SE370C777AFZT [TI]

8-BIT MICROCONTROLLER;
SE370C777AFZT
型号: SE370C777AFZT
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

8-BIT MICROCONTROLLER

文件: 总59页 (文件大小:865K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TMS370Cx7x  
8-BIT MICROCONTROLLER  
SPNS034C – SEPTEMBER 1995 – REVISED FEBRUARY 1997  
FN/FZ PACKAGE  
(TOP VIEW)  
CMOS/EEPROM/EPROM Technologies on a  
Single Device  
– Mask-ROM Devices for High-Volume  
Production  
9
8
7
6
5
4
3
2
1
6867 66 65 6463 62 61  
60 D1  
C3 10  
– One-Time-Programmable (OTP) EPROM  
Devices for Low-Volume Production  
– Reprogrammable EPROM Devices for  
Prototyping Purposes  
11  
12  
13  
14  
15  
16  
59  
58  
57  
56  
55  
54  
C4  
C5  
C6  
D2  
D3/SYSCLK  
D4  
D5  
D6  
D7  
C7  
V
CC2  
V
SS2  
A0 17  
53 RESET  
52  
18  
19  
20  
21  
22  
23  
A1  
A2  
A3  
A4  
A5  
A6  
A7  
INT1 / NMI  
Internal System Memory Configurations  
– On-Chip Program Memory Versions  
– ROM: 24K Bytes  
– EPROM: 24K Bytes  
– Data EEPROM: 256 Bytes  
– Static RAM: 512 Bytes  
51  
50  
49  
48  
47  
INT2  
INT3  
G5  
G4  
G3  
24  
25  
26  
46  
45  
44  
T1IC/CR  
T1PWM  
T1EVT  
T2AEVT  
T2AIC2/PWM  
27 28 2930 31 32 3334 35 3637 38 39 4041 42 43  
Flexible Operating Features  
– Low-Power Modes: STANDBY and HALT  
– Commercial, Industrial, and Automotive  
Temperature Ranges  
JN/NM PACKAGE  
(TOP VIEW)  
– Clock Options:  
– Divide-by-4 (0.5 MHz – 5 MHz SYSCLK)  
– Divide-by-1 (2 MHz – 5 MHz SYSCLK)  
Phase-Locked Loop (PLL)  
B5  
B6  
B7  
C0  
MC  
C1  
C2  
B4  
B3  
B2  
B1  
B0  
D0  
1
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
2
3
4
– Supply Voltage (V ): 5 V ± 10%  
CC  
5
6
Eight-Channel 8-Bit Analog-to-Digital  
Converter 1 (ADC1)  
V
V
7
SS1  
CC1  
V
SS1  
C3  
8
D1  
9
TMS370 Series Compatibility  
– Instructions Upwardly Compatible With  
All TMS370 Devices  
– Register-to-Register Architecture  
– 256 General-Purpose Registers  
– 14 Powerful Addressing Modes  
C4  
C5  
C6  
C7  
D3/SYSCLK  
D4  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
D6  
D7  
RESET  
INT1 / NMI  
INT2  
AN0 / E0  
A0  
A1  
A2  
INT3  
A3  
G5  
A4  
G4  
A5  
G3  
Two 16-Bit General-Purpose Timers  
On-Chip 24-Bit Watchdog Timer  
Flexible Interrupt Handling  
A6  
A7  
T1IC / CR  
T1PWM  
AN7 / E7  
T1EVT  
T2AEVT  
T2AIC2 / PWM  
T2AIC1 / CR  
G0  
V
SS1  
AN6 / E6  
AN5 / E5  
AN4 / E4  
AN3 / E3  
AN2 / E2  
AN1 / E1  
CMOS/Package /TTL-Compatible I/O Pins  
– 64-Pin Plastic and Ceramic Shrink  
Dual-In-Line Packages /44 Bidirectional,  
9 Input Pins  
G1  
G2  
XTAL2 / CLKIN  
XTAL1  
V
V
CC1  
CC3  
V
SS3  
– 68-Pin Plastic and Ceramic Leaded Chip  
Carrier Packages /46 Bidirectional,  
9 Input Pins  
– All Peripheral Function Pins Are  
Software Configurable for Digital I/O  
Workstation/PC-Based Software  
Development System  
– Real-Time In-Circuit Emulation  
– Extensive Breakpoint/Trace Capability  
– Software Performance Analysis  
– Multi-Window User Interface  
– C Compiler and C Source Debugger  
– Microcontroller Programmer  
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of  
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
Copyright 1997, Texas Instruments Incorporated  
PRODUCTION DATA information is current as of publication date.  
Products conform to specifications per the terms of Texas Instruments  
standard warranty. Production processing does not necessarily include  
testing of all parameters.  
1
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx7x  
8-BIT MICROCONTROLLER  
SPNS034C – SEPTEMBER 1995 – REVISED FEBRUARY 1997  
Pin Descriptions  
PIN  
I/O  
DESCRIPTION  
SDIP  
(64)  
LCC  
(68)  
NAME  
A0  
A1  
A2  
A3  
A4  
A5  
A6  
A7  
15  
16  
17  
18  
19  
20  
21  
22  
17  
18  
19  
20  
21  
22  
23  
24  
I/O Port A is a general-purpose bidirectional I/O port.  
I/O Port B is a general-purpose bidirectional I/O port.  
I/O Port C is a general-purpose bidirectional I/O port.  
B0  
B1  
B2  
B3  
B4  
B5  
B6  
B7  
60  
61  
62  
63  
64  
1
65  
66  
67  
68  
1
2
3
4
2
3
C0  
C1  
C2  
C3  
C4  
C5  
C6  
C7  
4
6
7
5
7
8
10  
11  
12  
13  
14  
9
10  
11  
12  
13  
INT1/NMI  
INT2  
INT3  
50  
49  
48  
52  
51  
50  
I
External (nonmaskable or maskable) interrupt/general-purpose input pin  
I/O External maskable interrupt input/general-purpose bidirectional pin  
I/O External maskable interrupt input/general-purpose bidirectional pin  
AN0/E0  
AN1/E1  
AN2/E2  
AN3/E3  
AN4/E4  
AN5/E5  
AN6/E6  
AN7/E7  
14  
34  
35  
36  
37  
38  
39  
42  
36  
37  
38  
39  
40  
41  
42  
43  
ADC1 analog input (AN0AN7) or positive reference pins (AN1AN7)  
PortEcanbeprogrammedindividuallyasgeneral-purposeinputpinsifnotusedasADC1analoginput  
or positive reference input.  
I
V
CC3  
V
SS3  
32  
33  
34  
35  
ADC1 positive-supply voltage and optional positive-reference input pin  
ADC1 ground reference pin  
System reset bidirectional pin. As an input, RESET initializes the microcontroller; as open-drain out-  
put, RESET indicates that an internal failure was detected by the watchdog or oscillator fault circuit.  
RESET  
51  
5
53  
6
I/O  
I
Mode control (MC) pin. MC enables EEPROM write-protection-override (WPO) mode, also EPROM  
MC  
V
.
PP  
XTAL2/CLKIN  
XTAL1  
29  
30  
31  
32  
I
O
Internal oscillator crystal input/external clock source input  
Internal oscillator output for crystal  
V
V
31, 57 33, 61  
15,63  
Positive supply voltage  
CC1  
Positive supply voltage for digital I/O  
CC2  
I = input, O = output  
2
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx7x  
8-BIT MICROCONTROLLER  
SPNS034C – SEPTEMBER 1995 – REVISED FEBRUARY 1997  
Pin Descriptions (Continued)  
PIN  
I/O  
DESCRIPTION  
SDIP  
(64)  
LCC  
(68)  
NAME  
8,  
58,40  
V
V
9
Ground reference for digital logic  
SS1  
16,62  
Ground reference for digital I/O logic  
SS2  
D0  
D1  
D2  
59  
56  
55  
54  
53  
52  
64  
60  
59  
58  
57  
56  
55  
54  
D3/SYSCLK  
I/O Port D is a general-purpose bidirectional I/O port. D3 also can be configured as SYSCLK.  
D4  
D5  
D6  
D7  
G0  
G1  
G2  
G3  
G4  
G5  
26  
27  
28  
45  
46  
47  
28  
29  
30  
47  
48  
49  
I/O Port G is a general-purpose bidirectional I/O port.  
T1IC/CR  
T1PWM  
T1EVT  
44  
43  
41  
46  
45  
44  
Timer1 input capture/counter-reset input pin/general-purpose bidirectional pin  
I/O Timer1 pulse-width-modulation (PWM) output pin/general-purpose bidirectional pin  
Timer1 external event input pin/general-purpose bidirectional pin  
T2AIC1/CR  
T2AIC2/PWM  
T2AEVT  
25  
24  
23  
27  
26  
25  
Timer2A input capture 1/counter reset input pin/general-purpose bidirectional pin  
I/O Timer2A input capture 2/PWM output pin/general-purpose bidirectional pin  
Timer2A external event input pin/general-purpose bidirectional pin  
I = input, O = output  
3
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx7x  
8-BIT MICROCONTROLLER  
SPNS034C – SEPTEMBER 1995 – REVISED FEBRUARY 1997  
functional block diagram  
E0E7  
or  
AN0AN7  
INT1 INT2 INT3 XTAL1 XTAL2/  
CLKIN  
MC RESET  
V
V
CC3  
Clock Options:  
Divide-by-4 or  
Divide-by-1(PLL)  
Interrupts  
System Control  
A-to-D Converter 1  
SS3  
T2AIC1/CR  
T2AEVT  
Timer 2A  
Timer 1  
RAM  
512 Bytes  
T2AIC2/PWM  
CPU  
T1IC/CR  
T1EVT  
Data EEPROM  
256 Bytes  
Program Memory  
ROM: 24K Bytes  
EPROM: 24K Bytes  
T1PWM  
Watchdog  
Port A  
V
Port B  
8
Port G  
6
Port C  
8
Port D  
CC1  
V
SS1  
8
8/6  
V
SS2  
V
CC2  
For the 64-pin devices, there are only six pins for port D.  
For the 64-pin devices, omit these power pins  
description  
The TMS370C077, TMS370C777, and SE370C777 devices are members of the TMS370 family of single-chip  
8-bit microcontrollers. Unless otherwise noted, the term TMS370Cx7x refers to these devices. The TMS370  
family provides cost-effective real-time system control through integration of advanced peripheral function  
modules and various on-chip memory configurations.  
The TMS370Cx7x family is implemented using high-performance silicon-gate CMOS EPROM and EEPROM  
technologies. The low-operating power, wide-operating temperature range, and noise immunity of CMOS  
technology, coupled with the high performance and extensive on-chip peripheral functions make the  
TMS370Cx7x devices attractive in system designs for automotive electronics, industrial motor control,  
computer peripheral control, telecommunications, and consumer application.  
All TMS370Cx7x devices contain the following on-chip peripheral modules:  
Eight-channel, 8-bit analog-to-digital converter 1 (ADC1)  
One 24-bit general-purpose watchdog timer  
Two 16-bit general-purpose timers (one with an 8-bit prescaler)  
4
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx7x  
8-BIT MICROCONTROLLER  
SPNS034C – SEPTEMBER 1995 – REVISED FEBRUARY 1997  
description (continued)  
Table 1 provides a memory configuration overview of the TMS370Cx7x devices.  
Table 1. Memory Configurations  
PROGRAM  
DATA MEMORY  
MEMORY  
(BYTES)  
PACKAGES  
68-PIN PLCC/CLCC, OR  
64-PIN PSDIP/CSDIP  
(BYTES)  
DEVICE  
ROM EPROM  
RAM  
EEPROM  
256  
TMS370C077A  
TMS370C777A  
24K  
512  
512  
512  
FN – PLCC / NM PSDIP  
FN – PLCC / NM PSDIP  
FZ – CLCC / JN CSDIP  
24K  
24K  
256  
SE370C777A  
256  
System evaluators and development tools are for use only in a prototype environment, and their reliability has not been characterized.  
The suffix letter A appended to the device names shown in the device column of Table 1 indicates the  
configuration of the device. ROM and EPROM devices have a different configuration as indicated in Table 2.  
ROM devices with the suffix letter A are configured through a programmable contact during manufacture.  
Table 2. Suffix Letter Configuration  
DEVICE  
WATCHDOG TIMER  
CLOCK  
LOW-POWER MODE  
EPROM A  
Standard  
Divide-by-4 (Standard oscillator)  
Enabled  
Standard  
Hard  
ROM A  
Divide-by-4 or Divide-by-1 (PLL)  
Enabled or disabled  
Simple  
Refer to the “device numbering conventions” section for device nomenclature and the “device part numbers” section for ordering.  
The 24K bytes of mask-programmable ROM in the associated TMS370C077 device are replaced with  
24K bytes of EPROM in the TMS370C777 while all other available memory and on-chip peripherals are  
identical. A one-time-programmable device (OTP) (TMS370C777) and a reprogrammable device  
(SE370C777) are available.  
The TMS370C777 OTP device is available in a plastic package. This microcontroller is effective for use as an  
immediate production update for the TMS370C077 ROM device or for low-volume production runs when the  
mask charge or cycle time for the low-cost mask-ROM device is not practical.  
TheSE370C777hasawindowedceramicpackagethatallowsreprogrammingoftheprogramEPROMmemory  
during the development/prototyping design phase. The SE370C777 device allows quick updates to  
breadboards and prototype systems while iterating initial designs.  
The TMS370Cx7x family provides two low-power modes (STANDBY and HALT) for applications where  
low-power consumption is critical. Both modes stop all CPU activity (that is, no instructions are executed). In  
the STANDBY mode, the internal oscillator and the general-purpose timer remain active. In the HALT mode,  
all device activity is stopped. The device retains all RAM data and peripheral configuration bits throughout both  
low-power modes.  
The TMS370Cx7x features advanced register-to-register architecture that allows direct arithmetic and logical  
operations without requiring an accumulator (for example, ADD R24, R47; add the contents of register 24 to  
the contents of register 47 and store the result in register 47). The TMS370Cx7x family is fully  
instruction-set-compatible, allowing easy transition between members of the TMS370 8-bit microcontroller  
family.  
5
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx7x  
8-BIT MICROCONTROLLER  
SPNS034C – SEPTEMBER 1995 – REVISED FEBRUARY 1997  
description (continued)  
The TMS370Cx7x family provides the system designer with very economical, efficient solutions to real-time  
control applications. The TMS370 family compact development tool (CDT ) solves the challenge of efficiently  
developing the software and hardware required to design the TMS370Cx7x into an ever-increasing number of  
complex applications. The application source code can be written in assembly and C language, and the output  
code can be generated by the linker. The TMS370 family CDT development tool can communicate through a  
standard RS-232-C interface with an existing personal computer. This allows the use of personal-computer  
editors and software utilities already familiar to the designer. The TMS370 family CDT emphasizes ease-of-use  
through extensive use of menus and screen windowing so that a system designer with minimal training can  
begin developing software. Precise real-time in-circuit emulation and extensive symbolic debug and analysis  
tools ensure efficient software and hardware implementation as well as a reduced time-to-market cycle.  
The TMS370Cx7x family, together with the TMS370 family CDT370, starter kit, software tools, the SE370C777  
reprogrammable device, comprehensive product documentation, and customer support, provide a complete  
solution to the needs of the system designer.  
CPU  
The CPU used on TMS370Cx7x devices is the high-performance 8-bit TMS370 CPU module. The ’x7x  
implements an efficient register-to-register architecture that eliminates the conventional accumulator  
bottleneck. The complete ’x7x instruction set is summarized in Table 17. Figure 1 illustrates the CPU registers  
and memory blocks.  
CDT is a trademark of Texas Instruments Incorporated.  
6
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx7x  
8-BIT MICROCONTROLLER  
SPNS034C – SEPTEMBER 1995 – REVISED FEBRUARY 1997  
CPU (continued)  
Program Counter (PC)  
0
15  
0
Legend:  
C=Carry  
N=Negative  
Z=Zero  
Stack Pointer (SP)  
7
V=Overflow  
IE2=Level2 interrupts Enable  
IE1=Level1 interrupts Enable  
Status Register (ST)  
C
7
N
6
Z
5
V
4
IE2 IE1  
3
2
1
0
0000h  
512-Byte RAM (0000h – 01FFh)  
0100h  
0200h  
Reserved  
1000h  
10C0h  
1100h  
Peripheral File  
Reserved  
Reserved  
1F00h  
2000h  
Data EEPROM, 256 Bytes (1F00h1FFFh)  
24K-Byte ROM/EPROM (2000h7FFFh)  
Interrupts and Reset Vectors; Trap Vectors  
RAM (Includes 256-Byte Registers File)  
0000h  
0001h  
0002h  
0003h  
R0(A)  
R1(B)  
R2  
7FC0h  
8000h  
R3  
007Fh  
R127  
Not Available  
00FFh  
R255  
FFFFh  
Reserved means that the address space is reserved for future expansion.  
Not available means that the address space is not accessible.  
Figure 1. Programmer’s Model  
7
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx7x  
8-BIT MICROCONTROLLER  
SPNS034C – SEPTEMBER 1995 – REVISED FEBRUARY 1997  
CPU (continued)  
The ’x7x CPU architecture provides the following components:  
CPU registers:  
A stack pointer that points to the last entry in the memory stack  
A status register that monitors the operation of the instructions and contains the global-interrupt-enable  
bits  
A program counter (PC) that points to the memory location of the next instruction to be executed  
A memory map that includes:  
512 bytes of general-purpose RAM that can be data memory storage, program instructions,  
general-purpose register, or the stack (can be located only in the first 256 bytes)  
A peripheral file that provides access to all internal peripheral modules, system-wide control functions,  
and EEPROM/EPROM programming control  
A 256-byte EEPROM module that provides in-circuit programmability and data retention in power-off  
conditions  
24K-bytes of ROM or 24K-bytes of EPROM program memory  
stack pointer (SP)  
The SP is an 8-bit CPU register. Stack operates as a last-in, first-out, read/write memory. The stack is used  
typically to store the return address on subroutine calls as well as the status register contents during interrupt  
sequences.  
The SP points to the last entry or to the top of the stack. The SP increments automatically before data is pushed  
onto the stack and decrements after data is popped from the stack. The stack can be located only in the first  
256 bytes of the on-chip RAM memory.  
status register (ST)  
The ST monitors the operation of the instructions and contains the global-interrupt-enable bits. The ST includes  
four status bits (condition flags) and two interrupt-enable bits:  
The four status bits indicate the outcome of the previous instruction; conditional instructions (for example,  
the conditional jump instructions) use these status bits to determine program flow.  
The two interrupt-enable bits control the two interrupt levels.  
The ST register and status-bit notation are shown in Table 3.  
Table 3. Status Register  
7
C
6
N
5
Z
4
V
3
2
1
0
IE2  
IE1  
Reserved  
Reserved  
RW-0  
RW-0  
RW-0  
RW-0  
RW-0  
RW-0  
R = read, W = write, 0 = value after reset  
8
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx7x  
8-BIT MICROCONTROLLER  
SPNS034C – SEPTEMBER 1995 – REVISED FEBRUARY 1997  
CPU (continued)  
program counter (PC)  
The contents of the PC point to the memory location of the next instruction to be executed. The PC consists  
of two 8-bit registers in the CPU: the program counter high (PCH) and program counter low (PCL). These  
registers contain the most-significant byte (MSbyte) and least-significant byte (LSbyte) of a 16-bit address.  
The contents of the reset vector (7FFEh, 7FFFh) are loaded into the program counter during reset. The PCH  
(MSbyte of the PC) is loaded with the contents of memory location 7FFEh, and the PCL (LSbyte of the PC) is  
loaded with the contents of memory location 7FFFh. Figure 2 shows this operation using an example value of  
2000h as the contents of memory locations 7FFEh and 7FFFh (reset vector).  
Program Counter (PC)  
Memory  
PCH  
20  
PCL  
00  
0000h  
20  
00  
7FFEh  
7FFFh  
Figure 2. Program Counter After Reset  
memory map  
The TMS370Cx7x architecture is based on the Von Neuman architecture, where the program memory and data  
memory share a common address space. All peripheral input/output is memory-mapped in this same common  
address space. As shown in Figure 3, the TMS370Cx7x provides a memory-mapped RAM, ROM, data  
EEPROM, EPROM, input/output pins, peripheral functions, and system-interrupt vectors.  
The peripheral file contains all input/output port control, peripheral status and control, EPROM, EEPROM  
programming, and system-wide control functions. The peripheral file consists of 256 contiguous addresses  
located from 1000h to 10FFh. The 256 contiguous addresses are divided logically into 16 peripheral file frames  
of 16 bytes each. Each on-chip peripheral is assigned to a separate frame through which peripheral control and  
data information is passed. The TMS370Cx7x has its on-chip peripherals and system control assigned to  
peripheral file frames 1 through 7, addresses 1010h through 107Fh.  
9
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx7x  
8-BIT MICROCONTROLLER  
SPNS034C – SEPTEMBER 1995 – REVISED FEBRUARY 1997  
memory map (continued)  
Peripheral File Control Registers  
0000h  
Reserved  
1000h–100Fh  
1010h–101Fh  
1020h–102Fh  
1030h–103Fh  
1040h–104Fh  
1050h–105Fh  
1060h–106Fh  
1070h–107Fh  
1080h–10BFh  
System Control  
512-Byte RAM  
(0000h–01FFh)  
Digital Port Control  
Reserved  
Timer 1 Peripheral Contr.  
0200h  
Reserved  
Reserved  
Timer 2A Peripheral Contr.  
ADC1 Peripheral Contr.  
1000h  
10C0h  
Peripheral File  
Reserved  
Reserved  
1100h  
Reserved  
Vectors  
Trap 15–0  
7FC0h–7FDFh  
7FE0h–7FEBh  
7FECh–7FEDh  
7FEEh–7FEFh  
7FF0h–7FF1h  
7FF2h–7FF3h  
7FF4h–7FF5h  
7FF6h–7FF7h  
7FF8h–7FF9h  
7FFAh–7FFBh  
7FFCh–7FFDh  
7FFEh–7FFFh  
256-Byte Data EEPROM  
(1F00h–1FFFh)  
1F00h  
2000h  
Reserved  
ADC1  
24K-Byte ROM  
(2000h–7FFFh)  
Timer 2A  
Reserved  
Reserved  
Timer 1  
7FC0h  
8000h  
Interrupts and Reset  
Vectors; Trap Vectors  
Reserved  
Interrupt 3  
Interrupt 2  
Interrupt 1  
Reset  
Not Available  
FFFFh  
Reserved = the address space is reserved for future expansion.  
Not available = address space is unavailable in the mode illustrated.  
Figure 3. TMS370Cx7x Memory Map  
RAM/register file (RF)  
Locations within RAM address space can serve as either register file or general-purpose read/write memory,  
program memory, or stack instructions. The TMS370Cx7x device contains 512 bytes of internal RAM mapped  
beginning at location 0000h and continuing through location 01FFh which is shown in Figure 3. The first  
256 bytes of RAM (0000h – 00FFh) are the register files, R0 through R255.  
The first two registers, R0 and R1, are also called registers A and B, respectively. Some instructions implicitly  
use register A or B; for example, the instruction LDSP (load SP) assumes that the value to be loaded into the  
stack pointer is contained in register B. Registers A and B are the only registers cleared on reset.  
10  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx7x  
8-BIT MICROCONTROLLER  
SPNS034C – SEPTEMBER 1995 – REVISED FEBRUARY 1997  
peripheral file (PF)  
The TMS370Cx7x control registers contain all the registers necessary to operate the system and peripheral  
modules on the device. The instruction set includes some instructions that access the peripheral file (PF)  
directly. These instructions designate the register by the number of the PF relative to 1000h, preceded by P0  
for a hexadecimal designator, or by P for a decimal designator. For example, the system control register 0  
(SCCR0) is located at address 1010h; its peripheral file hexadecimal designator is P010, and its decimal  
designator is P16. Table 4 shows the TMS370Cx7x peripheral files.  
Table 4. TMS370Cx7x Peripheral File Address Map  
PERIPHERAL FILE  
ADDRESS RANGE  
DESCRIPTION  
DESIGNATOR  
P000P00F  
P010P01F  
P020P03F  
P040P04F  
P050P05F  
P060P06F  
P070P07F  
P080P0FF  
1000h100Fh  
1010h101Fh  
1020h103Fh  
1040h104Fh  
1050h105Fh  
1060h106Fh  
1070h107Fh  
1080h10FFh  
Reserved for factory test  
System and EEPROM/EPROM control registers  
Digital I/O port control registers  
Timer 1 registers  
Reserved  
Timer 2A registers  
Analog-to-digital converter 1 registers  
Reserved  
data EEPROM  
The TMS370Cx7x devices contain 256 bytes of data EEPROM, and have a memory map beginning at location  
1F00h, and continuing through location 1FFFh. Writing to the data EEPROM module is controlled by the data  
EEPROM control register (DEECTL) and the write-protection register (WPR). Programming algorithm  
examples are available in the TMS370 Family User’s Guide (literature number SPNU127), or the TMS370  
Family Data Manual (SPNS014B). The data EEPROM features include the following:  
Programming:  
Bit, byte, and block write/erase modes  
Internal charge pump circuitry: No external EEPROM programming voltage supply is needed.  
Control register: Data EEPROM programming is controlled by the data EEPROM control register  
(DEECTL) located in the PF frame beginning at location P01A.  
In-circuit programming capability: There is no need to remove the device to program.  
Write-protection: Writes to the data EEPROM are disabled during the following conditions:  
Reset: All programming of the data EEPROM module is halted.  
Write protection active: There is one write-protect bit per 32-byte EEPROM block.  
Low-power mode operation  
Write protection can be overridden by applying 12 V to MC.  
Table 5 shows the memory map of the control registers.  
11  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx7x  
8-BIT MICROCONTROLLER  
SPNS034C – SEPTEMBER 1995 – REVISED FEBRUARY 1997  
data EEPROM (continued)  
Table 5. Data EEPROM and Program EPROM Control Registers Memory Map  
NAME  
ADDRESS  
101Ah (P01A)  
101Bh (P01B)  
101Ch (P01C)  
101Dh (P01D)  
101Eh (P01E)  
SYMBOL  
DEECTL  
Data EEPROM control register  
Reserved  
EPCTLM  
EPCTLL  
Program EPROM control register – middle array  
Reserved  
Program EPROM control register – low array  
† For the 24K-byte EPROM device, the program memory is controlled by P01C and P01E.  
program EPROM  
The TMS370C777 contains 24K bytes of program EPROM made up of one 16K-byte array and one 8K-byte  
array. The 16K-byte array is located at address locations 2000h through 5FFFh, and the 8K-byte array is located  
at address locations 6000h through 7FFFh, as shown in Table 6.  
Table 6. TMS370C777 EPROM Memory Map  
PARAMETER  
EPROM size  
VALUE  
24K Bytes  
Memory mapped  
Control registers  
16K Bytes at 2000h5FFFh  
EPCTLL (P01E)  
8K Bytes at 6000h7FFFh  
EPCTLM (P01C)  
As shown in Table 6 for the two EPROM areas, the 16K-byte array is controlled by register EPCTLL located at  
101Eh (P01E), and the 8K-byte array is controlled by register EPCTLM located at 101Ch (P01C).  
Reading the program-EPROM modules is identical to reading other internal memory. During programming, the  
EPROM is controlled by the program EPROM control registers EPCTLL and EPCTLM. The program EPROM  
modules’ features include:  
Programming  
In-circuit programming capability if V is applied to the MC pin  
PP  
Control register: Program EPROM programming is controlled by the program EPROM control registers  
EPCTLL and EPCTLM, located at the addresses in PF frame 1 as shown in Table 5.  
Programming one EPROM module while executing the other  
Write-protection: Writes to the program EPROM are disabled under the following conditions:  
Reset: All programming to the EPROM module is halted.  
Low-power modes  
13 V not applied to MC  
program ROM  
The program ROM consists of 24K bytes of mask-programmable ROM. The program ROM is used for  
permanent storage of data or instructions. Programming of the mask ROM is performed at the time of device  
fabrication. Memory addresses 7FE0h7FEBh is reserved for Texas Instruments (TI ). 7FECh to 7FFFh are  
reserved for interrupt and reset vectors. Trap vectors, used with TRAP0 through TRAP15 instructions, are  
located between addresses 7FC0h and 7FDFh.  
TI is a trademark of Texas Instruments Incorporated.  
12  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx7x  
8-BIT MICROCONTROLLER  
SPNS034C – SEPTEMBER 1995 – REVISED FEBRUARY 1997  
system reset  
The system-reset operation ensures an orderly start-up sequence for the TMS370Cx7x CPU-based device.  
There are up to three different actions that can cause a system reset to the device. Two of these actions are  
generated internally, while one (RESET) is controlled externally. These actions are as follows:  
External RESET pin. A low-level signal can trigger an external reset. To ensure a reset, the external signal  
should be held low for one SYSCLK cycle (it is possible, however, that a signal of less than one SYSCLK  
could cause a reset). See the TMS370 Family User’s Guide (literature number SPNU127) or the TMS370  
Family Data Manual (SPNS014B) for more information.  
Watchdog (WD) timer. A watchdog-generated reset occurs when an improper value is written to the WD  
key register or when the re-initialization does not occur before the watchdog timer timeout. See the TMS370  
Family User’s Guide (literature number SPNU127) or the TMS370 Family Data Manual (SPNS014B) for  
more information.  
Oscillator reset. Reset occurs when the oscillator operates outside the recommended operating range. See  
the TMS370 Family User’s Guide (literature number SPNU127) or the TMS370 Family Data Manual  
(SPNS014B) for more information.  
Once a reset source is activated, the external RESET pin is driven (active) low for a minimum of eight SYSCLK  
cycles. This allows the ’x7x device to reset external system components. Additionally, if a cold-start condition  
(e.g., V  
is off for several hundred milliseconds) exists, an oscillator failure occurs, or the RESET pin is held  
CC  
low, then the reset logic holds the device in a reset state for as long as these actions are active.  
After a reset, the program can check the oscillator fault flag (OSC FLT FLAG, SCCR0.4), the cold start flag  
(COLD START, SCCR0.7), and the watchdog reset (WD OVRFL INT FLAG, T1CTL2.5) to determine the source  
of the reset. A reset does not clear these flags. Table 7 lists the reset sources.  
Table 7. Reset Sources  
REGISTER  
SCCR0  
ADDRESS  
1010h  
PF  
BIT NO.  
CONTROL BIT NAME  
COLD START  
SOURCE OF RESET  
Cold (power-up)  
P010  
P010  
P04A  
7
4
5
SCCR0  
1010h  
OSC FLT FLAG  
Oscillator out of range  
Watchdog timer timeout  
T1CTL2  
104Ah  
WD OVRFL INT FLAG  
Once a reset is activated, the following sequence of events occurs:  
1. The CPU registers initialize: ST = 00h, SP = 01h (reset state).  
2. Registers A and B initialize to 00h (no other RAM is changed).  
3. The contents of the LSbyte of the reset vector (07FFh) are read and stored in the PCL.  
4. The contents of the MSbyte of the reset vector (07FEh) are read and stored in the PCH.  
5. Program execution begins with an opcode fetch from the address pointed to by the PC.  
The reset sequence takes 20 SYSCLK cycles from the time the reset pulse is released until the first opcode  
fetch. During a reset, RAM contents (except for registers A and B) remain unchanged, and the module control  
register bits are initialized to their reset state.  
13  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx7x  
8-BIT MICROCONTROLLER  
SPNS034C – SEPTEMBER 1995 – REVISED FEBRUARY 1997  
interrupts  
The TMS370 family software programmable interrupt structure permits flexible on-chip and external-interrupt  
configurations to meet real-time interrupt-driven application requirements. The hardware-interrupt structure  
incorporates two priority levels as shown in Figure 4. Interrupt level 1 has a higher priority than interrupt  
level 2. The two priority levels can be masked independently by the global-interrupt mask bits (IE1 and IE2) of  
the status register.  
Each system interrupt is configured independently to either the high- or low-priority chain by the application  
program during system initialization. Within each interrupt chain, the interrupt priority is fixed by the position of  
the system interrupt. However, since each system interrupt is configured selectively on either the high- or  
low-priority interrupt chain, the application program can elevate any system interrupt to the highest priority.  
Arbitration between the two priority levels is performed within the CPU. Arbitration within each of the priority  
chains is performed within the peripheral modules to support interrupt expansion for future modules. Pending  
interrupts are serviced upon completion of current instruction execution, depending on their interrupt mask and  
priority conditions.  
The TMS370Cx7x has six hardware-system interrupts (plus RESET) as shown in Table 8. Each system  
interrupt has a dedicated vector located in program memory through which control is passed to the interrupt  
service routines. All of the interrupt sources are maskable individually by local interrupt-enable control bits in  
the associated peripheral file (PF). Each interrupt source FLAG bit is readable individually for software polling  
or for determining which interrupt source generated the associated system interrupt. The interrupt-control block  
diagram is illustrated in Figure 4.  
14  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx7x  
8-BIT MICROCONTROLLER  
SPNS034C – SEPTEMBER 1995 – REVISED FEBRUARY 1997  
interrupts (continued)  
EXT INT 3  
INT 3  
EXT INT 2  
INT 2  
TIMER 2A  
Overflow  
TIMER 1  
Overflow  
INT3 PRI  
Compare1  
Ext Edge  
Compare1  
Ext Edge  
INT2 PRI  
EXT INT1  
CPU  
Compare2  
Compare2  
INT1  
Input Capture 1  
Input Capture 1  
NMI  
Input Capture 2  
Watchdog  
T2A PRI  
T1 PRI  
Priority  
Logic  
INT1 PRI  
STATUS REG  
IE1  
Level 1 INT  
Level 2 INT  
IE2  
Enable  
AD INT  
AD PRI  
A/D  
Figure 4. Interrupt Control  
Of the six system interrupts, three are generated by on-chip peripherals (T1INT, T2AINT, and ADINT) and three  
are external interrupts (INT1 – INT3). Software configuration of the external interrupts is performed through the  
INT1, INT2, and INT3 control registers in PF frame 1.  
Each external interrupt is individually software configurable for input polarity (rising or falling edge) for ease of  
system interface. External interrupt INT1 is software configurable as either a maskable or non-maskable  
interrupt. When INT1 is configured as nonmaskable, it cannot be masked by the individual- or global-enable  
mask bits. The INT1 NMI bit is protected during non-privileged operation and therefore should be configured  
during the initialization sequence following reset. To maximize pin flexibility, external interrupts INT2 and INT3  
can be software configured as general-purpose input/output pins if the interrupt function is not required (INT1  
can be configured similarly as an input pin). Table 8 lists the interrupt vector sources, corresponding addresses,  
and hardware priorities.  
15  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx7x  
8-BIT MICROCONTROLLER  
SPNS034C – SEPTEMBER 1995 – REVISED FEBRUARY 1997  
interrupts (continued)  
Table 8. Hardware System Interrupts  
SYSTEM  
INTERRUPT  
VECTOR  
ADDRESS  
INTERRUPT SOURCE  
External RESET  
Watchdog overflow  
Oscillator fault detect  
INTERRUPT FLAG  
PRIORITY  
COLD START  
WD OVRFL INT FLAG  
OSC FLT FLAG  
RESET  
7FFEh, 7FFFh  
1
External INT1  
External INT2  
External INT3  
INT1 FLAG  
INT2 FLAG  
INT3 FLAG  
INT1  
INT2  
INT3  
7FFCh, 7FFDh  
7FFAh, 7FFBh  
7FF8h, 7FF9h  
2
3
4
Timer 1 overflow  
T1 OVRFL INT FLAG  
T1C1 INT FLAG  
T1C2 INT FLAG  
T1EDGE INT FLAG  
T1IC1 INT FLAG  
WD OVRFL INT FLAG  
Timer 1 compare 1  
Timer 1 compare 2  
Timer 1 external edge  
Timer 1 input capture 1  
Watchdog overflow  
§
T1INT  
7FF4h, 7FF5h  
5
Timer 2A overflow  
T2A OVRFL INT FLAG  
T2AC1 INT FLAG  
T2AC2 INT FLAG  
T2AEDGE INT FLAG  
T2AIC1 INT FLAG  
T2AIC2 INT FLAG  
Timer 2A compare 1  
Timer 2A compare 2  
Timer 2A external edge  
Timer 2A input capture 1  
Timer 2A input capture 2  
T2AINT  
ADINT  
7FEEh, 7FEFh  
7FECh, 7FEDh  
6
7
ADC1 conversion complete  
AD INT FLAG  
Relative priority within an interrupt level  
§
Releases microcontroller from STANDBY and HALT low-power modes  
Releases microcontroller from STANDBY low-power mode  
privileged operation and EEPROM write-protection override  
The TMS370Cx7x family has significant flexibility to enable the designer to software-configure the system and  
peripherals to meet the requirements of a broad variety of applications. The nonprivileged mode of operation  
ensures the integrity of the system configuration, once it is defined for an application. Following a hardware  
reset, the TMS370Cx7x operates in the privileged mode, where all peripheral file registers have unrestricted  
read/write access, and the application program configures the system during the initialization sequence  
following reset. As the last step of system initialization, the PRIVILEGE DISABLE bit (SCCR2.0) should be set  
to 1 to enter the nonprivileged mode, thereby disabling write operations to specific configuration control bits  
within the peripheral file. Table 9 lists the system configuration bits that are write-protected during the  
nonprivileged mode and must be configured by software prior to exiting the privileged mode.  
16  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx7x  
8-BIT MICROCONTROLLER  
SPNS034C – SEPTEMBER 1995 – REVISED FEBRUARY 1997  
privileged operation and EEPROM write-protection override (continued)  
Table 9. Privileged Bits  
REGISTER  
CONTROL BIT  
NAME  
LOCATION  
P010.5  
P010.6  
PF AUTOWAIT  
OSC POWER  
SCCRO  
P011.2  
P011.4  
MEMORY DISABLE  
AUTOWAIT DISABLE  
SCCR1  
SCCR2  
P012.0  
P012.1  
P012.3  
P012.4  
P012.6  
P012.7  
PRIVILEGE DISABLE  
INT1 NMI  
CPU STEST  
BUS STEST  
PWRDWN/IDLE  
HALT/STANDBY  
P04F.6  
P04F.7  
T1 PRIORITY  
T1 STEST  
T1PRI  
P06F.6  
P06F.7  
T2A PRIORITY  
T2A STEST  
T2APRI  
P07F.5  
P07F.6  
P07F.7  
AD ESPEN  
AD PRIORITY  
AD STEST  
ADPRI  
The privileged bits are shown in a bold typeface in the peripheral file frame 1 section.  
The write-protect-override (WPO) mode provides an external hardware method of overriding the  
write-protection registers of the data EEPROM on the TMS370Cx7x. To enter the WPO mode apply a 12-V input  
to the MC pin after the RESET input goes high (logic 1). The high voltage on MC during the WPO mode is not  
the programming voltage for the data EEPROM or program EPROM. All EEPROM programming voltages are  
generated on-chip. The WPO mode provides hardware-system-level capability to modify the content of the data  
EEPROM while the device remains in the application but only while requiring a 12-V external input on the MC  
pin (normally not available in the end application except in a service or diagnostic environment).  
low-power and IDLE modes  
The TMS370Cx7x devices have two low-power modes (STANDBY and HALT) and an IDLE mode. For  
mask-ROM devices, low-power modes can be disabled permanently through a programmable contact at the  
time when the mask is manufactured.  
The STANDBY and HALT low-power modes significantly reduce power consumption by reducing or stopping  
the activity of the various on-chip peripherals when processing is not required. Each of the low-power modes  
is entered by executing the idle instruction when the PWRDWN/IDLE bit in register SCCR2 has been set to 1.  
The HALT/STANDBY bit in SCCR2 controls which low-power mode is entered.  
In the STANDBY mode (HALT/STANDBY = 0), all CPU activity and most peripheral module activity is stopped;  
however, the oscillator, internal clocks, and timer 1 remain active. System processing is suspended until a  
qualified interrupt (hardware RESET, external interrupt on INT1, INT2, INT3, or timer 1 interrupt) is detected.  
In the HALT mode (HALT/STANDBY = 1), the TMS370Cx7x is placed in its lowest power-consumption mode.  
The oscillator and internal clocks are stopped, causing all internal activity to be halted. System activity is  
suspended until a qualified interrupt (hardware RESET or an external interrupt on INT1, INT2, INT3) is detected.  
The low-power mode selection bits are summarized in Table 10.  
17  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx7x  
8-BIT MICROCONTROLLER  
SPNS034C – SEPTEMBER 1995 – REVISED FEBRUARY 1997  
low-power and IDLE modes (continued)  
Table 10. Low-Power/Idle Control Bits  
POWER-DOWN CONTROL BITS  
MODE SELECTED  
PWRDWN/IDLE  
(SCCR2.6)  
HALT/STANDBY  
(SCCR2.7)  
1
0
1
STANDBY  
HALT  
1
0
X
IDLE  
X = don’t care  
When low-power modes are disabled through a programmable contact in the mask-ROM devices, writing to the  
SCCR2.6–7 bits is ignored. In addition, if an IDLE instruction is executed when low-power modes are disabled  
through a programmable contact, the device always enters the IDLE mode.  
To provide a method of always exiting low-power modes for mask-ROM devices, INT1 is enabled automatically  
as a nonmaskable interrupt (NMI) during low-power modes when the hard watchdog is selected. This means  
that the NMI always is generated, regardless of the interrupt enable flags.  
The following information is preserved throughout both the STANDBY and HALT modes: RAM (register file),  
CPU registers (stack pointer, program counter, and status register), I/O pin direction and output data, and status  
registers of all on-chip peripheral functions. Since all CPU instruction processing is stopped during the  
STANDBY and HALT modes, the clocking of the watchdog timer is inhibited.  
clock modules  
The ‘370Cx7x family provides two clock options which are referred to as divide-by-1 (PLL) and divide-by-4  
(standard oscillator). Both the divide-by-1 and divide-by-4 options are configurable during the manufacturing  
process of a TMS370 microcontroller. The ‘370Cx7x ROM-masked devices offer both options to meet system  
engineering requirements. Only one of the two clock options is allowed on the ROM device while the EPROM  
devices have the divide-by-4 option.  
The divide-by-1 clock module option provides the capability for reduced electromagnetic interference (EMI) with  
no added cost.  
The divide-by-1 provides a 1-to-1 match of the external resonator frequency to the internal system clock  
(SYSCLK) frequency. The divide-by-4 produces a SYSCLK which is one-fourth the frequency of the external  
resonator. Inside the divide-by-1 module, the frequency of the external resonator is multiplied by four. The clock  
module then divides the resulting signal by four to provide the four-phased internal system clock signals. The  
resulting SYSCLK is equal to the resonator frequency. The frequencies are formulated as follows:  
external resonator frequency  
CLKIN  
4
Divide-by-4 option : SYSCLK  
Divide-by-1 option : SYSCLK  
4
external resonator frequency  
4
4
CLKIN  
The main advantage of choosing a divide-by-1 oscillator is the improved EMI performance. The harmonics of  
low-speed resonators extend through less of the emissions spectrum than the harmonics of faster resonators.  
The divide-by-1 provides the capability of reducing the resonator speed by four times, and this results in a  
steeper decay of emissions produced by the oscillator.  
18  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx7x  
8-BIT MICROCONTROLLER  
SPNS034C – SEPTEMBER 1995 – REVISED FEBRUARY 1997  
system configuration registers  
Table 11 lists system configuration, control functions, and registers for controlling EEPROM programming. The  
privileged bits are bold typefaced and shaded.  
Table 11. Peripheral File Frame 1: System Configuration Registers  
PF  
BIT 7  
BIT 6  
BIT 5  
BIT 4  
BIT 3  
BIT 2  
BIT 1  
BIT 0  
REG  
COLD  
START  
OSC  
POWER  
PF AUTO  
WAIT  
OSC FLT  
FLAG  
MC PIN  
WPO  
MC PIN  
DATA  
µP/µC  
MODE  
P010  
SCCR0  
AUTOWAIT  
DISABLE  
MEMORY  
DISABLE  
P011  
P012  
SCCR1  
SCCR2  
HALT/  
STANDBY  
PWRDWN/  
IDLE  
BUS  
STEST  
CPU  
STEST  
INT1  
NMI  
PRIVILEGE  
DISABLE  
P013  
to  
Reserved  
P016  
INT1  
FLAG  
INT1  
PIN DATA  
INT1  
POLARITY  
INT1  
PRIORITY  
INT1  
ENABLE  
P017  
P018  
P019  
INT1  
INT2  
INT2  
FLAG  
INT2  
PIN DATA  
INT2  
DATA DIR  
INT2  
DATA OUT  
INT2  
POLARITY  
INT2  
PRIORITY  
INT2  
ENABLE  
INT3  
FLAG  
INT3  
PIN DATA  
INT3  
DATA DIR  
INT3  
DATA OUT  
INT3  
POLARITY  
INT3  
PRIORITY  
INT3  
ENABLE  
INT3  
P01A  
P01B  
P01C  
P01D  
P01E  
P01F  
BUSY  
BUSY  
BUSY  
AP  
W1W0  
W0  
EXE  
EXE  
EXE  
DEECTL  
Reserved  
VPPS  
VPPS  
EPCTLM  
EPCTLL  
Reserved  
W0  
Reserved  
19  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx7x  
8-BIT MICROCONTROLLER  
SPNS034C – SEPTEMBER 1995 – REVISED FEBRUARY 1997  
digital port control registers  
Peripheral file frame 2 contains the digital I/O pin configuration and control registers. Table 12 lists the specific  
addresses, registers, and control bits within this peripheral file frame. Table 13 shows the port-configuration  
register setup.  
Table 12. Peripheral File Frame 2: Digital Port Control Registers  
PF  
P020  
P021  
P022  
P023  
P024  
P025  
P026  
P027  
P028  
P029  
P02A  
P02B  
P02C  
P02D  
P02E  
P02F  
BIT 7  
BIT 6  
BIT 5  
BIT 4  
BIT 3  
BIT 2  
BIT 1  
BIT 0  
REG  
Reserved  
APORT1  
APORT2  
ADATA  
ADIR  
Port A Control Register 2  
Port A Data  
Port A Direction  
Reserved  
BPORT1  
BPORT2  
BDATA  
BDIR  
Port B Control Register 2  
Port B Data  
Port B Direction  
Reserved  
CPORT1  
CPORT2  
CDATA  
CDIR  
Port C Control Register 2  
Port C Data  
Port C Direction  
Port D Control Register 1  
DPORT1  
DPORT2  
DDATA  
DDIR  
Port D Control Register 2  
Port D Data  
Port D Direction  
P030  
to  
Reserved  
P035  
P036  
P037  
Port G Data  
Port G Direction  
GDATA  
GDIR  
To configure pin D3 as SYSCLK, set port D control register 2 = 08h.  
Table 13. Port Configuration Register Setup  
abcd  
00y0  
abcd  
00q1  
PORT  
PIN  
A
B
C
D
G
0–7  
0–7  
0–7  
0–7  
0–5  
Data In y  
Data In y  
Data Out q  
Data Out q  
Data Out q  
Data Out q  
Data Out q  
Data In y  
Data In y  
Data In y  
a = Port x Control Register 1  
b = Port x Control Register 2  
c = Data  
d = Direction  
DPORT only  
20  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx7x  
8-BIT MICROCONTROLLER  
SPNS034C – SEPTEMBER 1995 – REVISED FEBRUARY 1997  
timer 1 (T1) module  
The programmable timer 1 (T1) module of the TMS370Cx7x provides the designer with the enhanced timer  
resources required to perform real-time system control. The T1 module contains the general-purpose timer and  
the watchdog (WD) timer. The two independent 16-bit timers, T1 and WD, allow program selection of input clock  
sources (real-time, external event, or pulse-accumulate) with multiple 16-bit registers (input capture and  
compare) for special timer function control. The T1 module includes three external device pins that can be used  
for multiple counter functions (operation-mode dependent) or used as general-purpose I/O pins. The T1 module  
block diagram is shown in Figure 5.  
Edge  
Select  
16-Bit  
Capt/Comp  
T1IC/CR  
Register  
16-Bit  
Counter  
PWM  
Toggle  
MUX  
T1PWM  
16  
16-Bit  
Compare  
Register  
Interrupt  
Logic  
8-Bit  
Prescaler  
T1EVT  
Interrupt  
Logic  
16-Bit  
MUX  
Watchdog Counter  
(Aux. Timer)  
Figure 5. Timer 1 Block Diagram  
Three T1 I/O pins:  
T1IC/CR: Timer 1 input capture / counter reset input pin, or general-purpose bidirectional I/O pin  
T1PWM: Timer 1 pulse-width-modulation (PWM) output pin, or general-purpose bidirectional I/O pin  
T1EVT: Timer 1 event input pin, or general-purpose bidirectional I/O pin  
Two operation modes:  
Dual-compare mode: Provides PWM signal  
Capture/compare mode: Provides input-capture pin  
One 16-bit general-purpose resettable counter  
One 16-bit compare register with associated compare logic  
One 16-bit capture/compare register, which, depending on the mode of operation, operates as either  
capture or compare register.  
One 16-bit watchdog counter can be used as an event counter, a pulse accumulator, or an interval timer  
if watchdog feature is not needed.  
Prescaler/clock sources that determine one of eight clock sources for general-purpose timer  
21  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx7x  
8-BIT MICROCONTROLLER  
SPNS034C – SEPTEMBER 1995 – REVISED FEBRUARY 1997  
timer 1 (T1) module (continued)  
Selectable edge-detection circuitry that, depending on the mode of operation, senses active transitions on  
the input capture pins (T1IC/CR).  
Interrupts that can be generated on the occurrence of:  
A capture  
A compare equal  
A counter overflow  
An external edge detection  
Sixteen T1 module control registers: Located in the PF frame beginning at address P040  
Table 14 lists the T1 module control register.  
22  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx7x  
8-BIT MICROCONTROLLER  
SPNS034C – SEPTEMBER 1995 – REVISED FEBRUARY 1997  
timer 1 (T1) module (continued)  
Table 14. Timer 1 Module Register Memory Map  
PF  
BIT 7  
BIT 6  
BIT 5  
BIT 4  
BIT 3  
BIT 2  
BIT 1  
BIT 0  
REG  
Modes: Capture/Compare and Dual-Compare  
P040 Bit 15  
P041 Bit 7  
P042 Bit 15  
P043 Bit 7  
P044 Bit 15  
P045 Bit 7  
P046 Bit 15  
P047 Bit 7  
P048 Bit 7  
T1 Counter MSbyte  
T1 Counter LSbyte  
Bit 8 T1CNTR  
Bit 0  
Compare Register MSbyte  
Compare Register LSbyte  
Capture/Compare Register MSbyte  
Capture/Compare Register LSbyte  
Watchdog Counter MSbyte  
Watchdog Counter LSbyte  
Watchdog Reset Key  
Bit 8 T1C  
Bit 0  
Bit 8 T1CC  
Bit 0  
Bit 8 WDCNTR  
Bit 0  
Bit 0 WDRST  
WD  
INPUT  
SELECT2  
WD  
INPUT  
SELECT1  
WD  
INPUT  
SELECT0  
T1  
INPUT  
SELECT2  
T1  
INPUT  
SELECT1  
WD OVRFL  
TAP SEL  
T1 INPUT  
SELECT0  
P049  
P04A  
T1CTL1  
T1CTL2  
WD OVRFL WD OVRFL WD OVRFL  
T1 OVRFL  
INT ENA  
T1 OVRFL  
INT FLAG  
T1 SW  
RESET  
RST ENA  
INT ENA  
INT FLAG  
Mode: Dual-Compare  
T1EDGE  
INT FLAG  
T1C2  
INT FLAG  
T1C1  
INT FLAG  
T1EDGE  
INT ENA  
T1C2  
INT ENA  
T1C1  
INT ENA  
P04B  
P04C  
T1CTL3  
T1CTL4  
T1  
T1C1  
OUT ENA  
T1C2  
OUT ENA  
T1C1  
RST ENA  
T1CR  
OUT ENA  
T1EDGE  
POLARITY  
T1CR  
RST ENA  
T1EDGE  
DET ENA  
MODE = 0  
Mode: Capture/Compare  
T1EDGE  
T1C1  
INT FLAG  
T1EDGE  
INT ENA  
T1C1  
INT ENA  
P04B  
P04C  
T1CTL3  
T1CTL4  
INT FLAG  
T1  
T1C1  
T1C1  
RST ENA  
T1EDGE  
POLARITY  
T1EDGE  
DET ENA  
MODE = 1  
OUT ENA  
Modes: Capture/Compare and Dual-Compare  
T1EVT  
DATA IN  
T1EVT  
DATA OUT  
T1EVT  
FUNCTION  
T1EVT  
DATA DIR  
P04D  
P04E  
T1PC1  
T1PC2  
T1PRI  
T1PWM  
DATA IN  
T1PWM  
DATA OUT  
T1PWM  
FUNCTION  
T1PWM  
DATA DIR  
T1IC/CR  
DATA IN  
T1IC/CR  
DATA OUT  
T1IC/CR  
FUNCTION  
T1IC/CR  
DATA DIR  
T1  
P04F T1 STEST  
PRIORITY  
Once the WD OVRFL RST ENA bit is set, these bits cannot be changed until a reset; this applies only to the standard  
watchdog and to simple counter. In the hard watchdog, these bits can be modified at any time; the WD INPUT SELECT2  
bits are ignored.  
23  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx7x  
8-BIT MICROCONTROLLER  
SPNS034C – SEPTEMBER 1995 – REVISED FEBRUARY 1997  
timer 1 (T1) module (continued)  
The T1 capture/compare-mode block diagram is illustrated in Figure 6. The annotations on the diagram identify  
the register and the bit(s) in the peripheral frame. For example, the actual address of T1CTL2.0 is 104Ah,  
bit 0, in the T1CTL2 register.  
T1CC.15-0  
16-Bit  
LSB  
T1C1  
OUT ENA  
Capt/Comp  
Register  
Prescale  
Clock  
Source  
MSB  
T1PC2.7-4  
T1PWM  
T1CTL4.6  
T1CNTR.15-0  
LSB  
MSB  
16-Bit  
Counter  
16  
T1 PRIORITY  
0
1
T1C1 INT FLAG  
T1CTL3.5  
T1PRI.6  
Level 1 Int  
Level 2 Int  
Compare=  
Reset  
T1CTL3.0  
T1C.15-0  
T1 SW  
RESET  
T1C1 INT ENA  
16-Bit  
LSB  
T1C1  
RST ENA  
Compare  
Register  
T1CTL2.0  
MSB  
T1 OVRFL INT FLAG  
T1CTL2.3  
T1CTL4.4  
T1CTL2.4  
T1 OVRFL INT ENA  
T1PC2.3-0  
T1IC/CR  
T1EDGE DET ENA  
T1EDGE INT FLAG  
T1CTL3.7  
Edge  
Select  
T1CTL4.0  
T1CTL3.2  
T1EDGE INT ENA  
T1CTL4.2  
T1EDGE POLARITY  
Figure 6. Capture/Compare Mode  
24  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx7x  
8-BIT MICROCONTROLLER  
SPNS034C – SEPTEMBER 1995 – REVISED FEBRUARY 1997  
timer 1 (T1) module (continued)  
The T1 dual-compare mode block diagram is illustrated in Figure 7. The annotations on the diagram identify  
the register and the bit(s) in the peripheral frame. For example, the actual address of T1CTL2.0 is 104Ah,  
bit 0, in the T1CTL2 register.  
T1CC.15-0  
16-Bit  
Capt/Comp  
Register  
T1C2 INT FLAG  
T1CTL3.6  
LSB  
Prescaler  
Clock  
Source  
MSB  
Output  
Enable  
T1CTL3.1  
T1C2 INT ENA  
T1CTL4.5  
Compare=  
T1CNTR.15-0  
T1PC2.7-4  
T1PWM  
T1C2 OUT ENA  
T1CTL4.6  
LSB  
MSB  
16-Bit  
Counter  
16  
T1C1 INT FLAG  
T1CTL3.5  
Reset  
Compare=  
T1C1 OUT ENA  
T1CTL4.3  
T1CTL3.0  
T1C1 INT ENA  
T1C1  
RST ENA  
T1C.15-0  
T1 SW  
RESET  
16-Bit  
Compare  
Register  
LSB  
T1CTL4.4  
T1CR OUT ENA  
T1CTL2.0  
MSB  
T1 OVRFL INT FLAG  
T1CTL2.3  
T1CTL2.4  
T1 OVRFL INT ENA  
T1CTL4.1  
T1CR  
RST ENA  
T1PC2.3-0  
T1IC/CR  
Edge  
Select  
T1 PRIORITY  
T1PRI.6  
T1CTL4.0  
0
1
Level 1 Int  
Level 2 Int  
T1EDGE INT FLAG  
T1CTL3.7  
T1EDGE DET ENA  
T1CTL4.2  
T1CTL3.2  
T1EDGE INT ENA  
T1EDGE POLARITY  
Figure 7. Dual-Compare Mode  
25  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx7x  
8-BIT MICROCONTROLLER  
SPNS034C – SEPTEMBER 1995 – REVISED FEBRUARY 1997  
timer 1 (T1) module (continued)  
The TMS370Cx7x device includes a 24-bit watchdog (WD) timer, contained in the T1 module, which can be  
software programmed as an event counter, pulse accumulator, or interval timer if the WD function is not used.  
The WD function is to monitor software and hardware operation, and it implements a system reset when the  
WD counter is not serviced properly (WD counter overflow or WD counter is reinitialized by an incorrect value).  
The WD can be configured as one of the three mask options: standard WD, hard WD, or simple counter.  
Standard watchdog configuration for EPROM and mask-ROM devices (see Figure 8)  
Watchdog  
Ten different WD overflow rates ranging from 6.55 ms to 3.35 s at 5-MHz SYSCLK  
AWDresetkey(WDRST)registerisusedtoclearthewatchdogcounter(WDCNTR)whenacorrect  
value is written.  
Generates a system reset if an incorrect value is written to the WD reset key or if the counter  
overflows  
A WD overflow flag (WD OVRFL INT FLAG) bit that indicates whether the WD timer initiated a  
system reset  
Non-watchdog  
Watchdog timer can be configured as an event counter, pulse accumulator, or an interval timer  
WDCNTR.15-0  
WD OVRFL  
INT FLAG  
T1CTL2.6  
16-Bit  
Watchdog Counter  
T1CTL2.5  
Interrupt  
WD OVRFL  
INT ENA  
Reset  
Clock  
Prescaler  
T1CTL1.7  
T1CTL2.7  
WD OVRFL  
TAP SEL  
System Reset  
WD OVRFL  
RST ENA  
Watchdog Reset Key  
WDRST.7-0  
Figure 8. Standard Watchdog  
26  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx7x  
8-BIT MICROCONTROLLER  
SPNS034C – SEPTEMBER 1995 – REVISED FEBRUARY 1997  
timer 1 (T1) module (continued)  
Hard watchdog configuration for mask-ROM device (see Figure 9)  
Eight different WD overflow rates ranging from 26.2 ms to 3.35 s at 5-MHz SYSCLK  
A WD reset key (WDRST) register is used to clear the watchdog counter (WDCNTR) when a correct  
value is written.  
Generates a system reset if an incorrect value is written to the watchdog reset key or if the counter  
overflows  
Automatic activation of the WD timer upon power-up reset  
INT1 is enabled as nonmaskable interrupt during low-power modes  
A WD overflow flag (WD OVRFL INT FLAG) bit that indicates whether the WD timer initiated a system  
reset  
WDCNTR.15-0  
WD OVRFL  
INT FLAG  
16-Bit  
Watchdog Counter  
T1CTL2.5  
Reset  
Clock  
Prescaler  
T1CTL1.7  
System Reset  
WD OVRFL  
TAP SEL  
Watchdog Reset Key  
WDRST.7-0  
Figure 9. Hard Watchdog  
27  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx7x  
8-BIT MICROCONTROLLER  
SPNS034C – SEPTEMBER 1995 – REVISED FEBRUARY 1997  
timer 1 (T1) module (continued)  
Simple-counter configuration for mask-ROM devices only (see Figure 10)  
Simple counter can be configured as an event counter, pulse accumulator, or an interval timer.  
WDCNTR.15-0  
WD OVFL  
16-Bit  
Watchdog Counter  
T1CTL2.6  
INT FLAG  
Interrupt  
T1CTL2.5  
WD OVRFL  
INT ENA  
Reset  
Clock  
Prescaler  
T1CTL1.7  
WD OVRFL  
TAP SEL  
Watchdog Reset Key  
WDRST.7-0  
Figure 10. Simple Counter  
timer 2A (T2A) module  
The 16-bit general-purpose timer 2A (T2A) module is composed of a 16-bit resettable counter, 16-bit compare  
register with associated compare logic, 16-bit capture register, and a 16-bit register that functions as a capture  
register in one mode and as a compare register in the other mode. The T2A module adds an additional timer  
that provides event count, input capture, and compare functions. The T2A module includes three external  
device pins that can be dedicated as timer functions or used as general-purpose I/O pins. The T2A module block  
diagram is shown in Figure 11.  
28  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx7x  
8-BIT MICROCONTROLLER  
SPNS034C – SEPTEMBER 1995 – REVISED FEBRUARY 1997  
timer 2A (T2A) module (continued)  
Edge  
Detect  
T2AIC1/CR  
16-Bit  
Capt/Comp  
Register  
Edge  
Detect  
T2AIC2/PWM  
(Dual-Capture Mode)  
PWM  
Toggle  
T2AIC2/PWM  
16-Bit  
Capture  
Register  
INT  
Logic  
(Dual-Compare Mode)  
16  
16-Bit  
Compare  
Register  
Clock  
T2AEVT  
16-Bit  
Counter  
Select  
Figure 11. Timer 2A Block Diagram  
The T2A module features include the following:  
Three T2A I/O pins:  
T2AIC1/CR: T2A input capture 1/counter reset input pin, or general-purpose bidirectional I/O pin  
T2AIC2/PWM: T2A input capture 2/pulse-width-modulation (PWM) output pin, or general-purpose  
bidirectional I/O pin  
T2AEVT: T2A event input pin, or general-purpose bidirectional I/O pin  
Two operation modes:  
Dual-compare mode: Provides PWM signal  
Dual-capture mode: Provides input capture pin  
One 16-bit general-purpose resettable counter  
One 16-bit compare register with associated compare logic  
One 16-bit capture register with associated capture logic  
One 16-bit capture/compare register, which, depending on the mode of operation, operates as either a  
capture or compare register  
T2A clock sources can be any of the following:  
System clock  
No clock (the counter is stopped)  
External clock synchronized to the system clock (event counter)  
System clock while external input is high (pulse accumulation)  
29  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx7x  
8-BIT MICROCONTROLLER  
SPNS034C – SEPTEMBER 1995 – REVISED FEBRUARY 1997  
timer 2A (T2A) module (continued)  
Selectable edge-detection circuitry that, depending on the mode of operation, senses active transitions on  
the input capture pins (T2AIC1/CR)  
Interrupts that can be generated on the occurrence of:  
A compare equal to dedicated-compare register  
A compare equal to capture-compare register  
A counter overflow  
An external edge 1 detection  
An external edge 2 detection  
Fourteen T2A module control registers located in the PF frame beginning at address P060  
The T2A module control registers are listed in Table 15.  
Table 15. Timer 2A Module Register Memory Map  
PF  
BIT 7  
BIT 6  
BIT 5  
BIT 4  
BIT 3  
BIT 2  
BIT 1  
BIT 0  
REG  
Modes: Dual-Compare and Dual-Capture  
P060 Bit 15  
P061 Bit 7  
P062 Bit 15  
P063 Bit 7  
P064 Bit 15  
P065 Bit 7  
P066 Bit 15  
P067 Bit 7  
T2A Counter MSbyte  
T2A Counter LSbyte  
Bit 8  
T2ACNTR  
T2AC  
Bit 0  
Bit 8  
Bit 0  
Bit 8  
Bit 0  
Bit 8  
Bit 0  
Compare Register MSbyte  
Compare Register LSbyte  
Capture/Compare Register MSbyte  
Capture/Compare Register LSbyte  
Capture Register 2 MSbyte  
Capture Register 2 LSbyte  
T2ACC  
T2AIC  
T2A  
OVRFL INT  
ENA  
T2A  
OVRFL INT  
FLAG  
T2A  
INPUT  
SELECT1  
T2A INPUT  
SELECT0  
T2A SW  
RESET  
P06A  
T2ACTL1  
Mode: Dual-Compare  
T2AEDGE1  
INT FLAG  
T2AC2  
INT FLAG  
T2AC1  
INT FLAG  
T2AEDGE1  
INT ENA  
T2AC2  
INT ENA  
T2AC1  
INT ENA  
P06B  
P06C  
T2ACTL2  
T2ACTL3  
T2A  
MODE = 0  
T2AC1  
OUT ENA  
T2AC2  
OUT ENA  
T2AC1  
RST ENA  
T2AEDGE1 T2AEDGE1 T2AEDGE1 T2AEDGE1  
OUT ENA  
POLARITY  
RST ENA  
DET ENA  
Mode: Dual-Capture  
T2AEDGE1  
INT FLAG  
T2AEDGE2  
INT FLAG  
T2AC1  
INT FLAG  
T2AEDGE1 T2AEDGE2  
INT ENA INT ENA  
T2AC1  
INT ENA  
P06B  
P06C  
T2ACTL2  
T2ACTL3  
T2A  
MODE = 1  
T2AC1  
RST ENA  
T2AEDGE2 T2AEDGE1 T2AEDGE2 T2AEDGE1  
POLARITY  
POLARITY  
DET ENA  
DET ENA  
Modes: Dual-Compare and Dual-Capture  
T2AEVT  
DATA IN  
T2AEVT  
DATA OUT  
T2AEVT  
FUNCTION  
T2AEVT  
DATA DIR  
P06D  
P06E  
P06F  
T2APC1  
T2APC2  
T2APRI  
T2AIC2/PWM T2AIC2/PWM T2AIC2/PWM T2AIC2/PWM T2AIC1/CR T2AIC1/CR  
T2AIC1/CR  
FUNCTION  
T2AIC/CR  
DATA DIR  
DATA IN  
DATA OUT  
FUNCTION  
DATA DIR  
DATA IN  
DATA OUT  
T2A  
PRIORITY  
T2A STEST  
30  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx7x  
8-BIT MICROCONTROLLER  
SPNS034C – SEPTEMBER 1995 – REVISED FEBRUARY 1997  
timer 2A (T2A) module (continued)  
The timer 2A dual-compare mode block diagram is illustrated in Figure 12. The annotations on the diagram  
identify the register and the bit(s) in the peripheral frame. For example, the actual address of T2ACTL2.0 is  
106Bh, bit 0, in the T2ACTL2 register.  
T2ACC.15-0  
16-Bit  
LSB  
Capt/Comp  
Register  
MSB  
Output  
Enable  
Clock  
Source  
T2AC2 INT FLAG  
T2ACTL2.6  
T2ACTL2.1  
T2AC2 INT ENA  
T2ACTL3.5  
Compare=  
16  
T2ACNTR.15-0  
T2APC2.7-4  
T2AC2 OUT ENA  
T2ACTL3.6  
LSB  
MSB  
16-Bit  
Counter  
T2AIC2/PWM  
T2AC1 INT FLAG  
T2ACTL2.5  
T2ACTL2.0  
T2AC1 INT ENA  
Reset  
Compare=  
T2AC.15-0  
T2AC1 OUT ENA  
T2ACTL3.3  
T2A SW  
RESET  
T2AC1  
RST ENA  
T2ACTL3.4  
16-Bit  
Compare  
Register  
LSB  
T2ACTL1.0  
T2AEDGE1  
OUT ENA  
MSB  
T2A OVRFL INT FLAG  
T2ACTL1.3  
T2ACTL3.1  
T2AEDGE1  
RST ENA  
T2ACTL1.4  
T2APC2.3-0  
T2AIC1/CR  
T2A OVRFL INT ENA  
Edge 1  
Select  
T2A PRIORITY  
T2APRI.6  
T2ACTL3.0  
T2AEDGE1 DET ENA  
0
1
T2AEDGE1 INT FLAG  
T2ACTL2.7  
Level 1 Int  
Level 2 Int  
T2ACTL3.2  
T2ACTL2.2  
T2AEDGE1 POLARITY  
T2AEDGE1 INT ENA  
Figure 12. Dual-Compare Mode  
31  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx7x  
8-BIT MICROCONTROLLER  
SPNS034C – SEPTEMBER 1995 – REVISED FEBRUARY 1997  
timer 2A (T2A) module (continued)  
The timer 2A dual-capture mode block diagram is illustrated in Figure 13. The annotations on the diagram  
identify the register and the bit(s) in the peripheral frame. For example, the actual address of T2ACTL2.0 is  
106Bh, bit 0, in the T2ACTL2 register.  
T2AIC.15–0  
T2ACC.15–0  
16-Bit  
Capture  
Register 2  
16-Bit  
Capt/Comp  
Register 1  
LSB  
LSB  
MSB  
MSB  
Clock  
Source  
T2ACNTR.15–0  
LSB  
16-Bit  
Counter  
16  
MSB  
T2A PRIORITY  
T2APRI.6  
0
1
T2AC1 INT FLAG  
T2ACTL2.5  
Level 1 Int  
Level 2 Int  
Compare =  
Reset  
T2ACTL2.0  
T2AC.15–0  
T2AC1 INT ENA  
T2A SW  
RESET  
T2A OVRFL INT FLAG  
T2ACTL1.3  
16-Bit  
Compare  
Register  
LSB  
T2AC1  
RST ENA  
MSB  
T2ACTL1.0  
T2ACTL1.4  
T2A OVRFL INT ENA  
T2ACTL3.4  
T2ACTL3.0  
T2AEDGE1 INT FLAG  
T2AEDGE1 DET ENA  
T2ACTL2.7  
T2APC2.3–0  
Edge1  
Select  
T2ACTL2.2  
T2AIC1/CR  
T2ACTL3.2  
T2AEDGE1 INT ENA  
T2AEDGE1 POLARITY  
T2ACTL3.1  
T2AEDGE2 INT FLAG  
T2ACTL2.6  
T2APC2.7–4  
T2AIC2/PWM  
Edge 2  
Select  
T2AEDGE2 DET ENA  
T2ACTL3.3  
T2ACTL2.1  
T2AEDGE2 POLARITY  
T2AEDGE2 INT ENA  
Figure 13. Dual-Capture Mode  
32  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx7x  
8-BIT MICROCONTROLLER  
SPNS034C – SEPTEMBER 1995 – REVISED FEBRUARY 1997  
analog-to-digital converter 1 (ADC1) module  
The analog-to-digital converter 1 (ADC1) module is an 8-bit, successive approximation converter with internal  
sample-and-hold circuitry. The module has eight multiplexed analog input channels that allow the processor to  
convert the voltage levels from up to eight different sources. The ADC1 module features include the following:  
Minimum conversion time: 32.8 µs at 5-MHz SYSCLK  
Ten external pins:  
Eight analog input channels (AN0AN7), any of which can be software configured as digital inputs  
(E0E7) if not needed as analog channels. AN1AN7 also can be configured as positive input voltage  
reference.  
V
: ADC1 module high-voltage reference input  
CC3  
V
: ADC1 module low-voltage reference input  
SS3  
The ADDATA register which contains the digital result of the last ADC1 conversion  
ADC1 operations can be accomplished through either interrupt driven or polled algorithms  
Six ADC1 module control registers are located in the control register frame beginning at address 1070h.  
The ADC1 module control registers are listed in Table 16.  
Table 16. ADC1 Module Control Register Memory Map  
PF  
BIT 7  
BIT 6  
BIT 5  
BIT 4  
BIT 3  
BIT 2  
BIT 1  
BIT 0  
REG  
CONVERT  
START  
SAMPLE  
START  
REF VOLT  
SELECT2  
REF VOLT  
SELECT1  
REF VOLT  
SELECT0  
AD INPUT  
SELECT2  
AD INPUT  
SELECT1  
AD INPUT  
SELECT0  
P070  
ADCTL  
AD INT  
FLAG  
AD INT  
ENA  
P071  
P072  
AD READY  
ADSTAT  
ADDATA  
A/D Conversion Data Register  
Reserved  
P073  
to  
P07C  
P07D  
P07E  
Port E Data Input Register  
Port E Input Enable Register  
ADIN  
ADENA  
AD  
PRIORITY  
P07F AD STEST  
AD ESPEN  
ADPRI  
33  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx7x  
8-BIT MICROCONTROLLER  
SPNS034C – SEPTEMBER 1995 – REVISED FEBRUARY 1997  
analog-to-digital converter 1 (ADC1) module (continued)  
The ADC1 module block diagram is illustrated in Figure 14.  
Port E Input  
Port E Data  
ENA 0  
AN 0  
ADENA.0  
SAMPLE  
START  
CONVERT  
START  
ADIN.0  
2
1
0
AN0  
AN1  
AN2  
AN3  
AN4  
AN5  
AN6  
AN7  
ADCTL.2–0  
ADCTL.6  
ADCTL.7  
Port E Input  
ENA 1  
Port E Data  
AN 1  
AD INPUT SELECT  
ADENA.1  
ADIN.1  
Port E Input  
ENA 2  
Port E Data  
AN 2  
ADENA.2  
ADIN.2  
Port E Input  
ENA 3  
Port E Data  
AN 3  
ADENA.3  
ADIN.3  
ADC1  
Port E Input  
ENA 4  
Port E Data  
AN 4  
ADENA.4  
ADIN.4  
ADDATA.7–0  
Port E Input  
ENA 5  
Port E Data  
AN 5  
A/D  
Conversion  
ADENA.5  
ADIN.5  
Data Register  
Port E Input  
ENA 6  
AD READY  
ADSTAT.2  
Port E Data  
AN 6  
ADENA.6  
ADIN.6  
5
4
3
AD PRIORITY  
ADCTL.5–3  
Port E Input  
ENA 7  
Port E Data  
AN 7  
0
1
Level 1 INT  
Level 2 INT  
ADPRI.6  
REF VOLTS SELECT  
ADENA.7  
ADIN.7  
V
AD INT FLAG  
ADSTAT.1  
CC3  
V
SS3  
ADSTAT.0  
AD INT ENA  
Figure 14. ADC1 Block Diagram  
34  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx7x  
8-BIT MICROCONTROLLER  
SPNS034C – SEPTEMBER 1995 – REVISED FEBRUARY 1997  
instruction set overview  
Table 17 provides an opcode-to-instruction cross reference of all 73 instructions and 274 opcodes of the  
‘370Cx7x instruction set. The numbers at the top of this table represent the most significant nibble of the opcode  
while the numbers at the left side of the table represent the least significant nibble. The instruction of these two  
opcode nibbles contains the mnemonic, operands, and byte/cycle particular to that opcode.  
For example, the opcode B5h points to the CLR A instruction. This instruction contains one byte and executes  
in eight SYSCLK cycles.  
35  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
Table 17. TMS370 Family Opcode/Instruction Map  
MSN  
0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F
JMP  
#ra  
2/7  
INCW  
#ra,Rd  
3/11  
MOV  
Ps,A  
2/8  
CLRC  
TST A  
1/9  
/
MOV  
A,B  
1/9  
MOV  
A,Rd  
2/7  
TRAP  
15  
1/14  
LDST  
n
2/6  
0
1
2
3
4
5
JN  
ra  
2/5  
MOV  
A,Pd  
2/8  
MOV  
B,Pd  
2/8  
MOV  
Rs,Pd  
3/10  
MOV  
Ps,B  
2/7  
MOV  
B,Rd  
2/7  
TRAP  
14  
1/14  
MOV  
#ra[SP],A  
2/7  
JZ  
ra  
2/5  
MOV  
Rs,A  
2/7  
MOV  
#n,A  
2/6  
MOV  
Rs,B  
2/7  
MOV  
Rs,Rd  
3/9  
MOV  
#n,B  
2/6  
MOV  
B,A  
1/8  
MOV  
#n,Rd  
3/8  
MOV  
Ps,Rd  
3/10  
DEC  
A
1/8  
DEC  
B
1/8  
DEC  
Rd  
2/6  
TRAP  
13  
1/14  
MOV  
A,*ra[SP]  
2/7  
JC  
ra  
2/5  
AND  
Rs,A  
2/7  
AND  
#n,A  
2/6  
AND  
Rs,B  
2/7  
AND  
Rs,Rd  
3/9  
AND  
#n,B  
2/6  
AND  
B,A  
1/8  
AND  
#n,Rd  
3/8  
AND  
A,Pd  
2/9  
AND  
B,Pd  
2/9  
AND  
#n,Pd  
3/10  
INC  
A
1/8  
INC  
B
1/8  
INC  
Rd  
2/6  
TRAP  
12  
1/14  
CMP  
*n[SP],A  
2/8  
JP  
ra  
2/5  
OR  
Rs,A  
2/7  
OR  
#n,A  
2/6  
OR  
Rs,B  
2/7  
OR  
Rs,Rd  
3/9  
OR  
#n,B  
2/6  
OR  
B,A  
1/8  
OR  
#n,Rd  
3/8  
OR  
A,Pd  
2/9  
OR  
B,Pd  
2/9  
OR  
#n,Pd  
3/10  
INV  
A
1/8  
INV  
B
1/8  
INV  
Rd  
2/6  
TRAP  
11  
1/14  
extend  
inst,2  
opcodes  
JPZ  
ra  
2/5  
XOR  
Rs,A  
2/7  
XOR  
#n,A  
2/6  
XOR  
Rs,B  
2/7  
XOR  
Rs,Rd  
3/9  
XOR  
#n,B  
2/6  
XOR  
B,A  
1/8  
XOR  
#n,Rd  
3/8  
XOR  
A,Pd  
2/9  
XOR  
B,Pd  
2/9  
XOR  
#n,Pd  
3/10  
CLR  
A
1/8  
CLR  
B
1/8  
CLR  
Rn  
2/6  
TRAP  
10  
1/14  
L
S
N
JNZ  
ra  
2/5  
BTJO  
Rs,A,ra  
3/9  
BTJO  
#n,A,ra  
3/8  
BTJO  
Rs,B,ra  
3/9  
BTJO  
Rs,Rd,ra  
4/11  
BTJO  
#n,B,ra  
3/8  
BTJO  
B,A,ra  
2/10  
BTJO  
#n,Rd,ra  
4/10  
BTJO  
A,Pd,ra  
3/11  
BTJO  
B,Pd,ra  
3/10  
BTJO  
#n,Pd,ra  
4/11  
XCHB  
A
1/10  
XCHB A /  
TST B  
1/10  
XCHB  
Rn  
2/8  
TRAP  
9
1/14  
IDLE  
1/6  
6
JNC  
ra  
2/5  
BTJZ  
Rs.,A,ra  
3/9  
BTJZ  
#n,A,ra  
3/8  
BTJZ  
Rs,B,ra  
3/9  
BTJZ  
Rs,Rd,ra  
4/11  
BTJZ  
#n,B,ra  
3/8  
BTJZ  
B,A,ra  
2/10  
BTJZ  
#n,Rd,ra  
4/10  
BTJZ  
A,Pd,ra  
3/10  
BTJZ  
B,Pd,ra  
3/10  
BTJZ  
#n,Pd,ra  
4/11  
SWAP  
A
1/11  
SWAP  
B
1/11  
SWAP  
Rn  
2/9  
TRAP  
8
1/14  
MOV  
#n,Pd  
3/10  
7
8
JV  
ra  
2/5  
ADD  
Rs,A  
2/7  
ADD  
#n,A  
2/6  
ADD  
Rs,B  
2/7  
ADD  
Rs,Rd  
3/9  
ADD  
#n,B  
2/6  
ADD  
B,A  
1/8  
ADD  
#n,Rd  
3/8  
MOVW  
#16,Rd  
4/13  
MOVW  
Rs,Rd  
3/12  
MOVW  
#16[B],Rpd  
4/15  
PUSH  
A
1/9  
PUSH  
B
1/9  
PUSH  
Rd  
2/7  
TRAP  
7
1/14  
SETC  
1/7  
JL  
ra  
2/5  
ADC  
Rs,A  
2/7  
ADC  
#n,A  
2/6  
ADC  
Rs,B  
2/7  
ADC  
Rs,Rd  
3/9  
ADC  
#n,B  
2/6  
ADC  
B,A  
1/8  
ADC  
#n,Rd  
3/8  
JMPL  
lab  
3/9  
JMPL  
*Rp  
2/8  
JMPL  
*lab[B]  
3/11  
POP  
A
1/9  
POP  
B
1/9  
POP  
Rd  
2/7  
TRAP  
6
1/14  
RTS  
9
A
B
1/9  
JLE  
ra  
2/5  
SUB  
Rs,A  
2/7  
SUB  
#n,A  
2/6  
SUB  
Rs,B  
2/7  
SUB  
Rs,Rd  
3/9  
SUB  
#n,B  
2/6  
SUB  
B,A  
1/8  
SUB  
#n,Rd  
3/8  
MOV  
& lab,A  
3/10  
MOV  
*Rp,A  
2/9  
MOV  
*lab[B],A  
3/12  
DJNZ  
A,#ra  
2/10  
DJNZ  
B,#ra  
2/10  
DJNZ  
Rd,#ra  
3/8  
TRAP  
5
1/14  
RTI  
1/12  
JHS  
ra  
2/5  
SBB  
Rs,A  
2/7  
SBB  
#n,A  
2/6  
SBB  
Rs,B  
2/7  
SBB  
Rs,Rd  
3/9  
SBB  
#n,B  
2/6  
SBB  
B,A  
1/8  
SBB  
#n,Rd  
3/8  
MOV  
A, & lab  
3/10  
MOV  
A, *Rp  
2/9  
MOV  
A,*lab[B]  
3/12  
COMPL  
A
1/8  
COMPL  
B
1/8  
COMPL  
Rd  
2/6  
TRAP  
4
1/14  
PUSH  
ST  
1/8  
All conditional jumps (opcodes 010F), BTJO, BTJZ, and DJNZ instructions use two additional cycles if the branch is taken. The BTJO, BTJZ, and DJNZ  
instructions have a relative address as the last operand.  
Table 17. TMS370 Family Opcode/Instruction Map (Continued)  
MSN  
0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F
JNV  
ra  
2/5  
MPY  
Rs,A  
2/46  
MPY  
#n,A  
2/45  
MPY  
Rs,B  
2/46  
MPY  
Rs,Rd  
3/48  
MPY  
#n,B  
2/45  
MPY  
B,A  
1/47  
MPY  
#n,Rs  
3/47  
BR  
lab  
3/9  
BR  
*Rp  
2/8  
BR  
*lab[B]  
3/11  
RR  
A
1/8  
RR  
B
1/8  
RR  
Rd  
2/6  
TRAP  
3
1/14  
POP  
ST  
1/8  
C
D
E
F
JGE  
ra  
2/5  
CMP  
Rs,A  
2/7  
CMP  
#n,A  
2/6  
CMP  
Rs,B  
2/7  
CMP  
Rs,Rd  
3/9  
CMP  
#n,B  
2/6  
CMP  
B,A  
1/8  
CMP  
#n,Rd  
3/8  
CMP  
& lab,A  
3/11  
CMP  
*Rp,A  
2/10  
CMP  
*lab[B],A  
3/13  
RRC  
A
1/8  
RRC  
B
1/8  
RRC  
Rd  
2/6  
TRAP  
2
1/14  
LDSP  
L
S
N
1/7  
JG  
ra  
2/5  
DAC  
Rs,A  
2/9  
DAC  
#n,A  
2/8  
DAC  
Rs,B  
2/9  
DAC  
Rs,Rd  
3/11  
DAC  
#n,B  
2/8  
DAC  
B,A  
1/10  
DAC  
#n,Rd  
3/10  
CALL  
lab  
3/13  
CALL  
*Rp  
2/12  
CALL  
*lab[B]  
3/15  
RL  
A
1/8  
RL  
B
1/8  
RL  
Rd  
2/6  
TRAP  
1
1/14  
STSP  
1/8  
JLO  
ra  
2/5  
DSB  
Rs,A  
2/9  
DSB  
#n,A  
2/8  
DSB  
Rs,B  
2/9  
DSB  
Rs,Rd  
3/11  
DSB  
#n,B  
2/8  
DSB  
B,A  
1/10  
DSB  
#n,Rd  
3/10  
CALLR  
lab  
3/15  
CALLR  
*Rp  
2/14  
CALLR  
*lab[B]  
3/17  
RLC  
A
1/8  
RLC  
B
1/8  
RLC  
Rd  
2/6  
TRAP  
0
1/14  
NOP  
1/7  
MOVW  
*n[Rn]  
4/15  
DIV  
Rn.A  
3/14-63  
Second byte of two-byte instructions (F4xx):  
F4  
F4  
F4  
F4  
F4  
F4  
F4  
F4  
8
9
JMPL  
*n[Rn]  
4/16  
Legend:  
MOV  
*n[Rn],A  
4/17  
A
B
C
D
E
F
*
&
#
=
=
=
Indirect addressing operand prefix  
Direct addressing operand prefix  
immediate operand  
MOV  
A,*n[Rn]  
4/16  
#16 = immediate 16-bit number  
lab  
n
Pd  
Pn  
Ps  
ra  
Rd  
Rn  
Rp  
=
=
=
=
=
=
=
=
=
16-label  
immediate 8-bit number  
Peripheral register containing destination type  
Peripheral register  
Peripheral register containing source byte  
Relative address  
Register containing destination type  
Register file  
Register pair  
BR  
*n[Rn]  
4/16  
CMP  
*n[Rn],A  
4/18  
CALL  
*n[Rn]  
4/20  
Rpd= Destination register pair  
Rps = Source Register pair  
Rs  
= Register containing source byte  
CALLR  
*n[Rn]  
4/22  
All conditional jumps (opcodes 010F), BTJO, BTJZ, and DJNZ instructions use two additional cycles if the branch is taken. The BTJO, BTJZ, and DJNZ  
instructions have a relative address as the last operand.  
TMS370Cx7x  
8-BIT MICROCONTROLLER  
SPNS034C – SEPTEMBER 1995 – REVISED FEBRUARY 1997  
development system support  
The TMS370 family development support tools include an assembler, a C compiler, a linker, compact  
development tool, and an EEPROM/UVEPROM programmer.  
Assembler/linker (Part No. TMDS3740850–02 for PC)  
Includes extensive macro capability  
Provides high-speed operation  
Provides format conversion utilities for popular formats  
ANSI C compiler (Part No. TMDS3740855–02 for PC, Part No. TMDS3740555–09 for HP700 , Sun-3 ,  
or Sun-4 )  
Generates assembly code for the TMS370 that can be easily inspected  
Improves code execution speed and reduces code size with optional optimizer pass  
Enables direct referencing of the TMS370’s port registers by using a naming convention  
Provides flexibility in specifying the storage for data objects  
Interfaces C functions and assembly functions easily  
Includes assembler and linker  
CDT370 (compact development tool) Timer real-time in-circuit emulation  
Base (Part Number EDSCDT37T – for PC, requires cable)  
Cable for 68-pin PLCC (Part No. EDSTRG68PLCC)  
Cable for 64-pin SDIP (Part No. EDSTRG64SDIL)  
Includes EEPROM and EPROM programming support  
Allows inspection and modification of memory locations  
Uploads/downloads program and data memory  
Executes programs and software routines  
Includes 1024 samples trace buffer  
Includes single-step executable instructions  
Uses software breakpoints to halt program execution at selected address  
Microcontroller programmer  
Base (Part No. TMDS3760500A — for PC, requires programmer head)  
Single unit head for 68-pin PLCC (Part No. TMDS3780510A)  
Single unit head for 64-pin SDIP (Part No. TMDS3780511A)  
Includes PC-based, window/function-key oriented user interface for ease of use and rapid learning  
environment  
HP700 is a trademark of Hewlett-Packard Company.  
Sun-3 and Sun-4 are trademarks of Sun Microsystems, Inc.  
38  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx7x  
8-BIT MICROCONTROLLER  
SPNS034C – SEPTEMBER 1995 – REVISED FEBRUARY 1997  
development system support (continued)  
Starter Kit (Part No. TMDS37000 — for PC)  
Includes TMS370 assembler diskette and documentation  
Includes TMS370 simulator  
Includes programming adapter board and programming software  
Not included (to be supplied by the user):  
+ 5 V power supply  
ZIF sockets  
9-pin RS232 cable  
device numbering conventions  
Figure 15 illustrates the numbering and symbol nomenclature for the TMS370Cx7x family.  
TMS 370 C  
7
7
7
A FN T  
Prefix: TMS = Standard prefix for fully qualified devices  
SE = System evaluator (window EPROM) that is used for  
prototyping purpose  
Family: 370 = TMS370 8-Bit Microcontroller Family  
Technology:  
C = CMOS  
Program Memory Types:  
0 = Mask ROM  
7 = EPROM  
Device Type:  
7 = ’x7x device containing the following modules:  
– Timer 1  
– Timer 2A  
– Analog-to-Digital Converter 1  
Memory Size:  
7 = 24K bytes  
Temperature Ranges:  
A = 40°C to 85°C  
L =  
0°C to 70°C  
T = 40°C to 105°C  
Packages:  
FN = Plastic Leaded Chip Carrier  
FZ = Ceramic Leaded Chip Carrier  
NM = Plastic Shrink Dual-In-Line  
JN = Ceramic Shrink Dual-in-Line  
ROM and EPROM Option:  
A = For ROM device, the watchdog timer can be configured  
as one of the three different mask options:  
– A standard watchdog  
– A hard watchdog  
– A simple watchdog  
The clock can be either:  
– Divide-by-4 clock  
– Divide-by-1 (PLL) clock  
The low-power modes can be either:  
– Enabled  
– Disabled  
A = For EPROM device, standard watchdog, divide-by-4  
clock, and low-power modes are enabled  
Figure 15. TMS370Cx7x Family Nomenclature  
39  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx7x  
8-BIT MICROCONTROLLER  
SPNS034C – SEPTEMBER 1995 – REVISED FEBRUARY 1997  
device part numbers  
Table 18 lists all the TMS370Cx7x devices available. The device part-number nomenclature is designed to  
assist ordering. Upon ordering, the customer must specify not only the device part number, but also the clock  
and watchdog-timer options desired. Each device can have only one of the three possible watchdog-timer  
options and one of the two clock options. The options to be specified pertain solely to orders involving ROM  
devices.  
Table 18. Device Part Numbers  
DEVICE PART NUMBERS  
FOR 68 PINS (LCC)  
DEVICE PART NUMBERS  
FOR 64 PINS (DIP)  
TMS370C077AFNA  
TMS370C077AFNL  
TMS370C077AFNT  
TMS370C077ANMA  
TMS370C077ANML  
TMS370C077ANMT  
TMS370C777AFNT  
TMS370C777ANMT  
SE370C777AJNT  
SE370C777AFZT  
System evaluators are for use only in prototype environment, and their  
reliability has not been characterized.  
40  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx7x  
8-BIT MICROCONTROLLER  
SPNS034C – SEPTEMBER 1995 – REVISED FEBRUARY 1997  
new code release form  
Figure 16 shows a sample of the new code release form.  
NEW CODE RELEASE FORM  
TEXAS INSTRUMENTS  
DATE:  
TMS370 MICROCONTROLLER PRODUCTS  
To release a new customer algorithm to TI incorporated into a TMS370 family microcontroller, complete this form and submit with the following information:  
1. A ROM description in object form on Floppy Disk, Modem XFR, or EPROM (Verification file will be returned via same media)  
2. An attached specification if not using TI standard specification as incorporated in TI’s applicable device data book.  
Company Name:  
Street Address:  
Street Address:  
City:  
Contact Mr./Ms.:  
Phone: (  
)
Ext.:  
State  
Zip  
Customer Purchase Order Number:  
Customer Print Number *Yes:  
No:  
*If Yes: Customer must provide ”print” to TI w/NCRF for approval before ROM  
code processing starts.  
#
Customer Part Number:  
Customer Application:  
(Std. spec to be followed)  
TMS370 Device:  
TI Customer ROM Number:  
(provided by Texas Instruments)  
CONTACT OPTIONS FOR THE ’A’ VERSION TMS370 MICROCONTROLLERS  
OSCILLATOR FREQUENCY  
Low Power Modes  
[] Enabled  
[] Disabled  
Watchdog counter  
[] Standard  
[] Hard Enabled  
[] Simple Counter  
Clock Type  
[] Standard (/4)  
[] PLL (/1)  
MIN  
TYP  
MAX  
[] External Drive (CLKIN)  
[] Crystal  
[] Ceramic Resonator  
NOTE:  
Non ’A’ version ROM devices of the TMS370 microcontrollers will have the  
“Low-powermodesEnabled”, “Divide-by-4Clock, andStandardWatchdog  
options. See the TMS370 Family User’s Guide (literature number SPNU127)  
or the TMS370 Family Data Manual (literature number SPNS014B).  
[] Supply Voltage MIN:  
(std range: 4.5V to 5.5V)  
MAX:  
TEMPERATURE RANGE  
PACKAGE TYPE  
[] ’L’:  
[] ’A’:  
[] ’T’:  
0° to 70°C (standard)  
–40° to 85°C  
–40° to 105°C  
[] ’N’ 28-pin PDIP  
[] “FN” 28-pin PLCC  
[] “N” 40-pin PDIP  
[] “FN” 44-pin PLCC  
[] “FN” 68-pin PLCC  
[] “NM” 64-pin PSDIP  
[] “NJ” 40-pin PSDIP (formerly known as N2)  
SYMBOLIZATION  
BUS EXPANSION  
[] TI standard symbolization  
[] YES  
[] NO  
[] TI standard w/customer part number  
[] Customer symbolization  
(per attached spec, subject to approval)  
NON-STANDARD SPECIFICATIONS:  
ALL NON-STANDARDS SPECIFICATIONS MUST BE APPROVED BY THE TI ENGINEERING STAFF: If the customer requires expedited production material  
(i.e., product which must be started in process prior to prototype approval and full production release) and non-standard spec issues are not resolved to the  
satisfaction of both the customer and TI in time for a scheduled shipment, the specification parameters in question will be processed/tested to the standard  
TI spec. Any such devices which are shipped without conformance to a mutually approved spec, will be identified by a ’P’ in the symbolization preceding the  
TI part number.  
RELEASE AUTHORIZATION:  
This document, including any referenced attachments, is and will be the controlling document for all orders placed for this TI custom device. Any changes must  
be in writing and mutually agreed to by both the customer and TI. The prototype cycletime commences when this document is signed off and the verification  
code is approved by the customer.  
1. Customer:  
Date:  
2. TI: Field Sales:  
Marketing:  
Prod. Eng.:  
Proto. Release:  
Figure 16. Sample New Code Release Form  
41  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx7x  
8-BIT MICROCONTROLLER  
SPNS034C – SEPTEMBER 1995 – REVISED FEBRUARY 1997  
Table 19 is a collection of all the peripheral file frames using the ’Cx7x (provided for a quick reference).  
Table 19. Peripheral File Frame Compilation  
PF  
BIT 7  
BIT 6  
BIT 5  
BIT 4  
BIT 3  
BIT 2  
BIT 1  
BIT 0  
REG  
System Configuration Registers  
COLD  
START  
OSC  
POWER  
PF AUTO  
WAIT  
OSC FLT  
FLAG  
MC PIN  
WPO  
MC PIN  
DATA  
µP/µC  
MODE  
P010  
P011  
P012  
SCCR0  
SCCR1  
SCCR2  
AUTOWAIT  
DISABLE  
MEMORY  
DISABLE  
HALT/  
STANDBY  
PWRDWN/  
IDLE  
BUS  
STEST  
CPU  
STEST  
INT1  
NMI  
PRIVILEGE  
DISABLE  
P013  
to  
Reserved  
P016  
INT1  
FLAG  
INT1  
PIN DATA  
INT1  
POLARITY  
INT1  
PRIORITY  
INT1  
ENABLE  
P017  
P018  
P019  
INT1  
INT2  
INT2  
FLAG  
INT2  
PIN DATA  
INT2  
DATA DIR  
INT2  
DATA OUT  
INT2  
POLARITY  
INT2  
PRIORITY  
INT2  
ENABLE  
INT3  
FLAG  
INT3  
PIN DATA  
INT3  
DATA DIR  
INT3  
DATA OUT  
INT3  
POLARITY  
INT3  
PRIORITY  
INT3  
ENABLE  
INT3  
P01A  
P01B  
P01C  
P01D  
P01E  
P01F  
BUSY  
BUSY  
BUSY  
AP  
W1W0  
W0  
EXE  
EXE  
EXE  
DEECTL  
Reserved  
VPPS  
VPPS  
EPCTLM  
EPCTLL  
Reserved  
W0  
Reserved  
Digital Port Control Registers  
Reserved  
P020  
P021  
P022  
P023  
P024  
P025  
P026  
P027  
P028  
P029  
P02A  
P02B  
P02C  
P02D  
P02E  
P02F  
APORT1  
APORT2  
ADATA  
ADIR  
Port A Control Register 2  
Port A Data  
Port A Direction  
Reserved  
BPORT1  
BPORT2  
BDATA  
BDIR  
Port B Control Register 2  
Port B Data  
Port B Direction  
Reserved  
CPORT1  
CPORT2  
CDATA  
CDIR  
Port C Control Register 2  
Port C Data  
Port C Direction  
Port D Control Register 1  
DPORT1  
DPORT2  
DDATA  
DDIR  
Port D Control Register 2  
Port D Data  
Port D Direction  
P030  
to  
Reserved  
P035  
P036  
P037  
Port G Data  
GDATA  
GDIR  
Port G Direction  
To configure pin D3 as SYSCLK, set port D control register 2 = 08h.  
42  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx7x  
8-BIT MICROCONTROLLER  
SPNS034C – SEPTEMBER 1995 – REVISED FEBRUARY 1997  
Table 19. Peripheral File Frame Compilation (Continued)  
PF  
BIT 7  
BIT 6  
BIT 5  
BIT 4  
BIT 3  
BIT 2  
BIT 1  
BIT 0  
REG  
Timer 1 Module Register  
Modes: Capture/Compare and Dual-Compare  
P040 Bit 15  
P041 Bit 7  
T1 Counter MSbyte  
T1 Counter LSbyte  
Bit 8 T1CNTR  
Bit 0  
P042  
Compare Register MSbyte  
Compare Register LSbyte  
Capture/Compare Register MSbyte  
Capture/Compare Register LSbyte  
Watchdog Counter MSbyte  
Watchdog Counter LSbyte  
Watchdog Reset Key  
Bit 8 T1C  
Bit 0  
Bit 15  
P043 Bit 7  
P044 Bit 15  
P045 Bit 7  
P046 Bit 15  
P047 Bit 7  
P048 Bit 15  
Bit 8 T1CC  
Bit 0  
Bit 8 WDCNTR  
Bit 0  
Bit 0 WDRST  
WD  
INPUT  
SELECT2  
WD  
INPUT  
SELECT1  
WD  
INPUT  
SELECT0  
T1  
INPUT  
SELECT2  
T1  
INPUT  
SELECT1  
WD OVRFL  
TAP SEL  
T1 INPUT  
SELECT0  
P049  
P04A  
T1CTL1  
T1CTL2  
WD OVRFL  
WD OVRFL  
INT ENA  
WD OVRFL  
INT FLAG  
T1 OVRFL  
INT ENA  
T1 OVRFL  
INT FLAG  
T1 SW  
RESET  
RST ENA  
Mode: Dual-Compare  
T1EDGE  
INT FLAG  
T1C2  
INT FLAG  
T1C1  
INT FLAG  
T1EDGE  
INT ENA  
T1C2  
INT ENA  
T1C1  
INT ENA  
P04B  
P04C  
T1CTL3  
T1CTL4  
T1  
T1C1  
OUT ENA  
T1C2  
OUT ENA  
T1C1  
RST ENA  
T1CR  
OUT ENA  
T1EDGE  
POLARITY  
T1CR  
RST ENA  
T1EDGE  
DET ENA  
MODE = 0  
Mode: Capture/Compare  
T1EDGE  
T1C1  
INT FLAG  
T1EDGE  
INT ENA  
T1C1  
INT ENA  
P04B  
P04C  
T1CTL3  
T1CTL4  
INT FLAG  
T1  
T1C1  
T1C1  
RST ENA  
T1EDGE  
POLARITY  
T1EDGE  
DET ENA  
MODE = 1  
OUT ENA  
Modes: Capture/Compare and Dual-Compare  
T1EVT  
DATA IN  
T1EVT  
DATA OUT  
T1EVT  
FUNCTION  
T1EVT DATA  
DIR  
P04D  
P04E  
P04F  
T1PC1  
T1PC2  
T1PRI  
T1PWM  
DATA IN  
T1PWM  
DATA OUT  
T1PWM  
FUNCTION  
T1PWM  
DATA DIR  
T1IC/CR  
DATA IN  
T1IC/CR  
DATA OUT  
T1IC/CR  
FUNCTION  
T1IC/CR  
DATA DIR  
T1  
T1 STEST  
PRIORITY  
T2A Module Register  
Modes: Dual-Compare and Dual-Capture  
P060 Bit 15  
P061 Bit 7  
P062 Bit 15  
P063 Bit 7  
P064 Bit 15  
P065 Bit 7  
P066 Bit 15  
P067 Bit 7  
T2A Counter MSbyte  
T2A Counter LSbyte  
Bit 8  
T2ACNTR  
T2AC  
Bit 0  
Bit 8  
Bit 0  
Bit 8  
Bit 0  
Bit 8  
Bit 0  
Compare Register MSbyte  
Compare Register LSbyte  
Capture/Compare Register MSbyte  
Capture/Compare Register LSbyte  
Capture Register 2 MSbyte  
Capture Register 2 LSbyte  
T2ACC  
T2AIC  
Once the WD OVRFL RST ENA bit is set, these bits cannot be changed until a reset; this applies only to the standard WD  
and to simple counter. The WD input select 2 bits are ignored.  
43  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx7x  
8-BIT MICROCONTROLLER  
SPNS034C – SEPTEMBER 1995 – REVISED FEBRUARY 1997  
Table 19. Peripheral File Frame Compilation (Continued)  
PF  
BIT 7  
BIT 6  
BIT 5  
BIT 4  
BIT 3  
BIT 2  
BIT 1  
BIT 0  
REG  
T2A Module Register (Continued)  
T2A  
INPUT  
SELECT1  
T2A OVRFL  
INT ENA  
T2A OVRFL  
INT FLAG  
T2A INPUT  
SELECT0  
T2A SW  
RESET  
P06A  
T2ACTL1  
Mode: Dual-Compare  
T2AEDGE1  
INT FLAG  
T2AC2  
INT FLAG  
T2AC1  
INT FLAG  
T2AEDGE1  
INT ENA  
T2AC2  
INT ENA  
T2AC1  
INT ENA  
P06B  
P06C  
T2ACTL2  
T2ACTL3  
T2A  
MODE = 0  
T2AC1  
OUT ENA  
T2AC2  
OUT ENA  
T2AC1  
RST ENA  
T2AEDGE1  
OUT ENA  
T2AEDGE1  
POLARITY  
T2AEDGE1  
RST ENA  
T2AEDGE1  
DET ENA  
Mode: Dual-Capture  
T2AEDGE1  
INT FLAG  
T2AEDGE2  
INT FLAG  
T2AC1  
INT FLAG  
T2AEDGE1  
INT ENA  
T2AEDGE2  
INT ENA  
T2AC1  
INT ENA  
P06B  
P06C  
T2ACTL2  
T2ACTL3  
T2A  
MODE = 1  
T2AC1  
RST ENA  
T2AEDGE2  
POLARITY  
T2AEDGE1  
POLARITY  
T2AEDGE2  
DET ENA  
T2AEDGE1  
DET ENA  
Modes: Dual-Compare and Dual-Capture  
T2AEVT  
DATA IN  
T2AEVT  
DATA OUT  
T2AEVT  
FUNCTION  
T2AEVT  
DATA DIR  
P06D  
P06E  
P06F  
T2APC1  
T2APC2  
T2APRI  
T2AIC2/PWM T2AIC2/PWM T2AIC2/PWM T2AIC2/PWM T2AIC1/CR  
T2AIC1/CR  
DATA OUT  
T2AIC1/CR  
FUNCTION  
T2AIC1/CR  
DATA DIR  
DATA IN  
DATA OUT  
FUNCTION  
DATA DIR  
DATA IN  
T2A  
PRIORITY  
T2A STEST  
ADC1 Module Control Register  
CONVERT  
START  
SAMPLE  
START  
REF VOLT  
SELECT2  
REF VOLT  
SELECT1  
REF VOLT  
SELECT0  
AD INPUT  
SELECT2  
AD INPUT  
SELECT1  
AD INPUT  
SELECT0  
P070  
ADCTL  
AD INT  
FLAG  
P071  
P072  
AD READY  
AD INT ENA ADSTAT  
ADDATA  
A/D Conversion Data Register  
Reserved  
P073  
to  
P07C  
P07D  
P07E  
Port E Data Input Register  
Port E Input Enable Register  
ADIN  
ADENA  
AD  
PRIORITY  
P07F  
AD STEST  
AD ESPEN  
ADPRI  
44  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx7x  
8-BIT MICROCONTROLLER  
SPNS034C – SEPTEMBER 1995 – REVISED FEBRUARY 1997  
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)  
Supply voltage range V  
, V  
, V  
(see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.6 V to 7 V  
CC1 CC2 CC3  
Input voltage range, All pins except MC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.6 V to 7 V  
MC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.6 V to 14 V  
Input clamp current, I (V < 0 or V > V  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±20 mA  
IK  
I
I
CC1)  
Output clamp current, I  
(V < 0 or V > V  
) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±20 mA  
OK  
O
O
CC1  
§
Continuous output current per buffer, I (V = 0 to V )  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±10 mA  
O
O
CC1  
Maximum I  
current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170 mA  
CC  
Maximum I current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 170 mA  
SS  
Continuous power dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 W  
Operating free-air temperature range, T L version . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0°C to 70°C  
A:  
A version . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 40°C to 85°C  
T version . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 40°C to 105°C  
Storage temperature range, T  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65°C to 150°C  
stg  
Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and  
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not  
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
§
V
= V  
CC  
CC1  
Electrical characteristics are specified with all output buffers loaded with specified I current. Exceeding the specified I current in any buffer  
O
O
can affect the levels on other buffers.  
NOTE 1: Unless otherwise noted, all voltage values are with respect to V  
.
SS1  
recommended operating conditions  
MIN  
4.5  
NOM  
MAX  
5.5  
5.5  
5.5  
5.5  
0.3  
0.3  
0.8  
0.3  
UNIT  
Supply voltage (see Note 1)  
5
V
V
CC1  
RAM data-retention supply voltage (see Note 2)  
Digital I/O supply voltage (see Note 1)  
Analog supply voltage (see Note 1)  
Digital I/O supply ground  
3
V
CC2  
V
CC3  
V
SS2  
V
SS3  
4.5  
5
5
0
0
V
4.5  
– 0.3  
– 0.3  
V
V
V
V
Analog supply ground  
All pins except MC  
MC, normal operation  
V
SS1  
V
IL  
Low-level input voltage  
V
SS1  
All pins except MC, XTAL2/CLKIN, and  
RESET  
2
V
CC  
MC (non-WPO mode)  
XTAL2/CLKIN  
V
0.3  
V
V
+0.3  
V
High-level input voltage  
CC1  
CC1  
V
IH  
0.8 V  
0.7 V  
V
CC1  
CC1  
CC1  
RESET  
V
CC1  
13  
EEPROM write protect override (WPO)  
11.7  
12  
EPROM programming voltage (V  
Microprocessor  
Microcomputer  
L version  
)
13  
13.2  
13.5  
MC (mode control) voltage  
(see Note 3)  
PP  
V
MC  
V
V
CC1  
0.3  
+0.3  
CC1  
0.3  
V
SS1  
0
70  
85  
T
A
Operating free-air temperature  
A version  
– 40  
– 40  
°C  
T version  
105  
NOTES: 1. Unless otherwise noted, all voltage values are with respect to V  
.
SS1  
2. RESET must be activated externally when V  
or SYSCLK is out of the recommended operating range.  
3. The basic microcomputer and microprocessor operating modes are selected by the voltage level applied to the dedicated MC pin  
CC1  
two system clock cycles (t ) before RESET goes inactive (high). The WPO mode can be selected anytime a sufficient voltage is  
c
present on MC.  
45  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx7x  
8-BIT MICROCONTROLLER  
SPNS034C – SEPTEMBER 1995 – REVISED FEBRUARY 1997  
electrical characteristics over recommended operating free-air temperature range (unless  
otherwise noted)  
PARAMETER  
TEST CONDITIONS  
= 1.4 mA  
MIN  
TYP  
MAX  
UNIT  
V
V
Low-level output voltage  
I
I
I
0.4  
V
OL  
OL  
OH  
OH  
= 50 µA  
0.9 V  
CC1  
High-level output voltage  
Input current  
V
OH  
= 2 mA  
2.4  
0 V < V 0.3 V  
10  
50  
I
0.3 V < V < V  
–0.3 V  
CC1  
I
µA  
MC  
V
V
–0.3 V V V  
+0.3 V  
CC1  
10  
CC1  
I
I
I
+ 0.3 V < V 13 V  
650  
50  
CC1  
I
12 V V 13 V  
See Note 4  
mA  
µA  
I
I/O pins  
0 V V V  
± 10  
I
CC1  
I
I
Low-level output current  
High-level output current  
V
OL  
V
OH  
V
OH  
= 0.4 V  
1.4  
– 50  
– 2  
mA  
µA  
OL  
= 0.9 V  
= 2.4 V  
CC1  
OH  
mA  
SYSCLK = 5 MHz  
See Notes 5 and 6  
35  
25  
13  
12  
8
56  
36  
18  
17  
11  
3.5  
8.6  
3
Supply current (operating mode)  
OSC POWER bit = 0 (see Note 7)  
SYSCLK = 3 MHz  
See Notes 5 and 6  
mA  
mA  
SYSCLK = 0.5 MHz  
See Notes 5 and 6  
SYSCLK = 5 MHz  
See Notes 5 and 6  
Supply current (STANDBY mode)  
OSC POWER bit = 0 (see Note 8)  
SYSCLK = 3 MHz  
See Notes 5 and 6  
I
CC  
SYSCLK = 0.5 MHz  
See Notes 5 and 6  
2.5  
6
SYSCLK = 3 MHz  
See Notes 5 and 6  
Supply current (STANDBY mode)  
OSC POWER bit = 1 (see Note 9)  
mA  
SYSCLK = 0.5 MHz  
See Notes 5 and 6  
2
XTAL2/CLKIN < 0.2 V  
See Note 5  
Supply current (HALT mode)  
2
30  
µA  
NOTES: 4. Input current I  
is a maximum of 50 mA only when programming EPROM.  
PP  
5. In single chip mode, ports are configured as inputs or outputs with no load. All inputs 0.2 V or V  
– 0.2V.  
CC1  
6. XTAL2/CLKIN is driven with an external square wave signal with 50% duty cycle and rise and fall times less than 10 ns. Current  
can be higher with a crystal oscillator. At 5 MHz SYSCLK, this extra current = 0.01 mA x (total load capacitance + crystal capacitance  
in pF).  
7. Maximum operating current for TMS370Cx7x = 10 (SYSCLK) + 5.8 mA.  
8. Maximum standby current for TMS370Cx7x = 3 (SYSCLK) + 2 mA. (OSC POWER bit = 0).  
9. Maximum standby current for TMS370Cx7x = 2.24 (SYSCLK) + 1.9 mA. (OSC POWER bit =1, only valid up to 3 MHz SYSCLK).  
46  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx7x  
8-BIT MICROCONTROLLER  
SPNS034C – SEPTEMBER 1995 – REVISED FEBRUARY 1997  
PARAMETER MEASUREMENT INFORMATION  
XTAL2/CLKIN  
XTAL1  
XTAL2/CLKIN  
XTAL1  
C3  
(see Note B)  
C1  
(see Note B)  
C2  
Crystal/Ceramic  
Resonator  
(see Note A)  
External  
Clock Signal  
(see Note B)  
NOTES: A. The crystal/ceramic resonator frequency is four times the reciprocal of the system clock period.  
B. The values of C1 and C2 are typically 15 pF and C3 is typically 50 pF. See the manufacturer’s recommendations for ceramic  
resonators.  
Figure 17. Recommended Crystal/Clock Connections  
Load Voltage  
1.2 kΩ  
V
O
20 pF  
Case 1: V = V  
= 2.4 V; Load Voltage = 0 V  
= 0.4 V; Load Voltage = 2.1 V  
O
OH  
OL  
Case 2: V = V  
O
NOTE A: All measurements are made with the pin loading as shown unless otherwise noted. All measurements are made with XTAL2/CLKIN  
driven by an external square wave signal with a 50% duty cycle and rise and fall times less than 10 ns unless otherwise stated.  
Figure 18. Typical Output Load Circuit (see Note A)  
V
CC2  
V
CC2  
Pin Data  
300 Ω  
30 Ω  
6 kΩ  
Output  
Enable  
I/O  
INT1  
20 Ω  
20 Ω  
GND  
GND  
Figure 19. Typlcal Buffer Circuitry  
47  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx7x  
8-BIT MICROCONTROLLER  
SPNS034C – SEPTEMBER 1995 – REVISED FEBRUARY 1997  
PARAMETER MEASUREMENT INFORMATION  
timing parameter symbology  
Timing parameter symbols have been created in accordance with JEDEC Standard 100. In order to shorten the  
symbols, some of the pin names and other related terminology have been abbreviated as follows:  
A
Address  
Array  
PGM  
R
Program  
Read  
AR  
B
Byte  
SC  
W
SYSCLK  
Write  
CI  
D
XTAL2/CLKIN  
Data  
Lowercase subscripts and their meanings are:  
c
d
f
cycle time (period)  
delay time  
fall time  
r
su  
v
rise time  
setup time  
valid time  
h
hold time  
w
pulse duration (width)  
The following additional letters are used with these meanings:  
H
L
High  
Low  
V
Z
Valid  
High impedance  
All timings are measured between high and low measurement points as indicated in Figure 20 and Figure 21.  
0.8 V  
V (High)  
2 V (High)  
CC  
0.8 V (Low)  
0.8 V (Low)  
Figure 20. XTAL2/CLKIN Measurement Points  
Figure 21. General Measurement Points  
48  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx7x  
8-BIT MICROCONTROLLER  
SPNS034C – SEPTEMBER 1995 – REVISED FEBRUARY 1997  
external clocking requirements for clock divided by 4 (see Figure 22)  
NO.  
1
PARAMETER  
Pulse duration, XTAL2/CLKIN (see Note 10)  
Rise time, XTAL2/CLKIN  
MIN  
MAX  
UNIT  
ns  
t
t
t
t
20  
w(Cl)  
2
30  
30  
100  
20  
5
ns  
r(Cl)  
3
Fall time, XTAL2/CLKIN  
ns  
f(CI)  
4
Delay time, XTAL2/CLKIN rise to SYSCLK fall  
Crystal operating frequency  
ns  
d(CIH-SCL)  
CLKIN  
2
MHz  
MHz  
SYSCLK  
System clock  
0.5  
For V and V , refer to recommended operating conditions.  
IL IH  
SYSCLK = CLKIN/4  
NOTE 10: This pulse can be either a high pulse, which extends from the earliest valid high to the final valid high in an XTAL2/CLKIN cycle, or a  
low pulse, which extends from the earliest valid low to the final valid low in an XTAL2/CLKIN cycle.  
1
XTAL2/CLKIN  
2
3
4
SYSCLK  
Figure 22. External Clock Timing for Divide-by-4  
external clocking requirements for clock divided by 1 (PLL) (see Figure 23)  
NO.  
1
PARAMETER  
Pulse duration, XTAL2/CLKIN (see Note 10)  
Rise time, XTAL2/CLKIN  
MIN  
MAX  
UNIT  
ns  
t
t
t
t
20  
w(Cl)  
2
30  
30  
100  
5
ns  
r(Cl)  
3
Fall time, XTAL2/CLKIN  
ns  
f(CI)  
4
Delay time, XTAL2/CLKIN rise to SYSCLK rise  
Crystal operating frequency  
ns  
d(CIH-SCH)  
CLKIN  
2
2
MHz  
MHz  
§
SYSCLK  
System clock  
5
§
For V and V , refer to recommended operating conditions.  
IL IH  
SYSCLK = CLKIN/1  
NOTE 10: This pulse can be either a high pulse, which extends from the earliest valid high to the final valid high in an XTAL2/CLKIN cycle, or a  
low pulse, which extends from the earliest valid low to the final valid low in an XTAL2/CLKIN cycle.  
1
XTAL2/CLKIN  
2
3
4
SYSCLK  
Figure 23. External Clock Timing for Divide-by-1  
49  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx7x  
8-BIT MICROCONTROLLER  
SPNS034C – SEPTEMBER 1995 – REVISED FEBRUARY 1997  
general-purpose output signal switching time requirements (see Figure 24)  
MIN NOM  
MAX  
UNIT  
ns  
t
t
Rise time  
Fall time  
30  
30  
r
ns  
f
t
r
t
f
Figure 24. Signal Switching Timing  
recommended EEPROM timing requirements for programming  
MIN  
10  
MAX  
UNIT  
ms  
t
t
Pulse duration, programming signal to ensure valid data is stored (byte mode)  
Pulse duration, programming signal to ensure valid data is stored (array mode)  
w(PGM)B  
20  
ms  
w(PGM)AR  
recommended EPROM operating conditions for programming  
MIN NOM  
MAX  
6
UNIT  
V
V
V
Supply voltage  
4.75  
13  
5.5  
13.2  
30  
CC1  
Supply voltage at MC pin  
13.5  
50  
5
V
PP  
I
Supply current at MC pin during programming (V  
= 13 V)  
mA  
PP  
PP  
Divide-by-4  
Divide-by-1  
0.5  
2
SYSCLK  
System clock  
MHz  
5
recommended EPROM timing requirements for programming  
MIN NOM  
0.40 0.50  
MAX  
UNIT  
t
Pulse duration, programming signal (see Note 11)  
3
ms  
w(EPGM)  
NOTE 11: Programming pulse is active when both EXE (EPCTL.0) and V  
(EPCTL.6) are set.  
PPS  
50  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx7x  
8-BIT MICROCONTROLLER  
SPNS034C – SEPTEMBER 1995 – REVISED FEBRUARY 1997  
switching characteristics and timing requirements (see Figure 25)  
NO.  
PARAMETER  
MIN  
200  
200  
MAX  
2000  
500  
UNIT  
Divide-by-4 clock  
Divide-by-1-(PLL)  
5
t
c
Cycle time, SYSCLK (system clock)  
ns  
6
7
t
t
Pulse duration, SYSCLK low  
Pulse duration, SYSCLK high  
0.5t –20  
0.5t  
c
ns  
ns  
w(SCL)  
c
0.5t  
0.5t +20  
c
w(SCH)  
c
t = system-clock cycle time = 1/SYSCLK  
c
7
5
6
SYSCLK  
Figure 25. SYSCLK Timing  
51  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx7x  
8-BIT MICROCONTROLLER  
SPNS034C – SEPTEMBER 1995 – REVISED FEBRUARY 1997  
analog-to-digital converter 1 (ADC1)  
The ADC1 has a separate power bus for its analog circuitry. These pins are referred to as V  
and V  
. The  
CC3  
SS3  
purpose is to enhance ADC1 performance by preventing digital switching noise in the logic circuitry that can  
be present on V and V when coupling into the A/D analog stage. All ADC1 specifications are given with  
SS1  
SS3  
CC1  
respect to V  
unless otherwise noted.  
Resolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-bits (256 values)  
Monotonic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Yes  
Output conversion mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 00h to FFh (00 for V V  
Conversion time (excluding sample time) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164 t  
; FF for V V  
)
I
SS3  
I
ref  
c
recommended operating conditions  
MIN  
NOM  
MAX  
UNIT  
4.5  
5
5.5  
V
V
Analog supply voltage  
Analog ground  
V
CC3  
V
–0.3  
CC1  
V
+0.3  
CC1  
V
–0.3  
SS1  
V
+0.3  
SS1  
V
V
V
SS3  
V
ref  
Non-V  
CC3  
reference  
2.5  
V
V
+ 0.1  
CC3  
CC3  
Analog input for conversion  
V
V
ref  
SS3  
V
ref  
must be stable, within ± 1/2 LSB of the required resolution, during the entire conversion time.  
operating characteristics over recommended ranges of operating conditions  
PARAMETER  
TEST CONDITIONS  
MIN  
MAX  
±1.5  
±0.9  
2
UNIT  
LSB  
LSB  
mA  
µA  
Absolute accuracy  
V
V
= 5.5 V  
= 5.5 V  
V
rerf  
= 5.1 V  
= 5.1 V  
CC3  
‡§  
Differential/integral linearity error  
V
rerf  
CC3  
Converting  
I
Analog supply current  
CC3  
Nonconverting  
5
I
I
Input current, AN0AN7  
Input charge current  
0 V V 5.5 V  
2
µA  
I
I
1
mA  
kΩ  
ref  
SYSCLK 3 MHz  
24  
10  
Z
Source impedance of V  
ref  
ref  
3 MHz < SYSCLK 5 MHz  
kΩ  
§
Absolute resolution = 20 mV. At V = 5 V, this is one LSB. As V decreases, LSB size decreases; therefore, the absolute accuracy and  
differential/integral linearity errors in terms of LSBs increase.  
Excluding quantization error of 1/2 LSB  
ref  
ref  
52  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx7x  
8-BIT MICROCONTROLLER  
SPNS034C – SEPTEMBER 1995 – REVISED FEBRUARY 1997  
analog-to-digital converter 1 (ADC1) (continued)  
The ADC1 module allows complete freedom in design of the sources that supply the analog inputs. The period  
of the sample time is user-defined so that the high impedance can be accommodated without penalty to the  
low-impedance sources. The sample period begins when the SAMPLE START bit of the ADC1 control register  
(ADCTL.6) is set to 1. The end of the signal sample period occurs when the conversion bit (CONVERT START,  
ADCTL.7) is set to 1. After a hold time, the converter resets the SAMPLE START and CONVERT START bits,  
signaling that a conversion has started and that the analog signal can be removed.  
analog timing requirements (see Figure 26)  
MIN  
MAX  
UNIT  
ns  
t
t
t
Setup time, analog to sample command  
0
su(S)  
h(AN)  
w(S)  
Hold time, analog input from start of conversion  
Pulse duration, sample time per kilohm of source impedance  
18t  
ns  
c
1
µs/kΩ  
The value given is valid for a signal with a source impedance > 1 k. If the source impedance is < 1 k, use a minimum sampling time of 1µs.  
Analog Stable  
Analog In  
t
su(S)  
Sample Start  
Convert Start  
t
h(AN)  
t
w(S)  
Figure 26. Analog Timing  
53  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx7x  
8-BIT MICROCONTROLLER  
SPNS034C – SEPTEMBER 1995 – REVISED FEBRUARY 1997  
Table 20 is designed to aid the user in referencing a device part number to a mechanical drawing. The table  
shows a cross-reference of the device part number to the TMS370 generic package name and the associated  
mechanical drawing by drawing number and name.  
Table 20. TMS370Cx7x Family Package Type and Mechanical Cross-Reference  
PKG TYPE  
(mil pin spacing)  
PKG TYPE NO. AND  
MECHANICAL NAME  
TMS370 GENERIC NAME  
DEVICE PART NUMBERS  
TMS370C077AFNA  
TMS370C077AFNL  
TMS370C077AFNT  
TMS370C777AFNT  
FN – 68 pin  
(50-mil pin spacing)  
PLASTIC LEADED CHIP CARRIER  
(PLCC)  
FN(S-PQCC-J**) PLASTIC J-LEADED  
CHIP CARRIER  
FZ – 68 pin  
(50-mil pin spacing)  
CERAMIC LEADED CHIP CARRIER  
(CLCC)  
FZ(S-CQCC-J**) J-LEADED CERAMIC  
CHIP CARRIER  
SE370C777AFZT  
SE370C777AJNT  
JN – 64 pin  
(70-mil pin spacing)  
CERAMIC SHRINK DUAL-IN-LINE  
PACKAGE (CSDIP)  
JN(R-CDIP-T64) CERAMIC DUAL-IN-LINE  
PACKAGE  
TMS370C077ANMA  
TMS370C077ANML  
TMS370C077ANMT  
TMS370C777ANMT  
NM – 64 pin  
(70-mil pin spacing)  
PLASTIC SHRINK DUAL-IN-LINE  
PACKAGE (PSDIP)  
NM(R-PDIP-T64) PLASTIC SHRINK  
DUAL-IN-LINE PACKAGE  
54  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx7x  
8-BIT MICROCONTROLLER  
SPNS034C – SEPTEMBER 1995 – REVISED FEBRUARY 1997  
MECHANICAL DATA  
FN (S-PQCC-J**)  
PLASTIC J-LEADED CHIP CARRIER  
20 PIN SHOWN  
Seating Plane  
0.004 (0,10)  
0.180 (4,57) MAX  
0.120 (3,05)  
D
0.090 (2,29)  
D1  
0.020 (0,51) MIN  
3
1
19  
0.032 (0,81)  
0.026 (0,66)  
4
18  
D2/E2  
D2/E2  
E
E1  
8
14  
0.021 (0,53)  
0.013 (0,33)  
0.007 (0,18)  
0.050 (1,27)  
9
13  
M
0.008 (0,20) NOM  
D/E  
D1/E1  
D2/E2  
NO. OF  
PINS  
**  
MIN  
0.385 (9,78)  
MAX  
MIN  
MAX  
MIN  
MAX  
0.395 (10,03)  
0.350 (8,89)  
0.356 (9,04)  
0.141 (3,58)  
0.191 (4,85)  
0.291 (7,39)  
0.341 (8,66)  
0.169 (4,29)  
0.219 (5,56)  
0.319 (8,10)  
0.369 (9,37)  
20  
28  
44  
52  
68  
84  
0.485 (12,32) 0.495 (12,57) 0.450 (11,43) 0.456 (11,58)  
0.685 (17,40) 0.695 (17,65) 0.650 (16,51) 0.656 (16,66)  
0.785 (19,94) 0.795 (20,19) 0.750 (19,05) 0.756 (19,20)  
0.985 (25,02) 0.995 (25,27) 0.950 (24,13) 0.958 (24,33) 0.441 (11,20) 0.469 (11,91)  
1.185 (30,10) 1.195 (30,35) 1.150 (29,21) 1.158 (29,41) 0.541 (13,74) 0.569 (14,45)  
4040005/B 03/95  
NOTES: A. All linear dimensions are in inches (millimeters).  
B. This drawing is subject to change without notice.  
C. Falls within JEDEC MS-018  
55  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx7x  
8-BIT MICROCONTROLLER  
SPNS034C – SEPTEMBER 1995 – REVISED FEBRUARY 1997  
MECHANICAL DATA  
FZ (S-CQCC-J**)  
J-LEADED CERAMIC CHIP CARRIER  
28 LEAD SHOWN  
0.040 (1,02)  
45°  
Seating Plane  
0.180 (4,57)  
0.155 (3,94)  
0.140 (3,55)  
A
B
1
0.120 (3,05)  
26  
4
25  
5
0.050 (1,27)  
C
(at Seating  
Plane)  
A
B
0.032 (0,81)  
0.026 (0,66)  
0.020 (0,51)  
0.014 (0,36)  
19  
11  
18  
12  
0.025 (0,64) R TYP  
0.040 (1,02) MIN  
0.120 (3,05)  
0.090 (2,29)  
A
B
C
JEDEC  
NO. OF  
PINS**  
OUTLINE  
MIN  
MAX  
MIN  
MAX  
MIN  
MAX  
0.485  
0.495  
0.430  
0.455  
0.410  
0.430  
MO-087AA  
MO-087AB  
MO-087AC  
MO-087AD  
28  
44  
52  
68  
(12,32)  
(12,57)  
(10,92)  
(11,56)  
(10,41)  
(10,92)  
0.685  
0.695  
0.630  
0.655  
0.610  
0.630  
(17,40)  
(17,65)  
(16,00)  
(16,64)  
(15,49)  
(16,00)  
0.785  
0.795  
0.730  
0.765  
0.680  
0.740  
(19,94)  
(20,19)  
(18,54)  
(19,43)  
(17,28)  
(18,79)  
0.985  
0.995  
0.930  
0.955  
0.910  
0.930  
(25,02)  
(25,27)  
(23,62)  
(24,26)  
(23,11)  
(23,62)  
4040219/B 03/95  
NOTES: A. All linear dimensions are in inches (millimeters).  
B. This drawing is subject to change without notice.  
C. This package can be hermetically sealed with a ceramic lid using glass frit.  
56  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx7x  
8-BIT MICROCONTROLLER  
SPNS034C – SEPTEMBER 1995 – REVISED FEBRUARY 1997  
MECHANICAL DATA  
JN (R-CDIP-T64)  
CERAMIC DUAL-IN-LINE PACKAGE  
2.424 (61,57)  
2.376 (60,35)  
64  
33  
0.750 (19,05)  
0.730 (18,54)  
1
32  
0.040 (1,02) TYP  
0.094 (2,39)  
0.078 (1,98)  
0.760 (19,30)  
0.740 (18,80)  
0.060 (1,52)  
0.040 (1,02)  
Seating Plane  
0.088 (2,24)  
0.072 (1,83)  
0.175 (4,45) TYP  
0.020 (0,51)  
0.016 (0,41)  
0.012 (0,31)  
0.009 (0,23)  
0.070 (1,78)  
See Note C  
2.178 (55,32)  
2.162 (54,91)  
4040224/A 09/95  
NOTES: A. All linear dimensions are in inches (millimeters).  
B. This drawing is subject to change without notice.  
C. Each pin centerline located within 0.010 (0,26) of it true longitudinal position.  
57  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
TMS370Cx7x  
8-BIT MICROCONTROLLER  
SPNS034C – SEPTEMBER 1995 – REVISED FEBRUARY 1997  
MECHANICAL DATA  
NM (R-PDIP-T64)  
PLASTIC SHRINK DUAL-IN-LINE PACKAGE  
2.280 (57,91) MAX  
64  
33  
0.680 (17,27)  
0.670 (17,02)  
1
32  
0.048 (1,216)  
0.032 (0,816)  
0.222 (5,64) MAX  
0.760 (19,30)  
0.740 (18,80)  
0.020 (0,51) MIN  
Seating Plane  
0°15°  
0.010 (0,25) NOM  
4040056/B 05/95  
0.070 (1,78)  
0.010 (0,25)  
0.125 (3,18) MIN  
0.022 (0,56)  
0.014 (0,36)  
M
NOTES: A. All linear dimensions are in inches (millimeters).  
B. This drawing is subject to change without notice.  
58  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
IMPORTANT NOTICE  
Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue  
any product or service without notice, and advise customers to obtain the latest version of relevant information  
to verify, before placing orders, that information being relied on is current and complete. All products are sold  
subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those  
pertaining to warranty, patent infringement, and limitation of liability.  
TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in  
accordance with TI’s standard warranty. Testing and other quality control techniques are utilized to the extent  
TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily  
performed, except those mandated by government requirements.  
CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF  
DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE (“CRITICAL  
APPLICATIONS”). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR  
WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER  
CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO  
BE FULLY AT THE CUSTOMER’S RISK.  
In order to minimize risks associated with the customer’s applications, adequate design and operating  
safeguards must be provided by the customer to minimize inherent or procedural hazards.  
TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent  
that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other  
intellectual property right of TI covering or relating to any combination, machine, or process in which such  
semiconductor products or services might be or are used. TI’s publication of information regarding any third  
party’s products or services does not constitute TI’s approval, warranty or endorsement thereof.  
Copyright 1998, Texas Instruments Incorporated  

相关型号:

SE370C777AJNA

8-BIT, UVPROM, MICROCONTROLLER, CDIP64
TI

SE370C777AJNL

8-BIT, UVPROM, MICROCONTROLLER, CDIP64
TI

SE370C777AJNT

8-BIT, UVPROM, 5MHz, MICROCONTROLLER, CDIP64, WINDOWED, CERAMIC, DIP-64
TI

SE370C777AYYZ

TMS370 MICROCONTROLLER FAMILY DATA BOOK
TI

SE370C792

8-BIT MICROCONTROLLER
TI

SE370C792YYZ

TMS370 MICROCONTROLLER FAMILY DATA BOOK
TI

SE38

64-Pin Flash-Based, 8-Bit CMOS Microcontrollers with LCD Driver and nanoWatt XLP Technology
MICROCHIP

SE3806

1.25MHz, 600mA Synchronous Step-Down Regulator
SEAWARD

SE39

64-Pin Flash-Based, 8-Bit CMOS Microcontrollers with LCD Driver and nanoWatt XLP Technology
MICROCHIP

SE3900

Low Power PWM Controller for OFF-LINE Battery Charger
SEAWARD

SE3901

Low Power PWM Controller for OFF-LINE Battery Charger
SEAWARD

SE3990-44.736

Clock Oscillator 8 Pin Dip, 5V, HCMOS/TTL
CRYSTEKMICROW