SMJ320C30HFGM50 [TI]

DIGITAL SIGNAL PROCESSOR; 数字信号处理器
SMJ320C30HFGM50
型号: SMJ320C30HFGM50
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

DIGITAL SIGNAL PROCESSOR
数字信号处理器

微控制器和处理器 外围集成电路 数字信号处理器 时钟
文件: 总47页 (文件大小:721K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ꢀ ꢁꢂ ꢃꢄ ꢅꢆ ꢃꢅ  
ꢇꢈ ꢉꢈ ꢊꢋꢌ ꢀꢈ ꢉ ꢍꢋꢌ ꢎꢏ ꢐ ꢆꢑ ꢀ ꢀꢐ ꢏ  
SGUS014H − FEBRUARY 1991 − REVISED JUNE 2004  
D
−55°C to 125°C Operating Temperature  
D
D
D
Two 32-Bit External Ports  
(24- and 13-Bit Address)  
Range, QML Processing  
D
Processed to MIL-PRF-38535 (QML)  
Two Serial Ports With Support for  
8- / 16- /24- /32-Bit Transfers  
D
Performance  
− SMJ320C30-40 (50-ns Cycle)  
40 MFLOPS  
Packaging  
− 181-Pin Grid Array Ceramic Package  
(GB Suffix)  
20 MIPS  
− SMJ320C30-50 (40-ns Cycle)  
50 MFLOPS  
− 196-Pin Ceramic Quad Flatpack With  
Nonconductive Tie-Bar (HFG Suffix)  
25 MIPS  
D
D
SMD Approval for 40- and 50-MHz Versions  
D
Two 1K-Word × 32-Bit Single-Cycle  
Dual-Access On-Chip RAM Blocks  
Two Address Generators With Eight  
Auxiliary Registers and Two Auxiliary  
Register Arithmetic Units (ARAUs)  
D
D
D
D
D
D
Validated Ada Compiler  
64-Word × 32-Bit Instruction Cache  
32-Bit Instruction and Data Words,  
24-Bit Addresses  
D
D
Zero-Overhead Loops With Single-Cycle  
Branches  
Interlocked Instructions for  
Multiprocessing Support  
40 / 32-Bit Floating-Point /Integer Multiplier  
and Arithmetic Logic Unit (ALU)  
D
32-Bit Barrel Shifter  
Parallel ALU and Multiplier Execution in a  
Single Cycle  
D
Eight Extended-Precision Registers  
(Accumulators)  
On-Chip Direct Memory Access (DMA)  
Controller for Concurrent I/O and CPU  
Operation  
D
D
D
D
Two- and Three-Operand Instructions  
Conditional Calls and Returns  
Block Repeat Capability  
D
D
Integer, Floating-Point, and Logical  
Operations  
Fabricated Using Enhanced Performance  
Implanted CMOS (EPICt) by Texas  
Instruments  
One 4K-Word × 32-Bit Single-Cycle  
Dual-Access On-Chip ROM Block  
D
Two 32-Bit Timers  
description  
The SMJ320C30 internal busing and special digital signal processor (DSP) instruction set has the speed and  
flexibility to execute up to 50 MFLOPS. The SMJ320C30 device optimizes speed by implementing functions  
in hardware that other processors implement through software or microcode. This hardware-intensive approach  
provides performance previously unavailable on a single chip. The emphasis on total system cost has resulted  
in a less expensive processor that can be designed into systems currently using costly bit-slice processors.  
D
D
SMJ320C30-40: 50-ns single-cycle execution time, 5% supply  
SMJ320C30-50: 40-ns single-cycle execution time, 5% supply  
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of  
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
EPIC is a trademark of Texas Instruments Incorporated.  
Copyright 2004, Texas Instruments Incorporated  
ꢐ ꢔ ꢟ ꢗ ꢖꢢ ꢝꢜ ꢚꢛ ꢜꢖ ꢘꢟ ꢡꢓ ꢙꢔ ꢚ ꢚꢖ ꢁꢈ ꢌꢩ ꢎꢏ ꢪ ꢩꢃꢫꢬ ꢃꢬꢭ ꢙꢡꢡ ꢟꢙ ꢗ ꢙ ꢘꢞ ꢚꢞꢗ ꢛ ꢙ ꢗ ꢞ ꢚꢞ ꢛꢚꢞ ꢢ  
ꢚ ꢞ ꢛ ꢚꢓ ꢔꢨ ꢖꢕ ꢙ ꢡꢡ ꢟꢙ ꢗ ꢙ ꢘ ꢞ ꢚ ꢞ ꢗ ꢛ ꢣ  
ꢝ ꢔꢡ ꢞꢛꢛ ꢖ ꢚꢤꢞ ꢗ ꢦꢓ ꢛꢞ ꢔ ꢖꢚꢞ ꢢꢣ ꢐ ꢔ ꢙꢡ ꢡ ꢖ ꢚꢤꢞ ꢗ ꢟꢗ ꢖ ꢢꢝꢜ ꢚꢛ ꢭ ꢟꢗ ꢖ ꢢꢝꢜ ꢚꢓꢖ ꢔ  
1
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443  
ꢀ ꢁ ꢂꢃ ꢄ ꢅ ꢆꢃ ꢅ  
ꢇ ꢈꢉ ꢈꢊꢋ ꢌ ꢀꢈ ꢉꢍ ꢋ ꢌ ꢎ ꢏꢐ ꢆꢑ ꢀꢀ ꢐꢏ  
SGUS014H − FEBRUARY 1991 − REVISED JUNE 2004  
description (continued)  
196-Pin HFG Quad Flatpack  
(TOP VIEW)  
181-Pin GB Grid Array Package  
(BOTTOM VIEW)  
A B C D E F G H J K L M N P R  
1
2
3
4
1
147  
5
DVDD DVSS  
6
7
8
9
10  
11  
12  
13  
14  
15  
DVSS DVDD  
49  
99  
The SMJ320C30 can perform parallel multiply and ALU operations on integer or floating-point data in a single  
cycle. Each processor also possesses a general-purpose register file, a program cache, dedicated ARAUs,  
internal dual-access memories, one DMA channel supporting concurrent I/O, and a short machine-cycle time.  
High performance and ease of use are results of these features.  
General-purpose applications are enhanced by the large address space, multiprocessor interface, internally  
and externally generated wait states, two external interface ports, two timers, two serial ports, and multiple  
interrupt structure. The SMJ320C30 supports a wide variety of system applications from host processor to  
dedicated coprocessor.  
High-level language support is implemented easily through a register-based architecture, large address space,  
powerful addressing modes, flexible instruction set, and well-supported floating-point arithmetic.  
For additional information when designing for cold temperature operation, please see Texas Instruments  
application report 320C3x, 320C4x and 320MCM42x Power-up Sensitivity at Cold Temperature, literature  
number SGUA001.  
2
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443  
ꢀ ꢁꢂ ꢃꢄ ꢅꢆ ꢃꢅ  
ꢇꢈ ꢉꢈ ꢊꢋꢌ ꢀꢈ ꢉ ꢍꢋꢌ ꢎꢏ ꢐ ꢆꢑ ꢀ ꢀꢐ ꢏ  
SGUS014H − FEBRUARY 1991 − REVISED JUNE 2004  
functional block diagram  
RAM  
RAM  
ROM  
Cache  
(64 × 32)  
Block 0  
Block 1  
Block  
(1K × 32)  
(1K × 32)  
(4K × 32)  
32  
24  
24  
32  
24  
32  
24  
32  
PDATA Bus  
PADDR Bus  
XRDY  
RDY  
HOLD  
MSTRB  
IOSTRB  
XR /W  
DDATA Bus  
HOLDA  
STRB  
DADDR1 Bus  
XD31−XD0  
XA12 −XA0  
R / W  
DADDR2 Bus  
D31D0  
A23 A0  
DMADATA Bus  
DMAADDR Bus  
32  
24  
32  
24  
24  
32  
24  
DMA Controller  
Serial Port 0  
Serial-Port-Control  
FSX0  
Global-Control  
Register  
Register  
DX0  
MUX  
CLKX0  
FSR0  
DR0  
Receive/Transmit  
IR  
(R/X) Timer Register  
Source-Address  
Register  
PC  
CPU1  
CPU2  
REG1  
REG2  
RESET  
INT(3 0)  
IACK  
Data-Transmit  
Register  
CLKR0  
Destination-  
Address  
Register  
Data-Receive  
Register  
MC /MP  
XF(1,0)  
Transfer-  
Counter  
Register  
V
DD  
Serial Port 1  
IODV  
32  
32  
40  
40  
DD  
Serial-Port-Control  
Register  
ADV  
DD  
FSX1  
DX1  
32-Bit  
Barrel  
Shifter  
PDV  
DD  
Multiplier  
DDV  
DD  
CLKX1  
FSR1  
DR1  
Receive/Transmit  
(R/X) Timer Register  
MDV  
DD  
ALU  
40  
40  
V
SS  
Data-Transmit  
Register  
DV  
CLKR1  
SS  
40  
40  
CV  
SS  
IV  
SS  
40  
Extended-  
Precision  
Registers  
(R7−R0)  
40  
32  
Data-Receive  
Register  
V
BBP  
V
SUBS  
X1  
Timer 0  
X2 /CLKIN  
H1  
Global-Control  
Register  
DISP0, IR0, IR1  
H3  
TCLK0  
Timer-Period  
Register  
ARAU0  
ARAU1  
EMU(6 0)  
RSV(10 0)  
BK  
Timer-Counter  
Register  
24  
24  
24  
24  
Auxiliary  
Registers  
(AR0 AR7)  
Timer 1  
32  
32  
Global-Control  
Register  
32  
32  
TCLK1  
Timer-Period  
Register  
32  
32  
Other  
Registers  
(12)  
Timer-Counter  
Register  
Port Control  
Primary-Control  
Register  
Expansion-Control  
Register  
3
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443  
ꢀ ꢁ ꢂꢃ ꢄ ꢅ ꢆꢃ ꢅ  
ꢇ ꢈꢉ ꢈꢊꢋ ꢌ ꢀꢈ ꢉꢍ ꢋ ꢌ ꢎ ꢏꢐ ꢆꢑ ꢀꢀ ꢐꢏ  
SGUS014H − FEBRUARY 1991 − REVISED JUNE 2004  
memory map  
Figure 1 shows the memory map for the SMJ320C30. See the TMS320C3x User’s Guide (literature number  
SPRU031) for a detailed description of this memory mapping. Figure 2 shows the reset, interrupt, and trap  
vector/branches memory-map locations. Figure 3 shows the peripheral bus memory-mapped registers.  
0h  
0h  
Reset, Interrupt, Trap  
Vectors, and Reserved  
Locations (64) (External  
STRB Active)  
Reset, Interrupt,  
Trap Vectors, and Reserved  
Locations (192)  
0BFh  
0C0h  
03Fh  
040h  
ROM  
(Internal)  
0FFFh  
1000h  
External  
STRB Active  
External  
STRB Active  
(8M Words − 64 Words)  
(8M Words − 4K Words)  
7FFFFFh  
800000h  
7FFFFFh  
800000h  
Expansion-Bus  
MSTRB Active  
(8K Words)  
Expansion-Bus  
MSTRB Active  
(8K Words)  
801FFFh  
802000h  
801FFFh  
802000h  
Reserved  
Reserved  
(8K Words)  
(8K Words)  
803FFFh  
804000h  
803FFFh  
804000h  
Expansion-Bus  
IOSTRB Active  
(8K Words)  
Expansion-Bus  
IOSTRB Active  
(8K Words)  
805FFFh  
806000h  
805FFFh  
806000h  
Reserved  
Reserved  
(8K Words)  
(8K Words)  
807FFFh  
808000h  
807FFFh  
808000h  
Peripheral-Bus  
Memory-Mapped  
Registers  
Peripheral-Bus  
Memory-Mapped  
Registers  
(6K Words Internal)  
(6K Words Internal)  
8097FFh  
809800h  
8097FFh  
809800h  
RAM Block 0  
RAM Block 0  
(1K Word Internal)  
(1K Word Internal)  
809BFFh  
809C00h  
809BFFh  
809C00h  
RAM Block 1  
RAM Block 1  
(1K Word Internal)  
(1K Word Internal)  
809FFFh  
80A000h  
809FFFh  
80A000h  
External  
STRB Active  
(8M Words − 40K Words)  
External  
STRB Active  
(8M Words − 40K Words)  
0FFFFFFh  
0FFFFFFh  
(a) Microprocessor Mode  
(b) Microcomputer Mode  
Figure 1. Memory Map  
4
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443  
ꢀ ꢁꢂ ꢃꢄ ꢅꢆ ꢃꢅ  
ꢇꢈ ꢉꢈ ꢊꢋꢌ ꢀꢈ ꢉ ꢍꢋꢌ ꢎꢏ ꢐ ꢆꢑ ꢀ ꢀꢐ ꢏ  
SGUS014H − FEBRUARY 1991 − REVISED JUNE 2004  
memory map (continued)  
00h  
01h  
02h  
03h  
04h  
05h  
06h  
07h  
08h  
09h  
0Ah  
0Bh  
0Ch  
Reset  
INT0  
00h  
01h  
02h  
03h  
04h  
05h  
06h  
07h  
08h  
09h  
0Ah  
0Bh  
0Ch  
1Fh  
20h  
Reset  
INT0  
INT1  
INT1  
INT2  
INT2  
INT3  
INT3  
XINT0  
RINT0  
XINT1  
RINT1  
TINT0  
TINT1  
DINT  
XINT0  
RINT0  
XINT1  
RINT1  
TINT0  
TINT1  
DINT  
Reserved  
TRAP 0  
Reserved  
TRAP 0  
1Fh  
20h  
.
.
.
.
.
.
3Bh  
3Ch  
3Fh  
TRAP 27  
3Bh  
3Ch  
BFh  
TRAP 27  
Reserved  
Reserved  
(a) Microprocessor Mode  
(a) Microcomputer Mode  
Figure 2. Reset, Interrupt, and Trap Vector/Branches Memory-Map Locations  
5
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443  
ꢀ ꢁ ꢂꢃ ꢄ ꢅ ꢆꢃ ꢅ  
ꢇ ꢈꢉ ꢈꢊꢋ ꢌ ꢀꢈ ꢉꢍ ꢋ ꢌ ꢎ ꢏꢐ ꢆꢑ ꢀꢀ ꢐꢏ  
SGUS014H − FEBRUARY 1991 − REVISED JUNE 2004  
memory map (continued)  
808000h  
808004h  
808006h  
808008h  
808020h  
808024h  
808028h  
808030h  
808034h  
808038h  
808040h  
DMA Global Control  
DMA Source Address  
DMA Destination Address  
DMA Transfer Counter  
Timer 0 Global Control  
Timer 0 Counter  
Timer 0 Period  
Timer 1 Global Control  
Timer 1 Counter  
Timer 1 Period Register  
Serial Port 0 Global Control  
808042h  
808043h  
808044h  
808045h  
808046h  
FSX/DX/CLKX Serial Port 0 Control  
FSR/DR/CLKR Serial Port 0 Control  
Serial Port 0 R/X Timer Control  
Serial Port 0 R/X Timer Counter  
Serial Port 0 R/X Timer Period  
808048h  
80804Ch  
808050h  
Serial Port 0 Data Transmit  
Serial Port 0 Data Receive  
Serial Port 1 Global Control  
808052h  
808053h  
808054h  
808055h  
808056h  
FSX/DX/CLKX Serial Port 1 Control  
FSR/DR/CLKR Serial Port 1 Control  
Serial Port 1 R/X Timer Control  
Serial Port 1 R/X Timer Counter  
Serial Port 1 R/X Timer Period  
808058h  
80805Ch  
808060h  
808064h  
Serial Port 1 Data Transmit  
Serial Port 1 Data Receive  
Expansion-Bus Control  
Primary-Bus Control  
Shading denotes reserved address locations  
Figure 3. Peripheral Bus Memory-Mapped Registers  
6
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443  
ꢀ ꢁꢂ ꢃꢄ ꢅꢆ ꢃꢅ  
ꢇꢈ ꢉꢈ ꢊꢋꢌ ꢀꢈ ꢉ ꢍꢋꢌ ꢎꢏ ꢐ ꢆꢑ ꢀ ꢀꢐ ꢏ  
SGUS014H − FEBRUARY 1991 − REVISED JUNE 2004  
pin functions  
This section gives signal descriptions for the SMJ320C30 devices in the microprocessor mode. The following  
tables list each signal, the number of pins, type of operating mode(s) (that is, input, output, or high-impedance  
state as indicated by I, O, or Z, respectively), and a brief function description. All pins labeled NC have special  
functions and should not be connected by the user. A line over a signal name (for example, RESET) indicates  
that the signal is active low (true at logic-0 level). The signals are grouped according to functions.  
Pin Functions  
CONDITIONS  
WHEN  
SIGNAL IS Z TYPE  
PIN  
DESCRIPTION  
TYPE  
QTY  
NAME  
§
PRIMARY BUS INTERFACE  
D31D0  
A23A0  
32  
24  
I/O/Z 32-bit data port of the primary bus interface  
S
S
H
H
O/Z  
O/Z  
O/Z  
I
24-bit address port of the primary bus interface  
R
R
Read/write for primary bus interface. R/W is high when a read is performed and low  
when a write is performed over the parallel interface.  
R/W  
STRB  
RDY  
1
1
1
S
S
H
H
External access strobe for the primary bus interface  
Ready. RDY indicates that the external device is prepared for a primary bus interface  
transaction to complete.  
Hold for primary bus interface. When HOLD is a logic low, any ongoing transaction  
is completed. A23A0, D31D0, STRB, and R/W are in the high-impedance state  
and all transactions over the primary bus interface are held until HOLD becomes a  
logic high or the NOHOLD bit of the primary bus control register is set.  
HOLD  
1
1
I
Hold acknowledge for primary bus interface. HOLDA is generated in response to a  
logic low on HOLD. HOLDA indicates that A23A0, D31D0, STRB, and R/W are  
in the high-impedance state and that all transactions over the bus are held. HOLDA  
is high in response to a logic high of HOLD or when the NOHOLD bit of the primary  
bus control register is set.  
HOLDA  
O/Z  
S
EXPANSION BUS INTERFACE  
XD31XD0  
XA12XA0  
32  
13  
I/O/Z 32-bit data port of the expansion bus interface  
S
S
R
R
O/Z  
13-bit address port of the expansion bus interface  
Read/write signal for expansion bus interface. When a read is performed, XR/W is  
held high; when a write is performed, XR/W is low.  
XR/W  
1
O/Z  
S
R
MSTRB  
IOSTRB  
1
1
O/Z  
O/Z  
External memory access strobe for the expansion bus interface  
External I/O access strobe for the expansion bus interface  
S
S
Ready signal. XRDY indicates that the external device is prepared for an expansion  
bus interface transaction to complete.  
XRDY  
1
I
CONTROL SIGNALS  
Reset. When RESET is a logic low, the device is in the reset condition. When RESET  
becomes a logic high, execution begins from the location specified by the reset vector.  
RESET  
1
4
1
1
2
I
INT3INT0  
IACK  
I
External interrupts  
Interrupt acknowledge. IACK is set to a logic high by the IACK instruction. IACK can  
be used to indicate the beginning or end of an interrupt-service routine.  
O/Z  
I
S
S
MC/MP  
XF1, XF0  
Microcomputer/microprocessor mode  
External flags. XF1 and XF0 are used as general-purpose I/Os or to support  
interlocked processor instructions.  
I/O/Z  
R
§
I = input, O = output, Z = high-impedance state, NC = no connect  
For GB package  
S = SHZ active, H = HOLD active, R = RESET active  
7
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443  
ꢀ ꢁ ꢂꢃ ꢄ ꢅ ꢆꢃ ꢅ  
ꢇ ꢈꢉ ꢈꢊꢋ ꢌ ꢀꢈ ꢉꢍ ꢋ ꢌ ꢎ ꢏꢐ ꢆꢑ ꢀꢀ ꢐꢏ  
SGUS014H − FEBRUARY 1991 − REVISED JUNE 2004  
Pin Functions (Continued)  
CONDITIONS  
WHEN  
SIGNAL IS Z TYPE  
PIN  
DESCRIPTION  
TYPE  
QTY  
NAME  
§
SERIAL PORT 0 SIGNALS  
Serial port 0 transmit clock. CLKX0 is the serial-shift clock for the serial port 0  
transmitter.  
CLKX0  
DX0  
1
1
1
I/O/Z  
S
S
S
R
R
R
I/O/Z Data transmit output. Serial port 0 transmits serial data on DX0.  
Frame synchronization pulse for transmit. The FSX0 pulse initiates the transmit-data  
process over DX0.  
FSX0  
I/O/Z  
CLKR0  
DR0  
1
1
I/O/Z Serial port 0 receive clock. CLKR0 is the serial-shift clock for the serial port 0 receiver.  
I/O/Z Data receive. Serial port 0 receives serial data on DR0.  
S
S
R
R
Frame synchronization pulse for receive. The FSR0 pulse initiates the receive-data  
process over DR0.  
FSR0  
1
I/O/Z  
S
R
SERIAL PORT 1 SIGNALS  
Serial port 1 transmit clock. CLKX1 is the serial-shift clock for the serial port 1  
transmitter.  
CLKX1  
DX1  
1
1
1
I/O/Z  
S
S
S
R
R
R
I/O/Z Data transmit output. Serial port 1 transmits serial data on DX1.  
Frame synchronization pulse for transmit. The FSX1 pulse initiates the transmit-data  
process over DX1.  
FSX1  
I/O/Z  
CLKR1  
DR1  
1
1
I/O/Z Serial port 1 receive clock. CLKR1 is the serial-shift clock for the serial port 1 receiver.  
I/O/Z Data receive. Serial port 1 receives serial data on DR1.  
S
S
R
R
Frame synchronization pulse for receive. The FSR1 pulse initiates the receive-data  
process over DR1.  
FSR1  
1
1
1
I/O/Z  
S
S
S
R
R
R
TIMER 0 SIGNALS  
Timer clock 0. As an input, TCLK0 is used by timer 0 to count external pulses. As an  
output, TCLK0 outputs pulses generated by timer 0.  
TCLK0  
TCLK1  
I/O/Z  
TIMER 1 SIGNALS  
Timer clock 1. As an input, TCLK1 is used by timer 1 to count external pulses. As an  
output, TCLK1 outputs pulses generated by timer 1.  
I/O/Z  
SUPPLY AND OSCILLATOR SIGNALS (see Note 1)  
V
4
2
2
1
2
1
4
4
2
I
I
I
I
I
I
I
I
I
5-V supply  
5-V supply  
5-V supply  
5-V supply  
5-V supply  
5-V supply  
Ground  
DD  
IODV  
DD  
ADV  
PDV  
DDV  
DD  
DD  
DD  
MDV  
DD  
V
SS  
DV  
CV  
Ground  
SS  
SS  
Ground  
§
I = input, O = output, Z = high-impedance state, NC = no connect  
For GB package  
S = SHZ active, H = HOLD active, R = RESET active  
Recommended decoupling capacitor is 0.1 µF.  
NOTE 1: CV , V , and IV  
are on the same plane.  
SS SS  
SS  
8
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443  
ꢀ ꢁꢂ ꢃꢄ ꢅꢆ ꢃꢅ  
ꢇꢈ ꢉꢈ ꢊꢋꢌ ꢀꢈ ꢉ ꢍꢋꢌ ꢎꢏ ꢐ ꢆꢑ ꢀ ꢀꢐ ꢏ  
SGUS014H − FEBRUARY 1991 − REVISED JUNE 2004  
Pin Functions (Continued)  
CONDITIONS  
WHEN  
SIGNAL IS Z TYPE  
PIN  
DESCRIPTION  
TYPE  
QTY  
NAME  
§
SUPPLY AND OSCILLATOR SIGNALS (see Note 1) (CONTINUED)  
IV  
1
1
1
I
NC  
I
Ground  
SS  
V
V
V
BB  
pump oscillator output  
BBP  
Substrate pin. Tie to ground  
SUBS  
Output from the internal oscillator for the crystal. If a crystal is not used, X1 must  
be left unconnected.  
X1  
1
O
X2/CLKIN  
1
1
1
I
Input to the internal oscillator from the crystal or a clock  
External H1 clock. H1 has a period equal to twice CLKIN.  
External H3 clock. H3 has a period equal to twice CLKIN.  
RESERVED (see Note 2)  
H1  
H3  
O/Z  
O/Z  
S
S
EMU0EMU2  
EMU3  
3
1
I
Reserved. Use pullup resistors to 5 V  
Reserved  
O/Z  
S
Shutdown high impedance. When active, EMU4/SHZ shuts down the SMJ320C30  
and places all pins in the high-impedance state. EMU4/SHZ is used for board-level  
testing to ensure that no dual-drive conditions occur. CAUTION: A low on SHZ  
corrupts SMJ320C30 memory and register contents. Reset the device with SHZ  
high to restore it to a known operating condition.  
EMU4/SHZ  
1
I
EMU5, EMU6  
RSV0RSV4  
RSV5RSV10  
Locator  
2
5
6
1
NC  
I
Reserved  
Reserved. Tie pins directly to 5 V  
Reserved. Use pullups on each pin to 5 V  
Reserved  
I/O  
NC  
§
I = input, O = output, Z = high-impedance state, NC=No Connect  
For GB package  
S = SHZ active, H = HOLD active, R = RESET active  
NOTES: 1. CV , V , IV  
are on the same plane.  
SS SS SS  
2. The connections specified for the reserved pins must be followed. For best results, 18-k22-kpullup resistors are  
recommended. All 5-V supply pins must be connected to a common supply plane, and all ground pins must be connected to a  
common ground plane.  
9
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443  
ꢀ ꢁ ꢂꢃ ꢄ ꢅ ꢆꢃ ꢅ  
ꢇ ꢈꢉ ꢈꢊꢋ ꢌ ꢀꢈ ꢉꢍ ꢋ ꢌ ꢎ ꢏꢐ ꢆꢑ ꢀꢀ ꢐꢏ  
SGUS014H − FEBRUARY 1991 − REVISED JUNE 2004  
Pin Assignments  
PIN  
PIN  
NUMBER  
GB HFG  
PKG PKG  
139 D5  
138 D6  
PIN  
PIN  
NUMBER  
GB HFG  
PKG PKG  
PIN  
NUMBER  
GB HFG  
PKG PKG  
NUMBER  
NUMBER  
HFG  
PKG  
NAME  
NAME  
GB  
HFG  
PKG PKG  
NAME  
NAME  
NAME  
GB  
PKG  
F15  
82  
A0  
C5  
D6  
A4  
B5  
C6  
A5  
B6  
D7  
A6  
C7  
B7  
A7  
A8  
B8  
A9  
B9  
C9  
P2  
195 DX1  
L2  
185 RSV6  
186 RSV7  
R8  
R9  
P9  
N9  
29  
30  
31  
32  
XD11  
XD12  
XD13  
XD14  
XD15  
XD16  
XD17  
XD18  
XD19  
XD20  
XD21  
XD22  
XD23  
XD24  
XD25  
XD26  
XD27  
XD28  
XD29  
XD30  
XD31  
G12 81  
G13 80  
G14 79  
G15 78  
A1  
F14  
E15  
F13  
E14  
F12  
C1  
M6  
B3  
83  
84  
85  
86  
87  
EMU0  
K4  
M1  
L3  
A2  
137 D7  
EMU1  
187 RSV8  
188 RSV9  
189 RSV10  
A3  
136 D8  
EMU2  
A4  
135 D9  
EMU3  
M2  
R10 33  
{
{
{
H15  
H14  
J15  
J14  
J13  
K15  
J12  
K14  
L15  
K13  
L14  
77  
72  
71  
70  
69  
68  
67  
66  
65  
63  
62  
A5  
134 D10  
133 D11  
132 D12  
131 D13  
130 D14  
129 D15  
128 D16  
127 D17  
122 D18  
121 D19  
120 D20  
119 D21  
EMU4/SHZ  
D12 100 ADV  
M9  
34  
35  
36  
DD  
DD  
A6  
155 EMU5  
11 EMU6  
H11  
D4  
E8  
64  
ADV  
P10  
R11  
A7  
114 DDV  
147 DDV  
DD  
DD  
{
A8  
145 H1  
N10 37  
P11 38  
{
{
{
A9  
A1  
146 H3  
L8  
15  
IODV  
DD  
DD  
DD  
A10  
A11  
A12  
A13  
A14  
A15  
A16  
A17  
A18  
A19  
A20  
A21  
A22  
A23  
C2  
B1  
152 X1  
M12 16  
49  
IODV  
IODV  
R12 39  
M10 40  
151 X2/CLKIN  
{
P4  
9
TCLK0  
TCLK1  
H5  
162 MDV  
163 MDV  
N11  
P12  
41  
42  
DD  
{
N5  
G2  
G3  
D3  
E4  
10  
DD  
{
169 XF0  
168 XF1  
M4  
B2  
1
PDV  
R13 43  
R14 44  
M11 45  
N12 46  
DD  
w
51  
52  
25  
26  
172  
173  
28  
75  
CV  
CV  
SS  
w
M15 61  
154  
153  
123  
73  
V
V
V
V
V
V
V
P14  
BBP  
SS  
}
K12  
L13  
60  
59  
A10 118 D22  
D9 117 D23  
B10 116 D24  
A11 115 D25  
C10 113 D26  
B11 112 D27  
A12 111 D28  
V
V
V
V
V
V
V
V
V
V
V
V
V
V
SUBS  
DD  
}
}
}
}
H4  
D8  
M8  
P13  
47  
DD  
DD  
DD  
DD  
}
M14 58  
N15 57  
M13 56  
R15 48  
DD  
}
74  
P15  
C3  
53  
2
DD  
}
w
w
w
w
w
w
w
w
w
H12 124  
C8  
H3  
DV  
DD  
w
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
DD  
L12  
N14  
E5  
G1  
H2  
H1  
J1  
55  
54  
N8  
27  
101 DV  
SS  
DD  
W
A13  
A14  
D11  
107 XA0  
106 XA1  
105 XA2  
H13 76  
125  
50  
DV  
DV  
SS  
SS  
SS  
W
W
W
LOCATOR/NC  
D10 110 D29  
C11 109 D30  
B12 108 D31  
C13 98  
N3  
N13 196 DV  
170 IACK  
171 INT0  
176 INT1  
177 INT2  
178 INT3  
126  
149  
150  
174  
175  
99  
148 DV  
C12 104 XA3  
SS  
w
F3  
E2  
D2  
D1  
P3  
R2  
N4  
M5  
R1  
R3  
M3  
P1  
L4  
161 HOLD  
160 HOLDA  
156 XRDY  
159 XR/W  
B13  
A15  
B15  
103 XA4  
102 XA5  
B14  
96  
97  
IV  
IV  
SS  
w
SS  
J2  
95  
XA6  
D15  
E3  
E1  
F1  
88  
MC/MP  
C14 94  
E12 93  
XA7  
SUBS  
157 MSTRB  
164 RDY  
167 RESET  
166 R/ W  
165 STRB  
158 IOSTRB  
144 D0  
4
7
5
6
3
8
FSR0  
FSX0  
CLKR0  
CLKX0  
DR0  
XA8  
R4  
P5  
N6  
R5  
P6  
M7  
R6  
N7  
P7  
R7  
P8  
12  
XD0  
XD1  
XD2  
XD3  
XD4  
XD5  
XD6  
XD7  
XD8  
XD9  
XD10  
D13 92  
C15 91  
D14 90  
XA9  
13  
XA10  
XA11  
XA12  
14  
G4  
F2  
17  
E13  
J3  
89  
18  
F4  
DX0  
179 RSV0  
180 RSV1  
181 RSV2  
182 RSV3  
183 RSV4  
184 RSV5  
19  
C4  
D5  
A2  
A3  
B4  
191 FSR1  
194 FSX1  
192 CLKR1  
193 CLKX1  
190 DR1  
J4  
20  
143 D1  
K1  
K2  
L1  
21  
142 D2  
22  
141 D3  
N2  
N1  
23  
140 D4  
K3  
24  
§
ADV , DDV , IODV , MDV , and PDV  
are on a common plane internal to the device.  
DD  
DD  
DD  
DD  
DD  
V
V
DV  
is on a common plane internal to the device.  
DD  
, CV , and IV  
SS SS SS  
are on a common plane internal to the device.  
is on a common plane internal to the device.  
SS  
10  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443  
ꢀ ꢁꢂ ꢃꢄ ꢅꢆ ꢃꢅ  
ꢇꢈ ꢉꢈ ꢊꢋꢌ ꢀꢈ ꢉ ꢍꢋꢌ ꢎꢏ ꢐ ꢆꢑ ꢀ ꢀꢐ ꢏ  
SGUS014H − FEBRUARY 1991 − REVISED JUNE 2004  
absolute maximum ratings over operating case temperature range (unless otherwise noted)  
Supply voltage range, V  
(see Note 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.3 V to 7 V  
CC  
Input voltage range, V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . − 0.3 V to 7 V  
I
Output voltage range, V  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.3 V to 7 V  
O
Continuous power dissipation (see Note 4) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.15 W  
Operating case temperature range, T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . − 55°C to 125°C  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . − 65°C to 150°C  
C
Storage temperature range, T  
stg  
Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and  
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not  
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
NOTES: 3. All voltage values are with respect to V  
.
SS  
4. Actual operating power is less. This value was obtained under specially produced worst-case test conditions, which are not  
sustained during normal device operation. These conditions consist of continuous parallel writes of a checkerboard pattern to both  
primary and extension buses at the maximum rate possible. See normal (I ) current specification in the electrical characteristics  
CC  
table and also read Calculation of TMS320C30 Power Dissipation Application Report (literature number SPRA020).  
recommended operating conditions (see Note 5)  
MIN  
NOM  
MAX  
UNIT  
V
V
V
V
V
Supply voltage (AV , etc.)  
DD  
Supply voltage (CV , etc.)  
SS  
4.75  
5
0
5.25  
V
V
DD  
SS  
IH  
High-level input voltage  
2.1  
3
V
V
+ 0.3*  
V
DD  
High-level input voltage for CLKIN  
Low-level input voltage  
+ 0.3*  
0.8  
V
TH  
IL  
DD  
− 0.3*  
V
I
I
High-level output current  
− 300  
2
µA  
mA  
°C  
OH  
OL  
Low-level output current  
T
Operating case temperature (see Note 6)  
− 55  
125  
C
All nominal values are at V  
= 5 V, T (ambient-air temperature)= 25°C.  
A
DD  
* This parameter is not production tested.  
NOTE 5: All input and output voltage levels are TTL compatible.  
NOTE 6:  
T
C
MAX at maximum rated operating conditions at any point on the case, T MIN at initial (time zero) power up  
C
11  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443  
ꢀ ꢁ ꢂꢃ ꢄ ꢅ ꢆꢃ ꢅ  
ꢇ ꢈꢉ ꢈꢊꢋ ꢌ ꢀꢈ ꢉꢍ ꢋ ꢌ ꢎ ꢏꢐ ꢆꢑ ꢀꢀ ꢐꢏ  
SGUS014H − FEBRUARY 1991 − REVISED JUNE 2004  
electrical characteristics over recommended ranges of supply voltage (unless otherwise noted)  
(see Note 5)  
PARAMETER  
TEST CONDITIONS  
MIN TYP  
MAX  
UNIT  
V
V
V
High-level output voltage  
V
V
V
V
= MIN,  
= MIN,  
= MIN,  
= MAX  
I
I
I
= MAX  
= MAX  
= MAX  
2.4  
3
OH  
DD  
DD  
DD  
DD  
OH  
OL  
OL  
For XA12XA0  
All others  
0.6*  
0.6  
20  
V
Low-level output voltage  
OL  
0.3  
V
I
I
I
I
High-impedance current  
Input current  
µA  
µA  
µA  
µA  
Z
V = V  
I SS  
to V  
DD  
10  
I
Input current  
Inputs with internal pullups (see Note 7)  
V = V to V  
− 600  
20  
IP  
IC  
Input current (X2/CLKIN)  
50  
I
SS DD  
V
= MAX, T = 25°C,  
= MIN, See Note 8  
DD  
A
I
Supply current  
200  
50  
600  
mA  
CC  
DD  
t
c(CI)  
I
Supply current, standby; IDLE2, clock shut off  
Input capacitance  
V
DD  
= 5 V, T = 25°C  
mA  
pF  
pF  
pF  
A
C
C
C
15*  
20*  
25*  
i
Output capacitance  
o
x
X2/CLKIN capacitance  
For conditions shown as MIN/MAX, use the appropriate value specified in recommended operating conditions.  
All typical values are at V  
= 5 V, T = 25°C.  
DD  
A
* This parameter is not production tested.  
NOTES: 5. All input and output voltage levels are TTL compatible.  
7. Pins with internal pullup devices: INT0INT3, MC/MP, RSV0RSV10. Although RSV0RSV10 have internal pullup devices,  
external pullups should be used on each pin as identified in the pin function tables.  
8. Actual operating current is less than this maximum value. This value was obtained under specially produced worst-case test  
conditions, which are not sustained during normal device operation. These conditions consist of continuous parallel writes of a  
checkerboard pattern to both primary and expansion buses at the maximum rate possible. See Calculation of TMS320C30 Power  
Dissipation Application Report (literature number SPRA020).  
PARAMETER MEASUREMENT INFORMATION  
I
OL  
Output  
Under  
Test  
Tester Pin  
Electronics  
V
LOAD  
C
T
I
OH  
Where:  
I
I
V
= 2 mA (all outputs)  
= 300 µA (all outputs)  
= Selected to emulate 50 termination (typical value = 1.54 V).  
= 80-pF typical load-circuit capacitance  
OL  
OH  
LOAD  
T
C
Figure 4. Test Load Circuit  
12  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443  
ꢀ ꢁꢂ ꢃꢄ ꢅꢆ ꢃꢅ  
ꢇꢈ ꢉꢈ ꢊꢋꢌ ꢀꢈ ꢉ ꢍꢋꢌ ꢎꢏ ꢐ ꢆꢑ ꢀ ꢀꢐ ꢏ  
SGUS014H − FEBRUARY 1991 − REVISED JUNE 2004  
PARAMETER MEASUREMENT INFORMATION (CONTINUED)  
signal transition levels  
TTL-level outputs are driven to a minimum logic-high level of 2.4 V and to a maximum logic-low level of 0.6 V.  
Output transition times are specified as follows:  
D
D
For a high-to-low transition on a TTL-compatible output signal, the level at which the output is said to be  
no longer high is 2 V and the level at which the output is said to be low is 1 V.  
For a low-to-high transition, the level at which the output is said to be no longer low is 1 V and the level at  
which the output is said to be high is 2 V.  
2.4 V  
2 V  
1 V  
0.6 V  
Figure 5. TTL-Level Outputs  
Transition times for TTL-compatible inputs are specified as follows:  
D
D
For a high-to-low transition on an input signal, the level at which the input is said to be no longer high is  
2.1 V and the level at which the input is said to be low is 0.8 V.  
For a low-to-high transition on an input signal, the level at which the input is said to be no longer low is  
0.8 V and the level at which the input is said to be high is 2.1 V.  
2.1 V  
0.8 V  
Figure 6. TTL-Level Inputs  
13  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443  
ꢀ ꢁ ꢂꢃ ꢄ ꢅ ꢆꢃ ꢅ  
ꢇ ꢈꢉ ꢈꢊꢋ ꢌ ꢀꢈ ꢉꢍ ꢋ ꢌ ꢎ ꢏꢐ ꢆꢑ ꢀꢀ ꢐꢏ  
SGUS014H − FEBRUARY 1991 − REVISED JUNE 2004  
PARAMETER MEASUREMENT INFORMATION (CONTINUED)  
timing parameter symbology  
Timing parameter symbols used herein were created in accordance with JEDEC Standard 100-A. To shorten  
the symbols, some of the terminal names and other related terminology have been abbreviated as follows,  
unless otherwise noted:  
A
A23A0  
IACK  
INT  
IACK  
ASYNCH  
Asynchronous reset signals include XF0, XF1,  
CLKX0, DX0, FSX0, CLKR0, DR0, FSR0, CLKX1,  
DX1, FSX1, CLKR1, DR1, FSR1, TCLK0, and TCLK1  
INT3INT0  
CH  
CLKX includes CLKX0 and CLKX1  
IOS  
IOSTRB  
CI  
CLKIN  
(M)S  
RDY  
RESET  
RW  
(M)STRB includes MSTRB and STRB  
CONTROL  
Control signals include STRB, MSTRB, and IOSTRB  
RDY  
D
D31D0  
RESET  
R/W  
DR  
DX  
Includes DR0, DR1  
Includes DX0, DX1  
S
STRB  
SCK  
CLKX/R includes CLKX0, CLKX1,  
CLKR0, and CLKR1  
FS  
FSX/R includes FSX0, FSX1, FSR0, and FSR1  
FSR  
FSX  
Includes FSR0, FSR1  
Includes FSX0, FSX1  
TCLK  
(X)A  
TCLK0, TCLK1  
Includes A23A0 and XA12XA0  
GPIO  
General-purpose input/output; peripheral pins include  
CLKX0/1, CLKR0/1, DX0/1, DR0/1, FSX0/1, FSR0/1,  
and TCLK0/1  
(X)D  
Includes D31D0 and XD31XD0  
H
Includes H1, H3  
XF  
XFx includes XF0 and XF1  
XF0  
H1  
H1  
XF0  
H3  
H3  
XF1  
XF1  
HOLD  
HOLDA  
HOLD  
HOLDA  
(X)RDY  
(X)RW  
Includes RDY and XRDY  
(X)R/W includes R/W and XR/W  
14  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443  
ꢀ ꢁꢂ ꢃꢄ ꢅꢆ ꢃꢅ  
ꢇꢈ ꢉꢈ ꢊꢋꢌ ꢀꢈ ꢉ ꢍꢋꢌ ꢎꢏ ꢐ ꢆꢑ ꢀ ꢀꢐ ꢏ  
SGUS014H − FEBRUARY 1991 − REVISED JUNE 2004  
X2/CLKIN, H1, and H3 timing  
The following table defines the timing parameters for the X2/CLKIN, H1, and H3 interface signals. See the  
RESET timing in Figure 20 for CLKIN to H1 and H3 delay specification.  
timing parameters for X2/CLKIN, H1, H3 (see Note 5, Figure 7, Figure 8, and Figure 9)  
320C30-40  
320C30-50  
NO.  
UNIT  
MIN  
MAX  
MIN  
MAX  
1
2
3
4
5
6
7
8
9
t
t
t
t
t
t
t
t
t
t
t
Fall time, CLKIN  
5*  
5*  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
f(CI)  
Pulse duration, CLKIN low, t  
= MIN (see Note 9)  
9
9
7
7
w(CIL)  
w(CIH)  
r(CI)  
c(CI)  
Pulse duration, CLKIN high, t  
Rise time, CLKIN  
= MIN (see Note 9)  
c(CI)  
5*  
303  
3
5*  
303  
3
Cycle time, CLKIN  
25  
20  
c(CI)  
Fall time, H1/H3  
f(H)  
Pulse duration, H1/H3 low (see Note 10)  
Pulse duration, H1/H3 high (see Note 10)  
Rise time, H1/H3  
P − 5  
P − 6  
P − 5  
P − 6  
w(HL)  
w(HH)  
r(H)  
3
4
3
4
9.1  
10  
Delay time, from H1 low to H3 high or from H3 low to H1 high  
Cycle time, H1/H3  
0
0
d(HL-HH)  
c(H)  
50  
606  
40  
606  
Numbers in this column match those used in Figure 7, Figure 8, and Figure 9.  
* This parameter is not production tested.  
NOTES: 5. All input and output voltage levels are TTL compatible.  
9. Rise and fall times, assuming a 35 − 65% duty cycle, are incorporated within this specification (see Figure 6).  
10. P = t  
c(CI)  
5
4
1
3
X2/CLKIN  
(1.5 V)  
2
Figure 7. X2/CLKIN Timing  
15  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443  
ꢀ ꢁ ꢂꢃ ꢄ ꢅ ꢆꢃ ꢅ  
ꢇ ꢈꢉ ꢈꢊꢋ ꢌ ꢀꢈ ꢉꢍ ꢋ ꢌ ꢎ ꢏꢐ ꢆꢑ ꢀꢀ ꢐꢏ  
SGUS014H − FEBRUARY 1991 − REVISED JUNE 2004  
timing parameters for X2/CLKIN, H1, H3 (see Note 5, Figure 7, Figure 8, and Figure 9) (continued)  
10  
6
9
H1  
8
7
9.1  
9.1  
H3  
8
9
6
7
10  
Figure 8. H1/H3 Timings  
8
7
4.5 V Band  
6
5
4
3
5.5 V Band  
2
1
0
−60  
−40  
−20  
0
20  
40  
60  
80  
100  
120  
140  
Temperature − Degrees C  
Figure 9. CLKIN to H1/H3 as a Function of Temperature  
(Typical)  
16  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443  
ꢀ ꢁꢂ ꢃꢄ ꢅꢆ ꢃꢅ  
ꢇꢈ ꢉꢈ ꢊꢋꢌ ꢀꢈ ꢉ ꢍꢋꢌ ꢎꢏ ꢐ ꢆꢑ ꢀ ꢀꢐ ꢏ  
SGUS014H − FEBRUARY 1991 − REVISED JUNE 2004  
memory read/write timing  
The following table defines memory read/write timing parameters for (M)STRB.  
timing parameters for a memory [(M)STRB = 0] read/write (see Figure 10 and Figure 11)  
320C30-40  
320C30-50  
NO.  
UNIT  
MIN MAX  
MIN MAX  
11  
12  
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
Delay time, H1 low to (M)STRB low  
Delay time, H1 low to (M)STRB high  
Delay time, H1 high to R/W low  
0*  
0*  
0*  
0*  
0*  
0*  
14  
16  
0*  
8
10  
6
0*  
0*  
0*  
0*  
0*  
0*  
10  
14  
0*  
6
4
4
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
d[H1L-(M)SL]  
d[H1L-(M)SH]  
d(H1H-RWL)  
d[H1H-(X)RWL]  
d(H1L-A)  
13.1  
13.2  
14.1  
14.2  
15.1  
15.2  
16  
9
7
Delay time, H1 high to (X)R/W low  
Delay time, H1 low to A valid  
13  
11  
9
11  
9
Delay time, H1 low to (X)A valid  
8
d[H1L-(X)A]  
Setup time, D valid before H1 low (read)  
Setup time, (X)D before H1 low (read)  
Hold time, (X)D after H1 low (read)  
su(D-H1L)R  
su[(X)DR-H1L]R  
h[H1L-(X)D]R  
su(RDY-H1H)  
su[(X)RDY-H1H]  
h[H1H-(X)RDY]  
d[H1H-(X)RWH]W  
v[H1L(X)D]W  
h[H1H-(X)D]W  
d(H1H-A)  
17.1  
17.2  
18  
Setup time, RDY before H1 high  
Setup time, (X)RDY before H1 high  
Hold time, (X)RDY after H1 high  
9
8
0
0
19  
Delay time, H1 high to (X)R/W high (write)  
Valid time, (X)D after H1 low (write)  
Hold time, (X)D after H1 high (write)  
Delay time, H1 high to A valid on back-to-back write cycles (write)  
Delay time, H1 high to (X)A valid on back-to-back write cycles (write)  
Delay time, (X)RDY from A valid  
9
7
20  
17  
14  
21  
0*  
0*  
22.1  
22.2  
26  
15  
21  
7*  
12  
18  
6*  
d[H1H-(X)A]  
d[A-(X)RDY]  
Numbers in this column match those used in Figure 10 and Figure 11.  
* This parameter is not production tested.  
17  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443  
ꢀ ꢁ ꢂꢃ ꢄ ꢅ ꢆꢃ ꢅ  
ꢇ ꢈꢉ ꢈꢊꢋ ꢌ ꢀꢈ ꢉꢍ ꢋ ꢌ ꢎ ꢏꢐ ꢆꢑ ꢀꢀ ꢐꢏ  
SGUS014H − FEBRUARY 1991 − REVISED JUNE 2004  
memory read/write timing (continued)  
H3  
H1  
11  
12  
(M)STRB  
(see Note A)  
(X)R/W  
(X)A  
14.1/14.2  
13.1/13.2  
15.1/15.2  
16  
26  
(X)D  
17.1/17.2  
18  
(X)RDY  
NOTE A: (M)STRB remains low during back-to-back read operations.  
Figure 10. Timing for Memory [(M)STRB = 0] Read  
18  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443  
ꢀ ꢁꢂ ꢃꢄ ꢅꢆ ꢃꢅ  
ꢇꢈ ꢉꢈ ꢊꢋꢌ ꢀꢈ ꢉ ꢍꢋꢌ ꢎꢏ ꢐ ꢆꢑ ꢀ ꢀꢐ ꢏ  
SGUS014H − FEBRUARY 1991 − REVISED JUNE 2004  
memory read/write timing (continued)  
H3  
H1  
12  
11  
(M)STRB  
19  
13.1/13.2  
(X)R/W  
14.1/14.2  
22.1/22.2  
(X)A  
20  
21  
(X)D  
18  
26  
17.1/17.2  
(X)RDY  
Figure 11. Timing for Memory [(M)STRB = 0] Write  
19  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443  
ꢀ ꢁ ꢂꢃ ꢄ ꢅ ꢆꢃ ꢅ  
ꢇ ꢈꢉ ꢈꢊꢋ ꢌ ꢀꢈ ꢉꢍ ꢋ ꢌ ꢎ ꢏꢐ ꢆꢑ ꢀꢀ ꢐꢏ  
SGUS014H − FEBRUARY 1991 − REVISED JUNE 2004  
memory read/write timing (continued)  
The following table defines memory read timing parameters for IOSTRB.  
timing parameters for a memory (IOSTRB = 0) read (see Figure 12)  
320C30-40  
320C30-50  
NO.  
UNIT  
MIN MAX  
MIN MAX  
27  
28  
29  
30  
31  
32  
33  
34  
t
t
t
t
t
t
t
t
Delay time, H1 high to IOSTRB low  
Delay time, H1 high to IOSTRB high  
Delay time, H1 low to (X)R/W high  
Delay time, H1 low to (X)A valid  
Setup time, (X)D before H1 high  
Hold time, (X)D after H1 high  
0*  
0*  
0*  
0*  
13  
0*  
9
9
9
9
9
0*  
0*  
0*  
0*  
11  
0*  
8
8
8
8
8
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
d(H1H-IOSL)  
d(H1H-IOSH)  
d[H1L-(X)RWH]  
d[H1L-(X)A]  
su[(X)D-H1H]R  
h[H1H-(X)D]R  
su[(X)RDY-H1H]  
h[H1H-(X)RDY]  
Setup time, (X)RDY before H1 high  
Hold time, (X)RDY after H1 high  
0
0
Numbers in this column match those used in Figure 12.  
* This parameter is not production tested.  
H3  
H1  
28  
27  
IOSTRB  
(X)R/W  
29  
30  
(X)A  
(X)D  
31  
32  
33  
34  
(X)RDY  
Figure 12. Timing for Memory (IOSTRB = 0) Read  
20  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443  
ꢀ ꢁꢂ ꢃꢄ ꢅꢆ ꢃꢅ  
ꢇꢈ ꢉꢈ ꢊꢋꢌ ꢀꢈ ꢉ ꢍꢋꢌ ꢎꢏ ꢐ ꢆꢑ ꢀ ꢀꢐ ꢏ  
SGUS014H − FEBRUARY 1991 − REVISED JUNE 2004  
memory read/write timing (continued)  
The following table defines memory write timing parameters for IOSTRB.  
timing parameters for a memory (IOSTRB = 0) write (see Figure 13)  
320C30-40  
320C30-50  
NO.  
UNIT  
MIN  
0*  
0*  
0*  
0*  
9
MAX  
MIN  
0*  
0*  
0*  
0*  
8
MAX  
27  
28  
29  
30  
33  
34  
t
t
t
t
t
t
Delay time, H1 high to IOSTRB low  
Delay time, H1 high to IOSTRB high  
Delay time, H1 low to (X)R/W high  
Delay time, H1 low to (X)A valid  
Setup time, (X)RDY before H1 high  
Hold time, (X)RDY after H1 high  
9
9
9
9
8
8
8
8
ns  
ns  
ns  
ns  
ns  
ns  
d(H1H-IOSL)  
d(H1H-IOSH)  
d[H1L-(X)RWH]  
d[H1L-(X)A]  
su[(X)RDY-H1H]  
h[H1H-(X)RDY]  
0
0
35  
36  
37  
t
t
t
Delay time, H1 low to XR/W low  
Valid time, (X)D after H1 high  
Hold time, (X)D after H1 low  
0*  
13  
25  
0*  
11  
20  
ns  
ns  
ns  
d(H1L-XRWL)  
v[H1H(X)D]W  
h[H1L-(X)D]W  
0
0
Numbers in this column match those used in Figure 13.  
* This parameter is not production tested.  
H3  
H1  
27  
28  
IOSTRB  
(X)R/W  
29  
35  
30  
(X)A  
(X)D  
37  
36  
33  
34  
(X)RDY  
Figure 13. Timing for Memory (IOSTRB = 0) Write  
21  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443  
ꢀ ꢁ ꢂꢃ ꢄ ꢅ ꢆꢃ ꢅ  
ꢇ ꢈꢉ ꢈꢊꢋ ꢌ ꢀꢈ ꢉꢍ ꢋ ꢌ ꢎ ꢏꢐ ꢆꢑ ꢀꢀ ꢐꢏ  
SGUS014H − FEBRUARY 1991 − REVISED JUNE 2004  
XF0 and XF1 timing when executing LDFI or LDII  
The following table defines the timing parameters for XF0 and XF1 during execution of LDFI or LDII.  
timing parameters for XF0 and XF1 when executing LDFI or LDII (see Figure 14)  
320C30-40  
320C30-50  
NO.  
UNIT  
MIN  
MAX  
13  
MIN  
MAX  
12  
38  
39  
40  
t
t
t
Delay time, H3 high to XF0 low  
Setup time, XF1 valid before H1 low  
Hold time, XF1 after H1 low  
ns  
ns  
ns  
d(H3H-XF0L)  
su(XF1-H1L)  
h(H1L-XF1)  
9
0
9
0
Numbers in this column match those used in Figure 14.  
Fetch  
LDFI or LDII  
Decode  
Read  
Execute  
H3  
H1  
(M)STRB  
(X)R/W  
(X)A  
(X)D  
(X)RDY  
38  
39  
XF0  
XF1  
40  
Figure 14. Timing for XF0 and XF1 When Executing LDFI or LDII  
22  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443  
ꢀ ꢁꢂ ꢃꢄ ꢅꢆ ꢃꢅ  
ꢇꢈ ꢉꢈ ꢊꢋꢌ ꢀꢈ ꢉ ꢍꢋꢌ ꢎꢏ ꢐ ꢆꢑ ꢀ ꢀꢐ ꢏ  
SGUS014H − FEBRUARY 1991 − REVISED JUNE 2004  
XF0 timing when executing STFI and STII  
The following table defines the timing parameters for the XF0 pin during execution of STFI or STII.  
timing parameters for XF0 when executing STFI or STII (see Figure 15)  
320C30-40  
MIN MAX  
13  
320C30-50  
MIN MAX  
12  
NO.  
UNIT  
41  
t
Delay time, H3 high to XF0 high  
ns  
d(H3H-XF0H)  
The number in this column matches that used in Figure 15.  
Fetch  
STFI or STII  
Decode  
Read  
Execute  
H3  
H1  
(M)STRB  
(X)R/W  
(X)A  
(X)D  
(X)RDY  
XF0  
41  
Figure 15. Timing for XF0 When Executing an STFI or STII  
23  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443  
ꢀ ꢁ ꢂꢃ ꢄ ꢅ ꢆꢃ ꢅ  
ꢇ ꢈꢉ ꢈꢊꢋ ꢌ ꢀꢈ ꢉꢍ ꢋ ꢌ ꢎ ꢏꢐ ꢆꢑ ꢀꢀ ꢐꢏ  
SGUS014H − FEBRUARY 1991 − REVISED JUNE 2004  
XF0 and XF1 timing when executing SIGI  
The following table defines the timing parameters for the XF0 and XF1 pins during execution of SIGI.  
timing parameters for XF0 and XF1 when executing SIGI (see Figure 16)  
320C30-40  
320C30-50  
NO.  
UNIT  
MIN  
MAX  
MIN  
MAX  
41.1  
42  
t
t
t
t
Delay time, H3 high to XF0 low  
Delay time, H3 high to XF0 high  
Setup time, XF1 valid before H1 low  
Hold time, XF1 after H1 low  
13  
13  
12  
12  
ns  
ns  
ns  
ns  
d(H3H-XF0L)  
d(H3H-XF0H)  
su(XF1-H1L)  
h(H1L-XF1)  
43  
9
0
9
0
44  
Numbers in this column match those used in Figure 16.  
Fetch  
SIGI  
Decode  
Read  
Execute  
H3  
H1  
41.1  
43  
42  
XF0  
44  
XF1  
Figure 16. Timing for XF0 and XF1 When Executing SIGI  
24  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443  
ꢀ ꢁꢂ ꢃꢄ ꢅꢆ ꢃꢅ  
ꢇꢈ ꢉꢈ ꢊꢋꢌ ꢀꢈ ꢉ ꢍꢋꢌ ꢎꢏ ꢐ ꢆꢑ ꢀ ꢀꢐ ꢏ  
SGUS014H − FEBRUARY 1991 − REVISED JUNE 2004  
loading when XFx is configured as an output  
The following table defines the timing parameter for loading the XF register when the XFx pin is configured as  
an output.  
timing parameters for loading the XFx register when configured as an output pin (see Figure 17)  
320C30-40  
320C30-50  
MIN MAX  
12  
NO.  
UNIT  
MIN  
MAX  
13  
45  
t
Valid time, H3 high to XF valid  
ns  
v(H3H-XF)  
The number in this column matches that used in Figure 17.  
Fetch Load  
Instruction  
Decode  
Read  
Execute  
H3  
H1  
1 or 0  
45  
OUTXF Bit  
XFx  
NOTE A: OUTXFx represents either bit 2 or 6 of the IOF register.  
Figure 17. Timing for Loading XFx Register When Configured as an Output Pin  
25  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443  
ꢀ ꢁ ꢂꢃ ꢄ ꢅ ꢆꢃ ꢅ  
ꢇ ꢈꢉ ꢈꢊꢋ ꢌ ꢀꢈ ꢉꢍ ꢋ ꢌ ꢎ ꢏꢐ ꢆꢑ ꢀꢀ ꢐꢏ  
SGUS014H − FEBRUARY 1991 − REVISED JUNE 2004  
changing XFx from an output to an input  
The following table defines the timing parameters for changing the XFx pin from an output pin to an input pin.  
timing parameters of XFx changing from output to input mode (see Figure 18)  
320C30-40  
320C30-50  
NO.  
UNIT  
MIN  
MAX  
MIN  
MAX  
12*  
46  
47  
48  
t
t
t
Delay time, XFx after H3 high  
Setup time, XFx before H1 low  
Hold time, XFx after H1 low  
13*  
ns  
ns  
ns  
d(H3H-XFx)  
su(XFx-H1L)  
h(H1L-XFx)  
9
0
9
0
Numbers in this column match those used in Figure 18.  
* This parameter is not production tested.  
Value on  
Terminal  
Seen in IOF  
Buffers Go  
From Output  
to Input  
Execute  
Load of IOF  
Synchronizer  
Delay  
H3  
H1  
47  
48  
I/OXFx Bit  
(see Note A)  
46  
XFx  
Output  
INXFx Bit  
(see Note A)  
Data  
Sampled  
Data  
Seen  
NOTE A: I/OXFx represents either bit 1 or bit 5 of the IOF register, and INXFx represents either bit 3 or bit 7 of the IOF register depending on  
whether XF0 or XF1, respectively, is being affected.  
Figure 18. Timing for Change of XFx From Output to Input Mode  
26  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443  
ꢀ ꢁꢂ ꢃꢄ ꢅꢆ ꢃꢅ  
ꢇꢈ ꢉꢈ ꢊꢋꢌ ꢀꢈ ꢉ ꢍꢋꢌ ꢎꢏ ꢐ ꢆꢑ ꢀ ꢀꢐ ꢏ  
SGUS014H − FEBRUARY 1991 − REVISED JUNE 2004  
changing XFx from an input to an output  
The following table defines the timing parameter for changing the XFx pin from an input pin to an output pin.  
timing parameters of XFx changing from input to output mode (see Figure 19)  
320C30-40  
MIN MAX  
17  
320C30-50  
MIN MAX  
17  
NO.  
UNIT  
49  
t
Delay time, H3 high to XF switching from input to output  
ns  
d(H3H-XFIO)  
The number in this column matches that used in Figure 19.  
Execution of  
Load of IOF  
H3  
H1  
I/OXFx Bit  
(see Note A)  
49  
XFx  
(see Note A)  
NOTE A: I/OXFx represents either bit 1 or bit 5 of the IOF register, and INXFx represents either bit 3 or bit 7 of the IOF register depending on  
whether XF0 or XF1, respectively, is being affected.  
Figure 19. Timing for Change of XFx From Input to Output Mode  
27  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443  
ꢀ ꢁ ꢂꢃ ꢄ ꢅ ꢆꢃ ꢅ  
ꢇ ꢈꢉ ꢈꢊꢋ ꢌ ꢀꢈ ꢉꢍ ꢋ ꢌ ꢎ ꢏꢐ ꢆꢑ ꢀꢀ ꢐꢏ  
SGUS014H − FEBRUARY 1991 − REVISED JUNE 2004  
reset timing  
RESET is an asynchronous input that can be asserted at any time during a clock cycle. If the specified timings  
are met, the exact sequence shown in Figure 20 occurs; otherwise, an additional delay of one clock cycle can  
occur. R/W and XR/W are in the high-impedance state during reset and can be provided with a resistive pullup,  
nominally 18 kto 22 k, to prevent spurious writes from occurring. The asynchronous reset signals include  
XF0/1, CLKX0/1, DX0/1, FSX0/1, CLKR0/1, DR0/1, FSR0/1, and TCLK0/1. HOLD is an asynchronous input and  
can be asserted during reset.  
Resetting the device initializes the primary- and expansion-bus control registers to seven software wait states  
and, therefore, results in slow external accesses until these registers are initialized.  
timing parameters for RESET [P = t  
] (see Figure 9 and Figure 20)  
c(CI)  
320C30-40  
320C30-50  
NO.  
UNIT  
MIN  
10  
2
MAX  
P*  
MIN  
10  
2
MAX  
50  
51  
52  
t
t
t
Setup time, RESET before CLKIN low  
P*  
10  
10  
ns  
ns  
ns  
su(RESET)  
Delay time, CLKIN high to H1 high  
14  
d(CLKINH-H1H)  
d(CLKINH-H1L)  
Delay time, CLKIN high to H1 low  
2
14  
2
Setup time, RESET high beforeH1 low after ten H1 clock  
cycles  
53  
t
9
7
ns  
su(RESETH-H1L)  
54  
55  
56  
57  
58  
59  
t
t
t
t
t
t
Delay time, CLKIN high to H3 low  
2
2
14  
14  
15*  
9*  
2
2
10  
10  
12*  
8*  
ns  
ns  
ns  
ns  
ns  
ns  
d(CLKINH-H3L)  
d(CLKINH-H3H)  
dis(H1H-XD)  
Delay time, CLKIN high to H3 high  
Disable time, H1 high to (X)D high-impedance state  
Disable time, H3 high to (X)A high-impedance state  
Delay time, H3 high to control signals high  
Delay time, H1 high to IACK high  
dis(H3H-XA)  
9*  
8*  
d(H3H-CONTROLH)  
d(H1H-IACKH)  
9*  
8*  
Disable time, RESET low to asynchronous reset signals in  
the high-impedance state  
60  
t
21*  
17*  
ns  
dis(RESETL-ASYNCH)  
See Figure 9 for temperature dependence for the 40-MHz SMJ320C30.  
* This parameter is not production tested.  
28  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443  
ꢀ ꢁꢂ ꢃꢄ ꢅꢆ ꢃꢅ  
ꢇꢈ ꢉꢈ ꢊꢋꢌ ꢀꢈ ꢉ ꢍꢋꢌ ꢎꢏ ꢐ ꢆꢑ ꢀ ꢀꢐ ꢏ  
SGUS014H − FEBRUARY 1991 − REVISED JUNE 2004  
reset timing (continued)  
CLKIN  
50  
RESET  
51  
53  
52  
H1  
54  
H3  
Ten H1 Clock Cycles  
56  
(X)D  
(see Note A)  
57  
58  
55  
(X)A  
(see Note B)  
Control Signals  
(see Note C)  
59  
IACK  
60  
Asynchronous  
Reset Signals  
(see Note D)  
NOTES: A. In this diagram X(D) includes D31D0 and XD31XD0.  
B. In this diagram, (X)A includes A23A0 and XA12XA0.  
C. Control signals include STRB, MSTRB, and IOSTRB.  
D. Asynchronous reset signals include XF1, XF0, CLKX0, DX0, FSX0, CLKR0, DR0, FSR0, CLKX1, DX1, FSX1, CLKR1, DR1, FSR1,  
TCLK0, and TCLK1.  
E. In microprocessor mode, the reset vector is fetched twice, with seven software wait states each time. In micromputer mode, the reset  
vector is fetched twice, with no software wait states.  
Figure 20. Timing for Reset [P=t  
]
c(Cl)  
29  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443  
ꢀ ꢁ ꢂꢃ ꢄ ꢅ ꢆꢃ ꢅ  
ꢇ ꢈꢉ ꢈꢊꢋ ꢌ ꢀꢈ ꢉꢍ ꢋ ꢌ ꢎ ꢏꢐ ꢆꢑ ꢀꢀ ꢐꢏ  
SGUS014H − FEBRUARY 1991 − REVISED JUNE 2004  
interrupt-response timing  
The following table defines the timing parameters for the INT signals.  
timing parameters for INT3−INT0 [Q = t  
] (see Figure 21)  
c(H)  
320C30-40  
320C30-50  
NO.  
UNIT  
MIN  
13  
MAX  
MIN  
10  
MAX  
61  
62  
t
t
Setup time, INT3INT0 before H1 low  
ns  
ns  
su(INT)  
Pulse duration, INT3INT0, to assure only one interrupt seen  
Q
< 2Q*  
Q
< 2Q*  
w(INT)  
* This parameter is not production tested.  
The interrupt (INT) pins are asynchronous inputs that can be asserted at any time during a clock cycle. The  
SMJ320C30 interrupts are level-sensitive, not edge-sensitive. Interrupts are detected on the falling edge of H1.  
Therefore, interrupts must be set up and held to the falling edge of H1 for proper detection. The CPU and DMA  
respond to detected interrupts on instruction-fetch boundaries only.  
For the processor to recognize only one interrupt on a given input, an interrupt pulse must be set up and held  
to:  
D
D
A minimum of one H1 falling edge  
No more than two H1 falling edges  
The SMJ320C30 can accept an interrupt from the same source every two H1 clock cycles.  
If the specified timings are met, the exact sequence shown in Figure 21 occurs; otherwise, an additional delay  
of one clock cycle is possible.  
Reset or  
Fetch First  
Instruction of  
Service Routine  
Interrupt  
Vector  
Read  
H3  
H1  
61  
INT3INT0  
Pins  
62  
First  
Instruction  
Address  
INT3INT0  
Flag  
Vector Address  
Addr  
Data  
Figure 21. Timing for INT3−INT0 Response [Q=t  
]
c(H)  
30  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443  
ꢀ ꢁꢂ ꢃꢄ ꢅꢆ ꢃꢅ  
ꢇꢈ ꢉꢈ ꢊꢋꢌ ꢀꢈ ꢉ ꢍꢋꢌ ꢎꢏ ꢐ ꢆꢑ ꢀ ꢀꢐ ꢏ  
SGUS014H − FEBRUARY 1991 − REVISED JUNE 2004  
interrupt-acknowledge timing  
The IACK output goes active on the first half-cycle (H1 rising) of the decode phase of the IACK instruction and  
goes inactive at the first half-cycle (H1 rising) of the read phase of the IACK instruction.  
The following table defines the timing parameters for the IACK signal.  
timing parameters for IACK (see Figure 22)  
320C30-40  
MIN MAX  
320C30-50  
MIN MAX  
NO.  
UNIT  
63  
64  
t
t
Delay time, H1 high to IACK low  
Delay time, H1 high to IACK high  
9
9
7
7
ns  
ns  
d(H1H-IACKL)  
d(H1H-IACKH)  
Numbers in this column match those used in Figure 22.  
Fetch IACK  
Instruction  
IACK  
Data Read  
H3  
H1  
63  
64  
IACK  
Address  
Data  
Figure 22. Timing for Interrupt-Acknowledge (IACK)  
31  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443  
ꢀ ꢁ ꢂꢃ ꢄ ꢅ ꢆꢃ ꢅ  
ꢇ ꢈꢉ ꢈꢊꢋ ꢌ ꢀꢈ ꢉꢍ ꢋ ꢌ ꢎ ꢏꢐ ꢆꢑ ꢀꢀ ꢐꢏ  
SGUS014H − FEBRUARY 1991 − REVISED JUNE 2004  
serial-port timing parameters (see Figure 23 and Figure 24)  
320C30-40  
320C30-50  
CLOCK  
SOURCE  
NO.  
UNIT  
MIN  
MAX  
MIN  
MAX  
Delay time, H1 high to  
internal CLKX/R  
65  
t
t
13  
10  
ns  
d(H1-SCK)  
CLKX/R ext  
t
× 2.5*  
t
× 2.6*  
Cycle time,  
CLKX/R  
c(H)  
c(H)  
66  
67  
ns  
ns  
c(SCK)  
32  
× 2  
32  
× 2 *  
CLKX/R int  
CLKX/R ext  
t
× 2  
t
*
t
× 2  
t
c(H)  
c(H)  
c(H)  
c(H)  
Pulse  
t
+12*  
t
+10*  
c(H)  
c(H)  
duration,  
CLKX /R  
high/low  
t
w(SCK)  
CLKX/R int  
[t  
/2]15  
[t  
/ 2]+5  
[t  
/2]5  
[t  
/ 2]+5  
c(SCK)  
c(SCK)  
c(SCK)  
c(SCK)  
68  
69  
t
t
Rise time, CLKX/R  
Fall time, CLKX/R  
7*  
7*  
6*  
6*  
ns  
ns  
r(SCK)  
f(SCK)  
Delay time,  
CLKX to DX  
valid  
CLKX ext  
CLKX int  
CLKR ext  
CLKR int  
CLKR ext  
CLKR int  
30  
17  
24  
16  
70  
71  
72  
t
ns  
ns  
ns  
d(DX)  
Setup time,  
DR before  
CLKR low  
9
21  
9
9
17  
7
t
t
su(DR)  
Hold time,  
DR from  
CLKR low  
h(DR)  
0
0
Delay time,  
CLKX to  
internal FSX  
high/low  
CLKX ext  
CLKX int  
27  
15  
22  
15  
73  
74  
75  
t
t
t
ns  
ns  
ns  
d(FSX)  
su(FSR)  
h(FS)  
Setup time,  
FSR before  
CLKR low  
CLKR ext  
CLKR int  
9
9
7
7
Hold time,  
FSX/R input  
from  
CLKX/R ext  
CLKX/R int  
CLKX ext  
9
0
7
0
CLKX/R low  
Setup time,  
external FSX  
before CLKX  
high  
[t  
c(H)  
− 8]  
[t  
/ 2]10*  
[t  
c(H)  
− 8]  
[t  
/ 2]10*  
c(SCK)  
c(SCK)  
76  
77  
t
ns  
ns  
su(FSX)  
CLKX int  
[t  
c(H)  
21]  
t
/2*  
[t  
c(H)  
21]  
t
/2*  
c(SCK)  
30  
c(SCK)  
Delay time,  
CLKX to first  
DX bit, FSX  
precedes  
CLKX ext  
CLKX int  
24  
t
d(CH-DX)V  
18  
30  
14  
24  
CLKX high  
Delay time, FSX to first DX  
bit, CLKX precedes FSX  
78  
79  
t
t
ns  
ns  
d(FSX-DX)V  
Delay time, CLKX high to DX  
high impedance following last  
data bit  
17*  
14*  
dDXZ  
* This parameter is not production tested.  
32  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443  
ꢀ ꢁꢂ ꢃꢄ ꢅꢆ ꢃꢅ  
ꢇꢈ ꢉꢈ ꢊꢋꢌ ꢀꢈ ꢉ ꢍꢋꢌ ꢎꢏ ꢐ ꢆꢑ ꢀ ꢀꢐ ꢏ  
SOURCED FROM: SGUS014H − FEBRUARY 1991 − REVISED JUNE 2004  
serial-port timing parameters (continued)  
Unless otherwise indicated, the data-rate timings shown in Figure 23 and Figure 24 are valid for all serial-port  
modes, including handshake. See serial-port timing parameter tables.  
Timing diagrams shown in Figure 23 and Figure 24 show operations with the serial port global-control register  
bits CLKXP = CLKRP = FSXP = FSRP = 0.  
Timing diagrams shown in Figure 23 and Figure 24 depend upon the length of the serial-port word, n, where  
n = 8, 16, 24, or 32 bits, respectively.  
66  
65  
H1  
65  
67  
67  
CLKX/R  
69  
68  
72  
79  
70  
Bit n − 1  
71  
Bit n − 2  
Bit 0  
DX  
DR  
Bit n − 1  
Bit n − 2  
FSR  
74  
73  
73  
FSX (int)  
FSX (ext)  
75  
75  
76  
Figure 23. Serial-Port Timing for Fixed-Data-Rate Mode  
CLKX/R  
73  
FSX (int)  
FSX (ext)  
78  
76  
77  
70  
79  
Bit n − 1  
75  
Bit n − 2  
Bit n − 3  
Bit 0  
DX  
FSR  
68  
DR  
Bit n − 1  
Bit n − 2  
Bit n − 3  
71  
72  
NOTE A: Timings not expressly specified for variable-data-rate mode are the same as those for fixed-data-rate mode.  
Figure 24. Serial-Port Timing for Variable-Data-Rate Mode  
33  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443  
ꢀ ꢁ ꢂꢃ ꢄ ꢅ ꢆꢃ ꢅ  
ꢇ ꢈꢉ ꢈꢊꢋ ꢌ ꢀꢈ ꢉꢍ ꢋ ꢌ ꢎ ꢏꢐ ꢆꢑ ꢀꢀ ꢐꢏ  
SOURCED FROM: SGUS014H − FEBRUARY 1991 − REVISED JUNE 2004  
HOLD timing  
HOLD is an asynchronous input that can be asserted at any time during a clock cycle. If the specified timings  
are met, the exact sequence shown in Figure 25 occurs; otherwise, an additional delay of one clock cycle is  
possible.  
The “timing parameters for HOLD/HOLDA” table defines the timing parameters for the HOLD and HOLDA  
signals.  
The NOHOLD bit of the primary bus control register overrides the HOLD signal. When this bit is set, the device  
comes out of hold and prevents future hold cycles.  
Asserting HOLD prevents the processor from accessing the primary bus. Program execution continues until a  
read from or a write to the primary bus is requested. In certain circumstances, the first write is pending, allowing  
the processor to continue until a second write is encountered.  
HOLD/HOLDA timing (see Figure 25)  
320C30-40  
320C30-50  
NO.  
UNIT  
MIN  
13  
MAX  
MIN  
10  
MAX  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
90  
91  
t
t
t
t
t
t
t
t
t
t
t
t
Setup time, HOLD before H1 low  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
su(HOLD)  
v(HOLDA)  
w(HOLD)  
Valid time, HOLDA after H1 low  
0*  
9
0*  
7
Pulse duration, HOLD low  
2t  
c(H)  
2t  
c(H)  
Pulse duration, HOLDA low  
t
5*  
t
5*  
w(HOLDA)  
d(H1L-SH)H  
dis(H1L-S)  
en(H1L-S)  
dis(H1L-RW)  
en(H1L-RW)  
dis(H1L-A)  
en(H1L-A)  
dis(H1H-D)  
c(H)  
c(H)  
7
Delay time, H1 low to STRB high for a HOLD  
Disable time, H1 low to STRB high impedance  
Enable time, H1 low to STRB active  
Disable time, H1 low to R/W high impedance  
Enable time, H1 low to R/W active  
Disable time, H1 low to address high impedance  
Enable time, H1 low to address valid  
Disable time, H1 high to data high impedance  
0*  
9*  
9*  
0*  
*
*
*
*
*
*
8
7
8
7
8
0*  
0*  
0*  
0*  
0*  
0*  
0*  
0*  
0*  
0*  
0*  
0*  
0*  
0*  
9*  
9*  
9*  
9*  
13*  
12*  
12*  
8
*
Numbers in this column are used in Figure 25.  
* This parameter is not production tested.  
34  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443  
ꢀ ꢁꢂ ꢃꢄ ꢅꢆ ꢃꢅ  
ꢇꢈ ꢉꢈ ꢊꢋꢌ ꢀꢈ ꢉ ꢍꢋꢌ ꢎꢏ ꢐ ꢆꢑ ꢀ ꢀꢐ ꢏ  
SOURCED FROM: SGUS014H − FEBRUARY 1991 − REVISED JUNE 2004  
HOLD/HOLDA timing (continued)  
H3  
H1  
80  
80  
82  
HOLD  
81  
81  
83  
HOLDA  
(see Note A)  
84  
85  
86  
(M)STRB  
and  
STRB  
88  
90  
87  
89  
R/W  
A
91  
D
Write Data  
NOTE A: HOLDA goes low in response to HOLD going low and continues to remain low through one H1 cycle after HOLD returns to high.  
Figure 25. Timing for HOLD/HOLDA  
35  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443  
ꢀ ꢁ ꢂꢃ ꢄ ꢅ ꢆꢃ ꢅ  
ꢇ ꢈꢉ ꢈꢊꢋ ꢌ ꢀꢈ ꢉꢍ ꢋ ꢌ ꢎ ꢏꢐ ꢆꢑ ꢀꢀ ꢐꢏ  
SOURCED FROM: SGUS014H − FEBRUARY 1991 − REVISED JUNE 2004  
general-purpose I/O timing  
Peripheral pins include CLKX0/1, CLKR0/1, DX0/1, DR0/1, FSX0/1, FSR0/1, and TCLK0/1. The contents of the  
internal-control registers associated with each peripheral define the modes for these pins.  
peripheral pin I/O timing  
The following table defines peripheral pin general-purpose I/O timing parameters.  
timing parameters for peripheral pin general-purpose I/O (see Note 11 and Figure 26)  
320C30-40  
320C30-50  
NO.  
UNIT  
MIN  
10*  
0*  
MAX  
MIN  
9*  
MAX  
92  
93  
94  
t
t
t
Setup time, general-purpose input before H1 low  
Hold time, general-purpose input after H1 low  
Delay time, general-purpose output after H1 high  
ns  
ns  
ns  
su(GPIOH1L)  
h(GPIOH1L)  
d(GPIOH1H)  
0*  
13*  
10*  
Numbers in this column are used in Figure 26.  
* This parameter is not production tested.  
NOTE 11: Peripheral pins include CLKX0/1, CLKR0/1, DX0/1, DR0/1, FSX0/1, FSR0/1, and TCLK0/1. The modes of these pins are defined  
by the contents of internal control registers associated with each peripheral.  
H3  
H1  
94  
93  
94  
92  
Peripheral  
Pin  
Figure 26. Timing for Peripheral Pin General-Purpose I/O  
36  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443  
ꢀ ꢁꢂ ꢃꢄ ꢅꢆ ꢃꢅ  
ꢇꢈ ꢉꢈ ꢊꢋꢌ ꢀꢈ ꢉ ꢍꢋꢌ ꢎꢏ ꢐ ꢆꢑ ꢀ ꢀꢐ ꢏ  
SOURCED FROM: SGUS014H − FEBRUARY 1991 − REVISED JUNE 2004  
changing the peripheral pin I/O modes  
The following tables show the timing parameters for changing the peripheral pin from a general-purpose output  
pin to a general-purpose input pin and the reverse.  
timing parameters for peripheral pin changing from general-purpose output to input mode  
(see Note 12 and Figure 27)  
320C30-40  
320C30-50  
NO.  
UNIT  
MIN  
MAX  
MIN  
MAX  
95  
96  
97  
t
t
t
Hold time after H1 high  
13  
10  
ns  
ns  
ns  
h(H1H)  
Setup time, peripheral pin before H1 low  
Hold time, peripheral pin after H1 low  
9
0
9
0
su(GPIOH1L)  
h(GPIOH1L)  
Numbers in this column are used in Figure 27.  
NOTE 12: Peripheral pins include CLKX0/1, CLKR0/1, DX0/1, DR0/1, FSX0/1, FSR0/1, and TCLK0/1. The modes of these pins are defined  
by the contents of internal control registers associated with each peripheral.  
Execute Store  
of Peripheral  
Control  
Value on  
Terminal Seen in  
Peripheral  
Buffers Go  
From Output to  
Input  
Synchronizer Delay  
Register  
Control Register  
H3  
H1  
96  
I/O  
Control Bit  
97  
95  
Peripheral  
Pin  
Output  
Data Bit  
Data Sampled  
Data  
Seen  
Figure 27. Timing for Change of Peripheral Pin From General-Purpose Output to Input Mode  
37  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443  
ꢀ ꢁ ꢂꢃ ꢄ ꢅ ꢆꢃ ꢅ  
ꢇ ꢈꢉ ꢈꢊꢋ ꢌ ꢀꢈ ꢉꢍ ꢋ ꢌ ꢎ ꢏꢐ ꢆꢑ ꢀꢀ ꢐꢏ  
SOURCED FROM: SGUS014H − FEBRUARY 1991 − REVISED JUNE 2004  
timing parameters for peripheral pin changing from general-purpose input to output mode  
(see Figure 28)  
320C30-40  
320C30-50  
NO.  
UNIT  
MIN  
MAX  
MIN  
MAX  
98  
t
Delay time, H1 high to peripheral pin switching from input to output  
13  
10  
ns  
d(GPIOH1H)  
Execution of Store of  
Peripheral Control  
Register  
H3  
H1  
I/O  
Control  
Bit  
98  
Peripheral  
Pin  
Figure 28. Timing for Change of Peripheral Pin From General-Purpose Input to Output Mode  
38  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443  
ꢀ ꢁꢂ ꢃꢄ ꢅꢆ ꢃꢅ  
ꢇꢈ ꢉꢈ ꢊꢋꢌ ꢀꢈ ꢉ ꢍꢋꢌ ꢎꢏ ꢐ ꢆꢑ ꢀ ꢀꢐ ꢏ  
SOURCED FROM: SGUS014H − FEBRUARY 1991 − REVISED JUNE 2004  
timer pin (TCLK0 and TCLK1) timing  
Valid logic-level periods and polarity are specified by the contents of the internal control registers.  
The following table defines the timing parameters for the timer pin.  
timing parameters for timer pin (TCLK0 and TCLK1) (see Figure 29)  
320C30-40  
320C30-50  
NO.  
UNIT  
MIN  
MAX  
MIN  
MAX  
Setup time,  
TCLK ext  
before H1 low  
99  
t
t
t
TCLK ext  
10  
0
8
0
ns  
su(TCLK-H1L)  
h(TCLK-H1L)  
d(TCLK-H1H)  
Hold time,  
TCLK ext after TCLK ext  
H1 low  
100  
101  
ns  
ns  
Delay time, H1  
high to TCLK  
int valid  
TCLK int  
9
9
TCLK ext  
TCLK int  
TCLK ext  
TCLK int  
t
× 2.6*  
t
× 2.6*  
ns  
ns  
ns  
ns  
c(H)  
c(H)  
Cycle time,  
TCLK  
102  
103  
t
t
c(TCLK)  
32  
× 2  
32  
× 2 *  
t
× 2  
t
*
t
× 2  
t
c(H)  
c(H)  
c(H)  
c(H)  
t
+ 12*  
t
+ 10*  
c(H)  
c(H)  
Pulse duration,  
TCLK high/low  
w(TCLK)  
[t  
c(TCLK)  
/2]5 [t  
/2]+5  
[t  
c(TCLK)  
/2]5 [t  
/2]+5  
c(TCLK)  
c(TCLK)  
Numbers in this column are used in Figure 29.  
Timing parameters 99 and 100 are applicable for a synchronous input clock. Timing parameters 102 and 103 are applicable for an asynchronous  
input clock.  
* This parameter is not production tested.  
H3  
H1  
100  
101  
103  
101  
99  
Timer  
Pin  
102  
NOTE A: Period and polarity of valid logic level are specified by contents of internal control registers.  
Figure 29. Timing for Timer Pin  
39  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443  
ꢀ ꢁ ꢂꢃ ꢄ ꢅ ꢆꢃ ꢅ  
ꢇ ꢈꢉ ꢈꢊꢋ ꢌ ꢀꢈ ꢉꢍ ꢋ ꢌ ꢎ ꢏꢐ ꢆꢑ ꢀꢀ ꢐꢏ  
SOURCED FROM: SGUS014H − FEBRUARY 1991 − REVISED JUNE 2004  
SHZ pin timing  
The following table defines the timing parameter for the SHZ pin.  
timing parameters for SHZ pin (see Figure 30)  
320C30-40  
320C30-50  
NO.  
UNIT  
MIN  
MAX  
104  
105  
t
t
Disable time, SHZ low to all O, I/O high impedance  
Enable time, SHZ high to all O, I/O active  
0* 3P + 15*  
ns  
ns  
dis(SHZ)  
0*  
2P*  
en(SHZ)  
Numbers in this column are used in Figure 30.  
* This parameter is not production tested.  
H3  
H1  
1.5  
SHZ  
(see  
Note A)  
104  
105  
All I/Os  
NOTE A: Enabling SHZ destroys SMJ320C30 register and memory contents. Assert SHZ and reset the SMJ320C30 to restore it to a known  
condition.  
Figure 30. Timing for SHZ  
40  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443  
ꢀ ꢁꢂ ꢃꢄ ꢅꢆ ꢃꢅ  
ꢇꢈ ꢉꢈ ꢊꢋꢌ ꢀꢈ ꢉ ꢍꢋꢌ ꢎꢏ ꢐ ꢆꢑ ꢀ ꢀꢐ ꢏ  
SOURCED FROM: SGUS014H − FEBRUARY 1991 − REVISED JUNE 2004  
SMJ320C30 part order information  
POWER  
SUPPLY  
OPERATING  
FREQUENCY  
PROCESSING  
LEVEL  
DEVICE  
TECHNOLOGY  
PACKAGE TYPE  
Ceramic 181-pin PGA  
SMJ320C30GBM40  
SM320C30GBM40  
0.7-µm CMOS  
0.7-µm CMOS  
5 V 5%  
5 V 5%  
40 MHz  
QML  
40 MHz  
Ceramic 181-pin PGA  
Standard  
Ceramic 196-pin quad flatpack with  
nonconductive tie bar  
SMJ320C30HFGM40  
0.7-µm CMOS  
5 V 5%  
40 MHz  
QML  
Ceramic 196-pin quad flatpack with  
nonconductive tie bar  
SM320C30HFGM40  
5962−9052604MXA  
5962−9052604MUA  
0.7-µm CMOS  
0.7-µm CMOS  
0.7-µm CMOS  
5 V 5%  
5 V 5%  
5 V 5%  
40 MHz  
40 MHz  
40 MHz  
Standard  
DESC SMD  
DESC SMD  
Ceramic 181-pin PGA  
Ceramic 196-pin quad flatpack with  
nonconductive tie bar  
SMJ320C30GBM50  
SM320C30GBM50  
0.7-µm CMOS  
0.7-µm CMOS  
5 V 5%  
5 V 5%  
50 MHz  
50 MHz  
Ceramic 181-pin PGA  
Ceramic 181-pin PGA  
QML  
Standard  
Ceramic 196-pin quad flatpack with  
nonconductive tie bar  
SMJ320C30HFGM50  
0.7-µm CMOS  
5 V 5%  
50 MHz  
QML  
Ceramic 196-pin quad flatpack with  
nonconductive tie bar  
SM320C30HFGM50  
5962−9052605MXA  
5962−9052605MUA  
0.7-µm CMOS  
0.7-µm CMOS  
0.7-µm CMOS  
5 V 5%  
5 V 5%  
5 V 5%  
50 MHz  
50 MHz  
50 MHz  
Standard  
DESC SMD  
DESC SMD  
Ceramic 181-pin PGA  
Ceramic 196-pin quad flatpack with  
nonconductive tie bar  
SMJ  
320  
C
30  
GB  
M
40  
SPEED RANGE  
PREFIX  
40  
50  
=
=
40 MHz  
50 MHz  
SMJ = MIL-STD-38535 (QML)  
SM Standard Processing  
=
TEMPERATURE RANGE  
DEVICE FAMILY  
320 SMJ320 Family  
M = − 55°C to125°C  
=
L =  
0°C to 70°C  
PACKAGE TYPE  
TECHNOLOGY  
C = CMOS  
GB  
=
=
=
181-Pin Grid Array (PGA) Ceramic  
Package  
HFG  
KGD  
196-Pin Ceramic Quad Flatpack with a  
nonconductive tie bar  
Known Good Die  
DEVICE  
30 = 320C30  
Figure 31. SMJ320C30 Device Nomenclature  
41  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443  
ꢀ ꢁ ꢂꢃ ꢄ ꢅ ꢆꢃ ꢅ  
ꢇ ꢈꢉ ꢈꢊꢋ ꢌ ꢀꢈ ꢉꢍ ꢋ ꢌ ꢎ ꢏꢐ ꢆꢑ ꢀꢀ ꢐꢏ  
SOURCED FROM: SGUS014H − FEBRUARY 1991 − REVISED JUNE 2004  
MECHANICAL DATA  
HFG (S-CQFP-F196)  
CERAMIC QUAD FLATPACK WITH TIE BAR  
1.365 (34,67)  
1.325 (33,66)  
Thermal Resistance Characteristics  
PARAMETER  
°C/W  
28.9  
1.3  
1.200 (30,48) TYP  
0.600 (15,20) TYP  
R
θJA  
“A”  
0.225 (5,72)  
0.175 (4,45)  
R
θJC  
Tie Bar Width  
49  
1
50  
196  
2.505 (63,63)  
2.485 (63,12)  
1.710 (43,43)  
1.690 (42,93)  
98  
148  
99  
147  
“C”  
1.150 (29,21)  
8 Places  
“B”  
0.061 (1,55)  
DIA 4 Places  
0.059 (1,50)  
0.105 (2,67) MAX  
0.018 (0,46) MAX  
0.010 (0,25)  
0.006 (0,15)  
196  
Braze  
0.014 (0,36)  
0.002 (0,05)  
0.040 (1,02)  
0.030 (0,76)  
0.008 (0,20)  
0.004 (0,10)  
0.020 (0,51) MAX  
DETAIL “B”  
0.025 (0,64)  
DETAIL “A”  
0.130 (3,30) MAX  
DETAIL “C”  
4040231-6/F 04/96  
NOTES: A. All linear dimensions are in inches (millimeters).  
B. This drawing is subject to change without notice.  
C. Ceramic quad flatpack with flat leads brazed to nonconductive tie-bar carrier  
D. This package can be hermetically sealed with a metal lid.  
E. The terminals will be gold plated.  
F. Falls within JEDEC MO-113 AB  
The above data applies to the SMJ320C30 196-pin QFP.  
42  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443  
ꢀ ꢁꢂ ꢃꢄ ꢅꢆ ꢃꢅ  
ꢇꢈ ꢉꢈ ꢊꢋꢌ ꢀꢈ ꢉ ꢍꢋꢌ ꢎꢏ ꢐ ꢆꢑ ꢀ ꢀꢐ ꢏ  
SOURCED FROM: SGUS014H − FEBRUARY 1991 − REVISED JUNE 2004  
MECHANICAL DATA (CONTINUED)  
GA-GB (S-CPGA-P15 X 15)  
CERAMIC PIN GRID ARRAY PACKAGE  
A or A1 SQ  
1.400 (35,56) TYP  
R
P
N
M
L
K
J
H
G
F
E
D
C
B
A
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15  
DIM  
A
MIN  
MAX  
Notes  
Large  
Outline  
1.540 (39,12)  
1.480 (37,59)  
0.110 (2,79)  
0.095 (2,41)  
0.040 (1,02)  
0.025 (0,63)  
1.590 (40,38)  
1.535 (38,99)  
0.205 (5,21)  
0.205 (5,21)  
0.060 (1,52)  
0.060 (1,52)  
B or B1  
Small  
Outline  
A1  
B
Cavity  
Up  
Cavity  
Down  
B1  
C
C or C1  
Cavity  
Up  
0.140 (3,56)  
0.120 (3,05)  
0.050 (1,27) DIA  
4 Places  
Cavity  
Down  
C1  
0.100 (2,54)  
0.022 (0,55)  
DIA TYP  
MAXIMUM PINS WITHIN MATRIX − 225  
0.016 (0,41)  
4040114-8/C 04/96  
NOTES: A. All linear dimensions are in inches (millimeters).  
B. This drawing is subject to change without notice.  
C. Index mark may appear on top or bottom depending on package vendor.  
D. Pins are located within 0.010 (0,25) diameter of true position relative to each other at maximum material condition and within  
0.030 (0,76) diameter relative to the edges of the ceramic.  
E. This package can be hermetically sealed with metal lids or with ceramic lids using glass frit.  
F. The pins can be gold plated or solder dipped.  
G. Falls within MIL-STD-1835 CMGA7-PN and CMGA19-PN and JEDEC MO-067AG and MO-066AG, respectively  
Thermal Resistance Characteristics  
PARAMETER  
°C/W  
26.6  
1.1  
R
θJA  
R
θJC  
The above data applies to the SMJ320C30 181-pin PGA.  
43  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443  
PACKAGE OPTION ADDENDUM  
www.ti.com  
2-May-2005  
PACKAGING INFORMATION  
Orderable Device  
Status (1)  
Package Package  
Pins Package Eco Plan (2) Lead/Ball Finish MSL Peak Temp (3)  
Qty  
Type  
Drawing  
HFG  
GB  
5962-9052604MUA  
5962-9052604MXA  
5962-9052604Q9A  
5962-9052605MUA  
5962-9052605MXA  
5962-9052605QXC  
SM320C30GBM40  
SM320C30GBM50  
SM320C30HFGM40  
SM320C30HFGM50  
SMJ320C30GBM40  
SMJ320C30GBM50  
SMJ320C30HFGM40  
SMJ320C30HFGM50  
ACTIVE  
ACTIVE  
CFP  
196  
181  
0
1
1
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Level-NC-NC-NC  
Level-NC-NC-NC  
Call TI  
CPGA  
OBSOLETE XCEPT  
KGD  
HFG  
GB  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
CFP  
CPGA  
CPGA  
CPGA  
CPGA  
CFP  
196  
181  
181  
181  
181  
196  
196  
181  
181  
196  
196  
4
1
1
1
1
1
1
1
1
1
4
Level-NC-NC-NC  
Level-NC-NC-NC  
Level-NC-NC-NC  
Level-NC-NC-NC  
Level-NC-NC-NC  
Level-NC-NC-NC  
Level-NC-NC-NC  
Level-NC-NC-NC  
Level-NC-NC-NC  
Level-NC-NC-NC  
Level-NC-NC-NC  
GB  
GB  
GB  
HFG  
HFG  
GB  
CFP  
CPGA  
CPGA  
CFP  
GB  
HFG  
HFG  
CFP  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in  
a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2)  
Eco Plan  
-
The planned eco-friendly classification: Pb-Free (RoHS) or Green (RoHS  
&
no Sb/Br)  
-
please check  
http://www.ti.com/productcontent for the latest availability information and additional product content details.  
TBD: The Pb-Free/Green conversion plan has not been defined.  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements  
for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered  
at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame  
retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)  
(3)  
MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder  
temperature.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is  
provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the  
accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take  
reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on  
incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited  
information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI  
to Customer on an annual basis.  
Addendum-Page 1  
MECHANICAL DATA  
MCFP023C – JANUARY 1995 – REVISED JUNE 1999  
HFG (S-CQFP-F196)  
CERAMIC QUAD FLATPACK WITH NCTB  
1.365 (34,67)  
1.335 (33,91)  
SQ  
0.225 (5,72)  
0.175 (4,45)  
”A”  
Tie Bar Width  
1.200 (30,48)  
BSC  
49  
1
50  
196  
1.710 (43,43)  
1.690 (42,93)  
2.505 (63,63)  
2.485 (63,12)  
98  
148  
99  
147  
”C”  
1.150 (29,21)  
BSC 8 Places  
”B”  
0.061 (1,55)  
DIA 4 Places  
0.059 (1,50)  
0.105 (2,67) MAX  
0.018 (0,46) MAX  
0.013 (0,33)  
0.007 (0,18)  
196 X  
Braze  
0.014 (0,36)  
0.002 (0,05)  
0.040 (1,02)  
0.030 (0,76)  
0.009 (0,23)  
0.004 (0,10)  
0.020 (0,51) MAX  
DETAIL ”B”  
0.130 (3,30) MAX  
0.025 (0,64)  
DETAIL ”A”  
DETAIL ”C”  
4040231-6/J 01/99  
NOTES: A. All linear dimensions are in inches (millimeters).  
B. This drawing is subject to change without notice.  
C. Ceramic quad flatpack with flat leads brazed to non-conductive tie bar carrier  
D. This package is hermetically sealed with a metal lid.  
E. The leads are gold-plated and can be solder-dipped.  
F. Leads not shown for clarity purposes  
G. Falls within JEDEC MO-113AB  
1
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MECHANICAL DATA  
MCPG014A – FEBRUARY 1996 – REVISED JANUARY 2002  
GB (S-CPGA-P181)  
CERAMIC PIN GRID ARRAY  
1.590 (40,40)  
1.560 (39,62)  
SQ  
1.400 (35,56) TYP  
0.100 (2,54) TYP  
R
P
N
M
L
K
J
H
G
F
A1 Corner  
E
D
C
B
A
1 2  
3
4
5
6
7
8
9 10 11 12 13 14 15  
Bottom View  
0.185 (4,70)  
0.140 (3,55)  
0.055 (1,40)  
0.045 (1,14)  
0.140 (3,56)  
0.120 (3,05)  
0.050 (1,27) DIA  
4 Places  
0.022 (0,55)  
0.016 (0,41)  
DIA TYP  
4073426/C 11/01  
NOTES: A. All linear dimensions are in inches (millimeters).  
B. This drawing is subject to change without notice.  
C. Index mark can appear on top or bottom, depending on package vendor.  
D. Pins are located within 0.010 (0,25) diameter of true position relative to  
each other at maximum material condition and within 0.030 (0,76) diameter  
relative to the edge of the ceramic.  
E. This package can be hermetically sealed with metal lids or with ceramic lids using glass frit.  
F. The pins can be gold-plated or solder-dipped.  
G. Falls within MIL-STD-1835 CMGA7-PN  
1
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,  
enhancements, improvements, and other changes to its products and services at any time and to discontinue  
any product or service without notice. Customers should obtain the latest relevant information before placing  
orders and should verify that such information is current and complete. All products are sold subject to TI’s terms  
and conditions of sale supplied at the time of order acknowledgment.  
TI warrants performance of its hardware products to the specifications applicable at the time of sale in  
accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI  
deems necessary to support this warranty. Except where mandated by government requirements, testing of all  
parameters of each product is not necessarily performed.  
TI assumes no liability for applications assistance or customer product design. Customers are responsible for  
their products and applications using TI components. To minimize the risks associated with customer products  
and applications, customers should provide adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right,  
copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process  
in which TI products or services are used. Information published by TI regarding third-party products or services  
does not constitute a license from TI to use such products or services or a warranty or endorsement thereof.  
Use of such information may require a license from a third party under the patents or other intellectual property  
of the third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of information in TI data books or data sheets is permissible only if reproduction is without  
alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction  
of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for  
such altered documentation.  
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that  
product or service voids all express and any implied warranties for the associated TI product or service and  
is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.  
Following are URLs where you can obtain information on other Texas Instruments products and application  
solutions:  
Products  
Applications  
Audio  
Amplifiers  
amplifier.ti.com  
www.ti.com/audio  
Data Converters  
dataconverter.ti.com  
Automotive  
www.ti.com/automotive  
DSP  
dsp.ti.com  
Broadband  
Digital Control  
Military  
www.ti.com/broadband  
www.ti.com/digitalcontrol  
www.ti.com/military  
Interface  
Logic  
interface.ti.com  
logic.ti.com  
Power Mgmt  
Microcontrollers  
power.ti.com  
Optical Networking  
Security  
www.ti.com/opticalnetwork  
www.ti.com/security  
www.ti.com/telephony  
www.ti.com/video  
microcontroller.ti.com  
Telephony  
Video & Imaging  
Wireless  
www.ti.com/wireless  
Mailing Address:  
Texas Instruments  
Post Office Box 655303 Dallas, Texas 75265  
Copyright 2005, Texas Instruments Incorporated  

相关型号:

SMJ320C30HTM25

32-BIT, 25MHz, OTHER DSP, CQFP196

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

SMJ320C30HTM28

Digital Signal Processor, 32-Ext Bit, 28MHz, CMOS, CQFP196, QFP-196

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ROCHESTER

SMJ320C30HUM28

Digital Signal Processor, 32-Ext Bit, 28MHz, CMOS, CQFP196, QFP-196

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ROCHESTER

SMJ320C30KGD

FLOATING-POINT DIGITAL SIGNAL PROCESSOR KNOWN GOOD DIE

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

SMJ320C30KGDB

FLOATING-POINT DIGITAL SIGNAL PROCESSOR KNOWN GOOD DIE

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

SMJ320C30KGDL40B

SMJ320C30KGDL40B

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

SMJ320C30KGDL50B

SMJ320C30KGDL50B

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

SMJ320C30KGDM50B

32-BIT, 50MHz, OTHER DSP, UUC204, DIE-204

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

SMJ320C30MKGD50B

32-BIT, 50MHz, OTHER DSP, UUC203

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

SMJ320C31

DIGITAL SIGNAL PROCESSORS

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

SMJ320C31GFAM27

Digital Signal Processor, CMOS

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ROCHESTER

SMJ320C31GFAM40

DIGITAL SIGNAL PROCESSORS

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI