SMJ320VC5416 [TI]

Fixed-Point Digital Signal Processor; 定点数字信号处理器
SMJ320VC5416
型号: SMJ320VC5416
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

Fixed-Point Digital Signal Processor
定点数字信号处理器

数字信号处理器
文件: 总92页 (文件大小:1138K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
SMJ320VC5416 Fixed-Point  
Digital Signal Processor  
Data Manual  
Literature Number: SGUS035A  
April 2003 – Revised July 2003  
PRODUCTION DATA information is current as of publication date.  
Products conform to specifications per the terms of Texas Instruments  
standard warranty. Production processing does not necessarily include  
testing of all parameters.  
On products compliant to MIL-PRF-38535, all parameters are tested  
unless otherwise noted. On all other products, production processing  
does not necessarily include testing of all parameters.  
Printed on Recycled Paper  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,  
enhancements, improvements, and other changes to its products and services at any time and to discontinue  
any product or service without notice. Customers should obtain the latest relevant information before placing  
orders and should verify that such information is current and complete. All products are sold subject to TI’s terms  
and conditions of sale supplied at the time of order acknowledgment.  
TI warrants performance of its hardware products to the specifications applicable at the time of sale in  
accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI  
deems necessary to support this warranty. Except where mandated by government requirements, testing of all  
parameters of each product is not necessarily performed.  
TI assumes no liability for applications assistance or customer product design. Customers are responsible for  
their products and applications using TI components. To minimize the risks associated with customer products  
and applications, customers should provide adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right,  
copyright, maskworkright, orotherTIintellectualpropertyrightrelatingtoanycombination, machine, orprocess  
in which TI products or services are used. Information published by TI regarding third-party products or services  
does not constitute a license from TI to use such products or services or a warranty or endorsement thereof.  
Use of such information may require a license from a third party under the patents or other intellectual property  
of the third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of information in TI data books or data sheets is permissible only if reproduction is without  
alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction  
of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for  
such altered documentation.  
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that  
product or service voids all express and any implied warranties for the associated TI product or service and  
is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.  
Following are URLs where you can obtain information on other Texas Instruments products and application  
solutions:  
Products  
Applications  
Audio  
Amplifiers  
amplifier.ti.com  
www.ti.com/audio  
Data Converters  
dataconverter.ti.com  
Automotive  
www.ti.com/automotive  
DSP  
dsp.ti.com  
Broadband  
Digital Control  
Military  
www.ti.com/broadband  
www.ti.com/digitalcontrol  
www.ti.com/military  
Interface  
Logic  
interface.ti.com  
logic.ti.com  
Power Mgmt  
Microcontrollers  
power.ti.com  
Optical Networking  
Security  
www.ti.com/opticalnetwork  
www.ti.com/security  
www.ti.com/telephony  
www.ti.com/video  
microcontroller.ti.com  
Telephony  
Video & Imaging  
Wireless  
www.ti.com/wireless  
Mailing Address:  
Texas Instruments  
Post Office Box 655303 Dallas, Texas 75265  
Copyright 2003, Texas Instruments Incorporated  
REVISION HISTORY  
REVISION  
DATE  
PRODUCT STATUS  
HIGHLIGHTS  
*
March 2003  
Production Data  
Production Data  
Original  
A
July 2003  
Limit changes  
iii  
iv  
Contents  
Contents  
Section  
Page  
1
2
SMJ320VC5416 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
2.1  
2.2  
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
Pin Assignments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
2.2.1  
Pin Assignments for the HFG Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
2.3  
Signal Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
3
Functional Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
3.1  
Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
3.1.1  
3.1.2  
3.1.3  
Data Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Program Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Extended Program Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
3.2  
3.3  
3.4  
3.5  
On-Chip ROM With Bootloader . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
On-Chip RAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
On-Chip Memory Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Memory Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
3.5.1  
Relocatable Interrupt Vector Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
3.6  
On-Chip Peripherals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
3.6.1  
3.6.2  
3.6.3  
Software-Programmable Wait-State Generator . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Programmable Bank-Switching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Bus Holders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
3.7  
Parallel I/O Ports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
3.7.1  
3.7.2  
Enhanced 8-/16-Bit Host-Port Interface (HPI8/16) . . . . . . . . . . . . . . . . . . . . . . . . . 19  
HPI Nonmultiplexed Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
3.8  
3.9  
3.10  
3.11  
3.12  
Multichannel Buffered Serial Ports (McBSPs) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Hardware Timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Clock Generator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Enhanced External Parallel Interface (XIO2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
DMA Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
3.12.1  
3.12.2  
3.12.3  
3.12.4  
3.12.5  
3.12.6  
3.12.7  
3.12.8  
3.12.9  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
DMA External Access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
DMA Memory Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
DMA Priority Level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
DMA Source/Destination Address Modification . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
DMA in Autoinitialization Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
DMA Transfer Counting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
DMA Transfer in Doubleword Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
DMA Channel Index Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
3.12.10 DMA Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
3.12.11 DMA Controller Synchronization Events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
General-Purpose I/O Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
3.13  
3.13.1  
3.13.2  
McBSP Pins as General-Purpose I/O . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
HPI Data Pins as General-Purpose I/O . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
3.14  
3.15  
3.16  
3.17  
Device ID Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
Memory-Mapped Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
McBSP Control Registers and Subaddresses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
DMA Subbank Addressed Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
v
April 2003 – Revised July 2003  
SGUS035A  
Contents  
3.18  
Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
4
5
Documentation Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
5.1  
5.2  
5.3  
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
Recommended Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
Electrical Characteristics Over Recommended Operating Case Temperature Range  
(Unless Otherwise Noted) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
5.4  
5.5  
5.6  
5.7  
Package Thermal Resistance Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
Timing Parameter Symbology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
Internal Oscillator With External Crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
Clock Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
5.7.1  
5.7.2  
Divide-By-Two and Divide-By-Four Clock Options . . . . . . . . . . . . . . . . . . . . . . . . . 46  
Multiply-By-N Clock Option (PLL Enabled) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
5.8  
Memory and Parallel I/O Interface Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
5.8.1  
5.8.2  
5.8.3  
5.8.4  
Memory Read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
Memory Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
I/O Read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
I/O Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
5.9  
Ready Timing for Externally Generated Wait States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
HOLD and HOLDA Timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60  
Reset, BIO, Interrupt, and MP/MC Timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62  
Instruction Acquisition (IAQ) and Interrupt Acknowledge (IACK) Timings . . . . . . . . . . . . . . . 64  
External Flag (XF) and TOUT Timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65  
Multichannel Buffered Serial Port (McBSP) Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66  
5.10  
5.11  
5.12  
5.13  
5.14  
5.14.1  
5.14.2  
5.14.3  
McBSP Transmit and Receive Timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66  
McBSP General-Purpose I/O Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69  
McBSP as SPI Master or Slave Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70  
5.15  
Host-Port Interface Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74  
5.15.1  
5.15.2  
HPI8 Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74  
HPI16 Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78  
6
Mechanical Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82  
6.1 Ceramic Quad Flatpack Mechanical Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82  
vi  
SGUS035A  
April 2003 Revised July 2003  
Figures  
List of Figures  
Figure  
Page  
21. 164-Pin HFG Ceramic Quad Flatpack (Top View) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
31. SMJ320VC5416 Functional Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
32. Program and Data Memory Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
33. Extended Program Memory Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
34. Processor Mode Status (PMST) Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
35. Software Wait-State Register (SWWSR) [Memory-Mapped Register (MMR) Address 0028h] . . . . . 16  
36. Software Wait-State Control Register (SWCR) [MMR Address 002Bh] . . . . . . . . . . . . . . . . . . . . . . . . . 17  
37. Bank-Switching Control Register (BSCR) [MMR Address 0029h] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
38. Host-Port Interface Nonmultiplexed Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
39. HPI Memory Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
310. Multichannel Control Registers (MCR1 and MCR2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
311. Pin Control Register (PCR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
312. Nonconsecutive Memory Read and I/O Read Bus Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
313. Consecutive Memory Read Bus Sequence (n = 3 reads) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
314. Memory Write and I/O Write Bus Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
315. DMA Transfer Mode Control Register (DMMCRn) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
316. On-Chip DMA Memory Map for Program Space (DLAXS = 0 and SLAXS = 0) . . . . . . . . . . . . . . . . . 30  
317. On-Chip DMA Memory Map for Data and IO Space (DLAXS = 0 and SLAXS = 0) . . . . . . . . . . . . . . 31  
318. DMPREC Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
319. General-Purpose I/O Control Register (GPIOCR) [MMR Address 003Ch] . . . . . . . . . . . . . . . . . . . . . 34  
320. General-Purpose I/O Status Register (GPIOSR) [MMR Address 003Dh] . . . . . . . . . . . . . . . . . . . . . . 34  
321. Device ID Register (CSIDR) [MMR Address 003Eh] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
322. IFR and IMR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
51. 3.3-V Test Load Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
52. Internal Divide-by-Two Clock Option With External Crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
53. External Divide-by-Two Clock Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
54. Multiply-by-One Clock Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
55. Nonconsecutive Mode Memory Reads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
56. Consecutive Mode Memory Reads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
57. Memory Write (MSTRB = 0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
58. Parallel I/O Port Read (IOSTRB = 0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
59. Parallel I/O Port Write (IOSTRB = 0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
510. Memory Read With Externally Generated Wait States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
511. Memory Write With Externally Generated Wait States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
512. I/O Read With Externally Generated Wait States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58  
513. I/O Write With Externally Generated Wait States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59  
514. HOLD and HOLDA Timings (HM = 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61  
515. Reset and BIO Timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
516. Interrupt Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
517. MP/MC Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
vii  
April 2003 Revised July 2003  
SGUS035A  
Figures  
518. Instruction Acquisition (IAQ) and Interrupt Acknowledge (IACK) Timings . . . . . . . . . . . . . . . . . . . . . . 64  
519. External Flag (XF) Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65  
520. TOUT Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65  
521. McBSP Receive Timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67  
522. McBSP Transmit Timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68  
523. McBSP General-Purpose I/O Timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69  
524. McBSP Timing as SPI Master or Slave: CLKSTP = 10b, CLKXP = 0 . . . . . . . . . . . . . . . . . . . . . . . . . 70  
525. McBSP Timing as SPI Master or Slave: CLKSTP = 11b, CLKXP = 0 . . . . . . . . . . . . . . . . . . . . . . . . . 71  
526. McBSP Timing as SPI Master or Slave: CLKSTP = 10b, CLKXP = 1 . . . . . . . . . . . . . . . . . . . . . . . . . 72  
527. McBSP Timing as SPI Master or Slave: CLKSTP = 11b, CLKXP = 1 . . . . . . . . . . . . . . . . . . . . . . . . . 73  
528. Using HDS to Control Accesses (HCS Always Low) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76  
529. Using HCS to Control Accesses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77  
530. HINT Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77  
531. GPIOx Timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77  
532. Nonmultiplexed Read Timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80  
533. Nonmultiplexed Write Timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81  
534. HRDY Relative to CLKOUT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81  
61. SMJ320VC5416 164-Pin Ceramic Quad Flatpack (HFG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82  
viii  
SGUS035A  
April 2003 Revised July 2003  
Tables  
List of Tables  
Table  
Page  
21. Terminal Assignments for the SMJ320VC5416HFG (164-Pin CQFP Package). . . . . . . . . . . . . . . . . . 3  
22. Signal Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
31. Standard On-Chip ROM Layout. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
32. Processor Mode Status (PMST) Register Bit Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
33. Software Wait-State Register (SWWSR) Bit Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
34. Software Wait-State Control Register (SWCR) Bit Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
35. Bank-Switching Control Register (BSCR) Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
36. Bus Holder Control Bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
37. Sample Rate Input Clock Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
38. Clock Mode Settings at Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
39. DMD Section of the DMMCRn Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
310. DMA Reload Register Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
311. DMA Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
312. DMA Synchronization Events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
313. DMA Channel Interrupt Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
314. CPU Memory-Mapped Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
315. Peripheral Memory-Mapped Registers for Each DSP Subsystem . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
316. McBSP Control Registers and Subaddresses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
317. DMA Subbank Addressed Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
318. Interrupt Locations and Priorities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
51. Thermal Resistance Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
52. Input Clock Frequency Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
53. Clock Mode Pin Settings for the Divide-By-2 and By Divide-by-4 Clock Options . . . . . . . . . . . . . . . . . 46  
54. Divide-By-2 and Divide-by-4 Clock Options Timing Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
55. Divide-By-2 and Divide-by-4 Clock Options Switching Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
56. Multiply-By-N Clock Option Timing Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
57. Multiply-By-N Clock Option Switching Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
58. Memory Read Timing Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
59. Memory Read Switching Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
510. Memory Write Switching Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
511. I/O Read Timing Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
512. I/O Read Switching Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
513. I/O Write Switching Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
514. Ready Timing Requirements for Externally Generated Wait States. . . . . . . . . . . . . . . . . . . . . . . . . . 55  
515. Ready Switching Characteristics for Externally Generated Wait States. . . . . . . . . . . . . . . . . . . . . . . 55  
516. HOLD and HOLDA Timing Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60  
517. HOLD and HOLDA Switching Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60  
518. Reset, BIO, Interrupt, and MP/MC Timing Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62  
519. Instruction Acquisition (IAQ) and Interrupt Acknowledge (IACK) Switching Characteristics . . . . . . 64  
520. External Flag (XF) and TOUT Switching Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65  
521. McBSP Transmit and Receive Timing Requirements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66  
522. McBSP Transmit and Receive Switching Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67  
523. McBSP General-Purpose I/O Timing Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69  
524. McBSP General-Purpose I/O Switching Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69  
525. McBSP as SPI Master or Slave Timing Requirements (CLKSTP = 10b, CLKXP = 0). . . . . . . . . . . 70  
526. McBSP as SPI Master or Slave Switching Characteristics (CLKSTP = 10b, CLKXP = 0). . . . . . . 70  
ix  
April 2003 Revised July 2003  
SGUS035A  
Tables  
527. McBSP as SPI Master or Slave Timing Requirements (CLKSTP = 11b, CLKXP = 0). . . . . . . . . . . 71  
528. McBSP as SPI Master or Slave Switching Characteristics (CLKSTP = 11b, CLKXP = 0). . . . . . . 71  
529. McBSP as SPI Master or Slave Timing Requirements (CLKSTP = 10b, CLKXP = 1). . . . . . . . . . . 72  
530. McBSP as SPI Master or Slave Switching Characteristics (CLKSTP = 10b, CLKXP = 1). . . . . . . 72  
531. McBSP as SPI Master or Slave Timing Requirements (CLKSTP = 11b, CLKXP = 1). . . . . . . . . . . 73  
532. McBSP as SPI Master or Slave Switching Characteristics (CLKSTP = 11b, CLKXP = 1). . . . . . . 73  
533. HPI8 Mode Timing Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74  
534. HPI8 Mode Switching Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75  
535. HPI16 Mode Timing Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78  
536. HPI16 Mode Switching Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79  
x
SGUS035A  
April 2003 Revised July 2003  
Features  
1
SMJ320VC5416 Features  
D
D
Processed to MIL-PRF-38535 (QML)  
D
D
D
D
D
D
Instructions With a 32-Bit Long Word  
Operand  
Advanced Multibus Architecture With Three  
Separate 16-Bit Data Memory Buses and  
One Program Memory Bus  
Instructions With Two- or Three-Operand  
Reads  
D
D
40-Bit Arithmetic Logic Unit (ALU)  
Including a 40-Bit Barrel Shifter and Two  
Independent 40-Bit Accumulators  
Arithmetic Instructions With Parallel Store  
and Parallel Load  
Conditional Store Instructions  
Fast Return From Interrupt  
17 x 17-Bit Parallel Multiplier Coupled to a  
40-Bit Dedicated Adder for Non-Pipelined  
Single-Cycle Multiply/Accumulate (MAC)  
Operation  
On-Chip Peripherals  
– Software-Programmable Wait-State  
Generator and Programmable  
Bank-Switching  
– On-Chip Programmable Phase-Locked  
Loop (PLL) Clock Generator With  
External Clock Source  
– One 16-Bit Timer  
– Six-Channel Direct Memory Access  
(DMA) Controller  
– Three Multichannel Buffered Serial Ports  
(McBSPs)  
– 8/16-Bit Enhanced Parallel Host-Port  
Interface (HPI8/16)  
D
D
D
Compare, Select, and Store Unit (CSSU) for  
the Add/Compare Selection of the Viterbi  
Operator  
Exponent Encoder to Compute an  
Exponent Value of a 40-Bit Accumulator  
Value in a Single Cycle  
Two Address Generators With Eight  
Auxiliary Registers and Two Auxiliary  
Register Arithmetic Units (ARAUs)  
D
D
Data Bus With a Bus Holder Feature  
Extended Addressing Mode for 8M x 16-Bit  
Maximum Addressable External Program  
Space  
D
Power Consumption Control With IDLE1,  
IDLE2, and IDLE3 Instructions With  
Power-Down Modes  
D
128K x 16-Bit On-Chip RAM Composed of:  
– Eight Blocks of 8K x 16-Bit On-Chip  
Dual-Access Program/Data RAM  
– Eight Blocks of 8K x 16-Bit On-Chip  
Single-Access Program RAM  
D
D
CLKOUT Off Control to Disable CLKOUT  
On-Chip Scan-Based Emulation Logic,  
IEEE Std 1149.1 (JTAG) Boundary Scan  
Logic  
D
D
D
D
D
164-Pin Ceramic Quad Flatpack (CQFP)  
(HFG Suffix)  
D
D
D
16K x 16-Bit On-Chip ROM Configured for  
Program Memory  
10-ns Single-Cycle Fixed-Point Instruction  
Execution Time (100 MIPS)  
Enhanced External Parallel Interface (XIO2)  
Single-Instruction-Repeat and  
Block-Repeat Operations for Program Code  
3.3-V I/O Supply Voltage  
1.5-V Core Supply Voltage  
D
Block-Memory-Move Instructions for Better  
Program and Data Management  
–55°C to 115°C Operating Temperature  
Range, QML Processing  
IEEE Standard 1149.1-1990 Standard-Test-Access Port and Boundary Scan Architecture.  
1
April 2003 Revised July 2003  
SGUS035A  
Introduction  
2
Introduction  
This section describes the main features of the SMJ320VC5416, lists the pin assignments, and describes the  
function of each pin. This data manual also provides a detailed description section, electrical specifications,  
parameter measurement information, and mechanical data about the available packaging.  
NOTE: This data manual is designed to be used in conjunction with the TMS320C54x DSP Functional  
Overview (literature number SPRU307).  
2.1 Description  
The SMJ320VC5416 fixed-point, digital signal processor (DSP) (hereafter referred to as the 5416 unless  
otherwise specified) is based on an advanced modified Harvard architecture that has one program memory  
bus and three data memory buses. This processor provides an arithmetic logic unit (ALU) with a high degree  
of parallelism, application-specific hardware logic, on-chip memory, and additional on-chip peripherals. The  
basis of the operational flexibility and speed of this DSP is a highly specialized instruction set.  
Separate program and data spaces allow simultaneous access to program instructions and data, providing  
a high degree of parallelism. Two read operations and one write operation can be performed in a single cycle.  
Instructions with parallel store and application-specific instructions can fully utilize this architecture. In  
addition, data can be transferred between data and program spaces. Such parallelism supports a powerful  
set of arithmetic, logic, and bit-manipulation operations that can all be performed in a single machine cycle.  
The 5416 also includes the control mechanisms to manage interrupts, repeated operations, and function calls.  
2.2 Pin Assignments  
Figure 21 provides the pin assignments for the 164-pin ceramic quad flatpack (CQFP) package.  
Table 22 lists terminal names, terminal functions, and operating modes for the SMJ320VC5416.  
2
SGUS035A  
April 2003 Revised July 2003  
Introduction  
Table 21. Terminal Assignments for the SMJ320VC5416HFG (164-Pin CQFP Package)  
PIN NUMBER  
PIN NAME  
PIN NUMBER  
42  
PIN NAME  
PIN NUMBER  
83  
PIN NAME  
PIN NUMBER  
124  
125  
126  
127  
128  
129  
130  
131  
132  
133  
134  
135  
136  
137  
138  
139  
140  
141  
142  
143  
144  
145  
146  
147  
148  
149  
150  
151  
152  
153  
154  
155  
156  
157  
158  
159  
160  
161  
162  
163  
164  
PIN NAME  
A19  
1
V
SS  
V
SS  
V
SS  
2
NC  
A22  
NC  
43  
BCLKR1  
HCNTL0  
84  
BCLKX1  
BFSX1  
BDX1  
A20  
3
44  
85  
NC  
4
45  
V
SS  
86  
V
SS  
DV  
5
V
46  
BCLKR0  
BCLKR2  
BFSR0  
BFSR2  
BDR0  
87  
DV  
DD  
SS  
DV  
DD  
D6  
6
47  
88  
CLKMD1  
CLKMD2  
CLKMD3  
HPI16  
DD  
A10  
7
48  
89  
D7  
D8  
8
HD7  
A11  
A12  
A13  
A14  
A15  
NC  
49  
90  
9
50  
91  
D9  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
51  
HCNTL1  
92  
HD2  
D10  
D11  
52  
V
93  
TOUT  
SS  
BDR2  
CV  
53  
94  
EMU0  
V
SS  
CV  
54  
95  
EMU1/OFF  
TDO  
DD  
DD  
D12  
55  
BCLKX0  
BCLKX2  
NC  
96  
CV  
DD  
HAS  
56  
97  
V
HD4  
D13  
D14  
D15  
HD5  
SS  
TDI  
CV  
57  
98  
V
58  
V
SS  
99  
SS  
CV  
DD  
59  
HINT  
NC  
100  
101  
102  
103  
104  
105  
106  
107  
108  
109  
110  
111  
112  
113  
114  
115  
116  
117  
118  
119  
120  
121  
122  
123  
TRST  
TCK  
DD  
HCS  
60  
HR/W  
READY  
PS  
61  
CV  
TMS  
V
SS  
DD  
62  
BFSX0  
BFSX2  
HRDY  
V
NC  
SS  
NC  
CV  
63  
HDS1  
CV  
64  
V
DD  
DD  
HPIENA  
SS  
HDS2  
DV  
DS  
65  
DV  
DD  
V
SS  
66  
V
SS  
V
SS  
CV  
DD  
A0  
A1  
CV  
IS  
R/W  
67  
HD0  
BDX0  
BDX2  
DD  
68  
CLKOUT  
HD3  
X1  
MSTRB  
IOSTRB  
MSC  
69  
DD  
A2  
70  
CV  
DD  
IACK  
71  
X2/CLKIN  
RS  
V
SS  
A3  
XF  
72  
V
SS  
HOLDA  
IAQ  
73  
HBIL  
NMI  
D0  
HD6  
A4  
A5  
A6  
A7  
A8  
A9  
74  
D1  
HOLD  
BIO  
75  
INT0  
INT1  
INT2  
INT3  
NC  
D2  
76  
D3  
MP/MC  
77  
D4  
DV  
78  
D5  
DD  
NC  
79  
A16  
V
SS  
80  
CV  
V
SS  
CV  
DD  
A21  
DD  
HD1  
NC  
BDR1  
81  
A17  
A18  
BFSR1  
82  
V
SS  
is the ground for both the I/O pins and the  
DV  
is the power supply for the I/O pins while CV  
DD  
is the power supply for the core CPU, and V  
SS  
DD  
core CPU.  
3
April 2003 Revised July 2003  
SGUS035A  
Introduction  
2.2.1 Pin Assignments for the HFG Package  
The SMJ320VC5416HFG 164-pin ceramic quad flatpack (CQFP) pin assignments are shown in Figure 21.  
†‡  
HFG PACKAGE  
(TOP VIEW)  
V
1
2
3
4
5
6
7
8
A18  
A17  
SS  
123  
122  
121  
120  
119  
118  
117  
116  
115  
114  
113  
112  
111  
110  
109  
108  
107  
106  
105  
104  
103  
102  
101  
100  
99  
NC  
A22  
NC  
V
A16  
D5  
SS  
V
SS  
DD  
D4  
D3  
D2  
D1  
D0  
RS  
X2/CLKIN  
X1  
HD3  
DV  
A10  
HD7  
A11  
A12  
A13  
A14  
A15  
NC  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
CV  
HAS  
V
CLKOUT  
DD  
CV  
DD  
V
SS  
SS  
CV  
HPIENA  
DD  
HCS  
HR/W  
READY  
PS  
CV  
NC  
DD  
V
TMS  
SS  
CV  
TCK  
TRST  
DD  
DS  
V
CV  
TDI  
SS  
DD  
98  
97  
96  
95  
IS  
R/W  
MSTRB  
IOSTRB  
MSC  
V
TDO  
SS  
EMU1/OFF  
94  
93  
92  
91  
90  
89  
88  
87  
86  
85  
84  
EMU0  
TOUT  
HD2  
HPI16  
CLKMD3  
CLKMD2  
CLKMD1  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
XF  
HOLDA  
IAQ  
HOLD  
BIO  
MP/MC  
DV  
BDX1  
DV  
DD  
DD  
NC  
V
BFSX1  
SS  
40  
41  
BCLKX1  
BDR1  
V
83  
BFSR1  
SS  
NC No internal connection  
NC = No connection  
DV is the power supply for the I/O pins while CV  
is the power supply for the core CPU, and V  
DD SS  
is the ground for both the I/O pins and the  
DD  
core CPU.  
Figure 21. 164-Pin HFG Ceramic Quad Flatpack (Top View)  
4
SGUS035A  
April 2003 Revised July 2003  
Introduction  
2.3 Signal Descriptions  
Table 22 lists each signal, function, and operating mode(s) grouped by function. See Section 2.2 for exact  
pin locations based on package type.  
Table 22. Signal Descriptions  
TERMINAL  
NAME  
I/O  
DESCRIPTION  
DATA SIGNALS  
‡§  
I/O/Z  
A22 (MSB)  
A21  
A20  
A19  
A18  
A17  
A16  
A15  
A14  
A13  
A12  
A11  
A10  
A9  
Parallel address bus A22 [most significant bit (MSB)] through A0 [least significant bit (LSB)]. The sixteen LSB  
lines, A0 to A15, are multiplexed to address external memory (program, data) or I/O. The seven MSB lines, A16  
to A22, address external program space memory. A22A0 is placed in the high-impedance state in the hold  
mode. A22A0 also goes into the high-impedance state when OFF is low.  
A17A0areinputsinHPI16mode. Thesepinscanbeusedtoaddressinternalmemoryviathehost-portinterface  
(HPI) when the HPI16 pin is high. These pins also have Schmitt trigger inputs.  
The address bus has a bus holder feature that eliminates passive components and the power dissipation  
associated with them. The bus holder keeps the address bus at the previous logic level when the bus goes into  
a high-impedance state.  
A8  
A7  
A6  
A5  
A4  
A3  
A2  
A1  
A0  
(LSB)  
‡§  
I/O/Z  
D15 (MSB)  
D14  
D13  
D12  
D11  
D10  
D9  
Parallel data bus D15 (MSB) through D0 (LSB). D15D0 is multiplexed to transfer data between the core CPU  
and external data/program memory or I/O devices or HPI in HPI16 mode (when HPI16 pin is high). D15D0 is  
placedinthehigh-impedancestatewhennotoutputtingdataorwhenRSorHOLDisasserted.D15D0alsogoes  
into the high-impedance state when OFF is low. These pins also have Schmitt trigger inputs.  
Thedata bus has a bus holder feature that eliminates passive components and the power dissipation associated  
with them. The bus holder keeps the data bus at the previous logic level when the bus goes into the  
high-impedance state. The bus holders on the data bus can be enabled/disabled under software control.  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
(LSB)  
§
#
I = Input, O = Output, Z = High-impedance, S = Supply  
These pins have Schmitt trigger inputs.  
This pin has an internal bus holder controlled by way of the BSCR register.  
This pin has an internal pullup resistor.  
This pin has an internal pulldown resistor.  
5
April 2003 Revised July 2003  
SGUS035A  
Introduction  
Table 22. Signal Descriptions (Continued)  
DESCRIPTION  
TERMINAL  
NAME  
I/O  
INITIALIZATION, INTERRUPT AND RESET OPERATIONS  
Interrupt acknowledge signal. IACK indicates receipt of an interrupt and that the program counter is fetching the  
interrupt vector location designated by A15A0. IACK also goes into the high-impedance state when OFF is low.  
IACK  
O/Z  
I
INT0  
INT1  
INT2  
INT3  
External user interrupt inputs. INT0INT3 are maskable and are prioritized by the interrupt mask register (IMR)  
and the interrupt mode bit. INT0 INT3 can be polled and reset by way of the interrupt flag register (IFR).  
Nonmaskableinterrupt. NMI is an external interrupt that cannot be masked by way of the INTM or the IMR. When  
NMI is activated, the processor traps to the appropriate vector location.  
NMI  
I
I
Reset. RS causes the digital signal processor (DSP) to terminate execution and forces the program counter to  
0FF80h.WhenRSisbroughttoahighlevel, executionbeginsatlocation0FF80hofprogrammemory. RSaffects  
various registers and status bits.  
RS  
Microprocessor/microcomputer mode select. If active low at reset, microcomputer mode is selected, and the  
internal program ROM is mapped into the upper 16K words of program memory space. If the pin is driven high  
during reset, microprocessor mode is selected, and the on-chip ROM is removed from program space. This pin  
is only sampled at reset, and the MP/MC bit of the processor mode status (PMST) register can override the mode  
that is selected at reset.  
MP/MC  
I
MULTIPROCESSING SIGNALS  
Branch control. A branch can be conditionally executed when BIO is active. If low, the processor executes the  
conditional instruction. The BIO condition is sampled during the decode phase of the pipeline for the XC  
instruction, and all other instructions sample BIO during the read phase of the pipeline.  
BIO  
I
External flag output (latched software-programmable signal). XF is set high by the SSBX XF instruction, set low  
by RSBX XF instruction or by loading ST1. XF is used for signaling other processors in multiprocessor  
configurationsor used as a general-purpose output pin. XF goes into the high-impedance state when OFF is low,  
and is set high at reset.  
XF  
O/Z  
MEMORY CONTROL SIGNALS  
Data, program, and I/O space select signals. DS, PS, and IS are always high unless driven low for  
communicating to a particular external space. Active period corresponds to valid address information. DS, PS,  
and IS are placed into the high-impedance state in the hold mode; these signals also go into the high-impedance  
state when OFF is low.  
DS  
PS  
IS  
O/Z  
O/Z  
I
Memory strobe signal. MSTRB is always high unless low-level asserted to indicate an external bus access to  
data or program memory. MSTRB is placed in the high-impedance state in the hold mode; it also goes into the  
high-impedance state when OFF is low.  
MSTRB  
READY  
R/W  
Data ready. READY indicates that an external device is prepared for a bus transaction to be completed. If the  
device is not ready (READY is low), the processor waits one cycle and checks READY again. Note that the  
processor performs ready detection if at least two software wait states are programmed. The READY signal is  
not sampled until the completion of the software wait states.  
Read/write signal. R/W indicates transfer direction during communication to an external device. R/W is normally  
in the read mode (high), unless it is asserted low when the DSP performs a write operation. R/W is placed in the  
high-impedance state in the hold mode; and it also goes into the high-impedance state when OFF is low.  
O/Z  
I/O strobe signal. IOSTRB is always high unless low-level asserted to indicate an external bus access to an I/O  
device. IOSTRB is placed in the high-impedance state in the hold mode; it also goes into the high-impedance  
state when OFF is low.  
IOSTRB  
HOLD  
O/Z  
I
Hold input. HOLD is asserted to request control of the address, data, and control lines. When acknowledged by  
the 5416, these lines go into the high-impedance state.  
§
#
I = Input, O = Output, Z = High-impedance, S = Supply  
These pins have Schmitt trigger inputs.  
This pin has an internal bus holder controlled by way of the BSCR register.  
This pin has an internal pullup resistor.  
This pin has an internal pulldown resistor.  
6
SGUS035A  
April 2003 Revised July 2003  
Introduction  
Table 22. Signal Descriptions (Continued)  
DESCRIPTION  
TERMINAL  
NAME  
I/O  
MEMORY CONTROL SIGNALS (CONTINUED)  
Hold acknowledge. HOLDA indicates to the external circuitry that the processor is in a hold state and that the  
address, data, and control lines are in the high-impedance state, allowing them to be available to the external  
circuitry. HOLDA also goes into the high-impedance state when OFF is low. This pin is driven high during reset.  
HOLDA  
O/Z  
Microstate complete. MSC indicates completion of all software wait states. When two or more software wait  
states are enabled, the MSC pin goes active at the beginning of the first software wait state and goes inactive  
high at the beginning of the last software wait state. If connected to the READY input, MSC forces one external  
wait state after the last internal wait state is completed. MSC also goes into the high-impedance state when OFF  
is low.  
MSC  
IAQ  
O/Z  
O/Z  
Instruction acquisition signal. IAQ is asserted (active low) when there is an instruction address on the address  
bus and goes into the high-impedance state when OFF is low.  
TIMER SIGNALS  
Clock output signal. CLKOUT can represent the machine-cycle rate of the CPU divided by 1, 2, 3, or 4 as  
configured in the bank-switching control register (BSCR). Following reset, CLKOUT represents the  
machine-cycle rate divided by 4.  
CLKOUT  
O/Z  
I
Clock mode select signals. CLKMD1CLKMD3 allow the selection and configuration of different clock modes  
such as crystal, external clock, and PLL mode. The external CLKMD1CLKMD3 pins are sampled to determine  
the desired clock generation mode while RS is low. Following reset, the clock generation mode can be  
reconfigured by writing to the internal clock mode register in software.  
CLKMD1  
CLKMD2  
CLKMD3  
Clock/oscillator input. If the internal oscillator is not being used, X2/CLKIN functions as the clock input. (This is  
revision-dependent, see Section 3.10 for additional information.)  
X2/CLKIN  
X1  
I
Output pin from the internal oscillator for the crystal. If the internal oscillator is not used, X1 should be left  
unconnected. X1 does not go into the high-impedance state when OFF is low. (This is revision-dependent, see  
Section 3.10 for additional information.)  
O
Timer output. TOUT signals a pulse when the on-chip timer counts down past zero. The pulse is one CLKOUT  
cycle wide. TOUT also goes into the high-impedance state when OFF is low.  
TOUT  
O/Z  
MULTICHANNEL BUFFERED SERIAL PORT 0 (McBSP #0), MULTICHANNEL BUFFERED SERIAL PORT 1 (McBSP #1),  
AND MULTICHANNEL BUFFERED SERIAL PORT 2 (McBSP #2) SIGNALS  
BCLKR0  
BCLKR1  
BCLKR2  
Receive clock input. BCLKR can be configured as an input or an output; it is configured as an input following  
reset. BCLKR serves as the serial shift clock for the buffered serial port receiver.  
I/O/Z  
I
BDR0  
BDR1  
BDR2  
Serial data receive input  
BFSR0  
BFSR1  
BFSR2  
Frame synchronization pulse for receive input. BFSR can be configured as an input or an output; it is configured  
as an input following reset. The BFSR pulse initiates the receive data process over BDR.  
I/O/Z  
I/O/Z  
O/Z  
I/O/Z  
BCLKX0  
BCLKX1  
BCLKX2  
Transmit clock. BCLKX serves as the serial shift clock for the McBSP transmitter. BCLKX can be configured as  
aninputoranoutput, andisconfiguredasaninputfollowingreset. BCLKXentersthehigh-impedancestatewhen  
OFF goes low.  
BDX0  
BDX1  
BDX2  
Serial data transmit output. BDX is placed in the high-impedance state when not transmitting, when RS is  
asserted, or when OFF is low.  
BFSX0  
BFSX1  
BFSX2  
Frame synchronization pulse for transmit input/output. The BFSX pulse initiates the data transmit process over  
BDX. BFSX can be configured as an input or an output, and is configured as an input following reset. BFSX goes  
into the high-impedance state when OFF is low.  
§
#
I = Input, O = Output, Z = High-impedance, S = Supply  
These pins have Schmitt trigger inputs.  
This pin has an internal bus holder controlled by way of the BSCR register.  
This pin has an internal pullup resistor.  
This pin has an internal pulldown resistor.  
7
April 2003 Revised July 2003  
SGUS035A  
Introduction  
Table 22. Signal Descriptions (Continued)  
DESCRIPTION  
TERMINAL  
NAME  
I/O  
HOST-PORT INTERFACE SIGNALS  
Parallel bidirectional data bus. The HPI data bus is used by a host device bus to exchange information with the  
HPI registers. These pins can also be used as general-purpose I/O pins. HD0HD7 is placed in the  
high-impedance state when not outputting data or when OFF is low. The HPI data bus includes bus holders to  
reduce the static power dissipation caused by floating, unused pins. When the HPI data bus is not being driven  
by the 5416, the bus holders keep the pins at the previous logic level. The HPI data bus holders are disabled  
at reset and can be enabled/disabled via the HBH bit of the BSCR. These pins also have Schmitt trigger inputs.  
‡§  
HD0HD7  
I/O/Z  
HCNTL0  
HCNTL1  
Control inputs. HCNTL0 and HCNTL1 select a host access to one of the three HPI registers. The control inputs  
have internal pullups that are only enabled when HPIENA = 0. These pins are not used when HPI16 = 1.  
I
Byte identification. HBIL identifies the first or second byte of transfer. The HPIL input has an internal pullup  
resistor that is only enabled when HPIENA = 0. This pin is not used when HPI16 = 1.  
HBIL  
I
Chip select. HCS is the select input for the HPI and must be driven low during accesses. The chip select input  
has an internal pullup resistor that is only enabled when HPIENA = 0.  
‡¶  
HCS  
I
‡¶  
‡¶  
HDS1  
HDS2  
Data strobe. HDS1 and HDS2 are driven by the host read and write strobes to control the transfer. The strobe  
inputs have internal pullup resistors that are only enabled when HPIENA = 0.  
I
I
Address strobe. Host with multiplexed address and data pins requires HAS to latch the address in the HPIA  
register. HAS input has an internal pullup resistor that is only enabled when HPIENA = 0.  
‡¶  
HAS  
Read/write. HR/W controls the direction of the HPI transfer. HR/W has an internal pullup resistor that is only  
enabled when HPIENA = 0.  
HR/W  
I
Ready output. HRDY goes into the high-impedance state when OFF is low. The ready output informs the host  
when the HPI is ready for the next transfer. This pin is driven high during reset.  
HRDY  
HINT  
O/Z  
O/Z  
Interrupt output. This output is used to interrupt the host. When the DSP is in reset, HINT is driven high. HINT  
goes into the high-impedance state when OFF is low. This pin is not used when HPI16 = 1.  
HPI module select. HPIENA must be tied to DV  
DD  
to have HPI selected. If HPIENA is left open or connected to  
ground, the HPI module is not selected, internal pullup for the HPI input pins are enabled, and the HPI data bus  
has holders set. HPIENA is provided with an internal pulldown resistor that is always active. HPIENA is sampled  
when RS goes high and is ignored until RS goes low again. This pin should never be changed while reset is high  
#
HPIENA  
I
I
#
HPI16  
HPI16 mode selection  
SUPPLY PINS  
CV  
CV  
DV  
DV  
S
S
S
S
Ground. Dedicated ground for the core CPU  
SS  
+V . Dedicated power supply for the core CPU  
DD  
DD  
SS  
DD  
Ground. Dedicated ground for I/O pins  
+V . Dedicated power supply for I/O pins  
DD  
§
#
I = Input, O = Output, Z = High-impedance, S = Supply  
These pins have Schmitt trigger inputs.  
This pin has an internal bus holder controlled by way of the BSCR register.  
This pin has an internal pullup resistor.  
This pin has an internal pulldown resistor.  
8
SGUS035A  
April 2003 Revised July 2003  
Introduction  
Table 22. Signal Descriptions (Continued)  
TERMINAL  
NAME  
I/O  
DESCRIPTION  
TEST PINS  
IEEE standard 1149.1 test clock. TCK is normally a free-running clock signal with a 50% duty cycle. The changes  
on test access port (TAP) of input signals TMS and TDI are clocked into the TAP controller, instruction register,  
or selected test data register on the rising edge of TCK. Changes at the TAP output signal (TDO) occur on the  
falling edge of TCK.  
‡¶  
TCK  
I
I
IEEE standard 1149.1 test data input. Pin with internal pullup device. TDI is clocked into the selected register  
(instruction or data) on a rising edge of TCK.  
TDI  
IEEE standard 1149.1 test data output. The contents of the selected register (instruction or data) are shifted out  
of TDO on the falling edge of TCK. TDO is in the high-impedance state except when the scanning of data is in  
progress. TDO also goes into the high-impedance state when OFF is low.  
TDO  
TMS  
O/Z  
IEEE standard 1149.1 test mode select. Pin with internal pullup device. This serial control input is clocked into  
the TAP controller on the rising edge of TCK.  
I
I
IEEE standard 1149.1 test reset. TRST, when high, gives the IEEE standard 1149.1 scan system control of the  
operations of the device. If TRST is not connected or driven low, the device operates in its functional mode, and  
the IEEE standard 1149.1 signals are ignored. Pin with internal pulldown device.  
#
TRST  
Emulator 0 pin. When TRST is driven low, EMU0 must be high for activation of the OFF condition. When TRST  
is driven high, EMU0 is used as an interrupt to or from the emulator system and is defined as input/output by way  
of the IEEE standard 1149.1 scan system.  
EMU0  
I/O/Z  
Emulator 1 pin/disable all outputs. When TRST is driven high, EMU1/OFF is used as an interrupt to or from the  
emulator system and is defined as input/output by way of IEEE standard 1149.1 scan system. When TRST is  
driven low, EMU1/OFF is configured as OFF. The EMU1/OFF signal, when active low, puts all output drivers into  
the high-impedance state. Note that OFF is used exclusively for testing and emulation purposes (not for  
multiprocessing applications). Therefore, for the OFF condition, the following apply:  
TRST = low,  
EMU1/OFF  
I/O/Z  
EMU0 = high  
EMU1/OFF = low  
§
#
I = Input, O = Output, Z = High-impedance, S = Supply  
These pins have Schmitt trigger inputs.  
This pin has an internal bus holder controlled by way of the BSCR register.  
This pin has an internal pullup resistor.  
This pin has an internal pulldown resistor.  
9
April 2003 Revised July 2003  
SGUS035A  
Functional Overview  
3
Functional Overview  
The following functional overview is based on the block diagram in Figure 31.  
P, C, D, E Buses and Control Signals  
64K RAM  
Dual Access  
Program/Data  
64K RAM  
Single Access  
Program  
16K Program  
ROM  
54X cLEAD  
MBus  
GPIO  
RHEA  
Bridge  
TI BUS  
RHEA Bus  
McBSP1  
XIO  
Enhanced XIO  
McBSP2  
McBSP3  
16HPI  
16 HPI  
xDMA  
logic  
RHEAbus  
TIMER  
APLL  
JTAG  
Clocks  
Figure 31. SMJ320VC5416 Functional Block Diagram  
3.1 Memory  
The 5416 device provides both on-chip ROM and RAM memories to aid in system performance and  
integration.  
3.1.1 Data Memory  
The data memory space addresses up to 64K of 16-bit words. The device automatically accesses the on-chip  
RAM when addressing within its bounds. When an address is generated outside the RAM bounds, the device  
automatically generates an external access.  
The advantages of operating from on-chip memory are as follows:  
Higher performance because no wait states are required  
Higher performance because of better flow within the pipeline of the central arithmetic logic unit (CALU)  
Lower cost than external memory  
Lower power than external memory  
The advantage of operating from off-chip memory is the ability to access a larger address space.  
10  
SGUS035A  
April 2003 Revised July 2003  
Functional Overview  
3.1.2 Program Memory  
Software can configure their memory cells to reside inside or outside of the program address map. When the  
cells are mapped into program space, the device automatically accesses them when their addresses are  
within bounds. When the program-address generation (PAGEN) logic generates an address outside its  
bounds, the device automatically generates an external access. The advantages of operating from on-chip  
memory are as follows:  
Higher performance because no wait states are required  
Lower cost than external memory  
Lower power than external memory  
The advantage of operating from off-chip memory is the ability to access a larger address space.  
3.1.3 Extended Program Memory  
The 5416 uses a paged extended memory scheme in program space to allow access of up to 8192K of  
program memory. In order to implement this scheme, the 5416 includes several features which are also  
present on C548/549/5410:  
Twenty-three address lines, instead of sixteen  
An extra memory-mapped register, the XPC  
Six extra instructions for addressing extended program space  
Program memory in the 5416 is organized into 128 pages that are each 64K in length.  
The value of the XPC register defines the page selection. This register is memory-mapped into data space  
to address 001Eh. At a hardware reset, the XPC is initialized to 0.  
3.2 On-Chip ROM With Bootloader  
The 5416 features a 16K-word× 16-bit on-chip maskable ROM that can only be mapped into program memory  
space.  
Customers can arrange to have the ROM of the 5416 programmed with contents unique to any particular  
application.  
A bootloader is available in the standard 5416 on-chip ROM. This bootloader can be used to automatically  
transfer user code from an external source to anywhere in the program memory at power up. If MP/MC of the  
device is sampled low during a hardware reset, execution begins at location FF80h of the on-chip ROM. This  
location contains a branch instruction to the start of the bootloader program.  
The standard 5416 devices provide different ways to download the code to accommodate various system  
requirements:  
Parallel from 8-bit or 16-bit-wide EPROM  
Parallel from I/O space, 8-bit or 16-bit mode  
Serial boot from serial ports, 8-bit or 16-bit mode  
Host-port interface boot  
Warm boot  
11  
April 2003 Revised July 2003  
SGUS035A  
Functional Overview  
The standard on-chip ROM layout is shown in Table 31.  
Table 31. Standard On-Chip ROM Layout  
ADDRESS RANGE  
C000hD4FFh  
D500hF7FFh  
F800hFBFFh  
FC00hFCFFh  
FD00hFDFFh  
FE00hFEFFh  
FF00hFF7Fh  
FF80hFFFFh  
DESCRIPTION  
ROM tables for the GSM EFR speech codec  
Reserved  
Bootloader  
µ-Law expansion table  
A-Law expansion table  
Sine look-up table  
Reserved  
Interrupt vector table  
In the 5416 ROM, 128 words are reserved for factory device-testing purposes. Application code  
to be implemented in on-chip ROM must reserve these 128 words at addresses FF00hFF7Fh  
in program space.  
3.3 On-Chip RAM  
The 5416 device contains 64K-word × 16-bit of on-chip dual-access RAM (DARAM) and 64K-word × 16-bit  
of on-chip single-access RAM (SARAM).  
The DARAM is composed of eight blocks of 8K words each. Each block in the DARAM can support two reads  
in one cycle, or a read and a write in one cycle. Four blocks of DARAM are located in the address range  
0080h7FFFh in data space, and can be mapped into program/data space by setting the OVLY bit to one. The  
otherfourblocksofDARAMarelocatedintheaddressrange18000h1FFFFhinprogramspace. TheDARAM  
located in the address range 18000h1FFFFh in program space can be mapped into data space by setting  
the DROM bit to one.  
The SARAM is composed of eight blocks of 8K words each. Each of these eight blocks is a single-access  
memory. For example, an instruction word can be fetched from one SARAM block in the same cycle as a data  
word is written to another SARAM block. The SARAM is located in the address range 28000h2FFFFh, and  
38000h3FFFFh in program space.  
3.4 On-Chip Memory Security  
The 5416 device has a maskable option to protect the contents of on-chip memories. When the ROM protect  
bit is set, no externally originating instruction can access the on-chip memory spaces; HPI writes have no  
restriction, but HPI reads are restricted to 4000h 5FFFh.  
12  
SGUS035A  
April 2003 Revised July 2003  
Functional Overview  
3.5 Memory Map  
Page 0 Program  
Page 0 Program  
Data  
Hex  
Hex  
Hex  
0000  
0000  
0000  
Reserved  
(OVLY = 1)  
External  
(OVLY = 0)  
Reserved  
(OVLY = 1)  
External  
(OVLY = 0)  
Memory-Mapped  
Registers  
005F  
007F  
0080  
007F  
0080  
0060  
007F  
0080  
Scratch-Pad  
RAM  
On-Chip  
DARAM03  
(OVLY = 1)  
External  
(OVLY = 0)  
On-Chip  
DARAM03  
(OVLY = 1)  
External  
(OVLY = 0)  
On-Chip  
DARAM03  
(32K x 16-bit)  
7FFF  
8000  
BFFF  
C000  
7FFF  
8000  
7FFF  
8000  
External  
External  
On-Chip  
DARAM47  
(DROM=1)  
or  
External  
(DROM=0)  
On-Chip ROM  
(4K x 16-bit)  
FF7F  
FF80  
FEFF  
FF00  
FF7F  
FF80  
FFFF  
Interrupts  
(External)  
Reserved  
Interrupts  
(On-Chip)  
FFFF  
FFFF  
MP/MC= 1  
(Microprocessor Mode)  
MP/MC= 0  
(Microcomputer Mode)  
Address ranges for on-chip DARAM in data memory are:  
DARAM0: 0080h1FFFh;  
DARAM1: 2000h3FFFh  
DARAM2: 4000h5FFFh;  
DARAM4: 8000h9FFFh;  
DARAM6: C000hDFFFh;  
DARAM3: 6000h7FFFh  
DARAM5: A000hBFFFh  
DARAM7: E000hFFFFh  
Figure 32. Program and Data Memory Map  
Hex  
7F0000  
Hex  
010000  
Program  
Program  
Hex  
020000  
Hex  
030000  
Hex  
040000  
Program  
Program  
Program  
On-Chip  
DARAM03  
(OVLY=1)  
External  
On-Chip  
DARAM03  
(OVLY=1)  
External  
On-Chip  
DARAM03  
(OVLY=1)  
External  
On-Chip  
DARAM03  
(OVLY=1)  
External  
On-Chip  
DARAM03  
(OVLY=1)  
External  
(OVLY=0)  
(OVLY=0)  
(OVLY=0)  
(OVLY=0)  
(OVLY=0)  
7F7FFF  
7F8000  
017FFF  
018000  
027FFF  
028000  
037FFF  
038000  
047FFF  
048000  
......  
On-Chip  
DARAM47  
(MP/MC=0)  
External  
On-Chip  
SARAM03  
(MP/MC=0)  
External  
On-Chip  
SARAM47  
(MP/MC=0)  
External  
External  
External  
(MP/MC=1)  
(MP/MC=1)  
(MP/MC=1)  
7FFFFF  
01FFFF  
02FFFF  
03FFFF  
04FFFF  
Page 1  
XPC=1  
Page 2  
XPC=2  
Page 127  
XPC=7Fh  
Page 3  
XPC=3  
Page 4  
XPC=4  
Address ranges for on-chip DARAM in program memory are:  
DARAM4: 018000h019FFFh;  
DARAM6: 01C000h01DFFFh;  
SARAM0: 028000h029FFFh;  
SARAM2: 02C000h02DFFFh;  
SARAM4: 038000h039FFFh;  
SARAM6: 03C000h03DFFFh;  
DARAM5: 01A000h01BFFFh  
DARAM7: 01E000h01FFFFh  
SARAM1: 02A000h02BFFFh  
SARAM3: 02E000h02FFFFh  
SARAM5: 03A000h03BFFFh  
SARAM7: 03E000h03FFFFh  
Address ranges for on-chip SARAM in program memory are:  
Figure 33. Extended Program Memory Map  
13  
April 2003 Revised July 2003  
SGUS035A  
Functional Overview  
3.5.1 Relocatable Interrupt Vector Table  
The reset, interrupt, and trap vectors are addressed in program space. These vectors are soft meaning that  
the processor, when taking the trap, loads the program counter (PC) with the trap address and executes the  
code at the vector location. Four words, either two 1-word instructions or one 2-word instruction, are reserved  
at each vector location to accommodate a delayed branch instruction which allows branching to the  
appropriate interrupt service routine without the overhead.  
At device reset, the reset, interrupt, and trap vectors are mapped to address FF80h in program space.  
However, these vectors can be remapped to the beginning of any 128-word page in program space after  
device reset. This is done by loading the interrupt vector pointer (IPTR) bits in the PMST register with the  
appropriate 128-word page boundary address. After loading IPTR, any user interrupt or trap vector is mapped  
to the new 128-word page.  
NOTE: The hardware reset (RS) vector cannot be remapped because the hardware reset loads the IPTR  
with 1s. Therefore, the reset vector is always fetched at location FF80h in program space.  
15  
7
6
5
4
3
2
1
0
CLK  
OFF  
IPTR  
MP/MC  
OVLY  
AVIS  
DROM  
SMUL  
SST  
R/W-1FF  
MP/MC R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0  
Pin  
LEGEND: R = Read, W = Write  
Figure 34. Processor Mode Status (PMST) Register  
14  
SGUS035A  
April 2003 Revised July 2003  
Functional Overview  
Table 32. Processor Mode Status (PMST) Register Bit Fields  
BIT  
RESET  
VALUE  
FUNCTION  
NO.  
NAME  
Interrupt vector pointer. The 9-bit IPTR field points to the 128-word program page where the interrupt  
vectors reside. The interrupt vectors can be remapped to RAM for boot-loaded operations. At reset, these  
bits are all set to 1; the reset vector always resides at address FF80h in program memory space. The  
RESET instruction does not affect this field.  
157  
IPTR  
1FFh  
Microprocessor/microcomputer mode. MP/MC enables/disables the on-chip ROM to be addressable in  
program memory space.  
-
-
MP/MC = 0: The on-chip ROM is enabled and addressable.  
MP/MC = 1: The on-chip ROM is not available.  
MP/MC  
pin  
6
5
MP/MC  
MP/MC is set to the value corresponding to the logic level on the MP/MC pin when sampled at reset. This  
pin is not sampled again until the next reset. The RESET instruction does not affect this bit. This bit can  
also be set or cleared by software.  
RAM overlay. OVLY enables on-chip dual-access data RAM blocks to be mapped into program space.  
The values for the OVLY bit are:  
-
-
OVLY = 0: The on-chip RAM is addressable in data space but not in program space.  
OVLY  
0
OVLY = 1: The on-chip RAM is mapped into program space and data space. Data page 0 (addresses  
0h to 7Fh), however, is not mapped into program space.  
Address visibility mode. AVIS enables/disables the internal program address to be visible at the  
address pins.  
-
-
AVIS = 0: The external address lines do not change with the internal program address. Control and  
data lines are not affected and the address bus is driven with the last address on the bus.  
4
3
AVIS  
0
0
AVIS = 1: This mode allows the internal program address to appear at the pins of the 5416 so that  
the internal program address can be traced. Also, it allows the interrupt vector to be decoded in  
conjunction with IACK when the interrupt vectors reside on on-chip memory.  
DROM enables on-chip DARAM47 to be mapped into data space. The DROM bit values are:  
-
-
DROM = 0: The on-chip DARAM47 is not mapped into data space.  
DROM = 1: The on-chip DARAM47 is mapped into data space.  
DROM  
CLOCKOUT off. When the CLKOFF bit is 1, the output of CLKOUT is disabled and remains at a high  
level.  
2
1
0
CLKOFF  
SMUL  
SST  
0
Saturation on multiplication. When SMUL = 1, saturation of a multiplication result occurs before  
performing the accumulation in a MAC of MAS instruction. The SMUL bit applies only when OVM = 1  
and FRCT = 1.  
N/A  
N/A  
Saturation on store. When SST = 1, saturation of the data from the accumulator is enabled before  
storing in memory. The saturation is performed after the shift operation.  
3.6 On-Chip Peripherals  
The 5416 device has the following peripherals:  
Software-programmable wait-state generator  
Programmable bank-switching  
A host-port interface (HPI8/16)  
Three multichannel buffered serial ports (McBSPs)  
A hardware timer  
A clock generator with a multiple phase-locked loop (PLL)  
Enhanced external parallel interface (XIO2)  
A DMA controller (DMA)  
15  
April 2003 Revised July 2003  
SGUS035A  
Functional Overview  
3.6.1 Software-Programmable Wait-State Generator  
The software wait-state generator of the 5416 can extend external bus cycles by up to fourteen machine  
cycles. Devices that require more than fourteen wait states can be interfaced using the hardware READY line.  
When all external accesses are configured for zero wait states, the internal clocks to the wait-state generator  
are automatically disabled. Disabling the wait-state generator clocks reduces the power consumption of  
the 5416.  
The software wait-state register (SWWSR) controls the operation of the wait-state generator. The 14 LSBs  
of the SWWSR specify the number of wait states (0 to 7) to be inserted for external memory accesses to five  
separate address ranges. This allows a different number of wait states for each of the five address ranges.  
Additionally, the software wait-state multiplier (SWSM) bit of the software wait-state control register (SWCR)  
defines a multiplication factor of 1 or 2 for the number of wait states. At reset, the wait-state generator is  
initialized to provide seven wait states on all external memory accesses. The SWWSR bit fields are shown  
in Figure 35 and described in Table 33.  
15  
14  
12  
11  
9
8
6
5
3
2
0
XPA  
I/O  
Data  
Data  
Program  
R/W-111  
Program  
R/W-111  
R/W-0  
R/W-111  
R/W-111  
R/W-111  
LEGEND: R=Read, W=Write, 0=Value after reset  
Figure 35. Software Wait-State Register (SWWSR) [Memory-Mapped Register (MMR) Address 0028h]  
Table 33. Software Wait-State Register (SWWSR) Bit Fields  
BIT  
RESET  
VALUE  
FUNCTION  
NO.  
NAME  
Extended program address control bit. XPA is used in conjunction with the program space fields  
(bits 0 through 5) to select the address range for program space wait states.  
15  
XPA  
0
I/O space. The field value (07) corresponds to the base number of wait states for I/O space accesses  
within addresses 0000FFFFh. The SWSM bit of the SWCR defines a multiplication factor of 1 or 2 for  
the base number of wait states.  
1412  
119  
86  
I/O  
111  
Upper data space. The field value (07) corresponds to the base number of wait states for external  
data space accesses within addresses 8000FFFFh. The SWSM bit of the SWCR defines a  
multiplication factor of 1 or 2 for the base number of wait states.  
Data  
Data  
111  
111  
Lower data space. The field value (07) corresponds to the base number of wait states for external  
data space accesses within addresses 00007FFFh. The SWSM bit of the SWCR defines a  
multiplication factor of 1 or 2 for the base number of wait states.  
Upper program space. The field value (07) corresponds to the base number of wait states for external  
program space accesses within the following addresses:  
-
-
XPA = 0: xx8000 xxFFFFh  
XPA = 1: 400000h 7FFFFFh  
53  
20  
Program  
Program  
111  
111  
The SWSM bit of the SWCR defines a multiplication factor of 1 or 2 for the base number of wait states.  
Program space. The field value (07) corresponds to the base number of wait states for external  
program space accesses within the following addresses:  
-
-
XPA = 0: xx0000 xx7FFFh  
XPA = 1: 000000 3FFFFFh  
The SWSM bit of the SWCR defines a multiplication factor of 1 or 2 for the base number of wait states.  
16  
SGUS035A  
April 2003 Revised July 2003  
Functional Overview  
The software wait-state multiplier bit of the software wait-state control register (SWCR) is used to extend the  
base number of wait states selected by the SWWSR. The SWCR bit fields are shown in Figure 36 and  
described in Table 34.  
15  
1
0
Reserved  
R/W-0  
SWSM  
R/W-0  
LEGEND: R = Read, W = Write  
Figure 36. Software Wait-State Control Register (SWCR) [MMR Address 002Bh]  
Table 34. Software Wait-State Control Register (SWCR) Bit Fields  
PIN  
RESET  
VALUE  
FUNCTION  
NO.  
NAME  
151  
Reserved  
0
These bits are reserved and are unaffected by writes.  
Softwarewait-statemultiplier. UsedtomultiplythenumberofwaitstatesdefinedintheSWWSRbyafactor  
of 1 or 2.  
0
SWSM  
0
-
-
SWSM = 0: wait-state base values are unchanged (multiplied by 1).  
SWSM = 1: wait-state base values are multiplied by 2 for a maximum of 14 wait states.  
3.6.2 Programmable Bank-Switching  
Programmable bank-switching logic allows the 5416 to switch between external memory banks without  
requiring external wait states for memories that need additional time to turn off. The bank-switching logic  
automatically inserts one cycle when accesses cross a 32K-word memory-bank boundary inside program or  
data space.  
Bank-switching is defined by the bank-switching control register (BSCR), which is memory-mapped at  
address 0029h. The bit fields of the BSCR are shown in Figure 37 and are described in Table 35.  
R = Read, W = Write  
15  
14  
DIVFCT  
R/W-11  
13  
12  
11  
2
1
0
Res  
R
CONSEC  
R/W-1  
IACKOFF  
R/W-1  
Reserved  
R
HBH  
BH  
R/W-0 R/W-0  
Figure 37. Bank-Switching Control Register (BSCR) [MMR Address 0029h]  
17  
April 2003 Revised July 2003  
SGUS035A  
Functional Overview  
Table 35. Bank-Switching Control Register (BSCR) Fields  
RESET  
VALUE  
BIT  
NAME  
FUNCTION  
Consecutive bank-switching. Specifies the bank-switching mode.  
Bank-switching on 32K bank boundaries only. This bit is cleared if fast access is desired for  
continuous memory reads (i.e., no starting and trailing cycles between read cycles).  
CONSEC = 0:  
CONSEC = 1:  
15  
CONSEC  
1
Consecutivebank switches on external memory reads. Each read cycle consists of 3 cycles:  
starting cycle, read cycle, and trailing cycle.  
CLKOUT output divide factor. The CLKOUT output is driven by an on-chip source having a frequency  
equal to 1/(DIVFCT+1) of the DSP clock.  
DIVFCT = 00: CLKOUT is not divided.  
1314 DIVFCT  
11  
DIVFCT = 01: CLKOUT is divided by 2 from the DSP clock.  
DIVFCT = 10: CLKOUT is divided by 3 from the DSP clock.  
DIVFCT = 11: CLKOUT is divided by 4 from the DSP clock (default value following reset).  
IACK signal output off. Controls the output of the IACK signal. IACKOFF is set to 1 at reset.  
IACKOFF = 0: The IACK signal output off function is disabled.  
IACKOFF = 1: The IACK signal output off function is enabled.  
Reserved  
12  
IACKOFF  
1
113  
Rsvd  
HBH  
HPI bus holder. Controls the HPI bus holder. HBH is cleared to 0 at reset.  
HBH = 0:  
The bus holder is disabled except when HPI16 = 1.  
2
0
Thebus holder is enabled. When not driven, the HPI data bus, HD[7:0] is held in the previous  
logic level.  
HBH = 1:  
Bus holder. Controls the bus holder. BH is cleared to 0 at reset.  
BH = 0:  
BH = 1:  
Reserved  
The bus holder is disabled.  
1
0
BH  
0
Thebusholderisenabled. Whennotdriven, thedatabus, D[15:0]isheldinthepreviouslogic  
level.  
Rsvd  
For additional information, see Section 3.11 of this document.  
The 5416 has an internal register that holds the MSB of the last address used for a read or write operation  
in program or data space. In the non-consecutive bank switches (CONSEC = 0), if the MSB of the address  
used for the current read does not match that contained in this internal register, the MSTRB (memory strobe)  
signal is not asserted for one CLKOUT cycle. During this extra cycle, the address bus switches to the new  
address. The contents of the internal register are replaced with the MSB for the read of the current address.  
If the MSB of the address used for the current read matches the bits in the register, a normal read cycle occurs.  
In non-consecutive bank switches (CONSEC = 0), if repeated reads are performed from the same memory  
bank, no extra cycles are inserted. When a read is performed from a different memory bank, memory conflicts  
are avoided by inserting an extra cycle. For more information, see Section 3.11 of this document.  
The bank-switching mechanism automatically inserts one extra cycle in the following cases:  
A memory read followed by another memory read from a different memory bank.  
A program-memory read followed by a data-memory read.  
A data-memory read followed by a program-memory read.  
A program-memory read followed by another program-memory read from a different page.  
18  
SGUS035A  
April 2003 Revised July 2003  
Functional Overview  
3.6.3 Bus Holders  
The 5416 has two bus holder control bits, BH (BSCR[1]) and HBH (BSCR[2]), to control the bus keepers of  
theaddressbus(A[170]), databus(D[150]), andtheHPIdatabus(HD[70]). Buskeeperenabling/disabling  
is described in Table 35.  
Table 36. Bus Holder Control Bits  
HPI16 PIN  
BH  
0
HBH  
D[150]  
OFF  
OFF  
ON  
A[170]  
OFF  
OFF  
OFF  
OFF  
OFF  
ON  
HD[70]  
OFF  
ON  
0
0
0
0
1
1
1
1
0
1
0
1
0
1
0
1
0
1
OFF  
ON  
1
ON  
0
OFF  
OFF  
ON  
ON  
0
ON  
1
OFF  
ON  
ON  
1
ON  
ON  
3.7 Parallel I/O Ports  
The 5416 has a total of 64K I/O ports. These ports can be addressed by the PORTR instruction or the PORTW  
instruction. The IS signal indicates a read/write operation through an I/O port. The 5416 can interface easily  
with external devices through the I/O ports while requiring minimal off-chip address-decoding circuits.  
3.7.1 Enhanced 8-/16-Bit Host-Port Interface (HPI8/16)  
The 5416 host-port interface, also referred to as the HPI8/16, is an enhanced version of the standard 8-bit HPI  
found on earlier TMS320C54x DSPs (542, 545, 548, and 549). The 5416 HPI can be used to interface to  
an 8-bit or 16-bit host. When the address and data buses for external I/O is not used (to interface to external  
devices in program/data/IO spaces), the 5416 HPI can be configured as an HPI16 to interface to a 16-bit host.  
This configuration can be accomplished by connecting the HPI16 pin to logic 1.  
When the HPI16 pin is connected to a logic 0, the 5416 HPI is configured as an HPI8. The HPI8 is an 8-bit  
parallel port for interprocessor communication. The features of the HPI8 include:  
Standard features:  
Sequential transfers (with autoincrement) or random-access transfers  
Host interrupt and C54x interrupt capability  
Multiple data strobes and control pins for interface flexibility  
The HPI8 interface consists of an 8-bit bidirectional data bus and various control signals. Sixteen-bit transfers  
are accomplished in two parts with the HBIL input designating high or low byte. The host communicates with  
the HPI8 through three dedicated registers the HPI address register (HPIA), the HPI data register (HPID),  
and the HPI control register (HPIC). The HPIA and HPID registers are only accessible by the host, and the  
HPIC register is accessible by both the host and the 5416.  
Enhanced features:  
Access to entire on-chip RAM through DMA bus  
Capability to continue transferring during emulation stop  
TMS320C54x and C54x are trademarks of Texas Instruments.  
19  
April 2003 Revised July 2003  
SGUS035A  
Functional Overview  
The HPI16 is an enhanced 16-bit version of the TMS320C54x DSP 8-bit host-port interface (HPI8). The  
HPI16 is designed to allow a 16-bit host to access the DSP on-chip memory, with the host acting as the master  
of the interface. Some of the features of the HPI16 include:  
16-bit bidirectional data bus  
Multiple data strobes and control signals to allow glueless interfacing to a variety of hosts  
Only nonmultiplexed address/data modes are supported  
18-bit address bus used in nonmultiplexed mode to allow access to all internal memory (including internal  
extended address pages)  
HRDY signal to hold off host accesses due to DMA latency  
The HPI16 acts as a slave to a 16-bit host processor and allows access to the on-chip memory of the DSP.  
NOTE: Only the nonmultiplexed mode is supported when the 5416 HPI is configured as a  
HPI16 (see Figure 38).  
The 5416 HPI functions as a slave and enables the host processor to access the on-chip memory. A major  
enhancement to the 5416 HPI over previous versions is that it allows host access to the entire on-chip memory  
range of the DSP. The host and the DSP both have access to the on-chip RAM at all times and host accesses  
are always synchronized to the DSP clock. If the host and the DSP contend for access to the same location,  
the host has priority, and the DSP waits for one cycle. Note that since host accesses are always synchronized  
to the 5416 clock, an active input clock (CLKIN) is required for HPI accesses during IDLE states, and host  
accesses are not allowed while the 5416 reset pin is asserted.  
3.7.2 HPI Nonmultiplexed Mode  
In nonmultiplexed mode, a host with separate address/data buses can access the HPI16 data register (HPID)  
via the HD 16-bit bidirectional data bus, and the address register (HPIA) via the 18-bit HA address bus. The  
host initiates the access with the strobe signals (HDS1, HDS2, HCS) and controls the direction of the access  
with the HR/W signal. The HPI16 can stall host accesses via the HRDY signal. Note that the HPIC register  
is not available in nonmultiplexed mode since there are no HCNTL signals available. All host accesses initiate  
a DMA read or write access. Figure 38 shows a block diagram of the HPI16 in nonmultiplexed mode.  
HOST  
HPI16  
PPD[15:0]  
DATA[15:0]  
HPID[15:0]  
HINT  
DMA  
Address[17:0]  
HCNTL0  
V
CC  
HCNTL1  
HBIL  
HAS  
R/W  
HR/W  
54xx  
CPU  
Data Strobes  
HDS1, HDS2, HCS  
HRDY  
READY  
Figure 38. Host-Port Interface Nonmultiplexed Mode  
20  
SGUS035A  
April 2003 Revised July 2003  
Functional Overview  
Address (Hex)  
000 0000  
Reserved  
000 005F  
000 0060  
Scratch-Pad  
RAM  
000 007F  
000 0080  
DARAM0 –  
DARAM3  
000 7FFF  
000 8000  
Reserved  
001 7FFF  
001 8000  
DARAM4 –  
DARAM7  
001 FFFF  
002 0000  
Reserved  
002 7FFF  
002 8000  
SARAM0 –  
SARAM3  
002 FFFF  
003 0000  
Reserved  
003 7FFF  
003 8000  
SARAM4 –  
SARAM7  
003 FFFF  
004 0000  
Reserved  
07F FFFF  
Figure 39. HPI Memory Map  
21  
April 2003 Revised July 2003  
SGUS035A  
Functional Overview  
3.8 Multichannel Buffered Serial Ports (McBSPs)  
The 5416 device provides three high-speed, full-duplex, multichannel buffered serial ports that allow direct  
interface to other C54x/LC54x devices, codecs, and other devices in a system. The McBSPs are based on  
the standard serial-port interface found on other 54x devices. Like their predecessors, the McBSPs provide:  
Full-duplex communication  
Double-buffer data registers, which allow a continuous data stream  
Independent framing and clocking for receive and transmit  
In addition, the McBSPs have the following capabilities:  
Direct interface to:  
T1/E1 framers  
MVIP switching compatible and ST-BUS compliant devices  
IOM-2 compliant devices  
AC97-compliant devices  
IIS-compliant devices  
Serial peripheral interface  
Multichannel transmit and receive of up to 128 channels  
A wide selection of data sizes, including 8, 12, 16, 20, 24, or 32 bits  
µ-law and A-law companding  
Programmable polarity for both frame synchronization and data clocks  
Programmable internal clock and frame generation  
The McBSP consists of a data path and control path. The six pins, BDX, BDR, BFSX, BFSR, BCLKX, and  
BCLKR, connect the control and data paths to external devices. The implemented pins can be programmed  
as general-purpose I/O pins if they are not used for serial communication.  
The data is communicated to devices interfacing to the McBSP by way of the data transmit (BDX) pin for  
transmit and the data receive (BDR) pin for receive. The CPU or DMA reads the received data from the data  
receive register (DRR) and writes the data to be transmitted to the data transmit register (DXR). Data written  
to the DXR is shifted out to BDX by way of the transmit shift register (XSR). Similarly, receive data on the BDR  
pin is shifted into the receive shift register (RSR) and copied into the receive buffer register (RBR). RBR is then  
copied to DRR, which can be read by the CPU or DMA. This allows internal data movement and external data  
communications simultaneously.  
Control information in the form of clocking and frame synchronization is communicated by way of BCLKX,  
BCLKR, BFSX, and BFSR. The device communicates to the McBSP by way of 16-bit-wide control registers  
accessible via the internal peripheral bus.  
The control block consists of internal clock generation, frame synchronization signal generation, and their  
control, and multichannel selection. This control block sends notification of important events to the CPU and  
DMA by way of two interrupt signals, XINT and RINT, and two event signals, XEVT and REVT.  
The on-chip companding hardware allows compression and expansion of data in either µ-law or A-law format.  
When companding is used, transmitted data is encoded according to the specified companding law and  
received data is decoded to 2s complement format.  
The sample rate generator provides the McBSP with several means of selecting clocking and framing for both  
the receiver and transmitter. Both the receiver and transmitter can select clocking and framing independently.  
The McBSP allows the multiple channels to be independently selected for the transmitter and receiver. When  
multiplechannelsareselected, eachframerepresentsatime-divisionmultiplexed(TDM)datastream. Inusing  
time-division multiplexed data streams, the CPU may only need to process a few of them. Thus, to save  
memory and bus bandwidth, multichannel selection allows independent enabling of particular channels for  
transmission and reception. All 128 channels in a bit stream consisting of a maximum of 128 channels can  
be enabled.  
22  
SGUS035A  
April 2003 Revised July 2003  
Functional Overview  
15  
15  
10  
10  
9
8
7
6
5
4
2
1
0
Reserved  
R
XMCME  
R/W  
XPBBLK  
R/W  
XPABLK  
R/W  
XCBLK  
R
XMCM  
R/W  
9
8
7
6
5
4
2
1
0
Reserved  
R
RMCME  
R/W  
RPBBLK  
R/W  
RPABLK  
R/W  
RCBLK  
R
Resvd RMCM  
R/W  
R
LEGEND: R = Read, W = Write  
Figure 310. Multichannel Control Registers (MCR1 and MCR2)  
The 5416 McBSP has two working modes:  
In the first mode, when (R/X)MCME = 0, it is comparable with the McBSPs used in the 5410 where the  
normal 32-channel selection is enabled (default).  
In the second mode, when (R/X)MCME = 1, it has 128-channel selection capability. Multichannel control  
register Bit 9, (R/X)MCME, is used as the 128-channel selection enable bit. Once (R/X)MCME = 1, twelve  
new registers ((R/X)CERC (R/X)CERH) are used to enable the 128-channel selection.  
The clock stop mode (CLKSTP) in the McBSP provides compatibility with the serial port interface protocol.  
Clock stop mode works with only single-phase frames and one word per frame. The word sizes supported by  
the McBSP are programmable for 8-, 12-, 16-, 20-, 24-, or 32-bit operation. When the McBSP is configured  
to operate in SPI mode, both the transmitter and the receiver operate together as a master or as a slave.  
Although the BCLKS pin is not available on the 5416 HFG package, the 5416 is capable of synchronization  
to external clock sources. BCLKX or BCLKR can be used by the sample rate generator for external  
synchronization. The sample rate clock mode extended (SCLKME) bit field is located in the PCR to  
accommodate this option.  
15  
14  
13  
XIOEN  
RW  
12  
RIOEN  
RW  
11  
10  
FSRM  
RW  
9
8
Reserved  
RW  
FSXM  
RW  
CLKXM  
RW  
CLKRM  
RW  
7
6
5
4
3
2
1
0
SCLKME  
RW  
CLKS STAT  
RW  
DX STAT  
RW  
DR STAT  
RW  
FSXP  
RW  
FSRP  
RW  
CLKXP  
RW  
CLKRP  
RW  
Legend: R = Read, W = Write  
Figure 311. Pin Control Register (PCR)  
The selection of sample rate input clock is made by the combination of the CLKSM (bit 13 in SRGR2) bit value  
and the SCLKME bit value as shown in Table 37.  
Table 37. Sample Rate Input Clock Selection  
SCLKME  
CLKSM  
SAMPLE RATE CLOCK MODE  
0
0
Reserved (CLKS pin unavailable)  
0
1
1
1
0
1
CPU clock  
BCLKR  
BCLKX  
23  
April 2003 Revised July 2003  
SGUS035A  
Functional Overview  
When the SCLKME bit is cleared to 0, the CLKSM bit is used, as before, to select either the CPU clock or the  
CLKS pin (not bonded out on the 5416 device package) as the sample rate input clock. Setting the SCLKME  
bit to 1 enables the CLKSM bit to select between the BCLKR pin or BCLKX pin for the sample rate input clock.  
When either the BCLKR or CLKX is configured this way, the output buffer for the selected pin is automatically  
disabled. For example, with SCLKME = 1 and CLKSM = 0, the BCLKR pin is configured as the input of the  
sample rate generator. Both the transmitter and receiver circuits can be synchronized to the sample rate  
generator output by setting the CLKXM and CLKRM bits of the pin configuration register (PCR) to 1. Note that  
the sample rate generator output will only be driven on the BCLKX pin since the BCLKR output buffer is  
automatically disabled.  
The McBSP is fully static and operates at arbitrary low clock frequencies. For maximum operating frequency,  
see Section 5.14.  
3.9 Hardware Timer  
The 5416 device features a 16-bit timing circuit with a 4-bit prescaler. The timer counter is decremented by  
one every CLKOUT cycle. Each time the counter decrements to 0, a timer interrupt is generated. The timer  
can be stopped, restarted, reset, or disabled by specific status bits.  
3.10 Clock Generator  
The clock generator provides clocks to the 5416 device, and consists of a phase-locked loop (PLL) circuit. The  
clock generator requires a reference clock input, which can be provided from an external clock source. The  
reference clock input is then divided by two (DIV mode) to generate clocks for the 5416 device, or the PLL  
circuit can be used (PLL mode) to generate the device clock by multiplying the reference clock frequency by  
a scale factor, allowing use of a clock source with a lower frequency than that of the CPU. The PLL is an  
adaptive circuit that, once synchronized, locks onto and tracks an input clock signal.  
When the PLL is initially started, it enters a transitional mode during which the PLL acquires lock with the input  
signal. Once the PLL is locked, it continues to track and maintain synchronization with the input signal. Then,  
other internal clock circuitry allows the synthesis of new clock frequencies for use as master clock for the 5416  
device.  
This clock generator allows system designers to select the clock source. The sources that drive the clock  
generator are:  
A crystal resonator circuit. The crystal resonator circuit is connected across the X1 and X2/CLKIN pins  
of the 5416 to enable the internal oscillator.  
An external clock. The external clock source is directly connected to the X2/CLKIN pin, and X1 is left  
unconnected.  
NOTE: The crystal oscillator function is not supported by all die revisions of the 5416 device.  
See the TMS320VC5416 Silicon Errata (literature number SPRZ172) to verify which die  
revisions support this functionality.  
The software-programmable PLL features a high level of flexibility, and includes a clock scaler that provides  
various clock multiplier ratios, capability to directly enable and disable the PLL, and a PLL lock timer that can  
be used to delay switching to PLL clocking mode of the device until lock is achieved. Devices that have a  
built-in software-programmable PLL can be configured in one of two clock modes:  
PLL mode. The input clock (X2/CLKIN) is multiplied by 1 of 31 possible ratios.  
DIV (divider) mode. The input clock is divided by 2 or 4. Note that when DIV mode is used, the PLL can  
be completely disabled in order to minimize power dissipation.  
The software-programmable PLL is controlled using the 16-bit memory-mapped (address 0058h) clock mode  
register (CLKMD). The CLKMD register is used to define the clock configuration of the PLL clock module. Note  
that upon reset, the CLKMD register is initialized with a predetermined value dependent only upon the state  
of the CLKMD1 CLKMD3 pins. For more programming information, see the TMS320C54x DSP Reference  
Set, Volume 1: CPU and Peripherals (literature number SPRU131). The CLKMD pin configured clock options  
are shown in Table 38.  
24  
SGUS035A  
April 2003 Revised July 2003  
Functional Overview  
Table 38. Clock Mode Settings at Reset  
CLKMD RESET  
CLOCK MODE  
CLKMD1  
CLKMD2  
CLKMD3  
VALUE  
0000h  
9007h  
4007h  
1007h  
F007h  
0000h  
F000h  
0
0
0
1
1
1
1
0
0
0
1
0
1
1
0
1
0
1
0
0
0
1
1
1
1/2 (PLL disabled)  
PLL x 10  
PLL x 5  
PLL x 2  
PLL x 1  
1/2 (PLL disabled)  
1/4 (PLL disabled)  
Reserved (Bypass mode)  
The external CLKMD1CLKMD3 pins are sampled to determine the desired clock generation mode  
whileRSislow. Followingreset, theclockgenerationmodecanbereconfiguredbywritingtotheinternal  
clock mode register in software.  
3.11 Enhanced External Parallel Interface (XIO2)  
The 5416 external interface has been redesigned to include several improvements, including: simplification  
of the bus sequence, more immunity to bus contention when transitioning between read and write operations,  
the ability for external memory access to the DMA controller, and optimization of the power-down modes.  
The bus sequence on the 5416 still maintains all of the same interface signals as on previous 54x devices,  
but the signal sequence has been simplified. Most external accesses now require 3 cycles composed of a  
leading cycle, an active (read or write) cycle, and a trailing cycle. The leading and trailing cycles provide  
additional immunity against bus contention when switching between read operations and write operations. To  
maintain high-speed read access, a consecutive read mode that performs single-cycle reads as on previous  
54x devices is available.  
25  
April 2003 Revised July 2003  
SGUS035A  
Functional Overview  
Figure 312 shows the bus sequence for three cases: all I/O reads, memory reads in nonconsecutive mode,  
or single memory reads in consecutive mode. The accesses shown in Figure 312 always require 3 CLKOUT  
cycles to complete.  
CLKOUT  
A[22:0]  
D[15:0]  
R/W  
READ  
MSTRB or IOSTRB  
PS/DS/IS  
Leading  
Cycle  
Read  
Cycle  
Trailing  
Cycle  
Figure 312. Nonconsecutive Memory Read and I/O Read Bus Sequence  
26  
SGUS035A  
April 2003 Revised July 2003  
Functional Overview  
Figure 313 shows the bus sequence for repeated memory reads in consecutive mode. The accesses shown  
in Figure 313 require (2 + n) CLKOUT cycles to complete, where n is the number of consecutive reads  
performed.  
CLKOUT  
A[22:0]  
D[15:0]  
R/W  
READ  
READ  
READ  
MSTRB  
PS/DS  
Leading  
Cycle  
Read  
Cycle  
Read  
Cycle  
Read  
Cycle  
Trailing  
Cycle  
Figure 313. Consecutive Memory Read Bus Sequence (n = 3 reads)  
27  
April 2003 Revised July 2003  
SGUS035A  
Functional Overview  
Figure 314 shows the bus sequence for all memory writes and I/O writes. The accesses shown in  
Figure 314 always require 3 CLKOUT cycles to complete.  
CLKOUT  
A[22:0]  
D[15:0]  
R/W  
WRITE  
MSTRB or IOSTRB  
PS/DS/IS  
Leading  
Cycle  
Write  
Cycle  
Trailing  
Cycle  
Figure 314. Memory Write and I/O Write Bus Sequence  
The enhanced interface also provides the ability for DMA transfers to extend to external memory. For more  
information on DMA capability, see the DMA sections that follow.  
The enhanced interface improves the low-power performance already present on the TMS320C5000 DSP  
platformbyswitchingofftheinternalclockstotheinterfacewhenitisnotbeingused. Thispower-savingfeature  
is automatic, requires no software setup, and causes no latency in the operation of the interface.  
Additional features integrated in the enhanced interface are the ability to automatically insert bank-switching  
cycles when crossing 32K memory boundaries (see Section 3.6.2), the ability to program up to 14 wait states  
through software (see Section 3.6.1), and the ability to divide down CLKOUT by a factor of 1, 2, 3, or 4. Dividing  
down CLKOUT provides an alternative to wait states when interfacing to slower external memory or peripheral  
devices. While inserting wait states extends the bus sequence during read or write accesses, it does not slow  
down the bus signal sequences at the beginning and the end of the access. Dividing down CLKOUT provides  
a method of slowing the entire bus sequence when necessary. The CLKOUT divide-down factor is controlled  
through the DIVFCT field in the bank-switching control register (BSCR) (see Table 35).  
3.12 DMA Controller  
The 5416 direct memory access (DMA) controller transfers data between points in the memory map without  
intervention by the CPU. The DMA allows movements of data to and from internal program/data memory,  
internal peripherals (such as the McBSPs), or external memory devices to occur in the background of CPU  
operation. The DMA has six independent programmable channels, allowing six different contexts for DMA  
operation.  
TMS320C5000 is a trademark of Texas Instruments.  
28  
SGUS035A  
April 2003 Revised July 2003  
Functional Overview  
3.12.1 Features  
The DMA has the following features:  
The DMA operates independently of the CPU.  
The DMA has six channels. The DMA can keep track of the contexts of six independent block transfers.  
The DMA has higher priority than the CPU for both internal and external accesses.  
Each channel has independently programmable priorities.  
Each channels source and destination address registers can have configurable indexes through memory  
on each read and write transfer, respectively. The address may remain constant, be post-incremented,  
be post-decremented, or be adjusted by a programmable value.  
Each read or write internal transfer may be initialized by selected events.  
On completion of a half- or entire-block transfer, each DMA channel may send an interrupt to the CPU.  
The DMA can perform double-word internal transfers (a 32-bit transfer of two 16-bit words).  
3.12.2 DMA External Access  
The 5416 DMA supports external accesses to data, I/O, and extended program memory. These overlay pages  
are only visible to the DMA controller. A maximum of two DMA channels can be used for external memory  
accesses. The DMA external accesses require a minimum of 8 cycles for external writes and a minimum of  
11 cycles for external reads assuming the XIO02 is in consecutive mode (CONSEC = 1), wait state is set to  
two, and CLKOUT is not divided (DIVFCT = 00).  
The control of the bus is arbitrated between the CPU and the DMA. While the DMA or CPU is in control of the  
external bus, the other will be held-off via wait states until the current transfer is complete. The DMA takes  
precedence over XIO requests.  
Only two channels are available for external accesses. (One for external reads and one for external  
writes.)  
Single-word (16-bit) transfers are supported for external accesses.  
The DMA does not support transfers from the peripherals to external memory.  
The DMA does not support transfers from external memory to the peripherals.  
The DMA does not support external-to-external accesses.  
The DMA does not support synchronized external accesses.  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
CT  
AUTO  
INIT  
DINM IMOD  
SLAXS  
SIND  
DMS  
DLAXS  
DIND  
DMD  
MOD  
Figure 315. DMA Transfer Mode Control Register (DMMCRn)  
These new bit fields were created to allow the user to define the space-select for the DMA (internal/external).  
The functions of the DLAXS and SLAXS bits are as follows:  
DLAXS(DMMCRn[5]) Destination  
SLAXS(DMMCRn[11]) Source  
0 = No external access (default internal)  
1 = External access  
0 = No external access (default internal)  
1 = External access  
29  
April 2003 Revised July 2003  
SGUS035A  
Functional Overview  
Table 39 lists the DMD bit values and their corresponding destination space.  
Table 39. DMD Section of the DMMCRn Register  
DMD  
DESTINATION SPACE  
00  
PS  
DS  
01  
10  
I/O  
11  
Reserved  
For the CPU external access, software can configure the memory cells to reside inside or outside the program  
address map. When the cells are mapped into program space, the device automatically accesses them when  
their addresses are within bounds. When the address generation logic generates an address outside its  
bounds, the device automatically generates an external access.  
3.12.3 DMA Memory Map  
The DMA memory map, shown in Figure 316, allows the DMA transfer to be unaffected by the status of the  
MP/MC, DROM, and OVLY bits.  
Program  
Program  
Program  
Program  
Reserved  
Hex  
0x0000  
Hex  
010000  
Hex  
xx0000  
Hex  
0000  
005F  
0060  
On-Chip  
DARAM0  
8K Words  
DLAXS = 0  
SLAXS = 0  
1FFF  
2000  
On-Chip  
DARAM1  
8K Words  
3FFF  
4000  
Reserved  
Reserved  
On-Chip  
DARAM2  
8K Words  
5FFF  
6000  
On-Chip  
DARAM3  
8K Words  
0x7FFF  
0x8000  
017FFF  
018000  
7FFF  
8000  
Reserved  
On-Chip  
DARAM 4  
8K Words  
On-Chip  
SARAM 0/4  
8K Words  
019FFF  
01A000  
0x9FFF  
0xA000  
On-Chip  
DARAM 5  
8K Words  
On-Chip  
SARAM 1/5  
8K Words  
01BFFF  
01C000  
0xBFFF  
0xC000  
On-Chip  
DARAM 6  
8K Words  
On-Chip  
SARAM 2/6  
8K Words  
Reserved  
01DFFF  
01E000  
0xDFFF  
0xE000  
On-Chip  
DARAM 7  
8K Words  
On-Chip  
SARAM 3/7  
8K Words  
xxFFFF  
01FFFF  
FFFF  
0xFFFF  
Page 1  
Page 2 3  
Page 0  
Page 4 127  
Figure 316. On-Chip DMA Memory Map for Program Space (DLAXS = 0 and SLAXS = 0)  
30  
SGUS035A  
April 2003 Revised July 2003  
Functional Overview  
Data Space (0000 005F)  
Hex  
Data Space  
I/O Space  
Hex  
0000  
0000  
001F  
0020  
0021  
0022  
0000  
Reserved  
Data Space  
(See Breakout)  
DRR20  
DRR10  
DXR20  
005F  
0060  
0023  
0024  
002F  
0030  
0031  
0032  
0033  
DXR10  
Scratch-Pad  
RAM  
Reserved  
DRR22  
DRR12  
DXR22  
DXR12  
007F  
0080  
On-Chip  
DARAM0  
8K Words  
1FFF  
2000  
On-Chip  
DARAM1  
8K Words  
0034  
0035  
0036  
0037  
Reserved  
RCERA2  
XCERA2  
3FFF  
4000  
On-Chip  
DARAM2  
8K Words  
0038  
0039  
Reserved  
Reserved  
5FFF  
6000  
003A  
RECRA0  
XECRA0  
On-Chip  
DARAM3  
8K Words  
003B  
003C  
003F  
0040  
0041  
Reserved  
DRR21  
7FFF  
8000  
On-Chip  
DARAM4  
8K Words  
DRR11  
DXR21  
DXR11  
0042  
0043  
9FFF  
A000  
On-Chip  
DARAM5  
8K Words  
0044  
0049  
004A  
Reserved  
RCERA1  
BFFF  
C000  
On-Chip  
DARAM6  
8K Words  
004B  
XCERA1  
004C  
005F  
Reserved  
DFFF  
E000  
On-Chip  
DARAM7  
8K Words  
FFFF  
FFFF  
Figure 317. On-Chip DMA Memory Map for Data and IO Space (DLAXS = 0 and SLAXS = 0)  
3.12.4 DMA Priority Level  
Each DMA channel can be independently assigned high- or low-priority relative to each other. Multiple DMA  
channels that are assigned to the same priority level are handled in a round-robin manner.  
3.12.5 DMA Source/Destination Address Modification  
The DMA provides flexible address-indexing modes for easy implementation of data management schemes  
such as autobuffering and circular buffers. Source and destination addresses can be indexed separately and  
can be post-incremented, post-decremented, or post-incremented with a specified index offset.  
3.12.6 DMA in Autoinitialization Mode  
The DMA can automatically reinitialize itself after completion of a block transfer. Some of the DMA registers  
can be preloaded for the next block transfer through the DMA reload registers (DMGSA, DMGDA, DMGCR,  
and DMGFR). Autoinitialization allows:  
Continuous operation: Normally, the CPU would have to reinitialize the DMA immediately after the  
completion of the current block transfers, but with the reload registers, it can reinitialize these values for  
the next block transfer any time after the current block transfer begins.  
Repetitiveoperation:TheCPUdoesnotpreloadthereloadregisterwithnewvaluesforeachblocktransfer  
but only loads them on the first block transfer.  
31  
April 2003 Revised July 2003  
SGUS035A  
Functional Overview  
The 5416 DMA has been enhanced to expand the DMA reload register sets. Each DMA channel now has its  
ownDMAreloadregisterset. Forexample, theDMAreloadregistersetforchannel0hasDMGSA0, DMGDA0,  
DMGCR0, and DMGFR0 while DMA channel 1 has DMGSA1, DMGDA1, DMGCR1, and DMGFR1, etc.  
To utilize the additional DMA reload registers, the AUTOIX bit is added to the DMPREC register as shown in  
Figure 318.  
15  
14  
13  
8
7
6
5
0
FREE AUTOIX  
DPRC[5:0]  
IOSEL  
DE[5:0]  
Figure 318. DMPREC Register  
Table 310. DMA Reload Register Selection  
AUTOIX  
0 (default)  
1
DMA RELOAD REGISTER USAGE IN AUTO INIT MODE  
All DMA channels use DMGSA0, DMGDA0, DMGCR0 and DMGFR0  
Each DMA channel uses its own set of reload registers  
3.12.7 DMA Transfer Counting  
The DMA channel element count register (DMCTRx) and the frame count register (DMFRCx) contain bit fields  
that represent the number of frames and the number of elements per frame to be transferred.  
Frame count. This 8-bit value defines the total number of frames in the block transfer. The maximum  
number of frames per block transfer is 128 (FRAME COUNT= 0FFh). The counter is decremented upon  
the last read transfer in a frame transfer. Once the last frame is transferred, the selected 8-bit counter is  
reloaded with the DMA global frame reload register (DMGFR) if the AUTOINIT bit is set to 1. A frame count  
of 0 (default value) means the block transfer contains a single frame.  
Element count. This 16-bit value defines the number of elements per frame. This counter is decremented  
after the read transfer of each element. The maximum number of elements per frame is 65536  
(DMCTRn=0FFFFh). Inautoinitializationmode, oncethelastframeistransferred, thecounterisreloaded  
with the DMA global count reload register (DMGCR).  
3.12.8 DMA Transfer in Doubleword Mode  
Doubleword mode allows the DMA to transfer 32-bit words in any index mode. In doubleword mode, two  
consecutive 16-bit transfers are initiated and the source and destination addresses are automatically updated  
following each transfer. In this mode, each 32-bit word is considered to be one element.  
3.12.9 DMA Channel Index Registers  
The particular DMA channel index register is selected by way of the SIND and DIND fields in the DMA transfer  
mode control register (DMMCRn). Unlike basic address adjustment, in conjunction with the frame index  
DMFRI0andDMFRI1, theDMAallowsdifferentadjustmentamountsdependingonwhetherornottheelement  
transfer is the last in the current frame. The normal adjustment value (element index) is contained in the  
element index registers DMIDX0 and DMIDX1. The adjustment value (frame index) for the end of the frame,  
is determined by the selected DMA frame index register, either DMFRI0 or DMFRI1.  
The element index and the frame index affect address adjustment as follows:  
Element index: For all except the last transfer in the frame, the element index determines the amount to  
be added to the DMA channel for the source/destination address register (DMSRCx/DMDSTx) as  
selected by the SIND/DIND bits.  
Frame index: If the transfer is the last in a frame, frame index is used for address adjustment as selected  
by the SIND/DIND bits. This occurs in both single-frame and multiframe transfers.  
32  
SGUS035A  
April 2003 Revised July 2003  
Functional Overview  
3.12.10 DMA Interrupts  
The ability of the DMA to interrupt the CPU based on the status of the data transfer is configurable and is  
determined by the IMOD and DINM bits in the DMA transfer mode control register (DMMCRn). The available  
modes are shown in Table 311.  
Table 311. DMA Interrupts  
MODE  
ABU (non-decrement)  
ABU (non-decrement)  
Multiframe  
DINM  
IMOD  
INTERRUPT  
1
1
1
1
0
0
0
1
0
1
X
X
At full buffer only  
At half buffer and full buffer  
At block transfer complete (DMCTRn = DMSEFCn[7:0] = 0)  
At end of frame and end of block (DMCTRn = 0)  
No interrupt generated  
Multiframe  
Either  
Either  
No interrupt generated  
3.12.11 DMA Controller Synchronization Events  
The transfers associated with each DMA channel can be synchronized to one of several events. The DSYN  
bit field of the DMSEFCn register selects the synchronization event for a channel. The list of possible events  
and the DSYN values are shown in Table 312.  
Table 312. DMA Synchronization Events  
DSYN VALUE  
0000b  
0001b  
0010b  
0011b  
0100b  
0101b  
0110b  
0111b  
DMA SYNCHRONIZATION EVENT  
No synchronization used  
McBSP0 receive event  
McBSP0 transmit event  
McBSP2 receive event  
McBSP2 transmit event  
McBSP1 receive event  
McBSP1 transmit event  
McBSP0 receive event ABIS mode  
McBSP0 transmit event ABIS mode  
McBSP2 receive event ABIS mode  
McBSP2 transmit event ABIS mode  
McBSP1 receive event ABIS mode  
McBSP1 transmit event ABIS mode  
Timer interrupt event  
1000b  
1001b  
1010b  
1011b  
1100b  
1101b  
1110b  
INT3 goes active  
1111b  
Reserved  
The DMA controller can generate a CPU interrupt for each of the six channels. However, due to a limit on the  
number of internal CPU interrupt inputs, channels 0, 1, 2, and 3 are multiplexed with other interrupt sources.  
DMA channels 0, 1, 2, and 3 share an interrupt line with the receive and transmit portions of the McBSP. When  
the 5416 is reset, the interrupts from these three DMA channels are deselected. The INTSEL bit field in the  
DMPREC register can be used to select these interrupts, as shown in Table 313.  
Table 313. DMA Channel Interrupt Selection  
INTSEL Value  
00b (reset)  
01b  
IMR/IFR[6]  
BRINT2  
BRINT2  
DMAC0  
IMR/IFR[7]  
BXINT2  
IMR/IFR[10]  
BRINT1  
IMR/IFR[11]  
BXINT1  
BXINT2  
DMAC2  
DMAC3  
10b  
DMAC1  
DMAC2  
DMAC3  
11b  
Reserved  
33  
April 2003 Revised July 2003  
SGUS035A  
Functional Overview  
3.13 General-Purpose I/O Pins  
In addition to the standard BIO and XF pins, the 5416 has pins that can be configured for general-purpose  
I/O. These pins are:  
18 McBSP pins BCLKX0/1/2, BCLKR0/1/2, BDR0/1/2, BFSX0/1/2, BFSR0/1/2, BDX0/1/2  
8 HPI data pinsHD0HD7  
The general-purpose I/O function of these pins is only available when the primary pin function is not required.  
3.13.1 McBSP Pins as General-Purpose I/O  
When the receive or transmit portion of a McBSP is in reset, its pins can be configured as general-purpose  
inputs or outputs. For more details on this feature, see Section 3.8.  
3.13.2 HPI Data Pins as General-Purpose I/O  
The 8-bit bidirectional data bus of the HPI can be used as general-purpose input/output (GPIO) pins when the  
HPI is disabled (HPIENA = 0) or when the HPI is used in HPI16 mode (HPI16 = 1). Two memory-mapped  
registers are used to control the GPIO function of the HPI data pinsthe general-purpose I/O control register  
(GPIOCR) and the general-purpose I/O status register (GPIOSR). The GPIOCR is shown in Figure 319.  
15  
8
7
6
5
4
3
2
1
0
DIR2  
Reserved  
0
DIR7  
R/W-0  
DIR6  
R/W-0  
DIR5  
R/W-0  
DIR4  
R/W-0  
DIR3  
R/W-0  
DIR1  
R/W-0  
DIR0  
R/W-0  
R/W-0  
Figure 319. General-Purpose I/O Control Register (GPIOCR) [MMR Address 003Ch]  
The direction bits (DIRx) are used to configure HD0HD7 as inputs or outputs.  
The status of the GPIO pins can be monitored using the bits of the GPIOSR. The GPIOSR is shown in  
Figure 320.  
15  
8
7
6
5
4
3
2
1
0
Reserved  
IO7  
IO6  
IO5  
IO4  
IO3  
IO2  
IO1  
IO0  
0
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
Figure 320. General-Purpose I/O Status Register (GPIOSR) [MMR Address 003Dh]  
34  
SGUS035A  
April 2003 Revised July 2003  
Functional Overview  
3.14 Device ID Register  
Aread-onlymemory-mappedregisterhasbeenaddedtothe5416toallowuserapplicationsoftwaretoidentify  
on which device the program is being executed.  
158  
Chip ID  
R
7
4
3
0
Chip Revision  
R
SUBSYSID  
R
Bits 15:8: Chip_ID (hex code of 16)  
Bits 7:4: Chip_Revision ID  
Bits 3:0: Subsystem_ID (0000b for single core device)  
Figure 321. Device ID Register (CSIDR) [MMR Address 003Eh]  
3.15 Memory-Mapped Registers  
The 5416 has 27 memory-mapped CPU registers, which are mapped in data memory space address 0h to  
1Fh. Each 5416 device also has a set of memory-mapped registers associated with peripherals. Table 314  
gives a list of CPU memory-mapped registers (MMRs) available on 5416. Table 315 shows additional  
peripheral MMRs associated with the 5416.  
Table 314. CPU Memory-Mapped Registers  
ADDRESS  
NAME  
DESCRIPTION  
DEC  
0
HEX  
0
IMR  
IFR  
Interrupt mask register  
Interrupt flag register  
Reserved for testing  
Status register 0  
1
1
25  
6
25  
6
ST0  
ST1  
AL  
7
7
Status register 1  
8
8
Accumulator A low word (150)  
AH  
9
9
Accumulator A high word (3116)  
Accumulator A guard bits (3932)  
Accumulator B low word (150)  
Accumulator B high word (3116)  
Accumulator B guard bits (3932)  
Temporary register  
AG  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
A
BL  
B
BH  
C
BG  
D
TREG  
TRN  
AR0  
AR1  
AR2  
AR3  
AR4  
AR5  
AR6  
AR7  
SP  
E
F
Transition register  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
1A  
1B  
Auxiliary register 0  
Auxiliary register 1  
Auxiliary register 2  
Auxiliary register 3  
Auxiliary register 4  
Auxiliary register 5  
Auxiliary register 6  
Auxiliary register 7  
Stack pointer register  
BK  
Circular buffer size register  
Block repeat counter  
BRC  
RSA  
Block repeat start address  
35  
April 2003 Revised July 2003  
SGUS035A  
Functional Overview  
Table 314. CPU Memory-Mapped Registers (Continued)  
ADDRESS  
NAME  
DESCRIPTION  
DEC  
28  
HEX  
REA  
PMST  
XPC  
1C  
1D  
1E  
1F  
Block repeat end address  
Processor mode status (PMST) register  
Extended program page register  
Reserved  
29  
30  
31  
36  
SGUS035A  
April 2003 Revised July 2003  
Functional Overview  
Table 315. Peripheral Memory-Mapped Registers for Each DSP Subsystem  
ADDRESS  
NAME  
DRR20  
DESCRIPTION  
DEC  
HEX  
32  
33  
20  
McBSP 0 Data Receive Register 2  
McBSP 0 Data Receive Register 1  
McBSP 0 Data Transmit Register 2  
McBSP 0 Data Transmit Register 1  
Timer Register  
DRR10  
DXR20  
DXR10  
TIM  
21  
34  
22  
35  
23  
36  
24  
PRD  
37  
25  
Timer Period Register  
TCR  
38  
26  
Timer Control Register  
39  
27  
Reserved  
SWWSR  
BSCR  
40  
28  
Software Wait-State Register  
Bank-Switching Control Register  
Reserved  
41  
29  
42  
2A  
SWCR  
HPIC  
43  
2B  
Software Wait-State Control Register  
44  
2C  
HPI Control Register (HMODE = 0 only)  
Reserved  
4547  
48  
2D2F  
30  
DRR22  
DRR12  
DXR22  
DXR12  
SPSA2  
SPSD2  
McBSP 2 Data Receive Register 2  
McBSP 2 Data Receive Register 1  
McBSP 2 Data Transmit Register 2  
McBSP 2 Data Transmit Register 1  
49  
31  
50  
32  
51  
33  
52  
34  
McBSP 2 Subbank Address Register  
53  
35  
McBSP 2 Subbank Data Register  
Reserved  
5455  
56  
3637  
38  
SPSA0  
SPSD0  
McBSP 0 Subbank Address Register  
57  
39  
McBSP 0 Subbank Data Register  
Reserved  
5859  
60  
3A3B  
3C  
GPIOCR  
GPIOSR  
CSIDR  
General-Purpose I/O Control Register  
General-Purpose I/O Status Register  
Device ID Register  
61  
3D  
62  
3E  
63  
3F  
Reserved  
DRR21  
DRR11  
DXR21  
DXR11  
64  
40  
McBSP 1 Data Receive Register 2  
McBSP 1 Data Receive Register 1  
McBSP 1 Data Transmit Register 2  
McBSP 1 Data Transmit Register 1  
Reserved  
65  
41  
66  
42  
67  
43  
6871  
72  
4447  
48  
McBSP 1 Subbank Address Register  
SPSA1  
SPSD1  
73  
49  
McBSP 1 Subbank Data Register  
Reserved  
7483  
84  
4A53  
54  
DMPREC  
DMSA  
DMSDI  
DMSDN  
CLKMD  
DMA Priority and Enable Control Register  
85  
55  
DMA Subbank Address Register  
86  
56  
DMA Subbank Data Register with Autoincrement  
DMA Subbank Data Register  
87  
57  
88  
58  
Clock Mode Register (CLKMD)  
Reserved  
8995  
595F  
See Table 316 for a detailed description of the McBSP control registers and their subaddresses.  
See Table 317 for a detailed description of the DMA subbank addressed registers.  
37  
April 2003 Revised July 2003  
SGUS035A  
Functional Overview  
3.16 McBSP Control Registers and Subaddresses  
The control registers for the multichannel buffered serial port (McBSP) are accessed using the subbank  
addressing scheme. This allows a set or subbank of registers to be accessed through a single memory  
location. TheMcBSPsubbankaddressregister(SPSA)isusedasapointertoselectaparticularregisterwithin  
the subbank. The McBSP data register (SPSDx) is used to access (read or write) the selected register.  
Table 316 shows the McBSP control registers and their corresponding subaddresses.  
Table 316. McBSP Control Registers and Subaddresses  
McBSP0  
McBSP1  
McBSP2  
SUB-  
ADDRESS  
DESCRIPTION  
NAME  
ADDRESS  
39h  
NAME  
ADDRESS  
49h  
NAME  
ADDRESS  
35h  
SPCR10  
SPCR20  
RCR10  
SPCR11  
SPCR21  
RCR11  
SPCR12  
SPCR22  
RCR12  
00h  
01h  
02h  
03h  
04h  
05h  
06h  
07h  
08h  
09h  
0Ah  
0Bh  
0Ch  
0Dh  
0Eh  
Serial port control register 1  
39h  
49h  
35h  
Serial port control register 2  
39h  
49h  
35h  
Receive control register 1  
RCR20  
39h  
RCR21  
49h  
RCR22  
35h  
Receive control register 2  
XCR10  
39h  
XCR11  
49h  
XCR12  
35h  
Transmit control register 1  
XCR20  
39h  
XCR21  
49h  
XCR22  
35h  
Transmit control register 2  
SRGR10  
SRGR20  
MCR10  
MCR20  
RCERA0  
RCERB0  
XCERA0  
XCERB0  
PCR0  
39h  
SRGR11  
SRGR21  
MCR11  
MCR21  
RCERA1  
RCERB1  
XCERA1  
XCERB1  
PCR1  
49h  
SRGR12  
SRGR22  
MCR12  
MCR22  
RCERA2  
RCERA2  
XCERA2  
XCERA2  
PCR2  
35h  
Sample rate generator register 1  
Sample rate generator register 2  
Multichannel register 1  
39h  
49h  
35h  
39h  
49h  
35h  
39h  
49h  
35h  
Multichannel register 2  
39h  
49h  
35h  
Receive channel enable register partition A  
Receive channel enable register partition B  
Transmit channel enable register partition A  
Transmit channel enable register partition B  
Pin control register  
39h  
49h  
35h  
39h  
49h  
35h  
39h  
49h  
35h  
39h  
49h  
35h  
Additional channel enable register for  
128-channel selection  
RCERC0  
RCERD0  
XCERC0  
XCERD0  
RCERE0  
RCERF0  
XCERE0  
XCERF0  
RCERG0  
RCERH0  
XCERG0  
XCERH0  
39h  
39h  
39h  
39h  
39h  
39h  
39h  
39h  
39h  
39h  
39h  
39h  
RCERC1  
RCERD1  
XCERC1  
XCERD1  
RCERE1  
RCERF1  
XCERE1  
XCERF1  
RCERG1  
RCERH1  
XCERG1  
XCERH1  
49h  
49h  
49h  
49h  
49h  
49h  
49h  
49h  
49h  
49h  
49h  
49h  
RCERC2  
RCERD2  
XCERC2  
XCERD2  
RCERE2  
RCERF2  
XCERE2  
XCERF2  
RCERG2  
RCERH2  
XCERG2  
XCERH2  
35h  
35h  
35h  
35h  
35h  
35h  
35h  
35h  
35h  
35h  
35h  
35h  
010h  
011h  
012h  
013h  
014h  
015h  
016h  
017h  
018h  
019h  
01Ah  
01Bh  
Additional channel enable register for  
128-channel selection  
Additional channel enable register for  
128-channel selection  
Additional channel enable register for  
128-channel selection  
Additional channel enable register for  
128-channel selection  
Additional channel enable register for  
128-channel selection  
Additional channel enable register for  
128-channel selection  
Additional channel enable register for  
128-channel selection  
Additional channel enable register for  
128-channel selection  
Additional channel enable register for  
128-channel selection  
Additional channel enable register for  
128-channel selection  
Additional channel enable register for  
128-channel selection  
38  
SGUS035A  
April 2003 Revised July 2003  
Functional Overview  
3.17 DMA Subbank Addressed Registers  
The direct memory access (DMA) controller has several control registers associated with it. The main control  
register (DMPREC) is a standard memory-mapped register. However, the other registers are accessed using  
the subbank addressing scheme. This allows a set or subbank of registers to be accessed through a single  
memory location. The DMA subbank address (DMSA) register is used as a pointer to select a particular  
register within the subbank, while the DMA subbank data (DMSD) register or the DMA subbank data register  
with autoincrement (DMSDI) is used to access (read or write) the selected register.  
When the DMSDI register is used to access the subbank, the subbank address is automatically  
postincrementedsothatasubsequentaccessaffectsthenextregisterwithinthesubbank. Thisautoincrement  
feature is intended for efficient, successive accesses to several control registers. If the autoincrement feature  
is not required, the DMSDN register should be used to access the subbank. Table 317 shows the DMA  
controller subbank addressed registers and their corresponding subaddresses.  
Table 317. DMA Subbank Addressed Registers  
SUB-  
NAME  
ADDRESS  
DESCRIPTION  
ADDRESS  
00h  
01h  
02h  
03h  
04h  
05h  
06h  
07h  
08h  
09h  
0Ah  
0Bh  
0Ch  
0Dh  
0Eh  
0Fh  
10h  
11h  
DMSRC0  
DMDST0  
DMCTR0  
DMSFC0  
DMMCR0  
DMSRC1  
DMDST1  
DMCTR1  
DMSFC1  
DMMCR1  
DMSRC2  
DMDST2  
DMCTR2  
DMSFC2  
DMMCR2  
DMSRC3  
DMDST3  
DMCTR3  
DMSFC3  
DMMCR3  
DMSRC4  
DMDST4  
DMCTR4  
DMSFC4  
DMMCR4  
DMSRC5  
DMDST5  
DMCTR5  
DMSFC5  
DMMCR5  
DMSRCP  
56h/57h  
56h/57h  
56h/57h  
56h/57h  
56h/57h  
56h/57h  
56h/57h  
56h/57h  
56h/57h  
56h/57h  
56h/57h  
56h/57h  
56h/57h  
56h/57h  
56h/57h  
56h/57h  
56h/57h  
56h/57h  
56h/57h  
56h/57h  
56h/57h  
56h/57h  
56h/57h  
56h/57h  
56h/57h  
56h/57h  
56h/57h  
56h/57h  
56h/57h  
56h/57h  
56h/57h  
DMA channel 0 source address register  
DMA channel 0 destination address register  
DMA channel 0 element count register  
DMA channel 0 sync select and frame count register  
DMA channel 0 transfer mode control register  
DMA channel 1 source address register  
DMA channel 1 destination address register  
DMA channel 1 element count register  
DMA channel 1 sync select and frame count register  
DMA channel 1 transfer mode control register  
DMA channel 2 source address register  
DMA channel 2 destination address register  
DMA channel 2 element count register  
DMA channel 2 sync select and frame count register  
DMA channel 2 transfer mode control register  
DMA channel 3 source address register  
DMA channel 3 destination address register  
DMA channel 3 element count register  
12h  
13h  
14h  
15h  
16h  
17h  
18h  
19h  
1Ah  
1Bh  
1Ch  
1Dh  
1Eh  
DMA channel 3 sync select and frame count register  
DMA channel 3 transfer mode control register  
DMA channel 4 source address register  
DMA channel 4 destination address register  
DMA channel 4 element count register  
DMA channel 4 sync select and frame count register  
DMA channel 4 transfer mode control register  
DMA channel 5 source address register  
DMA channel 5 destination address register  
DMA channel 5 element count register  
DMA channel 5 sync select and frame count register  
DMA channel 5 transfer mode control register  
DMA source program page address (common channel)  
39  
April 2003 Revised July 2003  
SGUS035A  
Functional Overview  
Table 317. DMA Subbank Addressed Registers (Continued)  
SUB-  
NAME  
ADDRESS  
DESCRIPTION  
ADDRESS  
DMDSTP  
DMIDX0  
56h/57h  
56h/57h  
56h/57h  
56h/57h  
56h/57h  
56h/57h  
56h/57h  
56h/57h  
56h/57h  
56h/57h  
56h/57h  
56h/57h  
56h/57h  
56h/57h  
56h/57h  
56h/57h  
56h/57h  
56h/57h  
56h/57h  
56h/57h  
56h/57h  
56h/57h  
56h/57h  
56h/57h  
56h/57h  
56h/57h  
56h/57h  
56h/57h  
56h/57h  
56h/57h  
56h/57h  
1Fh  
20h  
21h  
22h  
23h  
24h  
25h  
26h  
27h  
28h  
29h  
2Ah  
2Bh  
2Ch  
2Dh  
2Eh  
2Fh  
30h  
31h  
32h  
33h  
34h  
35h  
36h  
37h  
38h  
39h  
3Ah  
3Bh  
3Ch  
3Dh  
DMA destination program page address (common channel)  
DMA element index address register 0  
DMIDX1  
DMA element index address register 1  
DMFRI0  
DMA frame index register 0  
DMFRI1  
DMA frame index register 1  
DMGSA0  
DMGDA0  
DMGCR0  
DMGFR0  
XSRCDP  
XDSTDP  
DMGSA1  
DMGDA1  
DMGCR1  
DMGFR1  
DMGSA2  
DMGDA2  
DMGCR2  
DMGFR2  
DMGSA3  
DMGDA3  
DMGCR3  
DMGFR3  
DMGSA4  
DMGDA4  
DMGCR4  
DMGFR4  
DMGSA5  
DMGDA5  
DMGCR5  
DMGFR5  
DMA global source address reload register, channel 0  
DMA global destination address reload register, channel 0  
DMA global count reload register, channel 0  
DMA global frame count reload register, channel 0  
DMA extended source data page (currently not supported)  
DMA extended destination data page (currently not supported)  
DMA global source address reload register, channel 1  
DMA global destination address reload register, channel 1  
DMA global count reload register, channel 1  
DMA global frame count reload register, channel 1  
DMA global source address reload register, channel 2  
DMA global destination address reload register, channel 2  
DMA global count reload register, channel 2  
DMA global frame count reload register, channel 2  
DMA global source address reload register, channel 3  
DMA global destination address reload register, channel 3  
DMA global count reload register, channel 3  
DMA global frame count reload register, channel 3  
DMA global source address reload register, channel 4  
DMA global destination address reload register, channel 4  
DMA global count reload register, channel 4  
DMA global frame count reload register, channel 4  
DMA global source address reload register, channel 5  
DMA global destination address reload register, channel 5  
DMA global count reload register, channel 5  
DMA global frame count reload register, channel 5  
40  
SGUS035A  
April 2003 Revised July 2003  
Functional Overview  
3.18 Interrupts  
Vector-relative locations and priorities for all internal and external interrupts are shown in Table 318.  
Table 318. Interrupt Locations and Priorities  
LOCATION  
PRIORITY  
NAME  
FUNCTION  
DECIMAL  
0
HEX  
00  
RS, SINTR  
NMI, SINT16  
SINT17  
1
2
Reset (hardware and software reset)  
Nonmaskable interrupt  
4
04  
8
08  
3
Software interrupt #17  
SINT18  
12  
0C  
10  
Software interrupt #18  
SINT19  
16  
Software interrupt #19  
SINT20  
20  
14  
Software interrupt #20  
SINT21  
24  
18  
Software interrupt #21  
SINT22  
28  
1C  
20  
Software interrupt #22  
SINT23  
32  
Software interrupt #23  
SINT24  
36  
24  
Software interrupt #24  
SINT25  
40  
28  
Software interrupt #25  
SINT26  
44  
2C  
30  
Software interrupt #26  
SINT27  
48  
Software interrupt #27  
SINT28  
52  
34  
Software interrupt #28  
SINT29  
56  
38  
Software interrupt #29  
SINT30  
60  
3C  
40  
Software interrupt #30  
INT0, SINT0  
INT1, SINT1  
INT2, SINT2  
TINT, SINT3  
RINT0, SINT4  
XINT0, SINT5  
RINT2, SINT6  
XINT2, SINT7  
INT3, SINT8  
HINT, SINT9  
64  
External user interrupt #0  
External user interrupt #1  
External user interrupt #2  
Timer interrupt  
68  
44  
4
72  
48  
5
76  
4C  
50  
6
80  
7
McBSP #0 receive interrupt (default)  
McBSP #0 transmit interrupt (default)  
McBSP #2 receive interrupt (default)  
McBSP #2 transmit interrupt (default)  
External user interrupt #3  
HPI interrupt  
84  
54  
8
88  
58  
9
92  
5C  
60  
10  
11  
12  
13  
14  
15  
16  
96  
100  
104  
108  
112  
116  
120127  
64  
RINT1, SINT10  
XINT1, SINT11  
DMAC4,SINT12  
DMAC5,SINT13  
Reserved  
68  
McBSP #1 receive interrupt (default)  
McBSP #1 transmit interrupt (default)  
DMA channel 4 (default)  
DMA channel 5 (default)  
Reserved  
6C  
70  
74  
787F  
The bit layout of the interrupt flag register (IFR) and the interrupt mask register (IMR) is shown in Figure 322.  
1514  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Resvd DMAC5 DMAC4 XINT1 RINT1 HINT  
INT3  
XINT2 RINT2 XINT0 RINT0  
TINT  
INT2  
INT1  
INT0  
Figure 322. IFR and IMR  
41  
April 2003 Revised July 2003  
SGUS035A  
Documentation Support  
4
Documentation Support  
Extensive documentation supports all TMS320 DSP family of devices from product announcement through  
applications development. The following types of documentation are available to support the design and use  
of the C5000 platform of DSPs:  
TMS320C54x DSP Functional Overview (literature number SPRU307)  
Device-specific data sheets  
Complete users guides  
Development support tools  
Hardware and software application reports  
The five-volume TMS320C54x DSP Reference Set (literature number SPRU210) consists of:  
Volume 1: CPU and Peripherals (literature number SPRU131)  
Volume 2: Mnemonic Instruction Set (literature number SPRU172)  
Volume 3: Algebraic Instruction Set (literature number SPRU179)  
Volume 4: Applications Guide (literature number SPRU173)  
Volume 5: Enhanced Peripherals (literature number SPRU302)  
The reference set describes in detail the TMS320C54x DSP products currently available and the hardware  
and software applications, including algorithms, for fixed-point TMS320 DSP family of devices.  
A series of DSP textbooks is published by Prentice-Hall and John Wiley & Sons to support digital signal  
processing research and education. The TMS320 DSP newsletter, Details on Signal Processing, is  
published quarterly and distributed to update TMS320 DSP customers on product information.  
Information regarding TI DSP products is also available on the Worldwide Web at http://www.ti.com uniform  
resource locator (URL).  
TMS320 and C5000 are trademarks of Texas Instruments.  
42  
SGUS035A  
April 2003 Revised July 2003  
Electrical Specifications  
5
Electrical Specifications  
This section provides the absolute maximum ratings and the recommended operating conditions for the  
SMJ320VC5416 DSP.  
5.1 Absolute Maximum Ratings  
The list of absolute maximum ratings are specified over operating case temperature. Stresses beyond those  
listed under absolute maximum ratingsmay cause permanent damage to the device. These are stress  
ratings only, and functional operation of the device at these or any other conditions beyond those indicated  
under Section 5.2 is not implied. Exposure to absolute-maximum-rated conditions for extended periods may  
affect device reliability. All voltage values are with respect to DV . Figure 51 provides the test load circuit  
SS  
values for a 3.3-V device.  
Supply voltage I/O range, DV  
Supply voltage core range, CV  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.3 V to 4.0 V  
DD  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.3 V to 2.0 V  
DD  
Input voltage range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.3 V to 4.5 V  
Output voltage range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.3 V to 4.5 V  
Thermal resistance, Junction-to-Case, Θ  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.82°C/W  
JC  
Operating case temperature range, T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55°C to 115°C  
C
Storage temperature range, T  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55°C to 150°C  
stg  
5.2 Recommended Operating Conditions  
MIN  
2.75  
1.45  
NOM  
3.3  
MAX  
3.6  
UNIT  
V
DV  
CV  
Device supply voltage, I/O  
DD  
DD  
Device supply voltage, core (VC5416-100)  
1.5  
1.65  
V
DV  
CV  
,
SS  
SS  
Supply voltage, GND  
0
V
RS, INTn, NMI, X2/CLKIN,  
CLKMDn, BCLKRn, BCLKXn,  
HCS, HDS1, HDS2, HAS,  
TRST, BIO, Dn, An, HDn, TCK  
2.4  
2
DV  
DV  
+ 0.3*  
DD  
DD  
V
IH  
High-level input voltage, I/O  
V
DV  
= 2.75 V to 3.6 V  
DD  
All other inputs  
+ 0.3*  
X2/CLKIN  
0.3*  
0.3*  
0.42  
V
Low-level input voltage  
V
IL  
All other inputs  
0.8  
8  
8
I
I
High-level output current  
mA  
mA  
°C  
OH  
Low-level output current  
Operating case temperature  
* Not production tested.  
OL  
T
C
55  
115  
Note that maximum output currents are DC values only. Transient currents may exceed these values.  
43  
April 2003 Revised July 2003  
SGUS035A  
Electrical Specifications  
5.3 Electrical Characteristics Over Recommended Operating Case Temperature  
Range (Unless Otherwise Noted)  
TYP  
PARAMETER  
TEST CONDITIONS  
MIN  
MAX  
UNIT  
DV  
DV  
= 2.75 V to 3 V, I = MAX  
2.2  
DD  
DD  
OH  
= MAX  
V
V
High-level output voltage  
V
OH  
= 3 V to 3.6 V, I  
2.4  
OH  
Low-level output voltage  
I
= MAX  
0.4  
40  
V
OL  
OL  
X2/CLKIN  
40  
10  
µA  
TRST, HPI16  
HPIENA  
With internal pulldown  
800  
400  
10  
With internal pulldown, RS = 0  
With internal pullups  
10  
Input current  
(V = DV to DV  
§
I
I
TMS, TCK, TDI, HPI  
400  
)
µA  
I
SS DD  
A[17:0], D[15:0],  
HD[7:0]  
Bus holders enabled, DV  
DD  
= MAXk  
275  
5  
275  
5
All other input-only pins  
#
I
I
Supply current, core CPU  
Supply current, pins  
CV  
DV  
= 1.6 V, f = 100 ,  
T = 25°C  
C
60  
mA  
mA  
DDC  
DD  
DD  
x
||  
40  
= 3.0 V, f = 100 MHz,  
T = 25°C  
C
DDP  
x
IDLE2  
PLL × 1 mode, 20 MHz input  
2
1
Supply current,  
standby  
T
T
= 25°C  
I
mA  
C
DD  
IDLE3 Divide-by-two  
mode, CLKIN stopped  
= 115°C  
38  
C
C
C
Input capacitance  
Output capacitance  
15  
15  
pF  
pF  
i
o
All values are typical unless otherwise specified.  
All input and output voltage levels except RS, INT0INT3, NMI, X2/CLKIN, CLKMD1CLKMD3, BCLKRn, BCLKXn, HCS, HAS, HDS1, HDS2,  
BIO, TCK, TRST, Dn, An, HDn are LVTTL-compatible.  
§
#
HPI input signals except for HPIENA and HPI16, when HPIENA = 0.  
Clock mode: PLL × 1 with external source  
This value was obtained with 50% usage of MAC and 50% usage of NOP instructions. Actual operating current varies with program being  
executed.  
This value was obtained with single-cycle external writes, CLKOFF = 0 and load = 15 pF. For more details on how this calculation is performed,  
refer to the Calculation of TMS320LC54x Power Dissipation application report (literature number SPRA164).  
||  
kV  
V V  
or V  
V V  
IH(MAX)  
IL(MIN)  
I
IL(MAX)  
IH(MIN)  
I
I
OL  
50 Ω  
Output  
Under  
Test  
Tester Pin  
Electronics  
V
Load  
C
T
I
OH  
Where:  
I
= 1.5 mA (all outputs)  
= 300 µA (all outputs)  
= 1.5 V  
OL  
I
OH  
V
Load  
C
= 20-pF typical load circuit capacitance  
T
Figure 51. 3.3-V Test Load Circuit  
44  
SGUS035A  
April 2003 Revised July 2003  
Electrical Specifications  
5.4 Package Thermal Resistance Characteristics  
Table 51 provides the estimated thermal resistance characteristics for the recommended package types  
used on the SMJ320VC5416 DSP.  
Table 51. Thermal Resistance Characteristics  
PARAMETER  
HFG PACKAGE  
UNIT  
R
1.82  
°C/W  
ΘJC  
5.5 Timing Parameter Symbology  
Timing parameter symbols used in the timing requirements and switching characteristics tables are created  
in accordance with JEDEC Standard 100. To shorten the symbols, some of the pin names and other related  
terminology have been abbreviated as follows:  
Lowercase subscripts and their meanings:  
Letters and symbols and their meanings:  
a
access time  
H
L
High  
c
cycle time (period)  
delay time  
Low  
d
V
Z
Valid  
dis  
en  
f
disable time  
High impedance  
enable time  
fall time  
h
hold time  
r
rise time  
su  
t
setup time  
transition time  
valid time  
v
w
X
pulse duration (width)  
Unknown, changing, or dont care level  
5.6 Internal Oscillator With External Crystal  
The internal oscillator is enabled by selecting the appropriate clock mode at reset (this is device-dependent;  
see Section 3.10) and connecting a crystal or ceramic resonator across X1 and X2/CLKIN. The CPU clock  
frequency is one-half, one-fourth, or a multiple of the oscillator frequency. The multiply ratio is determined by  
the bit settings in the CLKMD register.  
The crystal should be in fundamental-mode operation, and parallel resonant, with an effective series  
resistance of 30 maximum and power dissipation of 1 mW. The connection of the required circuit, consisting  
of the crystal and two load capacitors, is shown in Figure 52. The load capacitors, C and C , should be  
1
2
chosen such that the equation below is satisfied. C (recommended value of 10 pF) in the equation is the load  
L
specified for the crystal.  
C1C2  
CL +  
(C1 ) C2)  
Table 52. Input Clock Frequency Characteristics  
MIN  
MAX  
UNIT  
10  
20  
f
x
Input clock frequency  
MHz  
This device utilizes a fully static design and therefore can operate with t  
approaching .  
c(CI)  
It is recommended that the PLL multiply by N clocking option be used for maximum frequency operation.  
45  
April 2003 Revised July 2003  
SGUS035A  
Electrical Specifications  
X1  
X2/CLKIN  
Crystal  
C1  
C2  
Figure 52. Internal Divide-by-Two Clock Option With External Crystal  
5.7 Clock Options  
The frequency of the reference clock provided at the CLKIN pin can be divided by a factor of two or four or  
multiplied by one of several values to generate the internal machine cycle.  
5.7.1 Divide-By-Two and Divide-By-Four Clock Options  
The frequency of the reference clock provided at the X2/CLKIN pin can be divided by a factor of two or four  
to generate the internal machine cycle. The selection of the clock mode is described in Section 3.10.  
When an external clock source is used, the frequency injected must conform to specifications listed in  
Table 54.  
An external frequency source can be used by applying an input clock to X2/CLKIN with X1 left unconnected.  
Table 53 shows the configuration options for the CLKMD pins that generate the external divide-by-2 or  
divide-by-4 clock option.  
Table 53. Clock Mode Pin Settings for the Divide-By-2 and By Divide-by-4 Clock Options  
CLKMD1  
CLKMD2  
CLKMD3  
CLOCK MODE  
0
1
1
0
0
1
0
1
1
1/2, PLL disabled  
1/4, PLL disabled  
1/2, PLL disabled  
46  
SGUS035A  
April 2003 Revised July 2003  
Electrical Specifications  
Table 54 and Table 55 assume testing over recommended operating conditions and H = 0.5t  
Figure 53).  
(see  
c(CO)  
Table 54. Divide-By-2 and Divide-by-4 Clock Options Timing Requirements  
5416-100  
UNIT  
MIN  
MAX  
t
t
t
t
t
Cycle time, X2/CLKIN  
20  
ns  
ns  
ns  
ns  
ns  
c(CI)  
Fall time, X2/CLKIN  
4*  
4*  
f(CI)  
Rise time, X2/CLKIN  
r(CI)  
Pulse duration, X2/CLKIN low  
Pulse duration, X2/CLKIN high  
4*  
4*  
w(CIL)  
w(CIH)  
* Not production tested.  
Table 55. Divide-By-2 and Divide-by-4 Clock Options Switching Characteristics  
5416-100  
PARAMETER  
UNIT  
MIN  
TYP  
MAX  
t
Cycle time, CLKOUT  
10  
ns  
ns  
ns  
ns  
ns  
ns  
c(CO)  
t
Delay time, X2/CLKIN high to CLKOUT high/low  
Fall time, CLKOUT  
4
7
11  
2*  
d(CIH-CO)  
t
f(CO)  
t
t
t
Rise time, CLKOUT  
2*  
r(CO)  
Pulse duration, CLKOUT low  
Pulse duration, CLKOUT high  
H 3*  
H
H
H + 1*  
H + 1*  
w(COL)  
w(COH)  
H 2*  
* Not production tested.  
It is recommended that the PLL clocking option be used for maximum frequency operation.  
This device utilizes a fully static design and therefore can operate with t  
approaching .  
c(CI)  
t
t
r(CI)  
w(CIH)  
t
t
f(CI)  
w(CIL)  
t
c(CI)  
X2/CLKIN  
t
w(COH)  
t
f(CO)  
t
c(CO)  
t
r(CO)  
t
d(CIH-CO)  
t
w(COL)  
CLKOUT  
NOTE A: The CLKOUT timing in this diagram assumes the CLKOUT divide factor (DIVFCT field in the BSCR) is configured as 00 (CLKOUT not  
divided). DIVFCT is configured as CLKOUT divided-by-4 mode following reset.  
Figure 53. External Divide-by-Two Clock Timing  
47  
April 2003 Revised July 2003  
SGUS035A  
Electrical Specifications  
5.7.2 Multiply-By-N Clock Option (PLL Enabled)  
The frequency of the reference clock provided at the X2/CLKIN pin can be multiplied by a factor of N to  
generate the internal machine cycle. The selection of the clock mode and the value of N is described in  
Section 3.10. Following reset, the software PLL can be programmed for the desired multiplication factor. Refer  
to the TMS320C54x DSP Reference Set, Volume 1: CPU and Peripherals (literature number SPRU131) for  
detailed information on programming the PLL.  
When an external clock source is used, the external frequency injected must conform to specifications listed  
in Table 56.  
Table 56 and Table 57 assume testing over recommended operating conditions and H = 0.5t  
Figure 54).  
(see  
c(CO)  
Table 56. Multiply-By-N Clock Option Timing Requirements  
5416-100  
UNIT  
MIN  
20  
MAX  
200  
Integer PLL multiplier N (N = 115)  
PLL multiplier N = x.5  
PLL multiplier N = x.25, x.75  
20  
100  
50  
t
Cycle time, X2/CLKIN  
ns  
c(CI)  
20  
t
t
t
t
Fall time, X2/CLKIN  
4*  
4*  
ns  
ns  
ns  
ns  
f(CI)  
Rise time, X2/CLKIN  
r(CI)  
Pulse duration, X2/CLKIN low  
Pulse duration, X2/CLKIN high  
4*  
4*  
w(CIL)  
w(CIH)  
* Not production tested.  
N is the multiplication factor.  
Table 57. Multiply-By-N Clock Option Switching Characteristics  
5416-100  
TYP  
PARAMETER  
UNIT  
MIN  
10  
4
MAX  
t
Cycle time, CLKOUT  
ns  
ns  
ns  
ns  
ns  
ns  
ms  
c(CO)  
t
Delay time, X2/CLKIN high/low to CLKOUT high/low  
Fall time, CLKOUT  
7
11  
2*  
d(CI-CO)  
t
f(CO)  
r(CO)  
w(COL)  
w(COH)  
p
t
t
t
t
Rise time, CLKOUT  
2*  
Pulse duration, CLKOUT low  
Pulse duration, CLKOUT high  
Transitory phase, PLL lock-up time  
H 3*  
H 2*  
H
H
H + 1*  
H + 1*  
30*  
* Not production tested.  
t
t
f(CI)  
w(CIH)  
t
t
r(CI)  
w(CIL)  
t
c(CI)  
X2/CLKIN  
t
d(CI-CO)  
t
f(CO)  
t
w(COH)  
t
c(CO)  
t
w(COL)  
t
t
r(CO)  
p
Unstable  
CLKOUT  
NOTE A: The CLKOUT timing in this diagram assumes the CLKOUT divide factor (DIVFCT field in the BSCR) is configured as 00 (CLKOUT not  
divided). DIVFCT is configured as CLKOUT divided-by-4 mode following reset.  
Figure 54. Multiply-by-One Clock Timing  
48  
SGUS035A  
April 2003 Revised July 2003  
Electrical Specifications  
5.8 Memory and Parallel I/O Interface Timing  
5.8.1 Memory Read  
External memory reads can be performed in consecutive or nonconsecutive mode under control of the  
CONSEC bit in the BSCR. Table 58 and Table 59 assume testing over recommended operating conditions  
with MSTRB = 0 and H = 0.5t  
(see Figure 55 and Figure 56).  
c(CO)  
Table 58. Memory Read Timing Requirements  
5416-100  
UNIT  
MIN  
MAX  
t
t
t
t
Access time, read data access from address valid, first read access  
4H9  
2H9  
ns  
ns  
ns  
ns  
a(A)M1  
a(A)M2  
su(D)R  
h(D)R  
Access time, read data access from address valid, consecutive read accesses  
Setup time, read data valid before CLKOUT low  
7
0
Hold time, read data valid after CLKOUT low  
Address,R/W, PS, DS, and IS timings are all included in timings referenced as address.  
Table 59. Memory Read Switching Characteristics  
5416-100  
PARAMETER  
UNIT  
MIN  
1*  
1*  
1*  
MAX  
t
Delay time, CLKOUT low to address valid  
Delay time, CLKOUT low to MSTRB low  
Delay time, CLKOUT low to MSTRB high  
4
4
ns  
ns  
ns  
d(CLKL-A)  
t
d(CLKL-MSL)  
t
4*  
d(CLKL-MSH)  
* Not production tested.  
Address,R/W, PS, DS, and IS timings are all included in timings referenced as address.  
49  
April 2003 Revised July 2003  
SGUS035A  
Electrical Specifications  
CLKOUT  
t
d(CLKL-A)  
A[22:0]  
t
d(CLKL-MSL)  
t
d(CLKL-MSH)  
t
a(A)M1  
D[15:0]  
MSTRB  
t
su(D)R  
t
h(D)R  
R/W  
PS/DS  
Address,R/W, PS, DS, and IS timings are all included in timings referenced as address.  
Figure 55. Nonconsecutive Mode Memory Reads  
50  
SGUS035A  
April 2003 Revised July 2003  
Electrical Specifications  
CLKOUT  
t
d(CLKL-A)  
t
t
t
d(CLKL-MSL)  
d(CLKL-A)  
d(CLKL-A)  
A[22:0]  
t
t
d(CLKL-MSH)  
a(A)M1  
t
a(A)M2  
D[15:0]  
MSTRB  
t
t
su(D)R  
su(D)R  
t
t
h(D)R  
h(D)R  
R/W  
PS/DS  
Address,R/W, PS, DS, and IS timings are all included in timings referenced as address.  
Figure 56. Consecutive Mode Memory Reads  
51  
April 2003 Revised July 2003  
SGUS035A  
Electrical Specifications  
5.8.2 Memory Write  
Table 510 assumes testing over recommended operating conditions with MSTRB = 0 and H = 0.5t  
Figure 57).  
(see  
c(CO)  
Table 510. Memory Write Switching Characteristics  
5416-100  
MIN  
PARAMETER  
UNIT  
MAX  
t
Delay time, CLKOUT low to address valid  
1*  
4
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
d(CLKL-A)  
t
Setup time, address valid before MSTRB low  
Delay time, CLKOUT low to data valid  
Setup time, data valid before MSTRB high  
Hold time, data valid after MSTRB high  
Delay time, CLKOUT low to MSTRB low  
Pulse duration, MSTRB low  
2H 3  
su(A)MSL  
t
1*  
2H 5  
2H 5*  
1*  
4
2H + 6  
2H + 6*  
4
d(CLKL-D)W  
t
su(D)MSH  
t
h(D)MSH  
t
d(CLKL-MSL)  
t
2H 3.2*  
1*  
w(SL)MS  
t
Delay time, CLKOUT low to MSTRB high  
4*  
d(CLKL-MSH)  
* Not production tested.  
Address, R/W, PS, DS, and IS timings are all included in timings referenced as address.  
CLKOUT  
t
d(CLKL-A)  
t
d(CLKL-A)  
t
d(CLKL-D)W  
t
su(A)MSL  
A[22:0]  
t
su(D)MSH  
t
h(D)MSH  
D[15:0]  
t
d(CLKL-MSL)  
t
d(CLKL-MSH)  
t
w(SL)MS  
MSTRB  
R/W  
PS/DS  
Address, R/W, PS, DS, and IS timings are all included in timings referenced as address.  
Figure 57. Memory Write (MSTRB = 0)  
52  
SGUS035A  
April 2003 Revised July 2003  
Electrical Specifications  
5.8.3 I/O Read  
Table 511 and Table 512 assume testing over recommended operating conditions, IOSTRB = 0, and  
H = 0.5t (see Figure 58).  
c(CO)  
Table 511. I/O Read Timing Requirements  
5416-100  
MIN MAX  
4H 9  
UNIT  
t
t
t
Access time, read data access from address valid, first read access  
ns  
ns  
ns  
a(A)M1  
su(D)R  
h(D)R  
Setup time, read data valid before CLKOUT low  
Hold time, read data valid after CLKOUT low  
7
0
Address R/W, PS, DS, and IS timings are included in timings referenced as address.  
Table 512. I/O Read Switching Characteristics  
5416-100  
MIN MAX  
PARAMETER  
UNIT  
t
Delay time, CLKOUT low to address valid  
Delay time, CLKOUT low to IOSTRB low  
Delay time, CLKOUT low to IOSTRB high  
1*  
1*  
1*  
4
4
4
ns  
ns  
ns  
d(CLKL-A)  
t
d(CLKL-IOSL)  
t
d(CLKL-IOSH)  
* Not production tested.  
Address R/W, PS, DS, and IS timings are included in timings referenced as address.  
CLKOUT  
t
t
d(CLKL-A)  
d(CLKL-A)  
t
d(CLKL-IOSL)  
t
d(CLKL-IOSH)  
A[22:0]  
t
a(A)M1  
t
su(D)R  
t
h(D)R  
D[15:0]  
IOSTRB  
R/W  
IS  
Address, R/W, PS, DS, and IS timings are all included in timings referenced as address.  
Figure 58. Parallel I/O Port Read (IOSTRB = 0)  
53  
April 2003 Revised July 2003  
SGUS035A  
Electrical Specifications  
5.8.4 I/O Write  
Table 513 assumes testing over recommended operating conditions, IOSTRB = 0, and H = 0.5t  
Figure 59).  
(see  
c(CO)  
Table 513. I/O Write Switching Characteristics  
5416-100  
PARAMETER  
UNIT  
ns  
MIN  
1*  
MAX  
t
Delay time, CLKOUT low to address valid  
4
d(CLKL-A)  
t
Setup time, address valid before IOSTRB low  
Delay time, CLKOUT low to write data valid  
Setup time, data valid before IOSTRB high  
Hold time, data valid after IOSTRB high  
Delay time, CLKOUT low to IOSTRB low  
Pulse duration, IOSTRB low  
2H 3  
1*  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
su(A)IOSL  
t
4
d(CLKL-D)W  
t
2H 5 2H + 6*  
2H 5* 2H + 6*  
su(D)IOSH  
t
h(D)IOSH  
t
t
t
1*  
2H 2*  
1*  
4
d(CLKL-IOSL)  
w(SL)IOS  
Delay time, CLKOUT low to IOSTRB high  
4
d(CLKL-IOSH)  
* Not production tested.  
Address R/W, PS, DS, and IS timings are included in timings referenced as address.  
CLKOUT  
t
t
d(CLKL-A)  
d(CLKL-A)  
A[22:0]  
t
d(CLKL-D)W  
t
d(CLKL-D)W  
t
su(A)IOSL  
D[15:0]  
t
su(D)IOSH  
t
d(CLKL-IOSH)  
t
h(D)IOSH  
t
d(CLKL-IOSL)  
IOSTRB  
t
w(SL)IOS  
R/W  
IS  
Address, R/W, PS, DS, and IS timings are all included in timings referenced as address.  
Figure 59. Parallel I/O Port Write (IOSTRB = 0)  
54  
SGUS035A  
April 2003 Revised July 2003  
Electrical Specifications  
5.9 Ready Timing for Externally Generated Wait States  
Table 514 and Table 515 assume testing over recommended operating conditions and H = 0.5t  
Figure 510, Figure 511, Figure 512, and Figure 513).  
(see  
c(CO)  
Table 514. Ready Timing Requirements for Externally Generated Wait States  
5416-100  
UNIT  
MIN  
7
MAX  
t
t
t
t
t
t
Setup time, READY before CLKOUT low  
Hold time, READY after CLKOUT low  
ns  
ns  
ns  
ns  
ns  
ns  
su(RDY)  
0
h(RDY)  
Valid time, READY after MSTRB low  
4H 6.2*  
4H 6*  
v(RDY)MSTRB  
h(RDY)MSTRB  
v(RDY)IOSTRB  
h(RDY)IOSTRB  
Hold time, READY after MSTRB low  
4H*  
4H*  
Valid time, READY after IOSTRB low  
Hold time, READY after IOSTRB low  
* Not production tested.  
Thehardwarewaitstatescanbeusedonlyinconjunctionwiththesoftwarewaitstatestoextendthebuscycles.TogeneratewaitstatesbyREADY,  
at least two software wait states must be programmed. READY is not sampled until the completion of the internal software wait states.  
These timings are included for reference only. The critical timings for READY are those referenced to CLKOUT.  
Table 515. Ready Switching Characteristics for Externally Generated Wait States  
5416-100  
PARAMETER  
UNIT  
MIN  
1*  
1*  
MAX  
t
Delay time, CLKOUT low to MSC low  
Delay time, CLKOUT low to MSC high  
4
ns  
ns  
d(MSCL)  
t
4
d(MSCH)  
* Not production tested.  
Thehardwarewaitstatescanbeusedonlyinconjunctionwiththesoftwarewaitstatestoextendthebuscycles.TogeneratewaitstatesbyREADY,  
at least two software wait states must be programmed. READY is not sampled until the completion of the internal software wait states.  
55  
April 2003 Revised July 2003  
SGUS035A  
Electrical Specifications  
CLKOUT  
A[22:0]  
D[15:0]  
t
su(RDY)  
t
h(RDY)  
READY  
MSTRB  
MSC  
t
v(RDY)MSTRB  
t
h(RDY)MSTRB  
t
d(MSCL)  
t
d(MSCH)  
Leading  
Cycle  
Wait States  
Generated  
Internally  
Wait  
States  
Generated  
by READY  
Trailing  
Cycle  
Figure 510. Memory Read With Externally Generated Wait States  
56  
SGUS035A  
April 2003 Revised July 2003  
Electrical Specifications  
CLKOUT  
A[22:0]  
D[15:0]  
t
su(RDY)  
t
h(RDY)  
READY  
MSTRB  
MSC  
t
v(RDY)MSTRB  
t
h(RDY)MSTRB  
t
d(MSCL)  
t
d(MSCH)  
Leading  
Cycle  
Wait  
States  
Generated  
by READY  
Wait  
States  
Generated  
Internally  
Trailing  
Cycle  
Figure 511. Memory Write With Externally Generated Wait States  
57  
April 2003 Revised July 2003  
SGUS035A  
Electrical Specifications  
CLKOUT  
A[22:0]  
D[15:0]  
t
su(RDY)  
t
h(RDY)  
READY  
IOSTRB  
MSC  
t
v(RDY)IOSTRB  
t
h(RDY)IOSTRB  
t
d(MSCL)  
t
d(MSCH)  
Leading  
Cycle  
Wait States  
Generated  
Internally  
Wait  
States  
Generated  
by READY  
Trailing  
Cycle  
Figure 512. I/O Read With Externally Generated Wait States  
58  
SGUS035A  
April 2003 Revised July 2003  
Electrical Specifications  
CLKOUT  
A[22:0]  
D[15:0]  
t
su(RDY)  
t
h(RDY)  
READY  
IOSTRB  
MSC  
t
v(RDY)IOSTRB  
t
h(RDY)IOSTRB  
t
d(MSCL)  
t
d(MSCH)  
Leading  
Cycle  
Wait  
States  
Generated  
Internally  
Trailing  
Cycle  
Wait  
States  
Generated  
by READY  
Figure 513. I/O Write With Externally Generated Wait States  
59  
April 2003 Revised July 2003  
SGUS035A  
Electrical Specifications  
5.10 HOLD and HOLDA Timings  
Table 516 and Table 517 assume testing over recommended operating conditions and H = 0.5t  
Figure 514).  
(see  
c(CO)  
Table 516. HOLD and HOLDA Timing Requirements  
5416-100  
UNIT  
MIN  
4H+8*  
7
MAX  
t
t
Pulse duration, HOLD low duration  
ns  
ns  
w(HOLD)  
Setup time, HOLD before CLKOUT low  
su(HOLD)  
* Not production tested.  
Table 517. HOLD and HOLDA Switching Characteristics  
5416-100  
PARAMETER  
UNIT  
MIN  
MAX  
3*  
t
t
t
t
t
t
Disable time, Address, PS, DS, IS high impedance from CLKOUT low  
Disable time, R/W high impedance from CLKOUT low  
Disable time, MSTRB, IOSTRB high impedance from CLKOUT low  
Enable time, Address, PS, DS, IS valid from CLKOUT low  
Enable time, R/W enabled from CLKOUT low  
ns  
ns  
ns  
ns  
ns  
ns  
dis(CLKL-A)  
dis(CLKL-RW)  
dis(CLKL-S)  
en(CLKL-A)  
en(CLKL-RW)  
en(CLKL-S)  
3*  
3*  
2H+3*  
2H+3*  
2H+3*  
Enable time, MSTRB, IOSTRB enabled from CLKOUT low  
2
1*  
4
ns  
ns  
ns  
Valid time, HOLDA low after CLKOUT low  
t
t
v(HOLDA)  
1*  
4*  
Valid time, HOLDA high after CLKOUT low  
Pulse duration, HOLDA low duration  
2H3*  
w(HOLDA)  
* Not production tested.  
This input can be driven from an asynchronous source, therefore, there are no specific timing requirements with respect to CLKOUT, however,  
if this timing is met, the input will be recognized on the CLKOUT edge referenced.  
60  
SGUS035A  
April 2003 Revised July 2003  
Electrical Specifications  
CLKOUT  
HOLD  
t
t
su(HOLD)  
su(HOLD)  
t
w(HOLD)  
t
t
v(HOLDA)  
v(HOLDA)  
w(HOLDA)  
t
HOLDA  
t
t
en(CLKLA)  
dis(CLKLA)  
A[22:0]  
PS, DS, IS  
D[15:0]  
R/W  
t
t
t
t
dis(CLKLRW)  
dis(CLKLS)  
dis(CLKLS)  
en(CLKLRW)  
t
en(CLKLS)  
MSTRB  
IOSTRB  
t
en(CLKLS)  
Figure 514. HOLD and HOLDA Timings (HM = 1)  
61  
April 2003 Revised July 2003  
SGUS035A  
Electrical Specifications  
5.11 Reset, BIO, Interrupt, and MP/MC Timings  
Table 518 assumes testing over recommended operating conditions and H = 0.5t  
Figure 516, and Figure 517).  
(see Figure 515,  
c(CO)  
Table 518. Reset, BIO, Interrupt, and MP/MC Timing Requirements  
5416-100  
UNIT  
MIN  
2*  
MAX  
#
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
Hold time, RS after CLKOUT low  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
h(RS)  
#
Hold time, BIO after CLKOUT low  
Hold time, INTn, NMI, after CLKOUT low  
4
h(BIO)  
#  
0
h(INT)  
#
Hold time, MP/MC after CLKOUT low  
‡§  
4*  
h(MPMC)  
w(RSL)  
Pulse duration, RS low  
4H+3*  
2H+3*  
4H*  
2H+2*  
4H*  
2H+2*  
4H*  
7*  
Pulse duration, BIO low, synchronous  
Pulse duration, BIO low, asynchronous  
w(BIO)S  
w(BIO)A  
w(INTH)S  
w(INTH)A  
w(INTL)S  
w(INTL)A  
w(INTL)WKP  
su(RS)  
Pulse duration, INTn, NMI high (synchronous)  
Pulse duration, INTn, NMI high (asynchronous)  
Pulse duration, INTn, NMI low (synchronous)  
Pulse duration, INTn, NMI low (asynchronous)  
Pulse duration, INTn, NMI low for IDLE2/IDLE3 wakeup  
#  
Setup time, RS before X2/CLKIN low  
Setup time, BIO before CLKOUT low  
3*  
#
7
su(BIO)  
#
Setup time, INTn, NMI, RS before CLKOUT low  
7
su(INT)  
#
Setup time, MP/MC before CLKOUT low  
5*  
su(MPMC)  
* Not production tested.  
The external interrupts (INT0INT3, NMI) are synchronized to the core CPU by way of a two-flip-flop synchronizer that samples these inputs  
with consecutive falling edges of CLKOUT. The input to the interrupt pins is required to represent a 100 sequence at the timing that is  
corresponding to three CLKOUTs sampling sequence.  
IfthePLLmodeisselected,thenatpower-onsequence,oratwakeupfromIDLE3,RSmustbeheldlowforatleast50µstoensuresynchronization  
and lock-in of the PLL.  
§
#
Note that RS may cause a change in clock frequency, therefore changing the value of H.  
The diagram assumes clock mode is divide-by-2 and the CLKOUT divide factor is set to no-divide mode (DIVFCT=00 field in the BSCR).  
Theseinputs can be driven from an asynchronous source, therefore, there are no specific timing requirements with respect to CLKOUT, however,  
if setup and hold timings are met, the input will be recognized on the CLKOUT edge referenced.  
62  
SGUS035A  
April 2003 Revised July 2003  
Electrical Specifications  
X2/CLKIN  
RS, INTn, NMI  
CLKOUT  
t
su(RS)  
t
w(RSL)  
t
su(INT)  
t
h(RS)  
t
su(BIO)  
t
h(BIO)  
BIO  
t
w(BIO)S  
Figure 515. Reset and BIO Timings  
CLKOUT  
t
t
t
su(INT)  
su(INT)  
h(INT)  
INTn, NMI  
t
w(INTH)A  
t
w(INTL)A  
Figure 516. Interrupt Timing  
CLKOUT  
RS  
t
h(MPMC)  
t
su(MPMC)  
MP/MC  
Figure 517. MP/MC Timing  
63  
April 2003 Revised July 2003  
SGUS035A  
Electrical Specifications  
5.12 Instruction Acquisition (IAQ) and Interrupt Acknowledge (IACK) Timings  
Table 519 assumes testing over recommended operating conditions and H = 0.5t  
(see Figure 518).  
c(CO)  
Table 519. Instruction Acquisition (IAQ) and Interrupt Acknowledge (IACK) Switching Characteristics  
5416-100  
PARAMETER  
UNIT  
MIN  
1*  
MAX  
t
Delay time, CLKOUT low to IAQ low  
4
ns  
ns  
ns  
ns  
ns  
ns  
ns  
d(CLKL-IAQL)  
t
Delay time, CLKOUT low to IAQ high  
Delay time, CLKOUT low to IACK low  
Delay time, CLKOUT low to IACK high  
Delay time, CLKOUT low to address valid  
Pulse duration, IAQ low  
1*  
4
4
4
4
d(CLKL-IAQH)  
t
1.2*  
1*  
d(CLKL-IACKL)  
t
d(CLKL-IACKH)  
d(CLKL-A)  
w(IAQL)  
t
t
t
1*  
2H 2*  
2H 3*  
Pulse duration, IACK low  
w(IACKL)  
* Not production tested.  
CLKOUT  
t
d(CLKLA)  
t
d(CLKLA)  
A[22:0]  
t
t
t
d(CLKLIAQH)  
d(CLKLIACKH)  
d(CLKLIAQL)  
t
w(IAQL)  
IAQ  
t
d(CLKLIACKL)  
t
w(IACKL)  
IACK  
Figure 518. Instruction Acquisition (IAQ) and Interrupt Acknowledge (IACK) Timings  
64  
SGUS035A  
April 2003 Revised July 2003  
Electrical Specifications  
5.13 External Flag (XF) and TOUT Timings  
Table 520 assumes testing over recommended operating conditions and H = 0.5t  
Figure 520).  
(see Figure 519 and  
c(CO)  
Table 520. External Flag (XF) and TOUT Switching Characteristics  
5416-100  
PARAMETER  
UNIT  
MIN  
1*  
MAX  
Delay time, CLKOUT low to XF high  
4
t
ns  
d(XF)  
Delay time, CLKOUT low to XF low  
Delay time, CLKOUT low to TOUT high  
Delay time, CLKOUT low to TOUT low  
Pulse duration, TOUT  
1*  
4
4*  
4
t
t
t
1*  
ns  
ns  
ns  
d(TOUTH)  
d(TOUTL)  
w(TOUT)  
1*  
2H 4*  
* Not production tested.  
CLKOUT  
t
d(XF)  
XF  
Figure 519. External Flag (XF) Timing  
CLKOUT  
TOUT  
t
t
d(TOUTL)  
d(TOUTH)  
t
w(TOUT)  
Figure 520. TOUT Timing  
65  
April 2003 Revised July 2003  
SGUS035A  
Electrical Specifications  
5.14 Multichannel Buffered Serial Port (McBSP) Timing  
5.14.1 McBSP Transmit and Receive Timings  
Table 521 and Table 522 assume testing over recommended operating conditions (see Figure 521 and  
Figure 522).  
Table 521. McBSP Transmit and Receive Timing Requirements  
5416-100  
UNIT  
MIN  
MAX  
§
t
t
Cycle time, BCLKR/X  
BCLKR/X ext  
BCLKR/X ext  
BCLKR int  
BCLKR ext  
BCLKR int  
BCLKR ext  
BCLKR int  
BCLKR ext  
BCLKR int  
BCLKR ext  
BCLKX int  
BCLKX ext  
BCLKX int  
BCLKX ext  
BCLKR/X ext  
BCLKR/X ext  
4P  
ns  
ns  
c(BCKRX)  
§
Pulse duration, BCLKR/X high or BCLKR/X low  
2P1*  
w(BCKRX)  
8
1
1
2
7
1
2
3
8
1
0
2
t
t
t
t
t
t
Setup time, external BFSR high before BCLKR low  
Hold time, external BFSR high after BCLKR low  
Setup time, BDR valid before BCLKR low  
ns  
ns  
ns  
ns  
ns  
ns  
su(BFRH-BCKRL)  
h(BCKRL-BFRH)  
su(BDRV-BCKRL)  
h(BCKRL-BDRV)  
su(BFXH-BCKXL)  
h(BCKXL-BFXH)  
Hold time, BDR valid after BCLKR low  
Setup time, external BFSX high before BCLKX low  
Hold time, external BFSX high after BCLKX low  
t
t
Rise time, BCKR/X  
Fall time, BCKR/X  
6*  
6*  
ns  
ns  
r(BCKRX)  
f(BCKRX)  
* Not production tested.  
CLKRP = CLKXP = FSRP = FSXP = 0. If the polarity of any of the signals is inverted, then the timing references of that signal are also inverted.  
Note that in some cases, for example when driving another 54x device McBSP, maximum serial port clocking rates may not be achievable at  
maximum CPU clock frequency due to transmitted data timings and corresponding receive timing requirements. A separate detailed timing  
analysis should be performed for each specific McBSP interface.  
§
P = 1 / (2 * processor clock)  
66  
SGUS035A  
April 2003 Revised July 2003  
Electrical Specifications  
Table 522. McBSP Transmit and Receive Switching Characteristics  
5416-100  
PARAMETER  
UNIT  
MIN MAX  
#
§
§
t
t
t
Cycle time, BCLKR/X  
BCLKR/X int  
BCLKR/X int  
4P  
D 1*  
C 1*  
ns  
ns  
c(BCKRX)  
#
§
§
3
Pulse duration, BCLKR/X high  
D + 1*  
w(BCKRXH)  
w(BCKRXL)  
#
Pulse duration, BCLKR/X low  
BCLKR/X int  
BCLKR int  
BCLKR ext  
BCLKX int  
BCLKX ext  
BCLKX int  
BCLKX ext  
BCLKX int  
BCLKX ext  
BCLKX int  
BCLKX ext  
BFSX int  
C + 1*  
ns  
ns  
ns  
3*  
0*  
t
t
Delay time, BCLKR high to internal BFSR valid  
Delay time, BCLKX high to internal BFSX valid  
d(BCKRH-BFRV)  
d(BCKXH-BFXV)  
11  
5
1*  
3*  
ns  
ns  
11  
6*  
Disable time, BCLKX high to BDX high impedance following last data  
bit of transfer  
t
dis(BCKXH-BDXHZ)  
10*  
10  
20  
20  
30  
7*  
1*  
DXENA = 0  
Delay time, BCLKX high to BDX valid  
DXENA = 1  
3*  
t
ns  
ns  
d(BCKXH-BDXV)  
1*  
2.8*  
1.2*  
Delay time, BFSX high to BDX valid  
ONLY applies when in data delay 0 (XDATDLY = 00b) mode  
t
d(BFXH-BDXV)  
BFSX ext  
3*  
11*  
* Not production tested.  
§
CLKRP = CLKXP = FSRP = FSXP = 0. If the polarity of any of the signals is inverted, then the timing references of that signal are also inverted.  
P = 1 / (2 * processor clock)  
T
C
D
=
=
=
BCLKRX period = (1 + CLKGDV) * 2P  
BCLKRX low pulse width = T/2 when CLKGDV is odd or zero and = (CLKGDV/2) * 2P when CLKGDV is even  
BCLKRX high pulse width = T/2 when CLKGDV is odd or zero and = (CLKGDV/2 + 1) * 2P when CLKGDV is even  
#
Minimum delay times also represent minimum output hold times.  
Note that in some cases, for example when driving another 54x device McBSP, maximum serial port clocking rates may not be achievable at  
maximum CPU clock frequency due to transmitted data timings and corresponding receive timing requirements. A separate detailed timing  
analysis should be performed for each specific McBSP interface.  
t
c(BCKRX)  
t
w(BCKRXH)  
w(BCKRXL)  
t
t
r(BCKRX)  
f(BCKRX)  
t
BCLKR  
BFSR (int)  
BFSR (ext)  
BDR  
t
d(BCKRH-BFRV)  
t
d(BCKRH-BFRV)  
t
su(BFRH-BCKRL)  
t
h(BCKRL-BFRH)  
t
su(BDRV-BCKRL)  
t
h(BCKRL-BDRV)  
(n-2)  
(n-3)  
Bit(n-1)  
Figure 521. McBSP Receive Timings  
67  
April 2003 Revised July 2003  
SGUS035A  
Electrical Specifications  
t
c(BCKRX)  
t
t
w(BCKRXH)  
t
t
f(BCKRX)  
r(BCKRX)  
w(BCKRXL)  
BCLKX  
t
d(BCKXH-BFXV)  
BFSX (int)  
BFSX (ext)  
t
h(BCKXL-BFXH)  
t
su(BFXH-BCKXL)  
BFSX  
(XDATDLY=00b)  
t
d(BCKXH-BDXV)  
t
d(BFXH-BDXV)  
t
t
dis(BCKXH-BDXHZ)  
d(BCKXH-BDXV)  
BDX  
Bit 0  
Bit(n-1)  
(n-2)  
(n-3)  
Figure 522. McBSP Transmit Timings  
68  
SGUS035A  
April 2003 Revised July 2003  
Electrical Specifications  
5.14.2 McBSP General-Purpose I/O Timing  
Table 523 and Table 524 assume testing over recommended operating conditions (see Figure 523).  
Table 523. McBSP General-Purpose I/O Timing Requirements  
5416-100  
UNIT  
MIN  
7
MAX  
t
t
Setup time, BGPIOx input mode before CLKOUT high  
ns  
ns  
su(BGPIO-COH)  
Hold time, BGPIOx input mode after CLKOUT high  
0
h(COH-BGPIO)  
BGPIOx refers to BCLKRx, BFSRx, BDRx, BCLKXx, or BFSXx when configured as a general-purpose input.  
Table 524. McBSP General-Purpose I/O Switching Characteristics  
5416-100  
PARAMETER  
UNIT  
MIN  
MAX  
t
Delay time, CLKOUT high to BGPIOx output mode  
2*  
4
ns  
d(COH-BGPIO)  
* Not production tested.  
BGPIOx refers to BCLKRx, BFSRx, BCLKXx, BFSXx, or BDXx when configured as a general-purpose output.  
t
t
su(BGPIO-COH)  
d(COH-BGPIO)  
CLKOUT  
t
h(COH-BGPIO)  
BGPIOx Input  
Mode  
BGPIOx Output  
Mode  
BGPIOx refers to BCLKRx, BFSRx, BDRx, BCLKXx, or BFSXx when configured as a general-purpose input.  
BGPIOx refers to BCLKRx, BFSRx, BCLKXx, BFSXx, or BDXx when configured as a general-purpose output.  
Figure 523. McBSP General-Purpose I/O Timings  
69  
April 2003 Revised July 2003  
SGUS035A  
Electrical Specifications  
5.14.3 McBSP as SPI Master or Slave Timing  
Table 525 to Table 532 assume testing over recommended operating conditions (see Figure 524,  
Figure 525, Figure 526, and Figure 527).  
Table 525. McBSP as SPI Master or Slave Timing Requirements (CLKSTP = 10b, CLKXP = 0)  
5416-100  
MASTER  
SLAVE  
MIN MAX  
UNIT  
MIN  
12  
4
MAX  
t
t
Setup time, BDR valid before BCLKX low  
Hold time, BDR valid after BCLKX low  
2.2 6P*  
ns  
ns  
su(BDRV-BCKXL)  
5 + 12P*  
h(BCKXL-BDRV)  
* Not production tested.  
For all SPI slave modes, CLKG is programmed as 1/2 of the CPU clock by setting CLKSM = CLKGDV = 1.  
P = 1 / (2 * processor clock)  
Table 526. McBSP as SPI Master or Slave Switching Characteristics (CLKSTP = 10b, CLKXP = 0)  
5416-100  
§
MASTER  
SLAVE  
MIN MAX  
PARAMETER  
UNIT  
MIN  
MAX  
t
Hold time, BFSX low after BCLKX low  
T 3*  
T + 4  
ns  
ns  
ns  
h(BCKXL-BFXL)  
d(BFXL-BCKXH)  
d(BCKXH-BDXV)  
#
t
t
Delay time, BFSX low to BCLKX high  
C 4* C + 3*  
4*  
Delay time, BCLKX high to BDX valid  
5
6P + 2*  
10P + 17  
Disable time, BDX high impedance following last data bit from  
BCLKX low  
t
C 2* C + 3*  
ns  
dis(BCKXL-BDXHZ)  
Disable time, BDX high impedance following last data bit from  
BFSX high  
t
t
2P4*  
6P + 17*  
ns  
ns  
dis(BFXH-BDXHZ)  
Delay time, BFSX low to BDX valid  
4P+ 2*  
8P + 17*  
d(BFXL-BDXV)  
* Not production tested.  
§
For all SPI slave modes, CLKG is programmed as 1/2 of the CPU clock by setting CLKSM = CLKGDV = 1.  
P = 1 / (2 * processor clock)  
T
C
=
=
BCLKX period = (1 + CLKGDV) * 2P  
BCLKX low pulse width = T/2 when CLKGDV is odd or zero and = (CLKGDV/2) * 2P when CLKGDV is even  
FSRP = FSXP = 1. As a SPI master, BFSX is inverted to provide active-low slave-enable output. As a slave, the active-low signal input on BFSX  
and BFSR is inverted before being used internally.  
CLKXM = FSXM = 1, CLKRM = FSRM = 0 for master McBSP  
CLKXM = CLKRM = FSXM = FSRM = 0 for slave McBSP  
BFSX should be low before the rising edge of clock to enable slave devices and then begin a SPI transfer at the rising edge of the master clock  
(BCLKX).  
#
MSB  
LSB  
BCLKX  
BFSX  
t
h(BCKXL-BFXL)  
t
d(BFXL-BCKXH)  
t
dis(BFXH-BDXHZ)  
t
d(BFXL-BDXV)  
t
t
d(BCKXH-BDXV)  
(n-2)  
dis(BCKXL-BDXHZ)  
BDX  
BDR  
Bit 0  
Bit(n-1)  
(n-3)  
(n-4)  
t
su(BDRV-BCLXL)  
t
h(BCKXL-BDRV)  
Bit 0  
Bit(n-1)  
(n-2)  
(n-3)  
(n-4)  
Figure 524. McBSP Timing as SPI Master or Slave: CLKSTP = 10b, CLKXP = 0  
70  
SGUS035A  
April 2003 Revised July 2003  
Electrical Specifications  
Table 527. McBSP as SPI Master or Slave Timing Requirements (CLKSTP = 11b, CLKXP = 0)  
5416-100  
MASTER  
SLAVE  
MIN MAX  
UNIT  
MIN  
12  
4
MAX  
t
t
Setup time, BDR valid before BCLKX low  
Hold time, BDR valid after BCLKX high  
2.2 6P*  
5 + 12P*  
ns  
ns  
su(BDRV-BCKXL)  
h(BCKXH-BDRV)  
* Not production tested.  
For all SPI slave modes, CLKG is programmed as 1/2 of the CPU clock by setting CLKSM = CLKGDV = 1.  
P = 1 / (2 * processor clock)  
Table 528. McBSP as SPI Master or Slave Switching Characteristics (CLKSTP = 11b, CLKXP = 0)  
5416-100  
§
MASTER  
SLAVE  
MIN  
PARAMETER  
UNIT  
MIN  
MAX  
MAX  
t
Hold time, BFSX low after BCLKX low  
C 3*  
C + 4  
ns  
ns  
ns  
h(BCKXL-BFXL)  
d(BFXL-BCKXH)  
d(BCKXL-BDXV)  
#
t
t
Delay time, BFSX low to BCLKX high  
Delay time, BCLKX low to BDX valid  
T 4* T + 3*  
4*  
5
6P + 2*  
10P + 17  
10P + 17*  
8P + 17*  
Disable time, BDX high impedance following last data bit from  
BCLKX low  
t
2*  
4* 6P 4*  
ns  
ns  
dis(BCKXL-BDXHZ)  
t
Delay time, BFSX low to BDX valid  
D 2* D + 4* 4P + 2*  
d(BFXL-BDXV)  
* Not production tested.  
§
For all SPI slave modes, CLKG is programmed as 1/2 of the CPU clock by setting CLKSM = CLKGDV = 1.  
P = 1 / (2 * processor clock)  
T
C
D
=
=
=
BCLKX period = (1 + CLKGDV) * 2P  
BCLKX low pulse width = T/2 when CLKGDV is odd or zero and = (CLKGDV/2) * 2P when CLKGDV is even  
BCLKX high pulse width = T/2 when CLKGDV is odd or zero and = (CLKGDV/2 + 1) * 2P when CLKGDV is even  
FSRP = FSXP = 1. As a SPI master, BFSX is inverted to provide active-low slave-enable output. As a slave, the active-low signal input on BFSX  
and BFSR is inverted before being used internally.  
CLKXM = FSXM = 1, CLKRM = FSRM = 0 for master McBSP  
CLKXM = CLKRM = FSXM = FSRM = 0 for slave McBSP  
BFSX should be low before the rising edge of clock to enable slave devices and then begin a SPI transfer at the rising edge of the master clock  
(BCLKX).  
#
MSB  
LSB  
BCLKX  
t
t
d(BFXL-BCKXH)  
h(BCKXL-BFXL)  
BFSX  
t
t
t
d(BCKXL-BDXV)  
d(BFXL-BDXV)  
dis(BCKXL-BDXHZ)  
BDX  
Bit 0  
Bit(n-1)  
Bit(n-1)  
(n-2)  
(n-3)  
(n-4)  
t
su(BDRV-BCKXL)  
t
h(BCKXH-BDRV)  
BDR  
Bit 0  
(n-2)  
(n-3)  
(n-4)  
Figure 525. McBSP Timing as SPI Master or Slave: CLKSTP = 11b, CLKXP = 0  
71  
April 2003 Revised July 2003  
SGUS035A  
Electrical Specifications  
Table 529. McBSP as SPI Master or Slave Timing Requirements (CLKSTP = 10b, CLKXP = 1)  
5416-100  
MASTER  
SLAVE  
MIN MAX  
UNIT  
MIN  
12  
4
MAX  
t
t
Setup time, BDR valid before BCLKX high  
Hold time, BDR valid after BCLKX high  
2 6P*  
5 + 12P*  
ns  
ns  
su(BDRV-BCKXH)  
h(BCKXH-BDRV)  
* Not production tested.  
For all SPI slave modes, CLKG is programmed as 1/2 of the CPU clock by setting CLKSM = CLKGDV = 1.  
P = 1 / (2 * processor clock)  
Table 530. McBSP as SPI Master or Slave Switching Characteristics (CLKSTP = 10b, CLKXP = 1)  
5416-100  
§
MASTER  
SLAVE  
MIN  
PARAMETER  
UNIT  
MIN  
MAX  
MAX  
t
Hold time, BFSX low after BCLKX high  
T 3*  
T + 4  
ns  
ns  
ns  
h(BCKXH-BFXL)  
d(BFXL-BCKXL)  
d(BCKXL-BDXV)  
#
t
t
Delay time, BFSX low to BCLKX low  
Delay time, BCLKX low to BDX valid  
D 4* D + 3*  
4*  
5
6P + 2*  
10P + 17  
Disable time, BDX high impedance following last data bit from  
BCLKX high  
t
D 2* D + 3*  
ns  
dis(BCKXH-BDXHZ)  
Disable time, BDX high impedance following last data bit from  
BFSX high  
t
t
2P 4*  
6P + 17*  
ns  
ns  
dis(BFXH-BDXHZ)  
Delay time, BFSX low to BDX valid  
4P + 2*  
8P + 17*  
d(BFXL-BDXV)  
* Not production tested.  
§
For all SPI slave modes, CLKG is programmed as 1/2 of the CPU clock by setting CLKSM = CLKGDV = 1.  
P = 1 / (2 * processor clock)  
T
D
=
=
BCLKX period = (1 + CLKGDV) * 2P  
BCLKX high pulse width = T/2 when CLKGDV is odd or zero and = (CLKGDV/2 + 1) * 2P when CLKGDV is even  
FSRP = FSXP = 1. As a SPI master, BFSX is inverted to provide active-low slave-enable output. As a slave, the active-low signal input on BFSX  
and BFSR is inverted before being used internally.  
CLKXM = FSXM = 1, CLKRM = FSRM = 0 for master McBSP  
CLKXM = CLKRM = FSXM = FSRM = 0 for slave McBSP  
BFSX should be low before the rising edge of clock to enable slave devices and then begin a SPI transfer at the rising edge of the master clock  
(BCLKX).  
#
LSB  
MSB  
BCLKX  
BFSX  
t
h(BCKXH-BFXL)  
t
d(BFXL-BCKXL)  
t
t
d(BFXL-BDXV)  
dis(BFXH-BDXHZ)  
t
t
t
d(BCKXL-BDXV)  
dis(BCKXH-BDXHZ)  
BDX  
BDR  
Bit 0  
Bit(n-1)  
Bit(n-1)  
(n-2)  
(n-3)  
(n-4)  
t
su(BDRV-BCKXH)  
h(BCKXH-BDRV)  
(n-2)  
Bit 0  
(n-3)  
(n-4)  
Figure 526. McBSP Timing as SPI Master or Slave: CLKSTP = 10b, CLKXP = 1  
72  
SGUS035A  
April 2003 Revised July 2003  
Electrical Specifications  
Table 531. McBSP as SPI Master or Slave Timing Requirements (CLKSTP = 11b, CLKXP = 1)  
5416-100  
MASTER  
SLAVE  
MIN MAX  
UNIT  
MIN  
12  
4
MAX  
t
t
Setup time, BDR valid before BCLKX low  
Hold time, BDR valid after BCLKX low  
2 6P*  
5 + 12P*  
ns  
ns  
su(BDRV-BCKXL)  
h(BCKXL-BDRV)  
* Not production tested.  
For all SPI slave modes, CLKG is programmed as 1/2 of the CPU clock by setting CLKSM = CLKGDV = 1.  
P = 1 / (2 * processor clock)  
Table 532. McBSP as SPI Master or Slave Switching Characteristics (CLKSTP = 11b, CLKXP = 1)  
5416-100  
§
MASTER  
SLAVE  
MIN MAX  
PARAMETER  
UNIT  
MIN  
MAX  
t
Hold time, BFSX low after BCLKX high  
D 3*  
D + 4  
ns  
ns  
ns  
h(BCKXH-BFXL)  
d(BFXL-BCKXL)  
d(BCKXH-BDXV)  
#
t
t
Delay time, BFSX low to BCLKX low  
Delay time, BCLKX high to BDX valid  
T 4* T + 3*  
4*  
5
6P + 2*  
10P + 17  
10P + 17*  
8P + 17*  
Disable time, BDX high impedance following last data bit from  
BCLKX high  
t
2*  
4* 6P 4*  
ns  
ns  
dis(BCKXH-BDXHZ)  
t
Delay time, BFSX low to BDX valid  
C 2* C + 4* 4P + 2*  
d(BFXL-BDXV)  
* Not production tested.  
§
For all SPI slave modes, CLKG is programmed as 1/2 of the CPU clock by setting CLKSM = CLKGDV = 1.  
P = 1 / (2 * processor clock)  
T
C
D
=
=
=
BCLKX period = (1 + CLKGDV) * 2P  
BCLKX low pulse width = T/2 when CLKGDV is odd or zero and = (CLKGDV/2) * 2P when CLKGDV is even  
BCLKX high pulse width = T/2 when CLKGDV is odd or zero and = (CLKGDV/2 + 1) * 2P when CLKGDV is even  
FSRP = FSXP = 1. As a SPI master, BFSX is inverted to provide active-low slave-enable output. As a slave, the active-low signal input on BFSX  
and BFSR is inverted before being used internally.  
CLKXM = FSXM = 1, CLKRM = FSRM = 0 for master McBSP  
CLKXM = CLKRM = FSXM = FSRM = 0 for slave McBSP  
BFSX should be low before the rising edge of clock to enable slave devices and then begin a SPI transfer at the rising edge of the master clock  
(BCLKX).  
#
MSB  
LSB  
BCLKX  
t
t
h(BCKXH-BFXL)  
d(BFXL-BCKXL)  
BFSX  
t
t
t
d(BCKXH-BDXV)  
(n-2)  
dis(BCKXH-BDXHZ)  
d(BFXL-BDXV)  
BDX  
Bit 0  
Bit(n-1)  
Bit(n-1)  
(n-3)  
(n-4)  
t
su(BDRV-BCKXL)  
t
h(BCKXL-BDRV)  
BDR  
Bit 0  
(n-2)  
(n-3)  
(n-4)  
Figure 527. McBSP Timing as SPI Master or Slave: CLKSTP = 11b, CLKXP = 1  
73  
April 2003 Revised July 2003  
SGUS035A  
Electrical Specifications  
5.15 Host-Port Interface Timing  
5.15.1 HPI8 Mode  
Table 533 and Table 534 assume testing over recommended operating conditions and P = 1 / (2 * processor  
clock) (see Figure 528 through Figure 531). In the following tables, DS refers to the logical OR of HCS,  
HDS1, and HDS2. HD refers to any of the HPI data bus pins (HD0, HD1, HD2, etc.). HAD stands for HCNTL0,  
HCNTL1, and HR/W.  
Table 533. HPI8 Mode Timing Requirements  
5416-100  
UNIT  
MIN  
MAX  
Setup time, HBIL valid before DS low (when HAS is not used), or HBIL valid before HAS  
low  
t
6
ns  
su(HBV-DSL)  
t
t
t
t
t
t
Hold time, HBIL valid after DS low (when HAS is not used), or HBIL valid after HAS low  
Setup time, HAS low before DS low  
3
8*  
13*  
7*  
3
ns  
ns  
ns  
ns  
ns  
ns  
h(DSL-HBV)  
su(HSL-DSL)  
w(DSL)  
Pulse duration, DS low  
Pulse duration, DS high  
w(DSH)  
Setup time, HD valid before DS high, HPI write  
Hold time, HD valid after DS high, HPI write  
su(HDV-DSH)  
h(DSH-HDV)W  
2
t
Setup time, HDx input valid before CLKOUT high, HDx configured as general-purpose input  
Hold time, HDx input valid before CLKOUT high, HDx configured as general-purpose input  
6*  
0*  
ns  
ns  
su(GPIO-COH)  
h(GPIO-COH)  
t
* Not production tested.  
74  
SGUS035A  
April 2003 Revised July 2003  
Electrical Specifications  
Table 534. HPI8 Mode Switching Characteristics  
5416-100  
PARAMETER  
UNIT  
MIN  
0*  
MAX  
t
Enable time, HD driven from DS low  
Case 1a: Memory accesses when DMAC is active  
10*  
ns  
en(DSL-HD)  
36P+10t  
*
w(DSH)  
in 32-bit mode and t  
< 36P  
w(DSH)  
Case 1b: Memory accesses when DMAC is active  
10*  
in 32-bit mode and t  
36P  
w(DSH)  
Case 1c: Memory accesses when DMAC is active  
18P+10t  
*
w(DSH)  
in 16-bit mode and t  
< I8P  
w(DSH)  
Delay time, DS low to HD  
valid for first byte of an HPI  
read  
Case 1d: Memory accesses when DMAC is active  
t
d(DSL-HDV1)  
ns  
10*  
in 16-bit mode and t  
I8P  
w(DSH)  
Case 2a: Memory accesses when DMAC is inactive  
10P+10t  
*
w(DSH)  
< 10P  
and t  
w(DSH)  
Case 2b: Memory accesses when DMAC is inactive  
10*  
and t  
10P  
w(DSH)  
Case 3: Register accesses  
10*  
10*  
t
d(DSL-HDV2)  
Delay time, DS low to HD valid for second byte of an HPI read  
Hold time, HD valid after DS high, for a HPI read  
Valid time, HD valid after HRDY high  
ns  
ns  
ns  
ns  
t
0*  
h(DSH-HDV)R  
t
2*  
8*  
v(HYH-HDV)  
t
Delay time, DS high to HRDY low  
d(DSH-HYL)  
Case 1a: Memory accesses when DMAC is active  
in 16-bit mode  
18P+6*  
36P+6*  
Case 1b: Memory accesses when DMAC is active  
Delay time, DS high to HRDY  
high  
t
ns  
d(DSH-HYH)  
in 32-bit mode  
Case 2: Memory accesses when DMAC is inactive  
10P+6*  
§
Case 3: Write accesses to HPIC register  
6P+6*  
6*  
9
ns  
ns  
ns  
t
Delay time, HCS low/high to HRDY low/high  
Delay time, CLKOUT high to HRDY high  
Delay time, CLKOUT high to HINT change  
d(HCS-HRDY)  
t
d(COH-HYH)  
t
6
d(COH-HTX)  
Delay time, CLKOUT high to HDx output change. HDx is configured as a  
general-purpose output  
t
5*  
ns  
d(COH-GPIO)  
* Not production tested.  
DMAC stands for direct memory access controller (DMAC). The HPI8 shares the internal DMA bus with the DMAC, thus HPI8 access times  
are affected by DMAC activity.  
§
The HRDY output is always high when the HCS input is high, regardless of DS timings.  
This timing applies when writing a one to the DSPINT bit or HINT bit of the HPIC register. All other writes to the HPIC occur asynchronously,  
and do not cause HRDY to be deasserted.  
75  
April 2003 Revised July 2003  
SGUS035A  
Electrical Specifications  
Second Byte  
First Byte  
Second Byte  
HAS  
t
su(HBV-DSL)  
t
su(HSL-DSL)  
t
h(DSL-HBV)  
HAD  
Valid  
Valid  
t
su(HBV-DSL)  
t
h(DSL-HBV)  
HBIL  
HCS  
t
w(DSH)  
t
w(DSL)  
HDS  
t
d(DSH-HYH)  
t
d(DSH-HYL)  
HRDY  
t
en(DSL-HD)  
t
d(DSL-HDV2)  
t
d(DSL-HDV1)  
Valid  
t
h(DSH-HDV)R  
HD READ  
Valid  
Valid  
t
su(HDV-DSH)  
t
v(HYH-HDV)  
Valid  
t
h(DSH-HDV)W  
HD WRITE  
Valid  
Valid  
t
d(COH-HYH)  
Processor  
CLK  
HAD refers to HCNTL0, HCNTL1, and HR/W.  
When HAS is not used (HAS always high)  
Figure 528. Using HDS to Control Accesses (HCS Always Low)  
76  
SGUS035A  
April 2003 Revised July 2003  
Electrical Specifications  
Second Byte  
First Byte  
Second Byte  
HCS  
HDS  
t
d(HCS-HRDY)  
HRDY  
Figure 529. Using HCS to Control Accesses  
CLKOUT  
t
d(COH-HTX)  
HINT  
Figure 530. HINT Timing  
CLKOUT  
t
su(GPIO-COH)  
t
h(GPIO-COH)  
GPIOx Input Mode  
t
d(COH-GPIO)  
GPIOx Output Mode  
GPIOx refers to HD0, HD1, HD2, ...HD7, when the HD bus is configured for general-purpose input/output (I/O).  
Figure 531. GPIOx Timings  
77  
April 2003 Revised July 2003  
SGUS035A  
Electrical Specifications  
5.15.2 HPI16 Mode  
Table 535 and Table 536 assume testing over recommended operating conditions and P = 1 / (2 * processor  
clock) (see Figure 532 through Figure 534). In the following tables, DS refers to the logical OR of HCS,  
HDS1, and HDS2, and HD refers to any of the HPI data bus pins (HD0, HD1, HD2, etc.). These timings are  
shown assuming that HDS is the signal controlling the transfer. See the TMS320C54x DSP Reference Set,  
Volume 5: Enhanced Peripherals (literature number SPRU302) for addition information.  
Table 535. HPI16 Mode Timing Requirements  
5416-100  
UNIT  
MIN  
6
MAX  
t
t
Setup time, HR/W valid before DS falling edge  
Hold time, HR/W valid after DS falling edge  
ns  
ns  
su(HBV-DSL)  
5
h(DSL-HBV)  
t
t
t
t
t
Setup time, address valid before DS rising edge (write)  
Setup time, address valid before DS falling edge (read)  
Hold time, address valid after DS rising edge  
Pulse duration, DS low  
5*  
ns  
ns  
ns  
ns  
ns  
su(HAV-DSH)  
su(HAV-DSL)  
h(DSH-HAV)  
w(DSL)  
(4P 6)*  
1*  
30*  
Pulse duration, DS high  
10*  
w(DSH)  
Reads 10P + 30*  
Writes 10P + 10*  
Reads 16P + 30*  
Writes 16P + 10*  
Reads 24P + 30*  
Writes 24P + 10*  
8
Memory accesses with no DMA activity.  
Cycle time, DS rising edge to  
next DS rising edge  
t
Memoryaccesses with 16-bit DMA activity.  
Memoryaccesses with 32-bit DMA activity.  
ns  
c(DSH-DSH)  
t
t
Setup time, HD valid before DS rising edge  
Hold time, HD valid after DS rising edge, write  
ns  
ns  
su(HDV-DSH)W  
2
h(DSH-HDV)W  
* Not production tested.  
78  
SGUS035A  
April 2003 Revised July 2003  
Electrical Specifications  
Table 536. HPI16 Mode Switching Characteristics  
5416-100  
PARAMETER  
UNIT  
MIN  
MAX  
10*  
t
Delay time, DS low to HD driven  
0*  
d(DSL-HDD)  
Case 1a: Memory accesses initiated immediately following a write  
when DMAC is active in 32-bit mode and t was < 26P  
48P +  
20 t  
*
*
*
w(DSH)  
w(DSH)  
Case 1b: Memory access not immediately following a write when  
DMAC is active in 32-bit mode  
24P + 20*  
Delay time,  
DS low to HD  
valid for first  
word of an  
HPI read  
Case 1c: Memory accesses initiated immediately following a write  
32P +  
20 t  
w(DSH)  
when DMAC is active in 16-bit mode and t  
w(DSH)  
was < 18P  
ns  
t
d(DSL-HDV1)  
Case 1d: Memory accesses not immediately following a write when  
DMAC is active in 16-bit mode  
16P + 20*  
Case 2a: Memory accesses initiated immediately following a write  
20P +  
20 t  
w(DSH)  
when DMAC is inactive and t  
w(DSH)  
was < 10P  
Case 2b: Memory accesses not immediately following a write when  
DMAC is inactive  
10P + 20*  
Memory writes when no DMA is active  
10P + 5*  
16P + 5*  
24P + 5*  
7*  
Delay  
DS high to  
HRDY high  
time,  
Memory writes with one or more 16-bit DMA channels active  
Memory writes with one or more 32-bit DMA channels active  
t
ns  
d(DSH-HYH)  
ns  
ns  
ns  
ns  
ns  
t
Valid time, HD valid after HRDY high  
Hold time, HD valid after DS rising edge, read  
Delay time, CLKOUT rising edge to HRDY high  
Delay time, DS low to HRDY low  
v(HYH-HDV)  
t
1*  
6*  
h(DSH-HDV)R  
t
5
d(COH-HYH)  
t
12*  
d(DSL-HYL)  
t
Delay time, DS high to HRDY low  
12*  
d(DSHHYL)  
* Not production tested.  
79  
April 2003 Revised July 2003  
SGUS035A  
Electrical Specifications  
HCS  
t
w(DSH)  
t
c(DSHDSH)  
HDS  
t
t
su(HBVDSL)  
w(DSL)  
t
su(HBVDSL)  
h(DSLHBV)  
t
t
h(DSLHBV)  
HR/W  
t
su(HAVDSL)  
t
h(DSHHAV)  
HA[17:0]  
Valid Address  
Valid Address  
t
h(DSHHDV)R  
t
d(DSLHDV1)  
t
t
h(DSHHDV)R  
d(DSLHDV1)  
Data  
HD[15:0]  
HRDY  
Data  
t
d(DSLHDD)  
t
d(DSLHDD)  
t
v(HYHHDV)  
t
v(HYHHDV)  
t
t
d(DSLHYL)  
d(DSLHYL)  
Figure 532. Nonmultiplexed Read Timings  
80  
SGUS035A  
April 2003 Revised July 2003  
Electrical Specifications  
HCS  
HDS  
t
w(DSH)  
t
c(DSHDSH)  
t
su(HBVDSL)  
t
su(HBVDSL)  
t
t
h(DSLHBV)  
h(DSLHBV)  
HR/W  
t
su(HAVDSH)  
t
w(DSL)  
t
h(DSHHAV)  
Valid Address  
Valid Address  
su(HDVDSH)W  
HA[17:0]  
HD[15:0]  
HRDY  
t
t
su(HDVDSH)W  
t
h(DSHHDV)W  
t
h(DSHHDV)W  
Data Valid  
Data Valid  
t
d(DSHHYH)  
t
d(DSHHYL)  
Figure 533. Nonmultiplexed Write Timings  
HRDY  
t
d(COHHYH)  
CLKOUT  
Figure 534. HRDY Relative to CLKOUT  
81  
April 2003 Revised July 2003  
SGUS035A  
Mechanical Data  
6
Mechanical Data  
6.1 Ceramic Quad Flatpack Mechanical Data  
HFG (S-CQFP-F164)  
CERAMIC QUAD FLATPACK WITH NCTB  
1.140 (28,96)  
SQ  
1.120 (28,45)  
0.325 (8,26)  
1.000 (25,40)  
BSC  
Tie Bar Width  
A”  
0.275 (6,99)  
41  
1
42  
164  
1.520 (38,61)  
1.480 (37,59)  
2.505 (63,63)  
2.485 (63,12)  
82  
124  
83  
123  
C”  
1.150 (29,21)  
BSC 8 Places  
B”  
0.061 (1,55)  
DIA 4 Places  
0.059 (1,50)  
0.105 (2,67) MAX  
0.018 (0,46) MAX  
0.010 (0,25)  
0.006 (0,15)  
164 X  
BRAZE  
0.014 (0,36)  
0.002 (0,05)  
0.040 (1,02)  
0.030 (0,76)  
0.009 (0,23)  
0.004 (0,10)  
0.020 (0,51) MAX  
DETAIL B”  
0.130 (3,30) MAX  
0,025 (0,64)  
DETAIL A”  
DETAIL C”  
4040231-9/J 01/99  
NOTES: A. All linear dimensions are in inches (millimeters).  
B. This drawing is subject to change without notice.  
C. Ceramic quad flatpack with flat leads brazed to non-conductive tie bar carrier  
D. This package is hermetically sealed with a metal lid.  
E. The leads are gold-plated and can be solder-dipped.  
F. Leads not shown for clarity purposes  
G. Falls within JEDEC MO-113AA (REV D)  
Figure 61. SMJ320VC5416 164-Pin Ceramic Quad Flatpack (HFG)  
82  
SGUS035A  
April 2003 Revised July 2003  

相关型号:

SMJ320VC5416HFGW10

Fixed-Point Digital Signal Processor

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

SMJ320VC5506GHH

Fixed-Point Digital Signal Processor

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

SMJ320VC5506PGE

Fixed-Point Digital Signal Processor

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

SMJ320VC5506ZHH

Fixed-Point Digital Signal Processor

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

SMJ325B7223KN8T

Soft Termination MLCC for Telecommunications infrastructure and Industrial equipment / Medical devices

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TAIYO YUDEN

SMJ325B7223KNHT

Soft Termination MLCC for Automotive

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TAIYO YUDEN

SMJ325B7223MN8T

Soft Termination MLCC for Telecommunications infrastructure and Industrial equipment / Medical devices

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TAIYO YUDEN

SMJ325B7223MNHT

Soft Termination MLCC for Automotive

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TAIYO YUDEN

SMJ325B7473KN8T

Soft Termination MLCC for Telecommunications infrastructure and Industrial equipment / Medical devices

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TAIYO YUDEN

SMJ325B7473KNHT

Soft Termination MLCC for Automotive

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TAIYO YUDEN

SMJ325B7473MN8T

Soft Termination MLCC for Telecommunications infrastructure and Industrial equipment / Medical devices

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TAIYO YUDEN

SMJ325B7473MNHT

Soft Termination MLCC for Automotive

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TAIYO YUDEN