SE555C [TI]

PRECISION TIMERS; 精密定时器
SE555C
型号: SE555C
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

PRECISION TIMERS
精密定时器

文件: 总15页 (文件大小:254K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
NE555, NE555Y, SA555, SE555, SE555C  
PRECISION TIMERS  
SLFS022 – SEPTEMBER 1973 – REVISED FEBRUARY 1992  
Timing From Microseconds to Hours  
Astable or Monostable Operation  
Adjustable Duty Cycle  
D, JG, OR P PACKAGE  
(TOP VIEW)  
GND  
TRIG  
OUT  
V
CC  
1
2
3
4
8
7
6
5
TTL-Compatible Output Can Sink or  
Source up to 200 mA  
DISCH  
THRES  
CONT  
RESET  
Functionally Interchangeable With the  
Signetics NE555, SA555, SE555, SE555C;  
Have Same Pinout  
FK PACKAGE  
(TOP VIEW)  
SE555C FROM TI IS NOT RECOMMENDED  
FOR NEW DESIGNS  
3
2
1
20 19  
18  
description  
NC  
NC  
4
5
6
7
8
DISCH  
NC  
TRIG  
NC  
17  
16  
15  
14  
These devices are precision monolithic timing  
circuitscapableofproducingaccuratetimedelays  
or oscillation. In the time-delay or monostable  
mode of operation, the timed interval is controlled  
by a single external resistor and capacitor  
network. In the astable mode of operation, the  
frequency and duty cycle may be independently  
controlled with two external resistors and a single  
external capacitor.  
THRES  
NC  
OUT  
NC  
9 10 11 12 13  
NC–No internal connection  
The threshold and trigger levels are normally two-thirds and one-third, respectively, of V . These levels can  
CC  
be altered by use of the control voltage terminal. When the trigger input falls below the trigger level, the flip-flop  
is set and the output goes high. If the trigger input is above the trigger level and the threshold input is above  
the threshold level, the flip-flop is reset and the output is low. RESET can override all other inputs and can be  
used to initiate a new timing cycle. When RESET goes low, the flip-flop is reset and the output goes low.  
Whenever the output is low, a low-impedance path is provided between DISCH and ground.  
The output circuit is capable of sinking or sourcing current up to 200 mA. Operation is specified for supplies of  
5 V to 15 V. With a 5-V supply, output levels are compatible with TTL inputs.  
The NE555 is characterized for operation from 0°C to 70°C. The SA555 is characterized for operation from  
40°C to 85°C. The SE555 and SE555C are characterized for operation over the full military range of 55°C  
to 125°C.  
AVAILABLE OPTIONS  
PACKAGE  
CHIP FORM  
T
V
V
max  
SMALL OUTLINE  
(D)  
CHIP CARRIER  
(FK)  
CERAMIC DIP  
(J)  
PLASTIC DIP  
(P)  
A
THRES  
= 15 V  
(Y)  
CC  
11.2 V  
0°C to 70°C  
NE555D  
SA555D  
NE555P  
SA555P  
40°C to 85°C  
11.2 V  
NE555Y  
10.6 V  
11.2 V  
SE555D  
SE555CD  
SE555FK  
SE555CFK  
SE555JG  
SE555CJG  
SE555P  
SE555CP  
55°C to 125°C  
The D package is available taped and reeled. Add the suffix R to the device type (e.g., NE555DR).  
Copyright 1992, Texas Instruments Incorporated  
PRODUCTION DATA information is current as of publication date.  
Products conform to specifications per the terms of Texas Instruments  
standard warranty. Production processing does not necessarily include  
testing of all parameters.  
1
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
NE555, NE555Y, SA555, SE555, SE555C  
PRECISION TIMERS  
SLFS022 – SEPTEMBER 1973 – REVISED FEBRUARY 1992  
FUNCTION TABLE  
RESET  
Low  
TRIGGER VOLTAGE  
THRESHOLD VOLTAGE  
Irrelevant  
OUTPUT  
Low  
DISCHARGE SWITCH  
Irrelevant  
On  
Off  
On  
High  
< 1/3 V  
> 1/3 V  
> 1/3 V  
Irrelevant  
High  
DD  
DD  
DD  
High  
> 2/3 V  
Low  
DD  
DD  
High  
< 2/3 V  
As previously established  
Voltage levels shown are nominal.  
functional block diagram  
V
8
RESET  
4
CC  
CONT  
5
R
R1  
R
6
THRES  
3
1
OUT  
S
R
R
2
1
TRIG  
7
DISCH  
GND  
RESET can override TRIG, which can override THRES.  
Pin numbers shown are for the D, JG, and P packages only.  
2
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
NE555, NE555Y, SA555, SE555, SE555C  
PRECISION TIMERS  
SLFS022 – SEPTEMBER 1973 – REVISED FEBRUARY 1992  
chip information  
These chips, properly assembled, display characteristics similar to the NE555 (see electrical table for NE555Y).  
Thermal compression or ultrasonic bonding may be used on the doped aluminum bonding pads. Chips may be  
mounted with conductive epoxy or a gold-silicon preform.  
CONT  
(5)  
RESET  
(4)  
BONDING PAD ASSIGNMENTS  
V
CC  
(8)  
R
R
(6)  
R1  
R
THRES  
TRIG  
(3)  
(2)  
1
OUT  
(3)  
S
(4)  
(2)  
R
(7)  
DISCH  
41  
(1)  
GND  
(1)  
(5)  
(6)  
(8)  
CHIP THICKNESS: 15 TYPICAL  
BONDING PADS: 4 × 4 MINIMUM  
T
J
max = 150° C  
(7)  
TOLERANCES ARE ± 10%  
ALL DIMENSIONS ARE IN MILS  
42  
PIN (1) INTERNALLY CONNECTED  
TO BACKSIDE OF CHIP  
3
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
NE555, NE555Y, SA555, SE555, SE555C  
PRECISION TIMERS  
SLFS022 – SEPTEMBER 1973 – REVISED FEBRUARY 1992  
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)  
Supply voltage, V  
(See Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 V  
CC  
Input voltage (CONT, RESET, THRES, and TRIG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V  
CC  
Output current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±225 mA  
Continuous total dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Dissipation Rating Table  
Operating free-air temperature range: NE555 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0°C to 70°C  
SA555 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40°C to 85°C  
SE555, SE555C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55°C to 125°C  
Storage temperature range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65°C to 150°C  
Case temperature for 60 seconds: FK package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260°C  
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds: D or P package . . . . . . . . . . . . . . . . . 260°C  
Lead temperature 1,6 mm (1/16 inch) from case for 60 seconds: JG package . . . . . . . . . . . . . . . . . . . . 300°C  
NOTE 1: All voltage values are with respect to network ground terminal.  
DISSIPATION RATING TABLE  
T
25°C  
DERATING FACTOR  
T
= 70°C  
T
= 85°C  
T = 125°C  
A
POWER RATING  
A
A
A
PACKAGE  
POWER RATING  
ABOVE T = 25°C  
POWER RATING  
POWER RATING  
A
D
725 mW  
5.8 mW/°C  
11.0 mW/°C  
8.4 mW/°C  
6.6 mW/°C  
8.0 mW/°C  
464 mW  
377 mW  
N/A  
FK  
1375 mW  
1050 mW  
825 mW  
880 mW  
715 mW  
275 mW  
210 mW  
N/A  
JG (SE555, SE555C)  
JG (SA555, NE555C)  
P
672 mW  
546 mW  
528 mW  
429 mW  
1000 mW  
640 mW  
520 mW  
N/A  
recommended operating conditions  
NE555  
SA555  
SE555  
SE555C  
UNIT  
MIN  
MAX  
MIN  
MAX  
MIN  
MAX  
MIN  
MAX  
Supply voltage, V  
CC  
4.5  
16  
4.5  
16  
4.5  
18  
4.5  
16  
V
V
Input voltage (CONT, RESET, THRES, and TRIG)  
Output current  
V
V
V
V
CC  
CC  
CC  
CC  
±200  
±200  
±200  
±200  
mA  
°C  
Operating free-air temperature, T  
0
70  
40  
85  
55  
125  
55  
125  
A
4
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
NE555, NE555Y, SA555, SE555, SE555C  
PRECISION TIMERS  
SLFS022 – SEPTEMBER 1973 – REVISED FEBRUARY 1992  
electrical characteristics, V  
= 5 V to 15 V, T = 25°C (unless otherwise noted)  
CC  
A
NE555, SA555,  
SE555C  
SE555  
PARAMETER  
TEST CONDITIONS  
UNIT  
MIN  
9.4  
TYP  
10  
MAX  
10.6  
4
MIN  
TYP  
10  
MAX  
V
V
= 15 V  
8.8  
2.4  
11.2  
4.2  
250  
5.6  
2.2  
2
CC  
THRES voltage level  
THRES current (see Note 2)  
TRIG voltage level  
V
nA  
V
= 5 V  
2.7  
3.3  
30  
3.3  
30  
CC  
250  
5.2  
1.9  
0.9  
1
V
V
= 15 V  
= 5 V  
4.8  
5
4.5  
1.1  
5
CC  
1.45  
1.67  
0.5  
0.7  
0.1  
0.4  
20  
1.67  
0.5  
0.7  
0.1  
0.4  
20  
CC  
TRIG current  
TRIG at 0 V  
µA  
RESET voltage level  
0.3  
0.3  
1
V
RESET at V  
0.4  
–1  
0.4  
1.5  
100  
11  
CC  
RESET current  
mA  
nA  
V
RESET at 0 V  
DISCH switch off-state current  
CONT voltage (open circuit)  
100  
10.4  
3.8  
0.15  
0.5  
2.2  
V
V
= 15 V  
= 5 V  
9.6  
2.9  
10  
9
10  
CC  
3.3  
0.1  
0.4  
2
2.6  
3.3  
0.1  
0.4  
2
4
CC  
I
I
I
I
I
I
I
I
I
= 10 mA  
0.25  
0.75  
2.5  
OL  
OL  
OL  
OL  
OL  
OL  
OH  
OH  
OH  
= 50 mA  
V
= 15 V  
= 5 V  
CC  
CC  
= 100 mA  
= 200 mA  
= 5 mA  
Low-level output voltage  
V
2.5  
0.1  
0.15  
13.3  
12.5  
3.3  
10  
2.5  
0.1  
0.15  
13.3  
12.5  
3.3  
10  
0.2  
0.35  
0.4  
V
= 8 mA  
0.25  
= 100 mA  
= 200 mA  
= 100 mA  
13  
3
12.75  
2.75  
V
V
= 15 V  
= 5 V  
CC  
High-level output voltage  
Supply current  
V
CC  
V
V
V
V
= 15 V  
= 5 V  
12  
5
15  
6
CC  
CC  
CC  
CC  
Output low,  
No load  
3
3
mA  
= 15 V  
= 5 V  
9
10  
4
9
13  
5
Output high, No load  
2
2
NOTE 2: This parameter influences the maximum value of the timing resistors R and R in the circuit of Figure 12. For example, when  
A
B
V
CC  
= 5 V, the maximum value is R = R + R 3.4 M, and for V  
= 15 V, the maximum value is 10 MΩ.  
A
B
CC  
operating characteristics, V  
= 5 V and 15 V  
CC  
NE555, SA555,  
SE555  
TYP  
TEST  
CONDITIONS  
SE555C  
TYP  
1%  
PARAMETER  
UNIT  
MIN  
MAX  
MIN  
MAX  
Each timer, monostable§  
Each timer, astable¶  
0.5% 1.5%  
1.5%  
3%  
Initial error of timing interval‡  
T
= 25°C  
A
2.25%  
50  
Each timer, monostable§  
Each timer, astable¶  
30  
90  
100  
Temperature coefficient  
of timing interval  
T
= MIN to MAX  
ppm/°C  
%/V  
A
150  
Each timer, monostable§  
Each timer, astable¶  
0.05  
0.15  
100  
100  
0.2  
0.1  
0.5  
Supply voltage sensitivity  
of timing interval  
T
= 25°C  
A
0.3  
Output pulse rise time  
Output pulse fall time  
200  
200  
100  
300  
300  
C
T
= 15 pF,  
= 25°C  
L
ns  
100  
A
For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.  
Timing interval error is defined as the difference between the measured value and the average value of a random sample from each process  
run.  
§
Values specified are for a device in a monostable circuit similar to Figure 9, with component values as follow: R = 2 kto 100 k, C = 0.1 µF.  
A
Values specified are for a device in an astable circuit similar to Figure 12, with component values as follow: R = 1 kto 100 k, C = 0.1 µF.  
A
5
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
NE555, NE555Y, SA555, SE555, SE555C  
PRECISION TIMERS  
SLFS022 – SEPTEMBER 1973 – REVISED FEBRUARY 1992  
electrical characteristics, V  
= 5 V to 15 V, T = 25°C (unless otherwise noted)  
A
CC  
PARAMETER  
TEST CONDITIONS  
= 15 V  
MIN  
8.8  
TYP  
10  
MAX  
11.2  
4.2  
250  
5.6  
2.2  
2
UNIT  
V
V
V
CC  
THRES voltage level  
THRES current (see Note 2)  
TRIG voltage level  
= 5 V  
2.4  
3.3  
30  
CC  
nA  
V
V
V
= 15 V  
= 5 V  
4.5  
1.1  
5
CC  
1.67  
0.5  
0.7  
0.1  
0.4  
20  
CC  
TRIG current  
TRIG at 0 V  
µA  
RESET voltage level  
0.3  
1
V
RESET at V  
0.4  
1.5  
100  
11  
CC  
RESET current  
mA  
nA  
V
RESET at 0 V  
DISCH switch off-state current  
CONT voltage (open circuit)  
V
V
= 15 V  
= 5 V  
9
10  
CC  
2.6  
3.3  
0.1  
0.4  
2
4
CC  
I
I
I
I
I
I
I
I
I
= 10 mA  
= 50 mA  
= 100 mA  
= 200 mA  
= 5 mA  
0.25  
0.75  
2.5  
OL  
OL  
OL  
OL  
OL  
OL  
OH  
OH  
OH  
V
= 15 V  
= 5 V  
CC  
CC  
Low-level output voltage  
V
2.5  
0.1  
0.15  
13.3  
12.5  
3.3  
10  
0.35  
0.4  
V
= 8 mA  
= 100 mA 12.75  
= 200 mA  
V
V
= 15 V  
= 5 V  
CC  
High-level output voltage  
Supply current  
V
= 100 mA  
= 15 V  
= 5 V  
2.75  
CC  
V
V
V
V
15  
6
CC  
CC  
CC  
CC  
Output low, No load  
Output high, No load  
3
mA  
= 15 V  
= 5 V  
9
13  
5
2
NOTE 2: This parameter influences the maximum value of the timing resistors R and R in the circuit of Figure 12. For example, when  
A
B
V
CC  
= 5 V, the maximum value is R = R + R 3.4 M, and for V  
= 15 V, the maximum value is 10 MΩ  
A
B
CC  
operating characteristics, V  
= 5 V and 15 V, T = 25°C (unless otherwise noted)  
CC  
A
TEST  
CONDITIONS  
PARAMETER  
MIN  
TYP  
MAX  
UNIT  
Each timer, monostable  
1%  
2.25%  
0.1  
3%  
Initial error of timing interval  
§
Each timer, astable  
Each timer, monostable  
0.5  
Supply voltage sensitivity of timing interval  
%/V  
ns  
§
Each timer, astable  
0.3  
Output pulse rise time  
Output pulse fall time  
100  
300  
300  
C
= 15 pF  
L
100  
Timing interval error is defined as the difference between the measured value and the average value of a random sample from each process  
run.  
§
Values specified are for a device in a monostable circuit similar to Figure 9, with component values as follow: R = 2 kto 100 k, C = 0.1 µF.  
A
Values specified are for a device in an astable circuit similar to Figure 12, with component values as follow: R = 1 kto 100 k, C = 0.1 µF.  
A
6
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
NE555, NE555Y, SA555, SE555, SE555C  
PRECISION TIMERS  
SLFS022 – SEPTEMBER 1973 – REVISED FEBRUARY 1992  
TYPICAL CHARACTERISTICS  
LOW-LEVEL OUTPUT VOLTAGE  
vs  
LOW-LEVEL OUTPUT VOLTAGE  
vs  
LOW-LEVEL OUTPUT CURRENT  
LOW-LEVEL OUTPUT CURRENT  
10  
7
10  
7
V
CC  
= 10 V  
V
CC  
= 5 V  
4
2
4
2
T
A
= – 55°C  
T
A
= 25°C  
1
0.7  
1
0.7  
T = – 55°C  
A
T
A
= 25°C  
0.4  
0.2  
0.4  
0.2  
T
A
= 125°C  
T
A
= 125°C  
0.1  
0.1  
0.07  
0.07  
0.04  
0.04  
0.02  
0.01  
0.02  
0.01  
1
2
4
7
10  
20  
40  
70 100  
1
2
4
7
10  
20  
40  
70 100  
I
– Low-Level Output Current – mA  
I
– Low-Level Output Current – mA  
OL  
OL  
Figure 1  
Figure 2  
DROP BETWEEN SUPPLY VOLTAGE AND OUTPUT  
LOW-LEVEL OUTPUT VOLTAGE  
vs  
LOW-LEVEL OUTPUT CURRENT  
vs  
HIGH-LEVEL OUTPUT CURRENT  
2.0  
10  
7
T
= – 55°C  
A
V
CC  
= 15 V  
1.8  
1.6  
4
2
T
A
= – 55°C  
T
A
= 25°C  
1.4  
1.2  
1
1
0.7  
T
= 125°C  
A
0.4  
0.2  
T
= 25°C  
A
0.8  
0.6  
0.4  
T
= 125°C  
A
0.1  
0.07  
0.04  
0.02  
0.01  
0.2  
0
V
= 5 V to 15 V  
CC  
1
2
I
4
7
10  
20  
40  
70 100  
1
2
4
7
10  
20  
40  
70 100  
– High-Level Output Current – mA  
I
– Low-Level Output Current – mA  
OH  
OL  
Figure 3  
Figure 4  
Data for temperatures below 0°C and above 70°C are applicable for SE555 circuits only.  
7
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
NE555, NE555Y, SA555, SE555, SE555C  
PRECISION TIMERS  
SLFS022 – SEPTEMBER 1973 – REVISED FEBRUARY 1992  
TYPICAL CHARACTERISTICS  
NORMALIZED OUTPUT PULSE DURATION  
(MONOSTABLE OPERATION)  
vs  
SUPPLY CURRENT  
vs  
SUPPLY VOLTAGE  
SUPPLY VOLTAGE  
10  
1.015  
1.010  
1.005  
1
Output Low,  
No Load  
9
8
T
A
= 25°C  
7
6
5
4
3
T
= –55°C  
A
T
A
= 125°C  
0.995  
0.990  
0.985  
2
1
0
5
6
7
8
9
10 11 12 13 14 15  
0
5
10  
15  
20  
V
CC  
– Supply Voltage – V  
V
CC  
– Supply Voltage – V  
Figure 5  
Figure 6  
NORMALIZED OUTPUT PULSE DURATION  
(MONOSTABLE OPERATION)  
vs  
PROPAGATION DELAY TIME  
vs  
LOWEST VOLTAGE LEVEL  
OF TRIGGER PULSE  
FREE-AIR TEMPERATURE  
1.015  
1.010  
1.005  
1
300  
250  
200  
150  
100  
50  
V
CC  
= 10 V  
T
= –55°C  
A
T
A
= 0°C  
0.995  
0.990  
0.985  
T
= 25°C  
A
T
A
= 70°C  
T
A
= 125°C  
0
–75 –50 –25  
0
25  
50  
75  
100 125  
0
0.1 x V  
0.2 x V  
CC  
0.3 x V  
CC  
0.4 x V  
CC  
CC  
T
A
– Free-Air Temperature – °C  
Lowest Voltage Level of Trigger Pulse  
Figure 7  
Figure 8  
8
Data for temperatures below 0°C and above 70°C are applicable for SE555 circuits only.  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
NE555, NE555Y, SA555, SE555, SE555C  
PRECISION TIMERS  
SLFS022 – SEPTEMBER 1973 – REVISED FEBRUARY 1992  
APPLICATION INFORMATION  
monostable operation  
For monostable operation, any of these timers may be connected as shown in Figure 9. If the output is low,  
application of a negative-going pulse to TRIG sets the flip-flop (Q goes low), drives the output high, and turns  
off Q1. Capacitor C is then charged through R until the voltage across the capacitor reaches the threshold  
A
voltage of THRES input. If TRIG has returned to a high level, the output of the threshold comparator will reset  
the flip-flop (Q goes high), drive the output low, and discharge C through Q1.  
R
C
R
= 9.1 kΩ  
= 0.01 µF  
= 1 kΩ  
A
L
L
V
See Figure 9  
CC  
(5 V to 15 V)  
Input Voltage  
5
8
R
A
CONT  
V
CC  
4
7
RESET  
R
L
DISCH  
3
OUT  
Output  
Output Voltage  
6
2
THRES  
TRIG  
Input  
GND  
1
Capacitor Voltage  
Time – 0.1 ms/div  
Pin numbers shown are for the D, JG, and P packages.  
Figure 9. Circuit for Monostable Operation  
Figure 10. Typical Monostable Waveforms  
10  
Monostable operation is initiated when TRIG  
voltage falls below the trigger threshold. Once  
initiated, the sequence ends only if TRIG is high  
at the end of the timing interval. Because of the  
threshold level and saturation voltage of Q1,  
the output pulse duration is approximately  
R
A
= 10 MΩ  
A
1
R
= 1 MΩ  
–1  
10  
t
= 1.1R C. Figure 11 is a plot of the time  
w
A
constant for various values of R and C. The  
A
threshold levels and charge rates are both directly  
–2  
10  
proportionaltothesupplyvoltage,V  
Thetiming  
CC.  
interval is therefore independent of the supply  
voltage, so long as the supply voltage is constant  
during the time interval.  
–3  
–4  
–5  
10  
10  
10  
R
= 100 kΩ  
A
R
= 10 kΩ  
A
Applying a negative-going trigger pulse simulta-  
neously to RESET and TRIG during the timing  
interval discharges C and re-initiates the cycle,  
commencing on the positive edge of the reset  
pulse. The output is held low as long as the reset  
pulse is low. To prevent false triggering, when  
R
= 1 kΩ  
A
0.001  
0.01  
0.1  
1
10  
100  
C – Capacitance – µF  
RESETisnotused,itshouldbeconnectedtoV  
.
CC  
Figure 11. Output Pulse Duration vs Capacitance  
9
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
NE555, NE555Y, SA555, SE555, SE555C  
PRECISION TIMERS  
SLFS022 – SEPTEMBER 1973 – REVISED FEBRUARY 1992  
APPLICATION INFORMATION  
astable operation  
As shown in Figure 12, adding a second resistor, R to the circuit of Figure 9 and connecting the trigger input  
B,  
to the threshold input causes the timer to self-trigger and run as a multivibrator. The capacitor C will charge  
through R and R and then discharge through R only. The duty cycle may be controlled, therefore, by the  
A
B
B
values of R and R  
A
B.  
This astable connection results in capacitor C charging and discharging between the threshold-voltage level  
(0.67V ) and the trigger-voltage level (0.33V ). As in the monostable circuit, charge and discharge  
CC  
CC  
times (and therefore the frequency and duty cycle) are independent of the supply voltage.  
V
CC  
(5 V to 15 V)  
R
R
= 5 kΩ  
= 3 kΩ  
R = 1 kΩ  
L
See Figure 12  
A
B
C = 0.15 µF  
0.01 µF  
Open  
(see Note A)  
5
8
R
A
B
CONT  
V
CC  
4
7
R
L
RESET  
DISCH  
3
OUT  
Output  
6
2
R
C
THRES  
TRIG  
t
H
Output Voltage  
t
L
GND  
1
Pin numbrs shown are for the D, JG, and P packages.  
NOTE A: Decoupling CONT voltage to ground with  
Capacitor Voltage  
Time – 0.5 ms/div  
a
capacitor may improve operation. This should be  
evaluated for individual applications.  
Figure 12. Circuit for Astable Operation  
Figure 13. Typical Astable Waveforms  
10  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
NE555, NE555Y, SA555, SE555, SE555C  
PRECISION TIMERS  
SLFS022 – SEPTEMBER 1973 – REVISED FEBRUARY 1992  
APPLICATION INFORMATION  
Figure 13 shows typical waveforms generated during astable operation. The output high-level duration t and  
H
low-level duration t may be calculated as follows:  
L
100 k  
R
+ 2 R = 1 kΩ  
B
A
t
t
0.693 (R  
0.693 (R  
R
C
R
+ 2 R = 10 kΩ  
B
H
L
A
B)  
A
R
10 k  
1 k  
C
+ 2 R = 100 kΩ  
A
B
B)  
Other useful relationships are shown below.  
period  
t
t
0.693 (R  
2R ) C  
B
H
L
A
1.44  
100  
frequency  
(R  
2R ) C  
A
B
10  
t
R
B
L
Output driver duty cycle  
t
t
R
2R  
H
L
A
B
1
R
+ 2 R = 1 MΩ  
B
A
Output waveform duty cycle  
t
R
R
+ 2 R = 10 MΩ  
B
A
H
B
2R  
1–  
R
0.1  
t
t
R
0.001  
0.01  
0.1  
1
10  
100  
H
t
L
A
B
C – Capacitance – µF  
L
B
Low-to-high ratio  
t
R
R
Figure 14. Free-Running Frequency  
H
A
B
missing-pulse detector  
The circuit shown in Figure 15 may be used to detect a missing pulse or abnormally long spacing between  
consecutive pulses in a train of pulses. The timing interval of the monostable circuit is continuously retriggered  
by the input pulse train as long as the pulse spacing is less than the timing interval. A longer pulse spacing,  
missing pulse, or terminated pulse train permits the timing interval to be completed, thereby generating an  
output pulse as illustrated in Figure 16.  
V
CC  
(5 V to 15 V)  
V
R
= 5 V  
= 1 kΩ  
CC  
A
C = 0.1 µF  
R
R
A
L
4
8
See Figure 15  
RESET  
V
CC  
OUT  
Input  
3
Output  
2
5
TRIG  
Input Voltage  
7
6
DISCH  
CONT  
THRES  
0.01 µF  
GND  
1
Output Voltage  
C
A5T3644  
Capacitor Voltage  
Time – 0.1 ms/div  
Pin numbers shown are shown for the D, JG, and P packages.  
Figure 15. Circuit for Missing Pulse Detector  
Figure 16. Circuit for Missing Pulse Detector  
11  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
NE555, NE555Y, SA555, SE555, SE555C  
PRECISION TIMERS  
SLFS022 – SEPTEMBER 1973 – REVISED FEBRUARY 1992  
APPLICATION INFORMATION  
frequency divider  
By adjusting the length of the timing cycle, the basic circuit of Figure 9 can be made to operate as a frequency  
divider. Figure 17 illustrates a divide-by-three circuit that makes use of the fact that retriggering cannot occur  
during the timing cycle.  
V
R
= 5 V  
= 1250 Ω  
CC  
A
C = 0.02 µF  
See Figure 9  
Input Voltage  
Output Voltage  
Capacitor Voltage  
Time – 0.1 ms/div  
Figure 17. Divide-By-Three Circuit Waveforms  
pulse-width modulation  
The operation of the timer may be modified by modulating the internal threshold and trigger voltages, which is  
accomplished by applying an external voltage (or current) to CONT. Figure 18 shows a circuit for pulse-width  
modulation. A continuous input pulse train triggers the monostable circuit, and a control signal modulates the  
threshold voltage. Figure 19 illustrates the resulting output pulse-width modulation. While a sine-wave  
modulation signal is illustrated, any wave shape could be used.  
12  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
NE555, NE555Y, SA555, SE555, SE555C  
PRECISION TIMERS  
SLFS022 – SEPTEMBER 1973 – REVISED FEBRUARY 1992  
APPLICATION INFORMATION  
V
CC  
(5 V to 15 V)  
R
= 3 kΩ  
A
C = 0.02 µF  
R
= 1 kΩ  
L
See Figure 18  
R
R
L
A
4
8
Modulation Input Voltage  
Clock Input Voltage  
RESET  
V
CC  
OUT  
3
2
5
Output  
Clock  
Input  
TRIG  
7
6
DISCH  
THRES  
Modulation  
Input  
(see Note A)  
CONT  
GND  
1
C
Output Voltage  
Pin numbers shown are for the D, JG, and P packages only.  
NOTE A: The modulating signal may be direct or capacitively  
coupled to CONT. For direct coupling, the effects of  
modulation source voltage and impedance on the bias of  
the timer should be considered.  
Capacitor Voltage  
Time – 0.5 ms/div  
Figure 18. Circuit for Pulse-Width Modulation  
Figure 19. Pulse-Width Modulation Waveforms  
pulse-position modulation  
As shown in Figure 20, any of these timers may be used as a pulse-position modulator. This application  
modulates the threshold voltage, and thereby the time delay, of a free-running oscillator. Figure 21 illustrates  
a triangular-wave modulation signal for such a circuit; however, any wave shape could be used.  
V
(5 V to 15 V)  
CC  
R
R
R
= 3 kΩ  
= 500 Ω  
= 1 kΩ  
A
B
L
See Figure 20  
R
R
A
4
8
L
3
RESET  
TRIG  
V
CC  
OUT  
2
5
Output  
Modulation Input Voltage  
7
6
DISCH  
THRES  
R
Modulation  
Input  
B
CONT  
(see Note A)  
GND  
C
Output Voltage  
Pin numbers shown are for the D, JG, and P packages only.  
NOTE A: The modulating signal may be direct or capacitively  
coupled to CONT. For direct coupling, the effects of  
modulation source voltage and impedance on the bias of  
the timer should be considered.  
Capacitor Voltage  
Time – 0.1 ms/div  
Figure 21. Pulse-Position-Modulation Waveforms  
Figure 20. Circuit for Pulse-Position Modulation  
13  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
NE555, NE555Y, SA555, SE555, SE555C  
PRECISION TIMERS  
SLFS022 – SEPTEMBER 1973 – REVISED FEBRUARY 1992  
APPLICATION INFORMATION  
sequential timer  
V
CC  
4
8
4
8
4
8
33 kΩ  
33 kΩ  
RA  
R
R
C
B
RESET  
V
RESET  
V
RESET  
V
CC  
OUT  
CC  
CC  
OUT  
3
7
6
3
7
6
3
7
2
5
2
5
OUT  
DISCH  
THRES  
2
TRIG  
TRIG  
TRIG  
0.001  
µF  
0.001  
µF  
S
DISCH  
DISCH  
5
CONT  
CONT  
CONT  
6
THRES  
THRES  
GND  
GND  
GND  
0.01  
µF  
0.01  
µF  
0.01  
µF  
1
1
1
C
C
C
C
B
A
C
R
= 14.7 µF  
= 100 kΩ  
C
= 10 µF  
C
C
A
Output A  
Output B  
Output C  
R
= 100 kΩ  
A
C
R
= 4.7 µF  
= 100 kΩ  
B
B
S closes momentarily at t = 0.  
Pin numbers shown are for the D, JG, and P packages only.  
Figure 22. Sequential Timer Circuit  
Many applications, such as computers, require signals for initializing conditions during start-up. Other  
applications, such as test equipment, require activation of test signals in sequence. These timing circuits may  
be connected to provide such sequential control. The timers may be used in various combinations of astable  
ormonostablecircuitconnections, withorwithoutmodulation, forextremelyflexiblewaveformcontrol. Figure 22  
illustrates a sequencer circuit with possible applications in many systems, and Figure 23 shows the output  
waveforms.  
See Figure 22  
t
A
w
t
A = 1.1 R C  
A A  
Output A  
Output B  
Output C  
w
t
B
w
t
B = 1.1 R C  
B B  
w
t
C = 1.1 R C  
C C  
w
t
C
w
t = 0  
t – Time – 1 s/div  
Figure 23. Sequential Timer Waveforms  
14  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
IMPORTANT NOTICE  
Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue  
any product or service without notice, and advise customers to obtain the latest version of relevant information  
to verify, before placing orders, that information being relied on is current and complete. All products are sold  
subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those  
pertaining to warranty, patent infringement, and limitation of liability.  
TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in  
accordance with TI’s standard warranty. Testing and other quality control techniques are utilized to the extent  
TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily  
performed, except those mandated by government requirements.  
CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF  
DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE (“CRITICAL  
APPLICATIONS”). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR  
WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER  
CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO  
BE FULLY AT THE CUSTOMER’S RISK.  
In order to minimize risks associated with the customer’s applications, adequate design and operating  
safeguards must be provided by the customer to minimize inherent or procedural hazards.  
TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent  
that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other  
intellectual property right of TI covering or relating to any combination, machine, or process in which such  
semiconductor products or services might be or are used. TI’s publication of information regarding any third  
party’s products or services does not constitute TI’s approval, warranty or endorsement thereof.  
Copyright 1998, Texas Instruments Incorporated  

相关型号:

SE555C106KBR

Ceramic Capacitor, Ceramic, 50V, 10% +Tol, 10% -Tol, X7R, -/+15ppm/Cel TC, 10uF, 5020,
KYOCERA AVX

SE555C106MBA

Ceramic Capacitor, Ceramic, 50V, 20% +Tol, 20% -Tol, X7R, -/+15ppm/Cel TC, 10uF, 5020,
KYOCERA AVX

SE555C106ZAR

Ceramic Capacitor, Ceramic, 50V, 80% +Tol, 20% -Tol, X7R, 15% TC, 10uF, Through Hole Mount, 5020, RADIAL LEADED, ROHS COMPLIANT
KYOCERA AVX

SE555C116KBA

Ceramic Capacitor, Ceramic, 50V, 10% +Tol, 10% -Tol, X7R, -/+15ppm/Cel TC, 11uF, 5020,
KYOCERA AVX

SE555C116MAR

Ceramic Capacitor, Ceramic, 50V, 20% +Tol, 20% -Tol, X7R, 15% TC, 11uF, Through Hole Mount, 5020, RADIAL LEADED, ROHS COMPLIANT
KYOCERA AVX

SE555C116ZAATR1

Ceramic Capacitor, Ceramic, 50V, 80% +Tol, 20% -Tol, X7R, -/+15ppm/Cel TC, 11uF, 5020,
KYOCERA AVX

SE555C116ZAR

Ceramic Capacitor, Ceramic, 50V, 80% +Tol, 20% -Tol, X7R, 15% TC, 11uF, Through Hole Mount, 5020, RADIAL LEADED, ROHS COMPLIANT
KYOCERA AVX

SE555C116ZBA

Ceramic Capacitor, Ceramic, 50V, 80% +Tol, 20% -Tol, X7R, -/+15ppm/Cel TC, 11uF, 5020,
KYOCERA AVX

SE555C126MAR

Ceramic Capacitor, Ceramic, 50V, 20% +Tol, 20% -Tol, X7R, 15% TC, 12uF, Through Hole Mount, 5020, RADIAL LEADED, ROHS COMPLIANT
KYOCERA AVX

SE555C126MBA

Ceramic Capacitor, Ceramic, 50V, 20% +Tol, 20% -Tol, X7R, -/+15ppm/Cel TC, 12uF, 5020,
KYOCERA AVX

SE555C126ZAR

Ceramic Capacitor, Ceramic, 50V, 80% +Tol, 20% -Tol, X7R, 15% TC, 12uF, Through Hole Mount, 5020, RADIAL LEADED, ROHS COMPLIANT
KYOCERA AVX

SE555C685KAR

Ceramic Capacitor, Ceramic, 50V, 10% +Tol, 10% -Tol, X7R, 15% TC, 6.8uF, Through Hole Mount, 5020, RADIAL LEADED, ROHS COMPLIANT
KYOCERA AVX