
SYSCLK = 0.5 MHz  
See Notes 5 and 6  
SYSCLK = 5 MHz  
10  
6.5  
2
17  
11  
Supply current (STANDBY mode)  
OSC POWER bit = 0 (see Note 8)  
See Notes 5 and 6  
SYSCLK = 3 MHz  
I
CC  
See Notes 5 and 6  
SYSCLK = 0.5 MHz  
3.5  
8.6  
3.0  
30  
See Notes 5 and 6  
SYSCLK = 3 MHz  
4.5  
1.5  
1
Supply current (STANDBY mode)  
OSC POWER bit = 1 (see Note 9)  
mA  
See Notes 5 and 6  
SYSCLK = 0.5 MHz  
See Note 5  
XTAL2/CLKIN < 0.2 V  
Supply current (HALT mode)  
µA  
NOTES: 4. Input current I  
is a maximum of 50 mA only when you are programming EPROM.  
PP  
5. Single chip mode, ports configured as inputs or outputs with no load. All inputs 0.2 V or V  
– 0.2V.  
CC  
6. XTAL2/CLKIN is driven with an external square wave signal with 50% duty cycle and rise and fall times less than 10 ns. Current  
can be higher with a crystal oscillator. At 5 MHz SYSCLK, this extra current = 0.01 mA x (total load capacitance + crystal capacitance  
in pF).  
7. Maximum operating current = 5.6 (SYSCLK) + 8 mA.  
8. Maximum standby current = 3 (SYSCLK) + 2 mA. (OSC POWER bit = 0).  
9. Maximum standby current = 2.24 (SYSCLK) + 1.9 mA. (OSC POWER bit = 1, only valid up to 3 MHz SYSCLK).  
38  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx1x  
8-BIT MICROCONTROLLER  
SPNS012F – MAY 1987 – REVISED FEBRUARY 1997  
XTAL2/CLKIN  
XTAL1  
XTAL2/CLKIN  
XTAL1  
C3  
C1  
(see Note B)  
C2  
Crystal/Ceramic  
Resonator  
(see Note A)  
(see Note B)  
External  
Clock Signal  
(see Note B)  
NOTES: A. The crystal/ceramic resonator frequency is four times the reciprocal of the system clock period.  
B. The values of C1 and C2 are typically 15 pF and the value of C3 is typically 50 pF. See the manufacturer’s recommendations for  
ceramic resonators.  
Figure 14. Recommended Crystal/Clock Connections  
Load Voltage  
1.2 kΩ  
V
O
20 pF  
Case 1: V = V  
= 2.4 V; Load Voltage = 0 V  
= 0.4 V; Load Voltage = 2.1 V  
O
OH  
OL  
Case 2: V = V  
O
NOTE A: All measurements are made with the pin loading as shown unless otherwise noted. All measurements are made with XTAL2/CLKIN  
driven by an external square wave signal with a 50% duty cycle and rise and fall times less than 10 ns unless otherwise stated.  
Figure 15. Typical Output Load Circuit (See Note A)  
V
CC  
V
CC  
Pin Data  
300 Ω  
30 Ω  
6 kΩ  
Output  
Enable  
I/O  
INT1  
20 Ω  
20 Ω  
GND  
GND  
Figure 16. Typical Buffer Circuitry  
39  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx1x  
8-BIT MICROCONTROLLER  
SPNS012F – MAY 1987 – REVISED FEBRUARY 1997  
PARAMETER MEASUREMENT INFORMATION  
timing parameter symbology  
Timing parameter symbols have been created in accordance with JEDEC Standard 100. In order to shorten the  
symbols, some of the pin names and other related terminology have been abbreviated as follows:  
AR  
B
Array  
SC  
SYSCLK  
Byte  
SIMO SPISIMO  
SOMI SPISOMI  
CI  
M
S
XTAL2/CLKIN  
Master mode  
Slave mode  
SPC  
SPICLK  
Lowercase subscripts and their meanings are:  
c
d
f
cycle time (period)  
delay time  
fall time  
su  
v
setup time  
valid time  
w
pulse duration (width)  
r
rise time  
The following additional letters are used with these meanings:  
H
L
High  
Low  
Valid  
V
All timings are measured between high and low measurement points as indicated in Figure 17 and Figure 18.  
0.8 V  
V (High)  
2 V (High)  
CC  
0.8 V (Low)  
0.8 V (Low)  
Figure 17. XTAL2/CLKIN Measurement Points  
Figure 18. General Measurement Points  
40  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx1x  
8-BIT MICROCONTROLLER  
SPNS012F – MAY 1987 – REVISED FEBRUARY 1997  
external clocking requirements for clock divided by 4 (see Note 10 and Figure 19)  
NO.  
1
PARAMETER  
Pulse duration, XTAL2/CLKIN (see Note 11)  
Rise time, XTAL2/CLKIN  
MIN  
MAX  
UNIT  
ns  
t
t
t
t
20  
w(Cl)  
2
30  
30  
100  
20  
5
ns  
r(Cl)  
3
Fall time, XTAL2/CLKIN  
ns  
f(CI)  
4
Delay time, XTAL2/CLKIN rise to SYSCLK fall  
Crystal operating frequency  
ns  
d(CIH-SCL)  
CLKIN  
2
MHz  
MHz  
SYSCLK  
Internal system clock operating frequency  
0.5  
SYSCLK = CLKIN/4  
NOTES: 10. For V and V , refer to recommended operating conditions.  
IL IH  
11. This pulse may be either a high pulse which extends from the earliest valid high to the final valid high in an XTAL2/CLKIN cycle or  
a low pulse, which extends from the earliest valid low to the final valid low in an XTAL2/CLKIN cycle.  
1
XTAL2/CLKIN  
2
3
4
SYSCLK  
Figure 19. External Clock Timing for Divide-by-4  
external clocking requirements for clock divided by 1 (PLL) (see Note 10 and Figure 20)  
NO.  
1
PARAMETER  
Pulse duration, XTAL2/CLKIN (see Note 11)  
Rise time, XTAL2/CLKIN  
MIN  
MAX  
UNIT  
ns  
t
t
t
t
20  
w(Cl)  
2
30  
30  
100  
5
ns  
r(Cl)  
3
Fall time, XTAL2/CLKIN  
ns  
f(CI)  
4
Delay time, XTAL2/CLKIN rise to SYSCLK rise  
Crystal operating frequency  
ns  
d(CIH-SCH)  
CLKIN  
2
2
MHz  
MHz  
SYSCLK  
Internal system clock operating frequency  
5
SYSCLK = CLKIN/1  
NOTES: 10. For V and V , refer to recommended operating conditions.  
IL IH  
11. This pulse can be either a high pulse which extends from the earliest valid high to the final valid high in an XTAL2/CLKIN cycle or  
a low pulse, which extends from the earliest valid low to the final valid low in an XTAL2/CLKIN cycle.  
1
XTAL2/CLKIN  
4
2
3
SYSCLK  
Figure 20. External Clock Timing for Divide-by-1  
41  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx1x  
8-BIT MICROCONTROLLER  
SPNS012F – MAY 1987 – REVISED FEBRUARY 1997  
switching characteristics and timing requirements (see Note 12 and Figure 21)  
NO.  
PARAMETER  
MIN  
200  
200  
MAX  
2000  
500  
UNIT  
Divide by 4  
Divide by 1  
5
t
c
Cycle time, SYSCLK  
ns  
6
7
t
t
Pulse duration, SYSCLK low  
Pulse duration, SYSCLK high  
0.5 t –20  
0.5 t  
c
ns  
ns  
w(SCL)  
c
0.5 t  
0.5 t + 20  
c
w(SCH)  
c
NOTE 12: t = system-clock cycle time = 1/SYSCLK  
c
5
7
6
SYSCLK  
Figure 21. SYSCLK Timing  
general purpose output signal switching time requirements (see Figure 22)  
MIN NOM  
MAX  
UNIT  
ns  
t
t
Rise time  
Fall time  
30  
30  
r
ns  
f
t
r
t
f
Figure 22. Signal Switching Timing  
recommended EEPROM timing requirements for programming  
MIN  
10  
MAX  
UNIT  
ms  
t
t
Pulse duration, programming signal to ensure valid data is stored (byte mode)  
Pulse duration, programming signal to ensure valid data is stored (array mode)  
w(PGM)B  
20  
ms  
w(PGM)AR  
recommended EPROM operating conditions for programming  
MIN NOM  
MAX  
6
UNIT  
V
V
V
Supply voltage  
4.75  
13  
5.5  
13.2  
30  
CC  
Supply voltage at MC pin  
13.5  
50  
5
V
PP  
I
Supply current at MC pin during programming (V  
= 13 V)  
mA  
PP  
PP  
Divide by 4  
Divide by 1  
0.5  
2
SYSCLK  
System clock  
MHz  
5
recommended EPROM timing requirements for programming  
MIN NOM  
0.40 0.50  
MAX  
UNIT  
t
Pulse duration, programming signal (see Note 13)  
3
ms  
w(EPGM)  
NOTE 13: Programming pulse is active when both EXE (EPCTL.0) and V  
(EPCTL.6) are set.  
PPS  
42  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx1x  
8-BIT MICROCONTROLLER  
SPNS012F – MAY 1987 – REVISED FEBRUARY 1997  
SPI master mode external timing characteristics and requirements (see Note 12 and Figure 23)  
NO.  
38  
39  
40  
41  
42  
43  
MIN  
2t  
MAX  
256t  
UNIT  
ns  
t
t
t
t
t
t
Cycle time, SPICLK  
c(SPC)M  
c
c
Pulse duration, SPICLK low  
t
– 45  
– 55  
0.5t  
0.5t  
+45  
+45  
ns  
w(SPCL)M  
c
c
c(SPC)  
Pulse duration, SPICLK high  
t
ns  
w(SPCH)M  
c(SPC)  
50  
Delay time, SPISIMO valid after SPICLK low (polarity = 1)  
Valid time, SPISIMO data valid after SPICLK high (polarity =1)  
Setup time, SPISOMI to SPICLK high (polarity = 1)  
– 65  
ns  
d(SPCL-SIMOV)M  
v(SPCH-SIMO)M  
su(SOMI-SPCH)M  
t
– 50  
ns  
w(SPCH)  
0.25 t + 150  
c
ns  
Valid time, SPISOMI data valid after SPICLK high  
(polarity = 1)  
44  
t
0
ns  
v(SPCH-SOMI)M  
NOTE 12: t = system-clock cycle time = 1/SYSCLK  
c
38  
40  
39  
SPICLK  
41  
42  
Data Valid  
SPISIMO  
43  
44  
Data Valid  
SPISOMI  
NOTE A: The diagram is for polarity = 1. SPICLK is inverted when polarity = 0.  
Figure 23. SPI Master External Timing  
43  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx1x  
8-BIT MICROCONTROLLER  
SPNS012F – MAY 1987 – REVISED FEBRUARY 1997  
SPI slave mode external timing characteristics and requirements (see Note 12 and Figure 24)  
NO.  
45  
46  
47  
48  
49  
50  
51  
MIN  
8t  
MAX  
UNIT  
ns  
t
t
t
t
t
t
t
Cycle time, SPICLK  
c(SPC)S  
c
Pulse duration, SPICLK low  
4t – 45 0.5t  
c
+45  
+45  
ns  
w(SPCL)S  
c(SPC)S  
Pulse duration, SPICLK high  
4t – 45 0.5t  
c
ns  
w(SPCH)S  
c(SPC)S  
Delay time, SPISOMI valid after SPICLK low (polarity = 1)  
Valid time, SPISOMI data valid after SPICLK high (polarity =1)  
Setup time, SPISIMO to SPICLK high (polarity = 1)  
Valid time, SPISIMO data after SPICLK high (polarity = 1)  
3.25t + 130  
ns  
d(SPCL-SOMIV)S  
v(SPCH-SOMI)S  
su(SIMO-SPCH)S  
v(SPCH-SIMO)S  
c
t
ns  
w(SPCH)S  
0
ns  
3t + 100  
C
ns  
NOTE 12: t = system-clock cycle time = 1/SYSCLK  
c
45  
47  
46  
SPICLK  
48  
49  
Data Valid  
SPISIMO  
50  
51  
Data Valid  
SPISOMI  
NOTE A: The diagram is for polarity = 1. SPICLK is inverted when polarity = 0.  
Figure 24. SPI Slave External Timing  
44  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx1x  
8-BIT MICROCONTROLLER  
SPNS012F – MAY 1987 – REVISED FEBRUARY 1997  
Table 20 is designed to aid the user in referencing a device part number to a mechanical drawing. The table  
shows a cross-reference of the device part number to the TMS370 generic package name and the associated  
mechanical drawing by drawing number and name.  
Table 20. TMS370Cx1x Family Package Type and Mechanical Cross-Reference  
PKG TYPE  
(mil pin spacing)  
PKG TYPE NO. AND  
MECHANICAL NAME  
TMS370 GENERIC NAME  
DEVICE PART NUMBERS  
TMS370C010AFNA  
TMS370C010AFNL  
TMS370C010AFNT  
TMS370C012AFNA  
TMS370C012AFNL  
TMS370C012AFNT  
TMS370C310AFNA  
TMS370C310AFNL  
TMS370C310AFNT  
TMS370C311AFNA  
TMS370C311AFNL  
TMS370C311AFNT  
TMS370C312AFNA  
TMS370C312AFNL  
TMS370C312AFNT  
TMS370C712AFNT  
TMS370C712BFNT  
FN – 28 pin  
(50-mil pin spacing)  
PLASTIC LEADED CHIP CARRIER  
(PLCC)  
FN(S-PQCC-J**) PLASTIC J-LEADED  
CHIP CARRIER  
FZ – 28 pin  
(50-mil pin spacing)  
CERAMIC LEADED CHIP CARRIER  
(CLCC)  
FZ(S-CQCC-J**) J-LEADED CERAMIC  
CHIP CARRIER  
SE370C712AFZT  
SE370C712BFZT  
JD – 28 pin  
(100-mil pin spacing) (CDIP)  
CERAMIC DUAL-IN-LINE PACKAGE  
JD(R-CDIP-T**) CERAMIC SIDE-BRAZE  
DUAL-IN-LINE PACKAGE  
SE370C712AJDT  
SE370C712BJDT  
TMS370C010ANA  
TMS370C010ANL  
TMS370C010ANT  
TMS370C012ANA  
TMS370C012ANL  
TMS370C012ANT  
TMS370C310ANA  
TMS370C310ANL  
TMS370C310ANT  
TMS370C311ANA  
TMS370C311ANL  
TMS370C311ANT  
TMS370C312ANA  
TMS370C312ANL  
TMS370C312ANT  
TMS370C712ANT  
TMS370C712BNT  
N – 28 pin  
(100-mil pin spacing) (PDIP)  
PLASTIC DUAL-IN-LINE PACKAGE  
N(R-PDIP-T**) PLASTIC DUAL-IN-LINE  
PACKAGE  
45  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx1x  
8-BIT MICROCONTROLLER  
SPNS012F – MAY 1987 – REVISED FEBRUARY 1997  
MECHANICAL DATA  
JD (R-CDIP-T**)  
CERAMIC SIDE-BRAZE DUAL-IN-LINE PACKAGE  
24 PIN SHOWN  
A
PINS **  
24  
28  
40  
48  
52  
DIM  
24  
13  
1.250  
1.450  
2.050  
2.435  
2.650  
A MAX  
(31,75) (36,83) (52,07) (61,85) (67,31)  
0.590 (15,00)  
TYP  
1
12  
0.065 (1,65)  
0.045 (1,14)  
0.175 (4,45)  
0.140 (3,56)  
0.620 (15,75)  
0.590 (14,99)  
0.075 (1,91) MAX  
4 Places  
Seating Plane  
0.020 (0,51) MIN  
0°15°  
0.125 (3,18) MIN  
0.100 (2,54)  
0.021 (0,53)  
0.015 (0,38)  
0.012 (0,30)  
0.008 (0,20)  
4040087/B 04/95  
NOTES: A. All linear dimensions are in inches (millimeters).  
B. This drawing is subject to change without notice.  
C. This package can be hermetically sealed with a metal lid.  
D. The terminals are gold plated.  
46  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx1x  
8-BIT MICROCONTROLLER  
SPNS012F – MAY 1987 – REVISED FEBRUARY 1997  
MECHANICAL DATA  
N (R-PDIP-T**)  
PLASTIC DUAL-IN-LINE PACKAGE  
24 PIN SHOWN  
A
24  
13  
0.560 (14,22)  
0.520 (13,21)  
1
12  
0.060 (1,52) TYP  
0.200 (5,08) MAX  
0.020 (0,51) MIN  
0.610 (15,49)  
0.590 (14,99)  
Seating Plane  
0.100 (2,54)  
0.125 (3,18) MIN  
0.010 (0,25) NOM  
0°15°  
0.021 (0,53)  
0.015 (0,38)  
0.010 (0,25)  
PINS **  
M
24  
1.270  
28  
32  
40  
48  
52  
DIM  
1.450  
1.650  
2.090  
2.450  
2.650  
A MAX  
(32,26) (36,83) (41,91) (53,09) (62,23) (67,31)  
1.230  
1.410  
1.610  
2.040  
2.390  
2.590  
A MIN  
(31,24) (35,81) (40,89) (51,82) (60,71) (65,79)  
4040053/B 04/95  
NOTES: A. All linear dimensions are in inches (millimeters).  
B. This drawing is subject to change without notice.  
C. Falls within JEDEC MS-011  
D. Falls within JEDEC MS-015 (32 pin only)  
47  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx1x  
8-BIT MICROCONTROLLER  
SPNS012F – MAY 1987 – REVISED FEBRUARY 1997  
MECHANICAL DATA  
FN (S-PQCC-J**)  
PLASTIC J-LEADED CHIP CARRIER  
20 PIN SHOWN  
Seating Plane  
0.004 (0,10)  
0.180 (4,57) MAX  
0.120 (3,05)  
D
0.090 (2,29)  
D1  
0.020 (0,51) MIN  
3
1
19  
0.032 (0,81)  
0.026 (0,66)  
4
18  
D2/E2  
D2/E2  
E
E1  
8
14  
0.021 (0,53)  
0.013 (0,33)  
0.050 (1,27)  
9
13  
0.007 (0,18)  
M
0.008 (0,20) NOM  
D/E  
D1/E1  
D2/E2  
NO. OF  
PINS  
**  
MIN  
0.385 (9,78)  
MAX  
MIN  
MAX  
MIN  
MAX  
0.395 (10,03)  
0.350 (8,89)  
0.356 (9,04)  
0.141 (3,58)  
0.191 (4,85)  
0.291 (7,39)  
0.341 (8,66)  
0.169 (4,29)  
0.219 (5,56)  
0.319 (8,10)  
0.369 (9,37)  
20  
28  
44  
52  
68  
84  
0.485 (12,32) 0.495 (12,57) 0.450 (11,43) 0.456 (11,58)  
0.685 (17,40) 0.695 (17,65) 0.650 (16,51) 0.656 (16,66)  
0.785 (19,94) 0.795 (20,19) 0.750 (19,05) 0.756 (19,20)  
0.985 (25,02) 0.995 (25,27) 0.950 (24,13) 0.958 (24,33) 0.441 (11,20) 0.469 (11,91)  
1.185 (30,10) 1.195 (30,35) 1.150 (29,21) 1.158 (29,41) 0.541 (13,74) 0.569 (14,45)  
4040005/B 03/95  
NOTES: A. All linear dimensions are in inches (millimeters).  
B. This drawing is subject to change without notice.  
C. Falls within JEDEC MS-018  
48  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx1x  
8-BIT MICROCONTROLLER  
SPNS012F – MAY 1987 – REVISED FEBRUARY 1997  
J-LEADED CERAMIC CHIP CARRIER  
Seating Plane  
MECHANICAL DATA  
FZ (S-CQCC-J**)  
28 LEAD SHOWN  
0.040 (1,02)  
45°  
0.180 (4,57)  
0.155 (3,94)  
0.140 (3,55)  
A
B
1
0.120 (3,05)  
26  
4
25  
5
0.050 (1,27)  
C
(at Seating  
Plane)  
A
B
0.032 (0,81)  
0.026 (0,66)  
0.020 (0,51)  
0.014 (0,36)  
19  
11  
18  
12  
0.025 (0,64) R TYP  
0.040 (1,02) MIN  
0.120 (3,05)  
0.090 (2,29)  
A
B
C
JEDEC  
NO. OF  
PINS**  
OUTLINE  
MIN  
MAX  
MIN  
MAX  
MIN  
MAX  
0.485  
0.495  
0.430  
0.455  
0.410  
0.430  
MO-087AA  
MO-087AB  
MO-087AC  
MO-087AD  
28  
44  
52  
68  
(12,32)  
(12,57)  
(10,92)  
(11,56)  
(10,41)  
(10,92)  
0.685  
0.695  
0.630  
0.655  
0.610  
0.630  
(17,40)  
(17,65)  
(16,00)  
(16,64)  
(15,49)  
(16,00)  
0.785  
0.795  
0.730  
0.765  
0.680  
0.740  
(19,94)  
(20,19)  
(18,54)  
(19,43)  
(17,28)  
(18,79)  
0.985  
0.995  
0.930  
0.955  
0.910  
0.930  
(25,02)  
(25,27)  
(23,62)  
(24,26)  
(23,11)  
(23,62)  
4040219/B 03/95  
NOTES: A. All linear dimensions are in inches (millimeters).  
B. This drawing is subject to change without notice.  
C. This package can be hermetically sealed with a ceramic lid using glass frit.  
49  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
IMPORTANT NOTICE  
Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue  
any product or service without notice, and advise customers to obtain the latest version of relevant information  
to verify, before placing orders, that information being relied on is current and complete. All products are sold  
subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those  
pertaining to warranty, patent infringement, and limitation of liability.  
TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in  
accordance with TI’s standard warranty. Testing and other quality control techniques are utilized to the extent  
TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily  
performed, except those mandated by government requirements.  
CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF  
DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE (“CRITICAL  
APPLICATIONS”). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR  
WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER  
CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO  
BE FULLY AT THE CUSTOMER’S RISK.  
In order to minimize risks associated with the customer’s applications, adequate design and operating  
safeguards must be provided by the customer to minimize inherent or procedural hazards.  
TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent  
that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other  
intellectual property right of TI covering or relating to any combination, machine, or process in which such  
semiconductor products or services might be or are used. TI’s publication of information regarding any third  
party’s products or services does not constitute TI’s approval, warranty or endorsement thereof.  
Copyright 1998, Texas Instruments Incorporated  

相关型号:

SE370C712AYYZ

TMS370 MICROCONTROLLER FAMILY DATA BOOK
TI

SE370C712B

8-BIT MICROCONTROLLER
TI

SE370C712BFZA

8-BIT, UVPROM, MICROCONTROLLER, CQCC28
TI

SE370C712BFZL

8-BIT, UVPROM, MICROCONTROLLER, CQCC28
TI

SE370C712BFZT

8-BIT MICROCONTROLLER
TI

SE370C712BJDA

8-BIT, UVPROM, MICROCONTROLLER, CDIP28
TI

SE370C712BJDL

8-BIT, UVPROM, MICROCONTROLLER, CDIP28
TI

SE370C712BJDT

8-BIT MICROCONTROLLER
TI

SE370C712BYYZ

TMS370 MICROCONTROLLER FAMILY DATA BOOK
TI

SE370C722

8-BIT MICROCONTROLLER
TI

SE370C722AFZA

8-BIT, UVPROM, MICROCONTROLLER, CQCC44
TI

SE370C722AFZL

IC 8-BIT, UVPROM, MICROCONTROLLER, CQCC44, Microcontroller
TI