SMJ320C6413ZTSA500 [TI]

Fixed-Point Digital Signal Processors; 定点数字信号处理器
SMJ320C6413ZTSA500
型号: SMJ320C6413ZTSA500
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

Fixed-Point Digital Signal Processors
定点数字信号处理器

数字信号处理器
文件: 总140页 (文件大小:1932K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TMS320C6413, TMS320C6410  
Fixed-Point Digital Signal  
Processors  
Data Manual  
Literature Number: SPRS247E  
April 2004 Revised May 2005  
PRODUCTION DATA information is current as of publication date.  
Products conform to specifications per the terms of Texas Instruments  
standard warranty. Production processing does not necessarily include  
testing of all parameters.  
This page intentionally left blank  
Revision History  
Revision History  
This data manual revision history highlights the technical changes made to the SPRS247D device-specific data  
manual to make it an SPRS247E revision.  
Scope: Applicable updates to the C64x device family, specifically relating to the TMS320C6413 and  
TMS320C6410 devices, have been incorporated.  
PAGE(s)  
ADDS/CHANGES/DELETES  
NO.  
63  
Terminal Functions table:  
Host-port data [7:0] pins (I/O/Z) description:  
Changed sentence from “Host-Port bus width user-configurable at device reset via a 10-kW resistor pullup/pulldown resistor  
on the HD5 pin (I):“ to “Host-Port bus width user-configurable at device reset via a 1-kW pullup/pulldown resistor on the HD5  
pin (I):“  
78  
90  
I2C section:  
Updated/added “For more detailed information...” paragraph  
Electrical Characteristics Over Recommended Ranges of Supply Voltage and Operating Case Temperature:  
I
Low-level output current, TEST CONDITIONS:  
OH,  
Moved/added HPI to “Timer, TDO, GPIO, McBSP”  
3
April 2004 Revised May 2005  
SPRS247E  
Contents  
Section  
Contents  
Page  
1
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
2
Functional Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
2.1  
2.2  
2.3  
GTS and ZTS BGA Packages (Bottom View) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Device Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
2.3.1  
Functional Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
2.4  
2.5  
CPU (DSP Core) Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Memory Map Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
2.5.1  
L2 Architecture Expanded . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
2.6  
2.7  
2.8  
2.9  
Peripheral Register Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
EDMA Channel Synchronization Events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Interrupt Sources and Interrupt Selector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
Signal Groups Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
3
4
4
Device Configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
3.1  
3.2  
3.3  
3.4  
3.5  
3.6  
3.7  
3.8  
3.9  
3.10  
3.11  
3.12  
Device Configuration at Device Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
Peripheral Configuration at Device Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
Peripheral Selection After Device Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
Peripheral Configuration Lock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
Device Status Register Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
JTAG ID Register Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
Multiplexed Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
Debugging Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
Configuration Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
Terminal Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
Development Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67  
Device Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68  
3.12.1  
3.12.2  
Device and Development-Support Tool Nomenclature . . . . . . . . . . . . . . . . . . . . . 68  
Documentation Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70  
Peripherals Detailed Description (Device-Specific) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71  
4.1  
4.2  
4.3  
Clock PLL and Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71  
Host-Port Interface (HPI) Peripheral . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75  
Multichannel Audio Serial Port (McASP) Peripheral . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76  
4.3.1  
McASP Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76  
4.4  
4.5  
4.6  
I2C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78  
General-Purpose Input/Output (GPIO) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79  
Power-Down Modes Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82  
4.6.1  
4.6.2  
Triggering, Wake-up, and Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82  
C64x Power-Down Mode with an Emulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84  
4.7  
Power-Supply Sequencing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84  
4.7.1 Power-Supply Design Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84  
4.8  
4.9  
Power-Supply Decoupling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85  
Peripheral Power-Down Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86  
SPRS247E  
April 2004 Revised May 2005  
Contents  
Page  
Section  
4.10  
IEEE 1149.1 JTAG Compatibility Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87  
EMIF Device Speed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87  
Bootmode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88  
Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88  
4.11  
4.12  
4.13  
5
Device Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89  
5.1  
5.2  
5.3  
Absolute Maximum Ratings Over Operating Case Temperature Range . . . . . . . . . . . . . . . . . . 89  
Recommended Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89  
Electrical Characteristics Over Recommended Ranges of Supply Voltage and Operating Case  
Temperature (Unless Otherwise Noted) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90  
5.4  
Recommended Clock and Control Signal Transition Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . 90  
6
7
Parameter Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91  
6.1  
6.2  
6.3  
Signal Transition Levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91  
Signal Transition Rates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91  
Timing Parameters and Board Routing Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92  
Peripheral Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93  
7.1  
7.2  
7.3  
7.4  
7.5  
7.6  
7.7  
7.8  
Input and Output Clocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93  
Asynchronous Memory Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97  
Programmable Synchronous Interface Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100  
Synchronous DRAM Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104  
HOLD/HOLDA Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110  
BUSREQ Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111  
Reset Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112  
External Interrupt Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114  
Multichannel Audio Serial Port (McASP) Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115  
Inter-Integrated Circuits (I2C) Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118  
Host-Port Interface (HPI) Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120  
Multichannel Buffered Serial Port (McBSP) Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125  
Timer Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132  
General-Purpose Input/Output (GPIO) Port Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133  
JTAG Test-Port Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134  
7.9  
7.10  
7.11  
7.12  
7.13  
7.14  
7.15  
8
Mechanical Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135  
8.1  
8.2  
Thermal Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135  
Packaging Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136  
5
April 2004 Revised May 2005  
SPRS247E  
Figures  
Figure  
List of Figures  
Page  
21  
22  
23  
24  
25  
26  
27  
GTS and ZTS BGA Packages (Bottom View) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Functional Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
TMS320C64xE CPU (DSP Core) Data Paths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
TMS320C6413 L2 Architecture Memory Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
TMS320C6410 L2 Architecture Memory Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
CPU and Peripheral Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
Peripheral Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
31  
32  
33  
34  
35  
36  
Peripheral Configuration Register (PERCFG) [Address Location: 0x01B3F000] . . . . . . . . . . . . . . . . . . 46  
Peripheral Enable/Disable Flow Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
PCFGLOCK Register Diagram [Address Location: 0x01B3 F018] Read/Write Accesses . . . . . . . . 49  
Device Status Register (DEVSTAT) Description 0x01B3 F004 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
JTAG ID Register Description TMS320C6413/C6410 Register Value 0x0007 902F . . . . . . . . . . . . 51  
Configuration Example A  
(HPI16 + 2 McASPs + 2 McBSPs +2 I2Cs + EMIF + 3 Timers + GPIO) . . . . . . . . . . . . . . . . . . . . . . . . 54  
37  
TMS320C6413/C6410 DSP Device Nomenclature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69  
41  
42  
43  
44  
45  
46  
47  
48  
External PLL Circuitry for Either PLL Multiply Modes or x1 (Bypass) Mode . . . . . . . . . . . . . . . . . . . . . . 72  
McASP0 and McASP1 Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77  
I2Cx Module Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79  
GPIO Enable Register (GPEN) [Hex Address: 01B0 0000] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80  
GPIO Direction Register (GPDIR) [Hex Address: 01B0 0004] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81  
Power-Down Mode Logic† . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82  
PWRD Field of the CSR Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83  
Schottky Diode Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85  
61  
62  
63  
64  
Test Load Circuit for AC Timing Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91  
Input and Output Voltage Reference Levels for AC Timing Measurements . . . . . . . . . . . . . . . . . . . . . . 91  
Rise and Fall Transition Time Voltage Reference Levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91  
Board-Level Input/Output Timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92  
71  
72  
73  
74  
75  
76  
77  
78  
CLKIN Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93  
CLKOUT4 Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94  
CLKOUT6 Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94  
AECLKIN Timing for EMIFA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95  
AECLKOUT1 Timing for the EMIFA Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95  
AECLKOUT2 Timing for the EMIFA Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96  
Asynchronous Memory Read Timing for EMIFA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98  
Asynchronous Memory Write Timing for EMIFA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99  
6
SPRS247E  
April 2004 Revised May 2005  
Figures  
79  
Programmable Synchronous Interface Read Timing for EMIFA  
(With Read Latency = 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101  
710  
711  
Programmable Synchronous Interface Write Timing for EMIFA  
(With Write Latency = 0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102  
Programmable Synchronous Interface Write Timing for EMIFA  
(With Write Latency = 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103  
712  
713  
714  
715  
716  
717  
718  
719  
720  
721  
722  
723  
724  
725  
726  
727  
728  
729  
730  
731  
732  
733  
734  
735  
736  
737  
738  
739  
740  
741  
742  
743  
744  
SDRAM Read Command (CAS Latency 3) for EMIFA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105  
SDRAM Write Command for EMIFA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106  
SDRAM ACTV Command for EMIFA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107  
SDRAM DCAB Command for EMIFA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107  
SDRAM DEAC Command for EMIFA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108  
SDRAM REFR Command for EMIFA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108  
SDRAM MRS Command for EMIFA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109  
SDRAM Self-Refresh Timing for EMIFA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109  
HOLD/HOLDA Timing for EMIFA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110  
BUSREQ Timing for EMIFA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111  
Reset Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113  
External/NMI Interrupt Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114  
McASP Input Timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116  
McASP Output Timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117  
I2C Receive Timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118  
I2C Transmit Timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119  
HPI16 Read Timing (HAS Not Used, Tied High) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121  
HPI16 Read Timing (HAS Used) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121  
HPI16 Write Timing (HAS Not Used, Tied High) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122  
HPI16 Write Timing (HAS Used) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122  
HPI32 Read Timing (HAS Not Used, Tied High) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123  
HPI32 Read Timing (HAS Used) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123  
HPI32 Write Timing (HAS Not Used, Tied High) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124  
HPI32 Write Timing (HAS Used) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124  
McBSP Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127  
FSR Timing When GSYNC = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127  
McBSP Timing as SPI Master or Slave: CLKSTP = 10b, CLKXP = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . 128  
McBSP Timing as SPI Master or Slave: CLKSTP = 11b, CLKXP = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . 129  
McBSP Timing as SPI Master or Slave: CLKSTP = 10b, CLKXP = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . 130  
McBSP Timing as SPI Master or Slave: CLKSTP = 11b, CLKXP = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . 131  
Timer Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132  
GPIO Port Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133  
JTAG Test-Port Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134  
7
April 2004 Revised May 2005  
SPRS247E  
Tables  
Table  
List of Tables  
Page  
21  
22  
23  
24  
25  
26  
27  
28  
Characteristics of the C6413 and C6410 Processors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
TMS320C6413/C6410 Memory Map Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
EMIFA Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
L2 Cache Registers (C64x) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Quick DMA (QDMA) and Pseudo Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
EDMA Registers (C64x) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
EDMA Parameter RAM (C64x) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Interrupt Selector Registers (C64x) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Device Configuration Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
McBSP 0 Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
McBSP 1 Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Timer 0 Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Timer 1 Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Timer 2 Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
HPI Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
GP0 Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
McASP0 and McASP1 Control Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
McASP0 Data Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
McASP1 Data Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
I2C0 and I2C1 Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
TMS320C6413/C6410 EDMA Channel Synchronization Events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
C6413/C6410 DSP Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
29  
210  
211  
212  
213  
214  
215  
216  
217  
218  
219  
220  
221  
222  
31  
C6413/C6410 Device Configuration Pins (TOUT1/LENDIAN, AEA[22:19], TOUT0/HPI_EN,  
HD5, CLKINSEL, and OSC_DIS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
32  
33  
34  
35  
36  
37  
38  
39  
TOUT0/HPI_EN and HD5 Peripheral Selection (HPI or McASP1 and Select GP0 Pins) . . . . . . . . . . . 45  
Peripheral Configuration (PERCFG) Register Selection Bit Descriptions . . . . . . . . . . . . . . . . . . . . . . . 47  
PCFGLOCK Register Selection Bit Descriptions Read Accesses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
PCFGLOCK Register Selection Bit Descriptions Write Accesses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
Device Status (DEVSTAT) Register Selection Bit Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
JTAG ID Register Selection Bit Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
C6413/C6410 Device Multiplexed Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
Terminal Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
41  
42  
TMS320C6413 PLL Multiply Factor Options, Clock Frequency Ranges,  
and Typical Lock Time for 500 Devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73  
TMS320C6410 PLL Multiply Factor Options, Clock Frequency Ranges,  
and Typical Lock Time for 400 Devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74  
43  
44  
Crystal and Tank Circuit Recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74  
Characteristics of the Power-Down Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84  
61  
71  
Board-Level Timing Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92  
Timing Requirements for External Crystal Oscillator Input (OSCIN and OSCOUT) . . . . . . . . . . . . . . . 93  
8
SPRS247E  
April 2004 Revised May 2005  
Tables  
Page  
Table  
72  
73  
74  
75  
76  
Timing Requirements for CLKIN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93  
Switching Characteristics Over Recommended Operating Conditions for CLKOUT4 . . . . . . . . . . . . . . 94  
Switching Characteristics Over Recommended Operating Conditions for CLKOUT6 . . . . . . . . . . . . . . 94  
Timing Requirements for AECLKIN for EMIFA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95  
Switching Characteristics Over Recommended Operating Conditions for AECLKOUT1  
for the EMIFA Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95  
77  
Switching Characteristics Over Recommended Operating Conditions for AECLKOUT2  
for the EMIFA Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96  
78  
79  
Timing Requirements for Asynchronous Memory Cycles for EMIFA Module . . . . . . . . . . . . . . . . . . . . . 97  
Switching Characteristics Over Recommended Operating Conditions for Asynchronous  
Memory Cycles for EMIFA Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97  
710  
711  
Timing Requirements for Programmable Synchronous Interface Cycles for EMIFA Module . . . . . . . 100  
Switching Characteristics Over Recommended Operating Conditions for Programmable Synchronous  
Interface Cycles for EMIFA Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100  
712  
713  
Timing Requirements for Synchronous DRAM Cycles for EMIFA Module . . . . . . . . . . . . . . . . . . . . . . 104  
Switching Characteristics Over Recommended Operating Conditions for Synchronous DRAM  
Cycles for EMIFA Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104  
714  
715  
Timing Requirements for the HOLD/HOLDA Cycles for EMIFA Module . . . . . . . . . . . . . . . . . . . . . . . . 110  
Switching Characteristics Over Recommended Operating Conditions for the HOLD/HOLDA  
Cycles for EMIFA Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110  
716  
Switching Characteristics Over Recommended Operating Conditions for the BUSREQ  
Cycles for EMIFA Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111  
717  
718  
719  
720  
721  
722  
723  
724  
725  
Timing Requirements for Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112  
Switching Characteristics Over Recommended Operating Conditions During Reset . . . . . . . . . . . . . 112  
Timing Requirements for External Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114  
Timing Requirements for McASP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115  
Switching Characteristics Over Recommended Operating Conditions for McASP . . . . . . . . . . . . . . . 115  
Timing Requirements for I2C Timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118  
Switching Characteristics for I2C Timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119  
Timing Requirements for Host-Port Interface Cycles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120  
Switching Characteristics Over Recommended Operating Conditions During Host-Port  
Interface Cycles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120  
726  
727  
728  
729  
Timing Requirements for McBSP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125  
Switching Characteristics Over Recommended Operating Conditions for McBSP . . . . . . . . . . . . . . . 126  
Timing Requirements for FSR When GSYNC = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127  
Timing Requirements for McBSP as SPI Master or Slave:  
CLKSTP = 10b, CLKXP = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128  
730  
731  
732  
733  
734  
Switching Characteristics Over Recommended Operating Conditions for McBSP as  
SPI Master or Slave: CLKSTP = 10b, CLKXP = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128  
Timing Requirements for McBSP as SPI Master or Slave:  
CLKSTP = 11b, CLKXP = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129  
Switching Characteristics Over Recommended Operating Conditions for McBSP as  
SPI Master or Slave: CLKSTP = 11b, CLKXP = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129  
Timing Requirements for McBSP as SPI Master or Slave:  
CLKSTP = 10b, CLKXP = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130  
Switching Characteristics Over Recommended Operating Conditions for McBSP as  
SPI Master or Slave: CLKSTP = 10b, CLKXP = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130  
735  
Timing Requirements for McBSP as SPI Master or Slave:  
CLKSTP = 11b, CLKXP = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131  
9
April 2004 Revised May 2005  
SPRS247E  
Tables  
736  
Switching Characteristics Over Recommended Operating Conditions for McBSP as  
SPI Master or Slave: CLKSTP = 11b, CLKXP = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131  
737  
738  
739  
740  
741  
742  
Timing Requirements for Timer Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132  
Switching Characteristics Over Recommended Operating Conditions for Timer Outputs . . . . . . . . . 132  
Timing Requirements for GPIO Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133  
Switching Characteristics Over Recommended Operating Conditions for GPIO Outputs . . . . . . . . . 133  
Timing Requirements for JTAG Test Port . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134  
Switching Characteristics Over Recommended Operating Conditions for JTAG Test Port . . . . . . . . 134  
81  
82  
Thermal Resistance Characteristics (S-PBGA Package) [GTS] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135  
Thermal Resistance Characteristics (S-PBGA Package) [ZTS] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135  
10  
SPRS247E  
April 2004 Revised May 2005  
Features  
1
Features  
D
High-Performance Fixed-Point Digital  
Signal Processor (TMS320C6413/C6410)  
TMS320C6413  
D
L1/L2 Memory Architecture  
128K-Bit (16K-Byte) L1P Program Cache  
(Direct Mapped)  
2-ns Instruction Cycle Time  
500-MHz Clock Rate  
4000 MIPS  
128K-Bit (16K-Byte) L1D Data Cache  
(2-Way Set-Associative)  
2M-Bit (256K-Byte) L2 Unified Mapped  
RAM/Cache [C6413]  
TMS320C6410  
2.5-ns Instruction Cycle Time  
400-MHz Clock Rate  
3200 MIPS  
(Flexible RAM/Cache Allocation)  
1M-Bit (128K-Byte) L2 Unified Mapped  
RAM/Cache [C6410]  
Eight 32-Bit Instructions/Cycle  
Fully Software-Compatible With C64x™  
Extended Temperature Devices Available  
(Flexible RAM/Cache Allocation)  
D
D
Endianess: Little Endian, Big Endian  
32-Bit External Memory Interface (EMIF)  
Glueless Interface to Asynchronous  
Memories (SRAM and EPROM) and  
Synchronous Memories (SDRAM,  
SBSRAM, ZBT SRAM, and FIFO)  
1024M-Byte Total Addressable External  
Memory Space  
D
VelociTI.2Extensions to VelociTI™  
Advanced Very-Long-Instruction-Word  
(VLIW) TMS320C64xDSP Core  
Eight Highly Independent Functional  
Units With VelociTI.2Extensions:  
Six ALUs (32-/40-Bit), Each Supports  
Single 32-Bit, Dual 16-Bit, or Quad  
8-Bit Arithmetic per Clock Cycle  
Two Multipliers Support  
D
Enhanced Direct-Memory-Access (EDMA)  
Controller (64 Independent Channels)  
D
D
Host-Port Interface (HPI) [32-/16-Bit]  
Four 16 x 16-Bit Multiplies  
(32-Bit Results) per Clock Cycle or  
Eight 8 x 8-Bit Multiplies  
Two Multichannel Audio Serial Ports  
(McASPs) - with Six Serial Data Pins each  
(16-Bit Results) per Clock Cycle  
Load-Store Architecture With  
Non-Aligned Support  
64 32-Bit General-Purpose Registers  
Instruction Packing Reduces Code Size  
All Instructions Conditional  
2
D
Two Inter-Integrated Circuit (I C) Buses  
Additional GPIO Capability  
D
D
D
D
D
D
Two Multichannel Buffered Serial Ports  
Three 32-Bit General-Purpose Timers  
Sixteen General-Purpose I/O (GPIO) Pins  
Flexible PLL Clock Generator  
D
D
Instruction Set Features  
Byte-Addressable (8-/16-/32-/64-Bit Data)  
8-Bit Overflow Protection  
Bit-Field Extract, Set, Clear  
Normalization, Saturation, Bit-Counting  
VelociTI.2Increased Orthogonality  
VelociTI.2Extensions to VelociTI™  
Advanced Very-Long-Instruction-Word  
(VLIW) TMS320C64xDSP Core  
On-Chip Fundamental Oscillator  
IEEE-1149.1 (JTAG )  
Boundary-Scan-Compatible  
D
288-Pin Ball Grid Array (BGA) Packages  
(GTS and ZTS Suffixes), 1.0-mm Ball Pitch  
D
D
0.13-µm/6-Level Cu Metal Process (CMOS)  
3.3-V I/Os, 1.2-V Internal  
VelociTI.2, VelociTI, and TMS320C64x are trademarks of Texas Instruments.  
All trademarks are the property of their respective owners.  
IEEE Standard 1149.1-1990 Standard-Test-Access Port and Boundary Scan Architecture.  
11  
April 2004 Revised May 2005  
SPRS247E  
 
Functional Overview  
2
Functional Overview  
2.1  
GTS and ZTS BGA Packages (Bottom View)  
GTS and ZTS 288-PIN BALL GRID ARRAY (BGA) PACKAGES  
(BOTTOM VIEW)  
AB  
Y
AA  
W
U
V
T
R
P
N
M
K
L
J
H
F
G
E
D
B
C
A
1
3
5
7
9
11 13 15 17 19 21  
10 12 14 16 18 20 22  
2
4
6
8
Figure 21. GTS and ZTS BGA Packages (Bottom View)  
12  
SPRS247E  
April 2004 Revised May 2005  
 
Description  
2.2  
Description  
The TMS320C64xDSPs (including the TMS320C6413, TMS320C6410 devices) are the  
highest-performance fixed-point DSP generation in the TMS320C6000DSP platform. The TMS320C6413  
and TMS320C6410 (C6413 and C6410) devices are based on the second-generation high-performance,  
advanced VelociTIvery-long-instruction-word (VLIW) architecture (VelociTI.2) developed by Texas  
Instruments (TI). The high-performance, lower-cost C6413/C6410 DSPs enable customers to reduce system  
costs for telecom, medical, industrial, office, and photo lab equipment. The C64xis a code-compatible  
member of the C6000DSP platform.  
With performance of up to 4000 million instructions per second (MIPS) at a clock rate of 500 MHz, the C6413  
device offers cost-effective solutions to high-performance DSP programming challenges.  
With performance of up to 3200 million instructions per second (MIPS) at a clock rate of 400 MHz, the C6410  
device offers cost-effective solutions to high-performance DSP programming challenges. The C6410 device  
also provides excellent value for packet telephony and for other costsensitive applications demanding high  
performance.  
The C6413/C6410 DSP possesses the operational flexibility of high-speed controllers and the numerical  
capability of array processors. The C64xDSP core processor has 64 general-purpose registers of 32-bit  
word length and eight highly independent functional units—two multipliers for a 32-bit result and six arithmetic  
logic units (ALUs)— with VelociTI.2extensions. The VelociTI.2extensions in the eight functional units  
include new instructions to accelerate the performance in video and imaging applications and extend the  
parallelism of the VelociTIarchitecture. The C6413 can produce four 16-bit multiply-accumulates (MACs)  
per cycle for a total of 2000 million MACs per second (MMACS), or eight 8-bit MACs per cycle for a total of  
4000 MMACS. The C6410 can produce four 16-bit multiply-accumulates (MACs) per cycle for a total of  
1600 million MACs per second (MMACS), or eight 8-bit MACs per cycle for a total of 3200 MMACS. The  
C6413/C6410 DSP also has application-specific hardware logic, on-chip memory, and additional on-chip  
peripherals similar to the other C6000DSP platform devices.  
The C6413/C6410 uses a two-level cache-based architecture and has a powerful and diverse set of  
peripherals. The Level 1 program cache (L1P) is a 128-Kbit direct mapped cache and the Level 1 data cache  
(L1D) is a 128-Kbit 2-way set-associative cache. The Level 2 memory/cache (L2) consists of an 2-Mbit  
memory space that is shared between program and data space [for C6413 device] and the Level 2  
memory/cache (L2) consists of an 1-Mbit memory space that is shared between program and data space [for  
C6410 device]. L2 memory can be configured as mapped memory, cache, or combinations of the two. The  
peripheral set includes: two multichannel buffered audio serial ports (McASPs); two inter-integrated circuit bus  
modules (I2Cs) ; two multichannel buffered serial ports (McBSPs); three 32-bit general-purpose timers; a  
user-configurable 16-bit or 32-bit host-port interface (HPI16/HPI32); a 16-pin general-purpose input/output  
port (GP0) with programmable interrupt/event generation modes; and a 32-bit glueless external memory  
interface (EMIFA), which is capable of interfacing to synchronous and asynchronous memories and  
peripherals.  
Each McASP port supports one transmit and one receive clock zone, with six serial data pins which can be  
individually allocated to any of the two zones. The serial port supports time-division multiplexing on each pin  
from 2 to 32 time slots. The C6413/C6410 has sufficient bandwidth to support all six serial data pins  
transmitting a 192-kHz stereo signal. Serial data in each zone may be transmitted and received on multiple  
2
serial data pins simultaneously and formatted in a multitude of variations on the Philips Inter-IC Sound (I S)  
format.  
In addition, the McASP transmitter may be programmed to output multiple S/PDIF, IEC60958, AES-3, CP-430  
encoded data channels simultaneously, with a single RAM containing the full implementation of user data and  
channel status fields.  
McASP also provides extensive error-checking and recovery features, such as the bad clock detection circuit  
for each high-frequency master clock which verifies that the master clock is within a programmed frequency  
range.  
TMS320C6000, and C6000 are trademarks of Texas Instruments.  
13  
April 2004 Revised May 2005  
SPRS247E  
 
Device Characteristics  
The I2C ports on the TMS320C6413/C6410 allows the DSP to easily control peripheral devices and  
communicate with a host processor. In addition, the standard multichannel buffered serial port (McBSP) may  
be used to communicate with serial peripheral interface (SPI) mode peripheral devices.  
The C6413/C6410 has a complete set of development tools which includes: a new C compiler, an assembly  
optimizer to simplify programming and scheduling, and a Windowsdebugger interface for visibility into  
source code execution.  
2.3  
Device Characteristics  
Table 21, provides an overview of the C6413 and C6410 DSPs. The tables show significant features of the  
C6413 and C6410 devices, including the capacity of on-chip RAM, the peripherals, the CPU frequency, and  
the package type with pin count.  
Table 21. Characteristics of the C6413 and C6410 Processors  
HARDWARE FEATURES  
C6413 AND C6410  
EMIFA (32-bit bus width)  
(clock source = AECLKIN, CLKOUT4, or CLKOUT6)  
1
EDMA (64 independent channels)  
McASPs (use Peripheral Clock and AUXCLK)  
I2Cs (use Peripheral Clock)  
1
Peripherals  
2
2
Not all peripherals pins  
are available at the  
HPI (32- or 16-bit user selectable)  
1 (HPI16 or HPI32)  
same time (For more  
detail, see the Device  
Configuration section).  
McBSPs  
2
(internal clock source = CPU/4 clock frequency)  
32-Bit Timers  
(internal clock source = CPU/8 clock frequency)  
3
General-Purpose Input/Output Port (GP0)  
16  
288K (C6413)  
160K (C6410)  
Size (Bytes)  
16K-Byte (16KB) L1 Program (L1P) Cache  
16KB L1 Data (L1D) Cache  
256KB Unified Mapped RAM/Cache (L2) [C6413]  
128KB Unified Mapped RAM/Cache (L2) [C6410]  
On-Chip Memory  
Organization  
CPU ID + CPU Rev ID  
JTAG BSDL_ID  
Control Status Register (CSR.[31:16])  
0x0C01  
JTAGID register (address location: 0x01B3F008)  
0x0007902F  
500 (C6413)  
400 (C6410)  
Frequency  
MHz  
ns  
2 ns (C6413-500, C6413 A500)  
[500 MHz CPU, 100 MHz EMIF ]  
2.5 ns (C6410-400, C6410 A400)  
[400 MHz CPU, 100 MHz EMIF ]  
Cycle Time  
Core (V)  
I/O (V)  
1.2 V  
3.3 V  
Voltage  
Bypass (x1), x5, x6, x7, x8, x9, x10, x11, x12, x16,  
x18, x19, x20, x21, x22, and x24  
PLL Options  
CLKIN frequency multiplier  
BGA Package  
23 x 23 mm  
288-Pin Flip-Chip Plastic BGA (GTS and ZTS)  
Process Technology  
µm  
0.13 µm  
Product Preview (PP), Advance Information (AI),  
or Production Data (PD)  
Product Status  
PD  
On this C64xdevice, the rated EMIF speed affects only the SDRAM interface on the EMIF. For more detailed information, see the EMIF device  
speed portion of this data sheet.  
PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard  
warranty. Production processing does not necessarily include testing of all parameters.  
14  
SPRS247E  
April 2004 Revised May 2005  
 
 
Functional Block Diagram  
2.3.1  
Functional Block Diagram  
Figure 22 shows the functional block diagram of the C6413/C6410 device.  
32  
TMS320C6413/C6410  
SDRAM  
SBSRAM  
EMIF A  
L1P Cache  
Direct-Mapped  
16K Bytes Total  
ZBT SRAM  
FIFO  
Timer 2  
Timer 1  
Timer 0  
SRAM  
C64x DSP Core  
ROM/FLASH  
I/O Devices  
Instruction Fetch  
Control  
Registers  
Instruction Dispatch  
Advanced Instruction Packet  
Control  
Logic  
McBSP0  
McBSP1  
Instruction Decode  
Data Path A  
Data Path B  
Test  
A Register File  
A31A16  
B Register File  
B31B16  
Advanced  
In-Circuit  
Emulation  
A15A0  
B15B0  
McASP0  
.L1 .S1 .M1 .D1  
.D2 .M2 .S2 .L2  
Interrupt  
Control  
L2  
Cache  
Memory  
Enhanced  
DMA  
Controller  
(edma)  
McASP1  
§
256KBytes  
L1D Cache 2-Way Set-Associative  
16K Bytes Total  
HPI16  
or  
HPI32  
Power-Down  
Logic  
OSCILLATOR  
and PLL  
(x1, x5 x12, x16,  
x18, x19 x22, x24)  
I2C0  
I2C1  
16  
Boot Configuration  
GP0
McBSPs: Framing Chips H.100, MVIP, SCSA, T1, E1; AC97 Devices; SPI Devices; Codecs  
GP0[15:8] pins are muxed with the HPI HD[15:8] pins and GP0[2:1] pins are muxed with CLKOUT6 and CLKOUT4,  
respectively.  
§
Note: the C6413 device has 256K-Bytes L2 Cache Memory; the C6410 device has only 128K-Bytes L2 Cache Memory.  
Figure 22. Functional Block Diagram  
15  
April 2004 Revised May 2005  
SPRS247E  
 
 
CPU (DSP Core) Description  
2.4  
CPU (DSP Core) Description  
The CPU fetches VelociTIadvanced very-long instruction words (VLIWs) (256 bits wide) to supply up to  
eight 32-bit instructions to the eight functional units during every clock cycle. The VelociTIVLIW architecture  
features controls by which all eight units do not have to be supplied with instructions if they are not ready to  
execute. The first bit of every 32-bit instruction determines if the next instruction belongs to the same execute  
packet as the previous instruction, or whether it should be executed in the following clock as a part of the next  
execute packet. Fetch packets are always 256 bits wide; however, the execute packets can vary in size. The  
variable-length execute packets are a key memory-saving feature, distinguishing the C64x CPUs from other  
VLIW architectures. The C64xVelociTI.2extensions add enhancements to the TMS320C62xDSP  
VelociTIarchitecture. These enhancements include:  
Register file enhancements  
Data path extensions  
Quad 8-bit and dual 16-bit extensions with data flow enhancements  
Additional functional unit hardware  
Increased orthogonality of the instruction set  
Additional instructions that reduce code size and increase register flexibility  
The CPU features two sets of functional units. Each set contains four units and a register file. One set contains  
functional units .L1, .S1, .M1, and .D1; the other set contains units .D2, .M2, .S2, and .L2. The two register  
files each contain 32 32-bit registers for a total of 64 general-purpose registers. In addition to supporting the  
packed 16-bit and 32-/40-bit fixed-point data types found in the C62xVelociTIVLIW architecture, the  
C64xregister files also support packed 8-bit data and 64-bit fixed-point data types. The two sets of functional  
units, along with two register files, compose sides A and B of the CPU [see the functional block and CPU (DSP  
core) diagram, and Figure 23]. The four functional units on each side of the CPU can freely share the 32  
registers belonging to that side. Additionally, each side features a “data cross path”—a single data bus  
connected to all the registers on the other side, by which the two sets of functional units can access data from  
the register files on the opposite side. The C64x CPU pipelines data-cross-path accesses over multiple clock  
cycles. This allows the same register to be used as a data-cross-path operand by multiple functional units in  
the same execute packet. All functional units in the C64x CPU can access operands via the data cross path.  
Register access by functional units on the same side of the CPU as the register file can service all the units  
in a single clock cycle. On the C64x CPU, a delay clock is introduced whenever an instruction attempts to read  
a register via a data cross path if that register was updated in the previous clock cycle.  
In addition to the C62xDSP fixed-point instructions, the C64xDSP includes a comprehensive collection  
of quad 8-bit and dual 16-bit instruction set extensions. These VelociTI.2extensions allow the C64x CPU  
to operate directly on packed data to streamline data flow and increase instruction set efficiency.  
Another key feature of the C64x CPU is the load/store architecture, where all instructions operate on registers  
(as opposed to data in memory). Two sets of data-addressing units (.D1 and .D2) are responsible for all data  
transfers between the register files and the memory. The data address driven by the .D units allows data  
addresses generated from one register file to be used to load or store data to or from the other register file.  
The C64x .D units can load and store bytes (8 bits), half-words (16 bits), and words (32 bits) with a single  
instruction. And with the new data path extensions, the C64x .D unit can load and store doublewords (64 bits)  
with a single instruction. Furthermore, the non-aligned load and store instructions allow the .D units to access  
words and doublewords on any byte boundary. The C64x CPU supports a variety of indirect addressing modes  
using either linear- or circular-addressing with 5- or 15-bit offsets. All instructions are conditional, and most  
can access any one of the 64 registers. Some registers, however, are singled out to support specific  
addressing modes or to hold the condition for conditional instructions (if the condition is not automatically  
“true”).  
TMS320C62x and C62x are trademarks of Texas Instruments.  
16  
SPRS247E  
April 2004 Revised May 2005  
 
CPU (DSP Core) Description  
The two .M functional units perform all multiplication operations. Each of the C64x .M units can perform two  
16 × 16-bit multiplies or four 8 ×8-bit multiplies per clock cycle. The .M unit can also perform 16 ×32-bit multiply  
operations, dual 16 × 16-bit multiplies with add/subtract operations, and quad 8 × 8-bit multiplies with add  
operations. In addition to standard multiplies, the C64x .M units include bit-count, rotate, Galois field multiplies,  
and bidirectional variable shift hardware.  
The two .S and .L functional units perform a general set of arithmetic, logical, and branch functions with results  
available every clock cycle. The arithmetic and logical functions on the C64x CPU include single 32-bit, dual  
16-bit, and quad 8-bit operations.  
The processing flow begins when a 256-bit-wide instruction fetch packet is fetched from a program memory.  
The 32-bit instructions destined for the individual functional units are “linked” together by “1” bits in the least  
significant bit (LSB) position of the instructions. The instructions that are “chained” together for simultaneous  
execution (up to eight in total) compose an execute packet. A “0” in the LSB of an instruction breaks the chain,  
effectively placing the instructions that follow it in the next execute packet. A C64xDSP device enhancement  
now allows execute packets to cross fetch-packet boundaries. In the TMS320C62x/TMS320C67xDSP  
devices, if an execute packet crosses the fetch-packet boundary (256 bits wide), the assembler places it in  
the next fetch packet, while the remainder of the current fetch packet is padded with NOP instructions. In the  
C64xDSP device, the execute boundary restrictions have been removed, thereby, eliminating all of the  
NOPs added to pad the fetch packet, and thus, decreasing the overall code size. The number of execute  
packets within a fetch packet can vary from one to eight. Execute packets are dispatched to their respective  
functional units at the rate of one per clock cycle and the next 256-bit fetch packet is not fetched until all the  
execute packets from the current fetch packet have been dispatched. After decoding, the instructions  
simultaneously drive all active functional units for a maximum execution rate of eight instructions every clock  
cycle. While most results are stored in 32-bit registers, they can be subsequently moved to memory as bytes,  
half-words, or doublewords. All load and store instructions are byte-, half-word-, word-, or  
doubleword-addressable.  
For more details on the C64x CPU functional units enhancements, see the following documents:  
TMS320C6000 CPU and Instruction Set Reference Guide (literature number SPRU189)  
TMS320C64x Technical Overview (literature number SPRU395)  
TMS320C67x is a trademark of Texas Instruments.  
17  
April 2004 Revised May 2005  
SPRS247E  
CPU (DSP Core) Description  
src1  
.L1  
src2  
dst  
8
long dst  
long src  
8
32 MSBs  
32 LSBs  
ST1b (Store Data)  
ST1a (Store Data)  
8
long src  
long dst  
dst  
8
Register  
File A  
(A0A31)  
src1  
.S1  
Data Path A  
src2  
See Note A  
long dst  
dst  
See Note A  
src1  
.M1  
src2  
32 MSBs  
32 LSBs  
LD1b (Load Data)  
LD1a (Load Data)  
dst  
DA1 (Address)  
src1  
.D1  
.D2  
src2  
2X  
1X  
src2  
src1  
dst  
DA2 (Address)  
32 LSBs  
32 MSBs  
LD2a (Load Data)  
LD2b (Load Data)  
src2  
src1  
dst  
.M2  
See Note A  
See Note A  
long dst  
Register  
src2  
File B  
Data Path B  
.S2  
(B0B31)  
src1  
dst  
long dst  
long src  
8
8
32 MSBs  
32 LSBs  
ST2a (Store Data)  
ST2b (Store Data)  
8
long src  
long dst  
dst  
8
src2  
.L2  
src1  
Control Register  
File  
NOTE A: For the .M functional units, the long dst is 32 MSBs and the dst is 32 LSBs.  
Figure 23. TMS320C64xCPU (DSP Core) Data Paths  
18  
SPRS247E  
April 2004 Revised May 2005  
 
Memory Map Summary  
2.5  
Memory Map Summary  
Table 22 shows the memory map address ranges of the C6413 and C6410 devices. Internal memory is  
always located at address 0 and can be used as both program and data memory. The external memory  
address ranges in the C6413/C6410 device begin at the hex address location 0x8000 0000 for EMIFA.  
Table 22. TMS320C6413/C6410 Memory Map Summary  
BLOCK SIZE  
MEMORY BLOCK DESCRIPTION  
Internal RAM (L2) [C6413]  
HEX ADDRESS RANGE  
(BYTES)  
256K  
0000 0000 – 0003 FFFF  
0004 0000 – 000F FFFF  
0000 0000 – 0001 FFFF  
0002 0000 – 000F FFFF  
0010 0000 – 00FF FFFF  
0100 0000 – 017F FFFF  
0180 0000 – 0183 FFFF  
0184 0000 – 0187 FFFF  
0188 0000 – 018B FFFF  
018C 0000 – 018F FFFF  
0190 0000 – 0193 FFFF  
0194 0000 – 0197 FFFF  
0198 0000 – 019B FFFF  
019C 0000 – 019F FFFF  
01A0 0000 – 01A3 FFFF  
01A4 0000 – 01AB FFFF  
01AC 0000 – 01AF FFFF  
01B0 0000 – 01B3 EFFF  
01B3 F000 – 01B3 FFFF  
01B4 0000 – 01B4 3FFF  
01B4 4000 – 01B4 7FFF  
01B4 8000 – 01B4 BFFF  
01B4 C000 – 01B4 FFFF  
01B5 0000 – 01B5 3FFF  
01B5 4000 – 01B7 FFFF  
01B8 0000 – 01B9 FFFF  
01BA 0000 – 01BB FFFF  
01BC 0000 – 01BF FFFF  
01C0 0000 – 01C8 3FFF  
01C8 4000 – 01FF FFFF  
0200 0000 – 0200 0033  
0200 0034 – 2FFF FFFF  
3000 0000 – 33FF FFFF  
3400 0000 – 37FF FFFF  
3800 0000 – 3BFF FFFF  
3C00 0000 – 3C0F FFFF  
Reserved [C6413]  
Internal RAM (L2) [C6410]  
Reserved [C6410]  
Reserved  
1024K minus 256K  
128K  
1024K minus 128K  
15M  
Reserved  
8M  
External Memory Interface A (EMIFA) Registers  
L2 Registers  
256K  
256K  
HPI Registers  
256K  
McBSP 0 Registers  
McBSP 1 Registers  
Timer 0 Registers  
Timer 1 Registers  
Interrupt Selector Registers  
EDMA RAM and EDMA Registers  
Reserved  
256K  
256K  
256K  
256K  
256K  
256K  
512K  
Timer 2 Registers  
GP0 Registers  
256K  
256K minus 4K  
4K  
Device Configuration Registers  
I2C0 Data and Control Registers  
I2C1 Data and Control Registers  
Reserved  
16K  
16K  
16K  
McASP0 Control Registers  
McASP1 Control Registers  
Reserved  
16K  
16K  
176K  
Reserved  
128K  
Reserved  
128K  
Emulation  
256K  
Reserved  
528K  
Reserved  
3.5M  
QDMA Registers  
Reserved  
52  
928M minus 52  
64M  
McBSP 0 Data  
McBSP 1 Data  
64M  
Reserved  
64M  
McASP0 Data  
1M  
19  
April 2004 Revised May 2005  
SPRS247E  
 
 
Memory Map Summary  
Table 22. TMS320C6413/C6410 Memory Map Summary (Continued)  
BLOCK SIZE  
(BYTES)  
MEMORY BLOCK DESCRIPTION  
HEX ADDRESS RANGE  
McASP1 Data  
Reserved  
1M  
3C10 0000 – 3C1F FFFF  
3C20 0000 – 3FFF FFFF  
4000 0000 – 7FFF FFFF  
8000 0000 – 8FFF FFFF  
9000 0000 – 9FFF FFFF  
A000 0000 – AFFF FFFF  
B000 0000 – BFFF FFFF  
C000 0000 – FFFF FFFF  
62M  
Reserved  
1G  
EMIFA CE0  
EMIFA CE1  
EMIFA CE2  
EMIFA CE3  
Reserved  
256M  
256M  
256M  
256M  
1G  
20  
SPRS247E  
April 2004 Revised May 2005  
Memory Map Summary  
2.5.1  
L2 Architecture Expanded  
Figure 24 and Figure 25 show the detail of the L2 architecture on the TMS320C6413 and TMS320C6410  
devices, respectively . For more information on the L2MODE bits, see the cache configuration (CCFG) register  
bit field descriptions in the TMS320C64x Two-Level Internal Memory Reference Guide (literature number  
SPRU610).  
L2MODE  
010  
L2 Memory  
Block Base Address  
000  
001  
011  
111  
0x0000 0000  
128K-Byte SRAM  
0x0002 0000  
64K-Byte RAM  
0x0003 0000  
0x0003 8000  
32K-Byte RAM  
32K-Byte RAM  
0x0003 FFFF  
0x0004 0000  
Figure 24. TMS320C6413 L2 Architecture Memory Configuration  
21  
April 2004 Revised May 2005  
SPRS247E  
 
 
Memory Map Summary  
L2MODE  
L2 Memory  
Block Base Address  
0x0000 0000  
000  
001 010  
011  
64K-Byte RAM  
0x0001 0000  
0x0001 8000  
32K-Byte RAM  
32K-Byte RAM  
0x0001 FFFF  
0x0002 0000  
The L2MODE = 111b is not supported on the C6410 device.  
Figure 25. TMS320C6410 L2 Architecture Memory Configuration  
22  
SPRS247E  
April 2004 Revised May 2005  
 
Peripheral Register Descriptions  
2.6  
Peripheral Register Descriptions  
Table 23 through Table 220 identify the peripheral registers for the C6413/C6410 device by their register  
names, acronyms, and hex address or hex address range. For more detailed information on the register  
contents, bit names and their descriptions, see the specific peripheral reference guide listed in the  
TMS320C6000 DSP Peripherals Overview Reference Guide (literature number SPRU190).  
Table 23. EMIFA Registers  
HEX ADDRESS RANGE  
ACRONYM  
GBLCTL  
CECTL1  
CECTL0  
REGISTER NAME  
EMIFA global control  
COMMENTS  
0180 0000  
0180 0004  
EMIFA CE1 space control  
EMIFA CE0 space control  
Reserved  
0180 0008  
0180 000C  
0180 0010  
CECTL2  
CECTL3  
SDCTL  
SDTIM  
SDEXT  
EMIFA CE2 space control  
EMIFA CE3 space control  
EMIFA SDRAM control  
0180 0014  
0180 0018  
0180 001C  
EMIFA SDRAM refresh control  
EMIFA SDRAM extension  
Reserved  
0180 0020  
0180 0024 0180 003C  
0180 0040  
PDTCTL  
CESEC1  
CESEC0  
Peripheral device transfer (PDT) control  
EMIFA CE1 space secondary control  
EMIFA CE0 space secondary control  
Reserved  
0180 0044  
0180 0048  
0180 004C  
0180 0050  
CESEC2  
CESEC3  
EMIFA CE2 space secondary control  
EMIFA CE3 space secondary control  
Reserved  
0180 0054  
0180 0058 0183 FFFF  
Table 24. L2 Cache Registers (C64x)  
HEX ADDRESS RANGE  
0184 0000  
ACRONYM  
REGISTER NAME  
Cache configuration register  
Reserved  
COMMENTS  
CCFG  
0184 0004 0184 0FFC  
0184 1000  
EDMAWEIGHT L2 EDMA access control register  
0184 1004 0184 1FFC  
0184 2000  
Reserved  
L2ALLOC0  
L2ALLOC1  
L2ALLOC2  
L2ALLOC3  
L2 allocation register 0  
0184 2004  
L2 allocation register 1  
0184 2008  
L2 allocation register 2  
0184 200C  
L2 allocation register 3  
0184 2010 0184 3FFC  
0184 4000  
Reserved  
L2WBAR  
L2WWC  
L2WIBAR  
L2WIWC  
L2IBAR  
L2 writeback base address register  
L2 writeback word count register  
L2 writeback invalidate base address register  
L2 writeback invalidate word count register  
L2 invalidate base address register  
L2 invalidate word count register  
L1P invalidate base address register  
L1P invalidate word count register  
L1D writeback invalidate base address register  
0184 4004  
0184 4010  
0184 4014  
0184 4018  
0184 401C  
L2IWC  
0184 4020  
L1PIBAR  
L1PIWC  
L1DWIBAR  
0184 4024  
0184 4030  
23  
April 2004 Revised May 2005  
SPRS247E  
 
 
Peripheral Register Descriptions  
Table 24. L2 Cache Registers (C64x) (Continued)  
HEX ADDRESS RANGE  
0184 4034  
ACRONYM  
REGISTER NAME  
COMMENTS  
L1DWIWC  
L1D writeback invalidate word count register  
Reserved  
0184 4038 0184 4044  
0184 4048  
L1DIBAR  
L1DIWC  
L1D invalidate base address register  
L1D invalidate word count register  
Reserved  
0184 404C  
0184 4050 0184 4FFC  
0184 5000  
L2WB  
L2WBINV  
L2 writeback all register  
L2 writeback invalidate all register  
Reserved  
0184 5004  
0184 5008 0184 7FFC  
MAR0 to  
MAR127  
0184 8000 0184 81FC  
Reserved  
0184 8200  
0184 8204  
0184 8208  
0184 820C  
0184 8210  
0184 8214  
0184 8218  
0184 821C  
0184 8220  
0184 8224  
0184 8228  
0184 822C  
0184 8230  
0184 8234  
0184 8238  
0184 823C  
0184 8240  
0184 8244  
0184 8248  
0184 824C  
0184 8250  
0184 8254  
0184 8258  
0184 825C  
0184 8260  
0184 8264  
0184 8268  
0184 826C  
0184 8270  
0184 8274  
0184 8278  
0184 827C  
0184 8280  
MAR128  
MAR129  
MAR130  
MAR131  
MAR132  
MAR133  
MAR134  
MAR135  
MAR136  
MAR137  
MAR138  
MAR139  
MAR140  
MAR141  
MAR142  
MAR143  
MAR144  
MAR145  
MAR146  
MAR147  
MAR148  
MAR149  
MAR150  
MAR151  
MAR152  
MAR153  
MAR154  
MAR155  
MAR156  
MAR157  
MAR158  
MAR159  
MAR160  
Controls EMIFA CE0 range 8000 0000 80FF FFFF  
Controls EMIFA CE0 range 8100 0000 81FF FFFF  
Controls EMIFA CE0 range 8200 0000 82FF FFFF  
Controls EMIFA CE0 range 8300 0000 83FF FFFF  
Controls EMIFA CE0 range 8400 0000 84FF FFFF  
Controls EMIFA CE0 range 8500 0000 85FF FFFF  
Controls EMIFA CE0 range 8600 0000 86FF FFFF  
Controls EMIFA CE0 range 8700 0000 87FF FFFF  
Controls EMIFA CE0 range 8800 0000 88FF FFFF  
Controls EMIFA CE0 range 8900 0000 89FF FFFF  
Controls EMIFA CE0 range 8A00 0000 8AFF FFFF  
Controls EMIFA CE0 range 8B00 0000 8BFF FFFF  
Controls EMIFA CE0 range 8C00 0000 8CFF FFFF  
Controls EMIFA CE0 range 8D00 0000 8DFF FFFF  
Controls EMIFA CE0 range 8E00 0000 8EFF FFFF  
Controls EMIFA CE0 range 8F00 0000 8FFF FFFF  
Controls EMIFA CE1 range 9000 0000 90FF FFFF  
Controls EMIFA CE1 range 9100 0000 91FF FFFF  
Controls EMIFA CE1 range 9200 0000 92FF FFFF  
Controls EMIFA CE1 range 9300 0000 93FF FFFF  
Controls EMIFA CE1 range 9400 0000 94FF FFFF  
Controls EMIFA CE1 range 9500 0000 95FF FFFF  
Controls EMIFA CE1 range 9600 0000 96FF FFFF  
Controls EMIFA CE1 range 9700 0000 97FF FFFF  
Controls EMIFA CE1 range 9800 0000 98FF FFFF  
Controls EMIFA CE1 range 9900 0000 99FF FFFF  
Controls EMIFA CE1 range 9A00 0000 9AFF FFFF  
Controls EMIFA CE1 range 9B00 0000 9BFF FFFF  
Controls EMIFA CE1 range 9C00 0000 9CFF FFFF  
Controls EMIFA CE1 range 9D00 0000 9DFF FFFF  
Controls EMIFA CE1 range 9E00 0000 9EFF FFFF  
Controls EMIFA CE1 range 9F00 0000 9FFF FFFF  
Controls EMIFA CE2 range A000 0000 A0FF FFFF  
24  
SPRS247E  
April 2004 Revised May 2005  
Peripheral Register Descriptions  
Table 24. L2 Cache Registers (C64x) (Continued)  
HEX ADDRESS RANGE  
0184 8284  
0184 8288  
0184 828C  
0184 8290  
0184 8294  
0184 8298  
0184 829C  
0184 82A0  
0184 82A4  
0184 82A8  
0184 82AC  
0184 82B0  
0184 82B4  
0184 82B8  
0184 82BC  
0184 82C0  
0184 82C4  
0184 82C8  
0184 82CC  
0184 82D0  
0184 82D4  
0184 82D8  
0184 82DC  
0184 82E0  
0184 82E4  
0184 82E8  
0184 82EC  
0184 82F0  
0184 82F4  
0184 82F8  
0184 82FC  
ACRONYM  
REGISTER NAME  
COMMENTS  
MAR161  
MAR162  
MAR163  
MAR164  
MAR165  
MAR166  
MAR167  
MAR168  
MAR169  
MAR170  
MAR171  
MAR172  
MAR173  
MAR174  
MAR175  
MAR176  
MAR177  
MAR178  
MAR179  
MAR180  
MAR181  
MAR182  
MAR183  
MAR184  
MAR185  
MAR186  
MAR187  
MAR188  
MAR189  
MAR190  
MAR191  
Controls EMIFA CE2 range A100 0000 A1FF FFFF  
Controls EMIFA CE2 range A200 0000 A2FF FFFF  
Controls EMIFA CE2 range A300 0000 A3FF FFFF  
Controls EMIFA CE2 range A400 0000 A4FF FFFF  
Controls EMIFA CE2 range A500 0000 A5FF FFFF  
Controls EMIFA CE2 range A600 0000 A6FF FFFF  
Controls EMIFA CE2 range A700 0000 A7FF FFFF  
Controls EMIFA CE2 range A800 0000 A8FF FFFF  
Controls EMIFA CE2 range A900 0000 A9FF FFFF  
Controls EMIFA CE2 range AA00 0000 AAFF FFFF  
Controls EMIFA CE2 range AB00 0000 ABFF FFFF  
Controls EMIFA CE2 range AC00 0000 ACFF FFFF  
Controls EMIFA CE2 range AD00 0000 ADFF FFFF  
Controls EMIFA CE2 range AE00 0000 AEFF FFFF  
Controls EMIFA CE2 range AF00 0000 AFFF FFFF  
Controls EMIFA CE3 range B000 0000 B0FF FFFF  
Controls EMIFA CE3 range B100 0000 B1FF FFFF  
Controls EMIFA CE3 range B200 0000 B2FF FFFF  
Controls EMIFA CE3 range B300 0000 B3FF FFFF  
Controls EMIFA CE3 range B400 0000 B4FF FFFF  
Controls EMIFA CE3 range B500 0000 B5FF FFFF  
Controls EMIFA CE3 range B600 0000 B6FF FFFF  
Controls EMIFA CE3 range B700 0000 B7FF FFFF  
Controls EMIFA CE3 range B800 0000 B8FF FFFF  
Controls EMIFA CE3 range B900 0000 B9FF FFFF  
Controls EMIFA CE3 range BA00 0000 BAFF FFFF  
Controls EMIFA CE3 range BB00 0000 BBFF FFFF  
Controls EMIFA CE3 range BC00 0000 BCFF FFFF  
Controls EMIFA CE3 range BD00 0000 BDFF FFFF  
Controls EMIFA CE3 range BE00 0000 BEFF FFFF  
Controls EMIFA CE3 range BF00 0000 BFFF FFFF  
MAR192 to  
MAR255  
0184 8300 0184 83FC  
0184 8400 0187 FFFF  
Reserved  
Reserved  
25  
April 2004 Revised May 2005  
SPRS247E  
Peripheral Register Descriptions  
Table 25. Quick DMA (QDMA) and Pseudo Registers  
HEX ADDRESS RANGE  
0200 0000  
ACRONYM  
REGISTER NAME  
QDMA options parameter register  
QOPT  
QSRC  
QCNT  
QDST  
QIDX  
0200 0004  
QDMA source address register  
QDMA frame count register  
QDMA destination address register  
QDMA index register  
0200 0008  
0200 000C  
0200 0010  
0200 0014 0200 001C  
0200 0020  
Reserved  
QSOPT  
QSSRC  
QSCNT  
QSDST  
QSIDX  
QDMA pseudo options register  
QDMA psuedo source address register  
QDMA psuedo frame count register  
QDMA destination address register  
QDMA psuedo index register  
0200 0024  
0200 0028  
0200 002C  
0200 0030  
Table 26. EDMA Registers (C64x)  
HEX ADDRESS RANGE  
01A0 0800 01A0 FF98  
01A0 FF9C  
ACRONYM  
REGISTER NAME  
Reserved  
EPRH  
CIPRH  
CIERH  
CCERH  
ERH  
Event polarity high register  
Channel interrupt pending high register  
Channel interrupt enable high register  
Channel chain enable high register  
Event high register  
01A0 FFA4  
01A0 FFA8  
01A0 FFAC  
01A0 FFB0  
01A0 FFB4  
EERH  
ECRH  
ESRH  
PQAR0  
PQAR1  
PQAR2  
PQAR3  
EPRL  
PQSR  
CIPRL  
CIERL  
CCERL  
ERL  
Event enable high register  
Event clear high register  
01A0 FFB8  
01A0 FFBC  
Event set high register  
01A0 FFC0  
Priority queue allocation register 0  
Priority queue allocation register 1  
Priority queue allocation register 2  
Priority queue allocation register 3  
Event polarity low register  
Priority queue status register  
Channel interrupt pending low register  
Channel interrupt enable low register  
Channel chain enable low register  
Event low register  
01A0 FFC4  
01A0 FFC8  
01A0 FFCC  
01A0 FFDC  
01A0 FFE0  
01A0 FFE4  
01A0 FFE8  
01A0 FFEC  
01A0 FFF0  
01A0 FFF4  
EERL  
ECRL  
ESRL  
Event enable low register  
01A0 FFF8  
Event clear low register  
01A0 FFFC  
Event set low register  
01A1 0000 01A3 FFFF  
Reserved  
26  
SPRS247E  
April 2004 Revised May 2005  
 
Peripheral Register Descriptions  
Table 27. EDMA Parameter RAM (C64x)  
HEX ADDRESS RANGE  
ACRONYM  
REGISTER NAME  
Parameters for Event 0 (6 words)  
COMMENTS  
Parameters for Event 0  
(6 words) or Reload/Link  
Parameters for other Event  
01A0 0000 01A0 0017  
01A0 0018 01A0 002F  
01A0 0030 01A0 0047  
01A0 0048 01A0 005F  
01A0 0060 01A0 0077  
01A0 0078 01A0 008F  
01A0 0090 01A0 00A7  
01A0 00A8 01A0 00BF  
01A0 00C0 01A0 00D7  
01A0 00D8 01A0 00EF  
01A0 00F0 01A0 00107  
01A0 0108 01A0 011F  
01A0 0120 01A0 0137  
01A0 0138 01A0 014F  
01A0 0150 01A0 0167  
01A0 0168 01A0 017F  
01A0 0150 01A0 0197  
01A0 0168 01A0 01AF  
...  
Parameters for Event 1 (6 words)  
Parameters for Event 2 (6 words)  
Parameters for Event 3 (6 words)  
Parameters for Event 4 (6 words)  
Parameters for Event 5 (6 words)  
Parameters for Event 6 (6 words)  
Parameters for Event 7 (6 words)  
Parameters for Event 8 (6 words)  
Parameters for Event 9 (6 words)  
Parameters for Event 10 (6 words)  
Parameters for Event 11 (6 words)  
Parameters for Event 12 (6 words)  
Parameters for Event 13 (6 words)  
Parameters for Event 14 (6 words)  
Parameters for Event 15 (6 words)  
Parameters for Event 16 (6 words)  
Parameters for Event 17 (6 words)  
...  
01A0 05D0 01A0 05E7  
01A0 05E8 01A0 05FF  
Parameters for Event 62 (6 words)  
Parameters for Event 63 (6 words)  
Reload/Link Parameters for  
other Event 015  
01A0 0600 01A0 0617  
Reload/link parameters for Event 0 (6 words)  
01A0 0618 01A0 062F  
...  
Reload/link parameters for Event 1 (6 words)  
...  
01A0 07E0 01A0 07F7  
01A0 07F8 01A0 080F  
01A0 0810 01A0 0827  
...  
Reload/link parameters for Event 20 (6 words)  
Reload/link parameters for Event 21 (6 words)  
Reload/link parameters for Event 22 (6 words)  
...  
01A0 13C8 01A0 13DF  
01A0 13E0 01A0 13F7  
01A0 13F8 01A0 13FF  
01A0 1400 01A3 FFFF  
Reload/link parameters for Event 147 (6 words)  
Reload/link parameters for Event 148 (6 words)  
Scratch pad area (2 words)  
Reserved  
The C6413/C6410 device has 213 EDMA parameters total: 64-Event/Reload channels and 149-Reload only parameter sets [six (6) words each]  
that can be used to reload/link EDMA transfers.  
27  
April 2004 Revised May 2005  
SPRS247E  
 
Peripheral Register Descriptions  
Table 28. Interrupt Selector Registers (C64x)  
HEX ADDRESS RANGE  
ACRONYM  
MUXH  
REGISTER NAME  
COMMENTS  
Selects which interrupts drive CPU  
interrupts 1015 (INT10INT15)  
019C 0000  
Interrupt multiplexer high  
Interrupt multiplexer low  
Selects which interrupts drive CPU  
interrupts 49 (INT04INT09)  
019C 0004  
MUXL  
Sets the polarity of the external  
interrupts (EXT_INT4EXT_INT7)  
019C 0008  
EXTPOL  
External interrupt polarity  
Reserved  
019C 000C 019F FFFF  
Table 29. Device Configuration Registers  
HEX ADDRESS RANGE  
ACRONYM  
REGISTER NAME  
COMMENTS  
Enables or disables specific  
peripherals. This register is also  
used for power-down of disabled  
peripherals.  
01B3 F000  
PERCFG  
DEVSTAT  
Peripheral Configuration Register  
Read-only. Provides status of  
the User’s device configuration  
on reset.  
01B3 F004  
01B3 F008  
Device Status Register  
Read-only. Provides 32-bit  
JTAG ID of the device.  
JTAGID  
JTAG Identification Register  
Reserved  
01B3 F00C 01B3 F014  
01B3 F018  
PCFGLOCK Peripheral Configuration Lock Register  
Reserved  
01B3 F01C 01B3 FFFF  
28  
SPRS247E  
April 2004 Revised May 2005  
 
Peripheral Register Descriptions  
Table 210. McBSP 0 Registers  
HEX ADDRESS RANGE  
ACRONYM  
REGISTER NAME  
COMMENTS  
The CPU and EDMA controller  
can only read this register; they  
cannot write to it.  
018C 0000  
DRR0  
McBSP0 data receive register via Configuration Bus  
0x3000 0000 0x33FF FFFF  
018C 0004  
DRR0  
DXR0  
McBSP0 data receive register via Peripheral Bus  
McBSP0 data transmit register via Configuration Bus  
McBSP0 data transmit register via Peripheral Bus  
McBSP0 serial port control register  
0x3000 0000 0x33FF FFFF  
018C 0008  
DXR0  
SPCR0  
RCR0  
018C 000C  
McBSP0 receive control register  
018C 0010  
XCR0  
McBSP0 transmit control register  
018C 0014  
SRGR0  
MCR0  
McBSP0 sample rate generator register  
018C 0018  
McBSP0 multichannel control register  
018C 001C  
RCERE00  
XCERE00  
PCR0  
McBSP0 enhanced receive channel enable register 0  
McBSP0 enhanced transmit channel enable register 0  
McBSP0 pin control register  
018C 0020  
018C 0024  
018C 0028  
RCERE10  
XCERE10  
RCERE20  
XCERE20  
RCERE30  
XCERE30  
McBSP0 enhanced receive channel enable register 1  
McBSP0 enhanced transmit channel enable register 1  
McBSP0 enhanced receive channel enable register 2  
McBSP0 enhanced transmit channel enable register 2  
McBSP0 enhanced receive channel enable register 3  
McBSP0 enhanced transmit channel enable register 3  
Reserved  
018C 002C  
018C 0030  
018C 0034  
018C 0038  
018C 003C  
018C 0040 018F FFFF  
Table 211. McBSP 1 Registers  
HEX ADDRESS RANGE  
ACRONYM  
REGISTER NAME  
COMMENTS  
The CPU and EDMA controller  
can only read this register; they  
cannot write to it.  
0190 0000  
DRR1  
McBSP1 data receive register via Configuration Bus  
0x3400 0000 0x37FF FFFF  
0190 0004  
DRR1  
DXR1  
McBSP1 data receive register via peripheral bus  
McBSP1 data transmit register via configuration bus  
McBSP1 data transmit register via peripheral bus  
McBSP1 serial port control register  
0x3400 0000 0x37FF FFFF  
0190 0008  
DXR1  
SPCR1  
RCR1  
0190 000C  
McBSP1 receive control register  
0190 0010  
XCR1  
McBSP1 transmit control register  
0190 0014  
SRGR1  
MCR1  
McBSP1 sample rate generator register  
0190 0018  
McBSP1 multichannel control register  
0190 001C  
RCERE01  
XCERE01  
PCR1  
McBSP1 enhanced receive channel enable register 0  
McBSP1 enhanced transmit channel enable register 0  
McBSP1 pin control register  
0190 0020  
0190 0024  
0190 0028  
RCERE11  
XCERE11  
RCERE21  
XCERE21  
RCERE31  
XCERE31  
McBSP1 enhanced receive channel enable register 1  
McBSP1 enhanced transmit channel enable register 1  
McBSP1 enhanced receive channel enable register 2  
McBSP1 enhanced transmit channel enable register 2  
McBSP1 enhanced receive channel enable register 3  
McBSP1 enhanced transmit channel enable register 3  
Reserved  
0190 002C  
0190 0030  
0190 0034  
0190 0038  
0190 003C  
0190 0040 0193 FFFF  
29  
April 2004 Revised May 2005  
SPRS247E  
 
Peripheral Register Descriptions  
Table 212. Timer 0 Registers  
HEX ADDRESS RANGE  
ACRONYM  
REGISTER NAME  
COMMENTS  
Determines the operating mode of the timer, monitors the  
timer status, and controls the function of the TOUT pin.  
0194 0000  
CTL0  
PRD0  
Timer 0 control register  
Timer 0 period register  
Contains the number of timer input clock cycles to count.  
This number controls the TSTAT signal frequency.  
0194 0004  
0194 0008  
CNT0  
Timer 0 counter register  
Reserved  
Contains the current value of the incrementing counter.  
0194 000C 0197 FFFF  
Table 213. Timer 1 Registers  
HEX ADDRESS RANGE  
ACRONYM  
REGISTER NAME  
COMMENTS  
Determines the operating mode of the timer, monitors the  
timer status, and controls the function of the TOUT pin.  
0198 0000  
CTL1  
Timer 1 control register  
Timer 1 period register  
Contains the number of timer input clock cycles to count.  
This number controls the TSTAT signal frequency.  
0198 0004  
PRD1  
0198 0008  
CNT1  
Timer 1 counter register  
Reserved  
Contains the current value of the incrementing counter.  
0198 000C 019B FFFF  
Table 214. Timer 2 Registers  
HEX ADDRESS RANGE  
ACRONYM  
REGISTER NAME  
COMMENTS  
Determines the operating mode of the timer, monitors the  
timer status.  
01AC 0000  
CTL2  
Timer 2 control register  
Timer 2 period register  
Contains the number of timer input clock cycles to count.  
This number controls the TSTAT signal frequency.  
01AC 0004  
PRD2  
01AC 0008  
CNT2  
Timer 2 counter register  
Reserved  
Contains the current value of the incrementing counter.  
01AC 000C 01AF FFFF  
30  
SPRS247E  
April 2004 Revised May 2005  
 
Peripheral Register Descriptions  
Table 215. HPI Registers  
HEX ADDRESS RANGE  
ACRONYM  
HPID  
REGISTER NAME  
COMMENTS  
HPI data register  
Host read/write access only  
0188 0000  
HPIC  
HPI control register  
HPIC has both Host/CPU read/write access  
HPIA has both Host/CPU read/write access  
HPIA  
(HPIAW)  
HPI address register  
(Write)  
0188 0004  
HPIA  
(HPIAR)  
HPI address register  
(Read)  
0188 0008  
0188 000C 0189 FFFF  
018A 0000  
Reserved  
HPI transfer request control  
register  
HPI_TRCTL  
018A 0004 018B FFFF  
Reserved  
Host access to the HPIA register updates both the HPIAW and HPIAR registers. The CPU can access HPIAW and HPIAR independently.  
Table 216. GP0 Registers  
HEX ADDRESS RANGE  
01B0 0000  
ACRONYM  
GPEN  
GPDIR  
GPVAL  
REGISTER NAME  
GP0 enable register  
01B0 0004  
GP0 direction register  
GP0 value register  
01B0 0008  
01B0 000C  
Reserved  
01B0 0010  
GPDH  
GPHM  
GPDL  
GPLM  
GPGC  
GPPOL  
GP0 delta high register  
GP0 high mask register  
GP0 delta low register  
GP0 low mask register  
GP0 global control register  
GP0 interrupt polarity register  
Reserved  
01B0 0014  
01B0 0018  
01B0 001C  
01B0 0020  
01B0 0024  
01B0 0028 01B3 EFFF  
31  
April 2004 Revised May 2005  
SPRS247E  
 
Peripheral Register Descriptions  
Table 217. McASP0 and McASP1 Control Registers  
HEX ADDRESS RANGE  
ACRONYM  
REGISTER NAME  
Peripheral Identification register  
[Register value: 0x0010 0101]  
Power down and emulation management register  
Reserved  
McASP0  
McASP1  
01B4 C000  
01B5 0000  
PID  
01B4 C004  
01B4 C008  
01B4 C00C  
01B4 C010  
01B4 C014  
01B4 C018  
01B5 0004  
01B5 0008  
01B5 000C  
01B5 0010  
01B5 0014  
01B5 0018  
PWRDEMU  
Reserved  
PFUNC  
PDIR  
Pin function register  
Pin direction register  
PDOUT  
Pin data out register  
Pin data in / data set register  
Read returns: PDIN  
Writes affect: PDSET  
01B4 C01C  
01B5 001C  
PDIN/PDSET  
01B4 C020  
01B5 0020  
PDCLR  
Pin data clear register  
Reserved  
01B4 C024 01B4 C040  
01B4 C044  
01B5 0024 01B5 0040  
01B5 0044  
GBLCTL  
AMUTE  
DLBCTL  
DITCTL  
Global control register  
Mute control register  
Digital Loop-back control register  
DIT mode control register  
Reserved  
01B4 C048  
01B5 0048  
01B4 C04C  
01B5 004C  
01B4 C050  
01B5 0050  
01B4 C054 01B4 C05C  
01B5 0054 01B5 005C  
Alias of GBLCTL containing only Receiver Reset bits,  
allows transmit to be reset independently from receive.  
01B4 C060  
01B5 0060  
RGBLCTL  
01B4 C064  
01B4 C068  
01B5 0064  
01B5 0068  
RMASK  
RFMT  
Receiver format unit bit mask register  
Receive bit stream format register  
Receive frame sync control register  
Receive clock control register  
High-frequency receive clock control register  
Receive TDM slot 031 register  
Receiver interrupt control register  
Status register Receiver  
01B4 C06C  
01B5 006C  
AFSRCTL  
ACLKRCTL  
AHCLKRCTL  
RTDM  
01B4 C070  
01B5 0070  
01B4 C074  
01B5 0074  
01B4 C078  
01B5 0078  
01B4 C07C  
01B5 007C  
RINTCTL  
RSTAT  
01B4 C080  
01B5 0080  
01B4 C084  
01B5 0084  
RSLOT  
Current receive TDM slot register  
Receiver clock check control register  
Reserved  
01B4 C088  
01B5 0088  
RCLKCHK  
01B4 C08C 01B4 C09C  
01B5 008C 01B5 009C  
Alias of GBLCTL containing only Transmitter Reset bits,  
allows transmit to be reset independently from receive.  
01B4 C0A0  
01B5 00A0  
XGBLCTL  
01B4 C0A4  
01B4 C0A8  
01B4 C0AC  
01B4 C0B0  
01B4 C0B4  
01B4 C0B8  
01B4 C0BC  
01B4 C0C0  
01B4 C0C4  
01B4 C0C8  
01B5 00A4  
01B5 00A8  
01B5 00AC  
01B5 00B0  
01B5 00B4  
01B5 00B8  
01B5 00BC  
01B5 00C0  
01B5 00C4  
01B5 00C8  
XMASK  
XFMT  
Transmit format unit bit mask register  
Transmit bit stream format register  
Transmit frame sync control register  
Transmit clock control register  
AFSXCTL  
ACLKXCTL  
AHCLKXCTL  
XTDM  
High-frequency Transmit clock control register  
Transmit TDM slot 031 register  
Transmit interrupt control register  
Status register Transmitter  
XINTCTL  
XSTAT  
XSLOT  
Current transmit TDM slot  
XCLKCHK  
Transmit clock check control register  
32  
SPRS247E  
April 2004 Revised May 2005  
 
 
Peripheral Register Descriptions  
Table 217. McASP0 and McASP1 Control Registers (Continued)  
HEX ADDRESS RANGE  
ACRONYM  
REGISTER NAME  
McASP0  
McASP1  
01B5 00CC 01B5 00FC  
01B5 0100  
01B4 C0CC 01B4 C0FC  
01B4 C100  
Reserved  
DITCSRA0  
DITCSRA1  
DITCSRA2  
DITCSRA3  
DITCSRA4  
DITCSRA5  
DITCSRB0  
DITCSRB1  
DITCSRB2  
DITCSRB3  
DITCSRB4  
DITCSRB5  
DITUDRA0  
DITUDRA1  
DITUDRA2  
DITUDRA3  
DITUDRA4  
DITUDRA5  
DITUDRB0  
DITUDRB1  
DITUDRB2  
DITUDRB3  
DITUDRB4  
DITUDRB5  
Left (even TDM slot) channel status register file  
Left (even TDM slot) channel status register file  
Left (even TDM slot) channel status register file  
Left (even TDM slot) channel status register file  
Left (even TDM slot) channel status register file  
Left (even TDM slot) channel status register file  
Right (odd TDM slot) channel status register file  
Right (odd TDM slot) channel status register file  
Right (odd TDM slot) channel status register file  
Right (odd TDM slot) channel status register file  
Right (odd TDM slot) channel status register file  
Right (odd TDM slot) channel status register file  
Left (even TDM slot) user data register file  
Left (even TDM slot) user data register file  
Left (even TDM slot) user data register file  
Left (even TDM slot) user data register file  
Left (even TDM slot) user data register file  
Left (even TDM slot) user data register file  
Right (odd TDM slot) user data register file  
Right (odd TDM slot) user data register file  
Right (odd TDM slot) user data register file  
Right (odd TDM slot) user data register file  
Right (odd TDM slot) user data register file  
Right (odd TDM slot) user data register file  
Reserved  
01B4 C104  
01B5 0104  
01B4 C108  
01B5 0108  
01B4 C10C  
01B4 C110  
01B5 010C  
01B5 0110  
01B4 C114  
01B5 0114  
01B4 C118  
01B5 0118  
01B4 C11C  
01B4 C120  
01B5 011C  
01B5 0120  
01B4 C124  
01B5 0124  
01B4 C128  
01B5 0128  
01B4 C12C  
01B4 C130  
01B5 012C  
01B5 0130  
01B4 C134  
01B5 0134  
01B4 C138  
01B5 0138  
01B4 C13C  
01B4 C140  
01B5 013C  
01B5 0140  
01B4 C144  
01B5 0144  
01B4 C148  
01B5 0148  
01B4 C14C  
01B4 C150  
01B5 014C  
01B5 0150  
01B4 C154  
01B5 0154  
01B4 C158  
01B5 0158  
01B4 C15C  
01B4 C160 01B4 C17C  
01B4 C180  
01B5 015C  
01B5 0160 01B5 017C  
01B5 0180  
SRCTL0  
SRCTL1  
SRCTL2  
SRCTL3  
SRCTL4  
SRCTL5  
Serializer 0 control register  
01B4 C184  
01B5 0184  
Serializer 1 control register  
01B4 C188  
01B5 0188  
Serializer 2 control register  
01B4 C18C  
01B4 C190  
01B5 018C  
01B5 0190  
Serializer 3 control register  
Serializer 4 control register  
01B4 C194  
01B5 0194  
Serializer 5 control register  
01B4 C198  
01B5 0198  
Reserved  
01B4 C19C  
01B4 C1A0 01B4 C1FC  
01B4 C200  
01B5 019C  
01B5 01A0 01B5 01FC  
01B5 0200  
Reserved  
Reserved  
XBUF0  
Transmit Buffer for Serializer 0  
01B4 C204  
01B5 0204  
XBUF1  
Transmit Buffer for Serializer 1  
01B4 C208  
01B5 0208  
XBUF2  
Transmit Buffer for Serializer 2  
01B4 C20C  
01B4 C210  
01B5 020C  
01B5 0210  
XBUF3  
Transmit Buffer for Serializer 3  
XBUF4  
Transmit Buffer for Serializer 4  
01B4 C214  
01B5 0214  
XBUF5  
Transmit Buffer for Serializer 5  
33  
April 2004 Revised May 2005  
SPRS247E  
Peripheral Register Descriptions  
Table 217. McASP0 and McASP1 Control Registers (Continued)  
HEX ADDRESS RANGE  
ACRONYM  
REGISTER NAME  
McASP0  
01B4 C218  
McASP1  
01B5 0218  
Reserved  
Reserved  
Reserved  
01B4 C21C  
01B5 021C  
01B4 C220 01B4 C27C  
01B4 C280  
01B5 0220 01B5 027C  
01B5 0280  
RBUF0  
RBUF1  
RBUF2  
RBUF3  
RBUF4  
RBUF5  
Receive Buffer for Serializer 0  
Receive Buffer for Serializer 1  
Receive Buffer for Serializer 2  
Receive Buffer for Serializer 3  
Receive Buffer for Serializer 4  
Receive Buffer for Serializer 5  
Reserved  
01B4 C284  
01B5 0284  
01B4 C288  
01B5 0288  
01B4 C28C  
01B5 028C  
01B4 C290  
01B5 0290  
01B4 C294  
01B5 0294  
01B4 C298  
01B5 0298  
01B4 C29C  
01B5 029C  
Reserved  
01B4 C2A0 01B4 FFFF  
01B5 02A0 01B5 3FFF  
Reserved  
Table 218. McASP0 Data Registers  
HEX ADDRESS RANGE  
ACRONYM  
REGISTER NAME  
COMMENTS  
(Used when RSEL or XSEL  
bits = 0 [these bits are located  
in the RFMT or XFMT  
McASPx receive buffers or McASPx transmit buffers via  
the Peripheral Data Bus.  
3C00 0000 3C0F FFFF  
RBUF/XBUFx  
registers, respectively].)  
Table 219. McASP1 Data Registers  
HEX ADDRESS RANGE  
ACRONYM  
REGISTER NAME  
COMMENTS  
(Used when RSEL or XSEL  
bits = 0 [these bits are located  
in the RFMT or XFMT  
McASPx receive buffers or McASPx transmit buffers via  
the Peripheral Data Bus.  
3C10 0000 3C1F FFFF  
RBUF/XBUFx  
registers, respectively].)  
34  
SPRS247E  
April 2004 Revised May 2005  
 
Peripheral Register Descriptions  
Table 220. I2C0 and I2C1 Registers  
HEX ADDRESS RANGE  
ACRONYM  
REGISTER NAME  
I2C0  
I2C1  
01B4 0000  
01B4 0004  
01B4 0008  
01B4 000C  
01B4 0010  
01B4 0014  
01B4 0018  
01B4 001C  
01B4 0020  
01B4 0024  
01B4 0028  
01B4 002C  
01B4 0030  
01B4 4000  
01B4 4004  
01B4 4008  
01B4 400C  
01B4 4010  
01B4 4014  
01B4 4018  
01B4 401C  
01B4 4020  
01B4 4024  
01B4 4028  
01B4 402C  
01B4 4030  
I2COARx  
I2CIMRx  
I2Cx own address register  
I2Cx interrupt mask/status register  
I2Cx interrupt status register  
I2Cx clock low-time divider register  
I2Cx clock high-time divider register  
I2Cx data count register  
I2CSTRx  
I2CCLKLx  
I2CCLKHx  
I2CCNTx  
I2CDRRx  
I2CSARx  
I2CDXRx  
I2CMDRx  
I2CIVRx  
I2Cx data receive register  
I2Cx slave address register  
I2Cx data transmit register  
I2Cx mode register  
I2Cx interrupt vector register  
I2Cx Extended mode register  
I2Cx prescaler register  
I2CEMDRx  
I2CPSCx  
I2Cx Peripheral Identification register 1  
[Value: 0x0000 0105]  
01B4 0034  
01B4 0038  
01B4 4034  
01B4 4038  
I2CPID1x  
I2CPID2x  
I2Cx Peripheral Identification register 2  
[Value: 0x0000 0005]  
01B4 003C 01B4 0044  
01B4 0048  
01B4 403C 01B4 4044  
01B4 4048  
Reserved  
I2CPFUNCx  
I2CPDIRx  
I2CPDINx  
I2CPDOUTx  
I2CPDSETx  
I2CPDCLRx  
I2Cx pin function register  
I2Cx pin direction register  
I2Cx pin data in register  
I2Cx pin data out register  
I2Cx pin data set register  
I2Cx pin data clear register  
Reserved  
01B4 004C  
01B4 404C  
01B4 0050  
01B4 4050  
01B4 0054  
01B4 4054  
01B4 0058  
01B4 4058  
01B4 005C  
01B4 405C  
01B4 0060 01B4 3FFF  
01B4 4060 01B4 7FFF  
35  
April 2004 Revised May 2005  
SPRS247E  
 
EDMA Channel Synchronization Events  
2.7  
EDMA Channel Synchronization Events  
The C64x EDMA supports up to 64 EDMA channels which service peripheral devices and external memory.  
Table 221 lists the source of C64x EDMA synchronization events associated with each of the programmable  
EDMA channels. For the C6413/C6410 device, the association of an event to a channel is fixed; each of the  
EDMA channels has one specific event associated with it. These specific events are captured in the EDMA  
event registers (ERL, ERH) even if the events are disabled by the EDMA event enable registers (EERL,  
EERH). The priority of each event can be specified independently in the transfer parameters stored in the  
EDMA parameter RAM. For more detailed information on the EDMA module and how EDMA events are  
enabled, captured, processed, linked, chained, and cleared, etc., see the TMS320C6000 DSP Enhanced  
Direct Memory Access (EDMA) Controller Reference Guide (literature number SPRU234).  
Table 221. TMS320C6413/C6410 EDMA Channel Synchronization Events  
EDMA  
CHANNEL  
EVENT NAME  
EVENT DESCRIPTION  
0
1
DSP_INT  
TINT0  
HPI-to-DSP interrupt  
Timer 0 interrupt  
2
TINT1  
Timer 1 interrupt  
3
SD_INTA  
GPINT4/EXT_INT4  
GPINT5/EXT_INT5  
GPINT6/EXT_INT6  
GPINT7/EXT_INT7  
GPINT0  
GPINT1  
GPINT2  
GPINT3  
XEVT0  
EMIFA SDRAM timer interrupt  
GP0 event 4/External interrupt pin 4  
GP0 event 5/External interrupt pin 5  
GP0 event 6/External interrupt pin 6  
GP0 event 7/External interrupt pin 7  
GP0 event 0  
4
5
6
7
8
9
GP0 event 1  
10  
11  
12  
13  
14  
15  
1618  
19  
2027  
28  
29  
3031  
32  
33  
34  
35  
36  
37  
38  
39  
40  
GP0 event 2  
GP0 event 3  
McBSP0 transmit event  
McBSP0 receive event  
McBSP1 transmit event  
McBSP1 receive event  
None  
REVT0  
XEVT1  
REVT1  
TINT2  
Timer 2 interrupt  
None  
None  
None  
None  
AXEVTE0  
AXEVTO0  
AXEVT0  
AREVTE0  
AREVTO0  
AREVT0  
AXEVTE1  
AXEVTO1  
AXEVT1  
McASP0 transmit even event  
McASP0 transmit odd event  
McASP0 transmit event  
McASP0 receive even event  
McASP0 receive odd event  
McASP0 receive event  
McASP1 transmit even event  
McASP1 transmit odd event  
McASP1 transmit event  
In addition to the events shown in this table, each of the 64 channels can also be synchronized with the transfer completion or alternate transfer  
completion events. For more detailed information on EDMA event-transfer chaining, see the TMS320C6000 DSP Enhanced Direct Memory  
Access (EDMA) Controller Reference Guide (literature number SPRU234).  
36  
SPRS247E  
April 2004 Revised May 2005  
 
 
Interrupt Sources and Interrupt Selector  
Table 221. TMS320C6413/C6410 EDMA Channel Synchronization Events (Continued)  
EDMA  
CHANNEL  
EVENT NAME  
EVENT DESCRIPTION  
41  
42  
AREVTE1  
AREVTO1  
AREVT1  
ICREVT0  
ICXEVT0  
ICREVT1  
ICXEVT1  
GPINT8  
GPINT9  
GPINT10  
GPINT11  
GPINT12  
GPINT13  
GPINT14  
GPINT15  
McASP1 receive even event  
McASP1 receive odd event  
McASP1 receive event  
I2C0 receive event  
I2C0 transmit event  
I2C1 receive event  
I2C1 transmit event  
GP0 event 8  
43  
44  
45  
46  
47  
48  
49  
GP0 event 9  
50  
GP0 event 10  
51  
GP0 event 11  
52  
GP0 event 12  
53  
GP0 event 13  
54  
GP0 event 14  
55  
GP0 event 15  
5663  
None  
In addition to the events shown in this table, each of the 64 channels can also be synchronized with the transfer completion or alternate transfer  
completion events. For more detailed information on EDMA event-transfer chaining, see the TMS320C6000 DSP Enhanced Direct Memory  
Access (EDMA) Controller Reference Guide (literature number SPRU234).  
2.8  
Interrupt Sources and Interrupt Selector  
The C64x DSP core supports 16 prioritized interrupts, which are listed in Table 222. The highest-priority  
interrupt is INT_00 (dedicated to RESET) while the lowest-priority interrupt is INT_15. The first four interrupts  
(INT_00INT_03) are non-maskable and fixed. The remaining interrupts (INT_04INT_15) are maskable and  
default to the interrupt source specified in Table 222. The interrupt source for interrupts 415 can be  
programmed by modifying the selector value (binary value) in the corresponding fields of the Interrupt Selector  
Control registers: MUXH (address 0x019C0000) and MUXL (address 0x019C0004).  
37  
April 2004 Revised May 2005  
SPRS247E  
 
Interrupt Sources and Interrupt Selector  
Table 222. C6413/C6410 DSP Interrupts  
INTERRUPT  
CPU  
SELECTOR  
INTERRUPT  
VALUE  
(BINARY)  
SELECTOR  
INTERRUPT  
NUMBER  
INTERRUPT SOURCE  
EVENT  
CONTROL  
REGISTER  
INT_00  
INT_01  
INT_02  
INT_03  
INT_04  
INT_05  
INT_06  
INT_07  
INT_08  
INT_09  
INT_10  
RESET  
NMI  
Reserved  
Reserved  
GPINT4/EXT_INT4  
GPINT5/EXT_INT5  
GPINT6/EXT_INT6  
GPINT7/EXT_INT7  
EDMA_INT  
EMU_DTDMA  
SD_INTA  
EMU_RTDXRX  
EMU_RTDXTX  
DSP_INT  
TINT0  
Reserved. Do not use.  
Reserved. Do not use.  
MUXL[4:0]  
00100  
00101  
00110  
00111  
01000  
01001  
00011  
01010  
01011  
00000  
00001  
00010  
01100  
01101  
01110  
01111  
10000  
10001  
10010  
10011  
10100  
10101  
10110  
10111  
11000  
11001  
11010  
11011  
11100  
11101  
11110  
11111  
GP0 interrupt 4/External interrupt pin 4  
GP0 interrupt 5/External interrupt pin 5  
GP0 interrupt 6/External interrupt pin 6  
GP0 interrupt 7/External interrupt pin 7  
EDMA channel (0 through 63) interrupt  
EMU DTDMA  
MUXL[9:5]  
MUXL[14:10]  
MUXL[20:16]  
MUXL[25:21]  
MUXL[30:26]  
MUXH[4:0]  
EMIFA SDRAM timer interrupt  
EMU real-time data exchange (RTDX) receive  
EMU RTDX transmit  
INT_11  
MUXH[9:5]  
INT_12  
MUXH[14:10]  
INT_13  
MUXH[20:16]  
HPI-to-DSP interrupt  
INT_14  
MUXH[25:21]  
Timer 0 interrupt  
INT_15  
MUXH[30:26]  
TINT1  
Timer 1 interrupt  
XINT0  
McBSP0 transmit interrupt  
McBSP0 receive interrupt  
McBSP1 transmit interrupt  
McBSP1 receive interrupt  
GP0 interrupt 0  
RINT0  
XINT1  
RINT1  
GPINT0  
Reserved  
Reserved  
TINT2  
Reserved. Do not use.  
Reserved. Do not use.  
Timer 2 interrupt  
Reserved  
Reserved  
ICINT0  
Reserved. Do not use.  
Reserved. Do not use.  
I2C0 interrupt  
ICINT1  
I2C1 interrupt  
AXINT1  
McASP1 transmit interrupt  
McASP1 receive interrupt  
Reserved. Do not use.  
ARINT1  
Reserved  
Reserved  
AXINT0  
Reserved. Do not use.  
McASP0 transmit interrupt  
McASP0 receive interrupt  
Reserved. Do not use.  
ARINT0  
Reserved  
Reserved  
Reserved. Do not use.  
Interrupts INT_00 through INT_03 are non-maskable and fixed.  
Interrupts INT_04 through INT_15 are programmable by modifying the binary selector values in the Interrupt Selector Control registers fields.  
Table 222 shows the default interrupt sources for Interrupts INT_04 through INT_15. For more detailed information on interrupt sources and  
selection, see the TMS320C6000 DSP Interrupt Selector Reference Guide (literature number SPRU646).  
38  
SPRS247E  
April 2004 Revised May 2005  
 
 
Signal Groups Description  
2.9  
Signal Groups Description  
CLKINSEL  
RESET  
NMI  
GP0[7]/EXT_INT7  
GP0[6]/EXT_INT6  
GP0[5]/EXT_INT5  
CLKIN  
CLKOUT4/GP0[1]  
Reset and  
Interrupts  
CLKOUT6/GP0[2]  
CLKMODE3  
CLKMODE2  
CLKMODE1  
CLKMODE0  
PLLV  
GP0[4]/EXT_INT4  
Clock/PLL  
and  
Oscillator  
OSCIN  
OSCOUT  
OSCV  
DD  
OSCV  
SS  
OSC_DIS  
RSV  
RSV  
RSV  
RSV  
RSV  
RwSV  
w
w
RSV  
RSV  
RSV  
TMS  
TDO  
TDI  
TCK  
TRST  
EMU0  
EMU1  
EMU2  
EMU3  
EMU4  
EMU5  
EMU6  
EMU7  
EMU8  
EMU9  
EMU10  
EMU11  
Reserved  
IEEE Standard  
1149.1  
(JTAG)  
Emulation  
Control/Status  
§
GP0[7]/EXT_INT7  
HD15/GP0[15]  
§
GP0[6]/EXT_INT6  
HD14/GP0[14]  
§
GP0[5]/EXT_INT5  
HD13/GP0[13]  
§
GP0[4]/EXT_INT4  
HD12/GP0[12]  
GP0  
§
GP0[3]  
HD11/GP0[11]  
§
CLKOUT6/GP0[2]  
HD10/GP0[10]  
§
CLKOUT4/GP0[1]  
HD9/GP0[9]  
§
GP0[0]  
HD8/GP0[8]  
General-Purpose Input/Output 0 (GP0) Port  
These pins are muxed with the GP0 pins and by default these signals function as clocks (CLKOUT4 or CLKOUT6). To use these muxed  
pins as GPIO signals, the appropriate GPIO register bits (GPxEN and GPxDIR) must be properly enabled and configured. For more  
details, see the Device Configurations section of this data sheet.  
These pins are GP0 pins that can also function as external interrupt sources (EXT_INT[7:4]). Default after reset is EXT_INTx or GPIO  
as input-only.  
§
These pins are muxed with the HPI peripheral pins and by default these signals function as HPI. For more details on these muxed pins,  
see the Device Configurations section of this data sheet.  
Figure 26. CPU and Peripheral Signals  
39  
April 2004 Revised May 2005  
SPRS247E  
 
Signal Groups Description  
32  
Data  
AED[31:0]  
AECLKIN  
AECLKOUT1  
ACE3  
ACE2  
AECLKOUT2  
ASDCKE  
AARE/ASDCAS/ASADS/ASRE  
Memory Map  
Space Select  
External  
Memory I/F  
Control  
ACE1  
ACE0  
AAOE/ASDRAS/ASOE  
AAWE/ASDWE/ASWE  
AARDY  
20  
Address  
AEA[22:3]  
ASOE3  
APDT  
ABE3  
ABE2  
ABE1  
ABE0  
Byte Enables  
AHOLD  
Bus  
Arbitration  
AHOLDA  
ABUSREQ  
EMIFA (32-bit)  
HD[31,30]  
HPI  
HD[29:16]/McASP1  
32  
(Host-Port Interface)  
Data  
HD[15:8]/GP0[15:8]  
HD[7:0]  
HAS/ACLKR1[1]  
HR/W/AFSR1[3]  
HCNTL0/AFSR1[1]  
Register Select  
HCS/ACLKR1[2]  
HCNTL1  
Control  
HDS1/ACLKR1[3]  
HDS2  
HRDY  
HINT  
Half-Word  
Select  
HHWIL/AFSR1[2]  
(HPI16 ONLY)  
These HPI pins are muxed with the McASP1 or GP0 peripherals. By default, these signals function as HPI and no function,  
respectively. For more details on these muxed pins, see the Device Configurations section of this data sheet.  
Figure 27. Peripheral Signals  
40  
SPRS247E  
April 2004 Revised May 2005  
 
 
Signal Groups Description  
McBSP1  
Transmit  
McBSP0  
Transmit  
CLKX0  
FSX0  
DX0  
CLKX1  
FSX1  
DX1  
CLKR1  
FSR1  
DR1  
CLKR0  
FSR0  
Receive  
Clock  
Receive  
Clock  
DR0  
CLKS0  
CLKS1  
McBSPs  
(Multichannel Buffered  
Serial Ports)  
TOUT1/LENDIAN  
TOUT0  
TINP0  
Timer 0  
Timers  
Timer 1  
TINP1  
Timer 2  
SCL1  
SDA1  
SCL0  
SDA0  
I2C1  
I2C0  
I2Cs  
Figure 27. Peripheral Signals (Continued)  
41  
April 2004 Revised May 2005  
SPRS247E  
Signal Groups Description  
(Transmit/Receive Data Pins)  
(Transmit/Receive Data Pins)  
AXR0[0]  
AXR0[1]  
AXR0[2]  
AXR0[3]  
AXR0[4]  
AXR0[5]  
6-Serial Ports  
Flexible  
Partitioning  
Tx, Rx, OFF  
(Transmit Bit Clock)  
(Receive Bit Clock)  
Transmit  
Clock  
Generator  
Receive Clock  
Generator  
ACLKX0  
ACLKR0  
AHCLKR0  
AHCLKX0  
(Receive Master Clock)  
(Transmit Master Clock)  
Transmit  
Clock Check  
Circuit  
Receive Clock  
Check Circuit  
Receive  
Frame Sync  
Transmit  
Frame Sync  
AFSR0  
(Receive Frame Sync or  
Left/Right Clock)  
AFSX0  
(Transmit Frame Sync or  
Left/Right Clock)  
AMUTE0  
Error Detect  
(see Note A)  
Auto Mute  
Logic  
AMUTEIN0  
McASP0  
(Multichannel Audio Serial Port 0)  
NOTES: A. The McASPs’ Error Detect function detects underruns, overruns, early/late frame syncs, DMA errors, and external mute input.  
B. Bolded and italicized text within parentheses denotes the function of the pins in an audio system.  
Figure 27. Peripheral Signals (Continued)  
42  
SPRS247E  
April 2004 Revised May 2005  
Signal Groups Description  
(Transmit/Receive Data Pins)  
(Transmit/Receive Data Pins)  
HD16/AXR1[0]  
HD17/AXR1[1]  
HD18/AXR1[2]  
HD19/AXR1[3]  
HD20/AXR1[4]  
HD21/AXR1[5]  
6-Serial Ports  
Flexible  
Partitioning  
Tx, Rx, OFF  
(Receive Bit Clock)  
AFCMUX[1:0]  
(PERCFG[10:9])  
HD25/ACLKR1  
(Transmit Bit Clock)  
HAS/ACLKR1[1]  
HCS/ACLKR1[2]  
HDS1/ACLKR1[3]  
Transmit  
Clock  
Generator  
HD24/ACLKX1  
Receive Clock  
Generator  
HD27/AHCLKX1  
(Transmit Master Clock)  
HD26/AHCLKR1  
(Receive Master Clock)  
Transmit  
Clock Check  
Circuit  
Receive Clock  
Check Circuit  
HD23/AFSR1  
HCNTL0/AFSR1[1]  
Receive  
Transmit  
HD22/AFSX1  
(Transmit Frame Sync or  
Left/Right Clock)  
HHWIL/AFSR1[2]  
HR/W/AFSR1[3]  
Frame Sync  
Frame Sync  
AFCMUX[1:0]  
(PERCFG[10:9])  
HD28/AMUTE1  
HD29/AMUTEIN1  
Error Detect  
(see Note A)  
Auto Mute  
Logic  
(Receive Frame Sync or  
Left/Right Clock)  
McASP1  
(Multichannel Audio Serial Port 1)  
NOTES: A. The McASPs’ Error Detect function detects underruns, overruns, early/late frame syncs, DMA errors, and external mute input.  
B. Bolded and italicized text within parentheses denotes the function of the pins in an audio system.  
Figure 27. Peripheral Signals (Continued)  
43  
April 2004 Revised May 2005  
SPRS247E  
Device Configurations  
3
Device Configurations  
On the C6413/C6410 device, bootmode and certain device configurations/peripheral selections are  
determined at device reset, while other device configurations/peripheral selections are software-configurable  
via the peripheral configurations register (PERCFG) [address location 0x01B3F000] after device reset.  
3.1  
Device Configuration at Device Reset  
Table 31 describes the C6413/C6410 device configuration pins. The logic level of the AEA[22:19],  
TOUT1/LENDIAN, TOUT0/HPI_EN, and HD5 pins is latched at reset to determine the device configuration.  
The logic level on the device configuration pins can be set by using external pullup/pulldown resistors or by  
using some control device (e.g., FPGA/CPLD) to intelligently drive these pins. When using a control device,  
care should be taken to ensure there is no contention on the lines when the device is out of reset. The  
CLKINSEL and OSC_DIS configuration pins should remain driven to the correct levels during device operation  
and must only be changed when RESET is low. The device configuration pins are sampled during reset and  
are driven after the reset is removed. At this time, the control device should ensure it has stopped driving the  
device configuration pins of the DSP to again avoid contention.  
Table 31. C6413/C6410 Device Configuration Pins (TOUT1/LENDIAN, AEA[22:19], TOUT0/HPI_EN,  
HD5, CLKINSEL, and OSC_DIS)  
CONFIGURATION  
PIN  
NO.  
IPD/IPU  
FUNCTIONAL DESCRIPTION  
Device Endian mode (LEND)  
TOUT1/LENDIAN  
AA1  
IPU  
0
1
System operates in Big Endian mode  
System operates in Little Endian mode (default)  
Bootmode [1:0]  
00 – No boot (default mode)  
[M21,  
N21]  
01 HPI boot (based on HPI_EN pin)  
10 Reserved  
11 EMIFA 8-bit ROM boot  
AEA[22:21]  
IPD  
IPD  
EMIFA input clock select  
Clock mode select for EMIFA (AECLKIN_SEL[1:0])  
00 – AECLKIN (default mode)  
01 CPU/4 Clock Rate  
[P22,  
N22]  
AEA[20:19]  
10 CPU/6 Clock Rate  
11 Reserved  
HPI, McASP1, GP0[15:8] select  
Selects whether the HPI peripheral or McASP1 peripheral, and GP0[15:8] pins are  
functionally enabled  
0
HPI is enabled and the McASP1 peripheral and GP0 [15:8] pins are disabled  
(default mode);  
[HPI32, if HD5 = 1; HPI16 if HD5 = 0]  
HPI I is disabled and the McASP1 peripheral and GP0 [15:8] pins are enabled  
TOUT0/HPI_EN  
AA2  
IPD  
1
For more detail on the peripherals (McASP1 and GP0[15:8] pins) muxed with HPI, see the  
Table 32.  
HPI peripheral bus width (HPI_WIDTH) select  
0
HPI operates as an HPI16.  
(HPI bus is 16 bits wide. HD[15:0] pins are used for HPI and the remaining  
HD[31:16] muxed  
pins function as McASP1 peripheral pins or are reserved pins in the Hi-Z state.)  
HD5  
Y13  
IPU  
1
HPI operates as an HPI32.  
(HPI bus is 32 bits wide. All HD[31:0] pins are used for host-port operations.)  
For more detail on the peripherals (McASP1 and GP0[15:8] pins) muxed with HPI, see the  
Table 32.  
44  
SPRS247E  
April 2004 Revised May 2005  
 
 
Device Configurations  
Table 31. C6413/C6410 Device Configuration Pins (TOUT1/LENDIAN, AEA[22:19], TOUT0/HPI_EN,  
HD5, CLKINSEL, and OSC_DIS) (Continued)  
CONFIGURATION  
NO.  
IPD/IPU  
FUNCTIONAL DESCRIPTION  
PIN  
PLL input clock source select  
Selects whether the PLL input clock is CLKIN [pin high] or directly from the crystal oscillator  
(OSCIN and OSCOUT) [pin low]. For proper device operation, this pin must be used in  
conjunction with the OSC_DIS pin.  
0
Oscillator pads (OSCIN, OSCOUT directly from the crystal oscillator)  
For proper device operation, OSC_DIS must be 0  
CLKIN square wave (default)  
CLKINSEL  
A11  
IPU  
1
For proper device operation, OSC_DIS must be 1  
This pin must be pulled to the correct level even after reset.  
Oscillator disable  
Selects whether the Oscillator is enabled or disabled. For proper device operation, this pin  
must follow the CLKINSEL pin operation.  
0
1
OSC enabled  
OSC disabled (default)  
OSC_DIS  
B7  
IPU  
This pin must be pulled to the correct level even after reset.  
IPD = Internal pulldown, IPU = Internal pullup. (These IPD/IPU signal pins feature a 30-kIPD or IPU resistor. To pull up a signal to the opposite  
supply rail, a 1-kresistor should be used.)  
3.2  
Peripheral Configuration at Device Reset  
Some C6413/C6410 peripherals share the same pins (internally muxed) and are mutually exclusive (i.e., HPI,  
general-purpose input/output 0 pins GP0[15:8], and McASP1).  
HPI, McASP1, and GP0 peripherals  
The TOUT0/HPI_EN (AA2 pin) is latched at reset. This pin selects whether the HPI peripheral or McASP1  
peripheral, and GP0[15:8] pins are functionally enabled (see Table 32).  
Table 32. TOUT0/HPI_EN and HD5 Peripheral Selection (HPI or McASP1 and Select GP0 Pins)  
PERIPHERAL SELECTION  
PERIPHERALS SELECTED  
HD5  
[HPI_WIDTH]  
(Y13)  
DESCRIPTION  
HPI_EN  
(AA2)  
HPI  
McASP1  
GP0 [15:8]  
HPI_EN = 0, HD5 = 0  
HPI16 is enabled and McASP1 peripheral is enabled  
and GP0 [15:8] pins are disabled. All multiplexed  
HPI/McASP1 pins function as McASP1 pins. All  
multiplexed HPI/GP0 are reserved pins in the Hi-Z state.  
0
0
0
1
16-bit HPI  
Available  
N/A  
N/A  
HPI_EN = 0, HD5 = 1  
HPI32 is enabled and McASP1 peripheral and GP0  
[15:8] pins are disabled. All multiplexed HPI/McASP1  
and HPI/GP0 pins function as HPI pins.  
32-bit HPI  
N/A  
HPI_EN = 1, HD5 = x (don’t care)  
HPI is disabled and the McASP1 peripheral and GP0  
[15:8] pins are enabled. All multiplexed HPI/McASP1  
and HPI/GP0 pins function as McASP1 and GP0 pins,  
respectively. To use the GP0 pins, the appropriate bits  
in the GP0EN and GP0DIR registers need to be set. All  
standalone HPI pins are reserved pins in the Hi-Z state  
1
x
N/A  
Available  
Available  
The TOUT0/HPI_EN pin has an internal pulldown that enables the HPI by default. The TOUT0/HPI_EN pin can disable the HPI via an external  
pullup resistor or be driven high during reset. The TOUT0/HPI_EN pin is not software-controllable.  
N/A = Not available  
45  
April 2004 Revised May 2005  
SPRS247E  
 
 
Device Configurations  
3.3  
Peripheral Selection After Device Reset  
HPI, McBSP1, McBSP0, McASP1, McASP0, I2C1, and I2C0  
The C6413/C6410 device has designated registers for peripheral configuration (PERCFG), device status  
(DEVSTAT), and JTAG identification (JTAGID). These registers are part of the Device Configuration module  
and are mapped to a 4K block memory starting at 0x01B3F000. The CPU accesses these registers via the  
CFGBUS.  
The peripheral configuration register (PERCFG), allows the user to control the peripheral selection of the  
McASP1, McASP0, I2C1, and I2C0 peripherals. For more detailed information on the PERCFG register  
control bits, see Figure 31 and Table 33.  
31  
23  
15  
28  
27  
24  
16  
8
Reserved  
R-0  
Reserved  
R-0  
Reserved  
R-0  
11  
3
10  
2
9
Reserved  
R-0  
AFCMUX[1:0]  
R/W-0  
MCASP1EN  
R/W-0  
7
6
Reserved  
R-0  
5
4
1
0
I2C1EN  
R/W-0  
Reserved  
R-0  
Reserved  
R-0  
I2C0EN  
R/W-0  
MCBSP1EN  
MCBSP0EN  
R-1  
MCASP0EN  
R/W-0  
R-1  
Legend: R = Read only; R/W = Read/Write; -n = value after reset  
For proper device operation, all reserved bits have to be written with “0”.  
Figure 31. Peripheral Configuration Register (PERCFG) [Address Location: 0x01B3F000]  
46  
SPRS247E  
April 2004 Revised May 2005  
 
 
Device Configurations  
Table 33. Peripheral Configuration (PERCFG) Register Selection Bit Descriptions  
BIT  
NAME  
DESCRIPTION  
31:11  
Reserved  
Reserved. Read-only, for proper device operation, all reserved bits have to be written with “0”.  
Clocks and frame syncs select bits.  
Determines which of the clock and frame sync pairs are input to McASP1.  
00 = ACLKR1, AFSR1 pins (default).  
01 = ACLKR1[1], AFSR1[1] pins  
10 = ACLKR1[2], AFSR1[2] pins  
11 = ACLKR1[3], AFSR1[3] pins  
10:9  
AFCMUX[1:0]  
MCASP1EN  
[designed for multiple non-simultaneous I2S sources with different clock sources].  
McASP1 select bit.  
Selects whether the McASP1 peripheral is enabled or disabled (default).  
(This feature allows power savings by disabling the peripheral when not in use.)  
8
0
1
=
=
McASP1 is disabled and the module is powered down [default].  
McASP1 is enabled.  
Inter-integrated circuit 1 (I2C1) enable bit.  
Selects whether I2C1 peripheral is enabled or disabled (default).  
(This feature allows power savings by disabling the peripheral when not in use.)  
7
6:4  
3
I2C1EN  
Reserved  
I2C0EN  
0
1
=
=
I2C1 is disabled, and the module is powered down (default).  
I2C1 is enabled.  
Reserved. Read-only, for proper device operation, all reserved bits have to be written with “0”.  
Inter-integrated circuit 0 (I2C0) enable bit.  
Selects whether I2C0 peripheral is enabled or disabled (default).  
(This feature allows power savings by disabling the peripheral when not in use.)  
0
1
=
=
I2C0 is disabled, and the module is powered down (default).  
I2C0 is enabled.  
McBSP1 enable bit.  
This bit is read-only as a “1” (McBSP1 always enabled).  
2
1
MCBSP1EN  
MCBSP0EN  
McBSP0 enable bit .  
This bit is read-only as a “1” (McBSP0 always enabled).  
McASP0 select bit.  
Selects whether the McASP0 peripheral is enabled or disabled.  
(This feature allows power savings by disabling the peripheral when not in use.)  
0
MCASP0EN  
0
1
=
=
McASP0 is disabled.  
McASP0 is enabled.  
47  
April 2004 Revised May 2005  
SPRS247E  
 
Device Configurations  
3.4  
Peripheral Configuration Lock  
By default, the McASP1, McASP0, I2C1, and I2C0 peripherals are disabled on power up. In order to use these  
peripherals on the C6413/C6410 device, the peripheral must first be enabled in the Peripheral Configuration  
register (PERCFG). Software muxed pins should not be programmed to switch functionalities during  
run-time. Care should also be taken to ensure that no accesses are being performed before disabling  
the peripherals. To help minimize power consumption in the C6413/C6410 device, unused peripherals may  
be disabled..  
Figure 32 shows the flow needed to enable (or disable) a given peripheral on the C6413/C6410 device.  
Unlock the PERCFG Register  
Using the PCFGLOCK Register  
Write to  
PERCFG Register  
to Enable/Disable Peripherals  
Read from  
PERCFG Register  
Wait 128 CPU Cycles Before  
Accessing Enabled Peripherals  
Figure 32. Peripheral Enable/Disable Flow Diagram  
A 32-bit key (value = 0x10C0010C) must be written to the Peripheral Configuration Lock register  
(PCFGLOCK) in order to unlock access to the PERCFG register. Reading the PCFGLOCK register  
determines whether the PERCFG register is currently locked (LOCKSTAT bit = 1) or unlocked (LOCKSTAT  
bit = 0), see Figure 33. A peripheral can only be enabled when the PERCFG register is “unlocked”  
(LOCKSTAT bit = 0).  
48  
SPRS247E  
April 2004 Revised May 2005  
 
 
Device Configurations  
Read Accesses  
31  
1
0
Reserved  
R-0  
LOCKSTAT  
R-1  
Write Accesses  
31  
0
LOCK  
W-0  
Legend: R = Read only; R/W = Read/Write; -n = value after reset  
Figure 33. PCFGLOCK Register Diagram [Address Location: 0x01B3 F018] Read/Write Accesses  
Table 34. PCFGLOCK Register Selection Bit Descriptions Read Accesses  
BIT  
NAME  
DESCRIPTION  
31:1  
Reserved  
Reserved. Read-only, writes have no effect.  
Lock status bit.  
Determines whether the PERCFG register is locked or unlocked.  
0
1
=
=
Unlocked, read accesses to the PERCFG register allowed.  
Locked, write accesses to the PERCFG register do not modify the register state [default].  
0
LOCKSTAT  
Reads are unaffected by Lock Status.  
Table 35. PCFGLOCK Register Selection Bit Descriptions Write Accesses  
BIT  
NAME  
DESCRIPTION  
Lock bits.  
0x10C0010C = Unlocks PERCFG register accesses.  
31:0  
LOCK  
Any write to the PERCFG register will automatically relock the register. In order to avoid the unnecessary  
overhead of multiple unlock/enable sequences, all peripherals should be enabled with a single write to the  
PERCFG register with the necessary enable bits set.  
Prior to waiting 128 CPU cycles, the PERCFG register should be read. There is no direct correlation between  
the CPU issuing a write to the PERCFG register and the write actually occurring. Reading the PERCFG  
register after the write is issued forces the CPU to wait for the write to the PERCFG register to occur.  
Once a peripheral is enabled, the DSP (or other peripherals such as the HPI) must wait a minimum of 128 CPU  
cycles before accessing the enabled peripheral. The user must ensure that no accesses are performed to a  
peripheral while it is disabled.  
In addition to the normal usage, the PCFGLOCK register can be used to override the power saver settings  
specified in the PERCFG register. When the power saver feature is disabled (PCFGLOCK written with  
0xC0100C01), all peripherals controlled by PERCFG are enabled. If the power saver is returned to normal  
operation (PCFGLOCK written with 0x0C01C010), then the peripherals return to the operating condition  
specified by PERCFG. Turning off the power saver settings will add a worst-case 50 mW of power to the overall  
DSP power consumption.  
Note: overriding the settings of the PERCFG register will not cause a conflict on the multiplexed pins. For  
example, with the HPI and McASP1 peripherals, the HPI will still have control over the multiplexed pins  
provided the TOUT0/HPI_EN pin was “0” at reset.  
49  
April 2004 Revised May 2005  
SPRS247E  
 
Device Configurations  
3.5  
Device Status Register Description  
The device status register depicts the status of the device peripheral selection. Once set, these bits will remain  
set until a device reset; therefore, these bits should be masked when reading the DEVSTAT register since their  
values can change. For the actual register bit names and their associated bit field descriptions, see Figure 34  
and Table 36.  
31  
23  
24  
Reserved  
R-100x0111  
19  
18  
Reserved  
R-1  
17  
16  
CLKINSEL  
R-x  
PLLM  
R-xxxxx  
13  
OSC EXT RES  
R-x  
9
15  
7
14  
12  
CLKMODE3  
R-x  
11  
Reserved  
R-0  
10  
8
Reserved  
R-000  
HPI-WIDTH  
R-x  
Reserved  
R-0  
HPI_EN  
R-x  
6
5
4
3
2
1
0
CLKMODE2  
R-x  
CLKMODE1  
R-x  
CLKMODE0  
R-x  
LENDIAN  
R-x  
BOOTMODE1 BOOTMODE0 AECLKINSEL1 AECLKINSEL0  
R-x R-x R-x R-x  
Legend: R = Read only; R/W = Read/Write; -n = value after reset  
Figure 34. Device Status Register (DEVSTAT) Description 0x01B3 F004  
Table 36. Device Status (DEVSTAT) Register Selection Bit Descriptions  
BIT  
NAME  
DESCRIPTION  
31:24  
Reserved  
Reserved. Read-only, writes have no effect.  
PLL multiply factor status bits.  
Shows the status of the PLL multiply mode selected; whether the CPU clock frequency equals the input  
clock frequency x1 (Bypass), x5, x6, x7, x8, x9, x10, x11, x12, x16, x18, x19, x20, x21, x22, or x24.  
For more detailed information on the PLL multiply factors, see the Clock PLL and Oscillator section of this  
data sheet.  
23:19  
PLLM  
18  
17  
Reserved  
Reserved. Read-only, writes have no effect.  
Oscillator external resistor status bit.  
Shows the status internal or external of the OSC bias resistor.  
OSC EXT RES  
0
1
=
=
Normal functional mode with internal bias resistor.  
Normal functional mode with external bias resistor [default; internally tied high].  
PLL input clock select status bit.  
Shows the status of whether the PLL input clock is CLKIN [pin high] or directly from the crystal oscillator  
(OSCIN and OSCOUT) [pin low]  
16  
CLKINSEL  
0
1
=
=
Crystal oscillator (OSCIN and OSCOUT).  
CLKIN (default).  
15:13  
11  
Reserved  
Reserved  
Reserved. Read-only, writes have no effect.  
Reserved. Read-only, writes have no effect.  
HPI bus width control bit.  
Shows the status of whether the HPI bus operates in 32-bit mode or in 16-bit mode (default).  
10  
9
HPI_WIDTH  
Reserved  
0
1
=
=
HPI operates in 16-bit mode. (default).  
HPI operates in 32-bit mode.  
Reserved. Read-only, writes have no effect.  
HPI_EN pin status bit.  
Shows the status at device reset of the HPI_EN pin, which controls the HPI peripheral as enabled [default]  
or disabled.  
8
HPI_EN  
0
1
=
=
HPI_EN pin is low, meaning the HPI peripheral is enabled (default).  
HPI_EN pin is high, meaning the HPI peripheral is disabled.  
50  
SPRS247E  
April 2004 Revised May 2005  
 
 
Device Configurations  
Table 36. Device Status (DEVSTAT) Register Selection Bit Descriptions (Continued)  
BIT  
NAME  
DESCRIPTION  
Clock mode select status bits  
Shows the status (”1 or 0”) of the CLKMODE[3:0] select bits:  
12  
CLKMODE3  
7
6
5
CLKMODE2  
CLKMODE1  
CLKMODE0  
Clock mode select for CPU clock frequency (CLKMODE[3:0]), for example:  
0000– Bypass (x1) (default mode)  
For more details on the CLKMODE pins and the PLL multiply factors, see the Clock PLL section of this  
data sheet.  
Device Endian mode (LENDIAN)  
Shows the status of whether the system is operating in Big Endian mode or Little Endian mode (default).  
4
LENDIAN  
0
1
System is operating in Big Endian mode  
System is operating in Little Endian mode (default)  
Bootmode configuration bits (AEA[22:21] pins)  
Shows the status of what device bootmode configuration is operational.  
Bootmode [1:0]  
3
2
1
0
BOOTMODE1  
BOOTMODE0  
AECLKINSEL1  
AECLKINSEL0  
00 – No boot (default mode)  
01 HPI boot (based on HPI_EN pin)  
10 Reserved  
11 EMIFA 8-bit ROM boot  
EMIFA input clock select (AEA[20:19] pins)  
Shows the status of what clock mode is enabled or disabled for the EMIF.  
Clock mode select for EMIFA (AECLKIN_SEL[1:0])  
00 – AECLKIN (default mode)  
01 CPU/4 Clock Rate  
10 CPU/6 Clock Rate  
11 Reserved  
3.6  
JTAG ID Register Description  
The JTAG ID register is a read-only register that identifies to the customer the JTAG/Device ID. For the  
C6413/C6410 device, the JTAG ID register resides at address location 0x01B3 F008. The register hex value  
for the C6413/C6410 device is: 0x0007 902F. For the actual register bit names and their associated bit field  
descriptions, see Figure 35 and Table 37.  
3128  
2712  
111  
0
VARIANT (4-Bit)  
R-0000  
PART NUMBER (16-Bit)  
R-0000 0000 1000 0100  
MANUFACTURER (11-Bit)  
R-0000 0010 111  
LSB  
R-1  
Legend: R = Read only; -n = value after reset  
Figure 35. JTAG ID Register Description TMS320C6413/C6410 Register Value 0x0007 902F  
Table 37. JTAG ID Register Selection Bit Descriptions  
BIT  
31:28  
27:12  
111  
0
NAME  
VARIANT  
DESCRIPTION  
Variant (4-Bit) value. C6413/C6410 value: 0000.  
PART NUMBER  
MANUFACTURER  
LSB  
Part Number (16-Bit) value. C6413/C6410 value: 0000 0000 1000 0100.  
Manufacturer (11-Bit) value. C6413/C6410 value: 0000 0010 111.  
LSB. This bit is read as a “1” for C6413/C6410.  
51  
April 2004 Revised May 2005  
SPRS247E  
 
 
Device Configurations  
3.7  
Multiplexed Pins  
Multiplexed pins are pins that are shared by more than one peripheral and are internally multiplexed. Some  
of these pins are configured by software, and the others are configured by external pullup/pulldown resistors  
only at reset. Those muxed pins that are configured by software should not be programmed to switch  
functionalities during run-time. Those muxed pins that are configured by external pullup/pulldown resistors  
are mutually exclusive; only one peripheral has primary control of the function of these pins after reset.  
Table 38 identifies the multiplexed pins on the C6413/C6410 device; shows the default (primary) function and  
the default settings after reset; and describes the pins, registers, etc. necessary to configure specific  
multiplexed functions.  
Table 38. C6413/C6410 Device Multiplexed Pins  
MULTIPLEXED PINS  
NAME  
DEFAULT  
FUNCTION  
DEFAULT  
SETTING  
IPD/IPU  
DESCRIPTION  
NO.  
These pins are software-configurable. To use  
these pins as GPIO pins, the GPxEN bits in the  
GPIO Enable Register and the GPxDIR bits in  
the GPIO Direction Register must be properly  
configured.  
CLKOUT4/GP0[1]  
A2  
IPU  
CLKOUT4  
CLKOUT6  
GP1EN = 0 (disabled)  
GP2EN = 0 (disabled)  
GPxEN = 1:  
GPxDIR = 0:  
GPxDIR = 1:  
GPx pin enabled  
GPx pin is an input  
GPx pin is an output  
CLKOUT6/GP0[2]  
B3  
IPU  
HCNTL0/AFSR1[1]  
HHWIL/AFSR1[2]  
HR/W/AFSR1[3]  
HAS/ACLKR1[1]  
HCS/ACLKR1[2]  
HDS1/ACLKR1[3]  
HD29/AMUTEIN1  
HD28/AMUTE1  
HD27/AHCLKX1  
HD26/AHCLKR1  
HD25/ACLKR1  
HD24/ACLKX1  
HD23/AFSR1  
Y6  
Y7  
By default, HPI32 is enabled upon reset  
(McASP1 is disabled).  
To enable the McASP1 peripheral, the  
TOUT0/HPI_EN pin must be high at reset either  
via an external pullup (PU) resistor (1 k) or  
driven by a control device (disabling the HPI).  
AA5  
Y5  
AA11  
AB11  
W11  
W10  
Y4  
HPI pin  
function  
TOUT0/HPI_EN = 0,  
HD5 = 1  
(32-Bit HPI enabled)  
or the McASP1 peripheral pins can be used if the  
HPI is used as a 16-bit width [HPI_EN = 0,  
HD5 = 0].  
IPU  
HHWIL pin  
(HPI16 only)  
McASP1 pins disabled.  
The clocks and frame syncs select bits  
(AFCMUX[1:0]) located in the PERCFG register  
determine which of the clock and frame sync  
pairs are input to McASP1. For more detailed  
information, see the Device Configuration  
section of this data sheet.  
AB4  
AA9  
AA4  
AB9  
AB5  
HD22/AFSX1  
By default, HPI32 is enabled upon reset  
(McASP1 is disabled).  
To enable the McASP1 peripheral, the  
TOUT0/HPI_EN pin must be high at reset either  
via an external pullup (PU) resistor (1 k) or  
driven by a control device (disabling the HPI).  
HD21/AXR1[5]  
HD20/AXR1[4]  
HD19/AXR1[3]  
HD18/AXR1[2]  
HD17/AXR1[1]  
HD16/AXR1[0]  
Y9  
AB8  
AA6  
AB7  
AA7  
AB6  
TOUT0/HPI_EN = 0,  
HD5 = 1  
(32-Bit HPI enabled)  
HPI pin  
function  
IPU  
or the McASP1 peripheral pins can be used if the  
HPI is used as a 16-bit width [HPI_EN = 0,  
HD5 = 0].  
McASP1 pins disabled.  
McASP1 pin direction is controlled by the  
PDIR[x] bits in the McASP1PDIR register.  
McASP1PDIR = 0 input, = 1 output  
52  
SPRS247E  
April 2004 Revised May 2005  
 
 
Configuration Examples  
Table 38. C6413/C6410 Device Multiplexed Pins (Continued)  
MULTIPLEXED PINS  
NAME  
DEFAULT  
FUNCTION  
DEFAULT  
SETTING  
IPD/IPU  
DESCRIPTION  
NO.  
Y12  
HD15/GP0[15]  
By default, HPI is enabled upon reset (GP0[15:9]  
pins are disabled).  
HD14/GP0[14]  
AA12  
AB13  
Y14  
To use GP0[15:9] as GPIO pins, the HPI needs  
to be disabled (HPI_EN = 1, HD5 = x (don’t care)),  
the GPxEN bits in the GPIO Enable Register and  
the GPxDIR bits in the GPIO Direction Register  
must be properly configured.  
]
HD13/GP0[13  
HPI_EN = 0, HD5 = 1  
(32-Bit HPI enabled)  
HD12/GP0[12]  
HD11/GP0[11]  
HD10/GP0[10]  
HD9/GP0[9]  
HPI pin  
function  
IPU  
AB14  
AA15  
Y16  
GPIO pins disabled.  
GPxEN = 1:  
GPxDIR = 0:  
GPxDIR = 1:  
GPx pin enabled  
GPx pin is an input  
GPx pin is an output  
HD8/GP0[8]  
AB16  
IPD = Internal pulldown, IPU = Internal pullup. (These IPD/IPU signal pins feature a 30-kIPD or IPU resistor. To pull up a signal to the opposite  
supply rail, a 1-kresistor should be used.)  
3.8  
Debugging Considerations  
It is recommended that external connections be provided to device configuration pins, including  
TOUT1/LENDIAN, AEA[22:19], TOUT0/HPI_EN, CLKINSEL, and OSC_DIS. Although internal  
pullup/pulldown resistors exist on these pins, providing external connectivity adds convenience to the user  
in debugging and flexibility in switching operating modes.  
Internal pullup/pulldown resistors also exist on the non-configuration pins on the AEA bus (AEA[18:3]). Do not  
oppose the internal pullup/pulldown resistors on these non-configuration pins with external pullup/pulldown  
resistors. If an external controller provides signals to these non-configuration pins, these signals must be  
driven to the default state of the pins at reset, or not be driven at all.  
For the internal pullup/pulldown resistors for all device pins, see the terminal functions table.  
3.9  
Configuration Examples  
Figure 36 illustrates an example of peripheral selections/options that are configurable on the C6413/C610  
device.  
53  
April 2004 Revised May 2005  
SPRS247E  
 
Configuration Examples  
32  
AED[31:0]  
CLKOUT4, CLKOUT6,  
PLLV, CLKIN,  
CLKMODE[3:0], OSC_DIS,  
CLKINSEL, OSCIN,  
Clock and  
System  
EMIFA  
AECLKIN, AARDY, AHOLD  
AEA[22:3], ACE[3:0], ABE[3:0],  
AECLKOUT1, AECLKOUT2,  
ASDCKE, ASOE3, APDT,  
AHOLDA, ABUSREQ,  
OSCOUT, OSCV  
,
DD  
OSCV  
SS  
AARE/ASDCAS/ASADS/ASRE,  
AAOE/ASDRAS/ASOE,  
AAWE/ASDWE/ASWE  
AHCLKX0, AFSX0,  
ACLKX0, AMUTE0,  
AMUTEIN0,  
AHCLKR0, AFSR0,  
ACLKR0  
McASP0  
TIMER2  
TIMER1  
TIMER0  
AXR0[5:0]  
TINP1  
AHCLKX1, AFSX1,  
ACLKX1, AMUTE1,  
AMUTEIN1, AHCLKR1,  
AFSR1, AFSR1[1],  
AFSR1[2], AFSR1[3],  
ACLKR1, ACLKR1[1],  
ACLKR1[2], ACLKR1[3]  
TOUT1/LENDIAN  
TINP0  
McASP1  
AXR1[5:0]  
TOUT0  
16  
HD[15:0]  
GP0  
and  
EXT_INT  
HPI  
(16-Bit)  
GP0[ 3:0]  
GP0[7:4]  
HCNTL0, HCNTL1,  
HHWIL, HAS, HR/W,  
HCS, HDS1, HDS2  
CLKR0, FSR0, DR0,  
CLKS0, DX0, FSX0,  
CLKX0  
SCL0  
SDA0  
McBSP0  
McBSP1  
I2C0  
I2C1  
CLKR1, FSR1, DR1,  
CLKS1, DX1, FSX1,  
CLKX1  
SCL1  
SDA1  
PERCFG Register Value:  
External Pins:  
0x0000_018F [CPU/4 option [default] and AFSR1, ACLKR1 pins selected]  
TOUT0/HPI_EN = 0; HD5 = 0 (IPU)  
Figure 36. Configuration Example A  
(HPI16 + 2 McASPs + 2 McBSPs +2 I2Cs + EMIF + 3 Timers + GPIO)  
54  
SPRS247E  
April 2004 Revised May 2005  
 
Terminal Functions  
3.10 Terminal Functions  
The terminal functions table (Table 39) identifies the external signal names, the associated pin (ball) numbers  
along with the mechanical package designator, the pin type (I, O/Z, or I/O/Z), whether the pin has any internal  
pullup/pulldown resistors and a functional pin description. For more detailed information on device  
configuration, peripheral selection, multiplexed/shared pins, and debugging considerations, see the Device  
Configurations section of this data sheet.  
55  
April 2004 Revised May 2005  
SPRS247E  
 
Terminal Functions  
Table 39. Terminal Functions  
SIGNAL  
NAME  
IPD/  
IPU  
DESCRIPTION  
TYPE  
NO.  
CLOCK/PLL CONFIGURATION  
CLKIN  
A12  
A2  
I
IPD  
IPU  
Clock Input. This clock is the input to the on-chip PLL.  
Clock output at 1/4 of the device speed (O/Z) [default] or this pin can be programmed as  
a GP0 1 pin (I/O/Z).  
§
CLKOUT4/GP0[1]  
I/O/Z  
I/O/Z  
Clock output at 1/6 of the device speed (O/Z) [default] or this pin can be programmed as  
a GP0 2 pin (I/O/Z).  
§
CLKOUT6/GP0[2]  
B3  
IPU  
IPU  
CLKIN select. Selects whether the PLL input clock is CLKIN [pin high] or directly from  
the crystal oscillator (OSCIN and OSCOUT) [pin low].  
For proper device operation, this pin must be used in conjunction with the OSC_DIS  
pin.  
CLKINSEL  
A11  
I
CLKMODE3  
CLKMODE2  
CLKMODE1  
CLKMODE0  
C11  
B10  
A13  
C13  
C12  
A6  
I
I
IPD  
IPD  
IPD  
IPD  
Clock mode selects  
Selects whether the CPU clock frequency = input clock frequency x1 (Bypass), x5,  
x6, x7, x8, x9, x10, x11, x12, x16, x18, x19, x20, x21, x22, or x24.  
For more details on the CLKMODE pins and the PLL multiply factors, see the Clock  
PLL section of this data sheet.  
I
I
PLLV  
A
I
PLL voltage supply  
OSCIN  
Crystal oscillator Input (XI)  
Crystal oscillator output (XO)  
OSCOUT  
A7  
O
Power for crystal oscillator (1.2 V), Do not connect to board power 1.4 V; for optimum  
OSCV  
OSCV  
B6  
C6  
S
performance, connected internally. If CLKIN is used instead of the oscillator, then this  
DD  
SS  
pin can be left open or connected to CV  
.
DD  
Ground for crystal oscillator, Do not connect to board ground; for optimum  
performance, connected internally. If CLKIN is used instead of the oscillator, then this  
GND  
pin can be left open or connected to V  
.
SS  
Oscillator disable select.  
For proper device operation, this pin must follow the CLKINSEL pin operation.  
OSC_DIS  
B7  
I
IPU  
0
1
OSC enabled; CLKINSEL must be 0  
OSC disabled (default); CLKINSEL must be 1  
JTAG EMULATION  
JTAG test-port mode select  
JTAG test-port data out  
JTAG test-port data in  
JTAG test-port clock  
TMS  
TDO  
TDI  
U3  
T4  
T1  
T2  
I
IPU  
IPU  
IPU  
IPU  
O/Z  
I
I
TCK  
JTAG test-port reset. For IEEE 1149.1 JTAG compatibility, see the IEEE 1149.1 JTAG  
compatibility statement portion of this data sheet.  
TRST  
U1  
I
IPD  
#
EMU0  
R1  
T3  
I/O/Z  
I/O/Z  
IPU  
IPU  
Emulation pin 0  
#
EMU1  
Emulation pin 1  
I = Input, O = Output, Z = High impedance, S = Supply voltage, GND = Ground, A = Analog Signal  
IPD = Internal pulldown, IPU = Internal pullup. (These IPD/IPU signal pins feature a 30-kIPD or IPU resistor. To pull up a signal to the opposite  
supply rail, a 1-kresistor should be used.)  
These pins are multiplexed pins. For more details, see the Device Configurations section of this data sheet.  
PLLV is not part of external voltage supply. See the Clock PLL and Oscillator section for information on how to connect this pin.  
The EMU0 and EMU1 pins are internally pulled up with 30-kresistors; therefore, for emulation and normal operation, no external  
pullup/pulldown resistors are necessary. However, for boundary scan operation, pull down the EMU1 and EMU0 pins with a dedicated 1-kΩ  
resistor.  
§
#
56  
SPRS247E  
April 2004 Revised May 2005  
 
 
Terminal Functions  
Table 39. Terminal Functions (Continued)  
IPD/  
IPU  
NAME  
NO.  
DESCRIPTION  
TYPE  
JTAG EMULATION (CONTINUED)  
EMU2  
EMU3  
EMU4  
EMU5  
EMU6  
EMU7  
EMU8  
EMU9  
EMU10  
EMU11  
R2  
U2  
R3  
P2  
R4  
V2  
V1  
V3  
W3  
W2  
I/O/Z  
I/O/Z  
I/O/Z  
I/O/Z  
I/O/Z  
I/O/Z  
I/O/Z  
I/O/Z  
I/O/Z  
I/O/Z  
IPU  
IPU  
IPU  
IPU  
IPU  
IPU  
IPU  
IPU  
IPU  
IPU  
Emulation pin 2. Reserved for future use, leave unconnected.  
Emulation pin 3. Reserved for future use, leave unconnected.  
Emulation pin 4. Reserved for future use, leave unconnected.  
Emulation pin 5. Reserved for future use, leave unconnected.  
Emulation pin 6. Reserved for future use, leave unconnected.  
Emulation pin 7. Reserved for future use, leave unconnected.  
Emulation pin 8. Reserved for future use, leave unconnected.  
Emulation pin 9. Reserved for future use, leave unconnected.  
Emulation pin 10. Reserved for future use, leave unconnected.  
Emulation pin 11. Reserved for future use, leave unconnected.  
RESETS, INTERRUPTS, AND GENERAL-PURPOSE INPUT/OUTPUTS  
RESET  
NMI  
C9  
B9  
I
I
Device reset  
IPD  
IPU  
Nonmaskable interrupt, edge-driven (rising edge)  
GP0[7]/EXT_INT7  
GP0[6]/EXT_INT6  
GP0[5]/EXT_INT5  
GP0[4]/EXT_INT4  
Y1  
C4  
B4  
A4  
I/O/Z  
I/O/Z  
I/O/Z  
I/O/Z  
General-purpose input/output (GPIO) pins (I/O/Z) or external interrupts (input only).  
The default after reset setting is GPIO enabled as input-only.  
IPU  
IPU  
IPU  
When these pins function as External Interrupts [by selecting the corresponding  
interrupt enable register bit (IER.[7:4])], they are edge-driven and the polarity can be  
independently selected via the External Interrupt Polarity Register bits  
(EXTPOL.[3:0]).  
HD15/GP0[15]  
HD14/GP0[14]  
Y12  
AA12  
AB13  
Y14  
]
HD13/GP0[13  
Host-port data pins (I/O/Z) [default] or General-purpose input/output (GP0) [15:8] pins  
(I/O/Z)  
HD12/GP0[12]  
HD11/GP0[11]  
HD10/GP0[10]  
HD9/GP0[9]  
HD8/GP0[8]  
GP0[3]  
I/O/Z  
IPU  
AB14  
AA15  
Y16  
GP0 [3:0] pins (I/O/Z)  
Clock output at 1/6 of the device speed (O/Z) [default] or this pin can be programmed as  
a GP0 2 pin (I/O/Z).  
AB16  
B13  
Clock output at 1/4 of the device speed (O/Z) [default] or this pin can be programmed as  
a GP0 1 pin (I/O/Z).  
I/O/Z  
I/O/Z  
I/O/Z  
I/O/Z  
IPD  
IPU  
IPU  
IPD  
§
CLKOUT6/GP0[2]  
CLKOUT4/GP0[1]  
B3  
§
A2  
GP0[0]  
D13  
I = Input, O = Output, Z = High impedance, S = Supply voltage, GND = Ground, A = Analog Signal  
IPD = Internal pulldown, IPU = Internal pullup. (These IPD/IPU signal pins feature a 30-kIPD or IPU resistor. To pull up a signal to the opposite  
supply rail, a 1-kresistor should be used.)  
§
These pins are multiplexed pins. For more details, see the Device Configurations section of this data sheet.  
57  
April 2004 Revised May 2005  
SPRS247E  
Terminal Functions  
Table 39. Terminal Functions (Continued)  
IPD/  
IPU  
NAME  
NO.  
DESCRIPTION  
TYPE  
EMIFA (32-BIT) CONTROL SIGNALS COMMON TO ALL TYPES OF MEMORY  
ACE3  
ACE2  
ACE1  
ACE0  
ABE3  
ABE2  
ABE1  
ABE0  
APDT  
H19  
N20  
R20  
F20  
O/Z  
O/Z  
O/Z  
O/Z  
O/Z  
O/Z  
O/Z  
O/Z  
O/Z  
IPU  
IPU  
IPU  
IPU  
IPU  
IPU  
IPU  
IPU  
IPU  
EMIFA memory space enables  
Enabled by bits 28 through 31 of the word address  
Only one pin is asserted during any external data access  
AB21  
P21  
A22  
D16  
T19  
EMIFA byte-enable control  
Decoded from the low-order address bits. The number of address bits or byte  
enables used depends on the width of external memory.  
Byte-write enables for most types of memory  
Can be directly connected to SDRAM read and write mask signal (SDQM)  
EMIFA peripheral data transfer, allows direct transfer between external peripherals  
EMIFA (32-BIT) BUS ARBITRATION  
AHOLDA  
AHOLD  
J21  
J22  
R19  
O
I
IPU  
EMIFA hold-request-acknowledge to the host  
EMIFA hold request from the host  
EMIFA bus request output  
IPU  
IPU  
ABUSREQ  
O
EMIFA (32-BIT) ASYNCHRONOUS/SYNCHRONOUS MEMORY CONTROL  
EMIFA external input clock. The EMIFA input clock (AECLKIN, CPU/4 clock, or CPU/6  
AECLKIN  
K22  
I
IPD  
clock) is selected at reset via the pullup/pulldown resistors on the AEA[20:19] pins.  
AECLKIN is the default for the EMIFA input clock.  
EMIFA output clock 2. Programmable to be EMIFA input clock (AECLKIN, CPU/4 clock,  
or CPU/6 clock) frequency divided-by-1, -2, or -4.  
AECLKOUT2  
AECLKOUT1  
U22  
F22  
O/Z  
O/Z  
IPD  
IPD  
EMIFA output clock 1 [at EMIFA input clock (AECLKIN, CPU/4 clock, or CPU/6 clock)  
frequency].  
EMIFA asynchronous memory read-enable/SDRAM column-address  
strobe/programmable synchronous interface-address strobe or read-enable  
AARE/  
ASDCAS/  
ASADS/ASRE  
For programmable synchronous interface, the RENEN field in the CE Space  
Secondary Control Register (CExSEC) selects between ASADS and ASRE:  
If RENEN = 0, then the ASADS/ASRE signal functions as the ASADS signal.  
If RENEN = 1, then the ASADS/ASRE signal functions as the ASRE signal.  
D20  
E20  
O/Z  
O/Z  
IPU  
IPU  
AAOE/  
ASDRAS/  
ASOE  
EMIFA asynchronous memory output-enable/SDRAM row-address  
strobe/programmable synchronous interface output-enable  
AAWE/  
ASDWE/  
ASWE  
EMIFA asynchronous memory write-enable/SDRAM write-enable/programmable  
synchronous interface write-enable  
C20  
K21  
O/Z  
O/Z  
IPU  
IPU  
EMIFA SDRAM clock-enable (used for self-refresh mode).  
ASDCKE  
ASOE3  
If SDRAM is not in system, ASDCKE can be used as a general-purpose output.  
P19  
L21  
O/Z  
I
IPU  
IPU  
EMIFA synchronous memory output-enable for ACE3 (for glueless FIFO interface)  
Asynchronous memory ready input  
AARDY  
I = Input, O = Output, Z = High impedance, S = Supply voltage, GND = Ground, A = Analog Signal  
IPD = Internal pulldown, IPU = Internal pullup. (These IPD/IPU signal pins feature a 30-kIPD or IPU resistor. To pull up a signal to the opposite  
supply rail, a 1-kresistor should be used.)  
§
These pins are multiplexed pins. For more details, see the Device Configurations section of this data sheet.  
58  
SPRS247E  
April 2004 Revised May 2005  
Terminal Functions  
Table 39. Terminal Functions (Continued)  
IPD/  
IPU  
NAME  
NO.  
DESCRIPTION  
TYPE  
EMIFA (32-BIT) ADDRESS  
AEA22  
AEA21  
AEA20  
AEA19  
AEA18  
AEA17  
AEA16  
AEA15  
AEA14  
AEA13  
AEA12  
AEA11  
AEA10  
AEA9  
M21  
N21  
P22  
N22  
H22  
H21  
J20  
I/O/Z  
IPD  
EMIFA external address (word address)  
Note: EMIF address numbering for the C6413/C6410 devices starts with AEA3 to  
maintain signal name compatibility with other C64xdevices (e.g., C6411, C6414,  
C6415, and C6416) [see the 64-bit EMIF adressing scheme in the TMS320C6000 DSP  
External Memory Interface (EMIF) Reference Guide (literature number SPRU266)].  
Also controls initialization of DSP modes at reset (I) via pullup/pulldown resistors  
Boot mode (AEA[22:21]):  
H20  
G20  
K20  
B21  
B22  
D21  
D22  
E21  
E22  
F21  
M20  
J19  
00 – No boot (default mode)  
01 HPI boot (based on HPI_EN pin)  
10 Reserved  
11 EMIFA 8-bit ROM boot  
EMIF clock select  
O/Z  
IPD  
AEA[20:19]: Clock mode select for EMIFA (AECLKIN_SEL[1:0])  
00 – AECLKIN (default mode)  
01 CPU/4 Clock Rate  
AEA8  
AEA7  
10 CPU/6 Clock Rate  
11 Reserved  
AEA6  
AEA5  
For more details, see the Device Configurations section of this data sheet.  
AEA4  
AEA3  
L20  
EMIFA (32-BIT) DATA  
AED31  
AED30  
AED29  
AED28  
AED27  
AED26  
AED25  
AED24  
AED23  
AED22  
AED21  
AED20  
AED19  
AED18  
AED17  
AED16  
AED15  
W21  
W22  
V20  
W20  
AA22  
Y20  
AA21  
AB22  
P20  
I/O/Z  
IPU  
EMIFA external data  
R22  
R21  
U21  
V21  
T20  
V22  
U20  
A18  
AED14  
D17  
I = Input, O = Output, Z = High impedance, S = Supply voltage, GND = Ground, A = Analog Signal  
IPD = Internal pulldown, IPU = Internal pullup. (These IPD/IPU signal pins feature a 30-kIPD or IPU resistor. To pull up a signal to the opposite  
supply rail, a 1-kresistor should be used.)  
§
These pins are multiplexed pins. For more details, see the Device Configurations section of this data sheet.  
59  
April 2004 Revised May 2005  
SPRS247E  
Terminal Functions  
Table 39. Terminal Functions (Continued)  
IPD/  
IPU  
NAME  
NO.  
DESCRIPTION  
TYPE  
EMIFA (32-BIT) DATA (CONTINUED)  
AED13  
AED12  
AED11  
AED10  
AED9  
AED8  
AED7  
AED6  
AED5  
AED4  
AED3  
AED2  
AED1  
AED0  
B18  
C18  
A19  
C19  
B19  
A21  
D15  
A15  
B15  
C15  
A16  
C16  
B16  
C17  
I/O/Z  
IPU  
EMIFA external data  
TIMER 2  
No external pins. The timer 2 peripheral pins are not pinned out as external pins.  
TIMER 1  
Timer 1 output (O/Z) or device endian mode (I).  
Also controls initialization of DSP modes at reset via pullup/pulldown resistors  
Device Endian mode  
TOUT1/LENDIAN  
TINP1  
AA1  
AB1  
I/O/Z  
I
IPU  
IPD  
0
1
Big Endian  
Little Endian (default)  
For more details on LENDIAN, see the Device Configurations section of this data sheet.  
Timer 1 or general-purpose input  
TIMER 0  
Timer 0 output pin and HPI enable HPI_EN pin function  
The HPI_EN pin function selects whether the HPI peripheral or McASP1 peripheral,  
and GP0[15:8] pins are functionally enabled  
0
HPI is enabled and the McASP1 peripheral and GP0 [15:8] pins are disabled  
(default mode); [HPI32, if HD5 = 1; HPI16 if HD5 = 0]  
HPI I is disabled and the McASP1 peripheral and GP0 [15:8] pins are  
enabled  
TOUT0/HPI_EN  
TINP0  
AA2  
AB2  
I/O/Z  
IPD  
IPD  
1
For more details, see the Device Configurations section of this data sheet.  
I
Timer 0 or general-purpose input  
INTER-INTEGRATED CIRCUIT 1 (I2C1)  
SCL1  
SDA1  
AA18  
AA19  
I/O/Z  
I/O/Z  
I2C1 clock. When the I2C module is used, use an external pullup resistor on this pin.  
I2C1 data. When I2C is used, ensure there is an external pullup resistors on this pin.  
INTER-INTEGRATED CIRCUIT 0 (I2C0)  
SCL0  
AB18  
AB19  
I/O/Z  
I/O/Z  
I2C0 clock. When I2C is used, ensure there is an external pullup resistors on this pin.  
I2C0 data. When I2C is used, ensure there is an external pullup resistors on this pin.  
SDA0  
I = Input, O = Output, Z = High impedance, S = Supply voltage, GND = Ground, A = Analog Signal  
IPD = Internal pulldown, IPU = Internal pullup. (These IPD/IPU signal pins feature a 30-kIPD or IPU resistor. To pull up a signal to the opposite  
supply rail, a 1-kresistor should be used.)  
§
These pins are multiplexed pins. For more details, see the Device Configurations section of this data sheet.  
60  
SPRS247E  
April 2004 Revised May 2005  
Terminal Functions  
Table 39. Terminal Functions (Continued)  
IPD/  
IPU  
NAME  
NO.  
DESCRIPTION  
TYPE  
MULTICHANNEL BUFFERED SERIAL PORT 1 (McBSP1)  
CLKR1  
FSR1  
DR1  
G3  
G2  
F1  
I/O/Z  
I/O/Z  
I
IPD  
IPD  
IPD  
IPD  
IPD  
IPD  
IPD  
McBSP1 receive clock  
McBSP1 receive frame sync  
McBSP1 receive data  
CLKS1  
DX1  
G1  
H2  
H3  
H1  
I
McBSP1 external clock source (as opposed to internal)  
McBSP1 transmit data  
O/Z  
I/O/Z  
I/O/Z  
FSX1  
CLKX1  
McBSP1 transmit frame sync  
McBSP1 transmit clock  
MULTICHANNEL BUFFERED SERIAL PORT 0 (McBSP0)  
CLKR0  
FSR0  
DR0  
C2  
D1  
D2  
D3  
E2  
E4  
E3  
I/O/Z  
I/O/Z  
I
IPD  
IPD  
IPD  
IPD  
IPD  
IPD  
IPD  
McBSP0 receive clock  
McBSP0 receive frame sync  
McBSP0 receive data  
CLKS0  
DX0  
I
McBSP0 external clock source (as opposed to internal)  
McBSP0 transmit data  
O/Z  
I/O/Z  
I/O/Z  
FSX0  
CLKX0  
McBSP0 transmit frame sync  
McBSP0 transmit clock  
MULTICHANNEL AUDIO SERIAL PORT 0 (McASP0)  
AHCLKX0  
AFSX0  
N1  
M2  
M1  
K4  
J4  
I/O/Z  
I/O/Z  
I/O/Z  
I/O/Z  
I
IPD  
IPD  
IPD  
IPD  
IPD  
IPD  
IPD  
IPD  
McASP0 transmit high-frequency master clock.  
McASP0 transmit frame sync or left/right clock (LRCLK).  
McASP0 transmit bit clock.  
ACLKX0  
AMUTE0  
AMUTEIN0  
AHCLKR0  
AFSR0  
McASP0 mute output.  
McASP0 mute input.  
L1  
I/O/Z  
I/O/Z  
I/O/Z  
McASP0 receive high-frequency master clock.  
McASP0 receive frame sync or left/right clock (LRCLK).  
McASP0 receive bit clock.  
K2  
K1  
P3  
N3  
M3  
L3  
ACLKR0  
AXR0[5]  
AXR0[4]  
AXR0[3]  
AXR0[2]  
AXR0[1]  
McASP0 TX/RX data pin [5].  
McASP0 TX/RX data pin [4].  
McASP0 TX/RX data pins [3].  
I/O/Z  
IPD  
McASP0 TX/RX data pin [2].  
K3  
L2  
McASP0 TX/RX data pin [1].  
AXR0[0]  
McASP0 TX/RX data pins[0].  
I = Input, O = Output, Z = High impedance, S = Supply voltage, GND = Ground, A = Analog Signal  
IPD = Internal pulldown, IPU = Internal pullup. (These IPD/IPU signal pins feature a 30-kIPD or IPU resistor. To pull up a signal to the opposite  
supply rail, a 1-kresistor should be used.)  
§
These pins are multiplexed pins. For more details, see the Device Configurations section of this data sheet.  
61  
April 2004 Revised May 2005  
SPRS247E  
Terminal Functions  
Table 39. Terminal Functions (Continued)  
IPD/  
IPU  
NAME  
NO.  
DESCRIPTION  
TYPE  
MCASP1  
Host control selects between control, address, or data registers (I) [default] or  
McASP1 receive frame sync input 1 (I).  
HCNTL0/AFSR1[1]  
HHWIL/AFSR1[2]  
Y6  
Y7  
Host half-word select first or second half-word (not necessarily high or low order)  
[For HPI16 bus width selection only] (I) [default] oror McASP1 receive frame sync  
input 2 (I) .  
I
IPU  
HR/W/AFSR1[3]  
HAS/ACLKR1[1]  
HCS/ACLKR1[2]  
HDS1/ACLKR1[3]  
AA5  
Y5  
Host read or write select (I) [default] or McASP1 receive frame sync input 3 (I).  
Host address strobe (I) [default] or McASP1 receive clock input 1 (I).  
Host chip select (I) [default] or McASP1 receive clock input 2 (I).  
Host data strobe 1 (I) [default] or McASP1 receive clock input 3 (I).  
AA11  
AB11  
Host-port data pin 27 (I/O/Z) [default] or McASP1 transmit high-frequency master clock  
(I/O/Z).  
HD27/AHCLKX1  
HD22/AFSX1  
Y4  
I/O/Z  
I/O/Z  
IPU  
IPU  
Host-port data pin 22 (I/O/Z) [default] or McASP1 transmit frame sync or left/right clock  
(LRCLK) (I/O/Z) .  
AB5  
HD24/ACLKX1  
HD28/AMUTE1  
HD29/AMUTEIN1  
AA4  
W10  
W11  
I/O/Z  
I/O/Z  
I
IPU  
IPU  
IPU  
Host-port data pin 24 (I/O/Z) [default] or McASP1 transmit bit clock (I/O/Z).  
Host-port data pin 28 (I/O/Z) [default] or McASP1 mute output (I/O/Z).  
Host-port data pin 29 (I/O/Z) [default] or McASP1 mute input (I).  
Host-port data pin 26 (I/O/Z) [default] or McASP1 receive high-frequency master clock  
(I/O/Z).  
HD26/AHCLKR1  
HD23/AFSR1  
AB4  
AB9  
I/O/Z  
IPU  
Host-port data pin 23 (I/O/Z) [default] or McASP1 receive frame sync or left/right clock  
(LRCLK) (I/O/Z).  
I/O/Z  
I/O/Z  
IPU  
IPU  
HD25/ACLKR1  
HD21/AXR1[5]  
HD20/AXR1[4]  
HD19/AXR1[3]  
HD18/AXR1[2]  
HD17/AXR1[1]  
HD16/AXR1[0]  
AA9  
Y9  
Host-port data pin 25 (I/O/Z) [default] or McASP1 receive bit clock (I/O/Z).  
AB8  
AA6  
AB7  
AA7  
AB6  
I/O/Z  
IPU  
Host-port data pins [21:16] (I/O/Z) [default] or McASP1 TX/RX data pins [5:0] (I/O/Z).  
HOST-PORT INTERFACE (HPI)  
HINT  
AA8  
W7  
O/Z  
I
IPU  
IPU  
Host interrupt from DSP to host (O)  
HCNTL1  
Host control selects between control, address, or data registers (I)  
Host control selects between control, address, or data registers (I) [default] or  
McASP1 receive frame sync input 1 (I).  
HCNTL0/AFSR1[1]  
HHWIL/AFSR1[2]  
Y6  
Y7  
Host half-word select first or second half-word (not necessarily high or low order)  
[For HPI16 bus width selection only] (I) [default] or McASP1 receive frame sync  
input 2 (I).  
I
IPU  
HR/W/AFSR1[3]  
HAS/ACLKR1[1]  
HCS/ACLKR1[2]  
HDS1/ACLKR1[3]  
HDS2  
AA5  
Y5  
Host read or write select (I) [default] or McASP1 receive frame sync input 3 (I).  
Host address strobe (I) [default] or McASP1 receive clock input 1 (I).  
Host chip select (I) [default] or McASP1 receive clock input 2 (I).  
Host data strobe 1 (I) [default] or McASP1 receive clock input 3 (I).  
Host data strobe 2 (I)  
AA11  
AB11  
AB12  
Y10  
I
IPU  
IPU  
HRDY  
O/Z  
Host ready from DSP to host (O)  
I = Input, O = Output, Z = High impedance, S = Supply voltage, GND = Ground, A = Analog Signal  
IPD = Internal pulldown, IPU = Internal pullup. (These IPD/IPU signal pins feature a 30-kIPD or IPU resistor. To pull up a signal to the opposite  
supply rail, a 1-kresistor should be used.)  
§
These pins are multiplexed pins. For more details, see the Device Configurations section of this data sheet.  
62  
SPRS247E  
April 2004 Revised May 2005  
Terminal Functions  
Table 39. Terminal Functions (Continued)  
IPD/  
IPU  
NAME  
NO.  
DESCRIPTION  
TYPE  
HOST-PORT INTERFACE (HPI) (CONTINUED)  
HD31  
HD30  
Y8  
I/O/Z  
I/O/Z  
I
IPU  
IPU  
IPU  
IPU  
Host-port data pin 31 (I/O/Z)  
Y11  
W11  
W10  
Host-port data pin 30 (I/O/Z)  
HD29/AMUTEIN1  
HD28/AMUTE1  
Host-port data pin 29 (I/O/Z) [default] or McASP1 mute input (I).  
I/O/Z  
Host-port data pin 28 (I/O/Z) [default] or McASP1 mute output (I/O/Z).  
Host-port data pin 27 (I/O/Z) [default] or McASP1 transmit high-frequency master clock  
(I/O/Z).  
HD27/AHCLKX1  
HD26/AHCLKR1  
Y4  
I/O/Z  
I/O/Z  
IPU  
IPU  
Host-port data pin 26 (I/O/Z) [default] or McASP1 receive high-frequency master clock  
(I/O/Z).  
AB4  
HD25/ACLKR1  
HD24/ACLKX1  
AA9  
AA4  
I/O/Z  
I/O/Z  
IPU  
IPU  
Host-port data pin 25 (I/O/Z) [default] or McASP1 receive bit clock (I/O/Z).  
Host-port data pin 24 (I/O/Z) [default] or McASP1 transmit bit clock (I/O/Z).  
Host-port data pin 23 (I/O/Z) [default] or McASP1 receive frame sync or left/right clock  
(LRCLK) (I/O/Z).  
HD23/AFSR1  
HD22/AFSX1  
AB9  
AB5  
I/O/Z  
I/O/Z  
IPU  
IPU  
Host-port data pin 22 (I/O/Z) [default] or McASP1 transmit frame sync or left/right clock  
(LRCLK) (I/O/Z).  
HD21/AXR1[5]  
HD20/AXR1[4]  
HD19/AXR1[3]  
HD18/AXR1[2]  
HD17/AXR1[1]  
HD16/AXR1[0]  
HD15/GP0[15]  
HD14/GP0[14]  
Y9  
AB8  
AA6  
I/O/Z  
IPU  
Host-port data [21:16] pin (I/O/Z) [default] or McASP1 TX/RX data pins [5:0] (I/O/Z).  
AB7  
AA7  
AB6  
Y12  
AA12  
AB13  
Y14  
]
HD13/GP0[13  
HD12/GP0[12]  
HD11/GP0[11]  
HD10/GP0[10]  
HD9/GP0[9]  
HD8/GP0[8]  
HD7  
Host-port data [15:8] pins (I/O/Z) [default] or General-purpose input/output (GP0) [15:8]  
pins (I/O/Z).  
I/O/Z  
IPU  
AB14  
AA15  
Y16  
AB16  
W12  
AA13  
Y13  
Host-port data [7:0] pins (I/O/Z)  
HD6  
Host-Port bus width user-configurable at device reset via a 1-kpullup/  
pulldown resistor on the HD5 pin (I):  
HD5  
HD4  
AA14  
AB15  
AA16  
Y15  
I/O/Z  
IPU  
HD5 pin = 0: HPI operates as an HPI16.  
(HPI bus is 16 bits wide. HD[15:0] pins are used and the remaining HD[31:16] pins  
are reserved pins in the high-impedance state.)  
HD3  
HD2  
HD1  
HD5 pin = 1: HPI operates as an HPI32.  
HD0  
W15  
(HPI bus is 32 bits wide. All HD[31:0] pins are used for host-port operations.)  
I = Input, O = Output, Z = High impedance, S = Supply voltage, GND = Ground, A = Analog Signal  
IPD = Internal pulldown, IPU = Internal pullup. (These IPD/IPU signal pins feature a 30-kIPD or IPU resistor. To pull up a signal to the opposite  
supply rail, a 1-kresistor should be used.)  
§
These pins are multiplexed pins. For more details, see the Device Configurations section of this data sheet.  
63  
April 2004 Revised May 2005  
SPRS247E  
Terminal Functions  
Table 39. Terminal Functions (Continued)  
SIGNAL  
NAME  
IPD/  
IPU  
DESCRIPTION  
TYPE  
NO.  
RESERVED FOR TEST  
Reserved. This pin must be connected directly to CV for proper device operation.  
RSV  
RSV  
RSV  
U4  
F3  
A
A
DD  
Reserved. This pin must be connected directly to DV for proper device operation.  
DD  
C8  
I
IPD  
Reserved. This pin must be connected directly to V for proper device operation.  
SS  
B11  
B12  
C10  
D7  
A
I
O
IPU  
RSV  
Reserved (leave unconnected, do not connect to power or ground)  
O/Z  
O/Z  
D8  
SUPPLY VOLTAGE PINS  
A3  
A5  
A8  
A9  
A14  
A17  
A20  
B1  
C22  
E1  
G22  
J1  
DV  
S
3.3-V supply voltage  
DD  
M22  
P1  
T22  
W1  
Y2  
Y17  
Y19  
Y22  
AB3  
AB10  
AB17  
AB20  
I = Input, O = Output, Z = High impedance, S = Supply voltage, GND = Ground, A = Analog Signal  
IPD = Internal pulldown, IPU = Internal pullup. (These IPD/IPU signal pins feature a 30-kIPD or IPU resistor. To pull up a signal to the opposite  
supply rail, a 1-kresistor should be used.)  
64  
SPRS247E  
April 2004 Revised May 2005  
Terminal Functions  
Table 39. Terminal Functions (Continued)  
SIGNAL  
NAME  
IPD/  
IPU  
DESCRIPTION  
TYPE  
NO.  
SUPPLY VOLTAGE PINS (CONTINUED)  
D5  
D6  
D9  
D11  
D12  
D14  
D18  
E19  
F19  
G4  
H4  
CV  
S
1.2-V supply voltage (-400, -500 devices)  
DD  
L19  
M4  
M19  
N4  
V4  
V19  
W5  
W9  
W13  
W16  
W18  
GROUND PINS  
A1  
A10  
B2  
B5  
B8  
B14  
B17  
B20  
C1  
V
SS  
GND  
Ground pins  
C3  
C5  
C7  
I = Input, O = Output, Z = High impedance, S = Supply voltage, GND = Ground, A = Analog Signal  
IPD = Internal pulldown, IPU = Internal pullup. (These IPD/IPU signal pins feature a 30-kIPD or IPU resistor. To pull up a signal to the opposite  
supply rail, a 1-kresistor should be used.)  
65  
April 2004 Revised May 2005  
SPRS247E  
Terminal Functions  
Table 39. Terminal Functions (Continued)  
SIGNAL  
NAME  
IPD/  
IPU  
DESCRIPTION  
TYPE  
NO.  
GROUND PINS (CONTINUED)  
C14  
C21  
D4  
D10  
D19  
F2  
F4  
G19  
G21  
J2  
J3  
K19  
L4  
L22  
N2  
N19  
P4  
V
SS  
GND  
Ground pins  
T21  
U19  
W4  
W6  
W8  
W14  
W17  
W19  
Y3  
Y18  
Y21  
AA3  
AA10  
AA17  
AA20  
I = Input, O = Output, Z = High impedance, S = Supply voltage, GND = Ground, A = Analog Signal  
IPD = Internal pulldown, IPU = Internal pullup. (These IPD/IPU signal pins feature a 30-kIPD or IPU resistor. To pull up a signal to the opposite  
supply rail, a 1-kresistor should be used.)  
66  
SPRS247E  
April 2004 Revised May 2005  
Development Support  
3.11 Development Support  
In case the customer would like to develop their own features and software on the TMS320C6413/C6410  
device, TI offers an extensive line of development tools for the TMS320C6000DSP platform, including tools  
to evaluate the performance of the processors, generate code, develop algorithm implementations, and fully  
integrate and debug software and hardware modules. The tool’s support documentation is electronically  
available within the Code Composer StudioIntegrated Development Environment (IDE).  
The following products support development of C6000DSP-based applications:  
Software Development Tools:  
Code Composer StudioIntegrated Development Environment (IDE): including Editor  
C/C++/Assembly Code Generation, and Debug plus additional development tools  
Scalable, Real-Time Foundation Software (DSP/BIOS), which provides the basic run-time target software  
needed to support any DSP application.  
Hardware Development Tools:  
Extended Development System (XDS) Emulator (supports C6000DSP multiprocessor system debug)  
EVM (Evaluation Module)  
For a complete listing of development-support tools for the TMS320C6000DSP platform, visit the Texas  
Instruments web site on the Worldwide Web at http://www.ti.com uniform resource locator (URL). For  
information on pricing and availability, contact the nearest TI field sales office or authorized distributor.  
Code Composer Studio, DSP/BIOS, and XDS are trademarks of Texas Instruments.  
67  
April 2004 Revised May 2005  
SPRS247E  
 
Device Support  
3.12 Device Support  
3.12.1 Device and Development-Support Tool Nomenclature  
To designate the stages in the product development cycle, TI assigns prefixes to the part numbers of all DSP  
devices and support tools. Each DSP commercial family member has one of three prefixes: TMX, TMP, or TMS  
(e.g., TMS320C6412GDK600). Texas Instruments recommends two of three possible prefix designators for  
its support tools: TMDX and TMDS. These prefixes represent evolutionary stages of product development  
from engineering prototypes (TMX/TMDX) through fully qualified production devices/tools (TMS/TMDS).  
Device development evolutionary flow:  
TMX Experimental device that is not necessarily representative of the final device’s electrical  
specifications.  
TMP Final silicon die that conforms to the device’s electrical specifications but has not completed quality  
and reliability verification.  
TMS Fully qualified production device.  
Support tool development evolutionary flow:  
TMDX Development-support product that has not yet completed Texas Instruments internal qualification  
testing.  
TMDS Fully qualified development-support product.  
TMX and TMP devices and TMDX development-support tools are shipped against the following disclaimer:  
“Developmental product is intended for internal evaluation purposes.”  
TMS devices and TMDS development-support tools have been characterized fully, and the quality and  
reliability of the device have been demonstrated fully. TI’s standard warranty applies.  
Predictions show that prototype devices (TMX or TMP) have a greater failure rate than the standard  
production devices. Texas Instruments recommends that these devices not be used in any production system  
because their expected end-use failure rate still is undefined. Only qualified production devices are to be used.  
TI device nomenclature also includes a suffix with the device family name. This suffix indicates the package  
type (for example, GTS), the temperature range (for example, “A” is the extended temperature range), and  
the device speed range in megahertz (for example, -500 is 500 MHz). Figure 37 provides a legend for  
reading the complete device name for any TMS320C6000DSP platform member.  
The ZTS package, like the GTS package, is a 288-ball plastic BGA only with PB-free balls. For device part  
numbers and further ordering information for TMS320C6413/C6410 in the GTS and ZTS package types, see  
the TI website (http://www.ti.com) or contact your TI sales representative.  
68  
SPRS247E  
April 2004 Revised May 2005  
 
Device Support  
( A )  
TMS 320 C6413 GTS  
500  
PREFIX  
DEVICE SPEED RANGE  
TMX= Experimental device  
500 (500-MHz CPU, 100-MHz EMIF) [C6413]  
400 (400-MHz CPU, 100-MHz EMIF) [C6410]  
TMP= Prototype device  
TMS= Qualified device  
SMX= Experimental device, MIL  
SMJ = MIL-PRF-38535, QML  
SM = High Rel (non-38535)  
TEMPERATURE RANGE (DEFAULT: 0°C TO 90°C)  
Blank = 0°C to 90°C, commercial temperature  
A
=
40°C to 105°C, extended temperature  
DEVICE FAMILY  
320 = TMS320t DSP family  
§  
PACKAGE TYPE  
GTS = 288-pin plastic BGA  
ZTS = 288-pin plastic BGA, with Pb-free soldered balls  
DEVICE  
C64x DSP:  
6413  
6410  
The extended temperature “A version” devices may have different operating conditions than the commercial temperature devices.  
For more details, see the recommended operating conditions portion of this data sheet.  
§
BGA  
=
Ball Grid Array  
The ZTS mechanical package designator represents the version of the GTS package with Pb-free balls. For more detailed  
information, see the Mechanical Data section of this document.  
For actual device part numbers (P/Ns) and ordering information, see the TI website (www.ti.com).  
Figure 37. TMS320C6413/C6410 DSP Device Nomenclature  
For additional information, see the TMS320C6413, TMS320C6410 Digital Signal Processors Silicon Errata  
(literature number SPRZ219)  
69  
April 2004 Revised May 2005  
SPRS247E  
 
Device Support  
3.12.2 Documentation Support  
Extensive documentation supports all TMS320DSP family generations of devices from product  
announcement through applications development. The types of documentation available include: data  
sheets, such as this document, with design specifications; complete user’s reference guides for all devices  
and tools; technical briefs; development-support tools; on-line help; and hardware and software applications.  
The following is a brief, descriptive list of support documentation specific to the C6000DSP devices:  
The TMS320C6000 CPU and Instruction Set Reference Guide (literature number SPRU189) describes the  
C6000DSP CPU (core) architecture, instruction set, pipeline, and associated interrupts.  
The TMS320C6000 DSP Peripherals Overview Reference Guide (literature number SPRU190) provides an  
overview and briefly describes the functionality of the peripherals available on the C6000DSP platform of  
devices. This document also includes a table listing the peripherals available on the C6000 devices along with  
literature numbers and hyperlinks to the associated peripheral documents.  
The TMS320C64x Technical Overview (literature number SPRU395) gives an introduction to the C64x™  
digital signal processor, and discusses the application areas that are enhanced by the C64xDSP  
VelociTI.2VLIW architecture.  
The TMS320C6000 DSP Multichannel Audio Serial Port (McASP) Reference Guide (literature number  
SPRU041) describes the functionality of the McASP peripheral.  
TMS320C6000 DSP Inter-Integrated Circuit (I2C) Module Reference Guide (literature number SPRU175)  
describes the functionality of the I2C peripherals available on the C6413/C6410 device except for the  
additional interrupt and new GPIO capability. For more detailed information on the additional interrupt and  
GPIO capability, see the I2C section of this data manual and the TMS320C6410/C6413 DSP Inter-Integrated  
Circuit (I2C) Module Reference Guide (literature number SPRZ221).  
The TMS320C6413, TMS320C6410 Digital Signal Processors Silicon Errata (literature number SPRZ219)  
describes the known exceptions to the functional specifications for particular silicon revisions of the  
TMS320C6413 and TMS320C6410 devices.  
The Using IBIS Models for Timing Analysis application report (literature number SPRA839) describes how to  
properly use IBIS models to attain accurate timing analysis for a given system.  
The tools support documentation is electronically available within the Code Composer StudioIntegrated  
Development Environment (IDE). For a complete listing of C6000DSP latest documentation, visit the Texas  
Instruments web site on the Worldwide Web at http://www.ti.com uniform resource locator (URL).  
TMS320 is a trademark of Texas Instruments.  
70  
SPRS247E  
April 2004 Revised May 2005  
 
Peripherals Detailed Description (Device-Specific)  
4
Peripherals Detailed Description (Device-Specific)  
4.1  
Clock PLL and Oscillator  
Most of the internal C64xDSP clocks are generated from a single source through the CLKIN pin. This source  
clock either drives the PLL, which multiplies the source clock frequency to generate the internal CPU clock,  
or bypasses the PLL to become the internal CPU clock.  
To use the PLL to generate the CPU clock, the external PLL filter circuit must be properly designed. Figure 41  
shows the external PLL circuitry for either x1 (PLL bypass) or other PLL multiply modes.  
To minimize the clock jitter, a single clean power supply should power both the C64xDSP device and the  
external clock oscillator circuit. The minimum CLKIN rise and fall times should also be observed. For the input  
clock timing requirements, see the input and output clocks electricals section.  
Rise/fall times, duty cycles (high/low pulse durations), and the load capacitance of the external clock source  
must meet the DSP requirements in this data sheet (see the electrical characteristics over recommended  
ranges of supply voltage and operating case temperature table and the input and output clocks electricals  
section).  
71  
April 2004 Revised May 2005  
SPRS247E  
 
Clock PLL and Oscillator  
3.3 V  
CPU Clock  
C1  
C2  
Peripheral Bus, EDMA  
Clock  
EMI  
Filter  
/2  
/8  
/4  
/6  
10 µF 0.1 µF  
Timer Internal Clock  
CLKOUT4, Peripheral Clock  
CLKOUT6  
PLLV  
CLKMODE0  
CLKMODE1  
CLKMODE2  
CLKMODE3  
PLLMULT  
PLL  
x5, x6x12, x16,  
x18x22, x24  
00 01 10  
PLLCLK  
1
0
/4  
/2  
CLKINSEL  
CLKIN  
EK2RATE  
00 01 10  
EMIF  
(GBLCTL.[19,18])  
C5  
470 pF  
OSCV  
DD  
1
AUXCLK  
for McASPs  
OSCIN  
C7  
0
Osc.  
R
OSCOUT  
C8  
R
B
S
OSCV  
SS  
C6  
470 pF  
OSC_DIS  
AECLKIN  
AEA[20:19]  
Internal to C6413/10  
(For the PLL options, CLKMODE pins setup, and PLL clock frequency ranges,  
see Table 41 and Table 42.)  
ECLKOUT1 ECLKOUT2  
Exact values for these components depend on choice of crystal. For recommended crystal and component values, see Table 43.  
Do not connect any of these nodes to board power or ground if the oscillator is used. They are internally connected for proper operation.  
If CLKIN is being used instead of the oscillator, then OSCV and OSCV may either be left open, or OSCV may be tied to CV and  
DD  
SS  
DD  
DD  
OSCV may be tied to ground.  
SS  
NOTES: A. Place all PLL external components (C1, C2, and the EMI Filter) as close to the C6000DSP device as possible. For the best  
performance, TI recommends that all the PLL external components be on a single side of the board without jumpers, switches, or  
components other than the ones shown.  
B. For reduced PLL jitter, maximize the spacing between switching signals and the PLL external components (C1, C2, and the EMI  
Filter).  
C. The 3.3-V supply for the EMI filter must be from the same 3.3-V power plane supplying the I/O voltage, DV  
.
DD  
D. EMI filter manufacturer TDK part number ACF451832-333, -223, -153, -103. Panasonic part number EXCCET103U.  
E. If CLKIN is used instead of OSCIN, tie OSCIN to Ground to minimize noise and current. (Do not leave OSCIN floating.)  
Figure 41. External PLL Circuitry for Either PLL Multiply Modes or x1 (Bypass) Mode  
72  
SPRS247E  
April 2004 Revised May 2005  
 
Clock PLL and Oscillator  
For proper C6413/C6410 device operation, the CLKINSEL pin must be used in conjunction with the OSC_DIS  
pin. The OSC_DIS pin must follow the CLKINSEL pin operation. For more details on these two configuration  
pins, see the Device Configuration at Device Reset section of this data sheet.  
Table 41. TMS320C6413 PLL Multiply Factor Options, Clock Frequency Ranges,  
and Typical Lock Time for 500 Devices  
GTS and ZTS PACKAGES 23 x 23 mm BGA  
CPU CLOCK  
FREQUENCY  
RANGE  
CPU CLOCK  
FREQUENCY  
RANGE  
CLKIN  
RANGE  
(MHz)  
OSCIN  
RANGE  
(MHz)  
TYPICAL  
CLKMODE  
(PLL MULTIPLY FACTORS)  
CLKMODE[3:0]  
LOCK TIME  
(µs)  
(MHz)  
(MHz)  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
Bypass (x1)  
x5  
12100  
28100  
2383  
2071  
1763  
1556  
1450  
1245  
1242  
1231  
1228  
1226  
1225  
1224  
1223  
1221  
12100  
140500  
140500  
140500  
140500  
140500  
140500  
140500  
144500  
192500  
216500  
228500  
240500  
252500  
264500  
288500  
1230  
2830  
2330  
2030  
1730  
1530  
1430  
1230  
1230  
1230  
1228  
1226  
1225  
1224  
1223  
1221  
1230  
N/A  
140150  
140180  
140210  
140240  
140270  
140300  
140330  
144360  
192480  
216500  
228500  
240500  
252500  
264500  
288500  
x6  
x7  
x8  
x9  
x10  
x11  
x12  
x16  
x18  
x19  
x20  
x21  
x22  
x24  
75  
Use external pullup resistors on the CLKMODE pins (CLKMODE1 and CLKMODE0) to set the C6413/C6410 device to one of the valid PLL  
multiply clock modes (x5, x6, x7, x8, x9, x10, x11, x12, x16, x18, x19, x20, x21, x22, or x24). With internal pulldown resistors on the CLKMODE  
pins (CLKMODE3, CLKMODE2, CLKMODE1, CLKMODE0), the default clock mode is x1 (bypass).  
Under some operating conditions, the maximum PLL lock time may vary by as much as 150% from the specified typical value. For example, if  
the typical lock time is specified as 100 µs, the maximum value may be as long as 250 µs.  
73  
April 2004 Revised May 2005  
SPRS247E  
 
 
Clock PLL and Oscillator  
Table 42. TMS320C6410 PLL Multiply Factor Options, Clock Frequency Ranges,  
and Typical Lock Time for 400 Devices  
GTS and ZTS PACKAGES 23 x 23 mm BGA  
CPU CLOCK  
CLKIN  
CPU CLOCK  
FREQUENCY  
RANGE  
OSCIN  
RANGE  
(MHz)  
TYPICAL  
CLKMODE  
(PLL MULTIPLY FACTORS)  
FREQUENCY  
RANGE  
CLKMODE[3:0]  
RANGE  
(MHz)  
LOCK TIME  
(µs)  
(MHz)  
(MHz)  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
Bypass (x1)  
x5  
12100  
2880  
2367  
2057  
1750  
1544  
1440  
1236  
1233  
1225  
1222  
1221  
1220  
1219  
1218  
1217  
12100  
140400  
140400  
140400  
140400  
140400  
140400  
140400  
144400  
192400  
216400  
228400  
240400  
252400  
264400  
288400  
1230  
2830  
2330  
2030  
1730  
1530  
1430  
1230  
1230  
1225  
1222  
1221  
1220  
1219  
1218  
1217  
1230  
N/A  
140150  
140180  
140210  
140240  
140270  
140300  
140330  
144360  
192400  
216400  
228400  
240400  
252400  
264400  
288400  
x6  
x7  
x8  
x9  
x10  
x11  
x12  
x16  
x18  
x19  
x20  
x21  
x22  
x24  
75  
Use external pullup resistors on the CLKMODE pins (CLKMODE1 and CLKMODE0) to set the C6413/C6410 device to one of the valid PLL  
multiply clock modes (x5, x6, x7, x8, x9, x10, x11, x12, x16, x18, x19, x20, x21, x22, or x24). With internal pulldown resistors on the CLKMODE  
pins (CLKMODE3, CLKMODE2, CLKMODE1, CLKMODE0), the default clock mode is x1 (bypass).  
Under some operating conditions, the maximum PLL lock time may vary by as much as 150% from the specified typical value. For example, if  
the typical lock time is specified as 100 µs, the maximum value may be as long as 250 µs.  
For the lowest jitter on the oscillator circuit, it is recommended that a pair of 470-pF capacitors be connected  
between isolated (not directly connected to the board supply) OSCV and OSCV pins. This helps to cancel  
DD  
SS  
out switching noise from other circuits on the DSP device.  
Table 43 shows a recommended crystal and tank circuit values for the C6413/C6410 PLL circuitry.  
Table 43. Crystal and Tank Circuit Recommendations  
Components  
RECOMMENDED PART NUMBERS or VALUES  
MANUFACTURER  
1AS245766AHA (SMD-49)  
24.576 MHz  
1AF245766AAA (AT-49)  
1AS225796AG (SMD-49)  
1AF225796A (AT-49)  
1 MΩ  
Crystal  
KDSDiashinku Corp.  
22.5792 MHz  
R
R
B
S
0 Ω  
C7  
C8  
8 pF  
74  
SPRS247E  
April 2004 Revised May 2005  
 
 
Host-Port Interface (HPI) Peripheral  
4.2  
Host-Port Interface (HPI) Peripheral  
The TMS320C6413/C6410 device includes a user-configurable 16-bit or 32-bit Host-port interface  
(HPI16/HPI32). On the C6413/C6410 device the HPI peripheral pins are muxed with the McASP1 and GP0  
peripheral pins. By default, the HPI peripheral pin functions are enabled. For more detailed information on the  
C6413/C6410 device pin muxing, see the Device Configurations section of this data sheet.  
The HPI peripheral can be disabled or enabled at reset through the HPI enable function of the TOUT0/HPI_EN  
pin. The HPI is enabled when the TOUT0/HPI_EN pin is sampled low at reset and it is disabled if the pin is  
sample high at reset. The TOUT0/HPI_EN pin has an internal pulldown that enables the HPI by default.  
However, the HPI can be disabled via an external pullup resistor or by having an external device such as an  
FPGA/CPLD drive that pin high at reset. In the latter case, the external device should ensure it has stopped  
driving this pin to avoid contention. The HPI enable function can only be set a reset and cannot be changed  
via software.  
The HD5 pin controls the HPI_WIDTH, allowing the user to configure the HPI as a 16-bit or 32-bit peripheral.  
For more details on HPI peripheral configuration and the associated pins, see the Device Configurations  
section of this data sheet.  
75  
April 2004 Revised May 2005  
SPRS247E  
 
Multichannel Audio Serial Port (McASP) Peripheral  
4.3  
Multichannel Audio Serial Port (McASP) Peripheral  
The TMS320C6413/C6410 device includes two multichannel audio serial port (McASP) interface peripheral  
(McASP0 and McASP1). On the C6413/C6410 device the McASP1 peripheral pins are muxed with the HPI  
peripheral pins. By default, the HPI peripheral pin functions are enabled. For the C6413/C6410 device  
McASP1 is a standalone peripheral, not muxed. For more detailed information on the C6413/C6410 device  
pin muxing, see the Device Configurations section of this data sheet.  
The McASP is a serial port optimized for the needs of multichannel audio applications.  
The McASP consists of a transmit and receive section. These sections can operate completely independently  
with different data formats, separate master clocks, bit clocks, and frame syncs or alternatively, the transmit  
and receive sections may be synchronized. The McASP module also includes a pool of 16 shift registers that  
may be configured to operate as either transmit data, receive data, or general-purpose I/O (GPIO).  
The transmit section of the McASP can transmit data in either a time-division-multiplexed (TDM) synchronous  
serial format or in a digital audio interface (DIT) format where the bit stream is encoded for S/PDIF, AES-3,  
IEC-60958, CP-430 transmission. The receive section of the McASP supports the TDM synchronous serial  
format.  
The McASP can support one transmit data format (either a TDM format or DIT format) and one receive format  
at a time. All transmit shift registers use the same format and all receive shift registers use the same format.  
However, the transmit and receive formats need not be the same.  
Both the transmit and receive sections of the McASP also support burst mode which is useful for non-audio  
data (for example, passing control information between two DSPs).  
The McASP peripheral has additional capability for flexible clock generation, and error detection/handling, as  
well as error management.  
For more detailed information on and the functionality of the McASP peripheral, see the TMS320C6000 DSP  
Multichannel Audio Serial Port (McASP) Reference Guide (literature number SPRU041).  
4.3.1  
McASP Block Diagram  
Figure 42 illustrates the major blocks along with external signals of the TMS320C6413/C6410 McASP  
peripheral; and shows the 6 serial data [AXRx] pins. The McASP also includes full general-purpose I/O (GPIO)  
control, so any pins not needed for serial transfers can be used for general-purpose I/O.  
76  
SPRS247E  
April 2004 Revised May 2005  
 
Multichannel Audio Serial Port (McASP) Peripheral  
McASPx  
Transmit  
Frame Sync  
Generator  
DIT  
RAM  
AFSXx  
Transmit  
Clock Check  
(High-  
Transmit  
Clock  
Generator  
AHCLKXx  
ACLKXx  
Frequency)  
AMUTEx  
AMUTEINx  
Error  
Detect  
Receive  
Clock Check  
(High-  
Receive  
Clock  
Generator  
AHCLKRx  
ACLKRx  
Frequency)  
Transmit  
Data  
Formatter  
Receive  
Frame Sync  
Generator  
AFSRx  
Serializer 0  
AXRx[0]  
AXRx[1]  
AXRx[2]  
AXRx[3]  
AXRx[4]  
AXRx[5]  
Serializer 1  
Serializer 2  
Serializer 3  
Serializer 4  
Serializer 5  
Serializer 6  
Serializer 7  
Receive  
Data  
Formatter  
GPIO  
Control  
On the C6413/C6410 device, the McASP1 peripheral has some additional pins muxed with AFSR1 and with ACLKR1 pins (i.e.,  
AFSR1[1], AFSR1[2], AFSR1[3] and ACLKR1[1]. ACLKR1[2], ACLKR1[3], respectively).  
On the C6413/C6410 device, the McASP0 peripheral is standalone, not muxed and the McASP1 peripheral is muxed with the HPI  
peripheral. For more detailed information on multiplexed pins, see the Device Configurations section of this data sheet.  
Figure 42. McASP0 and McASP1 Configuration  
77  
April 2004 Revised May 2005  
SPRS247E  
 
I2C  
4.4  
I2C  
The TMS320C6413/C6410 device includes two I2C peripheral modules (I2C0 and I2C1). NOTE: when using  
the I2C modules (any mode), ensure there are external pullup resistors on the SDAx and SCLx pins.  
One of the I2C modules on the TMS320C6413/C6410 may be used by the DSP to control local peripherals  
ICs (DACs, ADCs, etc.) while the other module may be used to communicate with other controllers in a system  
or to implement a user interface.  
The I2Cx port supports:  
Compatible with Philips I2C Specification Revision 2.1 (January 2000)  
Fast Mode up to 400 Kbps (no fail-safe I/O buffers)  
Noise Filter to remove noise 50 ns or less  
7- and 10-Bit Device Addressing Modes  
Multi-Master (Transmit/Receive) and Slave (Transmit/Receive) Functionality  
Events: DMA, Interrupt, or Polling  
Slew-Rate Limited Open-Drain Output Buffers  
General-purpose input and output (GPIO) functionality for I2C pins  
For more detailed information on C6413/6410 I2C additional features, such as GPIO capability, etc., see the  
TMS320C6000 DSP InterIntegrated Circuit (I2C) Module Reference Guide (literature number SPRU175)  
and the TMS320C6410/C6413/C6418 DSP InterIntegrated Circuit (I2C) Module Reference Guide (literature  
number SPRZ221) addendum.  
78  
SPRS247E  
April 2004 Revised May 2005  
 
General-Purpose Input/Output (GPIO)  
Figure 43 is a block diagram of the I2C0 and I2C1 modules.  
I2Cx Module  
Peripheral Clock  
(CPU/4)  
Clock  
Prescale  
I2CPSCx  
Control  
Own  
SCL  
I2COARx  
Address  
Noise  
Filter  
I2C Clock  
Bit Clock  
Generator  
Slave  
I2CSARx  
Address  
GPIO Control  
I2CCLKHx  
I2CCLKLx  
I2CMDRx  
I2CCNTx  
Mode  
Pin  
Function  
I2CPFUNCx  
Data  
Count  
Pin  
Direction  
I2CPDIRx  
Extended  
Mode  
I2CEMDRx  
Transmit  
I2CXSRx  
Pin Data  
In  
I2CPDINx  
Transmit  
Shift  
Pin Data  
Out  
I2CPDOUTx  
I2CPDSETx  
I2CPDCLRx  
Transmit  
Buffer  
Interrupt/DMA  
I2CIERx  
I2CDXRx  
Pin Data  
Set  
Interrupt  
Enable  
Pin Data  
Clear  
Receive  
Interrupt  
Status  
I2CSTRx  
Receive  
Buffer  
I2CDRRx  
SDA  
Interrupt  
Source  
Noise  
Filter  
I2CISRCx  
I2C Data  
Receive  
Shift  
I2CRSRx  
NOTE A: Shading denotes control/status registers.  
Figure 43. I2Cx Module Block Diagram  
4.5  
General-Purpose Input/Output (GPIO)  
On the C6413/C6410 device the GPIO peripheral pins GP0[15:9] are muxed with the HPI peripheral pins  
HD[15:9], respectively. By default, the HPI peripheral pin functions are enabled [TOUT0/HPI_EN pin internall  
pulled low]. For more detailed information on device/peripheral configuration and the C6413/C6410 device  
pin muxing, see the Device Configurations section of this data sheet.  
To use the GP0[15:0] software-configurable GPIO pins, the GPxEN bits in the GP Enable (GPEN) Register  
and the GPxDIR bits in the GP Direction (GPDIR) Register must be properly configured.  
GPxEN =  
GPxDIR =  
GPxDIR =  
1
0
1
GP[x] pin is enabled  
GP[x] pin is an input  
GP[x] pin is an output  
where “x” represents one of the 15 through 0 GPIO pins  
Figure 44 shows the GPIO enable bits in the GPEN register for the C6413/C6410 device. To use any of the  
GPx pins as general-purpose input/output functions, the corresponding GPxEN bit must be set to “1”  
(enabled). Default values are device-specific, so refer to Figure 44 for the C6413/C6410 default  
configuration.  
79  
April 2004 Revised May 2005  
SPRS247E  
 
 
General-Purpose Input/Output (GPIO)  
31  
24 23  
Reserved  
R-0  
16  
15  
GP15 GP14 GP13 GP12 GP11 GP10  
EN EN EN EN EN EN  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
GP9  
EN  
GP8  
EN  
GP7  
EN  
GP6  
EN  
GP5  
EN  
GP4  
EN  
GP3  
EN  
GP2  
EN  
GP1  
EN  
GP0  
EN  
R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 R/W-0 R/W-0 R/W-1  
Legend: R/W = Readable/Writeable; -n = value after reset, -x = undefined value after reset  
Figure 44. GPIO Enable Register (GPEN) [Hex Address: 01B0 0000]  
80  
SPRS247E  
April 2004 Revised May 2005  
 
General-Purpose Input/Output (GPIO)  
Figure 45 shows the GPIO direction bits in the GPDIR register. This register determines if a given GPIO pin  
is an input or an output providing the corresponding GPxEN bit is enabled (set to “1”) in the GPEN register.  
By default, all the GPIO pins are configured as input pins.  
31  
24 23  
Reserved  
R-0  
16  
15  
14  
13  
12  
11  
9
8
6
4
3
1
0
10  
7
5
2
GP15 GP14 GP13 GP12 GP11 GP10  
DIR DIR DIR DIR DIR DIR  
GP9  
DIR  
GP8  
DIR  
GP7  
DIR  
GP6  
DIR  
GP5  
DIR  
GP4  
DIR  
GP3  
DIR  
GP2  
DIR  
GP1  
DIR  
GP0  
DIR  
R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0  
Legend: R/W = Readable/Writeable; -n = value after reset, -x = undefined value after reset  
Figure 45. GPIO Direction Register (GPDIR) [Hex Address: 01B0 0004]  
For more detailed information on general-purpose inputs/outputs (GPIOs), see the TMS320C6000 DSP  
General-Purpose Input/Output (GPIO) Reference Guide (literature number SPRU584).  
81  
April 2004 Revised May 2005  
SPRS247E  
 
 
Power-Down Modes Logic  
4.6 Power-Down Modes Logic  
Figure 46 shows the power-down mode logic on the C6413/C6410.  
CLKOUT4  
CLKOUT6  
Internal Clock Tree  
Clock  
Distribution  
and Dividers  
PD1  
PD2  
IFR  
Power-  
Clock  
PLL  
Internal  
Peripherals  
IER  
Down  
Logic  
CSR  
PWRD  
CPU  
PD3  
TMS320C6413/C6410  
CLKIN  
RESET  
External input clocks, with the exception of CLKIN, are not gated by the power-down mode logic.  
Figure 46. Power-Down Mode Logic  
Note: to further save power, the PERCFG register can be used to disable unused peripherals. For more  
detailed information on disabling peripherals using the PERCFG register, see the Device Configurations  
section of this data sheet.  
4.6.1  
Triggering, Wake-up, and Effects  
The power-down modes and their wake-up methods are programmed by setting the PWRD field (bits 1510)  
of the control status register (CSR). The PWRD field of the CSR is shown in Figure 47 and described in  
Table 44. When writing to the CSR, all bits of the PWRD field should be set at the same time. Logic 0 should  
be used when writing to the reserved bit (bit 15) of the PWRD field. The CSR is discussed in detail in the  
TMS320C6000 CPU and Instruction Set Reference Guide (literature number SPRU189).  
82  
SPRS247E  
April 2004 Revised May 2005  
 
 
Power-Down Modes Logic  
31  
16  
15  
14  
13  
12  
11  
10  
9
8
0
Enable or  
Non-Enabled  
Interrupt Wake  
Enabled  
Interrupt Wake  
Reserved  
R/W-0  
PD3  
PD2  
PD1  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
7
Legend: R/Wx = Read/write reset value  
NOTE: The shadowed bits are not part of the power-down logic discussion and therefore are not covered here. For information on these other  
bit fields in the CSR register, see the TMS320C6000 CPU and Instruction Set Reference Guide (literature number SPRU189).  
Figure 47. PWRD Field of the CSR Register  
A delay of up to nine clock cycles may occur after the instruction that sets the PWRD bits in the CSR before the  
PD mode takes effect. As best practice, NOPs should be padded after the PWRD bits are set in the CSR to  
account for this delay.  
If PD1 mode is terminated by a non-enabled interrupt, the program execution returns to the instruction where  
PD1 took effect. If PD1 mode is terminated by an enabled interrupt, the interrupt service routine will be executed  
first, then the program execution returns to the instruction where PD1 took effect. In the case with an enabled  
interrupt, the GIE bit in the CSR and the NMIE bit in the interrupt enable register (IER) must also be set in order  
for the interrupt service routine to execute; otherwise, execution returns to the instruction where PD1 took effect  
upon PD1 mode termination by an enabled interrupt.  
PD2 and PD3 modes can only be aborted by device reset. Table 44 summarizes all the power-down modes.  
83  
April 2004 Revised May 2005  
SPRS247E  
 
Power-Supply Sequencing  
Table 44. Characteristics of the Power-Down Modes  
PRWD FIELD  
(BITS 1510)  
POWER-DOWN  
WAKE-UP METHOD  
EFFECT ON CHIP’S OPERATION  
MODE  
000000  
001001  
No power-down  
CPU halted (except for the interrupt logic)  
PD1  
Wake by an enabled interrupt  
Power-down mode blocks the internal clock inputs at the  
boundary of the CPU, preventing most of the CPU’s logic from  
switching. During PD1, EDMA transactions can proceed between  
peripherals and internal memory.  
Wake by an enabled or  
non-enabled interrupt  
010001  
011010  
PD1  
Output clock from PLL is halted, stopping the internal clock  
structure from switching and resulting in the entire chip being  
halted. All register and internal RAM contents are preserved. All  
functional I/O “freeze” in the last state when the PLL clock is  
turned off.  
PD2  
Wake by a device reset  
Input clock to the PLL stops generating clocks. All register and  
internal RAM contents are preserved. All functional I/O “freeze” in  
the last state when the PLL clock is turned off. Following reset, the  
PLL needs time to re-lock, just as it does following power-up.  
Wake-up from PD3 takes longer than wake-up from PD2 because  
the PLL needs to be re-locked, just as it does following power-up.  
011100  
PD3  
Wake by a device reset  
All others  
Reserved  
When entering PD2 and PD3, all functional I/O remains in the previous state. However, for peripherals which are asynchronous in nature or  
peripherals with an external clock source, output signals may transition in response to stimulus on the inputs. Under these conditions,  
peripherals will not operate according to specifications.  
4.6.2  
C64x Power-Down Mode with an Emulator  
If user power-down modes are programmed, and an emulator is attached, the modes will be masked to allow  
the emulator access to the system. This condition prevails until the emulator is reset or the cable is removed  
from the header. If power measurements are to be performed when in a power-down mode, the emulator cable  
should be removed.  
When the DSP is in power-down mode PD2 or PD3, emulation logic will force any emulation execution  
command (such as Step or Run) to spin in IDLE. For this reason, PC writes (such as loading code) will fail.  
A DSP reset will be required to get the DSP out of PD2/PD3.  
4.7  
Power-Supply Sequencing  
TI DSPs do not require specific power sequencing between the core supply and the I/O supply. However,  
systems should be designed to ensure that neither supply is powered up for extended periods of time  
(>1 second) if the other supply is below the proper operating voltage.  
4.7.1  
Power-Supply Design Considerations  
A dual-power supply with simultaneous sequencing can be used to eliminate the delay between core and I/O  
power up. A Schottky diode can also be used to tie the core rail to the I/O rail (see Figure 48).  
84  
SPRS247E  
April 2004 Revised May 2005  
 
Power-Supply Sequencing  
I/O Supply  
DV  
CV  
DD  
Schottky  
Diode  
C6000  
DSP  
Core Supply  
DD  
V
SS  
GND  
Figure 48. Schottky Diode Diagram  
Core and I/O supply voltage regulators should be located close to the DSP (or DSP array) to minimize  
inductance and resistance in the power delivery path. Additionally, when designing for high-performance  
applications utilizing the C6000platform of DSPs, the PC board should include separate power planes for  
core, I/O, and ground, all bypassed with high-quality low-ESL/ESR capacitors.  
TI DSPs do not require specific power sequencing between the core supply and the I/O supply. However,  
systems should be designed to ensure that neither supply is powered up for extended periods of time if the  
other supply is below the proper operating voltage.  
4.8  
Power-Supply Decoupling  
In order to properly decouple the supply planes from system noise, place as many capacitors (caps) as  
possible close to the DSP. Assuming 0603 caps, the user should be able to fit a total of 60 caps, 30 for the  
core supply and 30 for the I/O supply. These caps need to be close to the DSP power pins, no more than  
1.25 cm maximum distance to be effective. Physically smaller caps, such as 0402, are better because of their  
lower parasitic inductance. Proper capacitance values are also important. Small bypass caps (near 560 pF)  
should be closest to the power pins. Medium bypass caps (220 nF or as large as can be obtained in a small  
package) should be next closest. TI recommends no less than 8 small and 8 medium caps per supply (32 total)  
be placed immediately next to the BGA vias, using the “interior” BGA space and at least the corners of the  
“exterior”.  
Eight larger caps (4 for each supply) can be placed further away for bulk decoupling. Large bulk caps (on the  
order of 100 µF) should be furthest away (but still as close as possible). No less than 4 large caps per supply  
(8 total) should be placed outside of the BGA.  
Any cap selection needs to be evaluated from a yield/manufacturing point-of-view. As with the selection of any  
component, verification of capacitor availability over the product’s production lifetime should be considered.  
85  
April 2004 Revised May 2005  
SPRS247E  
 
Peripheral Power-Down Operation  
4.9  
Peripheral Power-Down Operation  
The C6413/C6410 device can be powered down in two ways:  
Power-down due to software configuration relates to the default state of the peripheral configuration bits  
in the PERCFG register.  
Power-down during run-time via software configuration  
On the C6413/C6410 device, the HPI, McASP1, and GP0 peripherals pin muxing is controlled (selected) at  
the pin level during chip reset (e.g., HPI_EN and HD5 pins). If McASP1 pin muxing is selected, then the  
MCASP1EN bit in the peripheral configuration register (PERCFG.8) must be configured properly to enable  
the McASP1 peripheral.  
The McASP1, McASP0, I2C1, and I2C0 peripheral functions are selected via the peripheral configuration  
(PERCFG) register bits.  
For more detailed information on the peripheral configuration pins and the PERCFG register bits, see the  
Device Configurations section of this document.  
86  
SPRS247E  
April 2004 Revised May 2005  
 
IEEE 1149.1 JTAG Compatibility Statement  
4.10 IEEE 1149.1 JTAG Compatibility Statement  
The TMS320C6413/C6410 DSP requires that both TRST and RESET be asserted upon power up to be  
properly initialized. While RESET initializes the DSP core, TRST initializes the DSP’s emulation logic. Both  
resets are required for proper operation.  
Note: TRST is synchronous and must be clocked by TCLK; otherwise, BSCAN may not respond as expected  
after TRST is asserted.  
While both TRST and RESET need to be asserted upon power up, only RESET needs to be released for the  
DSP to boot properly. TRST may be asserted indefinitely for normal operation, keeping the JTAG port interface  
and DSP’s emulation logic in the reset state. TRST only needs to be released when it is necessary to use a  
JTAG controller to debug the DSP or exercise the DSP’s boundary scan functionality. RESET must be  
released in order for boundary-scan JTAG to read the variant field of IDCODE correctly. Other boundary-scan  
instructions work correctly independent of current state of RESET.  
For maximum reliability, the TMS320C6413/C6410 DSP includes an internal pulldown (IPD) on the TRST pin  
to ensure that TRST will always be asserted upon power up and the DSP’s internal emulation logic will always  
be properly initialized. JTAG controllers from Texas Instruments actively drive TRST high. However, some  
third-party JTAG controllers may not drive TRST high but expect the use of a pullup resistor on TRST. When  
using this type of JTAG controller, assert TRST to intialize the DSP after powerup and externally drive TRST  
high before attempting any emulation or boundary scan operations.  
Following the release of RESET, the low-to-high transition of TRST must occur to latch the state of EMU1 and  
EMU0. The EMU[1:0] pins configure the device for either Boundary Scan mode or Normal/Emulation mode.  
For more detailed information, see the terminal functions section of this data sheet.  
Note: The DESIGN_WARNING section of the TMS320C6413/C6410 BSDL file contains information and  
constraints regarding proper device operation while in Boundary Scan Mode.  
For more detailed information on the C6413/C6410 JTAG emulation, see the TMS320C6000 DSP Designing  
for JTAG Emulation Reference Guide (literature number SPRU641).  
4.11 EMIF Device Speed  
The rated EMIF speed of these devices only applies to the SDRAM interface when in a system that meets the  
following requirements:  
1 chip-enable (CE) space (maximum of 2 chips) of SDRAM connected to EMIF  
up to 1 CE space of buffers connected to EMIF  
EMIF trace lengths between 1 and 3 inches  
143-MHz SDRAM for 100-MHz operation  
Other configurations may be possible, but timing analysis must be done to verify all AC timings are met.  
Verification of AC timings is mandatory when using configurations other than those specified above. TI  
recommends utilizing I/O buffer information specification (IBIS) to analyze all AC timings.  
To properly use IBIS models to attain accurate timing analysis for a given system, see the Using IBIS Models  
for Timing Analysis application report (literature number SPRA839).  
To maintain signal integrity, serial termination resistors should be inserted into all EMIF output signal lines (see  
the Terminal Functions table for the EMIF output signals).  
For more detailed information on the C6413/C6410 EMIF peripheral, see the TMS320C6000 DSP External  
Memory Interface (EMIF) Reference Guide (literature number SPRU266).  
87  
April 2004 Revised May 2005  
SPRS247E  
 
Bootmode  
4.12 Bootmode  
The C6413/C6410 device resets using the active-low signal RESET. While RESET is low, the device is held  
in reset and is initialized to the prescribed reset state. Refer to reset timing for reset timing characteristics and  
states of device pins during reset. The release of RESET starts the processor running with the prescribed  
device configuration and boot mode.  
The C6413/C6410 has three types of boot modes:  
Host boot  
If host boot is selected, upon release of RESET, the CPU is internally “stalled” while the remainder of the  
device is released. During this period, an external host can initialize the CPU’s memory space as  
necessary through the host interface, including internal configuration registers, such as those that control  
the EMIF or other peripherals. For the C6413/C6410 device, the HPI peripheral is used for host boot  
providing the TOUT0/HPI_EN pin is low, enabling the HPI peripheral [default]. Once the host is finished  
with all necessary initialization, it must set the DSPINT bit in the HPIC register to complete the boot  
process. This transition causes the boot configuration logic to bring the CPU out of the “stalled” state. The  
CPU then begins execution from address 0. The DSPINT condition is not latched by the CPU, because it  
occurs while the CPU is still internally “stalled”. Also, DSPINT brings the CPU out of the “stalled” state only  
if the host boot process is selected. All memory may be written to and read by the host. This allows for the  
host to verify what it sends to the DSP if required. After the CPU is out of the “stalled” state, the CPU needs  
to clear the DSPINT, otherwise, no more DSPINTs can be received.  
EMIF boot (using default ROM timings)  
Upon the release of RESET, the 1K-Byte ROM code located in the beginning of CE1 is copied to address 0  
by the EDMA using the default ROM timings, while the CPU is internally “stalled”. The data should be  
stored in the endian format that the system is using. In this case, the EMIF automatically assembles  
consecutive 8-bit bytes to form the 32-bit instruction words to be copied. The transfer is automatically done  
by the EDMA as a single-frame block transfer from the ROM to address 0. After completion of the block  
transfer, the CPU is released from the “stalled” state and starts running from address 0.  
No boot  
With no boot, the CPU begins direct execution from the memory located at address 0. Note: operation is  
undefined if invalid code is located at address 0.  
4.13 Reset  
A hardware reset (RESET) is required to place the DSP into a known good state out of power-up. The RESET  
signal can be asserted (pulled low) prior to ramping the core and I/O voltages or after the core and I/O voltages  
have reached their proper operating conditions. As a best practice, reset should be held low during power-up.  
Prior to deasserting RESET (low-to-high transition), the core and I/O voltages should be at their proper  
operating conditions and CLKIN should also be running at the correct frequency.  
88  
SPRS247E  
April 2004 Revised May 2005  
 
Device Electrical Specifications  
5
Device Electrical Specifications  
5.1  
Absolute Maximum Ratings Over Operating Case Temperature Range (Unless Otherwise  
Noted)†  
Supply voltage ranges:  
CV (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.3 V to 1.8 V  
DD  
DV (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.3 V to 4 V  
DD  
Input voltage range:  
Output voltage range:  
V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.3 V to 4 V  
I
V
O
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.3 V to 4 V  
Operating case temperature range, T : (default) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0_C to 90_C  
C
(A version) [GTSA and ZTSA] . . . . . . . . . . . . . . . . . 40_C to 105_C  
Storage temperature range, T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65_C to 150_C  
stg  
Package Temperature Cycling:  
Temperature Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40_C to 125_C  
Number of Cycles (GTS, GTSA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1000  
Number of Cycles (ZTS, ZTSA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 500  
Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and  
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not  
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
NOTE 1: All voltage values are with respect to V  
SS  
.
5.2  
Recommended Operating Conditions  
MIN  
1.14  
3.14  
0
NOM  
1.2  
3.3  
0
MAX  
1.26  
3.46  
0
UNIT  
V
CV  
DV  
Supply voltage, Core (-400, -500 device)  
Supply voltage, I/O  
DD  
V
DD  
V
V
V
V
Supply ground  
V
SS  
High-level input voltage  
Low-level input voltage  
2
V
IH  
IL  
0.8  
V
§
§
Maximum voltage during overshoot/undershoot  
Commercial temperature devices  
1.0  
4.3  
V
OS  
0
90  
_C  
_C  
(GTS and ZTS)  
T
C
Operating case temperature  
Extended temperature devices  
(GTSA and ZTSA)  
40  
105  
§
Future variants of the C64x DSPs may operate at voltages ranging from 0.9 V to 1.4 V to provide a range of system power/performance options.  
TI highly recommends that users design-in a supply that can handle multiple voltages within this range (i.e., 1.2 V, 1.25 V, 1.3 V, 1.35 V, 1.4 V  
with 3% tolerances) by implementing simple board changes such as reference resistor values or input pin configuration modifications. Examples  
of such supplies include the PT4660, PT5500, PT5520, PT6440, and PT6930 series from Power Trends, a subsidiary of Texas Instruments. Not  
incorporating a flexible supply may limit the system’s ability to easily adapt to future versions of C64x devices.  
The absolute maximum ratings should not be exceeded for more than 30% of the cycle period.  
89  
April 2004 Revised May 2005  
SPRS247E  
 
Device Electrical Specifications  
5.3  
Electrical Characteristics Over Recommended Ranges of Supply Voltage and Operating  
Case Temperature (Unless Otherwise Noted)  
PARAMETER  
High-level output voltage  
Low-level output voltage  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
V
V
V
DV = MIN,  
I
I
= MAX  
= MAX  
2.4  
OH  
DD  
OH  
OL  
DV = MIN,  
0.4  
10  
V
OL  
DD  
V = V to DV no opposing internal  
I
SS  
DD  
uA  
uA  
uA  
resistor  
V = V to DV opposing internal  
I
SS  
DD  
50  
100  
150  
I
I
Input current  
pullup resistor  
V = V to DV opposing internal  
I
SS  
DD  
150  
100  
50  
pulldown resistor  
EMIF, CLKOUT4, CLKOUT6, EMUx  
Timer, TDO, GPIO, McBSP, HPI  
EMIF, CLKOUT4, CLKOUT6, EMUx  
Timer, TDO, GPIO, McBSP, HPI  
SCL1, SDA1, SCL0, and SDA0  
16  
8  
16  
8
mA  
mA  
mA  
mA  
mA  
uA  
I
I
High-level output current  
OH  
Low-level output current  
Off-state output current  
OL  
3
I
I
V
O
= DV or 0 V  
10  
OZ  
DD  
CV = 1.2 V, CPU clock = 500 MHz  
568  
465  
140  
132  
mA  
mA  
mA  
mA  
pF  
DD  
§
Core supply current  
CDD  
CV = 1.2 V, CPU clock = 400 MHz  
DD  
DV = 3.3 V, CPU clock = 500 MHz  
DD  
§
I
I/O supply current  
DDD  
DV = 3.3 V, CPU clock = 400 MHz  
DD  
C
C
Input capacitance  
Output capacitance  
10  
10  
i
pF  
o
§
For test conditions shown as MIN, MAX, or NOM, use the appropriate value specified in the recommended operating conditions table.  
Applies only to pins with an internal pullup (IPU) or pulldown (IPD) resistor.  
Measured with average activity (50% high/50% low power) at 25°C case temperature and 100-MHz EMIF for -500 and -400 speeds. This model  
represents a device performing high-DSP-activity operations 50% of the time, and the remainder performing low-DSP-activity operations. The  
high/low-DSP-activity models are defined as follows:  
High-DSP-Activity Model:  
CPU: 8 instructions/cycle with 2 LDDW instructions [L1 Data Memory: 128 bits/cycle via LDDW instructions;  
L1 Program Memory: 256 bits/cycle; L2/EMIF EDMA: 50% writes, 50% reads to/from SDRAM (50% bit-switching)]  
McBSP: 2 channels at E1 rate  
Timers: 2 timers at maximum rate  
Low-DSP-Activity Model:  
CPU: 2 instructions/cycle with 1 LDH instruction [L1 Data Memory: 16 bits/cycle; L1 Program Memory: 256 bits per 4 cycles;  
L2/EMIF EDMA: None]  
McBSP: 2 channels at E1 rate  
Timers: 2 timers at maximum rate  
The actual current draw is highly application-dependent. For more details on core and I/O activity, refer to the TMS320C6410/13 Power  
Consumption Summary application report (literature number SPRAA59).  
5.4  
Recommended Clock and Control Signal Transition Behavior  
All clocks and control signals must transition between V and V (or between V and V ) in a monotonic  
IH  
IL  
IL  
IH  
manner.  
90  
SPRS247E  
April 2004 Revised May 2005  
 
Device Electrical Specifications  
6
Parameter Information  
Tester Pin Electronics  
Data Sheet Timing Reference Point  
42 Ω  
3.5 nH  
Output  
Under  
Test  
Transmission Line  
Z0 = 50 Ω  
(see note)  
Device Pin  
(see note)  
4.0 pF  
1.85 pF  
NOTE: The data sheet provides timing at the device pin. For output timing analysis, the tester pin electronics and its transmission line effects  
must be taken into account. A transmission line with a delay of 2 ns or longer can be used to produce the desired transmission line effect.  
The transmission line is intended as a load only. It is not necessary to add or subtract the transmission line delay (2 ns or longer) from  
the data sheet timings.  
Input requirements in this data sheet are tested with an input slew rate of < 4 Volts per nanosecond (4 V/ns) at the device pin.  
Figure 61. Test Load Circuit for AC Timing Measurements  
The load capacitance value stated is only for characterization and measurement of AC timing signals. This  
load capacitance value does not indicate the maximum load the device is capable of driving.  
6.1  
Signal Transition Levels  
All input and output timing parameters are referenced to 1.5 V for both “0” and “1” logic levels.  
V
ref  
= 1.5 V  
Figure 62. Input and Output Voltage Reference Levels for AC Timing Measurements  
All rise and fall transition timing parameters are referenced to V MAX and V MIN for input clocks, V MAX  
IL  
IH  
OL  
and V MIN for output clocks.  
OH  
V
ref  
= V MIN (or V MIN)  
IH OH  
V
ref  
= V MAX (or V MAX)  
IL OL  
Figure 63. Rise and Fall Transition Time Voltage Reference Levels  
6.2  
Signal Transition Rates  
All timings are tested with an input edge rate of 4 Volts per nanosecond (4 V/ns).  
91  
April 2004 Revised May 2005  
SPRS247E  
 
Device Electrical Specifications  
6.3  
Timing Parameters and Board Routing Analysis  
The timing parameter values specified in this data sheet do not include delays by board routings. As a good  
board design practice, such delays must always be taken into account. Timing values may be adjusted by  
increasing/decreasing such delays. TI recommends utilizing the available I/O buffer information specification  
(IBIS) models to analyze the timing characteristics correctly. To properly use IBIS models to attain accurate  
timing analysis for a given system, see the Using IBIS Models for Timing Analysis application report (literature  
number SPRA839). If needed, external logic hardware such as buffers may be used to compensate any timing  
differences.  
For inputs, timing is most impacted by the round-trip propagation delay from the DSP to the external device  
and from the external device to the DSP. This round-trip delay tends to negatively impact the input setup time  
margin, but also tends to improve the input hold time margins (see Table 61 and Figure 64).  
Figure 64 represents a general transfer between the DSP and an external device. The figure also represents  
board route delays and how they are perceived by the DSP and the external device.  
Table 61. Board-Level Timing Example (see Figure 64)  
NO.  
1
DESCRIPTION  
Clock route delay  
2
Minimum DSP hold time  
3
Minimum DSP setup time  
External device hold time requirement  
External device setup time requirement  
Control signal route delay  
External device hold time  
4
5
6
7
8
External device access time  
DSP hold time requirement  
DSP setup time requirement  
Data route delay  
9
10  
11  
ECLKOUTx  
(Output from DSP)  
1
ECLKOUTx  
(Input to External Device)  
2
3
Control Signals  
(Output from DSP)  
4
5
6
Control Signals  
(Input to External Device)  
7
8
Data Signals  
(Output from External Device)  
9
10  
11  
Data Signals  
(Input to DSP)  
† Control signals include data for Writes.  
‡ Data signals are generated during Reads from an external device.  
Figure 64. Board-Level Input/Output Timings  
92  
SPRS247E  
April 2004 Revised May 2005  
 
 
Peripheral Electrical Specifications  
7
Peripheral Electrical Specifications  
Input and Output Clocks  
7.1  
Table 71. Timing Requirements for External Crystal Oscillator Input (OSCIN and OSCOUT)  
400  
500  
NO.  
UNIT  
MIN  
MAX  
1
f
Input oscillator frequency  
12  
30  
MHz  
OSC  
The PLL multiplier factors (x5, x6, x7, x8, x9, x10, x11, x12, x16, x18, x19, x20, x21, x24) further limit the MIN and MAX values for CLKIN and  
OSCIN. For more details on these limitations, see Table 41 and Table 42 of the Clock PLL and Oscillator section of this data sheet.  
†‡§  
Table 72. Timing Requirements for CLKIN  
(see Figure 71)  
400  
500  
NO.  
UNIT  
PLL MULT MODE  
x1 (BYPASS)  
MIN  
MIN  
MAX  
MAX  
1
2
3
4
5
t
t
t
t
t
Cycle time, CLKIN  
10  
83.3  
10  
83.3  
ns  
ns  
ns  
ns  
ns  
c(CLKIN)  
w(CLKINH)  
w(CLKINL)  
t(CLKIN)  
Pulse duration, CLKIN high  
Pulse duration, CLKIN low  
Transition time, CLKIN  
Period jitter, CLKIN  
0.45C  
0.45C  
0.45C  
0.45C  
5
1
0.02C  
0.02C  
J(CLKIN)  
The PLL multiplier factors (x5, x6, x7, x8, x9, x10, x11, x12, x16, x18, x19, x20, x21, x24) further limit the MIN and MAX values for CLKIN and  
OSCIN. For more details on these limitations, see Table 41 and Table 42 of the Clock PLL and Oscillator section of this data sheet.  
§
The reference points for the rise and fall transitions are measured at V MAX and V MIN.  
IL  
IH  
C = CLKIN cycle time in ns. For example, when CLKIN frequency is 50 MHz, use C = 20 ns.  
1
5
4
2
CLKIN  
3
4
Figure 71. CLKIN Timing  
93  
April 2004 Revised May 2005  
SPRS247E  
 
 
Input and Output Clocks  
†‡§  
Table 73. Switching Characteristics Over Recommended Operating Conditions for CLKOUT4  
(see Figure 72)  
400  
500  
NO.  
PARAMETER  
UNIT  
MIN  
MAX  
1
2
3
4
t
t
t
t
Cycle time, CLKOUT4  
4P 0.7  
2P 0.7  
2P 0.7  
4P + 0.7  
2P + 0.7  
2P + 0.7  
1
ns  
ns  
ns  
ns  
c(CKO4)  
w(CKO4H)  
w(CKO4L)  
t(CKO4)  
Pulse duration, CLKOUT4 high  
Pulse duration, CLKOUT4 low  
Transition time, CLKOUT4  
§
The reference points for the rise and fall transitions are measured at V MAX and V MIN.  
PH is the high period of CLKIN in ns and PL is the low period of CLKIN in ns.  
P = 1/CPU clock frequency in nanoseconds (ns)  
OL  
OH  
4
1
2
CLKOUT4  
3
4
Figure 72. CLKOUT4 Timing  
†‡§  
Table 74. Switching Characteristics Over Recommended Operating Conditions for CLKOUT6  
(see Figure 73)  
400  
500  
NO.  
PARAMETER  
UNIT  
MIN  
MAX  
1
2
3
4
t
t
t
t
Cycle time, CLKOUT6  
6P 0.7  
3P 0.7  
3P 0.7  
6P + 0.7  
3P + 0.7  
3P + 0.7  
1
ns  
ns  
ns  
ns  
c(CKO6)  
w(CKO6H)  
w(CKO6L)  
t(CKO6)  
Pulse duration, CLKOUT6 high  
Pulse duration, CLKOUT6 low  
Transition time, CLKOUT6  
§
The reference points for the rise and fall transitions are measured at V MAX and V MIN.  
PH is the high period of CLKIN in ns and PL is the low period of CLKIN in ns.  
P = 1/CPU clock frequency in nanoseconds (ns)  
OL  
OH  
4
1
2
CLKOUT6  
3
4
Figure 73. CLKOUT6 Timing  
94  
SPRS247E  
April 2004 Revised May 2005  
 
 
Input and Output Clocks  
†‡§  
Table 75. Timing Requirements for AECLKIN for EMIFA  
(see Figure 74)  
400  
500  
NO.  
UNIT  
MIN  
MAX  
1
2
3
4
5
t
t
t
t
t
Cycle time, AECLKIN  
6
16P  
ns  
ns  
ns  
ns  
ns  
c(EKI)  
Pulse duration, AECLKIN high  
Pulse duration, AECLKIN low  
Transition time, AECLKIN  
Period jitter, AECLKIN  
2.7  
2.7  
w(EKIH)  
w(EKIL)  
t(EKI)  
3
0.02E  
J(EKI)  
§
P = 1/CPU clock frequency in ns. For example, when running parts at 500 MHz, use P = 2 ns.  
The reference points for the rise and fall transitions are measured at V MAX and V MIN.  
E = the EMIF input clock (AECLKIN, CPU/4 clock, or CPU/6 clock) period in ns for EMIFA.  
Minimum AECLKIN cycle times must be met, even when AECLKIN is generated by an internal clock source. Minimum AECLKIN times are based  
on internal logic speed; the maximum useable speed of the EMIF may be lower due to AC timing requirements. 100-MHz operation is achievable  
if the requirements of the EMIF Device Speed section are met.  
IL  
IH  
1
5
4
2
AECLKIN  
3
4
Figure 74. AECLKIN Timing for EMIFA  
Table 76. Switching Characteristics Over Recommended Operating Conditions for AECLKOUT1 for the  
§#||  
EMIFA Module  
(see Figure 75)  
400  
500  
NO.  
PARAMETER  
UNIT  
MIN  
E 0.7  
MAX  
1
2
3
4
5
6
t
t
t
t
t
t
Cycle time, AECLKOUT1  
E + 0.7  
ns  
ns  
ns  
ns  
ns  
ns  
c(EKO1)  
Pulse duration, AECLKOUT1 high  
Pulse duration, AECLKOUT1 low  
Transition time, AECLKOUT1  
EH 0.7 EH + 0.7  
EL 0.7 EL + 0.7  
1
w(EKO1H)  
w(EKO1L)  
t(EKO1)  
Delay time, AECLKIN high to AECLKOUT1 high  
Delay time, AECLKIN low to AECLKOUT1 low  
1
1
8
8
d(EKIH-EKO1H)  
d(EKIL-EKO1L)  
§
#
||  
E = the EMIF input clock (AECLKIN, CPU/4 clock, or CPU/6 clock) period in ns.  
The reference points for the rise and fall transitions are measured at V MAX and V MIN.  
EH is the high period of E (EMIF input clock period) in ns and EL is the low period of E (EMIF input clock period) in ns for EMIFA.  
OL  
OH  
AECLKIN  
6
3
1
4
4
5
2
AECLKOUT1  
Figure 75. AECLKOUT1 Timing for the EMIFA Module  
95  
April 2004 Revised May 2005  
SPRS247E  
 
 
Input and Output Clocks  
Table 77. Switching Characteristics Over Recommended Operating Conditions for AECLKOUT2 for the  
†‡  
EMIFA Module (see Figure 76)  
400  
500  
NO.  
PARAMETER  
Cycle time, AECLKOUT2  
UNIT  
MIN  
NE 0.7  
MAX  
1
2
3
4
5
6
t
t
t
t
t
t
NE + 0.7  
ns  
ns  
ns  
ns  
ns  
ns  
c(EKO2)  
Pulse duration, AECLKOUT2 high  
0.5NE 0.7  
0.5NE 0.7  
0.5NE + 0.7  
w(EKO2H)  
w(EKO2L)  
Pulse duration, AECLKOUT2 low  
0.5NE + 0.7  
Transition time, AECLKOUT2  
1
8
8
t(EKO2)  
Delay time, ECLKIN high to AECLKOUT2 high  
Delay time, ECLKIN high to AECLKOUT2 low  
1
1
d(EKIH-EKO2H)  
d(EKIH-EKO2L)  
The reference points for the rise and fall transitions are measured at V MAX and V MIN.  
E = the EMIF input clock (AECLKIN, CPU/4 clock, or CPU/6 clock) period in ns for EMIFA.  
N = the EMIF input clock divider; N = 1, 2, or 4.  
OL  
OH  
5
6
AECLKIN  
3
1
4
4
2
AECLKOUT2  
Figure 76. AECLKOUT2 Timing for the EMIFA Module  
96  
SPRS247E  
April 2004 Revised May 2005  
 
 
Asynchronous Memory Timing  
7.2  
Asynchronous Memory Timing  
†‡  
Table 78. Timing Requirements for Asynchronous Memory Cycles for EMIFA Module  
(see Figure 77 and Figure 78)  
400  
500  
NO.  
UNIT  
MIN MAX  
3
4
6
7
t
t
t
t
Setup time, AEDx valid before AARE high  
Hold time, AEDx valid after AARE high  
6.5  
1
ns  
ns  
ns  
ns  
su(EDV-AREH)  
h(AREH-EDV)  
Setup time, AARDY valid before AECLKOUTx high  
Hold time, AARDY valid after AECLKOUTx high  
3
su(ARDY-EKO1H)  
h(EKO1H-ARDY)  
3
To ensure data setup time, simply program the strobe width wide enough. ARDY is internally synchronized. The ARDY signal is recognized in  
the cycle for which the setup and hold time is met. The ARDY signal is only recognized two cycles before the end of the programmed strobe time  
and while ARDY is low, the strobe time is extended cycle-by-cycle. When ARDY is recognized low, the end of the strobe time is two cycles after  
ARDY is recognized high To use ARDY as an asynchronous input, the pulse width of the ARDY signal should be wide enough (e.g., pulse width  
= 2E) to ensure setup and hold time is met.  
RS = Read setup, RST = Read strobe, RH = Read hold, WS = Write setup, WST = Write strobe, WH = Write hold. These parameters are  
programmed via the EMIF CE space control registers.  
Table 79. Switching Characteristics Over Recommended Operating Conditions for Asynchronous  
‡§¶  
Memory Cycles for EMIFA Module  
(see Figure 77 and Figure 78)  
400  
500  
NO.  
PARAMETER  
UNIT  
MIN  
MAX  
7
1
2
t
t
t
t
t
t
Output setup time, select signals valid to AARE low  
Output hold time, AARE high to select signals invalid  
Delay time, AECLKOUTx high to AARE valid  
RS * E 1.5  
RH * E 1.9  
1
ns  
ns  
ns  
ns  
ns  
ns  
osu(SELV-AREL)  
oh(AREH-SELIV)  
d(EKO1H-AREV)  
osu(SELV-AWEL)  
oh(AWEH-SELIV)  
d(EKO1H-AWEV)  
5
8
Output setup time, select signals valid to AAWE low  
Output hold time, AAWE high to select signals invalid  
Delay time, AECLKOUTx high to AAWE valid  
WS * E 1.7  
WH * E 1.8  
1.3  
9
10  
7.1  
RS = Read setup, RST = Read strobe, RH = Read hold, WS = Write setup, WST = Write strobe, WH = Write hold. These parameters are  
programmed via the EMIF CE space control registers.  
E = ECLKOUT1 period in ns for EMIFA  
§
Select signals for EMIFA include: ACEx, ABE[3.:0], AEA[22:3], AAOE; and for EMIFA writes, include AED[31:0].  
97  
April 2004 Revised May 2005  
SPRS247E  
 
Asynchronous Memory Timing  
Setup = 2  
Strobe = 3  
Not Ready  
Hold = 2  
AECLKOUTx  
ACEx  
2
2
1
1
1
ABE[3:0]  
BE  
2
AEA[22:3]  
Address  
3
4
2
AED[31:0]  
1
5
Read Data  
AAOE/ASDRAS/ASOE  
5
AARE/ASDCAS/ASADS/ASRE  
AAWE/ASDWE/ASWE  
7
7
6
6
AARDY  
AOE/SDRAS/SOE, ARE/SDCAS/SADS/SRE, and AWE/SDWE/SWE operate as AOE (identified under select signals), ARE, and AWE,  
respectively, during asynchronous memory accesses.  
Figure 77. Asynchronous Memory Read Timing for EMIFA  
98  
SPRS247E  
April 2004 Revised May 2005  
 
Asynchronous Memory Timing  
Setup = 2  
Hold = 2  
Strobe = 3  
Not Ready  
AECLKOUTx  
ACEx  
9
9
8
8
8
8
ABE[3:0]  
BE  
9
9
AEA[22:3]  
AED[31:0]  
Address  
Write Data  
AAOE/ASDRAS/ASOE  
AARE/ASDCAS/ASADS/ASRE  
10  
10  
AAWE/ASDWE/ASWE  
7
7
6
6
AARDY  
AOE/SDRAS/SOE, ARE/SDCAS/SADS/SRE, and AWE/SDWE/SWE operate as AOE (identified under select signals), ARE, and AWE,  
respectively, during asynchronous memory accesses.  
Figure 78. Asynchronous Memory Write Timing for EMIFA  
99  
April 2004 Revised May 2005  
SPRS247E  
 
Programmable Synchronous Interface Timing  
7.3  
Programmable Synchronous Interface Timing  
Table 710. Timing Requirements for Programmable Synchronous Interface Cycles for EMIFA Module  
(see Figure 79)  
400  
500  
NO.  
UNIT  
MIN  
3.1  
MAX  
6
7
t
t
Setup time, read AEDx valid before AECLKOUTx high  
Hold time, read AEDx valid after AECLKOUTx high  
ns  
ns  
su(EDV-EKOxH)  
1.5  
h(EKOxH-EDV)  
Table 711. Switching Characteristics Over Recommended Operating Conditions for Programmable  
Synchronous Interface Cycles for EMIFA Module (see Figure 79Figure 711)  
400  
500  
NO.  
PARAMETER  
UNIT  
MIN  
MAX  
6.4  
1
2
t
t
t
t
t
t
t
t
t
t
Delay time, AECLKOUTx high to ACEx valid  
Delay time, AECLKOUTx high to ABEx valid  
Delay time, AECLKOUTx high to ABEx invalid  
Delay time, AECLKOUTx high to AEAx valid  
Delay time, AECLKOUTx high to AEAx invalid  
Delay time, AECLKOUTx high to ASADS/ASRE valid  
Delay time, AECLKOUTx high to, ASOE valid  
Delay time, AECLKOUTx high to AEDx valid  
Delay time, AECLKOUTx high to AEDx invalid  
Delay time, AECLKOUTx high to ASWE valid  
1.3  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
d(EKOxH-CEV)  
d(EKOxH-BEV)  
d(EKOxH-BEIV)  
d(EKOxH-EAV)  
d(EKOxH-EAIV)  
d(EKOxH-ADSV)  
d(EKOxH-OEV)  
d(EKOxH-EDV)  
d(EKOxH-EDIV)  
d(EKOxH-WEV)  
6.4  
3
1.3  
4
6.4  
5
1.3  
1.3  
1.3  
8
6.4  
6.4  
6.4  
9
10  
11  
12  
1.3  
1.3  
6.4  
The following parameters are programmable via the EMIF CE Space Secondary Control register (CExSEC):  
Read latency (SYNCRL): 0-, 1-, 2-, or 3-cycle read latency  
Write latency (SYNCWL): 0-, 1-, 2-, or 3-cycle write latency  
ACEx assertion length (CEEXT): For standard SBSRAM or ZBT SRAM interface, ACEx goes inactive after the final command has been issued  
(CEEXT = 0). For synchronous FIFO interface with glue, ACEx is active when ASOE is active (CEEXT = 1).  
Function of ASADS/ASRE (RENEN): For standard SBSRAM or ZBT SRAM interface, ASADS/ASRE acts as ASADS with deselect cycles  
(RENEN = 0). For FIFO interface, ASADS/ASRE acts as ASRE with NO deselect cycles (RENEN = 1).  
Synchronization clock (SNCCLK): Synchronized to AECLKOUT1 or AECLKOUT2  
100  
SPRS247E  
April 2004 Revised May 2005  
 
Programmable Synchronous Interface Timing  
READ latency = 2  
AECLKOUTx  
1
2
1
ACEx  
3
ABE[3:0]  
BE1  
BE2  
BE3  
BE4  
4
5
AEA[22:3]  
AED[31:0]  
EA1  
EA2  
EA3  
EA4  
6
7
Q1  
Q2  
Q3  
Q4  
8
9
8
AARE/ASDCAS/ASADS/  
§
ASRE  
9
§
AAOE/ASDRAS/ASOE  
§
AAWE/ASDWE/ASWE  
The read latency and the length of CEx assertion are programmable via the SYNCRL and CEEXT fields, respectively, in the EMIFA CE Space  
Secondary Control register (CExSEC). In this figure, SYNCRL = 2 and CEEXT = 0.  
The following parameters are programmable via the EMIF CE Space Secondary Control register (CExSEC):  
Read latency (SYNCRL): 0-, 1-, 2-, or 3-cycle read latency  
Write latency (SYNCWL): 0-, 1-, 2-, or 3-cycle write latency  
ACEx assertion length (CEEXT): For standard SBSRAM or ZBT SRAM interface, ACEx goes inactive after the final command has been issued  
(CEEXT = 0). For synchronous FIFO interface with glue, ACEx is active when ASOE is active (CEEXT = 1).  
Function of ASADS/ASRE (RENEN): For standard SBSRAM or ZBT SRAM interface, ASADS/ASRE acts as ASADS with deselect cycles  
(RENEN = 0). For FIFO interface, ASADS/ASRE acts as ASRE with NO deselect cycles (RENEN = 1).  
Synchronization clock (SNCCLK): Synchronized to AECLKOUT1 or AECLKOUT2  
§
AARE/ASDCAS/ASADS/ASRE, AAOE/ASDRAS/ASOE, and AAWE/ASDWE/ASWE operate as ASADS/ASRE, ASOE, and ASWE,  
respectively, during programmable synchronous interface accesses.  
Figure 79. Programmable Synchronous Interface Read Timing for EMIFA  
†‡  
(With Read Latency = 2)  
101  
April 2004 Revised May 2005  
SPRS247E  
 
Programmable Synchronous Interface Timing  
AECLKOUTx  
1
2
1
3
ACEx  
ABE[3:0]  
AEA[22:3]  
BE1  
BE2  
EA2  
Q2  
BE3  
EA3  
Q3  
BE4  
EA4  
Q4  
5
4
EA1  
10  
Q1  
10  
11  
AED[31:0]  
8
8
§
AARE/ASDCAS/ASADS/ASRE  
§
AAOE/ASDRAS/ASOE  
12  
12  
§
AAWE/ASDWE/ASWE  
The write latency and the length of ACEx assertion are programmable via the SYNCWL and CEEXT fields, respectively, in the EMIFA CE Space  
Secondary Control register (CExSEC). In this figure, SYNCWL = 0 and CEEXT = 0.  
The following parameters are programmable via the EMIF CE Space Secondary Control register (CExSEC):  
Read latency (SYNCRL): 0-, 1-, 2-, or 3-cycle read latency  
Write latency (SYNCWL): 0-, 1-, 2-, or 3-cycle write latency  
ACEx assertion length (CEEXT): For standard SBSRAM or ZBT SRAM interface, ACEx goes inactive after the final command has been issued  
(CEEXT = 0). For synchronous FIFO interface with glue, ACEx is active when ASOE is active (CEEXT = 1).  
Function of ASADS/ASRE (RENEN): For standard SBSRAM or ZBT SRAM interface, ASADS/ASRE acts as ASADS with deselect cycles  
(RENEN = 0). For FIFO interface, ASADS/ASRE acts as ASRE with NO deselect cycles (RENEN = 1).  
Synchronization clock (SNCCLK): Synchronized to AECLKOUT1 or AECLKOUT2  
§
AARE/ASDCAS/ASADS/ASRE, AAOE/ASDRAS/ASOE, and AAWE/ASDWE/ASWE operate as ASADS/ASRE, ASOE, and ASWE,  
respectively, during programmable synchronous interface accesses.  
Figure 710. Programmable Synchronous Interface Write Timing for EMIFA  
†‡§  
(With Write Latency = 0)  
102  
SPRS247E  
April 2004 Revised May 2005  
 
Programmable Synchronous Interface Timing  
Write  
Latency =  
1
AECLKOUTx  
1
1
3
ACEx  
2
ABE[3:0]  
BE1  
BE2  
BE3  
BE4  
EA4  
Q3  
5
4
AEA[22:3]  
EA1  
10  
EA2  
10  
EA3  
Q2  
11  
8
AED[31:0]  
Q1  
Q4  
8
AARE/ASDCAS/ASADS/  
§
ASRE  
§
AAOE/ASDRAS/ASOE  
12  
12  
§
AAWE/ASDWE/ASWE  
The write latency and the length of ACEx assertion are programmable via the SYNCWL and CEEXT fields, respectively, in the EMIFA CE Space  
Secondary Control register (CExSEC). In this figure, SYNCWL = 1 and CEEXT = 0.  
The following parameters are programmable via the EMIF CE Space Secondary Control register (CExSEC):  
Read latency (SYNCRL): 0-, 1-, 2-, or 3-cycle read latency  
Write latency (SYNCWL): 0-, 1-, 2-, or 3-cycle write latency  
ACEx assertion length (CEEXT): For standard SBSRAM or ZBT SRAM interface, ACEx goes inactive after the final command has been issued  
(CEEXT = 0). For synchronous FIFO interface with glue, ACEx is active when ASOE is active (CEEXT = 1).  
Function of ASADS/ASRE (RENEN): For standard SBSRAM or ZBT SRAM interface, ASADS/ASRE acts as ASADS with deselect cycles  
(RENEN = 0). For FIFO interface, ASADS/ASRE acts as ASRE with NO deselect cycles (RENEN = 1).  
Synchronization clock (SNCCLK): Synchronized to ECLKOUT1 or ECLKOUT2  
§
AARE/ASDCAS/ASADS/ASRE, AAOE/ASDRAS/ASOE, and AAWE/ASDWE/ASWE operate as ASADS/ASRE, ASOE, and ASWE,  
respectively, during programmable synchronous interface accesses.  
Figure 711. Programmable Synchronous Interface Write Timing for EMIFA  
†‡  
(With Write Latency = 1)  
103  
April 2004 Revised May 2005  
SPRS247E  
 
Synchronous DRAM Timing  
7.4  
Synchronous DRAM Timing  
Table 712. Timing Requirements for Synchronous DRAM Cycles for EMIFA Module (see Figure 712)  
400  
500  
NO.  
UNIT  
MIN MAX  
6
7
t
t
Setup time, read AEDx valid before AECLKOUTx high  
Hold time, read AEDx valid after AECLKOUTx high  
2.1  
2.5  
ns  
ns  
su(EDV-EKO1H)  
h(EKO1H-EDV)  
Table 713. Switching Characteristics Over Recommended Operating Conditions for Synchronous DRAM  
Cycles for EMIFA Module (see Figure 712Figure 719)  
400  
500  
NO.  
PARAMETER  
UNIT  
MIN  
MAX  
6.4  
1
2
t
t
t
t
t
t
t
t
t
t
t
t
Delay time, AECLKOUTx high to ACEx valid  
Delay time, AECLKOUTx high to ABEx valid  
Delay time, AECLKOUTx high to ABEx invalid  
Delay time, AECLKOUTx high to AEAx valid  
Delay time, AECLKOUTx high to AEAx invalid  
Delay time, AECLKOUTx high to ASDCAS valid  
Delay time, AECLKOUTx high to AEDx valid  
Delay time, AECLKOUTx high to AEDx invalid  
Delay time, AECLKOUTx high to ASDWE valid  
Delay time, AECLKOUTx high to ASDRAS valid  
Delay time, AECLKOUTx high to ASDCKE valid  
Delay time, AECLKOUTx high to PDT valid  
1.3  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
d(EKO1H-CEV)  
d(EKO1H-BEV)  
d(EKO1H-BEIV)  
d(EKO1H-EAV)  
d(EKO1H-EAIV)  
d(EKO1H-CASV)  
d(EKO1H-EDV)  
d(EKO1H-EDIV)  
d(EKO1H-WEV)  
d(EKO1H-RAS)  
d(EKO1H-ACKEV)  
6.4  
3
1.3  
4
6.4  
5
1.3  
1.3  
8
6.4  
6.4  
9
10  
11  
12  
13  
14  
1.3  
1.3  
1.3  
1.3  
1.3  
6.4  
6.4  
6.4  
6.4  
d(EKO1H-PDTV)  
104  
SPRS247E  
April 2004 Revised May 2005  
 
Synchronous DRAM Timing  
READ  
AECLKOUTx  
ACEx  
1
4
1
2
3
ABE[3:0]  
BE1  
BE2  
BE3  
BE4  
5
5
5
Bank  
AEA[22:14]  
AEA[12:3]  
4
Column  
4
AEA13  
6
7
D2  
AED[31:0]  
D1  
D3  
D4  
AAOE/ASDRAS/ASOE  
8
8
AARE/ASDCAS/ASADS/  
ASRE  
AAWE/ASDWE/ASWE  
14  
14  
PDT  
AARE/ASDCAS/ASADS/ASRE, AAWE/ASDWE/ASWE, and AAOE/ASDRAS/ASOE operate as ASDCAS, ASDWE, and ASDRAS,  
respectively, during SDRAM accesses.  
PDT signal is only asserted when the EDMA is in PDT mode (set the PDTS bit to 1 in the EDMA options parameter RAM). For PDT read, data  
is not latched into EMIF. The PDTRL field in the PDT control register (PDTCTL) configures the latency of the PDT signal with respect to the data  
phase of a read transaction. The latency of the PDT signal for a read can be programmed to 0, 1, 2, or 3 by setting PDTRL to 00, 01, 10, or 11,  
respectively. PDTRL equals 00 (zero latency) in Figure 712.  
Figure 712. SDRAM Read Command (CAS Latency 3) for EMIFA  
105  
April 2004 Revised May 2005  
SPRS247E  
 
 
Synchronous DRAM Timing  
WRITE  
AECLKOUTx  
ACEx  
1
2
4
4
4
9
2
4
5
5
5
9
3
ABE[3:0]  
BE1  
BE2  
BE3  
BE4  
Bank  
AEA[22:14]  
Column  
AEA[12:3]  
AEA13  
10  
AED[31:0]  
D1  
D2  
D3  
D4  
AAOE/ASDRAS/ASOE  
8
8
AARE/ASDCAS/ASADS/  
ASRE  
11  
14  
11  
AAWE/ASDWE/ASWE  
14  
PDT  
AARE/ASDCAS/ASADS/ASRE, AAWE/ASDWE/ASWE, and AAOE/ASDRAS/ASOE operate as AsDCAS, ASDWE, and ASDRAS, respectively,  
during SDRAM accesses.  
PDT signal is only asserted when the EDMA is in PDT mode (set the PDTD bit to 1 in the EDMA options parameter RAM). For PDT write, data  
is not driven (in High-Z). The PDTWL field in the PDT control register (PDTCTL) configures the latency of the PDT signal with respect to the data  
phase of a write transaction. The latency of the PDT signal for a write transaction can be programmed to 0, 1, 2, or 3 by setting PDTWL to 00,  
01, 10, or 11, respectively. PDTWL equals 00 (zero latency) in Figure 713.  
Figure 713. SDRAM Write Command for EMIFA  
106  
SPRS247E  
April 2004 Revised May 2005  
 
 
Synchronous DRAM Timing  
ACTV  
AECLKOUTx  
1
4
1
ACEx  
ABE[3:0]  
5
5
5
Bank Activate  
AEA[22:14]  
AEA[12:3]  
4
Row Address  
4
Row Address  
AEA13  
AED[31:0]  
12  
12  
AAOE/ASDRAS/ASOE  
AARE/ASDCAS/ASADS/  
ASRE  
AAWE/ASDWE/ASWE  
AARE/ASDCAS/ASADS/ASRE, AAWE/ASDWE/ASWE, and AAOE/ASDRAS/ASOE operate as ASDCAS, ASDWE, and ASDRAS,  
respectively, during SDRAM accesses.  
Figure 714. SDRAM ACTV Command for EMIFA  
DCAB  
AECLKOUTx  
1
1
ACEx  
ABE[3:0]  
AEA[22:14, 12:3]  
4
12  
11  
5
12  
11  
AEA13  
AED[31:0]  
AAOE/ASDRAS/ASOE  
AARE/ASDCAS/ASADS/  
ASRE  
AAWE/ASDWE/ASWE  
AARE/ASDCAS/ASADS/ASRE, AAWE/ASDWE/ASWE, and AAOE/ASDRAS/ASOE operate as ASDCAS, ASDWE, and ASDRAS,  
respectively, during SDRAM accesses.  
Figure 715. SDRAM DCAB Command for EMIFA  
107  
April 2004 Revised May 2005  
SPRS247E  
 
Synchronous DRAM Timing  
DEAC  
AECLKOUTx  
1
1
ACEx  
ABE[7:0]  
4
5
AEA[22:14]  
AEA[12:3]  
Bank  
4
5
AEA13  
AED[31:0]  
12  
11  
12  
11  
AAOE/ASDRAS/ASOE  
AARE/ASDCAS/ASADS/  
ASRE  
AAWE/ASDWE/ASWE  
AARE/ASDCAS/ASADS/ASRE, AAWE/ASDWE/ASWE, and AAOE/ASDRAS/ASOE operate as ASDCAS, ASDWE, and ASDRAS,  
respectively, during SDRAM accesses.  
Figure 716. SDRAM DEAC Command for EMIFA  
REFR  
AECLKOUTx  
1
1
ACEx  
ABE[3:0]  
AEA[22:14, 12:3]  
AEA13  
AED[31:0]]  
12  
8
12  
8
AAOE/ASDRAS/ASOE  
AARE/ASDCAS/ASADS/  
ASRE  
AAWE/ASDWE/ASWE  
AARE/ASDCAS/ASADS/ASRE, AAWE/ASDWE/ASWE, and AAOE/ASDRAS/ASOE operate as ASDCAS, ASDWE, and ASDRAS,  
respectively, during SDRAM accesses.  
Figure 717. SDRAM REFR Command for EMIFA  
108  
SPRS247E  
April 2004 Revised May 2005  
 
Synchronous DRAM Timing  
MRS  
AECLKOUTx  
1
4
1
5
ACEx  
ABE[3:0]  
AEA[22:3]  
AED[31:0]  
MRS value  
12  
8
12  
8
AAOE/ASDRAS/  
ASOE  
AARE/ASDCAS/ASADS/  
ASRE  
11  
11  
AAWE/ASDWE/ASWE  
AARE/ASDCAS/ASADS/ASRE, AAWE/ASDWE/ASWE, and AAOE/ASDRAS/ASOE operate as ASDCAS, ASDWE, and ASDRAS,  
respectively, during SDRAM accesses.  
Figure 718. SDRAM MRS Command for EMIFA  
TRAS cycles  
End Self-Refresh  
Self Refresh  
AECLKOUTx  
ACEx  
ABE[3:0]  
AEA[22:14, 12:3]  
AEA13  
AED[31:0]  
AAOE/ASDRAS/ASOE  
AARE/ASDCAS/ASADS/ASRE  
AAWE/ASDWE/ASWE  
13  
13  
ASDCKE  
AARE/ASDCAS/ASADS/ASRE, AAWE/ASDWE/ASWE, and AAOE/ASDRAS/ASOE operate as ASDCAS, ASDWE, and ASDRAS,  
respectively, during SDRAM accesses.  
Figure 719. SDRAM Self-Refresh Timing for EMIFA  
109  
April 2004 Revised May 2005  
SPRS247E  
 
HOLD/HOLDA Timing  
7.5  
HOLD/HOLDA Timing  
Table 714. Timing Requirements for the HOLD/HOLDA Cycles for EMIFA Module (see Figure 720)  
400  
500  
NO.  
UNIT  
ns  
MIN MAX  
3
t
Hold time, HOLD low after HOLDA low  
E
h(HOLDAL-HOLDL)  
E = the EMIF input clock (ECLKIN, CPU/4 clock, or CPU/6 clock) period in ns for EMIFA.  
Table 715. Switching Characteristics Over Recommended Operating Conditions for the HOLD/HOLDA  
†‡§  
Cycles for EMIFA Module  
(see Figure 720)  
400  
500  
NO.  
PARAMETER  
UNIT  
MIN  
MAX  
1
2
4
5
6
7
t
t
t
t
t
t
Delay time, HOLD low to EMIFA Bus high impedance  
Delay time, EMIF Bus high impedance to HOLDA low  
Delay time, HOLD high to EMIF Bus low impedance  
Delay time, EMIFA Bus low impedance to HOLDA high  
Delay time, HOLD low to AECLKOUTx high impedance  
Delay time, HOLD high to AECLKOUTx low impedance  
2E  
0
ns  
ns  
ns  
ns  
ns  
ns  
d(HOLDL-EMHZ)  
d(EMHZ-HOLDAL)  
d(HOLDH-EMLZ)  
d(EMLZ-HOLDAH)  
d(HOLDL-EKOHZ)  
d(HOLDH-EKOLZ)  
2E  
7E  
2E  
0
2E  
2E  
2E  
7E  
E = the EMIF input clock (ECLKIN, CPU/4 clock, or CPU/6 clock) period in ns for EMIFA.  
EMIFA Bus consists of: ACE[3:0], ABE[3:0], AED[31:0], AEA[22:3], AARE/ASDCAS/ASADS/ASRE, AAOE/ASDRAS/ASOE, and  
AAWE/ASDWE/ASWE , ASDCKE, ASOE3, and APDT.  
The EKxHZ bits in the EMIF Global Control register (GBLCTL) determine the state of the ECLKOUTx signals during HOLDA. If EKxHZ = 0,  
ECLKOUTx continues clocking during Hold mode. If EKxHZ = 1, ECLKOUTx goes to high impedance during Hold mode, as shown in Figure 720.  
All pending EMIF transactions are allowed to complete before HOLDA is asserted. If no bus transactions are occurring, then the minimum delay  
time can be achieved. Also, bus hold can be indefinitely delayed by setting NOHOLD = 1.  
§
External Requestor  
DSP Owns Bus  
DSP Owns Bus  
Owns Bus  
3
HOLD  
2
5
HOLDA  
1
4
7
EMIF Bus  
C6413/C6410  
C6413/C6410  
AECLKOUTx  
(EKxHZ = 0)  
6
AECLKOUTx  
(EKxHZ = 1)  
EMIFA Bus consists of: ACE[3:0], ABE[3:0], AED[31:0], AEA[22:3], AARE/ASDCAS/ASADS/ASRE, AAOE/ASDRAS/ASOE, and  
AAWE/ASDWE/ASWE, ASDCKE, ASOE3, and APDT.  
The EKxHZ bits in the EMIF Global Control register (GBLCTL) determine the state of the ECLKOUTx signals during HOLDA. If EKxHZ = 0,  
ECLKOUTx continues clocking during Hold mode. If EKxHZ = 1, ECLKOUTx goes to high impedance during Hold mode, as shown in Figure 720.  
Figure 720. HOLD/HOLDA Timing for EMIFA  
110  
SPRS247E  
April 2004 Revised May 2005  
 
 
BUSREQ Timing  
7.6  
BUSREQ Timing  
Table 716. Switching Characteristics Over Recommended Operating Conditions for the BUSREQ Cycles  
for EMIFA Module (see Figure 721)  
400  
500  
NO.  
PARAMETER  
UNIT  
MIN  
MAX  
1
t
Delay time, AECLKOUTx high to ABUSREQ valid  
0.6  
7.1  
ns  
d(AEKO1H-ABUSRV)  
AECLKOUTx  
1
1
ABUSREQ  
Figure 721. BUSREQ Timing for EMIFA  
111  
April 2004 Revised May 2005  
SPRS247E  
 
 
Reset Timing  
7.7  
Reset Timing  
Table 717. Timing Requirements for Reset (see Figure 722)  
400  
500  
NO.  
UNIT  
MIN  
MAX  
1
t
t
t
Width of the RESET pulse  
250  
µs  
ns  
ns  
w(RST)  
su(boot)  
h(boot)  
16  
17  
Setup time, boot configuration bits valid before RESET high  
4E or 4C  
§
Hold time, boot configuration bits valid after RESET high  
4P  
AEA[22:19], LENDIAN, BOOTMODE[1:0], and AECLKIN_SEL[1:0] are the boot configuration pins during device reset.  
E = 1/ECLKIN clock frequency in ns. C = 1/CLKIN clock frequency in ns.  
Select the MIN parameter value, whichever value is larger.  
P = 1/CPU clock frequency in ns. For example, when running parts at 500 MHz, use P = 2 ns.  
The device must be reset after the oscillator has stabilized. If RESETz is low during power-up, it can be kept low until the oscillator has stabilized.  
Note: a device reset does not affect the state of the oscillator.  
§
§#  
Table 718. Switching Characteristics Over Recommended Operating Conditions During Reset  
(see Figure 722)  
k
400, 500  
NO.  
PARAMETER  
UNIT  
MIN  
2E  
MAX  
3P + 20E  
8P + 20E  
2
3
t
t
t
t
t
t
t
t
t
t
t
t
t
t
Delay time, RESET low to ECLKIN synchronized internally  
Delay time, RESET high to ECLKIN synchronized internally  
Delay time, RESET low to ECLKOUT1 high impedance  
Delay time, RESET high to ECLKOUT1 valid  
Delay time, RESET low to EMIF Z high impedance  
Delay time, RESET high to EMIF Z valid  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
d(RSTL-ECKI)  
2E  
d(RSTH-ECKI)  
4
2E  
d(RSTL-ECKO1HZ)  
d(RSTH-ECKO1V)  
d(RSTL-EMIFZHZ)  
d(RSTH-EMIFZV)  
d(RSTL-EMIFHIV)  
d(RSTH-EMIFHV)  
d(RSTL-EMIFLIV)  
d(RSTH-EMIFLV)  
d(RSTL-HIGHIV)  
d(RSTH-HIGHV)  
d(RSTL-ZHZ)  
5
8P + 20E  
3P + 4E  
6
2E  
16E  
2E  
7
8P + 20E  
8
Delay time, RESET low to EMIF high group invalid  
Delay time, RESET high to EMIF high group valid  
Delay time, RESET low to EMIF low group invalid  
Delay time, RESET high to EMIF low group valid  
Delay time, RESET low to high group invalid  
9
8P + 20E  
8P + 20E  
11P  
10  
11  
12  
13  
14  
15  
2E  
0
Delay time, RESET high to high group valid  
Delay time, RESET low to Z group high impedance  
Delay time, RESET high to Z group valid  
0
2P  
8P  
d(RSTH-ZV)  
41032 x  
OSCIN  
||¶  
18  
t
Delay time, Internal oscillator startup time  
CLKINSEL = 0  
ns  
d(OSCSTART)  
§
P = 1/CPU clock frequency in ns. For example, when running parts at 500 MHz, use P = 2 ns.  
The device must be reset after the oscillator has stabilized. If RESETz is low during power-up, it can be kept low until the oscillator has stabilized.  
Note: a device reset does not affect the state of the oscillator.  
E = the EMIF input clock (ECLKIN, CPU/4 clock, or CPU/6 clock) period in ns for EMIFA.  
Assuming core power supply has stabilized at recommended operating conditions.  
#
||  
kEMIF Z group consists of:  
AEA[22:3], AED[31:0], ACE[3:0], ABE[3:0], AARE/ASDCAS/ASADS/ASRE,AAWE/ASDWE/ASWE,  
and AAOE/ASDRAS/ASOE, ASOE3, ASDCKE, APDT., and AECLKOUT1  
EMIF high group consists of: AHOLDA (when the corresponding HOLD input is high)  
EMIF low group consists of: ABUSREQ; AHOLDA (when the corresponding HOLD input is low)  
High group consists of:  
Z group consists of:  
HRDY (when HPI is enabled, otherwise in Z group)  
CLKX0, CLKX1, FSX0, FSX1, DX0, DX1, CLKS0, CLKS1, DR0, DR1, CLKR0, CLKR1, FSR0, FSR1,  
TOUT0/HPI_EN, TOUT1/LENDIAN, GP0[7:0], HD[7:0], HD[15:8]/GP0[15:8], HD[21:16]/AXR1[5:0],  
HD22/AFSX1, HD23/AFSR1, HD24/ACLKX1, HD25/ACLKR1, HD26/AHCLKR1, HD27/AHCLKX1,  
HD28/AMUTE1, HD29/AMUTEIN1, HD30, HD31, HRDY, HDS2, HDS1/ACLKR1[3], HCS/ACLKR1[2],  
HAS/ACLKR1[1], HR/W/AFSR1[3], HHWIL/AFSR1[2] (16-bit HPI mode only), HCNTL0/AFSR1[1], HCNTL1,  
HINT,, ACLKR0, AFSR0, AHCLKR0, AMUTEIN0, AMUTE0, AXR0[5:0], SDA1, SCL1, SDA0, SCL0,  
TDO, and EMU[11:0]  
112  
SPRS247E  
April 2004 Revised May 2005  
 
Reset Timing  
CLKOUT4  
CLKOUT6  
1
RESET  
2
4
3
5
AECLKIN  
AECLKOUT1  
AECLKOUT2  
6
7
†‡  
EMIF Z Group  
9
8
EMIF High Group  
11  
13  
10  
EMIF Low Group  
12  
14  
High Group  
15  
†‡  
Z Group  
17  
16  
Boot and Device  
Configuration Inputs  
§
EMIF Z group consists of:  
AEA[22:3], AED[31:0], ACE[3:0], ABE[3:0], AARE/ASDCAS/ASADS/ASRE,AAWE/ASDWE/ASWE,  
and AAOE/ASDRAS/ASOE, ASOE3, ASDCKE, APDT., and AECLKOUT1  
EMIF high group consists of: AHOLDA (when the corresponding HOLD input is high)  
EMIF low group consists of: ABUSREQ; AHOLDA (when the corresponding HOLD input is low)  
High group consists of:  
Z group consists of:  
HRDY (when HPI is enabled, otherwise in Z group)  
CLKX0, CLKX1, FSX0, FSX1, DX0, DX1, CLKS0, CLKS1, DR0, DR1, CLKR0, CLKR1, FSR0, FSR1,  
TOUT0/HPI_EN, TOUT1/LENDIAN, GP0[7:0], HD[7:0], HD[15:8]/GP0[15:8], HD[21:16]/AXR1[5:0],  
HD22/AFSX1, HD23/AFSR1, HD24/ACLKX1, HD25/ACLKR1, HD26/AHCLKR1, HD27/AHCLKX1,  
HD28/AMUTE1, HD29/AMUTEIN1, HD30, HD31, HRDY, HDS2, HDS1/ACLKR1[3], HCS/ACLKR1[2],  
HAS/ACLKR1[1], HR/W/AFSR1[3], HHWIL/AFSR1[2] (16-bit HPI mode only), HCNTL0/AFSR1[1], HCNTL1,  
HINT,, ACLKR0, AFSR0, AHCLKR0, AMUTEIN0, AMUTE0, AXR0[5:0], SDA1,  
SCL1, SDA0, SCL0, TDO, and EMU[11:0]  
§
If AEA[22:19], LENDIAN, BOOTMODE[1:0], and AECLKIN_SEL[1:0] pins are actively driven, care must be taken to ensure no timing contention  
between parameters 6, 7, 14, 15, 16, and 17.  
Boot and Device Configurations Inputs (during reset) include: AEA[22:19], LENDIAN, BOOTMODE[1:0], and AECLKIN_SEL[1:0].  
Figure 722. Reset Timing  
113  
April 2004 Revised May 2005  
SPRS247E  
 
External Interrupt Timing  
7.8  
External Interrupt Timing  
Table 719. Timing Requirements for External Interrupts (see Figure 723)  
400  
500  
NO.  
UNIT  
MIN MAX  
Width of the NMI interrupt pulse low  
Width of the EXT_INT interrupt pulse low  
Width of the NMI interrupt pulse high  
Width of the EXT_INT interrupt pulse high  
4P  
8P  
4P  
8P  
ns  
ns  
ns  
ns  
1
2
t
t
w(ILOW)  
w(IHIGH)  
P = 1/CPU clock frequency in ns. For example, when running parts at 500 MHz, use P = 2 ns.  
2
1
EXT_INTx, NMI  
Figure 723. External/NMI Interrupt Timing  
114  
SPRS247E  
April 2004 Revised May 2005  
 
 
Multichannel Audio Serial Port (McASP) Timing  
7.9  
Multichannel Audio Serial Port (McASP) Timing  
Table 720. Timing Requirements for McASP (see Figure 724 and Figure 725)  
400  
500  
NO.  
UNIT  
MIN  
20  
MAX  
1
2
3
4
t
t
t
t
Cycle time, AHCLKR/X  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
c(AHCKRX)  
w(AHCKRX)  
c(CKRX)  
Pulse duration, AHCLKR/X high or low  
Cycle time, ACLKR/X  
10  
ACLKR/X ext  
ACLKR/X ext  
ACLKR/X int  
ACLKR/X ext  
ACLKR/X int  
ACLKR/X ext  
ACLKR/X int  
ACLKR/X ext  
ACLKR/X int  
ACLKR/X ext  
25  
Pulse duration, ACLKR/X high or low  
12.25  
w(CKRX)  
5
5
5
5
5
5
5
5
5
6
7
8
t
t
t
t
Setup time, AFSR/X input valid before ACLKR/X latches data  
Hold time, AFSR/X input valid after ACLKR/X latches data  
Setup time, AXR input valid before ACLKR/X latches data  
Hold time, AXR input valid after ACLKR/X latches data  
su(FRXC-KRX)  
h(CKRX-FRX)  
su(AXR-CKRX)  
h(CKRX-AXR)  
Table 721. Switching Characteristics Over Recommended Operating Conditions for McASP  
(see Figure 724 and Figure 725)  
400  
500  
NO.  
PARAMETER  
UNIT  
MIN  
20  
MAX  
9
t
t
t
t
Cycle time, AHCLKR/X  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
c(AHCKRX)  
w(AHCKRX)  
c(CKRX)  
10  
11  
12  
Pulse duration, AHCLKR/X high or low  
Cycle time, ACLKR/X  
10  
33  
16.5  
1  
2
ACLKR/X int  
ACLKR/X int  
ACLKR/X int  
ACLKR/X ext  
ACLKR/X int  
ACLKR/X ext  
ACLKR/X int  
ACLKR/X ext  
Pulse duration, ACLKR/X high or low  
w(CKRX)  
5
13  
14  
15  
t
t
t
Delay time, ACLKR/X transmit edge to AFSX/R output valid  
Delay time, ACLKR/X transmit edge to AXR output valid  
d(CKRX-FRX)  
12  
5
1  
2
d(CKRX-AXRV)  
dis(CKRXAXRHZ)  
12  
10  
10  
0
Disable time, AXR high impedance following last data bit from  
ACLKR/X transmit edge  
0
115  
April 2004 Revised May 2005  
SPRS247E  
 
Multichannel Audio Serial Port (McASP) Timing  
2
1
2
AHCLKR/X (Falling Edge Polarity)  
AHCLKR/X (Rising Edge Polarity)  
4
3
4
ACLKR/X (Falling Edge Polarity)  
ACLKR/X (Rising Edge Polarity)  
6
5
AFSR/X (Bit Width, 0 Bit Delay)  
AFSR/X (Bit Width, 1 Bit Delay)  
AFSR/X (Bit Width, 2 Bit Delay)  
AFSR/X (Slot Width, 0 Bit Delay)  
AFSR/X (Slot Width, 1 Bit Delay)  
AFSR/X (Slot Width, 2 Bit Delay)  
8
7
AXR[n] (Data In/Receive)  
A0 A1  
A30 A31 B0 B1  
B30 B31 C0 C1 C2 C3  
C31  
Figure 724. McASP Input Timings  
116  
SPRS247E  
April 2004 Revised May 2005  
 
Multichannel Audio Serial Port (McASP) Timing  
10  
10  
9
AHCLKR/X (Falling Edge Polarity)  
AHCLKR/X (Rising Edge Polarity)  
12  
11  
12  
ACLKR/X (Falling Edge Polarity)  
ACLKR/X (Rising Edge Polarity)  
13  
13  
13  
13  
AFSR/X (Bit Width, 0 Bit Delay)  
AFSR/X (Bit Width, 1 Bit Delay)  
AFSR/X (Bit Width, 2 Bit Delay)  
AFSR/X (Slot Width, 0 Bit Delay)  
AFSR/X (Slot Width, 1 Bit Delay)  
AFSR/X (Slot Width, 2 Bit Delay)  
AXR[n] (Data Out/Transmit)  
13  
13  
13  
14  
14  
14  
14  
15  
14  
14  
A0 A1  
A30 A31 B0 B1  
B30 B31 C0 C1 C2 C3  
C31  
Figure 725. McASP Output Timings  
117  
April 2004 Revised May 2005  
SPRS247E  
 
Inter-Integrated Circuits (I2C) Timing  
7.10 Inter-Integrated Circuits (I2C) Timing  
Table 722. Timing Requirements for I2C Timings (see Figure 726)  
400  
500  
STANDARD  
MODE  
FAST  
MODE  
NO.  
UNIT  
MIN MAX  
MIN MAX  
1
2
t
t
Cycle time, SCL  
10  
2.5  
µs  
µs  
c(SCL)  
Setup time, SCL high before SDA low (for a repeated START  
condition)  
4.7  
0.6  
0.6  
su(SCLH-SDAL)  
Hold time, SCL low after SDA low (for a START and a repeated  
START condition)  
3
t
4
µs  
h(SCLL-SDAL)  
4
5
t
t
t
t
t
t
t
t
t
t
t
Pulse duration, SCL low  
4.7  
4
1.3  
0.6  
µs  
µs  
ns  
µs  
µs  
ns  
ns  
ns  
ns  
µs  
ns  
pF  
w(SCLL)  
Pulse duration, SCL high  
w(SCLH)  
6
Setup time, SDA valid before SCL high  
250  
100  
su(SDAV-SDLH)  
h(SDA-SDLL)  
w(SDAH)  
r(SDA)  
2
§
§
7
Hold time, SDA valid after SCL low (For I C busdevices)  
0
0
0.9  
8
Pulse duration, SDA high between STOP and START conditions  
Rise time, SDA  
4.7  
1.3  
#
9
1000 20 + 0.1C  
300  
300  
300  
300  
b
b
b
b
#
#
#
10  
11  
12  
13  
14  
15  
Rise time, SCL  
1000 20 + 0.1C  
300 20 + 0.1C  
300 20 + 0.1C  
r(SCL)  
Fall time, SDA  
f(SDA)  
Fall time, SCL  
f(SCL)  
Setup time, SCL high before SDA high (for STOP condition)  
Pulse duration, spike (must be suppressed)  
Capacitive load for each bus line  
4
0.6  
0
su(SCLH-SDAH)  
50  
w(SP)  
#
C
400  
400  
b
The I2C pins SDA and SCL do not feature fail-safe I/O buffers. These pins could potentially draw current when the device is powered down.  
2
2
A Fast-mode I C-busdevice can be used in a Standard-mode I C-bussystem, but the requirement t  
250 ns must then be met.  
su(SDASCLH)  
This will automatically be the case if the device does not stretch the LOW period of the SCL signal. If such a device does stretch the LOW period  
of the SCL signal, it must output the next data bit to the SDA line t max + t  
I C-Bus Specification) before the SCL line is released.  
= 1000 + 250 = 1250 ns (according to the Standard-mode  
r
su(SDASCLH)  
2
§
A device must internally provide a hold time of at least 300 ns for the SDA signal (referred to the V  
region of the falling edge of SCL.  
of the SCL signal) to bridge the undefined  
] of the SCL signal.  
IHmin  
#
The maximum t  
has only to be met if the device does not stretch the low period [t  
h(SDASCLL)  
w(SCLL)  
C = total capacitance of one bus line in pF. If mixed with HS-mode devices, faster fall-times are allowed.  
b
11  
9
SDA  
6
8
14  
4
13  
5
10  
SCL  
1
12  
3
2
7
3
Stop  
Start  
Repeated  
Start  
Stop  
Figure 726. I2C Receive Timings  
118  
SPRS247E  
April 2004 Revised May 2005  
 
 
Inter-Integrated Circuits (I2C) Timing  
Table 723. Switching Characteristics for I2C Timings (see Figure 727)  
400  
500  
STANDARD  
MODE  
FAST  
MODE  
NO.  
PARAMETER  
UNIT  
MIN MAX  
MIN MAX  
16  
17  
t
t
Cycle time, SCL  
10  
2.5  
0.6  
µs  
µs  
c(SCL)  
Delay time, SCL high to SDA low (for a repeated START condition)  
4.7  
d(SCLH-SDAL)  
Delay time, SDA low to SCL low (for a START and a repeated  
START condition)  
18  
t
4
0.6  
µs  
d(SDAL-SCLL)  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
t
t
t
t
t
t
t
t
t
t
Pulse duration, SCL low  
4.7  
4
1.3  
0.6  
µs  
µs  
ns  
µs  
µs  
ns  
ns  
ns  
ns  
µs  
pF  
w(SCLL)  
Pulse duration, SCL high  
w(SCLH)  
d(SDAV-SDLH)  
v(SDLL-SDAV)  
w(SDAH)  
r(SDA)  
Delay time, SDA valid to SCL high  
250  
0
100  
2
Valid time, SDA valid after SCL low (For I C busdevices)  
0
0.9  
Pulse duration, SDA high between STOP and START conditions  
4.7  
1.3  
Rise time, SDA  
1000 20 + 0.1C  
300  
300  
300  
300  
b
b
b
b
Rise time, SCL  
1000 20 + 0.1C  
r(SCL)  
Fall time, SDA  
300 20 + 0.1C  
300 20 + 0.1C  
f(SDA)  
Fall time, SCL  
f(SCL)  
Delay time, SCL high to SDA high (for STOP condition)  
Capacitance for each I2C pin  
4
0.6  
d(SCLH-SDAH)  
C
10  
10  
p
C = total capacitance of one bus line in pF. If mixed with HS-mode devices, faster fall-times are allowed.  
b
26  
24  
SDA  
21  
23  
19  
28  
20  
25  
SCL  
16  
27  
18  
17  
22  
18  
Stop  
Start  
Repeated  
Start  
Stop  
Figure 727. I2C Transmit Timings  
119  
April 2004 Revised May 2005  
SPRS247E  
 
 
Host-Port Interface (HPI) Timing  
7.11 Host-Port Interface (HPI) Timing  
†‡  
Table 724. Timing Requirements for Host-Port Interface Cycles (see Figure 728 through Figure 735)  
400  
500  
NO.  
UNIT  
MIN  
5
MAX  
§
1
2
t
t
t
t
t
t
t
t
Setup time, select signals valid before HSTROBE low  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
su(SELV-HSTBL)  
h(HSTBL-SELV)  
w(HSTBL)  
§
Hold time, select signals valid after HSTROBE low  
2.4  
3
Pulse duration, HSTROBE low  
4P  
4
Pulse duration, HSTROBE high between consecutive accesses  
4P  
5
w(HSTBH)  
§
10  
11  
12  
13  
Setup time, select signals valid before HAS low  
su(SELV-HASL)  
h(HASL-SELV)  
su(HDV-HSTBH)  
h(HSTBH-HDV)  
§
Hold time, select signals valid after HAS low  
2
Setup time, host data valid before HSTROBE high  
Hold time, host data valid after HSTROBE high  
5
2.8  
Hold time, HSTROBE low after HRDY low. HSTROBE should not be  
inactivated until HRDY is active (low); otherwise, HPI writes will not complete  
properly.  
14  
t
2
ns  
h(HRDYL-HSTBL)  
18  
19  
t
t
Setup time, HAS low before HSTROBE low  
Hold time, HAS low after HSTROBE low  
2
ns  
ns  
su(HASL-HSTBL)  
2.1  
h(HSTBL-HASL)  
§
HSTROBE refers to the following logical operation on HCS, HDS1, and HDS2: [NOT(HDS1 XOR HDS2)] OR HCS.  
P = 1/CPU clock frequency in ns. For example, when running parts at 500 MHz, use P = 2 ns.  
Select signals include: HCNTL[1:0] and HR/W. For HPI16 mode only, select signals also include HHWIL.  
Select the parameter value of 4P or 12.5 ns, whichever is larger.  
Table 725. Switching Characteristics Over Recommended Operating Conditions During Host-Port  
†‡  
Interface Cycles (see Figure 728 through Figure 735)  
400  
500  
NO.  
PARAMETER  
UNIT  
MIN  
1.3  
2
MAX  
#
6
7
t
t
t
t
t
Delay time, HSTROBE low to HRDY high  
4P + 8  
ns  
ns  
ns  
ns  
ns  
d(HSTBL-HRDYH)  
Delay time, HSTROBE low to HD low impedance for an HPI read  
Delay time, HD valid to HRDY low  
d(HSTBL-HDLZ)  
8
3  
d(HDV-HRDYL)  
oh(HSTBH-HDV)  
d(HSTBH-HDHZ)  
9
Output hold time, HD valid after HSTROBE high  
Delay time, HSTROBE high to HD high impedance  
1.5  
15  
12  
2P + 8 or  
0P + 8  
16  
t
Delay time, HSTROBE low to HD valid (HPI16 mode, 2nd half-word only)  
ns  
d(HSTBL-HDV)  
||  
#
HSTROBE refers to the following logical operation on HCS, HDS1, and HDS2: [NOT(HDS1 XOR HDS2)] OR HCS.  
P = 1/CPU clock frequency in ns. For example, when running parts at 500 MHz, use P = 2 ns.  
This parameter is used during HPID reads and writes. For reads, at the beginning of a word transfer (HPI32) or the first half-word transfer (HPI16)  
on the falling edge of HSTROBE, the HPI sends the request to the EDMA internal address generation hardware, and HRDY remains high until  
the EDMA internal address generation hardware loads the requested data into HPID. For writes, HRDY goes high if the internal write buffer is  
full.  
||  
If preceeding HSTROBE high pulse width > 6P, then this parameter value can be 0P + 8 ns.  
120  
SPRS247E  
April 2004 Revised May 2005  
 
Host-Port Interface (HPI) Timing  
HAS  
HCNTL[1:0]  
HR/W  
1
1
1
1
2
2
2
2
2
2
1
1
HHWIL  
4
3
3
HSTROBE  
HCS  
15  
9
15  
9
7
16  
2nd half-word  
HD[15:0] (output)  
HRDY  
1st half-word  
6
8
HSTROBE refers to the following logical operation on HCS, HDS1, and HDS2: [NOT(HDS1 XOR HDS2)] OR HCS.  
Figure 728. HPI16 Read Timing (HAS Not Used, Tied High)  
HAS  
19  
11  
19  
11  
10  
10  
10  
10  
HCNTL[1:0]  
HR/W  
11  
11  
11  
11  
10  
10  
HHWIL  
4
3
HSTROBE  
18  
18  
HCS  
15  
15  
7
9
16  
9
HD[15:0] (output)  
HRDY  
1st half-word  
2nd half-word  
6
8
For correct operation, strobe the HAS signal only once per HSTROBE active cycle.  
HSTROBE refers to the following logical operation on HCS, HDS1, and HDS2: [NOT(HDS1 XOR HDS2)] OR HCS.  
Figure 729. HPI16 Read Timing (HAS Used)  
121  
April 2004 Revised May 2005  
SPRS247E  
 
Host-Port Interface (HPI) Timing  
HAS  
1
1
2
2
2
2
2
2
3
HCNTL[1:0]  
HR/W  
1
1
1
1
HHWIL  
3
4
HSTROBE  
HCS  
12  
12  
13  
2nd half-word  
13  
HD[15:0] (input)  
1st half-word  
6
14  
HRDY  
HSTROBE refers to the following logical operation on HCS, HDS1, and HDS2: [NOT(HDS1 XOR HDS2)] OR HCS.  
Figure 730. HPI16 Write Timing (HAS Not Used, Tied High)  
19  
11  
19  
HAS  
11  
11  
11  
10  
10  
10  
10  
10  
10  
HCNTL[1:0]  
HR/W  
11  
11  
HHWIL  
3
4
HSTROBE  
18  
12  
18  
HCS  
12  
13  
2nd half-word  
13  
HD[15:0] (input)  
1st half-word  
6
14  
HRDY  
For correct operation, strobe the HAS signal only once per HSTROBE active cycle.  
HSTROBE refers to the following logical operation on HCS, HDS1, and HDS2: [NOT(HDS1 XOR HDS2)] OR HCS.  
Figure 731. HPI16 Write Timing (HAS Used)  
122  
SPRS247E  
April 2004 Revised May 2005  
 
Host-Port Interface (HPI) Timing  
HAS  
HCNTL[1:0]  
HR/W  
1
1
2
2
3
HSTROBE  
HCS  
7
9
15  
HD[31:0] (output)  
HRDY  
6
8
HSTROBE refers to the following logical operation on HCS, HDS1, and HDS2: [NOT(HDS1 XOR HDS2)] OR HCS.  
Figure 732. HPI32 Read Timing (HAS Not Used, Tied High)  
19  
HAS  
11  
10  
HCNTL[1:0]  
11  
10  
HR/W  
18  
3
HSTROBE  
HCS  
7
9
15  
HD[31:0] (output)  
HRDY  
6
8
For correct operation, strobe the HAS signal only once per HSTROBE active cycle.  
HSTROBE refers to the following logical operation on HCS, HDS1, and HDS2: [NOT(HDS1 XOR HDS2)] OR HCS.  
Figure 733. HPI32 Read Timing (HAS Used)  
123  
April 2004 Revised May 2005  
SPRS247E  
 
Host-Port Interface (HPI) Timing  
HAS  
HCNTL[1:0]  
HR/W  
1
1
2
2
3
HSTROBE  
HCS  
12  
13  
HD[31:0] (input)  
6
14  
HRDY  
HSTROBE refers to the following logical operation on HCS, HDS1, and HDS2: [NOT(HDS1 XOR HDS2)] OR HCS.  
Figure 734. HPI32 Write Timing (HAS Not Used, Tied High)  
19  
HAS  
11  
10  
HCNTL[1:0]  
11  
10  
HR/W  
3
18  
HSTROBE  
HCS  
12  
13  
HD[31:0] (input)  
6
14  
HRDY  
For correct operation, strobe the HAS signal only once per HSTROBE active cycle.  
HSTROBE refers to the following logical operation on HCS, HDS1, and HDS2: [NOT(HDS1 XOR HDS2)] OR HCS.  
Figure 735. HPI32 Write Timing (HAS Used)  
124  
SPRS247E  
April 2004 Revised May 2005  
 
Multichannel Buffered Serial Port (McBSP) Timing  
7.12 Multichannel Buffered Serial Port (McBSP) Timing  
†‡  
Table 726. Timing Requirements for McBSP (see Figure 736)  
400  
500  
NO.  
UNIT  
MIN  
4P or 6.67  
MAX  
§  
2
3
t
t
Cycle time, CLKR/X  
CLKR/X ext  
CLKR/X ext  
CLKR int  
CLKR ext  
CLKR int  
CLKR ext  
CLKR int  
CLKR ext  
CLKR int  
CLKR ext  
CLKX int  
CLKX ext  
CLKX int  
CLKX ext  
ns  
ns  
c(CKRX)  
Pulse duration, CLKR/X high or CLKR/X low  
0.5t  
1  
w(CKRX)  
c(CKRX)  
9
5
6
t
t
t
t
t
t
Setup time, external FSR high before CLKR low  
Hold time, external FSR high after CLKR low  
Setup time, DR valid before CLKR low  
ns  
ns  
ns  
ns  
ns  
ns  
su(FRH-CKRL)  
h(CKRL-FRH)  
su(DRV-CKRL)  
h(CKRL-DRV)  
su(FXH-CKXL)  
h(CKXL-FXH)  
1.3  
6
3
8
7
0.9  
3
8
Hold time, DR valid after CLKR low  
3.1  
9
10  
11  
Setup time, external FSX high before CLKX low  
Hold time, external FSX high after CLKX low  
1.3  
6
3
§
CLKRP = CLKXP = FSRP = FSXP = 0. If polarity of any of the signals is inverted, then the timing references of that signal are also inverted.  
P = 1/CPU clock frequency in ns. For example, when running parts at 500 MHz, use P = 2 ns.  
Use whichever value is greater. Minimum CLKR/X cycle times must be met, even when CLKR/X is generated by an internal clock source. The  
minimum CLKR/X cycle times are based on internal logic speed; the maximum usable speed may be lower due to EDMA limitations and AC timing  
requirements.  
This parameter applies to the maximum McBSP frequency. Operate serial clocks (CLKR/X) in the reasonable range of 40/60 duty cycle.  
125  
April 2004 Revised May 2005  
SPRS247E  
 
Multichannel Buffered Serial Port (McBSP) Timing  
†‡  
Table 727. Switching Characteristics Over Recommended Operating Conditions for McBSP  
(see Figure 736)  
400  
500  
NO.  
PARAMETER  
UNIT  
MIN  
MAX  
Delay time, CLKS high to CLKR/X high for internal CLKR/X generated  
from CLKS input  
1
t
1.4  
10  
ns  
d(CKSH-CKRXH)  
§¶#  
2
3
4
t
t
t
Cycle time, CLKR/X  
CLKR/X int  
CLKR/X int  
CLKR int  
CLKX int  
CLKX ext  
CLKX int  
CLKX ext  
CLKX int  
CLKX ext  
4P or 6.67  
ns  
ns  
ns  
c(CKRX)  
||  
||  
Pulse duration, CLKR/X high or CLKR/X low  
Delay time, CLKR high to internal FSR valid  
C 1  
C + 1  
w(CKRX)  
2.1  
1.7  
3
d(CKRH-FRV)  
3
9
t
t
t
Delay time, CLKX high to internal FSX valid  
ns  
ns  
ns  
d(CKXH-FXV)  
dis(CKXH-DXHZ)  
d(CKXH-DXV)  
1.7  
9
4
3.9  
Disable time, DX high impedance following last data bit  
from CLKX high  
12  
13  
2
9
3.9 + D1k  
2.0 + D1k  
4 + D2k  
9 + D2k  
Delay time, CLKX high to DX valid  
Delay time, FSX high to DX valid  
h
h
FSX int  
FSX ext  
2.3 + D1  
5.6 + D2  
14  
t
ns  
d(FXH-DXV)  
ONLY applies when in data  
delay 0 (XDATDLY = 00b) mode  
h
h
1.9 + D1  
9 + D2  
§
CLKRP = CLKXP = FSRP = FSXP = 0. If polarity of any of the signals is inverted, then the timing references of that signal are also inverted.  
Minimum delay times also represent minimum output hold times.  
Minimum CLKR/X cycle times must be met, even when CLKR/X is generated by an internal clock source. Minimum CLKR/X cycle times are based  
on internal logic speed; the maximum usable speed may be lower due to EDMA limitations and AC timing requirements.  
P = 1/CPU clock frequency in ns. For example, when running parts at 500 MHz, use P = 2 ns.  
Use whichever value is greater.  
#
||  
C = H or L  
S = sample rate generator input clock = 4P if CLKSM = 1 (P = 1/CPU clock frequency)  
=
sample rate generator input clock = P_clks if CLKSM = 0 (P_clks = CLKS period)  
H = CLKX high pulse width = (CLKGDV/2 + 1) * S if CLKGDV is even  
= (CLKGDV + 1)/2 * S if CLKGDV is odd or zero  
L = CLKX low pulse width = (CLKGDV/2) * S if CLKGDV is even  
= (CLKGDV + 1)/2 * S if CLKGDV is odd or zero  
CLKGDV should be set appropriately to ensure the McBSP bit rate does not exceed the maximum limit (see ¶ footnote above).  
kExtra delay from CLKX high to DX valid applies only to the first data bit of a device, if and only if DXENA = 1 in SPCR.  
if DXENA = 0, then D1 = D2 = 0  
if DXENA = 1, then D1 = 4P, D2 = 8P  
hExtra delay from FSX high to DX valid applies only to the first data bit of a device, if and only if DXENA = 1 in SPCR.  
if DXENA = 0, then D1 = D2 = 0  
if DXENA = 1, then D1 = 4P, D2 = 8P  
126  
SPRS247E  
April 2004 Revised May 2005  
 
Multichannel Buffered Serial Port (McBSP) Timing  
CLKS  
1
2
3
3
CLKR  
FSR (int)  
FSR (ext)  
DR  
4
4
5
6
7
8
Bit(n-1)  
(n-2)  
(n-3)  
2
3
3
CLKX  
9
FSX (int)  
11  
10  
FSX (ext)  
FSX (XDATDLY=00b)  
13  
14  
13  
12  
DX  
Bit 0  
Bit(n-1)  
(n-2)  
(n-3)  
Parameter No. 13 applies to the first data bit only when XDATDLY 0  
Figure 736. McBSP Timing  
Table 728. Timing Requirements for FSR When GSYNC = 1 (see Figure 737)  
400  
500  
NO.  
UNIT  
MIN MAX  
1
2
t
t
Setup time, FSR high before CLKS high  
Hold time, FSR high after CLKS high  
4
4
ns  
ns  
su(FRH-CKSH)  
h(CKSH-FRH)  
CLKS  
1
2
FSR external  
CLKR/X (no need to resync)  
CLKR/X (needs resync)  
Figure 737. FSR Timing When GSYNC = 1  
127  
April 2004 Revised May 2005  
SPRS247E  
 
 
Multichannel Buffered Serial Port (McBSP) Timing  
Table 729. Timing Requirements for McBSP as SPI Master or Slave:  
†‡  
CLKSTP = 10b, CLKXP = 0 (see Figure 738)  
400  
500  
NO.  
UNIT  
MASTER  
SLAVE  
MIN MAX  
MIN  
12  
4
MAX  
4
5
t
t
Setup time, DR valid before CLKX low  
Hold time, DR valid after CLKX low  
2 12P  
5 + 24P  
ns  
ns  
su(DRV-CKXL)  
h(CKXL-DRV)  
P = 1/CPU clock frequency in ns. For example, when running parts at 500 MHz, use P = 2 ns.  
For all SPI Slave modes, CLKG is programmed as 1/4 of the CPU clock by setting CLKSM = CLKGDV = 1.  
Table 730. Switching Characteristics Over Recommended Operating Conditions for McBSP as  
†‡  
SPI Master or Slave: CLKSTP = 10b, CLKXP = 0 (see Figure 738)  
400  
500  
NO.  
PARAMETER  
UNIT  
§
MASTER  
MIN MAX  
SLAVE  
MIN  
MAX  
1
2
3
t
t
t
Hold time, FSX low after CLKX low  
T 2 T + 3  
L 2 L + 3  
ns  
ns  
ns  
h(CKXL-FXL)  
d(FXL-CKXH)  
d(CKXH-DXV)  
#
Delay time, FSX low to CLKX high  
Delay time, CLKX high to DX valid  
2  
4
12P + 2.8 20P + 17  
Disable time, DX high impedance following last data bit from  
CLKX low  
6
t
L 2 L + 3  
ns  
dis(CKXL-DXHZ)  
Disable time, DX high impedance following last data bit from  
FSX high  
7
8
t
t
4P + 3 12P + 17  
ns  
ns  
dis(FXH-DXHZ)  
Delay time, FSX low to DX valid  
8P + 1.8 16P + 17  
d(FXL-DXV)  
§
P = 1/CPU clock frequency in ns. For example, when running parts at 500 MHz, use P = 2 ns.  
For all SPI Slave modes, CLKG is programmed as 1/4 of the CPU clock by setting CLKSM = CLKGDV = 1.  
S = Sample rate generator input clock = 4P if CLKSM = 1 (P = 1/CPU clock frequency)  
=
Sample rate generator input clock = P_clks if CLKSM = 0 (P_clks = CLKS period)  
T = CLKX period = (1 + CLKGDV) * S  
H = CLKX high pulse width = (CLKGDV/2 + 1) * S if CLKGDV is even  
= (CLKGDV + 1)/2 * S if CLKGDV is odd or zero  
L = CLKX low pulse width = (CLKGDV/2) * S if CLKGDV is even  
= (CLKGDV + 1)/2 * S if CLKGDV is odd or zero  
FSRP = FSXP = 1. As a SPI Master, FSX is inverted to provide active-low slave-enable output. As a Slave, the active-low signal input on FSX  
and FSR is inverted before being used internally.  
CLKXM = FSXM = 1, CLKRM = FSRM = 0 for Master McBSP  
CLKXM = CLKRM = FSXM = FSRM = 0 for Slave McBSP  
#
FSX should be low before the rising edge of clock to enable Slave devices and then begin a SPI transfer at the rising edge of the Master clock  
(CLKX).  
CLKX  
1
2
8
FSX  
7
6
3
DX  
DR  
Bit 0  
Bit(n-1)  
Bit(n-1)  
(n-2)  
(n-3)  
(n-4)  
4
5
Bit 0  
(n-2)  
(n-3)  
(n-4)  
Figure 738. McBSP Timing as SPI Master or Slave: CLKSTP = 10b, CLKXP = 0  
128  
SPRS247E  
April 2004 Revised May 2005  
 
 
Multichannel Buffered Serial Port (McBSP) Timing  
Table 731. Timing Requirements for McBSP as SPI Master or Slave:  
†‡  
CLKSTP = 11b, CLKXP = 0 (see Figure 739)  
400  
500  
NO.  
UNIT  
MASTER  
SLAVE  
MIN MAX  
MIN  
12  
4
MAX  
4
5
t
t
Setup time, DR valid before CLKX high  
Hold time, DR valid after CLKX high  
2 12P  
ns  
ns  
su(DRV-CKXH)  
5 + 24P  
h(CKXH-DRV)  
P = 1/CPU clock frequency in ns. For example, when running parts at 500 MHz, use P = 2 ns.  
For all SPI Slave modes, CLKG is programmed as 1/4 of the CPU clock by setting CLKSM = CLKGDV = 1.  
Table 732. Switching Characteristics Over Recommended Operating Conditions for McBSP as  
†‡  
SPI Master or Slave: CLKSTP = 11b, CLKXP = 0 (see Figure 739)  
400  
500  
NO.  
PARAMETER  
UNIT  
§
MASTER  
SLAVE  
MIN MAX  
MIN  
MAX  
1
2
3
t
t
t
Hold time, FSX low after CLKX low  
L 2 L + 3  
T 2 T + 3  
ns  
ns  
ns  
h(CKXL-FXL)  
d(FXL-CKXH)  
d(CKXL-DXV)  
#
Delay time, FSX low to CLKX high  
Delay time, CLKX low to DX valid  
2  
4
12P + 2.8 20P + 17  
12P + 3 20P + 17  
Disable time, DX high impedance following last data bit from  
CLKX low  
6
7
t
t
2  
4
ns  
ns  
dis(CKXL-DXHZ)  
d(FXL-DXV)  
Delay time, FSX low to DX valid  
H 2 H + 4  
8P + 2 16P + 17  
§
P = 1/CPU clock frequency in ns. For example, when running parts at 500 MHz, use P = 2 ns.  
For all SPI Slave modes, CLKG is programmed as 1/4 of the CPU clock by setting CLKSM = CLKGDV = 1.  
S = Sample rate generator input clock = 4P if CLKSM = 1 (P = 1/CPU clock frequency)  
=
Sample rate generator input clock = P_clks if CLKSM = 0 (P_clks = CLKS period)  
T = CLKX period = (1 + CLKGDV) * S  
H = CLKX high pulse width = (CLKGDV/2 + 1) * S if CLKGDV is even  
= (CLKGDV + 1)/2 * S if CLKGDV is odd or zero  
L = CLKX low pulse width = (CLKGDV/2) * S if CLKGDV is even  
= (CLKGDV + 1)/2 * S if CLKGDV is odd or zero  
FSRP = FSXP = 1. As a SPI Master, FSX is inverted to provide active-low slave-enable output. As a Slave, the active-low signal input on FSX  
and FSR is inverted before being used internally.  
CLKXM = FSXM = 1, CLKRM = FSRM = 0 for Master McBSP  
CLKXM = CLKRM = FSXM = FSRM = 0 for Slave McBSP  
#
FSX should be low before the rising edge of clock to enable Slave devices and then begin a SPI transfer at the rising edge of the Master clock  
(CLKX).  
CLKX  
1
2
7
FSX  
DX  
6
3
Bit 0  
Bit(n-1)  
Bit(n-1)  
(n-2)  
(n-3)  
(n-3)  
(n-4)  
4
5
DR  
Bit 0  
(n-2)  
(n-4)  
Figure 739. McBSP Timing as SPI Master or Slave: CLKSTP = 11b, CLKXP = 0  
129  
April 2004 Revised May 2005  
SPRS247E  
 
 
Multichannel Buffered Serial Port (McBSP) Timing  
Table 733. Timing Requirements for McBSP as SPI Master or Slave:  
†‡  
CLKSTP = 10b, CLKXP = 1 (see Figure 740)  
400  
500  
NO.  
UNIT  
MASTER  
SLAVE  
MIN MAX  
MIN  
12  
4
MAX  
4
5
t
t
Setup time, DR valid before CLKX high  
Hold time, DR valid after CLKX high  
2 12P  
ns  
ns  
su(DRV-CKXH)  
5 + 24P  
h(CKXH-DRV)  
P = 1/CPU clock frequency in ns. For example, when running parts at 500 MHz, use P = 2 ns.  
For all SPI Slave modes, CLKG is programmed as 1/4 of the CPU clock by setting CLKSM = CLKGDV = 1.  
Table 734. Switching Characteristics Over Recommended Operating Conditions for McBSP as  
†‡  
SPI Master or Slave: CLKSTP = 10b, CLKXP = 1 (see Figure 740)  
400  
500  
NO.  
PARAMETER  
UNIT  
§
MASTER  
SLAVE  
MIN MAX  
MIN  
MAX  
1
2
3
t
t
t
Hold time, FSX low after CLKX high  
T 2 T + 3  
H 2 H + 3  
ns  
ns  
ns  
h(CKXH-FXL)  
d(FXL-CKXL)  
d(CKXL-DXV)  
#
Delay time, FSX low to CLKX low  
Delay time, CLKX low to DX valid  
2  
4
12P + 2.8 20P + 17  
Disable time, DX high impedance following last data bit from  
CLKX high  
6
t
H 2 H + 3  
ns  
dis(CKXH-DXHZ)  
Disable time, DX high impedance following last data bit from  
FSX high  
7
8
t
t
4P + 3 12P + 17  
8P + 2 16P + 17  
ns  
ns  
dis(FXH-DXHZ)  
Delay time, FSX low to DX valid  
d(FXL-DXV)  
§
P = 1/CPU clock frequency in ns. For example, when running parts at 500 MHz, use P = 2 ns.  
For all SPI Slave modes, CLKG is programmed as 1/4 of the CPU clock by setting CLKSM = CLKGDV = 1.  
S = Sample rate generator input clock = 4P if CLKSM = 1 (P = 1/CPU clock frequency)  
=
Sample rate generator input clock = P_clks if CLKSM = 0 (P_clks = CLKS period)  
T = CLKX period = (1 + CLKGDV) * S  
H = CLKX high pulse width = (CLKGDV/2 + 1) * S if CLKGDV is even  
= (CLKGDV + 1)/2 * S if CLKGDV is odd or zero  
L = CLKX low pulse width = (CLKGDV/2) * S if CLKGDV is even  
= (CLKGDV + 1)/2 * S if CLKGDV is odd or zero  
FSRP = FSXP = 1. As a SPI Master, FSX is inverted to provide active-low slave-enable output. As a Slave, the active-low signal input on FSX  
and FSR is inverted before being used internally.  
CLKXM = FSXM = 1, CLKRM = FSRM = 0 for Master McBSP  
CLKXM = CLKRM = FSXM = FSRM = 0 for Slave McBSP  
#
FSX should be low before the rising edge of clock to enable Slave devices and then begin a SPI transfer at the rising edge of the Master clock  
(CLKX).  
CLKX  
1
2
8
FSX  
7
6
3
DX  
DR  
Bit 0  
Bit(n-1)  
Bit(n-1)  
(n-2)  
(n-3)  
(n-4)  
4
5
Bit 0  
(n-2)  
(n-3)  
(n-4)  
Figure 740. McBSP Timing as SPI Master or Slave: CLKSTP = 10b, CLKXP = 1  
130  
SPRS247E  
April 2004 Revised May 2005  
 
 
Multichannel Buffered Serial Port (McBSP) Timing  
Table 735. Timing Requirements for McBSP as SPI Master or Slave:  
†‡  
CLKSTP = 11b, CLKXP = 1 (see Figure 741)  
400  
500  
NO.  
UNIT  
MASTER  
SLAVE  
MIN MAX  
MIN  
12  
4
MAX  
4
5
t
t
Setup time, DR valid before CLKX high  
Hold time, DR valid after CLKX high  
2 12P  
ns  
ns  
su(DRV-CKXH)  
5 + 24P  
h(CKXH-DRV)  
P = 1/CPU clock frequency in ns. For example, when running parts at 500 MHz, use P = 2 ns.  
For all SPI Slave modes, CLKG is programmed as 1/4 of the CPU clock by setting CLKSM = CLKGDV = 1.  
Table 736. Switching Characteristics Over Recommended Operating Conditions for McBSP as  
†‡  
SPI Master or Slave: CLKSTP = 11b, CLKXP = 1 (see Figure 741)  
400  
500  
NO.  
PARAMETER  
UNIT  
§
MASTER  
SLAVE  
MIN MAX  
MIN  
MAX  
1
2
3
t
t
t
Hold time, FSX low after CLKX high  
H 2 H + 3  
T 2 T + 1  
ns  
ns  
ns  
h(CKXH-FXL)  
d(FXL-CKXL)  
d(CKXH-DXV)  
#
Delay time, FSX low to CLKX low  
Delay time, CLKX high to DX valid  
2  
4
12P + 2.8 20P + 17  
12P + 3 20P + 17  
Disable time, DX high impedance following last data bit from  
CLKX high  
6
7
t
t
2  
4
ns  
ns  
dis(CKXH-DXHZ)  
d(FXL-DXV)  
Delay time, FSX low to DX valid  
L 2 L + 4  
8P + 2 16P + 17  
§
P = 1/CPU clock frequency in ns. For example, when running parts at 500 MHz, use P = 2 ns.  
For all SPI Slave modes, CLKG is programmed as 1/4 of the CPU clock by setting CLKSM = CLKGDV = 1.  
S = Sample rate generator input clock = 4P if CLKSM = 1 (P = 1/CPU clock frequency)  
=
Sample rate generator input clock = P_clks if CLKSM = 0 (P_clks = CLKS period)  
T = CLKX period = (1 + CLKGDV) * S  
H = CLKX high pulse width = (CLKGDV/2 + 1) * S if CLKGDV is even  
= (CLKGDV + 1)/2 * S if CLKGDV is odd or zero  
L = CLKX low pulse width = (CLKGDV/2) * S if CLKGDV is even  
= (CLKGDV + 1)/2 * S if CLKGDV is odd or zero  
FSRP = FSXP = 1. As a SPI Master, FSX is inverted to provide active-low slave-enable output. As a Slave, the active-low signal input on FSX  
and FSR is inverted before being used internally.  
CLKXM = FSXM = 1, CLKRM = FSRM = 0 for Master McBSP  
CLKXM = CLKRM = FSXM = FSRM = 0 for Slave McBSP  
#
FSX should be low before the rising edge of clock to enable Slave devices and then begin a SPI transfer at the rising edge of the Master clock  
(CLKX).  
CLKX  
1
2
FSX  
DX  
7
6
3
Bit 0  
Bit 0  
Bit(n-1)  
Bit(n-1)  
(n-2)  
(n-3)  
(n-4)  
4
5
DR  
(n-2)  
(n-3)  
(n-4)  
Figure 741. McBSP Timing as SPI Master or Slave: CLKSTP = 11b, CLKXP = 1  
131  
April 2004 Revised May 2005  
SPRS247E  
 
 
Timer Timing  
7.13 Timer Timing  
Table 737. Timing Requirements for Timer Inputs (see Figure 742)  
400  
500  
NO.  
UNIT  
MIN  
MAX  
1
2
t
t
Pulse duration, TINP high  
Pulse duration, TINP low  
8P  
8P  
ns  
ns  
w(TINPH)  
w(TINPL)  
P = 1/CPU clock frequency in ns. For example, when running parts at 500 MHz, use P = 2 ns.  
Table 738. Switching Characteristics Over Recommended Operating Conditions for Timer Outputs  
(see Figure 742)  
400  
500  
NO.  
PARAMETER  
UNIT  
MIN  
8P3  
8P3  
MAX  
3
4
t
t
Pulse duration, TOUT high  
Pulse duration, TOUT low  
ns  
ns  
w(TOUTH)  
w(TOUTL)  
P = 1/CPU clock frequency in ns. For example, when running parts at 500 MHz, use P = 2 ns.  
2
1
TINPx  
4
3
TOUTx  
Figure 742. Timer Timing  
132  
SPRS247E  
April 2004 Revised May 2005  
 
 
General-Purpose Input/Output (GPIO) Port Timing  
7.14 General-Purpose Input/Output (GPIO) Port Timing  
†‡  
Table 739. Timing Requirements for GPIO Inputs (see Figure 743)  
400  
500  
NO.  
UNIT  
MIN  
MAX  
1
2
t
t
Pulse duration, GPIx high  
Pulse duration, GPIx low  
8P  
8P  
ns  
ns  
w(GPIH)  
w(GPIL)  
P = 1/CPU clock frequency in ns. For example, when running parts at 500 MHz, use P = 2 ns.  
The pulse width given is sufficient to generate a CPU interrupt or an EDMA event. However, if a user wants to have the DSP recognize the GPIx  
changes through software polling of the GPIO register, the GPIx duration must be extended to at least 12P to allow the DSP enough time to access  
the GPIO register through the CFGBUS.  
Table 740. Switching Characteristics Over Recommended Operating Conditions for GPIO Outputs  
(see Figure 743)  
400  
500  
NO.  
PARAMETER  
UNIT  
MIN  
MAX  
§
3
4
t
t
Pulse duration, GPOx high  
Pulse duration, GPOx low  
24P 8  
ns  
ns  
w(GPOH)  
§
24P 8  
w(GPOL)  
§
P = 1/CPU clock frequency in ns. For example, when running parts at 500 MHz, use P = 2 ns.  
This parameter value should not be used as a maximum performance specification. Actual performance of back-to-back accesses of the GPIO  
is dependent upon internal bus activity.  
2
1
GPIx  
4
3
GPOx  
Figure 743. GPIO Port Timing  
133  
April 2004 Revised May 2005  
SPRS247E  
 
 
JTAG Test-Port Timing  
7.15 JTAG Test-Port Timing  
Table 741. Timing Requirements for JTAG Test Port (see Figure 744)  
400  
500  
NO.  
UNIT  
MIN  
MAX  
1
3
4
t
t
t
Cycle time, TCK  
35  
10  
9
ns  
ns  
ns  
c(TCK)  
Setup time, TDI/TMS/TRST valid before TCK high  
Hold time, TDI/TMS/TRST valid after TCK high  
su(TDIV-TCKH)  
h(TCKH-TDIV)  
Table 742. Switching Characteristics Over Recommended Operating Conditions for JTAG Test Port  
(see Figure 744)  
400  
500  
NO.  
PARAMETER  
Delay time, TCK low to TDO valid  
UNIT  
ns  
MIN  
MAX  
2
t
0
18  
d(TCKL-TDOV)  
1
TCK  
TDO  
2
2
4
3
TDI/TMS/TRST  
Figure 744. JTAG Test-Port Timing  
134  
SPRS247E  
April 2004 Revised May 2005  
 
 
Mechanical Data  
8
Mechanical Data  
Thermal Data  
8.1  
The following tables show the thermal resistance characteristics for the PBGA GTS and ZTS mechanical  
packages.  
Table 81. Thermal Resistance Characteristics (S-PBGA Package) [GTS]  
NO.  
°C/W  
5.60  
9.37  
20.8  
16.8  
15.4  
14.1  
1.87  
1.98  
2.03  
2.12  
11.1  
10.4  
10.3  
10.1  
Board Type  
Air Flow (m/s )  
1
2
3
4
5
6
RΘ  
RΘ  
Junction-to-case  
Junction-to-board  
JEDEC Low-K Test Card  
JEDEC High-K Test Card  
JEDEC High-K Test Card  
JEDEC High-K Test Card  
JEDEC High-K Test Card  
JEDEC High-K Test Card  
JEDEC High-K Test Card  
JEDEC High-K Test Card  
JEDEC High-K Test Card  
JEDEC High-K Test Card  
JEDEC High-K Test Card  
JEDEC High-K Test Card  
JEDEC High-K Test Card  
JEDEC High-K Test Card  
N/A  
N/A  
0.00  
0.5  
JC  
JB  
RΘ  
Junction-to-free air  
Junction-to-package top  
Junction-to-board  
JA  
1.0  
2.00  
0.00  
0.5  
7
8
Psi  
Psi  
JT  
1.0  
2.00  
0.00  
0.5  
JB  
1.0  
2.00  
Board types are as defined by JEDEC. Reference JEDEC Standard JESD519. Test Boards for Area Array Surface Mount Package Thermal  
Measurements.  
m/s = meters per second  
Table 82. Thermal Resistance Characteristics (S-PBGA Package) [ZTS]  
NO.  
1
°C/W  
5.60  
9.37  
20.8  
16.8  
15.4  
14.1  
1.87  
1.98  
2.03  
2.12  
11.1  
10.4  
10.3  
10.1  
Board Type  
Air Flow (m/s )  
RΘ  
RΘ  
Junction-to-case  
Junction-to-board  
JEDEC Low-K Test Card  
JEDEC High-K Test Card  
JEDEC High-K Test Card  
JEDEC High-K Test Card  
JEDEC High-K Test Card  
JEDEC High-K Test Card  
JEDEC High-K Test Card  
JEDEC High-K Test Card  
JEDEC High-K Test Card  
JEDEC High-K Test Card  
JEDEC High-K Test Card  
JEDEC High-K Test Card  
JEDEC High-K Test Card  
JEDEC High-K Test Card  
N/A  
N/A  
0.00  
0.5  
JC  
2
JB  
3
4
RΘ  
Junction-to-free air  
Junction-to-package top  
Junction-to-board  
JA  
5
1.0  
6
2.00  
0.00  
0.5  
7
8
Psi  
Psi  
JT  
1.0  
2.00  
0.00  
0.5  
JB  
1.0  
2.00  
Board types are as defined by JEDEC. Reference JEDEC Standard JESD519. Test Boards for Area Array Surface Mount Package Thermal  
Measurements.  
m/s = meters per second  
135  
April 2004 Revised May 2005  
SPRS247E  
 
Mechanical Data  
8.2  
Packaging Information  
The following packaging information reflects the most current released data available for the designated  
device(s). This data is subject to change without notice and without revision of this document.  
136  
SPRS247E  
April 2004 Revised May 2005  
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
7-Oct-2005  
PACKAGING INFORMATION  
Orderable Device  
Status (1)  
Package Package  
Pins Package Eco Plan (2) Lead/Ball Finish MSL Peak Temp (3)  
Qty  
Type  
Drawing  
GTS  
ZTS  
TMS320C6410GTS400  
TMS320C6410ZTS400  
TMS320C6410ZTSA400  
TMS320C6413GTS500  
TMS320C6413GTSA500  
TMS320C6413ZTS500  
TMS320C6413ZTSA500  
TMX320C6410GTS  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
FCBGA  
FCBGA  
FCBGA  
FCBGA  
FCBGA  
FCBGA  
FCBGA  
FCBGA  
FCBGA  
288  
288  
288  
288  
288  
288  
288  
288  
288  
60  
60  
60  
60  
60  
60  
60  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
SNPB  
SNAGCU  
SNAGCU  
SNPB  
Level-4-220C-72HR  
Level-4-260C-72HR  
Level-4-260C-72HR  
Level-4-220C-72HR  
Level-4-220C-72HR  
Level-4-260C-72HR  
Level-4-260C-72HR  
Call TI  
ZTS  
GTS  
GTS  
ZTS  
SNPB  
SNAGCU  
SNAGCU  
Call TI  
ZTS  
GTS  
GTS  
TMX320C6413GTS  
Call TI  
Call TI  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in  
a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2)  
Eco Plan  
-
The planned eco-friendly classification: Pb-Free (RoHS) or Green (RoHS  
&
no Sb/Br)  
-
please check  
http://www.ti.com/productcontent for the latest availability information and additional product content details.  
TBD: The Pb-Free/Green conversion plan has not been defined.  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements  
for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered  
at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame  
retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)  
(3)  
MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder  
temperature.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is  
provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the  
accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take  
reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on  
incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited  
information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI  
to Customer on an annual basis.  
Addendum-Page 1  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,  
enhancements, improvements, and other changes to its products and services at any time and to discontinue  
any product or service without notice. Customers should obtain the latest relevant information before placing  
orders and should verify that such information is current and complete. All products are sold subject to TI’s terms  
and conditions of sale supplied at the time of order acknowledgment.  
TI warrants performance of its hardware products to the specifications applicable at the time of sale in  
accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI  
deems necessary to support this warranty. Except where mandated by government requirements, testing of all  
parameters of each product is not necessarily performed.  
TI assumes no liability for applications assistance or customer product design. Customers are responsible for  
their products and applications using TI components. To minimize the risks associated with customer products  
and applications, customers should provide adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right,  
copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process  
in which TI products or services are used. Information published by TI regarding third-party products or services  
does not constitute a license from TI to use such products or services or a warranty or endorsement thereof.  
Use of such information may require a license from a third party under the patents or other intellectual property  
of the third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of information in TI data books or data sheets is permissible only if reproduction is without  
alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction  
of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for  
such altered documentation.  
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that  
product or service voids all express and any implied warranties for the associated TI product or service and  
is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.  
Following are URLs where you can obtain information on other Texas Instruments products and application  
solutions:  
Products  
Applications  
Audio  
Amplifiers  
amplifier.ti.com  
www.ti.com/audio  
Data Converters  
dataconverter.ti.com  
Automotive  
www.ti.com/automotive  
DSP  
dsp.ti.com  
Broadband  
Digital Control  
Military  
www.ti.com/broadband  
www.ti.com/digitalcontrol  
www.ti.com/military  
Interface  
Logic  
interface.ti.com  
logic.ti.com  
Power Mgmt  
Microcontrollers  
power.ti.com  
Optical Networking  
Security  
www.ti.com/opticalnetwork  
www.ti.com/security  
www.ti.com/telephony  
www.ti.com/video  
microcontroller.ti.com  
Telephony  
Video & Imaging  
Wireless  
www.ti.com/wireless  
Mailing Address:  
Texas Instruments  
Post Office Box 655303 Dallas, Texas 75265  
Copyright 2005, Texas Instruments Incorporated  

相关型号:

SMJ320C6414

FIXED-POINT DIGITAL SIGNAL PROCESSORS
TI

SMJ320C6414C

FIXED-POINT DIGITAL SIGNAL PROCESSORS
TI

SMJ320C6414D

FIXED-POINT DIGITAL SIGNAL PROCESSORS
TI

SMJ320C6414DGADW60

FIXD-POINT DIGITAL SIGNAL PROCESSORS
TI

SMJ320C6414_04

FIXD-POINT DIGITAL SIGNAL PROCESSORS
TI

SMJ320C6414_16

FIXED-POINT DIGITAL SIGNAL PROCESSORS
TI

SMJ320C6415

FIXED-POINT DIGITAL SIGNAL PROCESSORS
TI

SMJ320C6415C

FIXED-POINT DIGITAL SIGNAL PROCESSORS
TI

SMJ320C6415D

FIXED-POINT DIGITAL SIGNAL PROCESSORS
TI

SMJ320C6415DGADW60

FIXED-POINT DIGITAL SIGNAL PROCESSORS
TI

SMJ320C6416

FIXED-POINT DIGITAL SIGNAL PROCESSORS
TI

SMJ320C6416C

FIXED-POINT DIGITAL SIGNAL PROCESSORS
TI