SM320C6701S16 [TI]

FLOATING-POINT DIGITAL SIGNAL PROCESSOR; 浮点数字信号处理器
SM320C6701S16
型号: SM320C6701S16
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

FLOATING-POINT DIGITAL SIGNAL PROCESSOR
浮点数字信号处理器

数字信号处理器
文件: 总64页 (文件大小:925K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ꢀꢁ ꢂꢃ ꢄꢅ ꢆꢇ ꢈꢅ ꢉ  
ꢊ ꢋꢌ ꢍꢎ ꢏꢐꢑ ꢒꢓ ꢌꢏ ꢐꢎ ꢔꢏ ꢑꢏ ꢎꢍꢋ ꢀꢏ ꢑ ꢐꢍꢋ ꢓꢕ ꢌ ꢆꢖ ꢀ ꢀꢌ ꢕ  
SGUS030B – APRIL 2000 – REVISED MAY 2001  
D
Highest Performance Floating-Point Digital  
Signal Processor (DSP) SMJ320C6701  
– 7-, 6-ns Instruction Cycle Time  
– 140-, 167-MHz Clock Rate  
– Eight 32-Bit Instructions/Cycle  
– Up to 1 GFLOPS Performance  
– Pin-Compatible With ’C6201 Fixed-Point  
DSP  
D
1M-Bit On-Chip SRAM  
– 512K-Bit Internal Program/Cache  
(16K 32-Bit Instructions)  
– 512K-Bit Dual-Access Internal Data  
(64K Bytes)  
D
D
32-Bit External Memory Interface (EMIF)  
– Glueless Interface to Synchronous  
Memories: SDRAM and SBSRAM  
– Glueless Interface to Asynchronous  
Memories: SRAM and EPROM  
D
D
D
SMJ: QML Processing to MIL-PRF-38535  
SM: Standard Processing  
Four-Channel Bootloading  
Direct-Memory-Access (DMA) Controller  
With an Auxiliary Channel  
Operating Temperature Ranges  
– Extended (W) –55°C to 115°C  
– Extended (S) –40°C to 90°C  
D
D
16-Bit Host-Port Interface (HPI)  
– Access to Entire Memory Map  
D
VelociTI Advanced Very Long Instruction  
Word (VLIW) ’C67x CPU Core  
– Eight Highly Independent Functional  
Units:  
Two Multichannel Buffered Serial Ports  
(McBSPs)  
– Direct Interface to T1/E1, MVIP, SCSA  
Framers  
– Four ALUs (Floating- and Fixed-Point)  
– Two ALUs (Fixed-Point)  
– Two Multipliers (Floating- and  
Fixed-Point)  
– Load-Store Architecture With 32 32-Bit  
General-Purpose Registers  
– Instruction Packing Reduces Code Size  
– All Instructions Conditional  
– ST-Bus-Switching Compatible  
– Up to 256 Channels Each  
– AC97-Compatible  
– Serial-Peripheral-Interface (SPI)  
Compatible (Motorola )  
D
D
Two 32-Bit General-Purpose Timers  
D
Instruction Set Features  
– Hardware Support for IEEE  
Single-Precision Instructions  
– Hardware Support for IEEE  
Double-Precision Instructions  
– Byte-Addressable (8-, 16-, 32-Bit Data)  
– 32-Bit Address Range  
– 8-Bit Overflow Protection  
– Saturation  
Flexible Phase-Locked-Loop (PLL) Clock  
Generator  
D
D
D
D
IEEE-1149.1 (JTAG )  
Boundary-Scan-Compatible  
429-Pin Ceramic Ball Grid Array (CBGA)  
Package (GLP Suffix)  
0.18-µm/5-Level Metal Process  
– CMOS Technology  
– Bit-Field Extract, Set, Clear  
– Bit-Counting  
– Normalization  
3.3-V I/Os, 1.9-V Internal  
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of  
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
VelociTI is a trademark of Texas Instruments Incorporated.  
Motorola is a trademark of Motorola, Inc.  
IEEE Standard 1149.1-1990 Standard-Test-Access Port and Boundary Scan Architecture.  
Copyright 2001, Texas Instruments Incorporated  
ꢌ ꢙ ꢤ ꢜ ꢛꢧ ꢢꢡ ꢟꢠ ꢡꢛ ꢝꢤ ꢦꢘ ꢞꢙ ꢟ ꢟꢛ ꢁꢏ ꢋꢒ ꢓꢕ ꢊ ꢒꢃꢮꢯ ꢃꢯꢰ ꢞꢦꢦ ꢤꢞ ꢜ ꢞ ꢝꢣ ꢟꢣꢜ ꢠ ꢞ ꢜ ꢣ ꢟꢣ ꢠꢟꢣ ꢧ  
ꢜꢧ  
ꢟ ꢣ ꢠ ꢟꢘ ꢙꢭ ꢛꢚ ꢞ ꢦꢦ ꢤꢞ ꢜ ꢞ ꢝ ꢣ ꢟ ꢣ ꢜ ꢠ ꢨ  
ꢟꢬ  
ꢢ ꢙꢦ ꢣꢠꢠ ꢛ ꢟꢩꢣ ꢜ ꢫꢘ ꢠꢣ ꢙ ꢛꢟꢣ ꢧꢨ ꢌ ꢙ ꢞꢦ ꢦ ꢛ ꢟꢩꢣ ꢜ ꢤꢜ ꢛ ꢧꢢꢡ ꢟꢠ ꢰ ꢤꢜ ꢛ ꢧꢢꢡ ꢟꢘꢛ ꢙ  
1
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
ꢀ ꢁ ꢂꢃ ꢄ ꢅ ꢆꢇ ꢈ ꢅꢉ  
ꢊ ꢋ ꢌꢍꢎ ꢏ ꢐ ꢑꢒꢓꢌꢏ ꢐ ꢎ ꢔꢏ ꢑ ꢏ ꢎꢍꢋ ꢀ ꢏ ꢑꢐ ꢍꢋ ꢓ ꢕꢌ ꢆꢖꢀ ꢀꢌ ꢕ  
SGUS030B APRIL 2000 REVISED MAY 2001  
GLP PACKAGE  
(BOTTOM VIEW)  
AA  
Y
W
V
U
T
R
P
N
M
L
K
J
H
G
F
E
D
C
B
A
1
3
5
7
9
11 13 15 17 19 21  
10 12 14 16 18 20  
2
4
6
8
description  
The SMJ320C67x DSPs are the floating-point DSP family in the SMJ320C6000 platform. The SMJ320C6701  
(C6701) device is based on the high-performance, advanced VelociTI very-long-instruction-word (VLIW)  
architecture developed by Texas Instruments (TI ), making this DSP an excellent choice for multichannel and  
multifunction applications. With performance of up to 1 giga floating-point operations per second (GFLOPS) at  
a clock rate of 167 MHz, the C6701 offers cost-effective solutions to high-performance DSP programming  
challenges. The C6701 DSP possesses the operational flexibility of high-speed controllers and the numerical  
capability of array processors. This processor has 32 general-purpose registers of 32-bit word length and eight  
highly independent functional units. The eight functional units provide four floating-/fixed-point ALUs, two  
fixed-point ALUs, and two floating-/fixed-point multipliers. The C6701 can produce two multiply-accumulates  
(MACs) per cycle for a total of 334 million MACs per second (MMACS). The C6701 DSP also has  
application-specific hardware logic, on-chip memory, and additional on-chip peripherals.  
The C6701 includes a large bank of on-chip memory and has a powerful and diverse set of peripherals.  
Program memory consists of a 64K-byte block that is user-configurable as cache or memory-mapped program  
space. Data memory consists of two 32K-byte blocks of RAM. The peripheral set includes two multichannel  
buffered serial ports (McBSPs), two general-purpose timers, a host-port interface (HPI), and a glueless external  
memory interface (EMIF) capable of interfacing to SDRAM or SBSRAM and asynchronous peripherals.  
The C6701 has a complete set of development tools which includes: a new C compiler, an assembly optimizer  
to simplify programming and scheduling, and a Windows debugger interface for visibility into source code  
execution.  
TI is a trademark of Texas Instruments Incorporated.  
Windows is a registered trademark of the Microsoft Corporation.  
2
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
ꢀꢁ ꢂꢃ ꢄꢅ ꢆꢇ ꢈꢅ ꢉ  
ꢊ ꢋꢌ ꢍꢎ ꢏꢐꢑ ꢒꢓ ꢌꢏ ꢐꢎ ꢔꢏ ꢑꢏ ꢎꢍꢋ ꢀꢏ ꢑ ꢐꢍꢋ ꢓꢕ ꢌ ꢆꢖ ꢀ ꢀꢌ ꢕ  
SGUS030B APRIL 2000 REVISED MAY 2001  
device characteristics  
Table 1 provides an overview of the C6701 DSP. The table shows significant features of each device, including  
the capacity of on-chip RAM, the peripherals, the execution time, and the package type with pin count.  
Table 1. Characteristics of the C6701 Processors  
CHARACTERISTICS  
DESCRIPTION  
Device Number  
SMJ320C6701  
512-Kbit Program Memory  
512-Kbit Data Memory (organized as 2 blocks)  
On-Chip Memory  
Peripherals  
2 Mutichannel Buffered Serial Ports (McBSP)  
2 General-Purpose Timers  
Host-Port Interface (HPI)  
External Memory Interface (EMIF)  
Cycle Time  
7 ns at 140 MHz, and 6 ns at 167 MHz  
Package Type  
27 mm × 27 mm, 429-Pin BGA (GLP)  
1.9 V Core  
3.3 V I/O  
Nominal Voltage  
functional and CPU block diagram  
C6701 Digital Signal Processor  
SDRAM  
SBSRAM  
32  
SRAM  
Internal Program Memory  
1 Block Program/Cache  
(64K Bytes)  
Program  
Access/Cache  
Controller  
External Memory  
Interface (EMIF)  
ROM/FLASH  
I/O Devices  
C67x CPU  
Timer 0  
Timer 1  
Instruction Fetch  
Control  
Registers  
Instruction Dispatch  
Instruction Decode  
Control  
Logic  
Multichannel  
Buffered Serial  
Port 0  
Framing Chips:  
H.100, MVIP,  
SCSA, T1, E1  
AC97 Devices,  
SPI Devices,  
Codecs  
Data Path A  
A Register File  
Data Path B  
Test  
B Register File  
In-Circuit  
Emulation  
Multichannel  
Buffered Serial  
Port 1  
Interrupt  
Control  
.L1 .S1 .M1 .D1  
.D2 .M2 .S2 .L2  
Direct Memory  
Access Controller  
(DMA)  
Internal Data  
Memory  
(64K Bytes)  
2 Blocks of 8 Banks  
Each  
HOST CONNECTION  
MC68360 Glueless  
MPC860 Glueless  
PCI9050 Bridge + Inverter  
MC68302 + PAL  
Data  
Access  
Controller  
Power-  
Down  
Logic  
(4 Channels)  
Host Port  
Interface  
(HPI)  
16  
PLL  
(x1, x4)  
MPC750 + PAL  
MPC960 (Jx/Rx) + PAL  
These functional units execute floating-point instructions.  
3
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
ꢀ ꢁ ꢂꢃ ꢄ ꢅ ꢆꢇ ꢈ ꢅꢉ  
ꢊ ꢋ ꢌꢍꢎ ꢏ ꢐ ꢑꢒꢓꢌꢏ ꢐ ꢎ ꢔꢏ ꢑ ꢏ ꢎꢍꢋ ꢀ ꢏ ꢑꢐ ꢍꢋ ꢓ ꢕꢌ ꢆꢖꢀ ꢀꢌ ꢕ  
SGUS030B APRIL 2000 REVISED MAY 2001  
CPU description  
The CPU fetches VelociTI advanced very-long instruction words (VLIW) (256 bits wide) to supply up to eight  
32-bit instructions to the eight functional units during every clock cycle. The VelociTI VLIW architecture features  
controls by which all eight units do not have to be supplied with instructions if they are not ready to execute. The  
first bit of every 32-bit instruction determines if the next instruction belongs to the same execute packet as the  
previous instruction, or whether it should be executed in the following clock as a part of the next execute packet.  
Fetch packets are always 256 bits wide; however, the execute packets can vary in size. The variable-length  
execute packets are a key memory-saving feature, distinguishing the C67x CPU from other VLIW architectures.  
The CPU features two sets of functional units. Each set contains four units and a register file. One set contains  
functional units .L1, .S1, .M1, and .D1; the other set contains units .D2, .M2, .S2, and .L2. The two register files  
contain 16 32-bit registers each for the total of 32 general-purpose registers. The two sets of functional units,  
along with two register files, compose sides A and B of the CPU (see the functional and CPU block diagram  
and Figure 1). The four functional units on each side of the CPU can freely share the 16 registers belonging to  
that side. Additionally, each side features a single data bus connected to all registers on the other side, by which  
the two sets of functional units can access data from the register files on opposite sides. While register access  
by functional units on the same side of the CPU as the register file can service all the units in a single clock cycle,  
register access using the register file across the CPU supports one read and one write per cycle.  
The C67x CPU executes all C62x instructions. In addition to C62x fixed-point instructions, the six out of eight  
functional units (.L1, .M1, .D1, .D2, .M2, and .L2) also execute floating-point instructions. The remaining two  
functional units (.S1 and .S2) also execute the new LDDW instruction which loads 64 bits per CPU side for a  
total of 128 bits per cycle.  
Another key feature of the C67x CPU is the load/store architecture, where all instructions operate on registers  
(as opposed to data in memory). Two sets of data-addressing units (.D1 and .D2) are responsible for all data  
transfers between the register files and the memory. The data address driven by the .D units allows data  
addresses generated from one register file to be used to load or store data to or from the other register file. The  
C67x CPU supports a variety of indirect-addressing modes using either linear- or circular-addressing modes  
with 5- or 15-bit offsets. All instructions are conditional, and most can access any one of the 32 registers. Some  
registers, however, are singled out to support specific addressing or to hold the condition for conditional  
instructions (if the condition is not automatically true). The two .M functional units are dedicated for multiplies.  
The two .S and .L functional units perform a general set of arithmetic, logical, and branch functions with results  
available every clock cycle.  
The processing flow begins when a 256-bit-wide instruction fetch packet is fetched from a program memory.  
The 32-bit instructions destined for the individual functional units are linkedtogether by 1bits in the least  
significant bit (LSB) position of the instructions. The instructions that are chainedtogether for simultaneous  
execution (up to eight in total) compose an execute packet. A 0in the LSB of an instruction breaks the chain,  
effectively placing the instructions that follow it in the next execute packet. If an execute packet crosses the  
fetch-packet boundary (256 bits wide), the assembler places it in the next fetch packet, while the remainder of  
the current fetch packet is padded with NOP instructions. The number of execute packets within a fetch packet  
can vary from one to eight. Execute packets are dispatched to their respective functional units at the rate of one  
per clock cycle and the next 256-bit fetch packet is not fetched until all the execute packets from the current fetch  
packet have been dispatched. After decoding, the instructions simultaneously drive all active functional units  
for a maximum execution rate of eight instructions every clock cycle. While most results are stored in 32-bit  
registers, they can be subsequently moved to memory as bytes or half-words as well. All load and store  
instructions are byte-, half-word, or word-addressable.  
4
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
ꢀꢁ ꢂꢃ ꢄꢅ ꢆꢇ ꢈꢅ ꢉ  
ꢊ ꢋꢌ ꢍꢎ ꢏꢐꢑ ꢒꢓ ꢌꢏ ꢐꢎ ꢔꢏ ꢑꢏ ꢎꢍꢋ ꢀꢏ ꢑ ꢐꢍꢋ ꢓꢕ ꢌ ꢆꢖ ꢀ ꢀꢌ ꢕ  
SGUS030B APRIL 2000 REVISED MAY 2001  
CPU description (continued)  
src1  
.L1  
src2  
dst  
8
8
long dst  
long src  
8
32  
LD1 32 MSB  
ST1  
32  
Register  
File A  
(A0A15)  
long src  
long dst  
dst  
8
Data Path A  
.S1  
src1  
src2  
dst  
.M1  
src1  
src2  
LD1 32 LSB  
DA1  
dst  
src1  
src2  
.D1  
2X  
1X  
src2  
src1  
dst  
DA2  
.D2  
.M2  
LD2 32 LSB  
src2  
src1  
dst  
src2  
Register  
File B  
(B0B15)  
src1  
dst  
.S2  
Data Path B  
8
8
long dst  
long src  
8
32  
32  
LD2 32 MSB  
ST2  
long src  
long dst  
dst  
8
.L2  
src2  
src1  
Control  
Register File  
These functional units execute floating-point instructions.  
Figure 1. SMJ320C67x CPU Data Paths  
5
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
ꢀ ꢁ ꢂꢃ ꢄ ꢅ ꢆꢇ ꢈ ꢅꢉ  
ꢊ ꢋ ꢌꢍꢎ ꢏ ꢐ ꢑꢒꢓꢌꢏ ꢐ ꢎ ꢔꢏ ꢑ ꢏ ꢎꢍꢋ ꢀ ꢏ ꢑꢐ ꢍꢋ ꢓ ꢕꢌ ꢆꢖꢀ ꢀꢌ ꢕ  
SGUS030B APRIL 2000 REVISED MAY 2001  
signal groups description  
CLKIN  
CLKOUT2  
CLKOUT1  
CLKMODE1  
CLKMODE0  
BOOTMODE4  
BOOTMODE3  
BOOTMODE2  
BOOTMODE1  
BOOTMODE0  
Boot Mode  
CLOCK/PLL  
PLLFREQ3  
PLLFREQ2  
PLLFREQ1  
PLLV  
RESET  
NMI  
EXT_INT7  
PLLG  
PLLF  
EXT_INT6  
EXT_INT5  
EXT_INT4  
IACK  
Reset and  
Interrupts  
INUM3  
INUM2  
INUM1  
INUM0  
TMS  
TDO  
TDI  
IEEE Standard  
1149.1  
(JTAG)  
Emulation  
TCK  
TRST  
EMU1  
EMU0  
Little ENDIAN  
Big ENDIAN  
LENDIAN  
RSV9  
RSV8  
RSV7  
RSV6  
RSV5  
RSV4  
RSV3  
RSV2  
RSV1  
RSV0  
DMAC3  
DMAC2  
DMAC1  
DMAC0  
DMA Status  
Reserved  
Power-Down  
Status  
PD  
Control/Status  
HPI  
16  
(Host-Port Interface)  
HD[15:0]  
Data  
HAS  
HR/W  
HCS  
HDS1  
HDS2  
HRDY  
HINT  
HCNTL0  
HCNTL1  
Register Select  
Control  
HHWIL  
HBE1  
HBE0  
Half-Word/Byte  
Select  
Figure 2. CPU and Peripheral Signals  
6
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
ꢀꢁ ꢂꢃ ꢄꢅ ꢆꢇ ꢈꢅ ꢉ  
ꢊ ꢋꢌ ꢍꢎ ꢏꢐꢑ ꢒꢓ ꢌꢏ ꢐꢎ ꢔꢏ ꢑꢏ ꢎꢍꢋ ꢀꢏ ꢑ ꢐꢍꢋ ꢓꢕ ꢌ ꢆꢖ ꢀ ꢀꢌ ꢕ  
SGUS030B APRIL 2000 REVISED MAY 2001  
signal groups description (continued)  
32  
ED[31:0]  
Data  
ARE  
Asynchronous  
Memory  
AOE  
AWE  
ARDY  
Control  
CE3  
CE2  
CE1  
CE0  
Memory Map  
Space Select  
SSADS  
SSOE  
SSWE  
SSCLK  
SBSRAM  
Control  
20  
EA[21:2]  
Word Address  
Byte Enables  
BE3  
BE2  
BE1  
BE0  
SDA10  
SDRAS  
SDCAS  
SDWE  
SDRAM  
Control  
SDCLK  
HOLD  
HOLD/  
HOLDA  
HOLDA  
EMIF  
(External Memory Interface)  
TOUT1  
TINP1  
TOUT0  
TINP0  
Timer 1  
Timer 0  
Timers  
McBSP1  
Receive  
McBSP0  
Receive  
CLKX1  
FSX1  
DX1  
CLKX0  
FSX0  
DX0  
CLKR1  
FSR1  
DR1  
CLKR0  
FSR0  
DR0  
Transmit  
Clock  
Transmit  
Clock  
CLKS1  
CLKS0  
McBSPs  
(Multichannel Buffered Serial Ports)  
Figure 3. Peripheral Signals  
7
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
ꢀ ꢁ ꢂꢃ ꢄ ꢅ ꢆꢇ ꢈ ꢅꢉ  
ꢊ ꢋ ꢌꢍꢎ ꢏ ꢐ ꢑꢒꢓꢌꢏ ꢐ ꢎ ꢔꢏ ꢑ ꢏ ꢎꢍꢋ ꢀ ꢏ ꢑꢐ ꢍꢋ ꢓ ꢕꢌ ꢆꢖꢀ ꢀꢌ ꢕ  
SGUS030B APRIL 2000 REVISED MAY 2001  
Signal Descriptions  
SIGNAL  
TYPE  
DESCRIPTION  
NAME  
NO.  
CLOCK/PLL  
CLKIN  
A14  
Y6  
I
Clock Input  
CLKOUT1  
O
O
Clock output at full device speed  
Clock output at half of device speed  
Clock mode select  
CLKOUT2  
V9  
CLKMODE1  
CLKMODE0  
PLLFREQ3  
PLLFREQ2  
PLLFREQ1  
B17  
C17  
C13  
G11  
F11  
D12  
G10  
C12  
I
Selects whether the output clock frequency = input clock freq x4 or x1  
PLL frequency range (3, 2, and 1)  
The target range for CLKOUT1 frequency is determined by the 3-bit value of the PLLFREQ pins.  
I
§
A
§
A
§
A
PLLV  
PLL analog V connection for the low-pass filter  
CC  
PLLG  
PLL analog GND connection for the low-pass filter  
PLL low-pass filter connection to external components and a bypass capacitor  
JTAG EMULATION  
PLLF  
TMS  
TDO  
TDI  
K19  
R12  
R13  
M20  
N18  
R20  
T18  
I
JTAG test port mode select (features an internal pull-up)  
JTAG test port data out  
O/Z  
I
I
I
JTAG test port data in (features an internal pull-up)  
JTAG test port clock  
TCK  
TRST  
EMU1  
EMU0  
JTAG test port reset (features an internal pull-down)  
I/O/Z  
I/O/Z  
Emulation pin 1, pull-up with a dedicated 20-kresistor  
Emulation pin 0, pull-up with a dedicated 20-kresistor  
RESET AND INTERRUPTS  
RESET  
NMI  
J20  
I
I
Device reset  
Nonmaskable interrupt  
K21  
Edge-driven (rising edge)  
EXT_INT7  
EXT_INT6  
EXT_INT5  
EXT_INT4  
IACK  
R16  
P20  
R15  
R18  
R11  
T19  
T20  
T14  
T16  
External interrupts  
Edge-driven (rising edge)  
I
O
Interrupt acknowledge for all active interrupts serviced by the CPU  
Active interrupt identification number  
INUM3  
INUM2  
Valid during IACK for all active interrupts (not just external)  
Encoding order follows the interrupt service fetch packet ordering  
O
INUM1  
INUM0  
LITTLE ENDIAN/BIG ENDIAN  
If high, selects little-endian byte/half-word addressing order within a word  
If low, selects big-endian addressing  
LENDIAN  
G20  
I
POWER DOWN STATUS  
PD  
D19  
O
Power-down mode 2 or 3 (active if high)  
I = Input, O = Output, Z = High Impedance, S = Supply Voltage, GND = Ground  
PLLV and PLLG signals are not part of external voltage supply or ground. See the CLOCK/PLL documentation for information on how to connect  
those pins.  
A = Analog Signal (PLL Filter)  
§
For emulation and normal operation, pull up EMU1 and EMU0 with a dedicated 20-kresistor. For boundary scan, pull down EMU1 and EMU0  
with a dedicated 20-kresistor.  
8
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
ꢀꢁ ꢂꢃ ꢄꢅ ꢆꢇ ꢈꢅ ꢉ  
ꢊ ꢋꢌ ꢍꢎ ꢏꢐꢑ ꢒꢓ ꢌꢏ ꢐꢎ ꢔꢏ ꢑꢏ ꢎꢍꢋ ꢀꢏ ꢑ ꢐꢍꢋ ꢓꢕ ꢌ ꢆꢖ ꢀ ꢀꢌ ꢕ  
SGUS030B APRIL 2000 REVISED MAY 2001  
Signal Descriptions (Continued)  
SIGNAL  
NAME  
TYPE  
DESCRIPTION  
NO.  
HOST PORT INTERFACE (HPI)  
Host interrupt (from DSP to host)  
HINT  
H2  
J6  
O/Z  
HCNTL1  
HCNTL0  
HHWIL  
HBE1  
HBE0  
HR/W  
HD15  
HD14  
HD13  
HD12  
HD11  
HD10  
HD9  
I
I
I
I
I
I
Host control selects between control, address or data registers  
Host control selects between control, address or data registers  
Host halfword select first or second halfword (not necessarily high or low order)  
Host byte select within word or half-word  
H6  
E4  
G6  
F6  
Host byte select within word or half-word  
D4  
D11  
B11  
A11  
G9  
D10  
A10  
C10  
B9  
Host read or write select  
HD8  
I/O/Z  
Host port data (used for transfer of data, address and control)  
HD7  
F9  
HD6  
C9  
A9  
HD5  
HD4  
B8  
HD3  
D9  
D8  
B7  
HD2  
HD1  
HD0  
C7  
L6  
HAS  
I
I
Host address strobe  
Host chip select  
HCS  
C5  
C4  
K6  
HDS1  
HDS2  
HRDY  
I
Host data strobe 1  
Host data strobe 2  
Host ready (from DSP to host)  
BOOT MODE  
I
H3  
O
BOOTMODE4  
BOOTMODE3  
BOOTMODE2  
BOOTMODE1  
BOOTMODE0  
B16  
G14  
F15  
C18  
D17  
I
Boot mode  
I = Input, O = Output, Z = High Impedance, S = Supply Voltage, GND = Ground  
9
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
ꢀ ꢁ ꢂꢃ ꢄ ꢅ ꢆꢇ ꢈ ꢅꢉ  
ꢊ ꢋ ꢌꢍꢎ ꢏ ꢐ ꢑꢒꢓꢌꢏ ꢐ ꢎ ꢔꢏ ꢑ ꢏ ꢎꢍꢋ ꢀ ꢏ ꢑꢐ ꢍꢋ ꢓ ꢕꢌ ꢆꢖꢀ ꢀꢌ ꢕ  
SGUS030B APRIL 2000 REVISED MAY 2001  
Signal Descriptions (Continued)  
SIGNAL  
TYPE  
DESCRIPTION  
NAME  
NO.  
EMIF CONTROL SIGNALS COMMON TO ALL TYPES OF MEMORY  
CE3  
Y5  
V3  
T6  
U2  
R8  
T3  
T2  
R2  
O/Z  
O/Z  
O/Z  
O/Z  
O/Z  
O/Z  
O/Z  
O/Z  
CE2  
CE1  
CE0  
BE3  
BE2  
BE1  
BE0  
Memory space enables  
Enabled by bits 24 and 25 of the word address  
Only one asserted during any external data access  
Byte enable control  
Decoded from the two lowest bits of the internal address  
Byte write enables for most types of memory  
Can be directly connected to SDRAM read and write mask signal (SDQM)  
EMIF ADDRESS  
EA21  
EA20  
EA19  
EA18  
EA17  
EA16  
EA15  
EA14  
EA13  
EA12  
EA11  
EA10  
EA9  
L4  
L3  
J2  
J1  
K1  
K2  
L2  
L1  
M1  
M2  
M6  
N4  
N1  
N2  
N6  
P4  
P3  
P2  
P1  
P6  
O/Z  
External address (word address)  
EA8  
EA7  
EA6  
EA5  
EA4  
EA3  
EA2  
I = Input, O = Output, Z = High Impedance, S = Supply Voltage, GND = Ground  
10  
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
ꢀꢁ ꢂꢃ ꢄꢅ ꢆꢇ ꢈꢅ ꢉ  
ꢊ ꢋꢌ ꢍꢎ ꢏꢐꢑ ꢒꢓ ꢌꢏ ꢐꢎ ꢔꢏ ꢑꢏ ꢎꢍꢋ ꢀꢏ ꢑ ꢐꢍꢋ ꢓꢕ ꢌ ꢆꢖ ꢀ ꢀꢌ ꢕ  
SGUS030B APRIL 2000 REVISED MAY 2001  
Signal Descriptions (Continued)  
SIGNAL  
NAME  
TYPE  
DESCRIPTION  
NO.  
EMIF DATA  
ED31  
U18  
U20  
T15  
V18  
V17  
V16  
T12  
W17  
T13  
Y17  
T11  
Y16  
W15  
V14  
Y15  
R9  
ED30  
ED29  
ED28  
ED27  
ED26  
ED25  
ED24  
ED23  
ED22  
ED21  
ED20  
ED19  
ED18  
ED17  
ED16  
ED15  
ED14  
ED13  
ED12  
ED11  
ED10  
ED9  
I/O/Z  
External data  
Y14  
V13  
AA13  
T10  
Y13  
W12  
Y12  
Y11  
V10  
AA10  
Y10  
W10  
Y9  
ED8  
ED7  
ED6  
ED5  
ED4  
ED3  
ED2  
AA9  
Y8  
ED1  
ED0  
W9  
EMIF ASYNCHRONOUS MEMORY CONTROL  
Asynchronous memory read enable  
ARE  
R7  
T7  
V5  
R4  
O/Z  
O/Z  
O/Z  
I
AOE  
AWE  
ARDY  
Asynchronous memory output enable  
Asynchronous memory write enable  
Asynchronous memory ready input  
I = Input, O = Output, Z = High Impedance, S = Supply Voltage, GND = Ground  
11  
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
ꢀ ꢁ ꢂꢃ ꢄ ꢅ ꢆꢇ ꢈ ꢅꢉ  
ꢊ ꢋ ꢌꢍꢎ ꢏ ꢐ ꢑꢒꢓꢌꢏ ꢐ ꢎ ꢔꢏ ꢑ ꢏ ꢎꢍꢋ ꢀ ꢏ ꢑꢐ ꢍꢋ ꢓ ꢕꢌ ꢆꢖꢀ ꢀꢌ ꢕ  
SGUS030B APRIL 2000 REVISED MAY 2001  
Signal Descriptions (Continued)  
SIGNAL  
TYPE  
DESCRIPTION  
NAME  
NO.  
EMIF SYNCHRONOUS BURST SRAM CONTROL  
SBSRAM address strobe  
SSADS  
V8  
W7  
Y7  
O/Z  
O/Z  
O/Z  
O/Z  
SSOE  
SSWE  
SSCLK  
SBSRAM output enable  
SBSRAM write enable  
AA8  
SBSRAM clock  
EMIF SYNCHRONOUS DRAM CONTROL  
SDRAM address 10 (separate for deactivate command)  
SDRAM row address strobe  
SDRAM column address strobe  
SDRAM write enable  
SDA10  
SDRAS  
SDCAS  
SDWE  
SDCLK  
V7  
V6  
W5  
T8  
O/Z  
O/Z  
O/Z  
O/Z  
O/Z  
T9  
SDRAM clock  
EMIF BUS ARBITRATION  
Hold request from the host  
HOLD  
R6  
I
HOLDA  
B15  
O
Hold request acknowledge to the host  
TIMERS  
TOUT1  
TINP1  
TOUT0  
TINP0  
G2  
K3  
O/Z  
Timer 1 or general-purpose output  
Timer 1 or general-purpose input  
Timer 0 or general-purpose output  
Timer 0 or general-purpose input  
DMA ACTION COMPLETE  
I
O/Z  
I
M18  
J18  
DMAC3  
DMAC2  
DMAC1  
DMAC0  
E18  
F19  
E20  
G16  
O
I
DMA action complete  
MULTICHANNEL BUFFERED SERIAL PORT 1 (McBSP1)  
CLKS1  
CLKR1  
CLKX1  
DR1  
F4  
H4  
J4  
External clock source (as opposed to internal)  
Receive clock  
I/O/Z  
I/O/Z  
I
Transmit clock  
E2  
G4  
F3  
F2  
Receive data  
DX1  
O/Z  
I/O/Z  
I/O/Z  
Transmit data  
FSR1  
FSX1  
Receive frame sync  
Transmit frame sync  
I = Input, O = Output, Z = High Impedance, S = Supply Voltage, GND = Ground  
12  
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
ꢀꢁ ꢂꢃ ꢄꢅ ꢆꢇ ꢈꢅ ꢉ  
ꢊ ꢋꢌ ꢍꢎ ꢏꢐꢑ ꢒꢓ ꢌꢏ ꢐꢎ ꢔꢏ ꢑꢏ ꢎꢍꢋ ꢀꢏ ꢑ ꢐꢍꢋ ꢓꢕ ꢌ ꢆꢖ ꢀ ꢀꢌ ꢕ  
SGUS030B APRIL 2000 REVISED MAY 2001  
Signal Descriptions (Continued)  
SIGNAL  
NAME  
TYPE  
DESCRIPTION  
NO.  
MULTICHANNEL BUFFERED SERIAL PORT 0 (McBSP0)  
External clock source (as opposed to internal)  
Receive clock  
CLKS0  
K18  
L21  
K20  
J21  
I
CLKR0  
CLKX0  
DR0  
I/O/Z  
I/O/Z  
I
Transmit clock  
Receive data  
DX0  
M21  
P16  
N16  
O/Z  
I/O/Z  
I/O/Z  
Transmit data  
FSR0  
FSX0  
Receive frame sync  
Transmit frame sync  
RESERVED FOR TEST  
RSV0  
RSV1  
RSV2  
RSV3  
RSV4  
RSV5  
RSV6  
RSV7  
RSV8  
RSV9  
N21  
K16  
B13  
B14  
F13  
C15  
F7  
I
I
Reserved for testing, pull-up with a dedicated 20-kresistor  
Reserved for testing, pull-up with a dedicated 20-kresistor  
Reserved for testing, pull-up with a dedicated 20-kresistor  
Reserved for testing, pull-up with a dedicated 20-kresistor  
Reserved for testing, pull-down with a dedicated 20-kresistor  
Reserved (leave unconnected, do not connect to power or ground)  
Reserved for testing, pull-up with a dedicated 20-kW resistor  
Reserved for testing, pull-up with a dedicated 20-kW resistor  
Reserved for testing, pull-up with a dedicated 20-kW resistor  
Reserved (leave unconnected, do not connect to power or ground)  
SUPPLY VOLTAGE PINS  
I
I
I
O
I
D7  
I
B5  
I
F16  
O
C14  
C8  
E19  
E3  
H11  
H13  
H9  
J10  
J12  
J14  
J19  
J3  
DV  
S
3.3-V supply voltage  
DD  
J8  
K11  
K13  
K15  
K7  
K9  
L10  
L12  
L14  
I = Input, O = Output, Z = High Impedance, S = Supply Voltage, GND = Ground  
13  
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
ꢀ ꢁ ꢂꢃ ꢄ ꢅ ꢆꢇ ꢈ ꢅꢉ  
ꢊ ꢋ ꢌꢍꢎ ꢏ ꢐ ꢑꢒꢓꢌꢏ ꢐ ꢎ ꢔꢏ ꢑ ꢏ ꢎꢍꢋ ꢀ ꢏ ꢑꢐ ꢍꢋ ꢓ ꢕꢌ ꢆꢖꢀ ꢀꢌ ꢕ  
SGUS030B APRIL 2000 REVISED MAY 2001  
Signal Descriptions (Continued)  
SIGNAL  
TYPE  
DESCRIPTION  
SUPPLY VOLTAGE PINS (CONTINUED)  
NAME  
NO.  
L8  
M11  
M13  
M15  
M7  
M9  
N10  
N12  
N14  
N19  
N3  
DV  
S
3.3-V supply voltage  
DD  
N8  
P11  
P13  
P9  
U19  
U3  
W14  
W8  
A12  
A13  
B10  
B12  
B6  
D15  
D16  
F10  
F14  
F8  
CV  
S
1.9-V supply voltage  
DD  
G13  
G7  
G8  
K4  
M3  
M4  
A3  
A5  
A7  
A16  
I = Input, O = Output, Z = High Impedance, S = Supply Voltage, GND = Ground  
14  
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
ꢀꢁ ꢂꢃ ꢄꢅ ꢆꢇ ꢈꢅ ꢉ  
ꢊ ꢋꢌ ꢍꢎ ꢏꢐꢑ ꢒꢓ ꢌꢏ ꢐꢎ ꢔꢏ ꢑꢏ ꢎꢍꢋ ꢀꢏ ꢑ ꢐꢍꢋ ꢓꢕ ꢌ ꢆꢖ ꢀ ꢀꢌ ꢕ  
SGUS030B APRIL 2000 REVISED MAY 2001  
Signal Descriptions (Continued)  
SIGNAL  
NAME  
TYPE  
DESCRIPTION  
SUPPLY VOLTAGE PINS (CONTINUED)  
NO.  
A18  
AA4  
AA6  
AA15  
AA17  
AA19  
B2  
B4  
B19  
C1  
C3  
C20  
D2  
D21  
E1  
E6  
E8  
CV  
S
1.9-V supply voltage  
DD  
E10  
E12  
E14  
E16  
F5  
F17  
F21  
G1  
H5  
H17  
K5  
K17  
M5  
M17  
P5  
P17  
R21  
I = Input, O = Output, Z = High Impedance, S = Supply Voltage, GND = Ground  
15  
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
ꢀ ꢁ ꢂꢃ ꢄ ꢅ ꢆꢇ ꢈ ꢅꢉ  
ꢊ ꢋ ꢌꢍꢎ ꢏ ꢐ ꢑꢒꢓꢌꢏ ꢐ ꢎ ꢔꢏ ꢑ ꢏ ꢎꢍꢋ ꢀ ꢏ ꢑꢐ ꢍꢋ ꢓ ꢕꢌ ꢆꢖꢀ ꢀꢌ ꢕ  
SGUS030B APRIL 2000 REVISED MAY 2001  
Signal Descriptions (Continued)  
SIGNAL  
TYPE  
DESCRIPTION  
SUPPLY VOLTAGE PINS (CONTINUED)  
NAME  
NO.  
T1  
T5  
T17  
U6  
U8  
U10  
U12  
U14  
U16  
U21  
V1  
V20  
W2  
W19  
W21  
Y3  
Y18  
Y20  
AA11  
AA12  
F20  
G18  
H16  
H18  
L18  
L19  
L20  
N20  
P18  
P19  
R10  
R14  
U4  
CV  
S
1.9-V supply voltage  
DD  
V11  
V12  
V15  
W13  
I = Input, O = Output, Z = High Impedance, S = Supply Voltage, GND = Ground  
16  
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
ꢀꢁ ꢂꢃ ꢄꢅ ꢆꢇ ꢈꢅ ꢉ  
ꢊ ꢋꢌ ꢍꢎ ꢏꢐꢑ ꢒꢓ ꢌꢏ ꢐꢎ ꢔꢏ ꢑꢏ ꢎꢍꢋ ꢀꢏ ꢑ ꢐꢍꢋ ꢓꢕ ꢌ ꢆꢖ ꢀ ꢀꢌ ꢕ  
SGUS030B APRIL 2000 REVISED MAY 2001  
Signal Descriptions (Continued)  
SIGNAL  
NAME  
TYPE  
DESCRIPTION  
NO.  
GROUND PINS  
C11  
C16  
C6  
D5  
G3  
H10  
H12  
H14  
H7  
H8  
J11  
J13  
J7  
J9  
K8  
L7  
L9  
M8  
N7  
R3  
V
SS  
GND  
Ground pins  
A4  
A6  
A8  
A15  
A17  
A19  
AA3  
AA5  
AA7  
AA14  
AA16  
AA18  
B3  
B18  
B20  
C2  
C19  
C21  
D1  
I = Input, O = Output, Z = High Impedance, S = Supply Voltage, GND = Ground  
17  
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
ꢀ ꢁ ꢂꢃ ꢄ ꢅ ꢆꢇ ꢈ ꢅꢉ  
ꢊ ꢋ ꢌꢍꢎ ꢏ ꢐ ꢑꢒꢓꢌꢏ ꢐ ꢎ ꢔꢏ ꢑ ꢏ ꢎꢍꢋ ꢀ ꢏ ꢑꢐ ꢍꢋ ꢓ ꢕꢌ ꢆꢖꢀ ꢀꢌ ꢕ  
SGUS030B APRIL 2000 REVISED MAY 2001  
Signal Descriptions (Continued)  
SIGNAL  
TYPE  
DESCRIPTION  
GROUND PINS (CONTINUED)  
NAME  
NO.  
D20  
E5  
E7  
E9  
E11  
E13  
E15  
E17  
E21  
F1  
G5  
G17  
G21  
H1  
J5  
J17  
L5  
L17  
N5  
V
GND  
Ground pins  
SS  
N17  
P21  
R1  
R5  
R17  
T21  
U1  
U5  
U7  
U9  
U11  
U13  
U15  
U17  
V2  
V21  
I = Input, O = Output, Z = High Impedance, S = Supply Voltage, GND = Ground  
18  
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
ꢀꢁ ꢂꢃ ꢄꢅ ꢆꢇ ꢈꢅ ꢉ  
ꢊ ꢋꢌ ꢍꢎ ꢏꢐꢑ ꢒꢓ ꢌꢏ ꢐꢎ ꢔꢏ ꢑꢏ ꢎꢍꢋ ꢀꢏ ꢑ ꢐꢍꢋ ꢓꢕ ꢌ ꢆꢖ ꢀ ꢀꢌ ꢕ  
SGUS030B APRIL 2000 REVISED MAY 2001  
Signal Descriptions (Continued)  
SIGNAL  
NAME  
TYPE  
DESCRIPTION  
GROUND PINS (CONTINUED)  
NO.  
W1  
W3  
W20  
Y2  
Y4  
Y19  
F18  
G19  
H15  
J15  
J16  
K10  
K12  
K14  
L11  
L13  
L15  
M10  
M12  
M14  
N11  
N13  
N15  
N9  
V
GND  
Ground pins  
SS  
P10  
P12  
P14  
P15  
P7  
P8  
R19  
T4  
W11  
W16  
W6  
I = Input, O = Output, Z = High Impedance, S = Supply Voltage, GND = Ground  
19  
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
ꢀ ꢁ ꢂꢃ ꢄ ꢅ ꢆꢇ ꢈ ꢅꢉ  
ꢊ ꢋ ꢌꢍꢎ ꢏ ꢐ ꢑꢒꢓꢌꢏ ꢐ ꢎ ꢔꢏ ꢑ ꢏ ꢎꢍꢋ ꢀ ꢏ ꢑꢐ ꢍꢋ ꢓ ꢕꢌ ꢆꢖꢀ ꢀꢌ ꢕ  
SGUS030B APRIL 2000 REVISED MAY 2001  
Signal Descriptions (Continued)  
SIGNAL  
TYPE  
DESCRIPTION  
REMAINING UNCONNECTED PINS  
NAME  
NO.  
D13  
D14  
D18  
D3  
D6  
F12  
G12  
G15  
H19  
H20  
H21  
L16  
M16  
M19  
V19  
V4  
NC  
Unconnected pins  
W18  
W4  
I = Input, O = Output, Z = High Impedance, S = Supply Voltage, GND = Ground  
20  
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
ꢀꢁ ꢂꢃ ꢄꢅ ꢆꢇ ꢈꢅ ꢉ  
ꢊ ꢋꢌ ꢍꢎ ꢏꢐꢑ ꢒꢓ ꢌꢏ ꢐꢎ ꢔꢏ ꢑꢏ ꢎꢍꢋ ꢀꢏ ꢑ ꢐꢍꢋ ꢓꢕ ꢌ ꢆꢖ ꢀ ꢀꢌ ꢕ  
SGUS030B APRIL 2000 REVISED MAY 2001  
development support  
Texas Instruments (TI) offers an extensive line of development tools for the C6x generation of DSPs, including  
tools to evaluate the performance of the processors, generate code, develop algorithm implementations, and  
fully integrate and debug software and hardware modules.  
The following products support development of C6x-based applications:  
Software-Development Tools:  
Assembly optimizer  
Assembler/Linker  
Simulator  
Optimizing ANSI C compiler  
Application algorithms  
C/Assembly debugger and code profiler  
Hardware-Development Tools:  
Extended development system (XDS ) emulator (supports C6x multiprocessor system debug)  
EVM (Evaluation Module)  
The TMS320 DSP Development Support Reference Guide (SPRU011) contains information about  
development-support products for all TMS320 family member devices, including documentation. See this  
document for further information on TMS320 documentation or any TMS320 support products from Texas  
Instruments. An additional document, the TMS320 Third-Party Support Reference Guide (SPRU052), contains  
information about TMS320-related products from other companies in the industry. To receive TMS320 literature,  
contact the Literature Response Center at 800/477-8924.  
See Table 2 for a complete listing of development-support tools for the C6x. For information on pricing and  
availability, contact the nearest TI field sales office or authorized distributor.  
Table 2. SMJ320C6x Development-Support Tools  
DEVELOPMENT TOOL  
PLATFORM  
Software  
PART NUMBER  
AD0345AS8500RF - Single User  
AD0345BS8500RF - Multi-user  
Ada 95 Compiler  
Sun Solaris 2.3  
C Compiler/Assembler/Linker/Assembly Optimizer  
C Compiler/Assembler/Linker/Assembly Optimizer  
Simulator  
Win32  
SPARC Solaris  
Win32  
TMDX3246855-07  
TMDX3246555-07  
TMDS3246851-07  
TMDS3246551-07  
TMDX324016X-07  
Simulator  
SPARC Solaris  
XDS510 Debugger/Emulation Software  
Win32, Windows NT  
Hardware  
§
XDS510 Emulator  
PC  
TMDS00510  
XDS510WS Emulator  
SCSI  
TMDS00510WS  
Software/Hardware  
PC/Win95/Windows NT  
PC/Win95/Windows NT  
EVM Evaluation Kit  
TMDX3260A6201  
TMDX326006201  
EVM Evaluation Kit (including TMDX324685507)  
Contact IRVINE Compiler Corporation (949) 250-1366 to order.  
NT support estimated availability 1Q00.  
Includes XDS510 board and JTAG emulation cable. TMDX324016X-07 C-source Debugger/Emulation software is not included.  
Includes XDS510WS box, SCSI cable, power supply, and JTAG emulation cable.  
§
XDS, XDS510, and XDS510WS are trademarks of Texas Instruments Incorporated.  
Win32 and Windows NT are trademarks of Microsoft Corporation.  
SPARC is a trademark of SPARC International, Inc.  
Solaris is a trademark of Sun Microsystems, Inc.  
21  
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
ꢀ ꢁ ꢂꢃ ꢄ ꢅ ꢆꢇ ꢈ ꢅꢉ  
ꢊ ꢋ ꢌꢍꢎ ꢏ ꢐ ꢑꢒꢓꢌꢏ ꢐ ꢎ ꢔꢏ ꢑ ꢏ ꢎꢍꢋ ꢀ ꢏ ꢑꢐ ꢍꢋ ꢓ ꢕꢌ ꢆꢖꢀ ꢀꢌ ꢕ  
SGUS030B APRIL 2000 REVISED MAY 2001  
device and development-support tool nomenclature  
To designate the stages in the product-development cycle, TI assigns prefixes to the part numbers of all SMJ320  
devices and support tools. Each SMJ320 member has one of three prefixes: SMX, SM, or SMJ. Texas  
Instruments recommends two of three possible prefix designators for support tools: TMDX and TMDS. These  
prefixes represent evolutionary stages of product development from engineering prototypes (SMX/TMDX)  
through fully qualified production devices/tools (SMJ/TMDS).  
Device development evolutionary flow:  
SMX  
SM  
Experimental device that is not necessarily representative of the final devices electrical  
specifications  
Final silicon die that conforms to the devices electrical specifications but has not completed  
quality and reliability verification  
SMJ  
Fully qualified production device processed to MIL-PRF-38535  
Support tool development evolutionary flow:  
TMDX  
Development-support product that has not yet completed Texas Instruments internal qualification  
testing.  
TMDS  
Fully qualified development-support product  
SMX devices and TMDX development-support tools are shipped against the following disclaimer:  
Developmental product is intended for internal evaluation purposes.”  
SMJ devices and TMDS development-support tools have been characterized fully, and the quality and reliability  
of the device have been demonstrated fully. TIs standard warranty applies.  
Predictions show that prototype devices (SMX or SM) have a greater failure rate than the standard production  
devices. Texas Instruments recommends that these devices not be used in any production system because their  
expected end-use failure rate still is undefined. Only qualified production devices are to be used.  
TI device nomenclature also includes a suffix with the device family name. This suffix indicates the package type  
(for example, GLP), the temperature range, and the device speed range in megahertz (for example, 16 is  
167 MHz). Figure 4 provides a legend for reading the complete device name for any SMJ320 family member.  
22  
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
ꢀꢁ ꢂꢃ ꢄꢅ ꢆꢇ ꢈꢅ ꢉ  
ꢊ ꢋꢌ ꢍꢎ ꢏꢐꢑ ꢒꢓ ꢌꢏ ꢐꢎ ꢔꢏ ꢑꢏ ꢎꢍꢋ ꢀꢏ ꢑ ꢐꢍꢋ ꢓꢕ ꢌ ꢆꢖ ꢀ ꢀꢌ ꢕ  
SGUS030B APRIL 2000 REVISED MAY 2001  
device and development-support tool nomenclature (continued)  
W
SMJ 320  
C
6701 GLP  
14  
PREFIX  
DEVICE SPEED RANGE  
14 = 140 MHz  
16 = 167 MHz  
SMX= Experimental device  
SMJ = MIL-PRF-38535, QML  
SM = Commercial  
processing  
TEMPERATURE RANGE (DEFAULT: 0°C TO 90°C)  
DEVICE FAMILY  
320 = SMJ320 family  
S
=
=
40°C to 90°C, extended temperature  
55°C to 115°C, extended temperature  
W
TECHNOLOGY  
PACKAGE TYPE  
GLP = 429-pin ceramic BGA  
C
=
CMOS  
DEVICE  
6x DSP:  
6201B  
6203  
6701  
BGA  
=
Ball Grid Array  
Figure 4. SMJ320 Device Nomenclature (Including SMJ320C6701)  
documentation support  
Extensive documentation supports all SMJ320 family generations of devices from product announcement  
through applications development. The types of documentation available include: data sheets, such as this  
document, with design specifications; complete users reference guides for all devices; technical briefs;  
development-support tools; and hardware and software applications. The following is a brief, descriptive list of  
support documentation specific to the C6x devices:  
The TMS320C6000 CPU and Instruction Set Reference Guide (literature number SPRU189) describes the  
C6000 CPU architecture, instruction set, pipeline, and associated interrupts.  
The TMS320C6000 Peripherals Reference Guide (literature number SPRU190) describes the functionality of  
the peripherals available on C6x devices, such as the external memory interface (EMIF), host-port interface  
(HPI), multichannel buffered serial ports (McBSPs), direct-memory-access (DMA), enhanced  
direct-memory-access (EDMA) controller, expansion bus (XB), clocking and phase-locked loop (PLL); and  
power-down modes. This guide also includes information on internal data and program memories.  
The TMS320C6000 Programmer’s Guide (literature number SPRU198) describes ways to optimize C and  
assembly code for C6x devices and includes application program examples.  
The TMS320C6x C Source Debugger User’s Guide (literature number SPRU188) describes how to invoke the  
C6x simulator and emulator versions of the C source debugger interface and discusses various aspects of the  
debugger, including: command entry, code execution, data management, breakpoints, profiling, and analysis.  
The TMS320C6x Peripheral Support Library Programmer’s Reference (literature number SPRU273) describes  
the contents of the C6x peripheral support library of functions and macros. It lists functions and macros both  
by header file and alphabetically, provides a complete description of each, and gives code examples to show  
how they are used.  
23  
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
ꢀ ꢁ ꢂꢃ ꢄ ꢅ ꢆꢇ ꢈ ꢅꢉ  
ꢊ ꢋ ꢌꢍꢎ ꢏ ꢐ ꢑꢒꢓꢌꢏ ꢐ ꢎ ꢔꢏ ꢑ ꢏ ꢎꢍꢋ ꢀ ꢏ ꢑꢐ ꢍꢋ ꢓ ꢕꢌ ꢆꢖꢀ ꢀꢌ ꢕ  
SGUS030B APRIL 2000 REVISED MAY 2001  
documentation support (continued)  
TMS320C6000 Assembly Language Tools Users Guide (literature number SPRU186) describes the assembly  
language tools (assembler, linker, and other tools used to develop assembly language code), assembler  
directives, macros, common object file format, and symbolic debugging directives for the C6000 generation of  
devices.  
The TMS320C6x Evaluation Module Reference Guide (literature number SPRU269) provides instructions for  
installing and operating the C6x evaluation module. It also includes support software documentation,  
application programming interfaces, and technical reference material.  
TMS320C6000 DSP/BIOS Users Guide (literature number SPRU303) describes how to use DSP/BIOS tools  
and APIs to analyze embedded real-time DSP applications.  
Code Composer Users Guide (literature number SPRU296) explains how to use the Code Composer  
development environment to build and debug embedded real-time DSP applications.  
Code Composer Studio Tutorial (literature number SPRU301) introduces the Code Composer Studio integrated  
development environment and software tools.  
The TMS320C6000 Technical Brief (literature number SPRU197) gives an introduction to the C62x/C67x  
devices, associated development tools, and third-party support.  
A series of DSP textbooks is published by Prentice-Hall and John Wiley & Sons to support DSP research and  
education. The TMS320 newsletter, Details on Signal Processing, is published quarterly and distributed to  
update SMJ320 customers on product information. The TMS320 DSP bulletin board service (BBS) provides  
access to information pertaining to the SMJ320 family, including documentation, source code, and object code  
for many DSP algorithms and utilities. The BBS can be reached at 281/274-2323.  
Information regarding TI DSP products is also available on the Worldwide Web at http://www.ti.com uniform  
resource locator (URL).  
clock PLL  
All of the internal C67x clocks are generated from a single source through the CLKIN pin. This source clock  
either drives the PLL, which multiplies the source clock in frequency to generate the internal CPU clock, or  
bypasses the PLL to become the internal CPU clock.  
To use the PLL to generate the CPU clock, the external PLL filter circuit must be properly designed. Table 3,  
Table 4, and Figure 5 show the external PLL circuitry for either x1 (PLL bypass) or x4 PLL multiply modes.  
Table 3 and Figure 6 show the external PLL circuitry for a system with ONLY x1 (PLL bypass) mode.  
To minimize the clock jitter, a single clean power supply should power both the C67x device and the external  
clock oscillator circuit. Noise coupling into PLLF will directly impact PLL clock jitter. The minimum CLKIN rise  
and fall times should also be observed. For the input clock timing requirements, see the input and output clocks  
electricals section. Guidelines for EMI filter selection are as follows: maximum attenuation frequency =  
20-30 MHz, maximum dB attenuation = 45-50 dB, and minimum dB attenuation above 30 MHz = 20 dB.  
Table 3. CLKOUT1 Frequency Ranges  
PLLFREQ3  
(C13)  
PLLFREQ2  
(G11)  
PLLFREQ1  
(F11)  
CLKOUT1 Frequency Range  
(MHz)  
0
0
0
0
0
1
0
1
0
50140  
65167  
130167  
Due to overlap of frequency ranges when choosing the PLLFREQ, more than one frequency range can contain  
the CLKOUT1 frequency. Choose the lowest frequency range that includes the desired frequency. For example,  
for CLKOUT1 = 133 MHz, choose PLLFREQ value of 000b. For CLKOUT1 = 167 MHz, choose PLLFREQ value  
of 001b. PLLFREQ values other than 000b, 001b, and 010b are reserved.  
24  
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
ꢀꢁ ꢂꢃ ꢄꢅ ꢆꢇ ꢈꢅ ꢉ  
ꢊ ꢋꢌ ꢍꢎ ꢏꢐꢑ ꢒꢓ ꢌꢏ ꢐꢎ ꢔꢏ ꢑꢏ ꢎꢍꢋ ꢀꢏ ꢑ ꢐꢍꢋ ꢓꢕ ꢌ ꢆꢖ ꢀ ꢀꢌ ꢕ  
SGUS030B APRIL 2000 REVISED MAY 2001  
clock PLL (continued)  
Table 4. C6701 PLL Component Selection Table  
CPU CLOCK  
CLKOUT2  
CLKIN  
RANGE  
(MHz)  
TYPICAL  
R1  
()  
C1  
(nF)  
C2  
(pF)  
FREQUENCY  
(CLKOUT1)  
CLKMODE  
RANGE  
(MHz)  
LOCK TIME  
(µs)  
RANGE (MHz)  
x4  
12.541.7  
50167  
2583.5  
60.4  
27  
560  
75  
Under some operating conditions, the maximum PLL lock time may vary as much as 150% from the specified typical value. For example, if the  
typical lock time is specified as 100 µs, the maximum value may be as long as 250 µs.  
PLLFREQ3  
PLLFREQ2  
PLLFREQ1  
(see Table 3)  
3.3V  
PLLV  
Internal to C6701  
PLL  
CLKMODE0  
PLLMULT  
CLKIN  
CLKMODE1  
C4  
C3  
PLLCLK  
0.1 mF  
10 mF  
CLKIN  
1
0
CPU  
CLOCK  
LOOP FILTER  
Available Multiply Factors  
PLL Multiply  
C2  
CPU Clock  
Frequency  
f(CPUCLOCK)  
CLKMODE1  
CLKMODE0  
Factors  
C1  
R1  
0
0
1
1
0
1
0
1
x1(BYPASS)  
Reserved  
Reserved  
x4  
1 x f(CLKIN)  
Reserved  
Reserved  
4 x f(CLKIN)  
NOTES: A. Keep the lead length and the number of vias between the PLLF pin, the PLLG pin, and R1, C1, and C2 to a minimum. In addition,  
place all PLL external components (R1, C1, C2, C3, C4, and the EMI Filter) as close to the C6000 device as possible. For the best  
performance, TI recommends that all the PLL external components be on a single side of the board without jumpers, switches, or  
components other than the ones shown.  
B. For reduced PLL jitter, maximize the spacing between switching signals and the PLL external components (R1, C1, C2, C3, C4,  
and the EMI Filter).  
C. The 3.3-V supply for the EMI filter must be from the same 3.3-V power plane supplying the I/O voltage, DV  
.
DD  
Figure 5. External PLL Circuitry for Either PLL x4 Mode or x1 (Bypass) Mode  
25  
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
ꢀ ꢁ ꢂꢃ ꢄ ꢅ ꢆꢇ ꢈ ꢅꢉ  
ꢊ ꢋ ꢌꢍꢎ ꢏ ꢐ ꢑꢒꢓꢌꢏ ꢐ ꢎ ꢔꢏ ꢑ ꢏ ꢎꢍꢋ ꢀ ꢏ ꢑꢐ ꢍꢋ ꢓ ꢕꢌ ꢆꢖꢀ ꢀꢌ ꢕ  
SGUS030B APRIL 2000 REVISED MAY 2001  
clock PLL (continued)  
PLLFREQ3  
PLLFREQ2  
PLLFREQ1  
(see Table 3)  
3.3V  
PLLV  
Internal to C6701  
CLKMODE0  
CLKMODE1  
PLL  
PLLMULT  
CLKIN  
PLLCLK  
CLKIN  
1
0
LOOP FILTER  
CPU  
CLOCK  
NOTES: A. For a system with ONLY PLL x1 (bypass) mode, short the PLLF terminal to the PLLG terminal.  
B. The 3.3-V supply for the EMI filter must be from the same 3.3-V power plane supplying the I/O voltage, DV  
.
DD  
Figure 6. External PLL Circuitry for x1 (Bypass) Mode Only  
power-supply sequencing  
TI DSPs do not require specific power sequencing between the core supply and the I/O supply. However,  
systems should be designed to ensure that neither supply is powered up for extended periods of time if the other  
supply is below the proper operating voltage.  
system-level design considerations  
System-level design considerations, such as bus contention, may require supply sequencing to be  
implemented. In this case, the core supply should be powered up at the same time as, or prior to (and powered  
down after), the I/O buffers. This is to ensure that the I/O buffers receive valid inputs from the core before the  
output buffers are powered up, thus, preventing bus contention with other chips on the board.  
power-supply design considerations  
For systems using the C6000 DSP platform of devices, the core supply may be required to provide in excess  
of 2 A per DSP until the I/O supply is powered up. This extra current condition is a result of uninitialized logic  
within the DSP(s) and is corrected once the CPU sees an internal clock pulse. With the PLL enabled, as the  
I/O supply is powered on, a clock pulse is produced stopping the extra current draw from the supply. With the  
PLL disabled, an external clock pulse may be required to stop this extra current draw. A normal current state  
returns once the I/O power supply is turned on and the CPU sees a clock pulse. Decreasing the amount of time  
between the core supply power up and the I/O supply power up can minimize the effects of this current draw.  
A dual-power supply with simultaneous sequencing, such as available with TPS563xx controllers or PT69xx  
plug-in power modules, can be used to eliminate the delay between core and I/O power up [see the Using the  
TPS56300 to Power DSPs application report (literature number SLVA088)]. A Schottky diode can also be used  
to tie the core rail to the I/O rail, effectively pulling up the I/O power supply to a level that can help initialize the  
logic within the DSP.  
Core and I/O supply voltage regulators should be located close to the DSP (or DSP array) to minimize  
inductance and resistance in the power delivery path. Additionally, when designing for high-performance  
applications utilizing the C6000 platform of DSPs, the PC board should include separate power planes for  
core, I/O, and ground, all bypassed with high-quality low-ESL/ESR capacitors.  
26  
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
ꢀꢁ ꢂꢃ ꢄꢅ ꢆꢇ ꢈꢅ ꢉ  
ꢊ ꢋꢌ ꢍꢎ ꢏꢐꢑ ꢒꢓ ꢌꢏ ꢐꢎ ꢔꢏ ꢑꢏ ꢎꢍꢋ ꢀꢏ ꢑ ꢐꢍꢋ ꢓꢕ ꢌ ꢆꢖ ꢀ ꢀꢌ ꢕ  
SGUS030B APRIL 2000 REVISED MAY 2001  
absolute maximum ratings over operating case temperature range (unless otherwise noted)  
Supply voltage range, CV  
Supply voltage range, DV  
(see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.3 V to 2.3 V  
(see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.3 V to 4 V  
DD  
DD  
Input voltage range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.3 V to 4 V  
Output voltage range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.3 V to 4 V  
Operating case temperature range, T S suffix device . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40_C to 90_C  
C
W suffix device . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55_C to 115_C  
Storage temperature range, T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55_C to 150_C  
stg  
Stresses beyond those listed under absolute maximum ratingsmay cause permanent damage to the device. These are stress ratings only, and  
functional operation of the device at these or any other conditions beyond those indicated under recommended operating conditionsis not  
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
NOTE 1: All voltage values are with respect to V  
SS  
.
recommended operating conditions  
MIN NOM  
MAX UNIT  
CV  
DV  
Supply voltage  
1.81  
3.14  
0
1.9  
3.30  
0
1.99  
3.46  
0
V
V
DD  
DD  
Supply voltage  
V
V
V
Supply ground  
V
SS  
High-level input voltage  
Low-level input voltage  
High-level output current  
Low-level output current  
2.0  
V
IH  
IL  
0.8  
12  
12  
V
I
mA  
mA  
OH  
OL  
I
S suffix device  
W suffix device  
40  
55  
90  
T
C
Case temperature  
_C  
115  
27  
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
ꢀ ꢁ ꢂꢃ ꢄ ꢅ ꢆꢇ ꢈ ꢅꢉ  
ꢊ ꢋ ꢌꢍꢎ ꢏ ꢐ ꢑꢒꢓꢌꢏ ꢐ ꢎ ꢔꢏ ꢑ ꢏ ꢎꢍꢋ ꢀ ꢏ ꢑꢐ ꢍꢋ ꢓ ꢕꢌ ꢆꢖꢀ ꢀꢌ ꢕ  
SGUS030B APRIL 2000 REVISED MAY 2001  
electrical characteristics over recommended ranges of supply voltage and operating case  
temperature (unless otherwise noted)  
PARAMETER  
High-level output voltage  
Low-level output voltage  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
V
V
V
DV  
DV  
= MIN,  
= MIN,  
I
I
= MAX  
= MAX  
2.4  
OH  
DD  
DD  
OH  
0.6  
±10  
±10  
V
OL  
OL  
I
I
Input current  
V = V  
I SS  
to DV  
DD  
uA  
uA  
I
Off-state output current  
V
= DV  
or 0 V  
= NOM,  
OZ  
O DD  
CV  
DD  
CPU clock = 150 MHz  
I
I
I
Supply current, CPU + CPU memory access  
470  
250  
85  
mA  
mA  
mA  
DD2V  
CV = NOM,  
DD  
CPU clock = 150 MHz  
§
Supply current, peripherals  
DD2V  
DD3V  
DV = NOM,  
DD  
CPU clock = 150 MHz  
Supply current, I/O pins  
C
C
Input capacitance  
Output capacitance  
*15  
*15  
pF  
pF  
i
o
* This parameter is not tested.  
TMS and TDI are not included due to internal pullups.  
TRST is not included due to internal pulldown.  
Measured with average CPU activity:  
50% of time:  
50% of time:  
Measured with average peripheral activity:  
50% of time:  
50% of time:  
8 instructions per cycle, 32-bit DMEM access per cycle  
2 instructions per cycle, 16-bit DMEM access per cycle  
§
Timers at max rate, McBSPs at E1 rate, and DMA burst transfer between DMEM and SDRAM  
Timers at max rate, McBSPs at E1 rate, and DMA servicing McBSPs  
Measured with average I/O activity (30-pF load, SDCLK on):  
25% of time:  
25% of time:  
50% of time:  
Reads from external SDRAM  
Writes to external SDRAM  
No activity  
28  
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
ꢀꢁ ꢂꢃ ꢄꢅ ꢆꢇ ꢈꢅ ꢉ  
ꢊ ꢋꢌ ꢍꢎ ꢏꢐꢑ ꢒꢓ ꢌꢏ ꢐꢎ ꢔꢏ ꢑꢏ ꢎꢍꢋ ꢀꢏ ꢑ ꢐꢍꢋ ꢓꢕ ꢌ ꢆꢖ ꢀ ꢀꢌ ꢕ  
SGUS030B APRIL 2000 REVISED MAY 2001  
PARAMETER MEASUREMENT INFORMATION  
I
OL  
Tester Pin  
Electronics  
Output  
Under  
Test  
50 Ω  
V
ref  
= 30 pF  
C
T
I
OH  
Typical distributed load circuit capacitance.  
signal-transition levels  
All input and output timing parameters are referenced to 1.5 V for both 0and 1logic levels.  
V
ref  
= 1.5 V  
Figure 7. Input and Output Voltage Reference Levels for ac Timing Measurements  
29  
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
ꢀ ꢁ ꢂꢃ ꢄ ꢅ ꢆꢇ ꢈ ꢅꢉ  
SGUS030B APRIL 2000 REVISED MAY 2001  
INPUT AND OUTPUT CLOCKS  
timing requirements for CLKIN (see Figure 8)  
C6701-14  
CLKMODE = x4 CLKMODE = x1  
C6701-16  
CLKMODE = x4 CLKMODE = x1  
NO.  
UNIT  
MIN  
MAX  
MIN  
MAX  
MIN  
MAX  
MIN  
MAX  
1
2
t
t
Cycle time, CLKIN  
28.4  
7.1  
24  
6
ns  
ns  
c(CLKIN)  
Pulse duration,  
CLKIN high  
*0.4C  
*0.4C  
*0.45C  
*0.45C  
*0.4C  
*0.4C  
*0.45C  
*0.45C  
w(CLKINH)  
Pulse duration,  
CLKIN low  
3
4
t
t
ns  
ns  
w(CLKINL)  
Transition time, CLKIN  
*5  
*0.6  
*5  
.
*0.6  
t(CLKIN)  
The reference points for the rise and fall transitions are measured at 20% and 80%, respectively, of V  
C = CLKIN cycle time in ns. For example, when CLKIN frequency is 10 MHz, use C = 100 ns.  
IH  
*This parameter is not tested.  
1
4
2
CLKIN  
3
4
Figure 8. CLKIN Timings  
‡§  
switching characteristics for CLKOUT1 (see Figure 9)  
C6701-14  
C6701-16  
NO.  
PARAMETER  
UNIT  
CLKMODE = x4  
MIN  
CLKMODE = x1  
MIN MAX  
MAX  
1
2
3
4
t
t
t
t
Cycle time, CLKOUT1  
*P 0.7  
*P + 0.7  
*P 0.7  
*PH 0.5  
*PL 0.5  
*P + 0.7  
*PH + 0.5  
*PL + 0.5  
*0.6  
ns  
ns  
ns  
ns  
c(CKO1)  
w(CKO1H)  
w(CKO1L)  
t(CKO1)  
Pulse duration, CLKOUT1 high  
Pulse duration, CLKOUT1 low  
Transition time, CLKOUT1  
*(P/2) 0.5 *(P/2) + 0.5  
*(P/2) 0.5 *(P/2) + 0.5  
*0.6  
§
P = 1/CPU clock frequency in nanoseconds (ns).  
PH is the high period of CLKIN in ns and PL is the low period of CLKIN in ns.  
*This parameter is not tested.  
1
4
2
CLKOUT1  
3
4
Figure 9. CLKOUT1 Timings  
30  
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
ꢀꢁ ꢂꢃ ꢄꢅ ꢆꢇ ꢈꢅ ꢉ  
ꢊ ꢋꢌ ꢍꢎ ꢏꢐꢑ ꢒꢓ ꢌꢏ ꢐꢎ ꢔꢏ ꢑꢏ ꢎꢍꢋ ꢀꢏ ꢑ ꢐꢍꢋ ꢓꢕ ꢌ ꢆꢖ ꢀ ꢀꢌ ꢕ  
SGUS030B APRIL 2000 REVISED MAY 2001  
INPUT AND OUTPUT CLOCKS (CONTINUED)  
switching characteristics for CLKOUT2 (see Figure 10)  
C6701-14  
C6701-16  
NO.  
PARAMETER  
UNIT  
MIN  
MAX  
1
2
3
4
t
t
t
t
Cycle time, CLKOUT2  
*2P 0.7  
*P 0.7  
*P 0.7  
*2P + 0.7  
*P + 0.7  
*P + 0.7  
*0.6  
ns  
ns  
ns  
ns  
c(CKO2)  
w(CKO2H)  
w(CKO2L)  
t(CKO2)  
Pulse duration, CLKOUT2 high  
Pulse duration, CLKOUT2 low  
Transition time, CLKOUT2  
P = 1/CPU clock frequency in ns.  
*This parameter is not tested.  
1
4
2
CLKOUT2  
3
4
Figure 10. CLKOUT2 Timings  
SDCLK, SSCLK timing parameters  
SDCLK timing parameters are the same as CLKOUT2 parameters.  
SSCLK timing parameters are the same as CLKOUT1 or CLKOUT2 parameters, depending on SSCLK  
configuration.  
switching characteristics for the relation of SSCLK, SDCLK, and CLKOUT2 to CLKOUT1  
(see Figure 11)  
C6701-14  
C6701-16  
NO.  
PARAMETER  
UNIT  
MIN  
0.8  
1.0  
1.5  
MAX  
3.4  
1
2
3
t
t
t
Delay time, CLKOUT1 edge to SSCLK edge  
ns  
ns  
ns  
d(CKO1-SSCLK)  
d(CKO1-SSCLK1/2)  
d(CKO1-CKO2)  
Delay time, CLKOUT1 edge to SSCLK edge (1/2 clock rate)  
Delay time, CLKOUT1 edge to CLKOUT2 edge  
3.0  
2.5  
4
t
Delay time, CLKOUT1 edge to SDCLK edge  
1.5  
1.9  
ns  
d(CKO1-SDCLK)  
CLKOUT1  
1
2
3
4
SSCLK  
SSCLK (1/2rate)  
CLKOUT2  
SDCLK  
Figure 11. Relation of CLKOUT2, SDCLK, and SSCLK to CLKOUT1  
31  
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
ꢀ ꢁ ꢂꢃ ꢄ ꢅ ꢆꢇ ꢈ ꢅꢉ  
ꢊ ꢋ ꢌꢍꢎ ꢏ ꢐ ꢑꢒꢓꢌꢏ ꢐ ꢎ ꢔꢏ ꢑ ꢏ ꢎꢍꢋ ꢀ ꢏ ꢑꢐ ꢍꢋ ꢓ ꢕꢌ ꢆꢖꢀ ꢀꢌ ꢕ  
SGUS030B APRIL 2000 REVISED MAY 2001  
ASYNCHRONOUS MEMORY TIMING  
timing requirements for asynchronous memory cycles (see Figure 12 and Figure 13)  
C6701-14  
C6701-16  
NO.  
UNIT  
MIN MAX  
6
7
t
t
t
t
Setup time, read EDx valid before CLKOUT1 high  
Hold time, read EDx valid after CLKOUT1 high  
Setup time, ARDY valid before CLKOUT1 high  
Hold time, ARDY valid after CLKOUT1 high  
4.8  
1.5  
3.5  
1.5  
ns  
ns  
ns  
ns  
su(EDV-CKO1H)  
h(CKO1H-EDV)  
su(ARDY-CKO1H)  
h(CKO1H-ARDY)  
10  
11  
To ensure data setup time, simply program the strobe width wide enough. ARDY is internally synchronized. If ARDY does meet setup or hold  
time, it may be recognized in the current cycle or the next cycle. Thus, ARDY can be an asynchronous input.  
switching characteristics for asynchronous memory cycles (see Figure 12 and Figure 13)  
C6701-14  
C6701-16  
NO.  
PARAMETER  
UNIT  
MIN  
MAX  
4.5  
1
2
t
t
t
t
t
t
t
t
t
t
Delay time, CLKOUT1 high to CEx valid  
Delay time, CLKOUT1 high to BEx valid  
Delay time, CLKOUT1 high to BEx invalid  
Delay time, CLKOUT1 high to EAx valid  
Delay time, CLKOUT1 high to EAx invalid  
Delay time, CLKOUT1 high to AOE valid  
Delay time, CLKOUT1 high to ARE valid  
Delay time, CLKOUT1 high to EDx valid  
Delay time, CLKOUT1 high to EDx invalid  
Delay time, CLKOUT1 high to AWE valid  
1.0  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
d(CKO1H-CEV)  
d(CKO1H-BEV)  
d(CKO1H-BEIV)  
d(CKO1H-EAV)  
d(CKO1H-EAIV)  
d(CKO1H-AOEV)  
d(CKO1H-AREV)  
d(CKO1H-EDV)  
d(CKO1H-EDIV)  
d(CKO1H-AWEV)  
4.5  
3
1.0  
4
4.5  
5
1.0  
1.0  
1.0  
8
4.5  
4.5  
4.5  
9
12  
13  
14  
1.0  
1.0  
4.5  
The minimum delay is also the minimum output hold after CLKOUT1 high.  
32  
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
ꢀꢁ ꢂꢃ ꢄꢅ ꢆꢇ ꢈꢅ ꢉ  
ꢊ ꢋꢌ ꢍꢎ ꢏꢐꢑ ꢒꢓ ꢌꢏ ꢐꢎ ꢔꢏ ꢑꢏ ꢎꢍꢋ ꢀꢏ ꢑ ꢐꢍꢋ ꢓꢕ ꢌ ꢆꢖ ꢀ ꢀꢌ ꢕ  
SGUS030B APRIL 2000 REVISED MAY 2001  
ASYNCHRONOUS MEMORY TIMING (CONTINUED)  
Not ready = 2  
Setup = 2  
Strobe = 5  
HOLD = 1  
CLKOUT1  
CEx  
1
2
4
1
3
BE[3:0]  
EA[21:2]  
ED[31:0]  
AOE  
5
7
6
8
8
9
9
ARE  
AWE  
11  
11  
10  
10  
ARDY  
Figure 12. Asynchronous Memory Read Timing  
Not ready = 2  
Setup = 2  
Strobe = 5  
HOLD = 1  
CLKOUT1  
1
2
4
1
3
5
CEx  
BE[3:0]  
EA[21:2]  
12  
13  
14  
ED[31:0]  
AOE  
ARE  
14  
AWE  
11  
11  
10  
10  
ARDY  
Figure 13. Asynchronous Memory Write Timing  
33  
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
ꢀ ꢁ ꢂꢃ ꢄ ꢅ ꢆꢇ ꢈ ꢅꢉ  
ꢊ ꢋ ꢌꢍꢎ ꢏ ꢐ ꢑꢒꢓꢌꢏ ꢐ ꢎ ꢔꢏ ꢑ ꢏ ꢎꢍꢋ ꢀ ꢏ ꢑꢐ ꢍꢋ ꢓ ꢕꢌ ꢆꢖꢀ ꢀꢌ ꢕ  
SGUS030B APRIL 2000 REVISED MAY 2001  
SYNCHRONOUS-BURST MEMORY TIMING  
timing requirements for synchronous-burst SRAM cycles (full-rate SSCLK)  
(see Figure 14)  
C6701-14  
C6701-16  
NO.  
UNIT  
MIN  
2.6  
MAX  
MIN  
2.5  
MAX  
7
8
t
t
Setup time, read EDx valid before SSCLK high  
Hold time, read EDx valid after SSCLK high  
ns  
ns  
su(EDV-SSCLKH)  
1.5  
1.5  
h(SSCLKH-EDV)  
switching characteristics for synchronous-burst SRAM cycles (full-rate SSCLK)  
(see Figure 14 and Figure 15)  
C6701-14  
C6701-16  
NO.  
PARAMETER  
UNIT  
MIN  
MAX  
MIN  
MAX  
1
2
t
t
t
t
t
t
t
t
t
t
t
t
t
t
Output setup time, CEx valid before SSCLK high  
Output hold time, CEx valid after SSCLK high  
Output setup time, BEx valid before SSCLK high  
Output hold time, BEx invalid after SSCLK high  
Output setup time, EAx valid before SSCLK high  
Output hold time, EAx invalid after SSCLK high  
Output setup time, SSADS valid before SSCLK high  
Output hold time, SSADS valid after SSCLK high  
Output setup time, SSOE valid before SSCLK high  
Output hold time, SSOE valid after SSCLK high  
Output setup time, EDx valid before SSCLK high  
Output hold time, EDx invalid after SSCLK high  
Output setup time, SSWE valid before SSCLK high  
Output hold time, SSWE valid after SSCLK high  
0.5P 1.5  
0.5P 2.5  
0.5P 1.6  
0.5P 2.5  
0.5P 1.7  
0.5P 2.5  
0.5P 1.5  
0.5P 2.5  
0.5P 1.5  
0.5P 2.5  
0.5P 1.5  
0.5P 2.5  
0.5P 1.5  
0.5P 2.5  
0.5P 1.3  
0.5P 2.3  
0.5P 1.6  
0.5P 2.3  
0.5P 1.7  
0.5P 2.5  
0.5P 1.3  
0.5P 2.3  
0.5P 1.3  
0.5P 2.5  
0.5P 1.3  
0.5P 2.5  
0.5P 1.3  
0.5P 2.3  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
osu(CEV-SSCLKH)  
oh(SSCLKH-CEV)  
osu(BEV-SSCLKH)  
oh(SSCLKH-BEIV)  
osu(EAV-SSCLKH)  
oh(SSCLKH-EAIV)  
osu(ADSV-SSCLKH)  
oh(SSCLKH-ADSV)  
osu(OEV-SSCLKH)  
oh(SSCLKH-OEV)  
osu(EDV-SSCLKH)  
oh(SSCLKH-EDIV)  
osu(WEV-SSCLKH)  
oh(SSCLKH-WEV)  
3
4
5
6
9
10  
11  
12  
13  
14  
15  
16  
The effects of internal clock jitter are included at test. There is no need to adjust timing numbers for internal clock jitter.  
When the PLL is used (CLKMODE x4), P = 1/CPU clock frequency in ns. For example, when running parts at 167 MHz, use P = 6 ns.  
For CLKMODE x1, 0.5P is defined as PH (pulse duration of CLKIN high) for all output setup times; 0.5P is defined as PL (pulse duration of CLKIN  
low) for all output hold times.  
34  
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
ꢀꢁ ꢂꢃ ꢄꢅ ꢆꢇ ꢈꢅ ꢉ  
ꢊ ꢋꢌ ꢍꢎ ꢏꢐꢑ ꢒꢓ ꢌꢏ ꢐꢎ ꢔꢏ ꢑꢏ ꢎꢍꢋ ꢀꢏ ꢑ ꢐꢍꢋ ꢓꢕ ꢌ ꢆꢖ ꢀ ꢀꢌ ꢕ  
SGUS030B APRIL 2000 REVISED MAY 2001  
SYNCHRONOUS-BURST MEMORY TIMING (CONTINUED)  
SSCLK  
CEx  
1
2
3
5
4
BE[3:0]  
BE1  
A1  
BE2  
BE3  
BE4  
6
EA[21:2]  
A2  
7
A3  
8
A4  
Q1  
Q2  
Q3  
Q4  
ED[31:0]  
SSADS  
9
10  
11  
12  
SSOE  
SSWE  
Figure 14. SBSRAM Read Timing (Full-Rate SSCLK)  
SSCLK  
1
3
2
CEx  
BE[3:0]  
4
BE1  
A1  
BE2  
A2  
BE3  
A3  
BE4  
5
6
EA[21:2]  
A4  
13  
14  
D4  
ED[31:0]  
D1  
D2  
D3  
9
10  
SSADS  
SSOE  
15  
16  
SSWE  
Figure 15. SBSRAM Write Timing (Full-Rate SSCLK)  
35  
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
ꢀ ꢁ ꢂꢃ ꢄ ꢅ ꢆꢇ ꢈ ꢅꢉ  
ꢊ ꢋ ꢌꢍꢎ ꢏ ꢐ ꢑꢒꢓꢌꢏ ꢐ ꢎ ꢔꢏ ꢑ ꢏ ꢎꢍꢋ ꢀ ꢏ ꢑꢐ ꢍꢋ ꢓ ꢕꢌ ꢆꢖꢀ ꢀꢌ ꢕ  
SGUS030B APRIL 2000 REVISED MAY 2001  
SYNCHRONOUS-BURST MEMORY TIMING (CONTINUED)  
timing requirements for synchronous-burst SRAM cycles (half-rate SSCLK) (see Figure 16)  
C6701-14  
C6701-16  
NO.  
UNIT  
MIN  
3.8  
MAX  
MIN  
3.8  
MAX  
7
8
t
t
Setup time, read EDx valid before SSCLK high  
Hold time, read EDx valid after SSCLK high  
ns  
ns  
su(EDV-SSCLKH)  
1.5  
1.5  
h(SSCLKH-EDV)  
switching characteristics for synchronous-burst SRAM cycles (half-rate SSCLK)  
(see Figure 16 and Figure 17)  
C6701-14  
C6701-16  
NO.  
PARAMETER  
UNIT  
MIN  
MAX  
MIN  
MAX  
1
2
t
t
t
t
t
t
t
t
t
t
t
t
t
t
Output setup time, CEx valid before SSCLK high  
Output hold time, CEx valid after SSCLK high  
Output setup time, BEx valid before SSCLK high  
Output hold time, BEx invalid after SSCLK high  
Output setup time, EAx valid before SSCLK high  
Output hold time, EAx invalid after SSCLK high  
Output setup time, SSADS valid before SSCLK high  
Output hold time, SSADS valid after SSCLK high  
Output setup time, SSOE valid before SSCLK high  
Output hold time, SSOE valid after SSCLK high  
Output setup time, EDx valid before SSCLK high  
Output hold time, EDx invalid after SSCLK high  
Output setup time, SSWE valid before SSCLK high  
Output hold time, SSWE valid after SSCLK high  
1.5P 5.5  
0.5P 2.3  
1.5P 5.5  
0.5P 2.3  
1.5P 5.5  
0.5P 2.3  
1.5P 5.5  
0.5P 2.3  
1.5P 5.5  
0.5P 2.3  
1.5P 5.5  
0.5P 2.3  
1.5P 5.5  
0.5P 2.3  
1.5P 4.5  
0.5P 2  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
osu(CEV-SSCLKH)  
oh(SSCLKH-CEV)  
osu(BEV-SSCLKH)  
oh(SSCLKH-BEIV)  
osu(EAV-SSCLKH)  
oh(SSCLKH-EAIV)  
osu(ADSV-SSCLKH)  
oh(SSCLKH-ADSV)  
osu(OEV-SSCLKH)  
oh(SSCLKH-OEV)  
osu(EDV-SSCLKH)  
oh(SSCLKH-EDIV)  
osu(WEV-SSCLKH)  
oh(SSCLKH-WEV)  
3
1.5P 4.5  
0.5P 2  
4
5
1.5P 4.5  
0.5P 2  
6
9
1.5P 4.5  
0.5P 2  
10  
11  
12  
13  
14  
15  
16  
1.5P 4.5  
0.5P 2  
1.5P 4.5  
0.5P 2.2  
1.5P 4.5  
0.5P 2  
The effects of internal clock jitter are included at test. There is no need to adjust timing numbers for internal clock jitter.  
When the PLL is used (CLKMODE x4), P = 1/CPU clock frequency in ns. For example, when running parts at 167 MHz, use P = 6 ns.  
For CLKMODE x1:  
1.5P = P + PH, where P = 1/CPU clock frequency, and PH = pulse duration of CLKIN high.  
0.5P = PL, where PL = pulse duration of CLKIN low.  
36  
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
ꢀꢁ ꢂꢃ ꢄꢅ ꢆꢇ ꢈꢅ ꢉ  
ꢊ ꢋꢌ ꢍꢎ ꢏꢐꢑ ꢒꢓ ꢌꢏ ꢐꢎ ꢔꢏ ꢑꢏ ꢎꢍꢋ ꢀꢏ ꢑ ꢐꢍꢋ ꢓꢕ ꢌ ꢆꢖ ꢀ ꢀꢌ ꢕ  
SGUS030B APRIL 2000 REVISED MAY 2001  
SYNCHRONOUS-BURST MEMORY TIMING (CONTINUED)  
SSCLK  
CEx  
1
2
3
4
6
BE[3:0]  
BE1  
BE2  
A2  
BE3  
A3  
BE4  
5
A1  
A4  
8
EA[21:2]  
ED[31:0]  
SSADS  
7
Q1  
Q2  
Q3  
10  
Q4  
9
11  
12  
SSOE  
SDWE  
Figure 16. SBSRAM Read Timing (1/2 Rate SSCLK)  
SSCLK  
1
3
2
CEx  
BE[3:0]  
4
6
BE1  
BE2  
A2  
BE3  
A3  
BE4  
A4  
5
EA[21:2]  
A1  
13  
14  
10  
Q1  
Q2  
Q3  
Q4  
ED[31:0]  
9
SSADS  
SSOE  
15  
16  
SSWE  
Figure 17. SBSRAM Write Timing (1/2 Rate SSCLK)  
37  
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
ꢀ ꢁ ꢂꢃ ꢄ ꢅ ꢆꢇ ꢈ ꢅꢉ  
ꢊ ꢋ ꢌꢍꢎ ꢏ ꢐ ꢑꢒꢓꢌꢏ ꢐ ꢎ ꢔꢏ ꢑ ꢏ ꢎꢍꢋ ꢀ ꢏ ꢑꢐ ꢍꢋ ꢓ ꢕꢌ ꢆꢖꢀ ꢀꢌ ꢕ  
SGUS030B APRIL 2000 REVISED MAY 2001  
SYNCHRONOUS DRAM TIMING  
timing requirements for synchronous DRAM cycles (see Figure 18)  
C6701-14  
C6701-16  
NO.  
UNIT  
MIN MAX  
MIN MAX  
7
8
t
t
Setup time, read EDx valid before SDCLK high  
Hold time, read EDx valid after SDCLK high  
2
3
2
3
ns  
ns  
su(EDV-SDCLKH)  
h(SDCLKH-EDV)  
switching characteristics for synchronous DRAM cycles (see Figure 18Figure 23)  
C6701-14  
C6701-16  
NO.  
PARAMETER  
UNIT  
MIN  
MAX  
MIN  
MAX  
1
2
3
4
5
6
t
t
t
t
t
t
Output setup time, CEx valid before SDCLK high  
Output hold time, CEx valid after SDCLK high  
Output setup time, BEx valid before SDCLK high  
Output hold time, BEx invalid after SDCLK high  
Output setup time, EAx valid before SDCLK high  
Output hold time, EAx invalid after SDCLK high  
1.5P 5  
0.5P 1.9  
1.5P 5  
0.5P 1.9  
1.5P 5  
0.5P 1.9  
1.5P 4  
0.5P 1.5  
1.5P 4  
0.5P 1.5  
1.5P 4  
0.5P 1.5  
ns  
ns  
ns  
ns  
ns  
ns  
osu(CEV-SDCLKH)  
oh(SDCLKH-CEV)  
osu(BEV-SDCLKH)  
oh(SDCLKH-BEIV)  
osu(EAV-SDCLKH)  
oh(SDCLKH-EAIV)  
Output setup time, SDCAS valid before SDCLK  
high  
9
t
1.5P 5  
1.5P 4  
ns  
osu(SDCAS-SDCLKH)  
10  
11  
12  
t
t
t
Output hold time, SDCAS valid after SDCLK high  
Output setup time, EDx valid before SDCLK high  
Output hold time, EDx invalid after SDCLK high  
0.5P 1.9  
1.5P 5  
0.5P 1.5  
1.5P 4  
ns  
ns  
ns  
oh(SDCLKH-SDCAS)  
osu(EDV-SDCLKH)  
oh(SDCLKH-EDIV)  
0.5P 1.9  
0.5P 1.5  
Output setup time, SDWE valid before SDCLK  
high  
13  
14  
15  
t
t
t
1.5P 5  
0.5P 1.9  
1.5P 5  
1.5P 4  
0.5P 1.5  
1.5P 4  
ns  
ns  
ns  
osu(SDWE-SDCLKH)  
oh(SDCLKH-SDWE)  
osu(SDA10V-SDCLKH)  
Output hold time, SDWE valid after SDCLK high  
Output setup time, SDA10 valid before SDCLK  
high  
Output hold time, SDA10 invalid after SDCLK  
high  
16  
t
0.5P 1.9  
0.5P 1.5  
ns  
oh(SDCLKH-SDA10IV)  
Output setup time, SDRAS valid before SDCLK  
high  
17  
18  
t
t
1.5P 5  
1.5P 4  
ns  
ns  
osu(SDRAS-SDCLKH)  
Output hold time, SDRAS valid after SDCLK high  
0.5P 1.9  
0.5P 1.5  
oh(SDCLKH-SDRAS)  
The effects of internal clock jitter are included at test. There is no need to adjust timing numbers for internal clock jitter.  
When the PLL is used (CLKMODE x4), P = 1/CPU clock frequency in ns. For example, when running parts at 167 MHz, use P = 6 ns.  
For CLKMODE x1:  
1.5P = P + PH, where P = 1/CPU clock frequency, and PH = pulse duration of CLKIN high.  
0.5P = PL, where PL = pulse duration of CLKIN low.  
38  
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
ꢀꢁ ꢂꢃ ꢄꢅ ꢆꢇ ꢈꢅ ꢉ  
ꢊ ꢋꢌ ꢍꢎ ꢏꢐꢑ ꢒꢓ ꢌꢏ ꢐꢎ ꢔꢏ ꢑꢏ ꢎꢍꢋ ꢀꢏ ꢑ ꢐꢍꢋ ꢓꢕ ꢌ ꢆꢖ ꢀ ꢀꢌ ꢕ  
SGUS030B APRIL 2000 REVISED MAY 2001  
SYNCHRONOUS DRAM TIMING (CONTINUED)  
READ  
READ  
READ  
SDCLK  
1
5
2
CEx  
3
4
BE[3:0]  
BE1  
BE2  
CA3  
BE3  
7
6
CA1  
CA2  
EA[15:2]  
ED[31:0]  
8
D1  
D2  
D3  
15  
9
16  
10  
SDA10  
SDRAS  
SDCAS  
SDWE  
Figure 18. Three SDRAM Read Commands  
WRITE  
WRITE  
WRITE  
SDCLK  
CEx  
1
2
3
4
BE1  
CA1  
BE2  
CA2  
D2  
BE3  
CA3  
D3  
BE[3:0]  
EA[15:2]  
ED[31:0]  
5
6
11  
12  
D1  
15  
16  
SDA10  
SDRAS  
9
10  
14  
SDCAS  
SDWE  
13  
Figure 19. Three SDRAM Write Commands  
39  
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
ꢀ ꢁ ꢂꢃ ꢄ ꢅ ꢆꢇ ꢈ ꢅꢉ  
ꢊ ꢋ ꢌꢍꢎ ꢏ ꢐ ꢑꢒꢓꢌꢏ ꢐ ꢎ ꢔꢏ ꢑ ꢏ ꢎꢍꢋ ꢀ ꢏ ꢑꢐ ꢍꢋ ꢓ ꢕꢌ ꢆꢖꢀ ꢀꢌ ꢕ  
SGUS030B APRIL 2000 REVISED MAY 2001  
SYNCHRONOUS DRAM TIMING (CONTINUED)  
ACTV  
SDCLK  
1
2
CEx  
BE[3:0]  
5
Bank Activate/Row Address  
EA[15:2]  
ED[31:0]  
15  
Row Address  
SDA10  
17  
18  
SDRAS  
SDCAS  
SDWE  
Figure 20. SDRAM ACTV Command  
DCAB  
SDCLK  
1
2
CEx  
BE[3:0]  
EA[15:2]  
ED[31:0]  
15  
16  
SDA10  
17  
18  
SDRAS  
SDCAS  
13  
14  
SDWE  
Figure 21. SDRAM DCAB Command  
40  
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
ꢀꢁ ꢂꢃ ꢄꢅ ꢆꢇ ꢈꢅ ꢉ  
ꢊ ꢋꢌ ꢍꢎ ꢏꢐꢑ ꢒꢓ ꢌꢏ ꢐꢎ ꢔꢏ ꢑꢏ ꢎꢍꢋ ꢀꢏ ꢑ ꢐꢍꢋ ꢓꢕ ꢌ ꢆꢖ ꢀ ꢀꢌ ꢕ  
SGUS030B APRIL 2000 REVISED MAY 2001  
SYNCHRONOUS DRAM TIMING (CONTINUED)  
REFR  
SDCLK  
1
2
CEx  
BE[3:0]  
EA[15:2]  
ED[31:0]  
SDA10  
SDRAS  
17  
18  
9
10  
SDCAS  
SDWE  
Figure 22. SDRAM REFR Command  
MRS  
SDCLK  
1
2
6
CEx  
BE[3:0]  
5
MRS Value  
EA[15:2]  
ED[31:0]  
SDA10  
SDRAS  
17  
18  
10  
14  
9
SDCAS  
SDWE  
13  
Figure 23. SDRAM MRS Command  
41  
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
ꢀ ꢁ ꢂꢃ ꢄ ꢅ ꢆꢇ ꢈ ꢅꢉ  
ꢊ ꢋ ꢌꢍꢎ ꢏ ꢐ ꢑꢒꢓꢌꢏ ꢐ ꢎ ꢔꢏ ꢑ ꢏ ꢎꢍꢋ ꢀ ꢏ ꢑꢐ ꢍꢋ ꢓ ꢕꢌ ꢆꢖꢀ ꢀꢌ ꢕ  
SGUS030B APRIL 2000 REVISED MAY 2001  
HOLD/HOLDA TIMING  
timing requirements for the hold/hold acknowledge cycles (see Figure 24)  
C6701-14  
C6701-16  
NO.  
UNIT  
MIN MAX  
1
2
t
t
Setup time, HOLD high before CLKOUT1 high  
Hold time, HOLD low after CLKOUT1 high  
5
2
ns  
ns  
su(HOLDH-CKO1H)  
h(CKO1H-HOLDL)  
HOLD is synchronized internally. Therefore, if setup and hold times are not met, it will either be recognized in the current cycle or in the next cycle.  
Thus, HOLD can be an asynchronous input.  
switching characteristics for the hold/hold acknowledge cycles (see Figure 24)  
C6701-14  
C6701-16  
NO.  
PARAMETER  
UNIT  
MIN  
MAX  
§
3
4
5
6
7
8
9
t
t
t
t
t
t
t
Response time, HOLD low to EMIF high impedance  
Response time, EMIF high impedance to HOLDA low  
Response time, HOLD high to HOLDA high  
4P  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
R(HOLDL-EMHZ)  
R(EMHZ-HOLDAL)  
R(HOLDH-HOLDAH)  
d(CKO1H-HOLDAL)  
d(CKO1H-BHZ)  
2P  
7P  
8
4P  
1
Delay time, CLKOUT1 high to HOLDA valid  
Delay time, CLKOUT1 high to EMIF Bus high impedance  
*1  
*1  
3P  
*8  
Delay time, CLKOUT1 high to EMIF Bus low impedance  
*12  
6P  
d(CKO1H-BLZ)  
Response time, HOLD high to EMIF Bus low impedance  
R(HOLDH-BLZ)  
§
P = 1/CPU clock frequency in ns. For example, when running parts at 167 MHz, use P = 6 ns.  
All pending EMIF transactions are allowed to complete before HOLDA is asserted. The worst cases for this is an asynchronous read or write  
with external ARDY used or a minimum of eight consecutive SDRAM reads or writes when RBTR8 = 1. If no bus transactions are occurring, then  
the minimum delay time can be achieved. Also, bus hold can be indefinitely delayed by setting the NOHOLD = 1.  
EMIF Bus consists of CE[3:0], BE[3:0], ED[31:0], EA[21:2], ARE, AOE, AWE, SSADS, SSOE, SSWE, SDA10, SDRAS, SDCAS, and SDWE.  
*This parameter is not tested.  
DSP Owns Bus  
External Requester  
DSP Owns Bus  
5
4
9
2
3
CLKOUT1  
HOLD  
2
1
1
6
6
HOLDA  
7
8
EMIF Bus  
C6701  
Ext Req  
C6701  
EMIF Bus consists of CE[3:0], BE[3:0], ED[31:0], EA[21:2], ARE, AOE, AWE, SSADS, SSOE, SSWE, SDA10, SDRAS, SDCAS, and SDWE.  
Figure 24. HOLD/HOLDA Timing  
42  
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
ꢀꢁ ꢂꢃ ꢄꢅ ꢆꢇ ꢈꢅ ꢉ  
ꢊ ꢋꢌ ꢍꢎ ꢏꢐꢑ ꢒꢓ ꢌꢏ ꢐꢎ ꢔꢏ ꢑꢏ ꢎꢍꢋ ꢀꢏ ꢑ ꢐꢍꢋ ꢓꢕ ꢌ ꢆꢖ ꢀ ꢀꢌ ꢕ  
SGUS030B APRIL 2000 REVISED MAY 2001  
RESET TIMING  
timing requirements for reset (see Figure 25)  
C6701-14  
C6701-16  
NO.  
UNIT  
MIN  
*10  
MAX  
CLKOUT1  
cycles  
Width of the RESET pulse (PLL stable)  
1
t
w(RESET)  
Width of the RESET pulse (PLL needs to sync up)  
*250  
µs  
This parameter applies to CLKMODE x1 when CLKIN is stable and applies to CLKMODE x4 when CLKIN and PLL are stable.  
*This parameter is not tested.  
This parameter only applies to CLKMODE x4. The RESET signal is not connected internally to the clock PLL circuit. The PLL, however, may  
need up to 250 µs to stabilize following device powerup or after PLL configuration has been changed. During that time, RESET must be asserted  
to ensure proper device operation. See the clock PLL section for PLL lock times.  
§
switching characteristics during reset (see Figure 25)  
C6701-14  
C6701-16  
NO.  
PARAMETER  
UNIT  
MIN  
*1  
MAX  
CLKOUT1  
cycles  
2
t
Response time to change of value in RESET signal  
R(RESET)  
3
4
t
t
t
t
t
t
t
t
t
t
t
t
Delay time, CLKOUT1 high to CLKOUT2 invalid  
Delay time, CLKOUT1 high to CLKOUT2 valid  
Delay time, CLKOUT1 high to SDCLK invalid  
Delay time, CLKOUT1 high to SDCLK valid  
Delay time, CLKOUT1 high to SSCLK invalid  
Delay time, CLKOUT1 high to SSCLK valid  
Delay time, CLKOUT1 high to low group invalid  
Delay time, CLKOUT1 high to low group valid  
Delay time, CLKOUT1 high to high group invalid  
Delay time, CLKOUT1 high to high group valid  
Delay time, CLKOUT1 high to Z group high impedance  
Delay time, CLKOUT1 high to Z group valid  
*1  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
d(CKO1H-CKO2IV)  
d(CKO1H-CKO2V)  
d(CKO1H-SDCLKIV)  
d(CKO1H-SDCLKV)  
d(CKO1H-SSCKIV)  
d(CKO1H-SSCKV)  
d(CKO1H-LOWIV)  
d(CKO1H-LOWV)  
d(CKO1H-HIGHIV)  
d(CKO1H-HIGHV)  
d(CKO1H-ZHZ)  
*10  
*10  
*10  
*10  
*10  
*10  
5
*1  
*1  
*1  
*1  
*1  
6
7
8
9
10  
11  
12  
13  
14  
d(CKO1H-ZV)  
§
Low group consists of:  
High group consists of:  
Z group consists of:  
IACK, INUM[3:0], DMAC[3:0], PD, TOUT0, and TOUT1.  
HRDY and HINT.  
EA[21:2], ED[31:0], CE[3:0], BE[3:0], ARE, AWE, AOE, SSADS, SSOE, SSWE, SDA10, SDRAS, SDCAS,  
SDWE, HD[15:0], CLKX0, CLKX1, FSX0, FSX1, DX0, DX1, CLKR0, CLKR1, FSR0, and FSR1.  
*This parameter is not tested.  
43  
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
ꢀ ꢁ ꢂꢃ ꢄ ꢅ ꢆꢇ ꢈ ꢅꢉ  
ꢎꢍ  
SGUS030B APRIL 2000 REVISED MAY 2001  
RESET TIMING (CONTINUED)  
CLKOUT1  
1
2
2
RESET  
3
5
7
9
4
6
CLKOUT2  
SDCLK  
8
SSCLK  
10  
12  
14  
LOW GROUP  
HIGH GROUP  
Z GROUP  
11  
13  
Low group consists of:  
High group consists of:  
Z group consists of:  
IACK, INUM[3:0], DMAC[3:0], PD, TOUT0, and TOUT1.  
HRDY and HINT.  
EA[21:2], ED[31:0], CE[3:0], BE[3:0], ARE, AWE, AOE, SSADS, SSOE, SSWE, SDA10, SDRAS, SDCAS,  
SDWE, HD[15:0], CLKX0, CLKX1, FSX0, FSX1, DX0, DX1, CLKR0, CLKR1, FSR0, and FSR1.  
Figure 25. Reset Timing  
44  
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
ꢀꢁ ꢂꢃ ꢄꢅ ꢆꢇ ꢈꢅ ꢉ  
ꢊ ꢋꢌ ꢍꢎ ꢏꢐꢑ ꢒꢓ ꢌꢏ ꢐꢎ ꢔꢏ ꢑꢏ ꢎꢍꢋ ꢀꢏ ꢑ ꢐꢍꢋ ꢓꢕ ꢌ ꢆꢖ ꢀ ꢀꢌ ꢕ  
SGUS030B APRIL 2000 REVISED MAY 2001  
EXTERNAL INTERRUPT/RESET TIMING  
†‡  
timing requirements for interrupt response cycles (see Figure 26)  
C6701-14  
C6701-16  
NO.  
UNIT  
MIN  
*2P  
*2P  
MAX  
2
3
t
t
Width of the interrupt pulse low  
Width of the interrupt pulse high  
ns  
ns  
w(ILOW)  
w(IHIGH)  
Interrupt signals are synchronized internally and are potentially recognized one cycle later if setup and hold times are violated. Thus, they can  
be connected to asynchronous inputs.  
P = 1/CPU clock frequency in ns. For example, when running parts at 167 MHz, use P = 6 ns.  
*This parameter is not tested.  
§
switching characteristics during interrupt response cycles (see Figure 26)  
C6701-14  
C6701-16  
NO.  
PARAMETER  
UNIT  
MIN  
MAX  
1
4
5
6
t
t
t
t
Response time, EXT_INTx high to IACK high  
Delay time, CLKOUT2 low to IACK valid  
Delay time, CLKOUT2 low to INUMx valid  
Delay time, CLKOUT2 low to INUMx invalid  
9P  
ns  
ns  
ns  
ns  
R(EINTH-IACKH)  
d(CKO2L-IACKV)  
d(CKO2L-INUMV)  
d(CKO2L-INUMIV)  
0.5P 13 0.5P  
10 0.5P  
0.5P  
§
P = 1/CPU clock frequency in ns. For example, when running parts at 167 MHz, use P = 6 ns.  
When the PLL is used (CLKMODE x4), 0.5P = 1/(2 × CPU clock frequency).  
For CLKMODE x1: 0.5P = PH, where PH is the high period of CLKIN.  
1
CLKOUT2  
3
2
EXT_INTx, NMI  
Intr Flag  
4
4
IACK  
6
5
Interrupt Number  
INUMx  
Figure 26. Interrupt Timing  
45  
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
ꢀ ꢁ ꢂꢃ ꢄ ꢅ ꢆꢇ ꢈ ꢅꢉ  
ꢊ ꢋ ꢌꢍꢎ ꢏ ꢐ ꢑꢒꢓꢌꢏ ꢐ ꢎ ꢔꢏ ꢑ ꢏ ꢎꢍꢋ ꢀ ꢏ ꢑꢐ ꢍꢋ ꢓ ꢕꢌ ꢆꢖꢀ ꢀꢌ ꢕ  
SGUS030B APRIL 2000 REVISED MAY 2001  
HOST-PORT INTERFACE TIMING  
†‡  
timing requirements for host-port interface cycles (see Figure 27, Figure 28, Figure 29, and  
Figure 30)  
C6701-14  
C6701-16  
NO.  
UNIT  
MIN  
4
MAX  
§
1
2
t
t
t
t
t
t
t
t
Setup time, select signals valid before HSTROBE low  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
su(SEL-HSTBL)  
h(HSTBL-SEL)  
w(HSTBL)  
§
Hold time, select signals valid after HSTROBE low  
2
3
Pulse duration, HSTROBE low  
*2P  
*2P  
4
4
Pulse duration, HSTROBE high between consecutive accesses  
w(HSTBH)  
§
Setup time, select signals valid before HAS low  
10  
11  
12  
13  
su(SEL-HASL)  
h(HASL-SEL)  
su(HDV-HSTBH)  
h(HSTBH-HDV)  
§
Hold time, select signals valid after HAS low  
2
Setup time, host data valid before HSTROBE high  
Hold time, host data valid after HSTROBE high  
3
2
Hold time, HSTROBE low after HRDY low. HSTROBE should not be  
inactivated until HRDY is active (low); otherwise, HPI writes will not  
complete properly.  
14  
t
*1  
ns  
h(HRDYL-HSTBL)  
18  
19  
t
t
Setup time, HAS low before HSTROBE low  
Hold time, HAS low after HSTROBE low  
*2  
*2  
ns  
ns  
su(HASL-HSTBL)  
h(HSTBL-HASL)  
*This parameter is not tested.  
HSTROBE refers to the following logical operation on HCS, HDS1, and HDS2: [NOT(HDS1 XOR HDS2)] OR HCS.  
The effects of internal clock jitter are included at test. There is no need to adjust timing numbers for internal clock jitter. P = 1/CPU clock frequency  
in ns. For example, when running parts at 167 MHz, use P = 6 ns.  
§
Select signals include: HCNTRL[1:0], HR/W, and HHWIL.  
†‡  
switching characteristics during host-port interface cycles (see Figure 27, Figure 28, Figure 29,  
and Figure 30)  
C6701-14  
C6701-16  
NO.  
PARAMETER  
UNIT  
MIN MAX  
5
6
t
t
t
t
t
t
t
t
Delay time, HCS to HRDY  
1
1
12  
12  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
d(HCS-HRDY)  
#
Delay time, HSTROBE low to HRDY high  
d(HSTBL-HRDYH)  
oh(HSTBL-HDLZ)  
d(HDV-HRDYL)  
oh(HSTBH-HDV)  
d(HSTBH-HDHZ)  
d(HSTBL-HDV)  
d(HSTBH-HRDYH)  
7
Output hold time, HD low impedance after HSTROBE low for an HPI read  
Delay time, HD valid to HRDY low  
*4  
8
*P 3 *P + 3  
9
Output hold time, HD valid after HSTROBE high  
Delay time, HSTROBE high to HD high impedance  
Delay time, HSTROBE low to HD valid  
3
*3  
3
12  
*12  
12  
15  
16  
17  
||  
Delay time, HSTROBE high to HRDY high  
1
12  
*This parameter is not tested.  
HSTROBE refers to the following logical operation on HCS, HDS1, and HDS2: [NOT(HDS1 XOR HDS2)] OR HCS.  
The effects of internal clock jitter are included at test. There is no need to adjust timing numbers for internal clock jitter. P = 1/CPU clock frequency  
in ns. For example, when running parts at 167 MHz, use P = 6 ns.  
#
||  
HCS enables HRDY, and HRDY is always low when HCS is high. The case where HRDY goes high when HCS falls indicates that HPI is busy  
completing a previous HPID write or READ with autoincrement.  
This parameter is used during an HPID read. At the beginning of the first half-word transfer on the falling edge of HSTROBE, the HPI sends the  
request to the DMA auxiliary channel, and HRDY remains high until the DMA auxiliary channel loads the requested data into HPID.  
This parameter is used after the second half-word of an HPID write or autoincrement read. HRDY remains low if the access is not an HPID write  
or autoincrement read. Reading or writing to HPIC or HPIA does not affect the HRDY signal.  
46  
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
ꢀꢁ ꢂꢃ ꢄꢅ ꢆꢇ ꢈꢅ ꢉ  
ꢊ ꢋꢌ ꢍꢎ ꢏꢐꢑ ꢒꢓ ꢌꢏ ꢐꢎ ꢔꢏ ꢑꢏ ꢎꢍꢋ ꢀꢏ ꢑ ꢐꢍꢋ ꢓꢕ ꢌ ꢆꢖ ꢀ ꢀꢌ ꢕ  
SGUS030B APRIL 2000 REVISED MAY 2001  
HOST-PORT INTERFACE TIMING (CONTINUED)  
HAS  
HCNTL[1:0]  
HR/W  
1
1
1
1
2
2
2
2
2
2
1
1
HHWIL  
4
3
HSTROBE  
HCS  
15  
9
15  
9
7
16  
HD[15:0] (output)  
HRDY (case 1)  
HRDY (case 2)  
5
5
1st half-word  
2nd half-word  
5
8
8
17  
17  
6
HSTROBE refers to the following logical operation on HCS, HDS1, and HDS2: [NOT(HDS1 XOR HDS2)] OR HCS.  
Figure 27. HPI Read Timing (HAS Not Used, Tied High)  
HAS  
19  
11  
19  
11  
10  
10  
10  
10  
HCNTL[1:0]  
HR/W  
11  
11  
11  
11  
10  
10  
HHWIL  
4
3
HSTROBE  
18  
18  
HCS  
15  
15  
7
9
16  
9
17  
17  
HD[15:0] (output)  
HRDY (case 1)  
HRDY (case 2)  
1st half-word  
2nd half-word  
5
8
8
5
5
6
HSTROBE refers to the following logical operation on HCS, HDS1, and HDS2: [NOT(HDS1 XOR HDS2)] OR HCS.  
Figure 28. HPI Read Timing (HAS Used)  
47  
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
ꢀ ꢁ ꢂꢃ ꢄ ꢅ ꢆꢇ ꢈ ꢅꢉ  
ꢊ ꢋ ꢌꢍꢎ ꢏ ꢐ ꢑꢒꢓꢌꢏ ꢐ ꢎ ꢔꢏ ꢑ ꢏ ꢎꢍꢋ ꢀ ꢏ ꢑꢐ ꢍꢋ ꢓ ꢕꢌ ꢆꢖꢀ ꢀꢌ ꢕ  
SGUS030B APRIL 2000 REVISED MAY 2001  
HOST-PORT INTERFACE TIMING (CONTINUED)  
HAS  
1
1
2
2
HCNTL[1:0]  
HBE[1:0]  
12  
12  
13  
13  
1
1
1
1
2
2
2
2
HR/W  
HHWIL  
3
4
14  
HSTROBE  
HCS  
HD[15:0] (input)  
HRDY  
12  
12  
13  
2nd half-word  
13  
17  
1st half-word  
5
5
HSTROBE refers to the following logical operation on HCS, HDS1, and HDS2: [NOT(HDS1 XOR HDS2)] OR HCS.  
Figure 29. HPI Write Timing (HAS Not Used, Tied High)  
HAS  
HBE[1:0]  
12  
12  
19  
13  
19  
13  
11  
11  
11  
11  
11  
11  
10  
10  
10  
10  
HCNTL[1:0]  
10  
10  
HR/W  
HHWIL  
3
4
14  
HSTROBE  
18  
12  
18  
HCS  
HD[15:0] (input)  
HRDY  
12  
13  
13  
1st half-word  
2nd half-word  
5
5
17  
HSTROBE refers to the following logical operation on HCS, HDS1, and HDS2: [NOT(HDS1 XOR HDS2)] OR HCS.  
Figure 30. HPI Write Timing (HAS Used)  
48  
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
ꢀꢁ ꢂꢃ ꢄꢅ ꢆꢇ ꢈꢅ ꢉ  
ꢊ ꢋꢌ ꢍꢎ ꢏꢐꢑ ꢒꢓ ꢌꢏ ꢐꢎ ꢔꢏ ꢑꢏ ꢎꢍꢋ ꢀꢏ ꢑ ꢐꢍꢋ ꢓꢕ ꢌ ꢆꢖ ꢀ ꢀꢌ ꢕ  
SGUS030B APRIL 2000 REVISED MAY 2001  
MULTICHANNEL BUFFERED SERIAL PORT TIMING  
†‡  
timing requirements for McBSP (see Figure 31)  
C6701-14  
C6701-16  
NO.  
UNIT  
MIN  
*2P  
*P 1  
*13  
4
MAX  
2
3
t
t
Cycle time, CLKR/X  
CLKR/X ext  
CLKR/X ext  
CLKR int  
CLKR ext  
CLKR int  
CLKR ext  
CLKR int  
CLKR ext  
CLKR int  
CLKR ext  
CLKX int  
CLKX ext  
CLKX int  
CLKX ext  
ns  
ns  
c(CKRX)  
Pulse duration, CLKR/X high or CLKR/X low  
w(CKRX)  
5
6
t
t
t
t
t
t
Setup time, external FSR high before CLKR low  
Hold time, external FSR high after CLKR low  
Setup time, DR valid before CLKR low  
ns  
ns  
ns  
ns  
ns  
ns  
su(FRH-CKRL)  
h(CKRL-FRH)  
su(DRV-CKRL)  
h(CKRL-DRV)  
su(FXH-CKXL)  
h(CKXL-FXH)  
*7  
4
10  
1
7
4
8
Hold time, DR valid after CLKR low  
4
*13  
4
10  
11  
Setup time, external FSX high before CLKX low  
Hold time, external FSX high after CLKX low  
*7  
3
P = 1/CPU clock frequency in ns. For example, when running parts at 167 MHz, use P = 6 ns.  
CLKRP = CLKXP = FSRP = FSXP = 0 in the pin control register (PCR). If polarity of any of the signals is inverted, then the timing references  
of that signal are also inverted.  
*This parameter is not tested.  
49  
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
ꢀ ꢁ ꢂꢃ ꢄ ꢅ ꢆꢇ ꢈ ꢅꢉ  
ꢊ ꢋ ꢌꢍꢎ ꢏ ꢐ ꢑꢒꢓꢌꢏ ꢐ ꢎ ꢔꢏ ꢑ ꢏ ꢎꢍꢋ ꢀ ꢏ ꢑꢐ ꢍꢋ ꢓ ꢕꢌ ꢆꢖꢀ ꢀꢌ ꢕ  
SGUS030B APRIL 2000 REVISED MAY 2001  
MULTICHANNEL BUFFERED SERIAL PORT TIMING (CONTINUED)  
†‡§  
switching characteristics for McBSP  
(see Figure 31)  
C6701-14  
C6701-16  
NO.  
PARAMETER  
UNIT  
MIN  
3
MAX  
15  
Delay time, CLKS high to CLKR/X high for internal  
CLKR/X generated from CLKS input  
1
t
ns  
d(CKSH-CKRXH)  
2
3
4
t
t
t
Cycle time, CLKR/X  
CLKR/X int  
CLKR/X int  
CLKR int  
CLKX int  
CLKX ext  
CLKX int  
CLKX ext  
CLKX int  
CLKX ext  
FSX int  
2P  
ns  
ns  
ns  
c(CKRX)  
Pulse duration, CLKR/X high or CLKR/X low  
Delay time, CLKR high to internal FSR valid  
C 1  
C + 1  
w(CKRX)  
4  
4  
*3  
4
5
d(CKRH-FRV)  
9
t
t
t
t
Delay time, CLKX high to internal FSX valid  
ns  
ns  
ns  
ns  
d(CKXH-FXV)  
dis(CKXH-DXHZ)  
d(CKXH-DXV)  
d(FXH-DXV)  
*16  
*2  
*3  
*2  
Disable time, DX high impedance following last data bit from  
CLKX high  
12  
13  
14  
*9  
2  
3
4
Delay time, CLKX high to DX valid.  
16  
*4  
*2  
*2  
Delay time, FSX high to DX valid.  
ONLY applies when in data delay 0 (XDATDLY = 00b) mode.  
FSX ext  
*10  
CLKRP = CLKXP = FSRP = FSXP = 0 in the pin control register (PCR). If polarity of any of the signals is inverted, then the timing references  
of that signal are also inverted.  
§
Minimum delay times also represent minimum output hold times.  
P = 1/CPU clock frequency in ns. For example, when running parts at 167 MHz, use P = 6 ns.  
C = H or L  
S = sample rate generator input clock = P if CLKSM = 1 (P = 1/CPU clock frequency)  
=
sample rate generator input clock = P_clks if CLKSM = 0 (P_clks = CLKS period)  
H = CLKX high pulse width = (CLKGDV/2 + 1) * S if CLKGDV is even  
= (CLKGDV + 1)/2 * S if CLKGDV is odd or zero  
L = CLKX low pulse width = (CLKGDV/2) * S if CLKGDV is even  
= (CLKGDV + 1)/2 * S if CLKGDV is odd or zero  
*This parameter is not tested.  
50  
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
ꢀꢁ ꢂꢃ ꢄꢅ ꢆꢇ ꢈꢅ ꢉ  
ꢊ ꢋꢌ ꢍꢎ ꢏꢐꢑ ꢒꢓ ꢌꢏ ꢐꢎ ꢔꢏ ꢑꢏ ꢎꢍꢋ ꢀꢏ ꢑ ꢐꢍꢋ ꢓꢕ ꢌ ꢆꢖ ꢀ ꢀꢌ ꢕ  
SGUS030B APRIL 2000 REVISED MAY 2001  
MULTICHANNEL BUFFERED SERIAL PORT TIMING (CONTINUED)  
CLKS  
1
2
3
3
CLKR  
4
4
FSR (int)  
5
6
FSR (ext)  
7
8
DR  
Bit(n-1)  
(n-2)  
(n-3)  
2
3
3
CLKX  
9
FSX (int)  
11  
10  
FSX (ext)  
FSX (XDATDLY=00b)  
13  
(n-2)  
14  
13  
12  
DX  
Bit 0  
Bit(n-1)  
(n-3)  
Figure 31. McBSP Timings  
51  
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
ꢀ ꢁ ꢂꢃ ꢄ ꢅ ꢆꢇ ꢈ ꢅꢉ  
ꢊ ꢋ ꢌꢍꢎ ꢏ ꢐ ꢑꢒꢓꢌꢏ ꢐ ꢎ ꢔꢏ ꢑ ꢏ ꢎꢍꢋ ꢀ ꢏ ꢑꢐ ꢍꢋ ꢓ ꢕꢌ ꢆꢖꢀ ꢀꢌ ꢕ  
SGUS030B APRIL 2000 REVISED MAY 2001  
MULTICHANNEL BUFFERED SERIAL PORT TIMING (CONTINUED)  
timing requirements for FSR when GSYNC = 1 (see Figure 32)  
C6701-14  
C6701-16  
NO.  
UNIT  
MIN  
*4  
MAX  
1
2
t
t
Setup time, FSR high before CLKS high  
Hold time, FSR high after CLKS high  
ns  
ns  
su(FRH-CKSH)  
*4  
h(CKSH-FRH)  
*This parameter is not tested.  
CLKS  
1
2
FSR external  
CLKR/X (no need to resync)  
CLKR/X(needs resync)  
Figure 32. FSR Timing When GSYNC = 1  
52  
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
ꢀꢁ ꢂꢃ ꢄꢅ ꢆꢇ ꢈꢅ ꢉ  
ꢊ ꢋꢌ ꢍꢎ ꢏꢐꢑ ꢒꢓ ꢌꢏ ꢐꢎ ꢔꢏ ꢑꢏ ꢎꢍꢋ ꢀꢏ ꢑ ꢐꢍꢋ ꢓꢕ ꢌ ꢆꢖ ꢀ ꢀꢌ ꢕ  
SGUS030B APRIL 2000 REVISED MAY 2001  
MULTICHANNEL BUFFERED SERIAL PORT TIMING (CONTINUED)  
†‡  
timing requirements for McBSP as SPI master or slave: CLKSTP = 10b, CLKXP = 0 (see Figure 33)  
C6701-14  
C6701-16  
NO.  
UNIT  
MASTER  
SLAVE  
MIN MAX  
MIN  
12  
4
MAX  
4
5
t
t
Setup time, DR valid before CLKX low  
Hold time, DR valid after CLKX low  
2 3P  
ns  
ns  
su(DRV-CKXL)  
5 + 6P  
h(CKXL-DRV)  
The effects of internal clock jitter are included at test. There is no need to adjust timing numbers for internal clock jitter. P = 1/CPU clock frequency  
in ns. For example, when running parts at 167 MHz, use P = 6 ns.  
For all SPI slave modes, CLKG is programmed as 1/2 of the CPU clock by setting CLKSM = CLKGDV = 1.  
†‡  
switching characteristics for McBSP as SPI master or slave: CLKSTP = 10b, CLKXP = 0  
(see Figure 33)  
C6701-14  
C6701-16  
NO.  
PARAMETER  
UNIT  
§
MASTER  
SLAVE  
MIN  
MIN MAX  
MAX  
1
2
3
t
t
t
Hold time, FSX low after CLKX low  
T 4 T + 4  
L 4 L + 4  
ns  
ns  
ns  
h(CKXL-FXL)  
d(FXL-CKXH)  
d(CKXH-DXV)  
#
Delay time, FSX low to CLKX high  
Delay time, CLKX high to DX valid  
4  
4
3P + 1  
5P + 17  
Disable time, DX high impedance following last data bit from  
CLKX low  
6
t
*L 2 *L + 3  
ns  
dis(CKXL-DXHZ)  
Disable time, DX high impedance following last data bit from  
FSX high  
7
8
t
t
*P + 4 *3P + 17  
2P + 1 4P + 13  
ns  
ns  
dis(FXH-DXHZ)  
Delay time, FSX low to DX valid  
d(FXL-DXV)  
*This parameter is not tested.  
The effects of internal clock jitter are included at test. There is no need to adjust timing numbers for internal clock jitter. P = 1/CPU clock frequency  
in ns. For example, when running parts at 167 MHz, use P = 6 ns.  
§
For all SPI slave modes, CLKG is programmed as 1/2 of the CPU clock by setting CLKSM = CLKGDV = 1.  
S = sample rate generator input clock = P if CLKSM = 1 (P = 1/CPU clock frequency)  
=
sample rate generator input clock = P_clks if CLKSM = 0 (P_clks = CLKS period)  
T = CLKX period = (1 + CLKGDV) * S  
H = CLKX high pulse width = (CLKGDV/2 + 1) * S if CLKGDV is even  
= (CLKGDV + 1)/2 * S if CLKGDV is odd or zero  
L = CLKX low pulse width = (CLKGDV/2) * S if CLKGDV is even  
= (CLKGDV + 1)/2 * S if CLKGDV is odd or zero  
FSRP = FSXP = 1. As a SPI master, FSX is inverted to provide active-low slave-enable output. As a slave, the active-low signal input on FSX  
and FSR is inverted before being used internally.  
CLKXM = FSXM = 1, CLKRM = FSRM = 0 for master McBSP  
CLKXM = CLKRM = FSXM = FSRM = 0 for slave McBSP  
FSX should be low before the rising edge of clock to enable slave devices and then begin a SPI transfer at the rising edge of the master clock  
(CLKX).  
#
53  
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
ꢀ ꢁ ꢂꢃ ꢄ ꢅ ꢆꢇ ꢈ ꢅꢉ  
ꢊ ꢋ ꢌꢍꢎ ꢏ ꢐ ꢑꢒꢓꢌꢏ ꢐ ꢎ ꢔꢏ ꢑ ꢏ ꢎꢍꢋ ꢀ ꢏ ꢑꢐ ꢍꢋ ꢓ ꢕꢌ ꢆꢖꢀ ꢀꢌ ꢕ  
SGUS030B APRIL 2000 REVISED MAY 2001  
MULTICHANNEL BUFFERED SERIAL PORT TIMING (CONTINUED)  
CLKX  
FSX  
1
2
8
7
6
3
DX  
DR  
Bit 0  
Bit(n-1)  
Bit(n-1)  
(n-2)  
(n-3)  
(n-4)  
4
5
Bit 0  
(n-2)  
(n-3)  
(n-4)  
Figure 33. McBSP Timing as SPI Master or Slave: CLKSTP = 10b, CLKXP = 0  
†‡  
timing requirements for McBSP as SPI master or slave: CLKSTP = 11b, CLKXP = 0 (see Figure 34)  
C6701-14  
C6701-16  
NO.  
UNIT  
MASTER  
SLAVE  
MIN MAX  
MIN  
12  
4
MAX  
4
5
t
t
Setup time, DR valid before CLKX high  
Hold time, DR valid after CLKX high  
2 3P  
ns  
ns  
su(DRV-CKXH)  
5 + 6P  
h(CKXH-DRV)  
The effects of internal clock jitter are included at test. There is no need to adjust timing numbers for internal clock jitter. P = 1/CPU clock frequency  
in ns. For example, when running parts at 167 MHz, use P = 6 ns.  
For all SPI slave modes, CLKG is programmed as 1/2 of the CPU clock by setting CLKSM = CLKGDV = 1.  
54  
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
ꢀꢁ ꢂꢃ ꢄꢅ ꢆꢇ ꢈꢅ ꢉ  
ꢊ ꢋꢌ ꢍꢎ ꢏꢐꢑ ꢒꢓ ꢌꢏ ꢐꢎ ꢔꢏ ꢑꢏ ꢎꢍꢋ ꢀꢏ ꢑ ꢐꢍꢋ ꢓꢕ ꢌ ꢆꢖ ꢀ ꢀꢌ ꢕ  
SGUS030B APRIL 2000 REVISED MAY 2001  
MULTICHANNEL BUFFERED SERIAL PORT TIMING (CONTINUED)  
†‡  
switching characteristics for McBSP as SPI master or slave: CLKSTP = 11b, CLKXP = 0  
(see Figure 34)  
C6701-14  
C6701-16  
NO.  
PARAMETER  
UNIT  
§
MASTER  
SLAVE  
MIN  
MIN  
MAX  
MAX  
1
2
3
t
t
t
Hold time, FSX low after CLKX low  
L 4  
L + 4  
ns  
ns  
ns  
h(CKXL-FXL)  
d(FXL-CKXH)  
d(CKXL-DXV)  
#
Delay time, FSX low to CLKX high  
Delay time, CLKX low to DX valid  
T 4  
4  
T + 4  
4
3P + 1  
5P + 17  
Disable time, DX high impedance following last data bit  
from CLKX low  
6
t
*2  
*4 *3P + 4 *5P + 17  
*H + 3 2P + 1 4P + 13  
ns  
ns  
dis(CKXL-DXHZ)  
7
t
Delay time, FSX low to DX valid  
*H 2  
d(FXL-DXV)  
*This parameter is not tested.  
The effects of internal clock jitter are included at test. There is no need to adjust timing numbers for internal clock jitter. P = 1/CPU clock frequency  
in ns. For example, when running parts at 167 MHz, use P = 6 ns.  
§
For all SPI slave modes, CLKG is programmed as 1/2 of the CPU clock by setting CLKSM = CLKGDV = 1.  
S = sample rate generator input clock = P if CLKSM = 1 (P = 1/CPU clock frequency)  
=
sample rate generator input clock = P_clks if CLKSM = 0 (P_clks = CLKS period)  
T = CLKX period = (1 + CLKGDV) * S  
H = CLKX high pulse width = (CLKGDV/2 + 1) * S if CLKGDV is even  
= (CLKGDV + 1)/2 * S if CLKGDV is odd or zero  
L = CLKX low pulse width = (CLKGDV/2) * S if CLKGDV is even  
= (CLKGDV + 1)/2 * S if CLKGDV is odd or zero  
FSRP = FSXP = 1. As a SPI master, FSX is inverted to provide active-low slave-enable output. As a slave, the active-low signal input on FSX  
and FSR is inverted before being used internally.  
CLKXM = FSXM = 1, CLKRM = FSRM = 0 for master McBSP  
CLKXM = CLKRM = FSXM = FSRM = 0 for slave McBSP  
FSX should be low before the rising edge of clock to enable slave devices and then begin a SPI transfer at the rising edge of the master clock  
(CLKX).  
#
CLKX  
1
2
7
FSX  
DX  
6
3
Bit 0  
Bit(n-1)  
Bit(n-1)  
(n-2)  
(n-3)  
(n-3)  
(n-4)  
4
5
DR  
Bit 0  
(n-2)  
(n-4)  
Figure 34. McBSP Timing as SPI Master or Slave: CLKSTP = 11b, CLKXP = 0  
55  
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
ꢀ ꢁ ꢂꢃ ꢄ ꢅ ꢆꢇ ꢈ ꢅꢉ  
ꢊ ꢋ ꢌꢍꢎ ꢏ ꢐ ꢑꢒꢓꢌꢏ ꢐ ꢎ ꢔꢏ ꢑ ꢏ ꢎꢍꢋ ꢀ ꢏ ꢑꢐ ꢍꢋ ꢓ ꢕꢌ ꢆꢖꢀ ꢀꢌ ꢕ  
SGUS030B APRIL 2000 REVISED MAY 2001  
MULTICHANNEL BUFFERED SERIAL PORT TIMING (CONTINUED)  
†‡  
timing requirements for McBSP as SPI master or slave: CLKSTP = 10b, CLKXP = 1 (see Figure 35)  
C6701-14  
C6701-16  
NO.  
UNIT  
MASTER  
SLAVE  
MIN MAX  
MIN  
12  
4
MAX  
4
5
t
t
Setup time, DR valid before CLKX high  
Hold time, DR valid after CLKX high  
2 3P  
ns  
ns  
su(DRV-CKXH)  
5 + 6P  
h(CKXH-DRV)  
The effects of internal clock jitter are included at test. There is no need to adjust timing numbers for internal clock jitter. P = 1/CPU clock frequency  
in ns. For example, when running parts at 167 MHz, use P = 6 ns.  
For all SPI slave modes, CLKG is programmed as 1/2 of the CPU clock by setting CLKSM = CLKGDV = 1.  
†‡  
switching characteristics for McBSP as SPI master or slave: CLKSTP = 10b, CLKXP = 1  
(see Figure 35)  
C6701-14  
C6701-16  
NO.  
PARAMETER  
UNIT  
§
MASTER  
SLAVE  
MIN  
MIN  
MAX  
MAX  
1
2
3
t
t
t
Hold time, FSX low after CLKX high  
T 4  
H 4  
4  
T + 4  
H + 4  
4
ns  
ns  
ns  
h(CKXH-FXL)  
d(FXL-CKXL)  
d(CKXL-DXV)  
#
Delay time, FSX low to CLKX low  
Delay time, CLKX low to DX valid  
3P + 1  
5P + 17  
Disable time, DX high impedance following last data bit  
from CLKX high  
6
t
*H 2  
*H + 3  
ns  
dis(CKXH-DXHZ)  
Disable time, DX high impedance following last data bit  
from FSX high  
7
8
t
t
*P + 4 *3P + 17  
2P + 1 4P + 13  
ns  
ns  
dis(FXH-DXHZ)  
Delay time, FSX low to DX valid  
d(FXL-DXV)  
*This parameter is not tested.  
The effects of internal clock jitter are included at test. There is no need to adjust timing numbers for internal clock jitter. P = 1/CPU clock frequency  
in ns. For example, when running parts at 167 MHz, use P = 6 ns.  
§
For all SPI slave modes, CLKG is programmed as 1/2 of the CPU clock by setting CLKSM = CLKGDV = 1.  
S = sample rate generator input clock = P if CLKSM = 1 (P = 1/CPU clock frequency)  
=
sample rate generator input clock = P_clks if CLKSM = 0 (P_clks = CLKS period)  
T = CLKX period = (1 + CLKGDV) * S  
H = CLKX high pulse width = (CLKGDV/2 + 1) * S if CLKGDV is even  
= (CLKGDV + 1)/2 * S if CLKGDV is odd or zero  
L = CLKX low pulse width = (CLKGDV/2) * S if CLKGDV is even  
= (CLKGDV + 1)/2 * S if CLKGDV is odd or zero  
FSRP = FSXP = 1. As a SPI master, FSX is inverted to provide active-low slave-enable output. As a slave, the active-low signal input on FSX  
and FSR is inverted before being used internally.  
CLKXM = FSXM = 1, CLKRM = FSRM = 0 for master McBSP  
CLKXM = CLKRM = FSXM = FSRM = 0 for slave McBSP  
FSX should be low before the rising edge of clock to enable slave devices and then begin a SPI transfer at the rising edge of the master clock  
(CLKX).  
#
56  
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
ꢀꢁ ꢂꢃ ꢄꢅ ꢆꢇ ꢈꢅ ꢉ  
ꢊ ꢋꢌ ꢍꢎ ꢏꢐꢑ ꢒꢓ ꢌꢏ ꢐꢎ ꢔꢏ ꢑꢏ ꢎꢍꢋ ꢀꢏ ꢑ ꢐꢍꢋ ꢓꢕ ꢌ ꢆꢖ ꢀ ꢀꢌ ꢕ  
SGUS030B APRIL 2000 REVISED MAY 2001  
MULTICHANNEL BUFFERED SERIAL PORT TIMING (CONTINUED)  
CLKX  
FSX  
1
2
7
6
8
3
DX  
DR  
Bit 0  
Bit(n-1)  
Bit(n-1)  
(n-2)  
(n-3)  
(n-4)  
4
5
Bit 0  
(n-2)  
(n-3)  
(n-4)  
Figure 35. McBSP Timing as SPI Master or Slave: CLKSTP = 10b, CLKXP = 1  
†‡  
timing requirements for McBSP as SPI master or slave: CLKSTP = 11b, CLKXP = 1 (see Figure 36)  
C6701-14  
C6701-16  
NO.  
UNIT  
MASTER  
SLAVE  
MIN MAX  
MIN  
12  
4
MAX  
4
5
t
t
Setup time, DR valid before CLKX low  
Hold time, DR valid after CLKX low  
2 3P  
ns  
ns  
su(DRV-CKXL)  
5 + 6P  
h(CKXL-DRV)  
The effects of internal clock jitter are included at test. There is no need to adjust timing numbers for internal clock jitter. P = 1/CPU clock frequency  
in ns. For example, when running parts at 167 MHz, use P = 6 ns.  
For all SPI slave modes, CLKG is programmed as 1/2 of the CPU clock by setting CLKSM = CLKGDV = 1.  
57  
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
ꢀ ꢁ ꢂꢃ ꢄ ꢅ ꢆꢇ ꢈ ꢅꢉ  
ꢊ ꢋ ꢌꢍꢎ ꢏ ꢐ ꢑꢒꢓꢌꢏ ꢐ ꢎ ꢔꢏ ꢑ ꢏ ꢎꢍꢋ ꢀ ꢏ ꢑꢐ ꢍꢋ ꢓ ꢕꢌ ꢆꢖꢀ ꢀꢌ ꢕ  
SGUS030B APRIL 2000 REVISED MAY 2001  
MULTICHANNEL BUFFERED SERIAL PORT TIMING (CONTINUED)  
†‡  
switching characteristics for McBSP as SPI master or slave: CLKSTP = 11b, CLKXP = 1  
(see Figure 36)  
C6701-14  
C6701-16  
NO.  
PARAMETER  
UNIT  
§
MASTER  
SLAVE  
MIN  
MIN MAX  
MAX  
1
2
3
t
t
t
Hold time, FSX low after CLKX high  
H 4 H + 4  
T 4 T + 4  
ns  
ns  
ns  
h(CKXH-FXL)  
d(FXL-CKXL)  
d(CKXH-DXV)  
#
Delay time, FSX low to CLKX low  
Delay time, CLKX high to DX valid  
4  
4
3P + 1  
*4 *3P + 4 *5P + 17  
*L 2 *L + 3 2P + 1 4P + 13  
5P + 17  
Disable time, DX high impedance following last data bit from  
CLKX high  
6
t
*2  
ns  
ns  
dis(CKXH-DXHZ)  
7
t
Delay time, FSX low to DX valid  
d(FXL-DXV)  
*This parameter is not tested.  
The effects of internal clock jitter are included at test. There is no need to adjust timing numbers for internal clock jitter. P = 1/CPU clock frequency  
in ns. For example, when running parts at 167 MHz, use P = 6 ns.  
§
For all SPI slave modes, CLKG is programmed as 1/2 of the CPU clock by setting CLKSM = CLKGDV = 1.  
S = sample rate generator input clock = P if CLKSM = 1 (P = 1/CPU clock frequency)  
=
sample rate generator input clock = P_clks if CLKSM = 0 (P_clks = CLKS period)  
T = CLKX period = (1 + CLKGDV) * S  
H = CLKX high pulse width = (CLKGDV/2 + 1) * S if CLKGDV is even  
= (CLKGDV + 1)/2 * S if CLKGDV is odd or zero  
L = CLKX low pulse width = (CLKGDV/2) * S if CLKGDV is even  
= (CLKGDV + 1)/2 * S if CLKGDV is odd or zero  
FSRP = FSXP = 1. As a SPI master, FSX is inverted to provide active-low slave-enable output. As a slave, the active-low signal input on FSX  
and FSR is inverted before being used internally.  
CLKXM = FSXM = 1, CLKRM = FSRM = 0 for master McBSP  
CLKXM = CLKRM = FSXM = FSRM = 0 for slave McBSP  
FSX should be low before the rising edge of clock to enable slave devices and then begin a SPI transfer at the rising edge of the master clock  
(CLKX).  
#
CLKX  
1
2
FSX  
DX  
7
6
3
Bit 0  
Bit 0  
Bit(n-1)  
Bit(n-1)  
(n-2)  
(n-3)  
(n-4)  
4
5
DR  
(n-2)  
(n-3)  
(n-4)  
Figure 36. McBSP Timing as SPI Master or Slave: CLKSTP = 11b, CLKXP = 1  
58  
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
ꢀꢁ ꢂꢃ ꢄꢅ ꢆꢇ ꢈꢅ ꢉ  
ꢊ ꢋꢌ ꢍꢎ ꢏꢐꢑ ꢒꢓ ꢌꢏ ꢐꢎ ꢔꢏ ꢑꢏ ꢎꢍꢋ ꢀꢏ ꢑ ꢐꢍꢋ ꢓꢕ ꢌ ꢆꢖ ꢀ ꢀꢌ ꢕ  
SGUS030B APRIL 2000 REVISED MAY 2001  
DMAC, TIMER, POWER-DOWN TIMING  
switching characteristics for DMAC outputs (see Figure 37)  
C6701-14  
C6701-16  
NO.  
PARAMETER  
UNIT  
MIN  
MAX  
1
t
Delay time, CLKOUT1 high to DMAC valid  
2
11  
ns  
d(CKO1H-DMACV)  
CLKOUT1  
DMAC[0:3]  
1
1
Figure 37. DMAC Timing  
timing requirements for timer inputs (see Figure 38)  
C6701-14  
C6701-16  
NO.  
UNIT  
MIN  
MAX  
1
t
Pulse duration, TINP high  
2P  
ns  
w(TINPH)  
P = 1/CPU clock frequency in ns. For example, when running parts at 167 MHz, use P = 6 ns.  
switching characteristics for timer outputs (see Figure 38)  
C6701-14  
C6701-16  
NO.  
PARAMETER  
UNIT  
MIN  
MAX  
10  
2
t
Delay time, CLKOUT1 high to TOUT valid  
1
ns  
d(CKO1H-TOUTV)  
CLKOUT1  
TINP  
1
2
2
TOUT  
Figure 38. Timer Timing  
switching characteristics for power-down outputs (see Figure 39)  
C6701-14  
C6701-16  
NO.  
PARAMETER  
UNIT  
MIN  
MAX  
1
t
Delay time, CLKOUT1 high to PD valid  
1
9
ns  
d(CKO1H-PDV)  
CLKOUT1  
PD  
1
1
Figure 39. Power-Down Timing  
59  
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
ꢀ ꢁ ꢂꢃ ꢄ ꢅ ꢆꢇ ꢈ ꢅꢉ  
ꢊ ꢋ ꢌꢍꢎ ꢏ ꢐ ꢑꢒꢓꢌꢏ ꢐ ꢎ ꢔꢏ ꢑ ꢏ ꢎꢍꢋ ꢀ ꢏ ꢑꢐ ꢍꢋ ꢓ ꢕꢌ ꢆꢖꢀ ꢀꢌ ꢕ  
SGUS030B APRIL 2000 REVISED MAY 2001  
JTAG TEST-PORT TIMING  
timing requirements for JTAG test port (see Figure 40)  
C6701-14  
C6701-16  
NO.  
UNIT  
MIN  
35  
10  
9
MAX  
1
3
4
t
t
t
Cycle time, TCK  
ns  
ns  
ns  
c(TCK)  
Setup time, TDI/TMS/TRST valid before TCK high  
Hold time, TDI/TMS/TRST valid after TCK high  
su(TDIV-TCKH)  
h(TCKH-TDIV)  
switching characteristics for JTAG test port (see Figure 40)  
C6701-14  
C6701-16  
NO.  
PARAMETER  
UNIT  
MIN  
MAX  
*15  
2
t
Delay time, TCK low to TDO valid  
*3  
ns  
d(TCKL-TDOV)  
*This parameter is not tested.  
1
TCK  
TDO  
2
2
4
3
TDI/TMS/TRST  
Figure 40. JTAG Test-Port Timing  
60  
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
ꢀꢁ ꢂꢃ ꢄꢅ ꢆꢇ ꢈꢅ ꢉ  
ꢋꢌ  
ꢍꢎ  
ꢑꢏ  
SGUS030B APRIL 2000 REVISED MAY 2001  
MECHANICAL DATA  
GLP (S-CBGA-N429)  
CERAMIC BALL GRID ARRAY  
27,20  
26,80  
SQ  
25,40 TYP  
1,27  
AA  
Y
W
V
U
T
R
P
N
M
L
1,27  
K
J
H
G
F
E
D
C
B
A
1
3
5
7
9
11 13 15 17 19 21  
10 12 14 16 18 20  
2
4
6
8
1,22  
1,00  
3,30 MAX  
Seating Plane  
0,15  
0,90  
0,60  
M
0,10  
0,70  
0,50  
4164732/A 08/98  
NOTES: A. All linear dimensions are in millimeters.  
B. This drawing is subject to change without notice.  
C. Falls within JEDEC MO-156  
D. Flip chip application only  
thermal resistance characteristics (S-CBGA package)  
NO  
°C/W  
3.0  
Air Flow  
N/A  
1
2
3
4
5
6
RΘ  
RΘ  
RΘ  
Junction-to-Case, measured to the bottom of solder ball  
Junction-to-Case, measured to the top of the package lid  
Junction-to-Ambient  
JC  
JC  
JA  
7.3  
N/A  
14.5  
11.8  
11.1  
10.2  
0
150 fpm  
250 fpm  
500 fpm  
RΘ  
RΘ  
Junction-to-Moving-Air  
JMA  
JB  
Junction-to-Board, measured by soldering a thermocouple to one of the middle  
traces on the board at the edge of the package  
7
6.2  
N/A  
61  
POST OFFICE BOX 1443 HOUSTON, TEXAS 772511443  
PACKAGE OPTION ADDENDUM  
www.ti.com  
14-Aug-2007  
PACKAGING INFORMATION  
Orderable Device  
Status (1)  
Package Package  
Pins Package Eco Plan (2) Lead/Ball Finish MSL Peak Temp (3)  
Qty  
Type  
Drawing  
5962-9866101QXA  
5962-9866101VXA  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
FC/CSP  
FC/CSP  
FC/CSP  
FC/CSP  
FC/CSP  
FC/CSP  
GLP  
429  
429  
429  
429  
429  
429  
1
1
1
1
1
1
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
N / A for Pkg Type  
N / A for Pkg Type  
N / A for Pkg Type  
N / A for Pkg Type  
N / A for Pkg Type  
N / A for Pkg Type  
GLP  
5962-9866102VXA  
GLP  
SM320C6701GLPS16  
SM320C6701GLPW14  
SMJ320C6701GLPW14  
GLP  
GLP  
GLP  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in  
a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2)  
Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check  
http://www.ti.com/productcontent for the latest availability information and additional product content details.  
TBD: The Pb-Free/Green conversion plan has not been defined.  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements  
for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered  
at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.  
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and  
package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS  
compatible) as defined above.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame  
retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)  
(3)  
MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder  
temperature.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is  
provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the  
accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take  
reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on  
incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited  
information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI  
to Customer on an annual basis.  
Addendum-Page 1  
MECHANICAL DATA  
MCBG004A – SEPTEMBER 1998 – REVISED JANUARY 2002  
GLP (S-CBGA-N429)  
CERAMIC BALL GRID ARRAY  
27,20  
26,80  
SQ  
25,40 TYP  
1,27  
AA  
Y
W
V
U
T
R
P
N
M
L
K
J
H
G
F
E
D
C
B
A
1
3
5
7
9
11 13 15 17 19 21  
10 12 14 16 18 20  
A1 Corner  
2
4
6
8
Bottom View  
1,22  
1,00  
3,30 MAX  
Seating Plane  
0,15  
0,90  
0,60  
M
0,10  
0,70  
0,50  
4164732/B 11/01  
NOTES: A. All linear dimensions are in millimeters.  
B. This drawing is subject to change without notice.  
C. Falls within JEDEC MO-156  
D. Flip chip application only  
1
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements,  
improvements, and other changes to its products and services at any time and to discontinue any product or service without notice.  
Customers should obtain the latest relevant information before placing orders and should verify that such information is current and  
complete. All products are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.  
TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s  
standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this  
warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily  
performed.  
TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and  
applications using TI components. To minimize the risks associated with customer products and applications, customers should  
provide adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask  
work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services  
are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such  
products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under  
the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is  
accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an  
unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties  
may be subject to additional restrictions.  
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service  
voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business  
practice. TI is not responsible or liable for any such statements.  
TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would  
reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement  
specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications  
of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related  
requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any  
applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its  
representatives against any damages arising out of the use of TI products in such safety-critical applications.  
TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are  
specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military  
specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is  
solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in  
connection with such use.  
TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products  
are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any  
non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.  
Following are URLs where you can obtain information on other Texas Instruments products and application solutions:  
Products  
Amplifiers  
Data Converters  
DSP  
Applications  
Audio  
amplifier.ti.com  
dataconverter.ti.com  
dsp.ti.com  
www.ti.com/audio  
Automotive  
Broadband  
Digital Control  
Military  
www.ti.com/automotive  
www.ti.com/broadband  
www.ti.com/digitalcontrol  
www.ti.com/military  
Interface  
interface.ti.com  
logic.ti.com  
Logic  
Power Mgmt  
Microcontrollers  
RFID  
power.ti.com  
Optical Networking  
Security  
www.ti.com/opticalnetwork  
www.ti.com/security  
www.ti.com/telephony  
www.ti.com/video  
microcontroller.ti.com  
www.ti-rfid.com  
www.ti.com/lpw  
Telephony  
Low Power  
Wireless  
Video & Imaging  
Wireless  
www.ti.com/wireless  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2007, Texas Instruments Incorporated  

相关型号:

SM320C6701W14

FLOATING-POINT DIGITAL SIGNAL PROCESSOR

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

SM320C6701W16

FLOATING-POINT DIGITAL SIGNAL PROCESSOR

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

SM320C6701ZMBW14

用于军事应用的单核 C67x 浮点 DSP - 高达 167MHz | ZMB | 429 | -55 to 115

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

SM320C6711-EP

FLOATING-POINT DIGTAL SIGNAL PROCESSORS

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

SM320C6711B-EP

FLOATING-POINT DIGTAL SIGNAL PROCESSORS

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

SM320C6711C-EP

FLOATING-POINT DIGTAL SIGNAL PROCESSORS

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

SM320C6711D-EP

FLOATING-POINT DIGTAL SIGNAL PROCESSORS

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

SM320C6712-EP

FLOATING-POINT DIGITAL SIGNAL PROCESSORS

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

SM320C6712C-EP

FLOATING-POINT DIGITAL SIGNAL PROCESSORS

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

SM320C6712D-EP

FLOATING-POINT DIGITAL SIGNAL PROCESSORS

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

SM320C6713-EP

FLOATING-POINT DIGITAL SIGNAL PROCESSORS

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

SM320C6713-EP_1

FLOATING-POINT DIGITAL SIGNAL PROCESSORS

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI