SM320MCM41DHFHL40 [TI]

32-BIT, 40MHz, OTHER DSP, CQFP352, CERAMIC, QFP-352;
SM320MCM41DHFHL40
型号: SM320MCM41DHFHL40
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

32-BIT, 40MHz, OTHER DSP, CQFP352, CERAMIC, QFP-352

时钟 外围集成电路
文件: 总12页 (文件大小:184K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
SMJ320MCM41D  
SINGLE-SMJ320C40 MULTICHIP MODULE  
SGKS002 – OCTOBER 1997  
352-LEAD HFH QUAD FLATPACK PACKAGE  
(TOP VIEW)  
Performance  
– 40 MFLOPS (Million Floating-Point  
Operations per Second) With  
256-Megabyte/s Burst I/O Rate for  
40-MHz Modules  
– 128K Word × 32 Bit Zero-Wait-State  
SRAM Connected to the ’C40 Local Bus  
352  
265  
1
264  
Compliant to MIL-PRF-38535 QML  
’C40 Performance With Local Memory  
Requiring Only 4.35 Square Inches of  
Board Space  
Enhanced Performance Offered By  
Multichip-Module Solution  
– 46% Reduction In Number of  
Interconnects  
– 23% Reduction (Minimum) in Board Area  
– Estimated 20% Reduction in Power  
Dissipation Due to Reduced Parasitic  
Capacitance and Interconnect Lengths  
88  
177  
Two Memory Ports for High Data  
Bandwidth  
89  
176  
– Full 2-Gigaword External Bus  
– Internal Bus Mapped to 128K Word ×  
32 Bit Zero-Wait-State SRAM  
Six External Communication Ports for  
Direct Processor-to-Processor  
Communication  
Supports IEEE-1149.1 -Compliant (JTAG)  
With Boundary-Scan Testing  
Operating Free-Air Temperature Ranges:  
– Military: 55°C to 125°C  
– Commercial: 0°C to 70°C  
Packaging:  
352-Lead Ceramic Quad Flatpack  
(HFH Suffix)  
description  
The ’MCM41 single-SMJ320C40 multichip module (MCM) contains one SMJ320C40 device with 128K word  
× 32 bit zero-wait-state SRAM mapped to the local memory bus. The MCM is footprint-compatible with the  
monolithic ’320C40HFH package to allow easy upgradeability and design-in. The local memory bus is not  
routed to the device footprint. The ’MCM41 is available in both a commercial temperature range (0°C to 70°C)  
and a military temperature range (55°C to 125°C) option.  
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of  
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
IEEE Standard 1149.1–1990, IEEE Standard Test-Access Port and Boundary-Scan Architecture  
The ’MCM41 single-SMJ320C40 multichip module will be referred to as ’MCM41 throughout this data sheet.  
Copyright 1997, Texas Instruments Incorporated  
ADVANCE INFORMATION concerns new products in the sampling or  
preproduction phase of development. Characteristic data and other  
specifications are subject to change without notice.  
1
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
SMJ320MCM41D  
SINGLE-SMJ320C40 MULTICHIP MODULE  
SGKS002 – OCTOBER 1997  
Table 1. MCM Processing Matrix  
TEST  
TEMPERATURE  
RANGE  
PROCESS  
LEVEL  
100%  
PROCESSED  
SPEED  
TEST  
QUALIFICATION  
TESTING  
TEMPERATURE RANGE  
DIE  
L version  
M version  
M version  
0°C to 70°C  
Probed  
Probed  
No  
No  
No  
Yes  
Yes  
25°C to 70°C  
Package  
SM  
55°C to 125°C  
55°C to 125°C  
55°C to 125°C  
55°C to 125°C  
Package  
SMJ  
KGD  
Yes  
MIL-H-38534  
SMJ-level product is fully MIL-PRF-38535 QML compliant.  
KGD stands for the known-good-die strategy as defined in the reference documentation and data sheet scope section.  
Multichip Module Naming Nomenclature and Ordering Information  
Example: SMJ  
320  
MCM  
4
1
D
HFH  
M
40  
Process Level Prefix  
(Refer to Table 1)  
320 DSP Family Designator  
Multichip Module  
Processor Family  
Number of CPUs per Module  
Module Revision  
Package  
HFH = 352-Lead Ceramic Quad Flatpack  
Temperature Range  
L (Commercial)  
M (Military)  
=
=
0°C to 70°C  
55°C to 125°C  
Speed Designator  
40 = 40 MHz  
For descriptions of the HFH package pin assignments, refer to the SMJ320C40 signals descriptions table in the  
SMJ320C40 data sheet (literature number SGUS017).  
2
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
SMJ320MCM41D  
SINGLE-SMJ320C40 MULTICHIP MODULE  
SGKS002 – OCTOBER 1997  
HFH package pin assignments — numerical listing  
PIN  
01  
02  
03  
04  
05  
06  
07  
08  
09  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
SIGNAL  
D31  
PIN  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
SIGNAL  
D0  
PIN  
81  
SIGNAL  
CSTRB5  
CACK5  
CREQ5  
CRDY4  
CSTRB4  
CACK4  
CREQ4  
PIN  
121  
122  
123  
124  
125  
126  
127  
128  
129  
130  
131  
132  
133  
134  
135  
136  
137  
138  
139  
140  
141  
142  
143  
144  
145  
146  
147  
148  
149  
150  
151  
152  
153  
154  
155  
156  
157  
158  
159  
160  
SIGNAL  
PIN  
161  
162  
163  
164  
165  
166  
167  
168  
169  
170  
171  
172  
173  
174  
175  
176  
177  
178  
179  
180  
181  
182  
183  
184  
185  
186  
187  
188  
189  
190  
191  
192  
193  
194  
195  
196  
197  
198  
199  
200  
SIGNAL  
C1D7  
C1D6  
C1D5  
C1D4  
C1D3  
C1D2  
C1D1  
C1D0  
DV  
DD  
D30  
CE1  
82  
IV  
SS  
IV  
SS  
D29  
RDY1  
83  
§
§
D28  
DV  
DV  
CV  
CV  
84  
C2D7  
C2D6  
C2D5  
C2D4  
C2D3  
C2D2  
C2D1  
C2D0  
SS  
SS  
SS  
SS  
D27  
85  
D26  
86  
GDDV  
87  
DD  
D25  
§
§
LOCK  
88  
CV  
DV  
DV  
DV  
SS  
SS  
SS  
D24  
D23  
D22  
D21  
D20  
D19  
D18  
D17  
D16  
V
DDL  
89  
DV  
DD  
#
V
SSL  
CE0  
90  
C0D7  
C0D6  
C0D5  
C0D4  
C0D3  
C0D2  
C0D1  
C0D0  
91  
DD  
RDY0  
DE  
92  
C5D7  
C5D6  
C5D5  
C5D4  
C5D3  
C5D2  
C5D1  
C5D0  
CV  
SS  
SS  
SS  
§
§
93  
DV  
DV  
DV  
TCK  
94  
TDO  
TDI  
95  
DD  
96  
CRDY3  
CSTRB3  
CACK3  
CREQ3  
TMS  
TRST  
EMU0  
EMU1  
97  
CV  
98  
CV  
SS  
SS  
SS  
DD  
CV  
IV  
99  
DV  
100  
101  
102  
103  
104  
105  
106  
107  
108  
109  
110  
111  
112  
113  
114  
115  
116  
117  
118  
119  
120  
DV  
V
DDL  
ROMEN  
IIOF0  
SS  
DD  
§
#
GDDV  
GDDV  
DV  
DV  
DV  
C4D7  
V
SSL  
DD  
SS  
SS  
§
§
§
C4D6  
C4D5  
C4D4  
C4D3  
C4D2  
C4D1  
C4D0  
CRDY2  
CSTRB2  
CACK2  
CREQ2  
DV  
DV  
DD  
§
SS  
SS  
DV  
DV  
SS  
DD  
§
PAGE1  
R/W1  
IIOF1  
IIOF2  
IIOF3  
NMI  
SS  
D15  
D14  
D13  
D12  
D11  
D10  
D9  
STRB1  
STAT0  
STAT1  
DV  
DD  
CRDY1  
CSTRB1  
CACK1  
CREQ1  
CRDY0  
CSTRB0  
CACK0  
CREQ0  
||  
||  
||  
||  
||  
||  
||  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
IV  
SS  
CV  
SS  
SS  
SS  
§
§
STAT2  
STAT3  
DV  
DV  
DV  
D8  
PAGE0  
R/W0  
DD  
D7  
C3D7  
C3D6  
C3D5  
C3D4  
C3D3  
C3D2  
C3D1  
C3D0  
D6  
STRB0  
AE  
§
§
D5  
CV  
CV  
DV  
DV  
DV  
CV  
SS  
SS  
SS  
SS  
DD  
GDDV  
RESETLOC1  
DD  
SS  
||  
||  
||  
||  
D4  
D3  
D2  
D1  
DV  
NC  
DD  
RESETLOC0  
RESET  
NC  
NC  
NC  
IV  
SS  
CRDY5  
DV  
DD  
§
#
||  
CV  
and IV  
pins are connected internally.  
SS  
SS  
DD  
SS  
DV , LADV , LDDV , GDDV , and GADV  
DV  
pins are connected internally.  
DD  
DD  
DD  
DD  
pins are connected internally.  
pins are connected internally.  
pins are connected internally.  
V
DDL  
V
SSL  
Pins marked NC should be left electrically unconnected.  
3
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
SMJ320MCM41D  
SINGLE-SMJ320C40 MULTICHIP MODULE  
SGKS002 – OCTOBER 1997  
HFH package pin assignments — numerical listing (continued)  
PIN  
201  
202  
203  
204  
205  
206  
207  
208  
209  
210  
211  
212  
213  
214  
215  
216  
217  
218  
219  
220  
221  
222  
223  
224  
225  
226  
227  
228  
229  
230  
231  
232  
233  
234  
235  
236  
237  
238  
239  
240  
SIGNAL  
TCLK0  
TCLK1  
H3  
PIN  
241  
242  
243  
244  
245  
246  
247  
248  
249  
250  
251  
252  
253  
254  
255  
256  
257  
258  
259  
260  
261  
262  
263  
264  
265  
266  
267  
268  
269  
270  
271  
272  
273  
274  
275  
276  
277  
278  
279  
280  
SIGNAL  
PIN  
281  
282  
283  
284  
285  
286  
287  
288  
289  
290  
291  
292  
293  
294  
295  
296  
297  
298  
299  
300  
301  
302  
303  
304  
305  
306  
307  
308  
309  
310  
311  
312  
313  
314  
315  
316  
317  
318  
319  
320  
SIGNAL  
PIN  
321  
322  
323  
324  
325  
326  
327  
328  
329  
330  
331  
332  
333  
334  
335  
336  
337  
338  
339  
340  
341  
342  
343  
344  
345  
346  
347  
348  
349  
350  
351  
352  
SIGNAL  
A20  
§
§
CV  
DV  
DV  
LDDV  
SS  
SS  
SS  
DD  
CV  
DV  
DV  
A19  
SS  
§
A18  
SS  
SS  
||  
||  
||  
||  
||  
||  
||  
||  
||  
||  
§
H1  
NC  
A17  
||  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
IV  
SS  
GADV  
GADV  
DD  
IV  
SS  
NC||  
NC||  
NC||  
NC||  
NC||  
NC||  
NC||  
NC||  
NC||  
NC||  
NC||  
NC||  
DD  
||  
||  
||  
||  
||  
NC  
NC  
NC  
NC  
NC  
CV  
CV  
DV  
DV  
SS  
§
§
SS  
SS  
SS  
A16  
A15  
A14  
A13  
A12  
A11  
A10  
A9  
IACK  
V
DDL  
#
V
SSL  
X1  
NC||  
NC||  
X2/CLKIN  
LADV  
DD  
CV  
CV  
DV  
DV  
DV  
NC||  
SS  
SS  
NC||  
NC||  
NC||  
LDDV  
DD  
NC||  
A8  
DD  
§
NC||  
NC||  
NC||  
NC||  
A7  
SS  
§
§
§
DV  
A6  
SS  
SS  
SS  
SS  
||  
||  
||  
||  
NC  
DV  
CV  
A5  
NC  
NC  
NC  
A4  
NC||  
NC||  
NC||  
NC||  
V
DDL  
GADV  
DD  
#
V
A3  
A2  
A1  
A0  
SSL  
LADV  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
CV  
CV  
DV  
DV  
DD  
SS  
||  
||  
||  
||  
||  
||  
||  
||  
||  
||  
||  
§
§
SS  
SS  
SS  
LDDV  
DD  
§
§
NC||  
CV  
SS  
SS  
SS  
NC||  
NC||  
NC||  
NC||  
NC||  
NC||  
NC||  
NC||  
NC||  
NC||  
A30  
A29  
A28  
DV  
DV  
SUBS  
GADV  
DD  
A27  
A26  
A25  
A24  
A23  
A22  
A21  
LADV  
LADV  
DD  
DD  
CV  
LDDV  
DD  
SS  
§
#
||  
CV  
and IV  
pins are connected internally.  
SS  
SS  
DD  
SS  
DV , LADV , LDDV , GDDV , and GADV  
DV  
pins are connected internally.  
DD  
DD  
DD  
DD  
pins are connected internally.  
pins are connected internally.  
pins are connected internally.  
V
DDL  
V
SSL  
Pins marked NC should be left electrically unconnected.  
4
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
SMJ320MCM41D  
SINGLE-SMJ320C40 MULTICHIP MODULE  
SGKS002 – OCTOBER 1997  
functional block diagram  
The following pins have 10-kpullup resistors added within the module:  
CREQx, CACKx, CSTRBx, CRDYx, where x = 0–5  
LCE1 (internal connections)  
A total of eight decoupling capacitors have been connected within the module.  
Between clean power and ground (V  
One 0.1-µF capacitor  
and CV ), the following capacitors have been connected:  
SS  
DDL  
One 0.01-µF capacitor  
Between dirty power and ground (GDDV  
have been connected:  
GADV  
LDDV  
LADV and DV ), the following capacitors  
DD, SS  
DD,  
DD,  
DD,  
Three 0.1-µF capacitors  
Three 0.01-µF capacitors  
TDI  
TCK  
TMS  
IEEE 1149.1  
TRST  
EMU0  
EMU1  
TDO  
TDI  
TDO  
CLKIN  
RESET  
’C40  
ADDR  
SRAM  
V
DDL  
DATA  
CV , IV , V  
, SUBS  
128K × 8 × 4  
SS SS SSL  
CNTL  
yyV  
DD  
DV  
SS  
D31D0  
A30A0  
AE  
DE  
STAT3 – STAT0  
LOCK  
Global Bus  
STRB0STRB1  
R/W0–R/W1  
PAGE0PAGE1  
RDY0RDY1  
CE0CE1  
Communication Ports  
(x = 05)  
Control  
yyV  
represents GDDV , GADV , LDDV , and LADV .  
DD DD DD DD  
DD  
operational overview  
Treatment of the detailed operation of the ’C40 device is beyond the scope of this document. Refer to the  
TMS320C4x User’s Guide (literature number SPRU063) for a detailed description of this DSP.  
5
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
SMJ320MCM41D  
SINGLE-SMJ320C40 MULTICHIP MODULE  
SGKS002 – OCTOBER 1997  
000000000h  
4K ROM (reserved)  
Reserved  
Structure  
000000FFFh  
000001000h  
Depends On  
ROMEN Bit  
Reserved  
1M  
1M  
0000FFFFFh  
000100000h  
Peripherals (internal)  
Reserved  
Peripherals (internal)  
Reserved  
0001000FFh  
000100100h  
0001FFFFFh  
000200000h  
Reserved  
Reserved  
0002FF7FFh  
0002FF800h  
2G  
1M  
1K RAM BLK 0 (internal)  
1K RAM BLK 1 (internal)  
1K RAM BLK 0 (internal)  
1K RAM BLK 1 (internal)  
0002FFBFFh  
0002FFC00h  
0002FFFFFh  
000300000h  
Reserved  
Local Bus Module RAM  
Reserved  
Reserved  
Local Bus Module RAM  
Reserved  
5M  
0007FFFFFh  
000800000h  
Structure  
Identical  
128K  
00081FFFFh  
000820000h  
07FFFFFFFh  
080000000h  
Global Bus (external)  
Global Bus (external)  
2G  
0FFFFFFFFh  
(a) INTERNAL ROM DISABLED  
(ROMEN = 0)  
(b) INTERNAL ROM ENABLED  
(ROMEN = 1)  
Figure 1. Memory Map for the ’C40 Within the Multichip Module  
6
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
SMJ320MCM41D  
SINGLE-SMJ320C40 MULTICHIP MODULE  
SGKS002 – OCTOBER 1997  
reference documentation and data sheet scope  
The SMJ320MCM41D is qualified to MIL-PRF-38535. Electrical continuity of the module is ensured through use  
of IEEE-1149.1-compatible boundary-scan testing and functional checkout of local SRAM space.  
KGD refers to Texas Instruments (TI ) known-good-die strategy. TI KGDs are fully tested over the military  
temperature range per MIL-PRF-38535 QML. Electrical testing ensures compliance of the ’C40 KGD  
components to the SMJ320C40 data sheet (literature number SGUS017) over the operating temperature  
range. The SMJ320MCM41D module timings are virtually unchanged from the SMJ320C40 data sheet timings.  
A SMJ320C40 data sheet is provided for customer reference only and does not imply MCM compliance to  
published timings.  
For a complete description of the ’C40 operation and application information, refer to the TMS320C4x User’s  
Guide (literature number SPRU063).  
capacitance  
CapacitanceofasingleC40dieisspecifiedbydesigntobe15pFmaximumforbothinputsandoutputs. Module  
networks add up to 25 pF. Simulation of die or substrate capacitance is performed after any design change.  
Power measurements taken for the ’C40 die are made with an additional 80-pF load capacitance. Refer to the  
SMJ320C40 data sheet (literature number SGUS017) for the test load circuit.  
operational timings and module testing  
TIprocessingensuresthatoperationisverifiedtothepublisheddatasheetspecificationsontheC40indieform.  
All voltage, timing, speed, and temperature specifications are met before any die is placed into a multichip  
module. For this reason, it is unnecessary to verify all ’C40 voltage and timing parameters at the module level.  
Characterization of the ’MCM41D substrate shows that the module performs as an equivalent system of  
discretely packaged ’C40 devices. This performance is ensured through a full-frequency functional checkout  
of the module that verifies selected worst-case timings. An additional propagation delay is introduced by the  
substrate. This value is assured by design to be less than 1 ns, but it is not tested. Refer to the SMJ320C40  
data sheet (literature number SGUS017) for a complete listing of timing diagrams and limits.  
module test capability (future compatibility)  
The ’C40 supports the IEEE-1149.1 testability standard, and all test-access port (TAP) pins are brought out to  
the module footprint. This configuration allows users to test the module using third-party JTAG testability tools  
or other boundary-scan control software. Proper software configuration allows users to debug or launch code  
on the module via the ’C40 emulator and XDS pod. Both of these tools are used as a part of outgoing module  
testing.  
The ’MCM41 supports third-party JTAG diagnostic families of products for verification and debug of  
boundary-scan circuits, boards, and systems. For further information on JTAG testability tools, please contact  
your local TI sales representative or authorized TI distributor.  
TI and XDS are trademarks of Texas Instruments Incorporated.  
7
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
SMJ320MCM41D  
SINGLE-SMJ320C40 MULTICHIP MODULE  
SGKS002 – OCTOBER 1997  
absolute maximum ratings over operating free-air temperature (unless otherwise noted)  
Supply voltage range, V  
(see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 0.3 V to 7 V  
CC  
Voltage range on any pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 0.3 V to 7 V  
Output voltage range, V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 0.3 V to 7 V  
O
Operating free-air temperature range, T : L version (commercial) . . . . . . . . . . . . . . . . . . . . . . . . . 0°C to 70°C  
A
M version (military) . . . . . . . . . . . . . . . . . . . . . . . . . 55°C to125°C  
Storage temperature range, T  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 65°C to 150°C  
stg  
Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and  
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not  
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
NOTE 1: All voltage values are with respect to V  
.
SS  
recommended operating conditions  
MIN  
4.75  
2.6  
MAX  
UNIT  
V
V
V
Supply voltage  
5.25  
V
CC  
IH  
CLKIN  
V
V
V
+ 0.3  
CC  
CC  
CC  
High-level input voltage  
CSTRBx, CRDYx, CREQx, CACKx  
All others inputs  
2.2  
+ 0.3  
+ 0.3  
V
2
Low-level input voltage  
High-level output current  
Low-level output current  
– 0.3  
0.8  
V
IL  
I
– 300  
2
µA  
mA  
°C  
°C  
OH  
OL  
I
L Version (Commercial)  
M Version (Military)  
0
70  
T
A
Operating free-air temperature  
– 55  
125  
electrical characteristics over recommended ranges of supply voltage and operating free-air  
temperature  
PARAMETER  
High-level output voltage  
TEST CONDITIONS  
MIN  
TYP  
3
MAX  
UNIT  
V
V
V
V
= MIN,  
= MIN,  
= MAX  
I
I
= MAX  
2.4  
OH  
CC  
CC  
CC  
OH  
Low-level output voltage  
Supply current  
V
V
= MAX  
0.3  
0.4  
0.6  
0.6  
20  
V
OL  
OL  
I
I
I
I
I
I
A
CC  
Three-state current  
V = V  
to V  
to V  
to V  
to V  
to V  
– 20  
– 10  
µA  
µA  
µA  
µA  
µA  
Z
I
SS  
SS  
SS  
SS  
SS  
CC  
CC  
CC  
CC  
CC  
Input current  
V = V  
10  
I
I
Input current, internal pullup (see Note 2)  
Input current, CLKIN  
V = V  
– 400  
– 50  
30  
IP  
IC  
IPD  
I
V = V  
50  
I
Input current, internal pulldowns, TRST  
V = V  
– 20  
400  
I
For conditions shown as MIN/MAX, use the appropriate value specified under recommended operating conditions.  
NOTE 2: Pins with internal pullup devices: TDI, TCK, TMS  
8
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
SMJ320MCM41D  
SINGLE-SMJ320C40 MULTICHIP MODULE  
SGKS002 – OCTOBER 1997  
module test circuit  
Figure 2illustratesthebasiccircuitsfortheMCM41D. RefertotheTMS320C4xUser’sGuide(literaturenumber  
SPRU063) for more detailed information.  
CLKIN = Clock Pulse per Data Sheet  
RESET = Reset Pulse per Data Sheet  
5 V  
4.7 k10 kΩ  
Suggested  
’C40  
TDO  
TDI  
TDO  
TMS  
TCK  
TRST  
EMU0  
EMU1  
TDI  
SMJ320MCM41D  
Test Header  
All V  
All V  
to 5 V  
CC  
SS  
to GND  
The test header normally consists of the XDS510 for the ’C40 emulation or ASSET hardware for interconnect testing.  
Figure 2. Sample Test Circuit  
XDS510 is a trademark of Texas Instruments Incorporated.  
9
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
SMJ320MCM41D  
SINGLE-SMJ320C40 MULTICHIP MODULE  
SGKS002 – OCTOBER 1997  
thermal analysis  
Thermal conduction of components in the SMJ320MCM41D is dependent on the thermal resistance of the  
material under each die as well as the die area thermally connected to the heat-dissipating medium. Since these  
properties vary with layout and die size, ’C40 and SRAM components should be considered separately. The  
following table lists primary parameters required for thermal analysis of the module. The junction temperature,  
T , is not to be exceeded for the ’C40 or the SRAM die.  
J
primary parameters required for thermal analysis of the SMJ320MCM41D module  
PARAMETER  
ALTERNATE  
SYMBOL  
MIN  
TYP  
MAX  
UNIT  
T
Junction temperature under operating condition  
Single MCM power dissipation  
T
150  
5.2  
°C  
W
J
J
P
P
2.0  
1.3  
MCM  
0JC  
MCM  
jc  
Z
Z
T
Thermal impedance (junction-to-case) of package  
Thermal impedance (junction-to-ambient air, 0 cfm) of package  
Maximum solder temperature (10 s duration)  
T
T
T
°C/W  
°C/W  
°C  
28.0  
0JA  
ja  
260  
SOL  
SOL  
power estimation  
The power requirements of the ’320MCM41 have been characterized over the operating temperature range.  
See the application report Calculation of TMS320C40 Power Dissipation (literature number SPRA032) as  
reference for power estimation of the ’C40 components.  
Typical power dissipation has been measured with the ’C40s executing a 64-point Fast Fourier Transform (FFT)  
algorithm. Input and output data arrays resided in module SRAM, and output data was written out to the  
global-address space. The global databus was loaded with 80-pF test loads, and both local and global writes  
were configured for zero-wait-state memory. Under typical conditions of 25°C, 5-V V , and 40-MHz CLKIN  
CC  
frequency, the power dissipation was measured to be 1.75 W.  
Maximum power dissipation has been measured under worst-case conditions. The global databus was loaded  
with 80-pF test loads, and simultaneous zero-wait-state writes have been performed to both local and global  
buses. Under worst-case conditions of – 55°C, 5.25-V V , and 40-MHz CLKIN frequency, the power  
CC  
dissipation was determined to be 3 W. The algorithm executed during these tests consists of parallel writes of  
alternating 0xAAs and 0x55s to both local SRAM and global-address spaces. This algorithm is not considered  
to be a practical use of the ’C40’s resources; therefore, the associated power measurement should be  
considered absolute maximum only.  
10  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
SMJ320MCM41D  
SINGLE-SMJ320C40 MULTICHIP MODULE  
SGKS002 – OCTOBER 1997  
MECHANICAL DATA  
HFH (S-CQFP-F352)  
CERAMIC QUAD FLATPACK WITH NCTB  
76,40  
74,85  
75,40  
74,60  
57,00  
55,60  
48,48  
47,52  
5,50  
4,50  
1,55  
Dia  
43,50  
BSC  
1,45  
4 Places  
265  
264  
352  
1
Detail “C”  
70,00  
3,60  
3,50  
177  
176  
88  
89  
Detail “B”  
2,60  
2,50  
2,60  
Dia (2 Places)  
“A”  
2,50  
0,50 MAX  
0,25  
0,18  
352  
4,55 MAX  
4,00 MAX  
0,20  
0,10  
1,05  
0,75  
0,35  
0,05  
0,50  
DETAIL “C”  
DETAIL “B”  
DETAIL “A”  
4040232-5/E 09/96  
NOTES: A. All linear dimensions are in millimeters.  
B. This drawing is subject to change without notice.  
C. This package can be hermetically sealed with a metal lid.  
D. The terminals are gold plated.  
E. Falls within JEDEC MO-134 AE  
11  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
IMPORTANT NOTICE  
Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue  
any product or service without notice, and advise customers to obtain the latest version of relevant information  
to verify, before placing orders, that information being relied on is current and complete. All products are sold  
subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those  
pertaining to warranty, patent infringement, and limitation of liability.  
TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in  
accordance with TI’s standard warranty. Testing and other quality control techniques are utilized to the extent  
TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily  
performed, except those mandated by government requirements.  
CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF  
DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE (“CRITICAL  
APPLICATIONS”). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR  
WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER  
CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO  
BE FULLY AT THE CUSTOMER’S RISK.  
In order to minimize risks associated with the customer’s applications, adequate design and operating  
safeguards must be provided by the customer to minimize inherent or procedural hazards.  
TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent  
that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other  
intellectual property right of TI covering or relating to any combination, machine, or process in which such  
semiconductor products or services might be or are used. TI’s publication of information regarding any third  
party’s products or services does not constitute TI’s approval, warranty or endorsement thereof.  
Copyright 1998, Texas Instruments Incorporated  

相关型号:

SM320MCM41DHFHM40

32-BIT, 40MHz, OTHER DSP, CQFP352, CERAMIC, QFP-352
TI

SM320MCM42AHFNL33

IC,DSP,32-BIT,HYBRID,TPAK,408PIN,CERAMIC
TI

SM320MCM42AHFNL40

IC,DSP,32-BIT,HYBRID,TPAK,408PIN,CERAMIC
TI

SM320MCM42AHFNM33

IC,DSP,32-BIT,HYBRID,TPAK,408PIN,CERAMIC
TI

SM320MCM42AHFNM40

IC,DSP,32-BIT,HYBRID,TPAK,408PIN,CERAMIC
TI

SM320MCM42CHFNL33

32-BIT, 33MHz, OTHER DSP, CQFP408, CERAMIC, QFP-408
TI

SM320MCM42CHFNL40

32-BIT, 40MHz, OTHER DSP, CQFP408, TIE-BAR, CERAMIC, QFP-408
TI

SM320MCM42CHFNM33

32-BIT, 33MHz, OTHER DSP, CQFP408, CERAMIC, QFP-408
TI

SM320MCM42CHFNM40

32-BIT, 40MHz, OTHER DSP, CQFP408, TIE-BAR, CERAMIC, QFP-408
TI

SM320MCM42DHFNL40

32-BIT, 40MHz, OTHER DSP, CQFP408, TIE-BAR, CERAMIC, QFP-408
TI

SM320MCM42DHFNM33

32-BIT, 33MHz, OTHER DSP, CQFP408, CERAMIC, QFP-408
TI

SM320VC33

DIGITAL SIGNAL PROCESSOR
TI