SM320C6201BGLP [TI]

DIGITAL SIGNAL PROCESSOR; 数字信号处理器
SM320C6201BGLP
型号: SM320C6201BGLP
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

DIGITAL SIGNAL PROCESSOR
数字信号处理器

数字信号处理器
文件: 总62页 (文件大小:867K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
S
D
M
3
I
2
T
0
A
C
L
6
2
0
S
1
I
B
G
,
N
SM J 32 0C 62 01 B  
P
I
G
A
L
R
O
C
E
S
S
O
R
SGUS031 – APRIL 2000  
GLP  
D
D
Highest Performance Fixed-Point Digital  
Signal Processor (DSP) SM/SMJ320C6201B  
– 5-, 6.7-ns Instruction Cycle Time  
– 150 and 200-MHz Clock Rate  
– Eight 32-Bit Instructions/Cycle  
– 1200 and 1600 MIPS  
429-PIN BALL GRID ARRAY (BGA) PACKAGE  
(BOTTOM VIEW)  
AA  
Y
W
V
U
T
R
P
N
M
L
K
J
H
G
F
VelociTI Advanced Very Long Instruction  
Word (VLIW) ’C62x CPU Core  
– Eight Independent Functional Units:  
– Six ALUs (32-/40-Bit)  
– Two 16-Bit Multipliers (32-Bit Results)  
– Load-Store Architecture With 32 32-Bit  
General-Purpose Registers  
– Instruction Packing Reduces Code Size  
– All Instructions Conditional  
E
D
C
B
A
D
Instruction Set Features  
– Byte-Addressable (8-, 16-, 32-Bit Data)  
– 32-Bit Address Range  
– 8-Bit Overflow Protection  
– Saturation  
1
3
5
7
9
11 13 15 17 19 21  
10 12 14 16 18 20  
2
4
6
8
– Bit-Field Extract, Set, Clear  
– Bit-Counting  
– Normalization  
D
Two Multichannel Buffered Serial Ports  
(McBSPs)  
– Direct Interface to T1/E1, MVIP, SCSA  
Framers  
D
D
1M-Bit On-Chip SRAM  
– 512K-Bit Internal Program/Cache  
(16K 32-Bit Instructions)  
– 512K-Bit Dual-Access Internal Data  
(64K Bytes) Organized as Two Blocks for  
Improved Concurrency  
– ST-Bus-Switching Compatible  
– Up to 256 Channels Each  
– AC97-Compatible  
– Serial Peripheral Interface (SPI)  
Compatible (Motorola )  
32-Bit External Memory Interface (EMIF)  
– Glueless Interface to Synchronous  
Memories: SDRAM and SBSRAM  
– Glueless Interface to Asynchronous  
Memories: SRAM and EPROM  
D
D
D
Two 32-Bit General-Purpose Timers  
Flexible Phase-Locked Loop (PLL) Clock  
Generator  
IEEE-1149.1 (JTAG ) Boundary-Scan  
Compatible  
D
D
Four-Channel Bootloading  
Direct-Memory-Access (DMA) Controller  
with an Auxiliary Channel  
D
429-Pin BGA Package (GLP Suffix)  
D
CMOS Technology  
– 0.18-µm/5-Level Metal Process  
16-Bit Host-Port Interface (HPI)  
– Access to Entire Memory Map  
D
3.3-V I/Os, 1.8-V Internal  
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of  
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
VelociTI is a trademark of Texas Instruments Incorporated.  
Motorola is a trademark of Motorola, Inc.  
IEEE Standard 1149.1-1990 Standard-Test-Access Port and Boundary Scan Architecture.  
Copyright 2000, Texas Instruments Incorporated  
U
D
N
L
A
c
d
E
S
S
i
a
O
T
H
a
E
R
n
e
c
W
I
S
c
E
u
N
O
t
T
E
a
m
s
D
s
s
t
o
o
n
h
f
f
o
i
s
d
o
l
a
c
c
u
a
m
e
n
n
s
t
c
o
n
.
n
c
t
a
i
n
P
s
r
PR O D U CT IO N  
u
A
T
n
f
o
r
m
t
i
o
r
e
g
r
e
n
p
T
u
b
i
c
t
i
o
d
a
t
e
o
d
c
t
s
c
o
n
f
w ar r an ty.  
o
r
m
t
o
O
n
p
r
o
d
u
c
t
s
c
o
m
p
l
i
a
n
t
t
o
M
I
L
Ć
P
R
F
Ć
3
8
5
3
5
,
a
l
l
p
a
r
a
m
e
t
e
r
s
a
pr o duc tio n  
r
e
t
e
s
t
e
d
s
p
e
o
i
f
i
c
t
i
o
n
s
p
o
r
t
h
t
e
r
e
e
x
s
e
I
n
t
r
u
m
i
e
n
t
l
s
u
s
t
a
n
d
a
r
d
u
n
l
e
s
s
o
t
h
e
r
w
i
s
e
n
o
t
e
d
.
O
n
a
l
l
o
t
h
e
r
p
r
o
d
u
c
t
s
,
P
r
u
c
t
i
o
n
pa r a m e t e r s .  
p
r
e
s
s
i
n
d
o
t
n
e
s
s
a
r
i
l
y
d
e
t
e
s
t
i
n
g
o
f
a
l
l
p
r
o
c
e
s
s
i
n
g
d
o
e
s
n
o
t
n
e
c
e
s
s
a
r
i
l
y
i
n
c
l
u
d
e
t
e
s
t
i
n
g
o
f
a
l
l
p
a
r
a
m
e
t
e
r
s
.
1
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
S
D
M
3
I
2
TA  
0
C
L
6
2
0
S
1
I
B
G
,
N
S MJ 3 20 C 6 20 1 B  
P RO CE SS OR  
I
G
A
L
SGUS031 – APRIL 2000  
description  
The 320C6201B DSP is a member of the fixed-point DSP family in the 320C6000 platform. The  
SM/SMJ320C6201B (’C6201B) device is based on the high-performance, advanced VelociTI  
very-long-instruction-word (VLIW) architecture developed by Texas Instruments (TI ), making this DSP an  
excellent choice for multichannel and multifunction applications. With performance of up to 1600 million  
instructions per second (MIPS) at a clock rate of 200 MHz, the ’C6201B offers cost-effective solutions to  
high-performance DSP programming challenges. The ’C6201B is a newer revision of the ’C6201. The ’C6201B  
DSP possesses the operational flexibility of high-speed controllers and the numerical capability of array  
processors. This processor has 32 general-purpose registers of 32-bit word length and eight highly independent  
functional units. The eight functional units provide six arithmetic logic units (ALUs) for a high degree of  
parallelism and two 16-bit multipliers for a 32-bit result. The ’C6201B can produce two multiply-accumulates  
(MACs) per cycle—for a total of 400 million MACs per second (MMACS). The ’C6201B DSP also has  
application-specific hardware logic, on-chip memory, and additional on-chip peripherals.  
The ’C6201B includes a large bank of on-chip memory and has a powerful and diverse set of peripherals.  
Program memory consists of a 64K-byte block that is user-configurable as cache or memory-mapped program  
space. Data memory of the ’C6201B consists of two 32K-byte blocks of RAM for improved concurrency. The  
peripheral set includes two multichannel buffered serial ports (McBSPs), two general-purpose timers, a  
host-port interface (HPI), and a glueless external memory interface (EMIF) capable of interfacing to SDRAM  
or SBSRAM and asynchronous peripherals.  
The ’C6201B has a complete set of development tools which includes: a new C compiler, a third-party Ada 95  
compiler, an assembly optimizer to simplify programming and scheduling, and a Windows debugger interface  
for visibility into source code execution.  
device characteristics  
Table 1 provides an overview of the ’C62x DSP. The table shows significant features of each device, including  
the capacity of on-chip RAM, the peripherals, the execution time, and the package type with pin count.  
Table 1. Characteristics of the ’C6201B Processor  
CHARACTERISTICS  
DESCRIPTION  
Device Number  
320C6201B  
512-Kbit Program Memory  
512-Kbit Data Memory (organized as two blocks)  
On-Chip Memory  
Peripherals  
2 Multichannel Buffered Serial Ports (McBSPs)  
2 General-Purpose Timers  
Host-Port Interface (HPI)  
External Memory Interface (EMIF)  
6.7 ns (320C6201B 150 MHz),  
5 ns (320C6201B 200 MHz)  
Cycle Time  
Package Type  
Nominal Voltage  
27 mm × 27 mm, 429-Pin Ceramic D-BGA (GLP)  
1.8 V Core  
3.3 V I/O  
TI is a trademark of Texas Instruments Incorporated.  
Windows is a registered trademark of the Microsoft Corporation.  
2
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
S
D
M
3
I
2
T
0
A
C
L
6
2
0
S
1
I
B
G
,
N
SM J 32 0C 62 01 B  
P RO C ES S O R  
I
G
A
L
SGUS031 – APRIL 2000  
functional block diagram  
Timers  
Interrupt Selector  
McBSPs  
Data Memory  
Peripheral  
Bus  
Controller  
HPI Control  
DMA Control  
EMIF Control  
Data Memory  
Controller  
DMA  
Controller  
Host-Port Interface  
PLL  
CPU  
EMIF  
Power  
Down  
Program Memory Controller  
Program Memory/Cache  
Boot-  
Config.  
3
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
S
D
M
3
I
2
TA  
0
C
L
6
2
0
S
1
I
B
G
,
N
S MJ 3 20 C 6 20 1 B  
P RO CE SS OR  
I
G
A
L
SGUS031 – APRIL 2000  
CPU description  
The CPU fetches VelociTI advanced very-long instruction words (VLIW) (256 bits wide) to supply up to eight  
32-bit instructions to the eight functional units during every clock cycle. The VelociTI VLIW architecture features  
controls by which all eight units do not have to be supplied with instructions if they are not ready to execute. The  
first bit of every 32-bit instruction determines if the next instruction belongs to the same execute packet as the  
previous instruction, or whether it should be executed in the following clock as a part of the next execute packet.  
Fetch packets are always 256 bits wide; however, the execute packets can vary in size. The variable-length  
execute packets are a key memory-saving feature, distinguishing the ’C62x CPU from other VLIW architectures.  
The CPU features two sets of functional units. Each set contains four units and a register file. One set contains  
functional units .L1, .S1, .M1, and .D1; the other set contains units .D2, .M2, .S2, and .L2. The two register files  
each contain 16 32-bit registers for a total of 32 general-purpose registers. The two sets of functional units, along  
with two register files, compose sides A and B of the CPU (see Figure 1 and Figure 2). The four functional units  
on each side of the CPU can freely share the 16 registers belonging to that side. Additionally, each side features  
a single data bus connected to all the registers on the other side, by which the two sets of functional units can  
access data from the register files on the opposite side. While register access by functional units on the same  
side of the CPU as the register file can service all the units in a single clock cycle, register access using the  
register file across the CPU supports one read and one write per cycle.  
Another key feature of the ’C62x CPU is the load/store architecture, where all instructions operate on registers  
(as opposed to data in memory). Two sets of data-addressing units (.D1 and .D2) are responsible for all data  
transfers between the register files and the memory. The data address driven by the .D units allows data  
addresses generated from one register file to be used to load or store data to or from the other register file. The  
’C62x CPU supports a variety of indirect addressing modes using either linear- or circular-addressing modes  
with 5- or 15-bit offsets. All instructions are conditional, and most can access any one of the 32 registers. Some  
registers, however, are singled out to support specific addressing or to hold the condition for conditional  
instructions (if the condition is not automatically “true”). The two .M functional units are dedicated for multiplies.  
The two .S and .L functional units perform a general set of arithmetic, logical, and branch functions with results  
available every clock cycle.  
The processing flow begins when a 256-bit-wide instruction fetch packet is fetched from a program memory.  
The 32-bit instructions destined for the individual functional units are “linked” together by “1” bits in the least  
significant bit (LSB) position of the instructions. The instructions that are “chained” together for simultaneous  
execution (up to eight in total) compose an execute packet. A “0” in the LSB of an instruction breaks the chain,  
effectively placing the instructions that follow it in the next execute packet. If an execute packet crosses the fetch  
packet boundary (256 bits wide), the assembler places it in the next fetch packet, while the remainder of the  
current fetch packet is padded with NOP instructions. The number of execute packets within a fetch packet can  
vary from one to eight. Execute packets are dispatched to their respective functional units at the rate of one per  
clock cycle and the next 256-bit fetch packet is not fetched until all the execute packets from the current fetch  
packet have been dispatched. After decoding, the instructions simultaneously drive all active functional units  
for a maximum execution rate of eight instructions every clock cycle. While most results are stored in 32-bit  
registers, they can be subsequently moved to memory as bytes or half-words as well. All load and store  
instructions are byte-, half-word, or word-addressable.  
4
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
S
D
M
3
I
2
T
0
A
C
L
6
2
0
S
1
I
B
G
,
N
SM J 32 0C 62 01 B  
P RO C ES S O R  
I
G
A
L
SGUS031 – APRIL 2000  
CPU description (continued)  
Program Memory  
32-Bit Address  
256-Bit Data  
’C62x CPU  
Program Fetch  
Control  
Registers  
Instruction Dispatch  
Instruction Decode  
Data Path A  
Data Path B  
Register File B  
Control  
Logic  
External Memory  
Interface  
Register File A  
Test  
Emulation  
Interrupts  
.M2  
.S2 .L2  
.L1 .S1 .M1 .D1  
.D2  
Additional  
Peripherals:  
Timers,  
Serial Ports,  
etc.  
Data Memory  
32-Bit Address  
8-, 16-, 32-Bit Data  
Figure 1. 320C62x CPU Block Diagram  
5
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
S
D
M
3
I
2
TA  
0
C
L
6
2
0
S
1
I
B
G
,
N
S MJ 3 20 C 6 20 1 B  
P RO CE SS OR  
I
G
A
L
SGUS031 – APRIL 2000  
CPU description (continued)  
src1  
src2  
dst  
long dst  
long src  
.L1  
8
8
32  
ST1  
8
long src  
long dst  
dst  
Register  
File A  
Data Path A  
.S1  
src1  
(A0–A15)  
src2  
dst  
src1  
.M1  
.D1  
src2  
LD1  
dst  
src1  
src2  
DA1  
2X  
1X  
src2  
src1  
dst  
DA2  
.D2  
LD2  
src2  
.M2  
.S2  
src1  
dst  
src2  
Register  
File B  
(B0–B15)  
Data Path B  
src1  
dst  
long dst  
long src  
8
32  
8
ST2  
8
long src  
long dst  
dst  
.L2  
src2  
src1  
Control  
Register  
File  
Figure 2. 320C62x CPU Data Paths  
6
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
S
D
M
3
I
2
T
0
A
C
L
6
2
0
S
1
I
B
G
,
N
SM J 32 0C 62 01 B  
P RO C ES S O R  
I
G
A
L
SGUS031 – APRIL 2000  
signal groups description  
CLKIN  
CLKOUT2  
CLKOUT1  
CLKMODE1  
CLKMODE0  
PLLFREQ3  
PLLFREQ2  
PLLFREQ1  
PLLV  
BOOTMODE4  
BOOTMODE3  
BOOTMODE2  
BOOTMODE1  
BOOTMODE0  
Boot Mode  
Clock/PLL  
RESET  
NMI  
PLLG  
PLLF  
EXT_INT7  
EXT_INT6  
EXT_INT5  
EXT_INT4  
IACK  
Reset and  
Interrupts  
INUM3  
INUM2  
TMS  
TDO  
INUM1  
INUM0  
TDI  
TCK  
TRST  
EMU1  
EMU0  
JTAG  
Emulation  
Little ENDIAN  
Big ENDIAN  
LENDIAN  
RSV9  
RSV8  
RSV7  
RSV6  
RSV5  
RSV4  
RSV3  
RSV2  
RSV1  
RSV0  
DMAC3  
DMAC2  
DMAC1  
DMAC0  
DMA Status  
Reserved  
Power-Down  
Status  
PD  
Control/Status  
HPI  
16  
(Host-Port Interface)  
HD[15:0]  
Data  
HAS  
HR/W  
HCS  
HDS1  
HDS2  
HRDY  
HINT  
HCNTL0  
HCNTL1  
Register Select  
Control  
HHWIL  
HBE1  
HBE0  
Half-Word/Byte  
Select  
Figure 3. CPU and Peripheral Signals  
7
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
S
D
M
3
I
2
TA  
0
C
L
6
2
0
S
1
I
B
G
,
N
S MJ 3 20 C 6 20 1 B  
P RO CE SS OR  
I
G
A
L
SGUS031 – APRIL 2000  
signal groups description (continued)  
32  
ED[31:0]  
Data  
ARE  
Asynchronous  
Memory  
AOE  
AWE  
ARDY  
CE3  
CE2  
CE1  
CE0  
Control  
Memory Map  
Space Select  
SSADS  
SSOE  
SSWE  
SSCLK  
SBSRAM  
Control  
20  
EA[21:2]  
Word Address  
Byte Enables  
BE3  
BE2  
BE1  
BE0  
SDA10  
SDRAS  
SDCAS  
SDWE  
SDRAM  
Control  
SDCLK  
HOLD  
HOLD/  
HOLDA  
HOLDA  
EMIF  
(External Memory Interface)  
TOUT1  
TINP1  
TOUT0  
TINP0  
Timer 1  
Timer 0  
Timers  
McBSP1  
Transmit  
McBSP0  
Transmit  
CLKX1  
FSX1  
DX1  
CLKX0  
FSX0  
DX0  
CLKR1  
FSR1  
DR1  
CLKR0  
FSR0  
DR0  
Receive  
Clock  
Receive  
Clock  
CLKS1  
CLKS0  
McBSPs  
(Multichannel Buffered Serial Ports)  
Figure 4. Peripheral Signals  
8
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
S
D
M
3
I
2
T
0
A
C
L
6
2
0
S
1
I
B
G
,
N
SM J 32 0C 62 01 B  
P RO C ES S O R  
I
G
A
L
SGUS031 – APRIL 2000  
Signal Descriptions  
SIGNAL  
NAME  
DESCRIPTION  
TYPE  
NO.  
CLOCK/PLL  
CLKIN  
A14  
Y6  
I
Clock Input  
CLKOUT1  
O
O
Clock output at full device speed  
Clock output at half of device speed  
Clock mode select  
CLKOUT2  
V9  
CLKMODE1  
CLKMODE0  
PLLFREQ3  
PLLFREQ2  
PLLFREQ1  
B17  
C17  
C13  
G11  
F11  
D12  
G10  
C12  
I
Selects whether the output clock frequency = input clock freq x4 or x1  
PLL frequency range (3, 2, and 1)  
The target range for CLKOUT1 frequency is determined by the 3-bit value of the PLLFREQ pins.  
I
§
PLLV  
A
PLL analog V connection for the low-pass filter  
CC  
§
PLLG  
A
PLL analog GND connection for the low-pass filter  
PLL low-pass filter connection to external components and a bypass capacitor  
JTAG EMULATION  
§
PLLF  
A
TMS  
TDO  
TDI  
K19  
R12  
R13  
M20  
N18  
R20  
T18  
I
JTAG test port mode select (features an internal pull-up)  
JTAG test port data out  
O/Z  
I
I
I
JTAG test port data in (features an internal pull-up)  
JTAG test port clock  
TCK  
TRST  
EMU1  
EMU0  
JTAG test port reset (features an internal pull-down)  
Emulation pin 1, pull-up with a dedicated 20-kresistor  
Emulation pin 0, pull-up with a dedicated 20-kresistor  
RESET AND INTERRUPTS  
I/O/Z  
I/O/Z  
RESET  
NMI  
J20  
I
I
Device reset  
Nonmaskable interrupt  
K21  
Edge-driven (rising edge)  
EXT_INT7  
EXT_INT6  
EXT_INT5  
EXT_INT4  
IACK  
R16  
P20  
R15  
R18  
R11  
T19  
T20  
T14  
T16  
External interrupts  
Edge-driven (rising edge)  
I
O
Interrupt acknowledge for all active interrupts serviced by the CPU  
Active interrupt identification number  
INUM3  
INUM2  
Valid during IACK for all active interrupts (not just external)  
Encoding order follows the interrupt service fetch packet ordering  
O
INUM1  
INUM0  
LITTLE ENDIAN/BIG ENDIAN  
If high, selects little-endian byte/half-word addressing order within a word  
If low, selects big-endian addressing  
LENDIAN  
G20  
I
POWER DOWN STATUS  
PD  
D19  
O
Power-down mode 2 or 3 (active if high)  
I = Input, O = Output, Z = High Impedance, S = Supply Voltage, GND = Ground  
PLLV and PLLG signals are not part of external voltage supply or ground. See the CLOCK/PLL documentation for information on how to connect  
those pins.  
A = Analog Signal (PLL Filter)  
§
9
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
S
D
M
3
I
2
TA  
0
C
L
6
2
0
S
1
I
B
G
,
N
S MJ 3 20 C 6 20 1 B  
P RO CE SS OR  
I
G
A
L
SGUS031 – APRIL 2000  
Signal Descriptions (Continued)  
SIGNAL  
NAME  
DESCRIPTION  
TYPE  
NO.  
HOST PORT INTERFACE (HPI)  
HINT  
H2  
O/Z  
Host interrupt (from DSP to host)  
HCNTL1  
HCNTL0  
HHWIL  
HBE1  
HBE0  
HR/W  
HD15  
HD14  
HD13  
HD12  
HD11  
HD10  
HD9  
J6  
H6  
E4  
I
I
I
I
I
I
Host control – selects between control, address or data registers  
Host control – selects between control, address or data registers  
Host halfword select – first or second halfword (not necessarily high or low order)  
Host byte select within word or half-word  
G6  
F6  
Host byte select within word or half-word  
D4  
D11  
B11  
A11  
G9  
D10  
A10  
C10  
B9  
Host read or write select  
HD8  
I/O/Z  
Host port data (used for transfer of data, address and control)  
HD7  
F9  
HD6  
C9  
A9  
HD5  
HD4  
B8  
HD3  
D9  
D8  
B7  
HD2  
HD1  
HD0  
C7  
L6  
HAS  
I
I
Host address strobe  
Host chip select  
HCS  
C5  
C4  
K6  
HDS1  
HDS2  
HRDY  
I
Host data strobe 1  
Host data strobe 2  
Host ready (from DSP to host)  
BOOT MODE  
I
H3  
O
BOOTMODE4  
BOOTMODE3  
BOOTMODE2  
BOOTMODE1  
BOOTMODE0  
B16  
G14  
F15  
C18  
D17  
I
Boot mode  
I = Input, O = Output, Z = High Impedance, S = Supply Voltage, GND = Ground  
10  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
S
D
M
3
I
2
T
0
A
C
L
6
2
0
S
1
I
B
G
,
N
SM J 32 0C 62 01 B  
P RO C ES S O R  
I
G
A
L
SGUS031 – APRIL 2000  
Signal Descriptions (Continued)  
SIGNAL  
NAME  
DESCRIPTION  
TYPE  
NO.  
EMIF – CONTROL SIGNALS COMMON TO ALL TYPES OF MEMORY  
CE3  
Y5  
V3  
T6  
U2  
R8  
T3  
T2  
R2  
O/Z  
O/Z  
O/Z  
O/Z  
O/Z  
O/Z  
O/Z  
O/Z  
CE2  
CE1  
CE0  
BE3  
BE2  
BE1  
BE0  
Memory space enables  
Enabled by bits 24 and 25 of the word address  
Only one asserted during any external data access  
Byte enable control  
Decoded from the two lowest bits of the internal address  
Byte write enables for most types of memory  
Can be directly connected to SDRAM read and write mask signal (SDQM)  
EMIF – ADDRESS  
EA21  
EA20  
EA19  
EA18  
EA17  
EA16  
EA15  
EA14  
EA13  
EA12  
EA11  
EA10  
EA9  
L4  
L3  
J2  
J1  
K1  
K2  
L2  
L1  
M1  
M2  
M6  
N4  
N1  
N2  
N6  
P4  
P3  
P2  
P1  
P6  
O/Z  
External address (word address)  
EA8  
EA7  
EA6  
EA5  
EA4  
EA3  
EA2  
I = Input, O = Output, Z = High Impedance, S = Supply Voltage, GND = Ground  
11  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
S
D
M
3
I
2
TA  
0
C
L
6
2
0
S
1
I
B
G
,
N
S MJ 3 20 C 6 20 1 B  
P RO CE SS OR  
I
G
A
L
SGUS031 – APRIL 2000  
Signal Descriptions (Continued)  
SIGNAL  
NAME  
DESCRIPTION  
TYPE  
NO.  
EMIF – DATA  
ED31  
U18  
ED30  
ED29  
ED28  
ED27  
ED26  
ED25  
ED24  
ED23  
ED22  
ED21  
ED20  
ED19  
ED18  
ED17  
ED16  
ED15  
ED14  
ED13  
ED12  
ED11  
ED10  
ED9  
U20  
T15  
V18  
V17  
V16  
T12  
W17  
T13  
Y17  
T11  
Y16  
W15  
V14  
Y15  
R9  
I/O/Z  
External data  
Y14  
V13  
AA13  
T10  
Y13  
W12  
Y12  
Y11  
V10  
AA10  
Y10  
W10  
Y9  
ED8  
ED7  
ED6  
ED5  
ED4  
ED3  
ED2  
AA9  
Y8  
ED1  
ED0  
W9  
EMIF – ASYNCHRONOUS MEMORY CONTROL  
Asynchronous memory read enable  
ARE  
R7  
T7  
V5  
R4  
O/Z  
O/Z  
O/Z  
I
AOE  
AWE  
ARDY  
Asynchronous memory output enable  
Asynchronous memory write enable  
Asynchronous memory ready input  
I = Input, O = Output, Z = High Impedance, S = Supply Voltage, GND = Ground  
12  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
S
D
M
3
I
2
T
0
A
C
L
6
2
0
S
1
I
B
G
,
N
SM J 32 0C 62 01 B  
P RO C ES S O R  
I
G
A
L
SGUS031 – APRIL 2000  
Signal Descriptions (Continued)  
SIGNAL  
NAME  
DESCRIPTION  
TYPE  
NO.  
EMIF – SYNCHRONOUS BURST SRAM CONTROL  
SBSRAM address strobe  
SSADS  
V8  
W7  
Y7  
O/Z  
O/Z  
O/Z  
O/Z  
SSOE  
SSWE  
SSCLK  
SBSRAM output enable  
SBSRAM write enable  
AA8  
SBSRAM clock  
EMIF – SYNCHRONOUS DRAM CONTROL  
SDRAM address 10 (separate for deactivate command)  
SDRAM row address strobe  
SDRAM column address strobe  
SDRAM write enable  
SDA10  
SDRAS  
SDCAS  
SDWE  
SDCLK  
V7  
V6  
W5  
T8  
O/Z  
O/Z  
O/Z  
O/Z  
O/Z  
T9  
SDRAM clock  
EMIF – BUS ARBITRATION  
Hold request from the host  
HOLD  
R6  
I
HOLDA  
B15  
O
Hold request acknowledge to the host  
TIMERS  
TOUT1  
TINP1  
TOUT0  
TINP0  
G2  
K3  
O/Z  
Timer 1 or general-purpose output  
Timer 1 or general-purpose input  
Timer 0 or general-purpose output  
Timer 0 or general-purpose input  
DMA ACTION COMPLETE  
I
O/Z  
I
M18  
J18  
DMAC3  
DMAC2  
DMAC1  
DMAC0  
E18  
F19  
E20  
G16  
O
I
DMA action complete  
MULTICHANNEL BUFFERED SERIAL PORT 1 (McBSP1)  
CLKS1  
CLKR1  
CLKX1  
DR1  
F4  
H4  
J4  
External clock source (as opposed to internal)  
Receive clock  
I/O/Z  
I/O/Z  
I
Transmit clock  
E2  
G4  
F3  
F2  
Receive data  
DX1  
O/Z  
I/O/Z  
I/O/Z  
Transmit data  
FSR1  
FSX1  
Receive frame sync  
Transmit frame sync  
I = Input, O = Output, Z = High Impedance, S = Supply Voltage, GND = Ground  
13  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
S
D
M
3
I
2
TA  
0
C
L
6
2
0
S
1
I
B
G
,
N
S MJ 3 20 C 6 20 1 B  
P RO CE SS OR  
I
G
A
L
SGUS031 – APRIL 2000  
Signal Descriptions (Continued)  
SIGNAL  
NAME  
DESCRIPTION  
TYPE  
NO.  
MULTICHANNEL BUFFERED SERIAL PORT 0 (McBSP0)  
CLKS0  
K18  
I
External clock source (as opposed to internal)  
Receive clock  
CLKR0  
CLKX0  
DR0  
L21  
K20  
J21  
I/O/Z  
I/O/Z  
I
Transmit clock  
Receive data  
DX0  
M21  
P16  
N16  
O/Z  
I/O/Z  
I/O/Z  
Transmit data  
FSR0  
FSX0  
Receive frame sync  
Transmit frame sync  
RESERVED FOR TEST  
RSV0  
RSV1  
RSV2  
RSV3  
RSV4  
RSV5  
RSV6  
RSV7  
RSV8  
RSV9  
N21  
K16  
B13  
B14  
F13  
C15  
F7  
I
I
Reserved for testing, pull-up with a dedicated 20-kresistor  
Reserved for testing, pull-up with a dedicated 20-kresistor  
Reserved for testing, pull-up with a dedicated 20-kresistor  
Reserved for testing, pull-up with a dedicated 20-kresistor  
Reserved for testing, pull-down with a dedicated 20-kresistor  
Reserved (leave unconnected, do not connect to power or ground)  
Reserved for testing, pull-up with a dedicated 20-kW resistor  
Reserved for testing, pull-up with a dedicated 20-kW resistor  
Reserved for testing, pull-up with a dedicated 20-kW resistor  
Reserved (leave unconnected, do not connect to power or ground)  
SUPPLY VOLTAGE PINS  
I
I
I
O
I
D7  
I
B5  
I
F16  
O
C14  
C8  
E19  
E3  
H11  
H13  
H9  
J10  
J12  
J14  
J19  
J3  
DV  
S
3.3-V supply voltage  
DD  
J8  
K11  
K13  
K15  
K7  
K9  
L10  
L12  
L14  
I = Input, O = Output, Z = High Impedance, S = Supply Voltage, GND = Ground  
14  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
S
D
M
3
I
2
T
0
A
C
L
6
2
0
S
1
I
B
G
,
N
SM J 32 0C 62 01 B  
P RO C ES S O R  
I
G
A
L
SGUS031 – APRIL 2000  
Signal Descriptions (Continued)  
SIGNAL  
NAME  
DESCRIPTION  
SUPPLY VOLTAGE PINS (CONTINUED)  
TYPE  
NO.  
L8  
M11  
M13  
M15  
M7  
M9  
N10  
N12  
N14  
N19  
N3  
DV  
S
3.3-V supply voltage  
DD  
N8  
P11  
P13  
P9  
U19  
U3  
W14  
W8  
A12  
A13  
B10  
B12  
B6  
D15  
D16  
F10  
F14  
F8  
CV  
S
1.8-V supply voltage  
DD  
G13  
G7  
G8  
K4  
M3  
M4  
A3  
A5  
A7  
A16  
I = Input, O = Output, Z = High Impedance, S = Supply Voltage, GND = Ground  
15  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
S
D
M
3
I
2
TA  
0
C
L
6
2
0
S
1
I
B
G
,
N
S MJ 3 20 C 6 20 1 B  
P RO CE SS OR  
I
G
A
L
SGUS031 – APRIL 2000  
Signal Descriptions (Continued)  
SIGNAL  
NAME  
DESCRIPTION  
SUPPLY VOLTAGE PINS (CONTINUED)  
TYPE  
NO.  
A18  
AA4  
AA6  
AA15  
AA17  
AA19  
B2  
B4  
B19  
C1  
C3  
C20  
D2  
D21  
E1  
E6  
E8  
CV  
S
1.8-V supply voltage  
DD  
E10  
E12  
E14  
E16  
F5  
F17  
F21  
G1  
H5  
H17  
K5  
K17  
M5  
M17  
P5  
P17  
R21  
I = Input, O = Output, Z = High Impedance, S = Supply Voltage, GND = Ground  
16  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
S
D
M
3
I
2
T
0
A
C
L
6
2
0
S
1
I
B
G
,
N
SM J 32 0C 62 01 B  
P RO C ES S O R  
I
G
A
L
SGUS031 – APRIL 2000  
Signal Descriptions (Continued)  
SIGNAL  
NAME  
DESCRIPTION  
SUPPLY VOLTAGE PINS (CONTINUED)  
TYPE  
NO.  
T1  
T5  
T17  
U6  
U8  
U10  
U12  
U14  
U16  
U21  
V1  
V20  
W2  
W19  
W21  
Y3  
Y18  
Y20  
AA11  
AA12  
F20  
G18  
H16  
H18  
L18  
L19  
L20  
N20  
P18  
P19  
R10  
R14  
U4  
CV  
S
1.8-V supply voltage  
DD  
V11  
V12  
V15  
W13  
I = Input, O = Output, Z = High Impedance, S = Supply Voltage, GND = Ground  
17  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
S
D
M
3
I
2
TA  
0
C
L
6
2
0
S
1
I
B
G
,
N
S MJ 3 20 C 6 20 1 B  
P RO CE SS OR  
I
G
A
L
SGUS031 – APRIL 2000  
Signal Descriptions (Continued)  
SIGNAL  
NAME  
DESCRIPTION  
TYPE  
NO.  
GROUND PINS  
C11  
C16  
C6  
D5  
G3  
H10  
H12  
H14  
H7  
H8  
J11  
J13  
J7  
J9  
K8  
L7  
L9  
M8  
N7  
R3  
V
SS  
GND  
Ground pins  
A4  
A6  
A8  
A15  
A17  
A19  
AA3  
AA5  
AA7  
AA14  
AA16  
AA18  
B3  
B18  
B20  
C2  
C19  
C21  
D1  
I = Input, O = Output, Z = High Impedance, S = Supply Voltage, GND = Ground  
18  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
S
D
M
3
I
2
T
0
A
C
L
6
2
0
S
1
I
B
G
,
N
SM J 32 0C 62 01 B  
P RO C ES S O R  
I
G
A
L
SGUS031 – APRIL 2000  
Signal Descriptions (Continued)  
SIGNAL  
NAME  
DESCRIPTION  
GROUND PINS (CONTINUED)  
TYPE  
NO.  
D20  
E5  
E7  
E9  
E11  
E13  
E15  
E17  
E21  
F1  
G5  
G17  
G21  
H1  
J5  
J17  
L5  
L17  
N5  
V
SS  
GND  
Ground pins  
N17  
P21  
R1  
R5  
R17  
T21  
U1  
U5  
U7  
U9  
U11  
U13  
U15  
U17  
V2  
V21  
I = Input, O = Output, Z = High Impedance, S = Supply Voltage, GND = Ground  
19  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
S
D
M
3
I
2
TA  
0
C
L
6
2
0
S
1
I
B
G
,
N
S MJ 3 20 C 6 20 1 B  
P RO CE SS OR  
I
G
A
L
SGUS031 – APRIL 2000  
Signal Descriptions (Continued)  
SIGNAL  
NAME  
DESCRIPTION  
GROUND PINS (CONTINUED)  
TYPE  
NO.  
W1  
W3  
W20  
Y2  
Y4  
Y19  
F18  
G19  
H15  
J15  
J16  
K10  
K12  
K14  
L11  
L13  
L15  
M10  
M12  
M14  
N11  
N13  
N15  
N9  
V
SS  
GND  
Ground pins  
P10  
P12  
P14  
P15  
P7  
P8  
R19  
T4  
W11  
W16  
W6  
I = Input, O = Output, Z = High Impedance, S = Supply Voltage, GND = Ground  
20  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
S
D
M
3
I
2
T
0
A
C
L
6
2
0
S
1
I
B
G
,
N
SM J 32 0C 62 01 B  
P RO C ES S O R  
I
G
A
L
SGUS031 – APRIL 2000  
Signal Descriptions (Continued)  
SIGNAL  
NAME  
DESCRIPTION  
REMAINING UNCONNECTED PINS  
TYPE  
NO.  
D13  
D14  
D18  
D3  
D6  
F12  
G12  
G15  
H19  
H20  
H21  
L16  
M16  
M19  
V19  
V4  
NC  
Unconnected pins  
W18  
W4  
I = Input, O = Output, Z = High Impedance, S = Supply Voltage, GND = Ground  
21  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
S
D
M
3
I
2
TA  
0
C
L
6
2
0
S
1
I
B
G
,
N
S MJ 3 20 C 6 20 1 B  
P RO CE SS OR  
I
G
A
L
SGUS031 – APRIL 2000  
development support  
Texas Instruments offers an extensive line of development tools for the ’C6000 generation of DSPs, including  
tools to evaluate the performance of the processors, generate code, develop algorithm implementations, and  
fully integrate and debug software and hardware modules.  
The following products support development of ’C6000-based applications:  
Software Development Tools:  
Assembly optimizer  
Assembler/Linker  
Simulator  
Optimizing ANSI C compiler  
Application algorithms  
C/Assembly debugger and code profiler  
Hardware Development Tools:  
Extended development system (XDS ) emulator (supports ’C6000 multiprocessor system debug)  
EVM (Evaluation Module)  
The TMS320 DSP Development Support Reference Guide (SPRU011) contains information about  
development-support products for all TMS320 family member devices, including documentation. See this  
document for further information on TMS320 documentation or any TMS320 support products from Texas  
Instruments. An additional document, the TMS320 Third-Party Support Reference Guide (SPRU052), contains  
information about TMS320-related products from other companies in the industry. To receive TMS320 literature,  
contact the Product Information Center at (800) 477-8924.  
See Table 2 for a complete listing of development-support tools for the ’C6000. For information on pricing and  
availability, contact the nearest TI field sales office or authorized distributor.  
Table 2. 320C6000 Development-Support Tools  
DEVELOPMENT TOOL  
PLATFORM  
Software  
PART NUMBER  
AD0345AS8500RF - Single User  
AD0345BS8500RF - Multi-user  
Ada 95 Compiler  
Sun Solaris 2.3  
C Compiler/Assembler/Linker/Assembly Optimizer  
C Compiler/Assembler/Linker/Assembly Optimizer  
Simulator  
Win32  
SPARC Solaris  
Win32  
TMDX3246855-07  
TMDX324655-07  
TMDS3246851-07  
TMDS3246551-07  
TMDX324016X-07  
Simulator  
SPARC Solaris  
XDS510 Debugger/Emulation Software  
Win32, Windows NT  
Hardware  
§
XDS510 Emulator  
PC  
TMDS00510  
XDS510WS Emulator  
SCSI  
TMDS00510WS  
Software/Hardware  
PC/Win95/Windows NT  
PC/Win95/Windows NT  
EVM Evaluation Kit  
TMDX3260A6201  
TMDX326006201  
EVM Evaluation Kit (including TMDX3246855–07)  
§
Contact IRVINE Compiler Corporation (949) 250-1366 to order.  
NT support estimated availability 1Q00.  
Includes XDS510 board and JTAG emulation cable. TMDX324016X-07 C-source Debugger/Emulation software is not included.  
Includes XDS510WS box, SCSI cable, power supply, and JTAG emulation cable.  
XDS, XDS510, and XDS510WS are trademarks of Texas Instruments Incorporated.  
Win32 and Windows NT are trademarks of Microsoft Corporation.  
SPARC is a trademark of SPARC International, Inc.  
Solaris is a trademark of Sun Microsystems, Inc.  
22  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
S
D
M
3
I
2
T
0
A
C
L
6
2
0
S
1
I
B
G
,
N
SM J 32 0C 62 01 B  
P RO C ES S O R  
I
G
A
L
SGUS031 – APRIL 2000  
device and development-support tool nomenclature  
To designate the stages in the product development cycle, TI assigns prefixes to the part numbers of all TMS320  
devices and support tools. Each TMS320 member has one of three prefixes: SMX, SM, or SMJ. Texas  
Instruments recommends two of three possible prefix designators for support tools: TMDX and TMDS. These  
prefixes represent evolutionary stages of product development from engineering prototypes (SMX/TMDX)  
through fully qualified production devices/tools (SMJ/TMDS). This development flow follows.  
Device development evolutionary flow:  
SMX  
SM  
Experimental device that is not necessarily representative of the final device’s electrical  
specifications, 25°C tested, military/industrial ceramic dimpled Ball Grid Array package  
Fully TI-qualified production device; offered in extended temperature ranges: –40°C to +90°C (S  
range), and –55°C to +115°C (W range); in ceramic dimpled BGA package  
SMJ  
Fully SMD-qualified production device, –55°C to +115°C (W temperature range), in the ceramic  
dimpled Ball Grid Array package processed to MIL-PRF-38535  
Support tool development evolutionary flow:  
TMDX  
Development-support product that has not yet completed Texas Instruments internal qualification  
testing.  
TMDS  
Fully qualified development-support product  
TMX and TMP devices and TMDX development-support tools are shipped against the following disclaimer:  
“Developmental product is intended for internal evaluation purposes.”  
TMS devices and TMDS development-support tools have been characterized fully, and the quality and reliability  
of the device have been demonstrated fully. TI’s standard warranty applies.  
Predictions show that prototype devices (SMX or SM) have a greater failure rate than the standard production  
devices. Texas Instruments recommends that these devices not be used in any production system because their  
expected end-use failure rate still is undefined. Only qualified production devices are to be used.  
TI device nomenclature also includes a suffix with the device family name. This suffix indicates the package type  
(GLP) and the device speed range in megahertz (for example, 15 is 150 MHz). Figure 5 provides a legend for  
reading the complete device name.  
23  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
S
D
M
3
I
2
TA  
0
C
L
6
2
0
S
1
I
B
G
,
N
S MJ 3 20 C 6 20 1 B  
P RO CE SS OR  
I
G
A
L
SGUS031 – APRIL 2000  
device and development-support tool nomenclature (continued)  
SMJ 320  
C
6201B GLP  
15  
W
PREFIX  
DEVICE SPEED RANGE  
SMX = Experimental device  
SMJ = MIL-PRF-38535, QML  
15 = 150 MHz  
16 = 160 MHz  
20 = 200 MHz  
SM  
=
Commercial  
processing  
TEMPERATURE RANGE  
S
= –40 to 90°C, extended temperature  
W = –55 to 115°C, extended temperature  
DEVICE FAMILY  
320 = TMS320 family  
PACKAGE TYPE  
GLP = 429-ball ceramic BGA  
TECHNOLOGY  
C = CMOS  
DEVICE  
’6x DSP:  
6201  
6201B  
6203  
6701  
BGA  
=
Ball Grid Array  
Figure 5. TMS320 Device Nomenclature (Including SMJ320C6201B)  
documentation support  
Extensive documentation supports all TMS320 family generations of devices from product announcement  
through applications development. The types of documentation available include: data sheets, such as this  
document, with design specifications; complete user’s reference guides for all devices; technical briefs;  
development-support tools; and hardware and software applications. The following is a brief, descriptive list of  
support documentation specific to the ’C6x devices:  
The TMS320C6000 CPU and Instruction Set Reference Guide (literature number SPRU189) describes the  
’C6000 CPU architecture, instruction set, pipeline, and associated interrupts.  
The TMS320C6000 Peripherals Reference Guide (literature number SPRU190) describes the functionality of  
the peripherals available on ’C6x devices, such as the external memory interface (EMIF), host-port interface  
(HPI), multichannel buffered serial ports (McBSPs), direct-memory-access (DMA), enhanced  
direct-memory-access (EDMA) controller, expansion bus (XB), clocking and phase-locked loop (PLL); and  
power-down modes. This guide also includes information on internal data and program memories.  
The TMS320C6000 Programmer’s Guide (literature number SPRU198) describes ways to optimize C and  
assembly code for ’C6x devices and includes application program examples.  
The TMS320C6x C Source Debugger User’s Guide (literature number SPRU188) describes how to invoke the  
’C6x simulator and emulator versions of the C source debugger interface and discusses various aspects of the  
debugger, including: command entry, code execution, data management, breakpoints, profiling, and analysis.  
The TMS320C6x Peripheral Support Library Programmer’s Reference (literature number SPRU273) describes  
the contents of the ’C6x peripheral support library of functions and macros. It lists functions and macros both  
by header file and alphabetically, provides a complete description of each, and gives code examples to show  
how they are used.  
24  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
S
D
M
3
I
2
T
0
A
C
L
6
2
0
S
1
I
B
G
,
N
SM J 32 0C 62 01 B  
P RO C ES S O R  
I
G
A
L
SGUS031 – APRIL 2000  
documentation support (continued)  
TMS320C6000 Assembly Language Tools User’s Guide (literature number SPRU186) describes the assembly  
language tools (assembler, linker, and other tools used to develop assembly language code), assembler  
directives, macros, common object file format, and symbolic debugging directives for the ’C6000 generation of  
devices.  
The TMS320C6x Evaluation Module Reference Guide (literature number SPRU269) provides instructions for  
installing and operating the ’C6x evaluation module. It also includes support software documentation,  
application programming interfaces, and technical reference material.  
TMS320C62x Multichannel Evaluation Module User’s Guide (literature number SPRU285) provides  
instructions for installing and operating the ’C62x multichannel evaluation module. It also includes support  
software documentation, application programming interfaces, and technical reference material.  
TMS320C62x Multichannel Evaluation Module Technical Reference (SPRU308) provides provides technical  
reference information for the ’C62x multichannel evaluation module (McEVM). It includes support software  
documentation, application programming interface references, and hardware descriptions for the ’C62x  
McEVM.  
TMS320C6000 DSP/BIOS User’s Guide (literature number SPRU303) describes how to use DSP/BIOS tools  
and APIs to analyze embedded real-time DSP applications.  
Code Composer User’s Guide (literature number SPRU296) explains how to use the Code Composer  
development environment to build and debug embedded real-time DSP applications.  
Code Composer Studio Tutorial (literature number SPRU301) introduces the Code Composer Studio integrated  
development environment and software tools.  
The TMS320C6000 Technical Brief (literature number SPRU197) gives an introduction to the ’C62x/C67x  
devices, associated development tools, and third-party support.  
A series of DSP textbooks is published by Prentice-Hall and John Wiley & Sons to support DSP research and  
education. The TMS320 newsletter, Details on Signal Processing, is published quarterly and distributed to  
update TMS320 customers on product information. The TMS320 DSP bulletin board service (BBS) provides  
access to information pertaining to the TMS320 family, including documentation, source code, and object code  
for many DSP algorithms and utilities. The BBS can be reached at 281/274-2323.  
Information regarding TI DSP products is also available on the Worldwide Web at http://www.ti.com uniform  
resource locator (URL).  
25  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
S
D
M
3
I
2
TA  
0
C
L
6
2
0
S
1
I
B
G
,
N
S MJ 3 20 C 6 20 1 B  
P RO CE SS OR  
I
G
A
L
SGUS031 – APRIL 2000  
clock PLL  
All of the ’C62x clocks are generated from a single source through the CLKIN pin. This source clock either drives  
the PLL, which generates the internal CPU clock, or bypasses the PLL to become the CPU clock.  
To use the PLL to generate the CPU clock, the filter circuit shown in Figure 6 must be properly designed. For  
the ’C6201B, it must be powered by the I/O voltage (3.3 V).  
To configure the ’C62x PLL clock for proper operation, see Figure 6 and Table 3. To minimize the clock jitter,  
a single clean power supply should power both the ’C62x device and the external clock oscillator circuit. The  
minimum CLKIN rise and fall times should also be observed. See the input and output clocks section for input  
clock timing requirements.  
0 1 0 – ’C6201B CLKOUT1 Frequency Range 130–233 MHz  
0 0 1 – ’C6201B CLKOUT1 Frequency Range 65–200 MHz  
0 0 0 – ’C6201B CLKOUT1 Frequency Range 50–140 MHz  
3.3 V 2.5 V  
3 OUT  
’C6201B  
PLLV  
PLLF  
EMIF  
R1  
CLKOUT1  
CLKOUT2  
SSCLK  
1 IN  
CLKOUT  
2
PLLG  
10 µF  
0.1 µF C1 C2  
GND  
(Bypass)  
SDCLK  
CLKIN  
1 1 – MULT×4  
0 1 – Reserved  
1 0 – Reserved  
0 0 – MULT×1  
f(CLKOUT)=f(CLKIN)×4  
f(CLKOUT)=f(CLKIN)  
NOTES: A. For the ’C6201B CLKMODE x4, values for C1, C2, and R1 are fixed and apply to all valid frequency ranges of CLKIN and CLKOUT.  
B. For CLKMODE x1, the PLL is bypassed and all six external PLL components can be removed. For this case, the PLLV terminal has  
to be connected to a clean supply and the PLLG and PLLF terminals should be tied together.  
C. Due to overlap of frequency ranges when choosing the PLLFREQ, more than one frequency range can contain the CLKOUT1  
frequency. Choose the lowest frequency range that includes the desired frequency. For example, for CLKOUT1 = 133 MHz, a  
PLLFREQ value of 000b should be used for the ’C6201B. For CLKOUT1 = 200 MHz, PLLFREQ should be set to 001b for the  
’C6201B. PLLFREQ values other than 000b, 001b, and 010b are reserved.  
D. For the ’C6201B, the 3.3-V supply for the EMI filter (and PLLV) must be from the same 3.3-V power plane supplying the I/O voltage,  
DV  
.
DD  
Figure 6. PLL Block Diagram  
26  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
S
D
M
3
I
2
T
0
A
C
L
6
2
0
S
1
I
B
G
,
N
SM J 32 0C 62 01 B  
P RO C ES S O R  
I
G
A
L
SGUS031 – APRIL 2000  
clock PLL (continued)  
Table 3. 320C6201B PLL Component Selection Table  
CPU CLOCK  
CLKOUT2  
CLKIN  
RANGE  
(MHz)  
TYPICAL  
R1  
()  
C1  
(nF)  
C2  
(pF)  
FREQUENCY  
(CLKOUT1)  
CLKMODE  
RANGE  
(MHz)  
LOCK TIME  
(µs)  
RANGE (MHz)  
x4  
12.5–50  
50–200  
25–100  
60.4  
27  
560  
75  
Under some operating conditions, the maximum PLL lock time may vary as much as 150% from the specified typical value. For example, if the  
typical lock time is specified as 100 µs, the maximum value may be as long as 250 µs.  
power supply sequencing  
For the ’C6201B device, the 1.8-V supply powers the core and the 3.3-V supply powers the I/O buffers. The core  
supply should be powered up first, or at the same time as the I/O buffers. This is to ensure that the I/O buffers  
have valid inputs from the core before the output buffers are powered up, thus preventing bus contention with  
other chips on the board.  
27  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
S
D
M
3
I
2
TA  
0
C
L
6
2
0
S
1
I
B
G
,
N
S MJ 3 20 C 6 20 1 B  
P RO CE SS OR  
I
G
A
L
SGUS031 – APRIL 2000  
absolute maximum ratings over operating case temperature range (unless otherwise noted)†  
Supply voltage range, CV (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.3 V to 2.3 V  
DD  
Supply voltage range, DV (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.3 V to 4 V  
DD  
Input voltage range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.3 V to 4 V  
Output voltage range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.3 V to 4 V  
Operating case temperature range T : (S temp version) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –40_C to 90_C  
C
(W temp version) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –55_C to 115_C  
Storage temperature range, T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –55_C to 150_C  
stg  
Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and  
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not  
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
NOTE 1: All voltage values are with respect to V  
SS  
.
recommended operating conditions  
’C6201B  
UNIT  
MIN NOM  
MAX  
1.89  
3.46  
0
CV  
DV  
Supply voltage  
1.71  
3.14  
0
1.8  
3.30  
0
V
V
DD  
DD  
Supply voltage  
V
V
V
Supply ground  
V
SS  
High-level input voltage  
Low-level input voltage  
High-level output current  
Low-level output current  
2.0  
V
IH  
IL  
0.8  
–12  
12  
V
I
mA  
mA  
OH  
OL  
I
S temp version  
W temp version  
–40  
–55  
90  
T
C
_C  
Operating case temperature  
115  
Case temperature is measured at package bottom. There is no direct thermal path from the chip through the lid.  
28  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
S
D
M
3
I
2
T
0
A
C
L
6
2
0
S
1
I
B
G
,
N
SM J 32 0C 62 01 B  
P RO C ES S O R  
I
G
A
L
SGUS031 – APRIL 2000  
electrical characteristics over recommended ranges of supply voltage and operating case  
temperature (unless otherwise noted)  
’C6201B  
PARAMETER  
High-level output voltage  
TEST CONDITIONS  
UNIT  
V
MIN  
TYP  
MAX  
DV = MIN,  
DD  
V
V
2.4  
OH  
I
= MAX  
OH  
DV = MIN,  
DD  
Low-level output voltage  
0.6  
V
OL  
I
OL  
= MAX  
I
I
Input current  
V = V to DV  
±10  
±10  
uA  
uA  
I
I
SS  
DD  
Off-state output current  
V
O
= DV or 0 V  
OZ  
DD  
CV = NOM,  
CPU clock = 167 MHz  
DD  
I
I
I
Supply current, CPU + CPU memory access  
380  
240  
90  
mA  
mA  
mA  
DD2V  
CV = NOM,  
DD  
§
Supply current, peripherals  
DD2V  
DD3V  
CPU clock = 167 MHz  
DV = NOM,  
DD  
Supply current, I/O pins  
CPU clock = 167 MHz  
C
C
Input capacitance  
Output capacitance  
15  
15  
pF  
pF  
i
o
TMS and TDI are not included due to internal pullups.  
TRST is not included due to internal pulldown.  
Measured with average CPU activity:  
50% of time:  
50% of time:  
8 instructions per cycle, 32-bit DMEM access per cycle  
2 instructions per cycle, 16-bit DMEM access per cycle  
§
Measured with average peripheral activity:  
50% of time: Timers at max rate, McBSPs at E1 rate, and DMA burst transfer between DMEM and SDRAM  
50% of time: Timers at max rate, McBSPs at E1 rate, and DMA servicing McBSPs  
Measured with average I/O activity (30-pF load):  
25% of time:  
25% of time:  
50% of time:  
Reads from external SDRAM  
Writes to external SDRAM  
No activity  
29  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
S
D
M
3
I
2
TA  
0
C
L
6
2
0
S
1
I
B
G
,
N
S MJ 3 20 C 6 20 1 B  
P RO CE SS OR  
I
G
A
L
SGUS031 – APRIL 2000  
PARAMETER MEASUREMENT INFORMATION  
I
OL  
Tester Pin  
Electronics  
Output  
Under  
Test  
50 Ω  
V
ref  
C = 30 pF  
T
I
OH  
Typical distributed load circuit capacitance  
Figure 7. TTL-Level Outputs  
signal transition levels  
All input and output timing parameters are referenced to 1.5 V for both “0” and “1” logic levels.  
V
ref  
= 1.5 V  
Figure 8. Input and Output Voltage Reference Levels for AC Timing Measurements  
30  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
SM 3 2 0 C6 2 0 1 B, SM J 32 0C 62 01 B  
DI GI TAL SI G NAL P RO C ES S O R  
SGUS031 – APRIL 2000  
INPUT AND OUTPUT CLOCKS  
timing requirements for CLKIN (see Figure 9)  
’C6201B-15  
’C6201B-20  
CLKMODE  
CLKMODE  
= x1  
CLKMODE  
= x4  
CLKMODE  
= x1  
NO.  
UNIT  
= x4  
MIN MAX  
26.7  
MIN MAX  
6.67  
MIN MAX  
MIN MAX  
1
2
3
4
t
t
t
t
Cycle time, CLKIN  
20  
*8  
*8  
*5  
5
*2.35  
*2.35  
*0.6  
ns  
ns  
ns  
ns  
c(CLKIN)  
w(CLKINH)  
w(CLKINL)  
t(CLKIN)  
Pulse duration, CLKIN high  
Pulse duration, CLKIN low  
Transition time, CLKIN  
*9.8  
*2.7  
*9.8  
*2.7  
*5  
*0.6  
*Not production tested.  
1
4
2
CLKIN  
3
4
Figure 9. CLKIN Timings  
switching characteristics for CLKOUT1†‡ (see Figure 10)  
’C6201B  
CLKMODE = x4  
CLKMODE = x1  
NO.  
PARAMETER  
UNIT  
MIN  
MAX  
MIN  
MAX  
1
2
3
4
t
t
t
t
Cycle time, CLKOUT1  
*P – 0.7  
*P + 0.7  
*P – 0.7  
*PH – 0.5  
*PL – 0.5  
*P + 0.7  
*PH + 0.5  
*PL + 0.5  
*0.6  
ns  
ns  
ns  
ns  
c(CKO1)  
w(CKO1H)  
w(CKO1L)  
t(CKO1)  
Pulse duration, CLKOUT1 high  
Pulse duration, CLKOUT1 low  
Transition time, CLKOUT1  
*(P/2) – 0.5 *(P/2 ) + 0.5  
*(P/2) – 0.5 *(P/2 ) + 0.5  
*0.6  
PH is the high period of CLKIN in ns and PL is the low period of CLKIN in ns.  
P = 1/CPU clock frequency in nanoseconds (ns).  
*Not production tested.  
1
4
2
CLKOUT1  
3
4
Figure 10. CLKOUT1 Timings  
P
R
s
e
a
O
D
n
U
C
T
P
R
E
V
I
E
W
i
n
f
d
n
o
e
r
m
a
t
i
p
a
o
m
l
n
c
o
n
c
e
C
s
s
r
n
h
s
a
I
w
p
r
e
u
o
o
r
m
u
d
u
t
e
c
t
s
i
d
n
a
e
t
a
h
e
e
f
o
d
r
m
a
t
i
v
e
o the r  
o
r
d
e
i
g
p
n
r
h
a
s
e
o
f
v
e
l
o
e
.
n
t
.
r
n
a
c
t
i
s
i
c
t
s
a
n
s
p
c
n
i
f
i
c
e
a
t
i
o
s
a
s
r
e
d
e
u
s
i
g
g
e
o
s
s
T
e
u
x
c
a
t
s
t
r
n
t r  
not ice .  
s
e
r
v
s
t
h
e
r
i
g
h
t
t
o
c
h
g
o
d
i
c
o
n
t
i
n
e
t
h
e
p
r
o
d
i
t
h
t
31  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
S
D
M
3
I
2
TA  
0
C
L
6
2
0
S
1
I
B
G
,
N
S MJ 3 20 C 6 20 1 B  
P RO CE SS OR  
I
G
A
L
SGUS031 – APRIL 2000  
INPUT AND OUTPUT CLOCKS (CONTINUED)  
switching characteristics for CLKOUT2(see Figure 11)  
’C6201B  
MIN  
NO.  
PARAMETER  
UNIT  
MAX  
1
2
3
4
t
t
t
t
Cycle time, CLKOUT2  
*2P – 0.7  
*P – 0.9  
*P – 0.7  
*2P + 0.7  
*P + 0.7  
*P + 0.9  
*0.6  
ns  
ns  
ns  
ns  
c(CKO2)  
w(CKO2H)  
w(CKO2L)  
t(CKO2)  
Pulse duration, CLKOUT2 high  
Pulse duration, CLKOUT2 low  
Transition time, CLKOUT2  
P = 1/CPU clock frequency in ns.  
*Not production tested.  
1
4
2
CLKOUT2  
3
4
Figure 11. CLKOUT2 Timings  
32  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
S
D
M
3
I
2
T
0
A
C
L
6
2
0
S
1
I
B
G
,
N
SM J 32 0C 62 01 B  
P RO C ES S O R  
I
G
A
L
SGUS031 – APRIL 2000  
INPUT AND OUTPUT CLOCKS (CONTINUED)  
SDCLK, SSCLK timing parameters  
SDCLK timing parameters are the same as CLKOUT2 parameters.  
SSCLK timing parameters are the same as CLKOUT1 or CLKOUT2 parameters, depending on SSCLK  
configuration.  
switching characteristics for the relation of SSCLK, SDCLK, and CLKOUT2 to CLKOUT1  
(see Figure 12)†  
’C6201B  
NO.  
PARAMETER  
UNIT  
MIN  
MAX  
1
2
3
4
t
t
t
t
Delay time, CLKOUT1 edge to SSCLK edge  
(P/2) + 0.2  
(P/2) – 1  
(P/2) + 4.2  
(P/2) + 2.4  
ns  
ns  
ns  
ns  
d(CKO1-SSCLK)  
d(CKO1-SSCLK1/2)  
d(CKO1-CKO2)  
Delay time, CLKOUT1 edge to SSCLK edge (1/2 clock rate)  
Delay time, CLKOUT1 edge to CLKOUT2 edge  
Delay time, CLKOUT1 edge to SDCLK edge  
*(P/2) – 1 *(P/2) + 2.4  
(P/2) – 1 (P/2) + 2.4  
d(CKO1-SDCLK)  
P = 1/CPU clock frequency in ns.  
*Not production tested.  
CLKOUT1  
1
2
3
4
SSCLK  
SSCLK (1/2rate)  
CLKOUT2  
SDCLK  
Figure 12. Relation of CLKOUT2, SDCLK, and SSCLK to CLKOUT1  
33  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
S
D
M
3
I
2
TA  
0
C
L
6
2
0
S
1
I
B
G
,
N
S MJ 3 20 C 6 20 1 B  
P RO CE SS OR  
I
G
A
L
SGUS031 – APRIL 2000  
ASYNCHRONOUS MEMORY TIMING  
timing requirements for asynchronous memory cycles(see Figure 13 and Figure 14)  
’C6201B  
NO.  
UNIT  
MIN MAX  
6
7
t
t
t
t
Setup time, read EDx valid before CLKOUT1 high  
Hold time, read EDx valid after CLKOUT1 high  
Setup time, ARDY valid before CLKOUT1 high  
Hold time, ARDY valid after CLKOUT1 high  
4.0  
0.8  
3.0  
1.8  
ns  
ns  
ns  
ns  
su(EDV-CKO1H)  
h(CKO1H-EDV)  
su(ARDY-CKO1H)  
h(CKO1H-ARDY)  
10  
11  
To ensure data setup time, simply program the strobe width wide enough. ARDY is internally synchronized. If ARDY does meet setup or hold  
time, it may be recognized in the current cycle or the next cycle. Thus, ARDY can be an asynchronous input.  
switching characteristics for asynchronous memory cycles(see Figure 13 and Figure 14)  
’C6201B  
NO.  
PARAMETER  
UNIT  
MIN  
MAX  
4.0  
1
2
t
t
t
t
t
t
t
t
t
t
Delay time, CLKOUT1 high to CEx valid  
Delay time, CLKOUT1 high to BEx valid  
Delay time, CLKOUT1 high to BEx invalid  
Delay time, CLKOUT1 high to EAx valid  
Delay time, CLKOUT1 high to EAx invalid  
Delay time, CLKOUT1 high to AOE valid  
Delay time, CLKOUT1 high to ARE valid  
Delay time, CLKOUT1 high to EDx valid  
Delay time, CLKOUT1 high to EDx invalid  
Delay time, CLKOUT1 high to AWE valid  
–0.2  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
d(CKO1H-CEV)  
d(CKO1H-BEV)  
d(CKO1H-BEIV)  
d(CKO1H-EAV)  
d(CKO1H-EAIV)  
d(CKO1H-AOEV)  
d(CKO1H-AREV)  
d(CKO1H-EDV)  
d(CKO1H-EDIV)  
d(CKO1H-AWEV)  
4.0  
3
*–0.2  
4
4.0  
5
*–0.2  
–0.2  
–0.2  
8
4.0  
4.0  
4.0  
9
12  
13  
14  
*–0.2  
–0.2  
4.0  
The minimum delay is also the minimum output hold after CLKOUT1 high.  
*Not production tested.  
34  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
S
D
M
3
I
2
T
0
A
C
L
6
2
0
S
1
I
B
G
,
N
SM J 32 0C 62 01 B  
P RO C ES S O R  
I
G
A
L
SGUS031 – APRIL 2000  
ASYNCHRONOUS MEMORY TIMING (CONTINUED)  
Not ready = 2  
Setup = 2  
Strobe = 5  
HOLD = 1  
CLKOUT1  
CEx  
1
2
4
1
3
BE[3:0]  
EA[21:2]  
ED[31:0]  
AOE  
5
7
6
8
8
9
9
ARE  
AWE  
11  
11  
10  
10  
ARDY  
Figure 13. Asynchronous Memory Read Timing  
Not ready = 2  
Setup = 2  
Strobe = 5  
HOLD = 1  
CLKOUT1  
1
2
4
1
3
5
CEx  
BE[3:0]  
EA[21:2]  
12  
13  
14  
ED[31:0]  
AOE  
ARE  
14  
AWE  
11  
11  
10  
10  
ARDY  
Figure 14. Asynchronous Memory Write Timing  
35  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
S
D
M
3
I
2
TA  
0
C
L
6
2
0
S
1
I
B
G
,
N
S MJ 3 20 C 6 20 1 B  
P RO CE SS OR  
I
G
A
L
SGUS031 – APRIL 2000  
SYNCHRONOUS-BURST MEMORY TIMING  
timing requirements for synchronous-burst SRAM cycles (full-rate SSCLK) (see Figure 15)  
’C6201B  
NO.  
UNIT  
MIN  
1.7  
MAX  
7
8
t
t
Setup time, read EDx valid before SSCLK high  
Hold time, read EDx valid after SSCLK high  
ns  
ns  
su(EDV-SSCLKH)  
1.5  
h(SSCLKH-EDV)  
switching characteristics for synchronous-burst SRAM cycles(full-rate SSCLK)  
(see Figure 15 and Figure 16)  
’C6201B  
MIN  
NO.  
PARAMETER  
UNIT  
MAX  
1
2
t
t
t
t
t
t
t
t
t
t
t
t
t
t
Output setup time, CEx valid before SSCLK high  
Output hold time, CEx valid after SSCLK high  
Output setup time, BEx valid before SSCLK high  
Output hold time, BEx invalid after SSCLK high  
Output setup time, EAx valid before SSCLK high  
Output hold time, EAx invalid after SSCLK high  
Output setup time, SSADS valid before SSCLK high  
Output hold time, SSADS valid after SSCLK high  
Output setup time, SSOE valid before SSCLK high  
Output hold time, SSOE valid after SSCLK high  
Output setup time, EDx valid before SSCLK high  
Output hold time, EDx invalid after SSCLK high  
Output setup time, SSWE valid before SSCLK high  
Output hold time, SSWE valid after SSCLK high  
0.5P – 1.3  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
osu(CEV-SSCLKH)  
oh(SSCLKH-CEV)  
osu(BEV-SSCLKH)  
oh(SSCLKH-BEIV)  
osu(EAV-SSCLKH)  
oh(SSCLKH-EAIV)  
osu(ADSV-SSCLKH)  
oh(SSCLKH-ADSV)  
osu(OEV-SSCLKH)  
oh(SSCLKH-OEV)  
osu(EDV-SSCLKH)  
oh(SSCLKH-EDIV)  
osu(WEV-SSCLKH)  
0.5P – 2.3  
0.5P – 1.3  
*0.5P – 2.3  
0.5P – 1.3  
*0.5P – 2.3  
0.5P – 1.3  
0.5P – 2.3  
0.5P – 1.3  
0.5P – 2.3  
0.5P – 1.3  
*0.5P – 2.3  
0.5P – 1.3  
0.5P – 2.3  
3
4
5
6
9
10  
11  
12  
13  
14  
15  
16  
oh(SSCLKH-WEV)  
When the PLL is used (CLKMODE x4), P = 1/CPU clock frequency in ns. For example, when running parts at 200 MHz, use P = 5 ns.  
For CLKMODE x1, 0.5P is defined as PH (pulse duration of CLKIN high) for all output setup times; 0.5P is defined as PL (pulse duration of CLKIN  
low) for all output hold times.  
*Not production tested.  
36  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
S
D
M
3
I
2
T
0
A
C
L
6
2
0
S
1
I
B
G
,
N
SM J 32 0C 62 01 B  
P RO C ES S O R  
I
G
A
L
SGUS031 – APRIL 2000  
SYNCHRONOUS-BURST MEMORY TIMING (CONTINUED)  
SSCLK  
CEx  
1
2
3
5
4
BE[3:0]  
BE1  
A1  
BE2  
BE3  
BE4  
6
EA[21:2]  
A2  
7
A3  
8
A4  
Q1  
Q2  
Q3  
Q4  
ED[31:0]  
SSADS  
9
10  
11  
12  
SSOE  
SSWE  
Figure 15. SBSRAM Read Timing (Full-Rate SSCLK)  
SSCLK  
CEx  
1
3
2
4
BE[3:0]  
BE1  
A1  
BE2  
A2  
BE3  
A3  
BE4  
5
6
EA[21:2]  
ED[31:0]  
A4  
13  
14  
D4  
D1  
D2  
D3  
9
10  
SSADS  
SSOE  
15  
16  
SSWE  
Figure 16. SBSRAM Write Timing (Full-Rate SSCLK)  
37  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
S M 32 0C 6 2 01 B, S MJ 3 20 C 6 20 1 B  
DI GI TA L SI GN AL P RO CE SS OR  
SGUS031 – APRIL 2000  
SYNCHRONOUS-BURST MEMORY TIMING (CONTINUED)  
timing requirements for synchronous-burst SRAM cycles (half-rate SSCLK)  
(see Figure 17)  
’C6201B  
NO.  
UNIT  
MIN  
2.5  
MAX  
7
8
t
t
Setup time, read EDx valid before SSCLK high  
Hold time, read EDx valid after SSCLK high  
ns  
ns  
su(EDV-SSCLKH)  
1.5  
h(SSCLKH-EDV)  
switching characteristics for synchronous-burst SRAM cycles(half-rate SSCLK)  
(see Figure 17 and Figure 18)  
’C6201B  
MIN  
NO.  
PARAMETER  
UNIT  
MAX  
1
2
t
t
t
t
t
t
t
t
t
t
t
t
t
Output setup time, CEx valid before SSCLK high  
Output hold time, CEx valid after SSCLK high  
Output setup time, BEx valid before SSCLK high  
Output hold time, BEx invalid after SSCLK high  
Output setup time, EAx valid before SSCLK high  
Output hold time, EAx invalid after SSCLK high  
Output setup time, SSADS valid before SSCLK high  
Output hold time, SSADS valid after SSCLK high  
Output setup time, SSOE valid before SSCLK high  
Output hold time, SSOE valid after SSCLK high  
Output setup time, EDx valid before SSCLK high  
Output hold time, EDx invalid after SSCLK high  
Output setup time, SSWE valid before SSCLK high  
1.5P – 3  
0.5P – 1.5  
1.5P – 3  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
osu(CEV-SSCLKH)  
oh(SSCLKH-CEV)  
osu(BEV-SSCLKH)  
oh(SSCLKH-BEIV)  
osu(EAV-SSCLKH)  
oh(SSCLKH-EAIV)  
osu(ADSV-SSCLKH)  
oh(SSCLKH-ADSV)  
osu(OEV-SSCLKH)  
oh(SSCLKH-OEV)  
osu(EDV-SSCLKH)  
oh(SSCLKH-EDIV)  
osu(WEV-SSCLKH)  
3
4
*0.5P – 1.5  
1.5P – 3  
5
6
*0.5P – 1.5  
1.5P – 3  
9
10  
11  
12  
13  
14  
15  
0.5P – 1.5  
1.5P – 3  
0.5P – 1.5  
1.5P – 3  
*0.5P – 1.5  
1.5P – 3  
16  
t
Output hold time, SSWE valid after SSCLK high  
0.5P – 1.5  
ns  
oh(SSCLKH-WEV)  
When the PLL is used (CLKMODE x4), P = 1/CPU clock frequency in ns. For example, when running parts at 200 MHz, use P = 5 ns.  
For CLKMODE x1:  
1.5P = P + PH, where P = 1/CPU clock frequency, and PH = pulse duration of CLKIN high.  
0.5P = PL, where PL = pulse duration of CLKIN low.  
*Not production tested.  
P
R
s
e
a
O
D
n
U
C
T
P
R
E
V
I
E
W
i
n
f
d
n
o
e
r
m
a
t
i
p
a
o
m
l
n
c
o
n
c
e
C
s
s
r
n
h
s
a
I
w
p
r
e
u
o
o
r
m
u
d
u
t
e
c
t
s
i
d
n
a
e
t
a
h
e
e
f
o
d
r
m
at  
i
v
e
ot her  
o
r
d
e
i
g
p
n
r
h
a
s
e
o
f
v
e
l
o
e
.
n
t
.
r
n
a
c
t
i
s
i
c
t
s
a
n
s
p
c
n
i
f
i
c
e
a
t
i
o
s
a
s
r
e
d
e
u
s
i
g
g
e
o
s
s
T
e
u
x
c
a
t
s
t
r
n
t r  
not ice .  
s
er  
v
s
t
h
e
r
i
g
h
t
to  
c
h
g
o
d
i
c
o
n
ti  
n
e
t
h
e
p
r
o
d
i
t
h
t
38  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
S
D
M
3
I
2
T
0
A
C
L
6
2
0
S
1
I
B
G
,
N
SM J 32 0C 62 01 B  
P RO C ES S O R  
I
G
A
L
SGUS031 – APRIL 2000  
SYNCHRONOUS-BURST MEMORY TIMING (CONTINUED)  
SSCLK  
1
2
CEx  
3
4
6
BE[3:0]  
BE1  
BE2  
A2  
BE3  
A3  
BE4  
5
A1  
A4  
8
EA[21:2]  
7
Q1  
Q2  
Q3  
10  
Q4  
ED[31:0]  
SSADS  
9
11  
12  
SSOE  
SSWE  
Figure 17. SBSRAM Read Timing (1/2 Rate SSCLK)  
SSCLK  
1
3
2
CEx  
BE[3:0]  
4
6
BE1  
BE2  
A2  
BE3  
A3  
BE4  
5
EA[21:2]  
A1  
A4  
Q4  
13  
14  
10  
Q1  
Q2  
Q3  
ED[31:0]  
9
SSADS  
SSOE  
15  
16  
SSWE  
Figure 18. SBSRAM Write Timing (1/2 Rate SSCLK)  
39  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
S M 32 0C 6 2 01 B, S MJ 3 20 C 6 20 1 B  
DI GI TA L SI GN AL P RO CE SS OR  
SGUS031 – APRIL 2000  
SYNCHRONOUS DRAM TIMING  
timing requirements for synchronous DRAM cycles (see Figure 19)  
’C6201B  
NO.  
UNIT  
MIN MAX  
7
8
t
t
Setup time, read EDx valid before SDCLK high  
Hold time, read EDx valid after SDCLK high  
0.5  
3
ns  
ns  
su(EDV-SDCLKH)  
h(SDCLKH-EDV)  
switching characteristics for synchronous DRAM cycles(see Figure 19–Figure 24)  
’C6201B  
NO.  
PARAMETER  
UNIT  
MIN  
MAX  
1
2
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
Output setup time, CEx valid before SDCLK high  
Output hold time, CEx valid after SDCLK high  
Output setup time, BEx valid before SDCLK high  
Output hold time, BEx invalid after SDCLK high  
Output setup time, EAx valid before SDCLK high  
Output hold time, EAx invalid after SDCLK high  
Output setup time, SDCAS valid before SDCLK high  
Output hold time, SDCAS valid after SDCLK high  
Output setup time, EDx valid before SDCLK high  
Output hold time, EDx invalid after SDCLK high  
Output setup time, SDWE valid before SDCLK high  
Output hold time, SDWE valid after SDCLK high  
Output setup time, SDA10 valid before SDCLK high  
Output hold time, SDA10 invalid after SDCLK high  
Output setup time, SDRAS valid before SDCLK high  
Output hold time, SDRAS valid after SDCLK high  
1.5P – 3.5  
0.5P – 1  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
osu(CEV-SDCLKH)  
oh(SDCLKH-CEV)  
3
1.5P – 3.5  
*0.5P – 1  
1.5P – 3.5  
*0.5P – 1  
1.5P – 3.5  
0.5P – 1  
osu(BEV-SDCLKH)  
oh(SDCLKH-BEIV)  
osu(EAV-SDCLKH)  
oh(SDCLKH-EAIV)  
osu(SDCAS-SDCLKH)  
oh(SDCLKH-SDCAS)  
osu(EDV-SDCLKH)  
oh(SDCLKH-EDIV)  
osu(SDWE-SDCLKH)  
oh(SDCLKH-SDWE)  
osu(SDA10V-SDCLKH)  
oh(SDCLKH-SDA10IV)  
osu(SDRAS-SDCLKH)  
oh(SDCLKH-SDRAS)  
4
5
6
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
1.5P – 3.5  
*0.5P – 1  
1.5P – 3.5  
0.5P – 1  
1.5P – 3.5  
*0.5P – 1  
1.5P – 3.5  
0.5P – 1  
When the PLL is used (CLKMODE x4), P = 1/CPU clock frequency in ns. For example, when running parts at 200 MHz, use P = 5 ns.  
For CLKMODE x1:  
1.5P = P + PH, where P = 1/CPU clock frequency, and PH = pulse duration of CLKIN high.  
0.5P = PL, where PL = pulse duration of CLKIN low.  
*Not production tested.  
P
R
s
e
a
O
D
n
U
C
T
P
R
E
V
I
E
W
i
n
f
d
n
o
e
r
m
a
t
i
p
a
o
m
l
n
c
o
n
c
e
C
s
s
r
n
h
s
a
I
w
p
r
e
u
o
o
r
m
u
d
u
t
e
c
t
s
i
d
n
a
e
t
a
h
e
e
f
o
d
r
m
at  
i
v
e
ot her  
or  
d
e
i
g
p
n
r
h
a
s
e
o
f
v
e
l
o
e
.
n
t
.
r
n
a
c
t
i
s
i
c
t
s
a
n
s
p
c
n
i
f
i
c
e
a
t
i
o
s
a
s
r
e
d
e
u
s
i
g
g
e
o
s
s
T
e
u
x
c
a
t
s
t
r
n
t r  
not ice .  
s
er  
v
s
t
h
e
r
i
g
h
t
to  
c
h
g
o
d
i
c
o
n
ti  
n
e
t
h
e
p
r
o
d
i
t
h
t
40  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
S
D
M
3
I
2
T
0
A
C
L
6
2
0
S
1
I
B
G
,
N
SM J 32 0C 62 01 B  
P RO C ES S O R  
I
G
A
L
SGUS031 – APRIL 2000  
SYNCHRONOUS DRAM TIMING (CONTINUED)  
READ  
READ  
READ  
SDCLK  
CEx  
1
5
2
3
4
BE[3:0]  
EA[15:2]  
BE1  
BE2  
CA3  
BE3  
7
6
CA1  
CA2  
8
D1  
D2  
D3  
ED[31:0]  
15  
9
16  
10  
SDA10  
SDRAS  
SDCAS  
SDWE  
Figure 19. Three SDRAM Read Commands  
WRITE  
WRITE  
WRITE  
SDCLK  
CEx  
1
2
3
4
BE[3:0]  
BE1  
CA1  
BE2  
CA2  
D2  
BE3  
5
6
EA[15:2]  
CA3  
D3  
11  
12  
D1  
ED[31:0]  
SDA10  
15  
16  
SDRAS  
SDCAS  
9
10  
14  
13  
SDWE  
Figure 20. Three SDRAM WRT Commands  
41  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
S
D
M
3
I
2
TA  
0
C
L
6
2
0
S
1
I
B
G
,
N
S MJ 3 20 C 6 20 1 B  
P RO CE SS OR  
I
G
A
L
SGUS031 – APRIL 2000  
SYNCHRONOUS DRAM TIMING (CONTINUED)  
ACTV  
SDCLK  
1
2
CEx  
BE[3:0]  
5
Bank Activate/Row Address  
EA[15:2]  
ED[31:0]  
15  
Row Address  
SDA10  
17  
18  
SDRAS  
SDCAS  
SDWE  
Figure 21. SDRAM ACTV Command  
DCAB  
SDCLK  
1
2
CEx  
BE[3:0]  
EA[15:2]  
ED[31:0]  
15  
16  
SDA10  
17  
18  
SDRAS  
SDCAS  
13  
14  
SDWE  
Figure 22. SDRAM DCAB Command  
42  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
S
D
M
3
I
2
T
0
A
C
L
6
2
0
S
1
I
B
G
,
N
SM J 32 0C 62 01 B  
P RO C ES S O R  
I
G
A
L
SGUS031 – APRIL 2000  
SYNCHRONOUS DRAM TIMING (CONTINUED)  
REFR  
SDCLK  
CEx  
1
2
BE[3:0]  
EA[15:2]  
ED[31:0]  
SDA10  
SDRAS  
17  
18  
9
10  
SDCAS  
SDWE  
Figure 23. SDRAM REFR Command  
MRS  
SDCLK  
1
2
6
CEx  
BE[3:0]  
5
EA[15:2]  
ED[31:0]  
SDA10  
MRS Value  
17  
18  
10  
14  
SDRAS  
9
SDCAS  
SDWE  
13  
Figure 24. SDRAM MRS Command  
43  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
S
D
M
3
I
2
TA  
0
C
L
6
2
0
S
1
I
B
G
,
N
S MJ 3 20 C 6 20 1 B  
P RO CE SS OR  
I
G
A
L
SGUS031 – APRIL 2000  
HOLD/HOLDA TIMING  
timing requirements for the HOLD/HOLDA cycles(see Figure 25)  
’C6201B  
NO.  
UNIT  
MIN MAX  
1
2
t
t
Setup time, HOLD high before CLKOUT1 high  
Hold time, HOLD low after CLKOUT1 high  
*1  
*4  
ns  
ns  
su(HOLDH-CKO1H)  
h(CKO1H-HOLDL)  
HOLD is synchronized internally. Therefore, if setup and hold times are not met, it will either be recognized in the current cycle or in the next cycle.  
Thus, HOLD can be an asynchronous input.  
*Not production tested.  
switching characteristics for the HOLD/HOLDA cycles(see Figure 25)  
’C6201B  
NO.  
PARAMETER  
UNIT  
MIN  
*4P  
*P  
MAX  
§
3
4
5
6
7
8
9
t
t
t
t
t
t
t
Response time, HOLD low to EMIF Bus high impedance  
Response time, EMIF Bus high impedance to HOLDA low  
Response time, HOLD high to HOLDA high  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
R(HOLDL-BHZ)  
R(BHZ-HOLDAL)  
R(HOLDH-HOLDAH)  
d(CKO1H-HOLDAL)  
d(CKO1H-BHZ)  
*2P  
*7P  
8
*4P  
*1  
Delay time, CLKOUT1 high to HOLDA valid  
Delay time, CLKOUT1 high to EMIF Bus high impedance  
*3  
*11  
*11  
*6P  
Delay time, CLKOUT1 high to EMIF Bus low impedance  
*3  
d(CKO1H-BLZ)  
Response time, HOLD high to EMIF Bus low impedance  
*3P  
R(HOLDH-BLZ)  
P = 1/CPU clock frequency in ns. For example, when running parts at 200 MHz, use P = 5 ns.  
*Not production tested.  
§
All pending EMIF transactions are allowed to complete before HOLDA is asserted. The worst cases for this is an asynchronous read or write  
with external ARDY used or a minimum of eight consecutive SDRAM reads or writes when RBTR8 = 1. If no bus transactions are occurring, then  
the minimum delay time can be achieved. Also, bus hold can be indefinitely delayed by setting NOHOLD = 1.  
EMIF Bus consists of CE[3:0], BE[3:0], ED[31:0], EA[21:2], ARE, AOE, AWE, SSADS, SSOE, SSWE, SDA10, SDRAS, SDCAS, and SDWE.  
DSP Owns Bus  
External Requester  
DSP Owns Bus  
5
4
9
2
3
CLKOUT1  
HOLD  
2
1
1
6
6
HOLDA  
7
8
EMIF Bus  
’C62x  
Ext Req  
’C62x  
EMIF Bus consists of CE[3:0], BE[3:0], ED[31:0], EA[21:2], ARE, AOE, AWE, SSADS, SSOE, SSWE, SDA10, SDRAS, SDCAS, and SDWE.  
Figure 25. HOLD/HOLDA Timing  
44  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
S
D
M
3
I
2
T
0
A
C
L
6
2
0
S
1
I
B
G
,
N
SM J 32 0C 62 01 B  
P RO C ES S O R  
I
G
A
L
SGUS031 – APRIL 2000  
RESET TIMING  
timing requirements for reset (see Figure 26)  
’C6201B  
NO.  
UNIT  
MIN  
MAX  
CLKOUT1  
cycles  
Width of the RESET pulse (PLL stable)  
*10  
1
t
w(RST)  
Width of the RESET pulse (PLL needs to sync up)  
250  
µs  
This parameter applies to CLKMODE x1 when CLKIN is stable and applies to CLKMODE x4 when CLKIN and PLL are stable.  
This parameter only applies to CLKMODE x4. The RESET signal is not connected internally to the clock PLL circuit. The PLL, however, may  
need up to 250 µs to stabilize following device power up or after PLL configuration has been changed. During that time, RESET must be asserted  
to ensure proper device operation. See the clock PLL section for PLL lock times.  
*Not production tested.  
switching characteristics during reset§¶ (see Figure 26)  
’C6201B  
NO.  
PARAMETER  
UNIT  
MIN  
MAX  
CLKOUT1  
cycles  
2
t
Response time to change of value in RESET signal  
2
R(RST)  
3
4
t
t
t
t
t
t
t
t
t
t
t
t
Delay time, CLKOUT1 high to CLKOUT2 invalid  
Delay time, CLKOUT1 high to CLKOUT2 valid  
Delay time, CLKOUT1 high to SDCLK invalid  
Delay time, CLKOUT1 high to SDCLK valid  
Delay time, CLKOUT1 high to SSCLK invalid  
Delay time, CLKOUT1 high to SSCLK valid  
Delay time, CLKOUT1 high to low group invalid  
Delay time, CLKOUT1 high to low group valid  
Delay time, CLKOUT1 high to high group invalid  
Delay time, CLKOUT1 high to high group valid  
Delay time, CLKOUT1 high to Z group high impedance  
Delay time, CLKOUT1 high to Z group valid  
*–1  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
d(CKO1H-CKO2IV)  
d(CKO1H-CKO2V)  
d(CKO1H-SDCLKIV)  
d(CKO1H-SDCLKV)  
d(CKO1H-SSCKIV)  
d(CKO1H-SSCKV)  
d(CKO1H-LOWIV)  
d(CKO1H-LOWV)  
d(CKO1H-HIGHIV)  
d(CKO1H-HIGHV)  
d(CKO1H-ZHZ)  
10  
10  
5
*–1  
*–1  
*–1  
*–1  
*–1  
6
7
8
10  
9
10  
11  
12  
13  
14  
*10  
*10  
*10  
d(CKO1H-ZV)  
§
Low group consists of:  
High group consists of:  
Z group consists of:  
IACK, INUM[3:0], DMAC[3:0], PD, TOUT0, and TOUT1  
HINT  
EA[21:2], ED[31:0], CE[3:0], BE[3:0], ARE, AWE, AOE, SSADS, SSOE, SSWE, SDA10, SDRAS, SDCAS,  
SDWE, HD[15:0], CLKX0, CLKX1, FSX0, FSX1, DX0, DX1, CLKR0, CLKR1, FSR0, and FSR1.  
HRDY is gated by input HCS.  
If HCS = 0 at device reset, HRDY belongs to the high group.  
If HCS = 1 at device reset, HRDY belongs to the low group.  
*Not production tested.  
45  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
S
D
M
3
I
2
TA  
0
C
L
6
2
0
S
1
I
B
G
,
N
S MJ 3 20 C 6 20 1 B  
P RO CE SS OR  
I
G
A
L
SGUS031 – APRIL 2000  
RESET TIMING (CONTINUED)  
CLKOUT1  
1
2
2
RESET  
CLKOUT2  
SDCLK  
3
4
6
5
7
8
SSCLK  
9
10  
12  
14  
†‡  
LOW GROUP  
11  
13  
†‡  
HIGH GROUP  
†‡  
Z GROUP  
Low group consists of:  
High group consists of:  
Z group consists of:  
IACK, INUM[3:0], DMAC[3:0], PD, TOUT0, and TOUT1  
HINT  
EA[21:2], ED[31:0], CE[3:0], BE[3:0], ARE, AWE, AOE, SSADS, SSOE, SSWE, SDA10, SDRAS, SDCAS,  
SDWE, HD[15:0], CLKX0, CLKX1, FSX0, FSX1, DX0, DX1, CLKR0, CLKR1, FSR0, and FSR1.  
HRDY is gated by input HCS.  
If HCS = 0 at device reset, HRDY belongs to the high group.  
If HCS = 1 at device reset, HRDY belongs to the low group.  
Figure 26. Reset Timing  
46  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
S
D
M
3
I
2
T
0
A
C
L
6
2
0
S
1
I
B
G
,
N
SM J 32 0C 62 01 B  
P RO C ES S O R  
I
G
A
L
SGUS031 – APRIL 2000  
EXTERNAL INTERRUPT TIMING  
timing requirements for interrupt response cycles†‡ (see Figure 27)  
’C6201B  
NO.  
UNIT  
MIN  
*2P  
*2P  
MAX  
2
3
t
t
Width of the interrupt pulse low  
Width of the interrupt pulse high  
ns  
ns  
w(ILOW)  
w(IHIGH)  
Interrupt signals are synchronized internally and are potentially recognized one cycle later if setup and hold times are violated. Thus, they can  
be connected to asynchronous inputs.  
P = 1/CPU clock frequency in ns. For example, when running parts at 200 MHz, use P = 5 ns.  
*Not production tested.  
switching characteristics during interrupt response cycles§ (see Figure 27)  
’C6201B  
NO.  
PARAMETER  
UNIT  
MIN  
*9P  
*–4  
MAX  
1
4
5
6
t
t
t
t
Response time, EXT_INTx high to IACK high  
Delay time, CLKOUT2 low to IACK valid  
Delay time, CLKOUT2 low to INUMx valid  
Delay time, CLKOUT2 low to INUMx invalid  
ns  
ns  
ns  
ns  
R(EINTH-IACKH)  
d(CKO2L-IACKV)  
d(CKO2L-INUMV)  
6
6
*–4  
d(CKO2L-INUMIV)  
§
P = 1/CPU clock frequency in ns. For example, when running parts at 200 MHz, use P = 5 ns.  
When the PLL is used (CLKMODE x4), 0.5P = 1/(2 × CPU clock frequency).  
For CLKMODE x1: 0.5P = PH, where PH is the high period of CLKIN.  
*Not production tested.  
1
CLKOUT2  
3
2
EXT_INTx, NMI  
Intr Flag  
4
4
IACK  
6
5
Interrupt Number  
INUMx  
Figure 27. Interrupt Timing  
47  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
S
D
M
3
I
2
TA  
0
C
L
6
2
0
S
1
I
B
G
,
N
S MJ 3 20 C 6 20 1 B  
P RO CE SS OR  
I
G
A
L
SGUS031 – APRIL 2000  
HOST-PORT INTERFACE TIMING  
timing requirements for host-port interface cycles†‡ (see Figure 28, Figure 29, Figure 30, and  
Figure 31)  
’C6201B  
NO.  
UNIT  
MIN  
4
MAX  
§
1
2
t
t
t
t
t
t
t
t
Setup time, select signals valid before HSTROBE low  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
su(SEL-HSTBL)  
h(HSTBL-SEL)  
w(HSTBL)  
§
Hold time, select signals valid after HSTROBE low  
2
3
Pulse duration, HSTROBE low  
2P  
*2P  
4
4
Pulse duration, HSTROBE high between consecutive accesses  
w(HSTBH)  
§
10  
11  
12  
13  
Setup time, select signals valid before HAS low  
su(SEL-HASL)  
h(HASL-SEL)  
su(HDV-HSTBH)  
h(HSTBH-HDV)  
§
Hold time, select signals valid after HAS low  
2
Setup time, host data valid before HSTROBE high  
Hold time, host data valid after HSTROBE high  
4
2
Hold time, HSTROBE low after HRDY low. HSTROBE shoul not be inactivated  
until HRDY is active (low); otherwise, HPI writes will not complete properly.  
14  
t
*1  
ns  
h(HRDYL-HSTBL)  
18  
19  
t
t
Setup time, HAS low before HSTROBE low  
Hold time, HAS low after HSTROBE low  
*2  
*2  
ns  
ns  
su(HASL-HSTBL)  
h(HSTBL-HASL)  
HSTROBE refers to the following logical operation on HCS, HDS1, and HDS2: [NOT(HDS1 XOR HDS2)] OR HCS.  
The effects of internal clock jitter are included at test. There is no need to adjust timing numbers for internal clock jitter. P = 1/CPU clock frequency  
in ns. For example, when running parts at 200 MHz, use P = 5 ns.  
§
Select signals include: HCNTRL[1:0], HR/W, and HHWIL.  
*Not production tested.  
switching characteristics during host-port interface cycles†‡ (see Figure 28, Figure 29, Figure 30,  
and Figure 31)  
’C6201B  
NO.  
PARAMETER  
UNIT  
MIN MAX  
5
6
t
t
t
t
t
t
t
t
Delay time, HCS to HRDY  
*1  
*3  
*4  
9
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
d(HCS-HRDY)  
#
Delay time, HSTROBE low to HRDY high  
12  
d(HSTBL-HRDYH)  
7
Output hold time, HD low impedance after HSTROBE low for an HPI read  
Delay time, HD valid to HRDY low  
oh(HSTBL-HDLZ)  
8
*P – 3 *P + 3  
d(HDV-HRDYL)  
oh(HSTBH-HDV)  
d(HSTBH-HDHZ)  
9
Output hold time, HD valid after HSTROBE high  
Delay time, HSTROBE high to HD high impedance  
Delay time, HSTROBE low to HD valid  
*1  
*3  
*2  
*3  
*12  
*12  
*12  
12  
15  
16  
17  
d(HSTBL-HDV)  
||  
Delay time, HSTROBE high to HRDY high  
d(HSTBH-HRDYH)  
HSTROBE refers to the following logical operation on HCS, HDS1, and HDS2: [NOT(HDS1 XOR HDS2)] OR HCS.  
The effects of internal clock jitter are included at test. There is no need to adjust timing numbers for internal clock jitter. P = 1/CPU clock frequency  
in ns. For example, when running parts at 200 MHz, use P = 5 ns.  
#
||  
HCS enables HRDY, and HRDY is always low when HCS is high. The case where HRDY goes high when HCS falls indicates that HPI is busy  
completing a previous HPID write or READ with autoincrement.  
This parameter is used during an HPID read. At the beginning of the first half-word transfer on the falling edge of HSTROBE, the HPI sends the  
request to the DMA auxiliary channel, and HRDY remains high until the DMA auxiliary channel loads the requested data into HPID.  
This parameter is used after the second half-word of an HPID write or autoincrement read. HRDY remains low if the access is not an HPID write  
or autoincrement read. Reading or writing to HPIC or HPIA does not affect the HRDY signal.  
*Not production tested.  
48  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
S
D
M
3
I
2
T
0
A
C
L
6
2
0
S
1
I
B
G
,
N
SM J 32 0C 62 01 B  
P RO C ES S O R  
I
G
A
L
SGUS031 – APRIL 2000  
HOST-PORT INTERFACE TIMING (CONTINUED)  
HAS  
HCNTL[1:0]  
HR/W  
1
1
1
1
2
2
2
2
2
2
1
1
HHWIL  
4
3
3
HSTROBE  
HCS  
15  
9
15  
9
7
16  
HD[15:0] (output)  
HRDY (case 1)  
HRDY (case 2)  
5
5
1st Half-Word  
2nd Half-Word  
5
8
8
17  
17  
6
HSTROBE refers to the following logical operation on HCS, HDS1, and HDS2: [NOT(HDS1 XOR HDS2)] OR HCS.  
Figure 28. HPI Read Timing (HAS Not Used, Tied High)  
HAS  
19  
11  
19  
11  
10  
10  
10  
10  
HCNTL[1:0]  
HR/W  
11  
11  
11  
11  
10  
10  
HHWIL  
4
3
HSTROBE  
18  
18  
HCS  
15  
15  
7
9
16  
9
17  
17  
HD[15:0] (output)  
HRDY (case 1)  
HRDY (case 2)  
1st half-word  
2nd half-word  
5
8
8
5
5
6
HSTROBE refers to the following logical operation on HCS, HDS1, and HDS2: [NOT(HDS1 XOR HDS2)] OR HCS.  
Figure 29. HPI Read Timing (HAS Used)  
49  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
S
D
M
3
I
2
TA  
0
C
L
6
2
0
S
1
I
B
G
,
N
S MJ 3 20 C 6 20 1 B  
P RO CE SS OR  
I
G
A
L
SGUS031 – APRIL 2000  
HOST-PORT INTERFACE TIMING (CONTINUED)  
HAS  
1
1
2
2
HCNTL[1:0]  
HBE[1:0]  
12  
12  
13  
13  
1
1
1
1
2
2
2
2
HR/W  
HHWIL  
3
3
4
14  
HSTROBE  
HCS  
HD[15:0] (input)  
HRDY  
12  
12  
13  
2nd Half-Word  
13  
17  
1st Half-Word  
5
5
HSTROBE refers to the following logical operation on HCS, HDS1, and HDS2: [NOT(HDS1 XOR HDS2)] OR HCS.  
Figure 30. HPI Write Timing (HAS Not Used, Tied High)  
HAS  
HBE[1:0]  
12  
12  
19  
13  
19  
13  
11  
11  
11  
11  
11  
11  
10  
10  
10  
10  
HCNTL[1:0]  
10  
10  
HR/W  
HHWIL  
3
4
14  
HSTROBE  
18  
12  
18  
HCS  
HD[15:0] (input)  
HRDY  
12  
13  
13  
1st half-word  
2nd half-word  
5
5
17  
HSTROBE refers to the following logical operation on HCS, HDS1, and HDS2: [NOT(HDS1 XOR HDS2)] OR HCS.  
Figure 31. HPI Write Timing (HAS Used)y  
50  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
S
D
M
3
I
2
T
0
A
C
L
6
2
0
S
1
I
B
G
,
N
SM J 32 0C 62 01 B  
P RO C ES S O R  
I
G
A
L
SGUS031 – APRIL 2000  
MULTICHANNEL BUFFERED SERIAL PORT TIMING  
timing requirements for McBSP†‡(see Figure 32)  
’C6201B  
NO.  
UNIT  
MIN  
MAX  
2
3
t
t
Cycle time, CLKR/X  
CLKR/X ext  
CLKR/X ext  
CLKR int  
CLKR ext  
CLKR int  
CLKR ext  
CLKR int  
CLKR ext  
CLKR int  
CLKR ext  
CLKX int  
CLKX ext  
CLKX int  
CLKX ext  
*2P  
ns  
ns  
c(CKRX)  
Pulse duration, CLKR/X high or CLKR/X low  
*P – 1  
w(CKRX)  
*9  
2
5
6
t
t
t
t
t
t
Setup time, external FSR high before CLKR low  
Hold time, external FSR high after CLKR low  
Setup time, DR valid before CLKR low  
ns  
ns  
ns  
ns  
ns  
ns  
su(FRH-CKRL)  
h(CKRL-FRH)  
su(DRV-CKRL)  
h(CKRL-DRV)  
su(FXH-CKXL)  
h(CKXL-FXH)  
*6  
3
8
7
1
3
8
Hold time, DR valid after CLKR low  
4
9
10  
11  
Setup time, external FSX high before CLKX low  
Hold time, external FSX high after CLKX low  
2
6
3
CLKRP = CLKXP = FSRP = FSXP = 0. If polarity of any of the signals is inverted, then the timing references of that signal are also inverted.  
P = 1/CPU clock frequency in ns. For example, when running parts at 200 MHz, use P = 5 ns.  
*Not production tested  
51  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
S
D
M
3
I
2
TA  
0
C
L
6
2
0
S
1
I
B
G
,
N
S MJ 3 20 C 6 20 1 B  
P RO CE SS OR  
I
G
A
L
SGUS031 – APRIL 2000  
MULTICHANNEL BUFFERED SERIAL PORT TIMING (CONTINUED)  
switching characteristics for McBSP†‡§ (see Figure 32)  
’C6201B  
MIN  
NO.  
PARAMETER  
UNIT  
MAX  
Delay time, CLKS high to CLKR/X high for internal CLKR/X  
generated from CLKS input  
1
t
3
10  
ns  
d(CKSH-CKRXH)  
2
3
4
t
t
t
Cycle time, CLKR/X  
CLKR/X int  
CLKR/X int  
CLKR int  
CLKX int  
CLKX ext  
CLKX int  
CLKX ext  
CLKX int  
CLKX ext  
2P  
ns  
ns  
ns  
c(CKRX)  
Pulse duration, CLKR/X high or CLKR/X low  
Delay time, CLKR high to internal FSR valid  
*C – 1.6  
*–2.5  
*–2  
*C + 1  
w(CKRX)  
3
d(CKRH-FRV)  
3
*9  
*4  
*9  
*4  
*9  
9
t
t
t
Delay time, CLKX high to internal FSX valid  
ns  
ns  
ns  
d(CKXH-FXV)  
dis(CKXH-DXHZ)  
d(CKXH-DXV)  
*3  
*–1  
Disable time, DX high impedance following last data bit from  
CLKX high  
12  
13  
*3  
*–1  
Delay time, CLKX high to DX valid  
Delay time, FSX high to DX valid  
*3  
FSX int  
FSX ext  
*–1  
*3  
*3  
*9  
14  
t
ns  
d(FXH-DXV)  
ONLY applies when in data  
delay 0 (XDATDLY = 00b) mode  
§
CLKRP = CLKXP = FSRP = FSXP = 0. If polarity of any of the signals is inverted, then the timing references of that signal are also inverted.  
Minimum delay times also represent minimum output hold times.  
P = 1/CPU clock frequency in ns. For example, when running parts at 200 MHz, use P = 5 ns.  
*Not production tested.  
C = H or L  
S = sample rate generator input clock = P if CLKSM = 1 (P = 1/CPU clock frequency)  
=
sample rate generator input clock = P_clks if CLKSM = 0 (P_clks = CLKS period)  
H = CLKX high pulse width = (CLKGDV/2 + 1) * S if CLKGDV is even  
= (CLKGDV + 1)/2 * S if CLKGDV is odd or zero  
L = CLKX low pulse width = (CLKGDV/2) * S if CLKGDV is even  
= (CLKGDV + 1)/2 * S if CLKGDV is odd or zero  
52  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
S
D
M
3
I
2
T
0
A
C
L
6
2
0
S
1
I
B
G
,
N
SM J 32 0C 62 01 B  
P RO C ES S O R  
I
G
A
L
SGUS031 – APRIL 2000  
MULTICHANNEL BUFFERED SERIAL PORT TIMING (CONTINUED)  
CLKS  
1
2
3
3
CLKR  
4
4
FSR (int)  
5
6
FSR (ext)  
7
8
DR  
Bit(n-1)  
(n-2)  
(n-3)  
2
3
3
CLKX  
9
FSX (int)  
11  
10  
FSX (ext)  
FSX (XDATDLY=00b)  
13  
(n-2)  
14  
13  
12  
DX  
Bit 0  
Bit(n-1)  
(n-3)  
Figure 32. McBSP Timings  
53  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
S
D
M
3
I
2
TA  
0
C
L
6
2
0
S
1
I
B
G
,
N
S MJ 3 20 C 6 20 1 B  
P RO CE SS OR  
I
G
A
L
SGUS031 – APRIL 2000  
MULTICHANNEL BUFFERED SERIAL PORT TIMING (CONTINUED)  
timing requirements for FSR when GSYNC = 1 (see Figure 33)  
’C6201B  
NO.  
UNIT  
MIN  
4
MAX  
1
2
t
t
Setup time, FSR high before CLKS high  
Hold time, FSR high after CLKS high  
ns  
ns  
su(FRH-CKSH)  
4
h(CKSH-FRH)  
CLKS  
1
2
FSR External  
CLKR/X (no need to resync)  
CLKR/X (needs resync)  
Figure 33. FSR Timing When GSYNC = 1  
timing requirements for McBSP as SPI master or slave: CLKSTP = 10b, CLKXP = 0†‡ (see Figure 34)  
’C6201B  
MASTER  
SLAVE  
MIN MAX  
NO.  
UNIT  
MIN  
12  
4
MAX  
4
5
t
t
Setup time, DR valid before CLKX low  
Hold time, DR valid after CLKX low  
2 – 3P  
5 + 6P  
ns  
ns  
su(DRV-CKXL)  
h(CKXL-DRV)  
P = 1/CPU clock frequency in ns. For example, when running parts at 200 MHz, use P = 5 ns.  
For all SPI slave modes, CLKG is programmed as 1/2 of the CPU clock by setting CLKSM = CLKGDV = 1.  
54  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
S
D
M
3
I
2
T
0
A
C
L
6
2
0
S
1
I
B
G
,
N
SM J 32 0C 62 01 B  
P RO C ES S O R  
I
G
A
L
SGUS031 – APRIL 2000  
MULTICHANNEL BUFFERED SERIAL PORT TIMING (CONTINUED)  
switching characteristics for McBSP as SPI master or slave: CLKSTP = 10b, CLKXP = 0†‡  
(see Figure 34)  
’C6201B  
§
MASTER  
SLAVE  
MIN  
NO.  
PARAMETER  
UNIT  
MIN  
MAX  
MAX  
1
2
3
t
t
t
Hold time, FSX low after CLKX low  
T – 2 *T + 3  
ns  
ns  
ns  
h(CKXL-FXL)  
d(FXL-CKXH)  
d(CKXH-DXV)  
#
Delay time, FSX low to CLKX high  
Delay time, CLKX high to DX valid  
*L – 2  
*–2  
L + 3  
4
*3P + 4  
5P + 17  
Disable time, DX high impedance following last data bit from  
CLKX low  
6
t
*L – 2 *L + 3  
ns  
dis(CKXL-DXHZ)  
Disable time, DX high impedance following last data bit from  
FSX high  
7
8
t
t
*P + 3 *3P + 17  
*2P + 2 4P + 17  
ns  
ns  
dis(FXH-DXHZ)  
Delay time, FSX low to DX valid  
d(FXL-DXV)  
§
P = 1/CPU clock frequency in ns. For example, when running parts at 200 MHz, use P = 5 ns.  
For all SPI slave modes, CLKG is programmed as 1/2 of the CPU clock by setting CLKSM = CLKGDV = 1.  
S = sample rate generator input clock = P if CLKSM = 1 (P = 1/CPU clock frequency)  
=
sample rate generator input clock = P_clks if CLKSM = 0 (P_clks = CLKS period)  
T = CLKX period = (1 + CLKGDV) * S  
H = CLKX high pulse width = (CLKGDV/2 + 1) * S if CLKGDV is even  
= (CLKGDV + 1)/2 * S if CLKGDV is odd or zero  
L = CLKX low pulse width = (CLKGDV/2) * S if CLKGDV is even  
= (CLKGDV + 1)/2 * S if CLKGDV is odd or zero  
FSRP = FSXP = 1. As a SPI master, FSX is inverted to provide active-low slave-enable output. As a slave, the active-low signal input on FSX  
and FSR is inverted before being used internally.  
CLKXM = FSXM = 1, CLKRM = FSRM = 0 for master McBSP  
CLKXM = CLKRM = FSXM = FSRM = 0 for slave McBSP  
*Not production tested.  
#
FSX should be low before the rising edge of clock to enable slave devices and then begin a SPI transfer at the rising edge of the master clock  
(CLKX).  
CLKX  
1
2
8
FSX  
7
6
3
DX  
DR  
Bit 0  
Bit(n-1)  
Bit(n-1)  
(n-2)  
(n-3)  
(n-4)  
4
5
Bit 0  
(n-2)  
(n-3)  
(n-4)  
Figure 34. McBSP Timing as SPI Master or Slave: CLKSTP = 10b, CLKXP = 0  
#
FSRP = FSXP = 1. As a SPI master, FSX is inverted to provide active-low slave-enable output. As a slave, the active-low signal input on FSX  
and FSR is inverted before being used internally.  
CLKXM = FSXM = 1, CLKRM = FSRM = 0 for master McBSP  
CLKXM = CLKRM = FSXM = FSRM = 0 for slave McBSP  
FSX should be low before the rising edge of clock to enable slave devices and then begin a SPI transfer at the rising edge of the master clock  
(CLKX).  
55  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
S
D
M
3
I
2
TA  
0
C
L
6
2
0
S
1
I
B
G
,
N
S MJ 3 20 C 6 20 1 B  
P RO CE SS OR  
I
G
A
L
SGUS031 – APRIL 2000  
MULTICHANNEL BUFFERED SERIAL PORT TIMING (CONTINUED)  
timing requirements for McBSP as SPI master or slave: CLKSTP = 11b, CLKXP = 0†‡ (see Figure 35)  
’C6201B  
MASTER  
SLAVE  
MIN MAX  
NO.  
UNIT  
MIN  
12  
4
MAX  
4
5
t
t
Setup time, DR valid before CLKX high  
Hold time, DR valid after CLKX high  
2 – 3P  
5 + 6P  
ns  
ns  
su(DRV-CKXH)  
h(CKXH-DRV)  
P = 1/CPU clock frequency in ns. For example, when running parts at 200 MHz, use P = 5 ns.  
For all SPI slave modes, CLKG is programmed as 1/2 of the CPU clock by setting CLKSM = CLKGDV = 1.  
switching characteristics for McBSP as SPI master or slave: CLKSTP = 11b, CLKXP = 0†‡  
(see Figure 35)  
’C6201B  
§
MASTER  
MIN  
SLAVE  
MIN  
NO.  
PARAMETER  
UNIT  
MAX  
MAX  
1
2
3
t
t
t
Hold time, FSX low after CLKX low  
L – 2  
*T – 2  
*–2  
*L + 3  
T + 3  
4
ns  
ns  
ns  
h(CKXL-FXL)  
d(FXL-CKXH)  
d(CKXL-DXV)  
#
Delay time, FSX low to CLKX high  
Delay time, CLKX low to DX valid  
*3P + 4  
5P + 17  
Disable time, DX high impedance following last data bit  
from CLKX low  
6
t
*–2  
*4 *3P + 3 *5P + 17  
H + 4 *2P + 2 4P + 17  
ns  
ns  
dis(CKXL-DXHZ)  
7
t
Delay time, FSX low to DX valid  
*H – 2  
d(FXL-DXV)  
§
P = 1/CPU clock frequency in ns. For example, when running parts at 200 MHz, use P = 5 ns.  
For all SPI slave modes, CLKG is programmed as 1/2 of the CPU clock by setting CLKSM = CLKGDV = 1.  
S = sample rate generator input clock = P if CLKSM = 1 (P = 1/CPU clock frequency)  
=
sample rate generator input clock = P_clks if CLKSM = 0 (P_clks = CLKS period)  
T = CLKX period = (1 + CLKGDV) * S  
H = CLKX high pulse width = (CLKGDV/2 + 1) * S if CLKGDV is even  
= (CLKGDV + 1)/2 * S if CLKGDV is odd or zero  
L = CLKX low pulse width = (CLKGDV/2) * S if CLKGDV is even  
= (CLKGDV + 1)/2 * S if CLKGDV is odd or zero  
FSRP = FSXP = 1. As a SPI master, FSX is inverted to provide active-low slave-enable output. As a slave, the active-low signal input on FSX  
and FSR is inverted before being used internally.  
CLKXM = FSXM = 1, CLKRM = FSRM = 0 for master McBSP  
CLKXM = CLKRM = FSXM = FSRM = 0 for slave McBSP  
*Not production tested.  
#
FSX should be low before the rising edge of clock to enable slave devices and then begin a SPI transfer at the rising edge of the master clock  
(CLKX).  
CLKX  
1
2
7
FSX  
DX  
6
3
Bit 0  
Bit(n-1)  
Bit(n-1)  
(n-2)  
(n-3)  
(n-3)  
(n-4)  
4
5
DR  
Bit 0  
(n-2)  
(n-4)  
Figure 35. McBSP Timing as SPI Master or Slave: CLKSTP = 11b, CLKXP = 0  
56  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
S
D
M
3
I
2
T
0
A
C
L
6
2
0
S
1
I
B
G
,
N
SM J 32 0C 62 01 B  
P RO C ES S O R  
I
G
A
L
SGUS031 – APRIL 2000  
MULTICHANNEL BUFFERED SERIAL PORT TIMING (CONTINUED)  
timing requirements for McBSP as SPI master or slave: CLKSTP = 10b, CLKXP = 1†‡ (see Figure 36)  
’C6201B  
MASTER  
SLAVE  
MIN MAX  
NO.  
UNIT  
MIN  
12  
4
MAX  
4
5
t
t
Setup time, DR valid before CLKX high  
Hold time, DR valid after CLKX high  
2 – 3P  
5 + 6P  
ns  
ns  
su(DRV-CKXH)  
h(CKXH-DRV)  
P = 1/CPU clock frequency in ns. For example, when running parts at 200 MHz, use P = 5 ns.  
For all SPI slave modes, CLKG is programmed as 1/2 of the CPU clock by setting CLKSM = CLKGDV = 1.  
switching characteristics for McBSP as SPI master or slave: CLKSTP = 10b, CLKXP = 1†‡  
(see Figure 36)  
’C6201B  
§
MASTER  
MIN  
SLAVE  
MIN  
NO.  
PARAMETER  
UNIT  
MAX  
MAX  
1
2
3
t
t
t
Hold time, FSX low after CLKX high  
T – 2  
*H – 2  
*–2  
*T + 3  
H + 3  
4
ns  
ns  
ns  
h(CKXH-FXL)  
d(FXL-CKXL)  
d(CKXL-DXV)  
#
Delay time, FSX low to CLKX low  
Delay time, CLKX low to DX valid  
*3P + 4  
5P + 17  
Disable time, DX high impedance following last data bit  
from CLKX high  
6
t
*H – 2  
*H + 3  
ns  
dis(CKXH-DXHZ)  
Disable time, DX high impedance following last data bit  
from FSX high  
7
8
t
t
*P + 3 *3P + 17  
*2P + 2 4P + 17  
ns  
ns  
dis(FXH-DXHZ)  
Delay time, FSX low to DX valid  
d(FXL-DXV)  
§
P = 1/CPU clock frequency in ns. For example, when running parts at 200 MHz, use P = 5 ns.  
For all SPI slave modes, CLKG is programmed as 1/2 of the CPU clock by setting CLKSM = CLKGDV = 1.  
S = sample rate generator input clock = P if CLKSM = 1 (P = 1/CPU clock frequency)  
=
sample rate generator input clock = P_clks if CLKSM = 0 (P_clks = CLKS period)  
T = CLKX period = (1 + CLKGDV) * S  
H = CLKX high pulse width = (CLKGDV/2 + 1) * S if CLKGDV is even  
= (CLKGDV + 1)/2 * S if CLKGDV is odd or zero  
L = CLKX low pulse width = (CLKGDV/2) * S if CLKGDV is even  
= (CLKGDV + 1)/2 * S if CLKGDV is odd or zero  
FSRP = FSXP = 1. As a SPI master, FSX is inverted to provide active-low slave-enable output. As a slave, the active-low signal input on FSX  
and FSR is inverted before being used internally.  
CLKXM = FSXM = 1, CLKRM = FSRM = 0 for master McBSP  
CLKXM = CLKRM = FSXM = FSRM = 0 for slave McBSP  
*Not production tested.  
#
FSX should be low before the rising edge of clock to enable slave devices and then begin a SPI transfer at the rising edge of the master clock  
(CLKX).  
CLKX  
1
2
8
FSX  
7
6
3
DX  
DR  
Bit 0  
Bit(n-1)  
Bit(n-1)  
(n-2)  
(n-3)  
(n-4)  
4
5
Bit 0  
(n-2)  
(n-3)  
(n-4)  
Figure 36. McBSP Timing as SPI Master or Slave: CLKSTP = 10b, CLKXP = 1  
57  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
S
D
M
3
I
2
TA  
0
C
L
6
2
0
S
1
I
B
G
,
N
S MJ 3 20 C 6 20 1 B  
P RO CE SS OR  
I
G
A
L
SGUS031 – APRIL 2000  
MULTICHANNEL BUFFERED SERIAL PORT TIMING (CONTINUED)  
timing requirements for McBSP as SPI master or slave: CLKSTP = 11b, CLKXP = 1†‡ (see Figure 37)  
’C6201B  
MASTER  
SLAVE  
MIN MAX  
NO.  
UNIT  
MIN  
12  
4
MAX  
4
5
t
t
Setup time, DR valid before CLKX low  
Hold time, DR valid after CLKX low  
2 – 3P  
5 + 6P  
ns  
ns  
su(DRV-CKXL)  
h(CKXL-DRV)  
P = 1/CPU clock frequency in ns. For example, when running parts at 200 MHz, use P = 5 ns.  
For all SPI slave modes, CLKG is programmed as 1/2 of the CPU clock by setting CLKSM = CLKGDV = 1.  
switching characteristics for McBSP as SPI master or slave: CLKSTP = 11b, CLKXP = 1†‡  
(see Figure 37)  
’C6201B  
§
MASTER  
MIN  
SLAVE  
MIN  
NO.  
PARAMETER  
UNIT  
MAX  
MAX  
1
2
3
t
t
t
Hold time, FSX low after CLKX high  
H – 2  
*T – 2  
*–2  
*H + 3  
T + 1  
4
ns  
ns  
ns  
h(CKXH-FXL)  
d(FXL-CKXL)  
d(CKXH-DXV)  
#
Delay time, FSX low to CLKX low  
Delay time, CLKX high to DX valid  
*3P + 3  
5P + 17  
Disable time, DX high impedance following last data bit  
from CLKX high  
6
t
*–2  
*4  
*3P + 3 *5P + 17  
*2P + 2 4P + 17  
ns  
ns  
dis(CKXH-DXHZ)  
7
t
Delay time, FSX low to DX valid  
*L – 2  
L + 4  
d(FXL-DXV)  
§
P = 1/CPU clock frequency in ns. For example, when running parts at 200 MHz, use P = 5 ns.  
For all SPI slave modes, CLKG is programmed as 1/2 of the CPU clock by setting CLKSM = CLKGDV = 1.  
S = sample rate generator input clock = P if CLKSM = 1 (P = 1/CPU clock frequency)  
=
sample rate generator input clock = P_clks if CLKSM = 0 (P_clks = CLKS period)  
T = CLKX period = (1 + CLKGDV) * S  
H = CLKX high pulse width = (CLKGDV/2 + 1) * S if CLKGDV is even  
= (CLKGDV + 1)/2 * S if CLKGDV is odd or zero  
L = CLKX low pulse width = (CLKGDV/2) * S if CLKGDV is even  
= (CLKGDV + 1)/2 * S if CLKGDV is odd or zero  
FSRP = FSXP = 1. As a SPI master, FSX is inverted to provide active-low slave-enable output. As a slave, the active-low signal input on FSX  
and FSR is inverted before being used internally.  
CLKXM = FSXM = 1, CLKRM = FSRM = 0 for master McBSP  
CLKXM = CLKRM = FSXM = FSRM = 0 for slave McBSP  
*Not production tested.  
#
FSX should be low before the rising edge of clock to enable slave devices and then begin a SPI transfer at the rising edge of the master clock  
(CLKX).  
CLKX  
1
2
FSX  
DX  
7
6
3
Bit 0  
Bit 0  
Bit(n-1)  
Bit(n-1)  
(n-2)  
(n-3)  
(n-4)  
4
5
DR  
(n-2)  
(n-3)  
(n-4)  
Figure 37. McBSP Timing as SPI Master or Slave: CLKSTP = 11b, CLKXP = 1  
58  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
S
D
M
3
I
2
T
0
A
C
L
6
2
0
S
1
I
B
G
,
N
SM J 32 0C 62 01 B  
P RO C ES S O R  
I
G
A
L
SGUS031 – APRIL 2000  
DMAC, TIMER, POWER-DOWN TIMING  
switching characteristics for DMAC outputs (see Figure 38)  
’C6201B  
NO.  
PARAMETER  
UNIT  
MIN  
MAX  
10  
1
t
Delay time, CLKOUT1 high to DMAC valid  
*2  
ns  
d(CKO1H-DMACV)  
*Not production tested.  
CLKOUT1  
1
1
DMAC[0:3]  
Figure 38. DMAC Timing  
timing requirements for timer inputs(see Figure 39)  
’C6201B  
NO.  
UNIT  
MIN  
MAX  
1
t
Pulse duration, TINP high or low  
*2P  
ns  
w(TINP)  
P = 1/CPU clock frequency in ns. For example, when running parts at 200 MHz, use P = 5 ns.  
*Not production tested.  
switching characteristics for timer outputs (see Figure 39)  
’C6201B  
NO.  
PARAMETER  
UNIT  
MIN  
MAX  
2
t
Delay time, CLKOUT1 high to TOUT valid  
*2  
9
ns  
d(CKO1H-TOUTV)  
*Not production tested.  
CLKOUT1  
1
TINP  
2
2
TOUT  
Figure 39. Timer Timing  
switching characteristics for power-down outputs (see Figure 40)  
’C6201B  
NO.  
PARAMETER  
UNIT  
MIN  
MAX  
1
t
Delay time, CLKOUT1 high to PD valid  
*2  
9
ns  
d(CKO1H-PDV)  
*Not production tested.  
CLKOUT1  
1
1
PD  
Figure 40. Power-Down Timing  
59  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
S
D
M
3
I
2
TA  
0
C
L
6
2
0
S
1
I
B
G
,
N
S MJ 3 20 C 6 20 1 B  
R
I
G
A
L
P
O
C
E
S
S
O
R
SGUS031 – APRIL 2000  
JTAG TEST-PORT TIMING  
timing requirements for JTAG test port (see Figure 41)  
’C6201B  
NO.  
UNIT  
MIN  
*50  
*10  
*5  
MAX  
1
3
4
t
t
t
Cycle time, TCK  
ns  
ns  
ns  
c(TCK)  
Setup time, TDI/TMS/TRST valid before TCK high  
Hold time, TDI/TMS/TRST valid after TCK high  
su(TDIV-TCKH)  
h(TCKH-TDIV)  
*Not production tested.  
switching characteristics for JTAG test port (see Figure 41)  
’C6201B  
NO.  
PARAMETER  
Delay time, TCK low to TDO valid  
UNIT  
MIN  
MAX  
*15  
2
t
*0  
ns  
d(TCKL-TDOV)  
*Not production tested.  
1
TCK  
TDO  
2
2
4
3
TDI/TMS/TRST  
Figure 41. JTAG Test-Port Timing  
60  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
S
D
M
3
I
2
T
0
A
C
L
6
2
0
S
1
I
B
G
,
N
SM J 32 0C 62 01 B  
P RO C ES S O R  
I
G
A
L
SGUS031 – APRIL 2000  
MECHANICAL DATA  
GLP (S-CBGA-N429)  
CERAMIC BALL GRID ARRAY  
27,20  
26,80  
SQ  
25,40 TYP  
1,27  
AA  
Y
W
V
U
T
R
P
N
M
L
1,27  
K
J
H
G
F
E
D
C
B
A
1
3
5
7
9
11 13 15 17 19 21  
10 12 14 16 18 20  
2
4
6
8
1,22  
1,00  
3,30 MAX  
Seating Plane  
0,15  
0,90  
0,60  
M
0,10  
0,70  
0,50  
4164732/A 08/98  
NOTES: A. All linear dimensions are in millimeters.  
B. This drawing is subject to change without notice.  
C. Falls within JEDEC MO-156  
D. Flip chip application only  
E. For 320C6201B (1.8 V core device).  
F. Package weight for GLP is 7.65 grams.  
thermal resistance characteristics (S-CBGA package)  
NO  
°C/W  
3.0  
Air Flow  
N/A  
1
2
3
4
5
6
RΘ  
RΘ  
RΘ  
Junction-to-Case, measured to the bottom of solder ball  
Junction-to-Case, measured to the top of the package lid  
Junction-to-Ambient  
JC  
JC  
JA  
7.3  
N/A  
14.5  
11.8  
11.1  
10.2  
0
150 fpm  
250 fpm  
500 fpm  
RΘ  
RΘ  
Junction-to-Moving-Air  
JMA  
JB  
Junction-to-Board, measured by soldering a thermocouple to one of the middle  
traces on the board at the edge of the package  
7
6.2  
N/A  
61  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
IMPORTANT NOTICE  
Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue  
any product or service without notice, and advise customers to obtain the latest version of relevant information  
to verify, before placing orders, that information being relied on is current and complete. All products are sold  
subject to the terms and conditions of sale supplied at the time of order acknowledgment, including those  
pertaining to warranty, patent infringement, and limitation of liability.  
TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in  
accordance with TI’s standard warranty. Testing and other quality control techniques are utilized to the extent  
TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily  
performed, except those mandated by government requirements.  
Customers are responsible for their applications using TI components.  
In order to minimize risks associated with the customer’s applications, adequate design and operating  
safeguards must be provided by the customer to minimize inherent or procedural hazards.  
TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent  
that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other  
intellectual property right of TI covering or relating to any combination, machine, or process in which such  
semiconductor products or services might be or are used. TI’s publication of information regarding any third  
party’s products or services does not constitute TI’s approval, warranty or endorsement thereof.  
Copyright 2000, Texas Instruments Incorporated  

相关型号:

SM320C6201BGLPS15

32-BIT, 150MHz, OTHER DSP, CBGA429, CERAMIC, MO-156, BGA-429
TI

SM320C6201BGLPS20

DIGITAL SIGNAL PROCESSOR
TI

SM320C6201BGLPW15

DIGITAL SIGNAL PROCESSOR
TI

SM320C6201BGLPW20

32-BIT, 200MHz, OTHER DSP, CBGA429, CERAMIC, MO-156, BGA-429
TI

SM320C6201BS14

FLOATING-POINT DIGITAL SIGNAL PROCESSOR
TI

SM320C6201BS16

FLOATING-POINT DIGITAL SIGNAL PROCESSOR
TI

SM320C6201BW14

FLOATING-POINT DIGITAL SIGNAL PROCESSOR
TI

SM320C6201BW16

FLOATING-POINT DIGITAL SIGNAL PROCESSOR
TI

SM320C6201B_06

DIGITAL SIGNAL PROCESSOR
TI

SM320C6201GJCA20EP

FIXED-POINT DIGITAL SIGNAL PROCESSOR
TI

SM320C6201GLE

DIGITAL SIGNAL PROCESSORS
TI

SM320C6201GLE-150

IC,DSP,32-BIT,CMOS,BGA,429PIN,CERAMIC
TI