SMJ44C256-12FQ [TI]

SMJ44C256-12FQ;
SMJ44C256-12FQ
型号: SMJ44C256-12FQ
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

SMJ44C256-12FQ

文件: 总21页 (文件大小:515K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
SMJ44C256  
262144-WORD BY 4-BIT DYNAMIC RANDOM-ACCESS MEMORY  
SGMS034C – MAY 1989 – REVISED JUNE 1995  
Organization . . . 262144 Words × 4 Bits  
3-State Unlatched Output  
Low Power Dissipation  
Single 5-V Supply (10% Tolerance)  
Processed to MIL-STD-833, Class B  
Packaging Offered:  
Performance Ranges:  
– 20-Pin 300-Mil Ceramic DIP (JD Suffix)  
– 20-Lead Ceramic Surface-Mount Package  
(HJ Suffix)  
– 20-Pin Ceramic Flat Pack (HK Suffix)  
– 20-Terminal Leadless Ceramic  
Surface-Mount Package (FQ Suffix)  
– 20-Terminal Low-Profile Leadless  
Ceramic Surface-Mount Package  
(HL Suffix)  
ACCESS ACCESS ACCESS READ  
TIME  
TIME  
TIME  
OR  
t
t
t
a(CA)  
WRITE  
CYCLE  
(MIN)  
a(R)  
a(C)  
(t  
RAC  
)
(t  
CAC  
)
(t  
CAA  
)
(MAX)  
(MAX)  
(MAX)  
SMJ44C256-80 80 ns  
SMJ44C256-10 100 ns  
SMJ44C256-12 120 ns  
SMJ44C256-15 150 ns  
20 ns  
25 ns  
30 ns  
40 ns  
40 ns  
45 ns  
55 ns  
70 ns  
150 ns  
190 ns  
220 ns  
260 ns  
– 20-Pin Ceramic Zig Zag In-Line Package  
(SV Suffix)  
Enhanced Page Mode Operation With  
CAS-Before-RAS (CBR) Refresh  
Operating Free-Air Temperature Range  
Long Refresh Period  
– 55°C to 125°C  
512-Cycle Refresh in 8 ms (Max)  
All Inputs and Clocks are TTL Compatible  
JD PACKAGE  
(TOP VIEW)  
HJ PACKAGE  
(TOP VIEW)  
PIN NOMENCLATURE  
A0A8  
CAS  
Address Inputs  
Column Address Strobe  
Data In/Data Out  
Data Output Enable  
Row Address Strobe  
Test Function  
DQ1  
DQ2  
W
RAS  
TF  
1
2
3
4
5
26  
25  
24  
23  
22  
V
SS  
DQ1  
DQ2  
W
RAS  
TF  
A0  
A1  
A2  
A3  
1
2
3
4
5
6
7
8
9
10  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
V
SS  
DQ1DQ4  
G
DQ4  
DQ3  
CAS  
G
DQ4  
DQ3  
CAS  
G
A8  
A7  
A6  
A5  
A4  
RAS  
TF  
V
V
W
5-V Supply  
Ground  
Write Enable  
CC  
SS  
A0  
A1  
A2  
A3  
9
18  
17  
16  
15  
14  
A8  
A7  
A6  
A5  
A4  
10  
11  
12  
13  
FQ/HL PACKAGES  
(TOP VIEW)  
SV PACKAGE  
(TOP VIEW)  
V
CC  
V
CC  
DQ1  
DQ2  
W
RAS  
TF  
1
2
3
4
5
26  
25  
24  
23  
22  
V
SS  
G
DQ3  
1
2
4
6
8
CAS  
DQ4  
DQ1  
W
DQ4  
DQ3  
CAS  
G
HK PACKAGE  
(TOP VIEW)  
3
V
5
SS  
DQ2  
RAS  
A0  
7
V
DQ1  
DQ2  
W
RAS  
TF  
A0  
A1  
A2  
A3  
1
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
SS  
9
10 TF  
12 A1  
14 A3  
16 A4  
18 A6  
20 A8  
DQ4  
DQ3  
CAS  
G
A8  
A7  
A6  
A5  
A4  
2
11  
13  
15  
17  
19  
3
9
A0  
A1  
A2  
A3  
18  
17  
16  
15  
14  
A8  
A7  
A6  
A5  
A4  
A2  
10  
11  
12  
13  
4
V
CC  
A5  
A7  
5
6
V
7
CC  
8
9
V
10  
CC  
EPIC is a trademark of Texas Instruments Incorporated.  
Copyright 1995, Texas Instruments Incorporated  
PRODUCTION DATA information is current as of publication date.  
Products conform to specifications per the terms of Texas Instruments  
standard warranty. Production processing does not necessarily include  
testing of all parameters.  
1
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
SMJ44C256  
262144-WORD BY 4-BIT DYNAMIC RANDOM-ACCESS MEMORY  
SGMS034C – MAY 1989 – REVISED JUNE 1995  
description  
The SMJ44C256 series is a set of high-speed, 1048576-bit dynamic random access memories (DRAMs),  
organized as 262 144 words of four bits each. These devices employ EPIC (Enhanced Performance  
Implanted CMOS) technology for high performance, reliability, and low power.  
These devices feature maximum RAS access times of 80 ns, 100 ns,120 ns, and 150 ns. Maximum power  
dissipation is as low as 305 mW operating and 16.5 mW standby on 150-ns devices.  
TheEPICtechnologypermitsoperationfromasingle5-Vsupply, reducingsystempowersupplyanddecoupling  
requirements, and easing board layout. I  
–1 V can be tolerated, minimizing system noise considerations.  
peaks are 140 mA typical, and an input voltage undershoot of  
CC  
All inputs and outputs, including clocks, are compatible with Series 54/174 TTL. All addresses and data-in lines  
are latched on-chip to simplify system design. Data out is unlatched to allow greater system flexibility.  
The SMJ44C256 is offered in 20-pin ceramic dual-in-line packages (JD suffix) and 20/26-terminal ceramic  
leadless carriers (FQ/HL suffixes), 20/26-pin leaded carrier (HJ suffix), a 20-pin flatpack (HK suffix), and a  
20-pin ceramic zig-zag in-line package (SV suffix). They are specified for operation from –55°C to125°C.  
logic symbol  
RAM 256K × 4  
6
7
A0  
A1  
A2  
A3  
A4  
A5  
A6  
A7  
A8  
20D9/21D0  
8
9
11  
12  
13  
14  
15  
0
A
262 143  
20D17/21D8  
C20[ROW]  
G23/[REFRESH ROW]  
24[PWR DWN]  
C21/[COLUMN]  
G24  
4
RAS  
CAS  
17  
&
23C22  
24,25EN  
3
W
G
23,21D  
G25  
16  
1
DQ1  
A,22D  
26  
A,Z26  
2
18  
19  
DQ2  
DQ3  
DQ4  
This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12. Pin numbers shown are for the JD package.  
EPIC is a trademark of Texas Instruments Incorporated.  
2
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
SMJ44C256  
262144-WORD BY 4-BIT DYNAMIC RANDOM-ACCESS MEMORY  
SGMS034C – MAY 1989 – REVISED JUNE 1995  
functional block diagram  
RAS CAS  
W
G
Timing and Control  
Row  
Address  
Buffers  
(9)  
256K  
Array  
Row  
Decode  
256K  
Array  
A0  
A1  
A2  
A3  
A4  
A5  
A6  
A7  
A8  
Sense Amplifiers  
Data  
In  
4
Column  
Address  
Buffers  
(9)  
Reg  
I/O  
Buffers  
4 of 8  
Column Decode  
Selection  
Data  
Out  
Reg  
4
4
Sense Amplifiers  
256K  
Array  
Row  
Decode  
256K  
Array  
DQ1–DQ4  
operation  
enhanced page mode  
Page-mode operation allows faster memory access by keeping the same row address while selecting random  
column addresses. The time for row-address setup and hold and address multiplex is eliminated. The maximum  
number of columns that can be accessed is determined by the maximum RAS low time and the CAS page cycle  
time used. With minimum CAS page cycle time, all 512 columns specified by column addresses A0 through A8  
can be accessed without intervening RAS cycles.  
Unlike conventional page mode DRAMs, the column-address buffers in this device are activated on the falling  
edge of RAS. The buffers act as transparent or flow-through latches while CAS is high. The column address  
latches to the first CAS falling edge. This feature allows the SMJ44C256 to operate at a wider data bandwidth  
than conventional page mode parts, since data retrieval begins as soon as column address is valid rather than  
when CAS goes low. This performance improvement is referred to as enhanced page mode. Valid column  
address can be presented immediately after t  
(row address hold time) has been satisfied, usually well in  
h(RA)  
advance of the falling edge of CAS. In this case, data is obtained after t  
maximum (access time from CAS  
a(C)  
low), if t  
maximum (access time from column address) has been satisfied. In the event that column  
a(CA)  
addresses for the next page cycle are valid at the time CAS goes high, access time for the next cycle is  
determined by the later occurrence of t or t (access time from rising edge of CAS).  
a(C)  
a(CP)  
3
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
SMJ44C256  
262144-WORD BY 4-BIT DYNAMIC RANDOM-ACCESS MEMORY  
SGMS034C – MAY 1989 – REVISED JUNE 1995  
address (A0 through A8)  
Eighteen address bits are required to decode 1 of 262144 storage cell locations. Nine row-address bits are set  
up on pins A0 through A8 and latched onto the chip by RAS. Nine column-address bits are set up on pins A0  
through A8 and latched onto the chip by CAS. All addresses must be stable on or before the falling edges of  
RAS and CAS. RAS is similar to a chip enable in that it activates the sense amplifiers as well as the row decoder.  
In the SMJ44C256, CAS is used as a chip select, activating the output buffer as well as latching the address  
bits into the column-address buffers.  
write enable (W)  
The read or write mode is selected through W. A logic high on the W input selects the read mode and a logic  
low selects the write mode. The write-enable terminal can be driven from the standard TTL circuits without a  
pullup resistor. The data input is disabled when the read mode is selected. When W goes low prior to CAS  
(early-write), data out remains in the high-impedance state for the entire cycle, permitting a write operation with  
G grounded.  
data in (DQ1–DQ4)  
Data is written during a write or read-modify-write cycle. Depending on the mode of operation, the falling edge  
of CAS or W strobes data into the on-chip data latch. In an early-write cycle, W is brought low prior to CAS and  
the data is strobed in by CAS with setup and hold times referenced to this signal. In a delayed-write or  
read-modify-write cycle, CAS is already low, the data is strobed in by W with setup and hold times referenced  
to this signal. In a delayed-write or read-modify-write cycle, G must be high to bring the output buffers to the  
high-impedance state prior to applying data to the I/O lines.  
data out (DQ1–DQ4)  
The 3-state output buffer provides direct TTL compatibility (no pullup resistor required) with a fanout of two  
Series 54 TTL loads. Data out is the same polarity as data in. The output is in the high-impedance (floating) state  
until CAS and G are brought low. In a read cycle the output becomes valid after the access time interval t  
a(C)  
thatbeginswiththenegativetransitionofCASaslongast  
andt  
aresatisfied. Theoutputbecomesvalid  
a(R)  
a(CA)  
after the access time has elapsed and remains valid while CAS and G are low. CAS or G going high returns it  
toahigh-impedancestate.ThisisaccomplishedbybringingGhighpriortoapplyingdata,thussatisfyingt  
.
d(GHD)  
output enable (G)  
G controls the impedance of the output buffers. When G is high, the buffers remain in the high-impedance state.  
Bringing G low during a normal cycle activates the output buffers, putting them in the low-impedance state. It  
is necessary for both G and CAS to be brought low for the output buffers, to go into the low-impedance state.  
Once in the low-impedance state, they remain in the low-impedance state until either G or CAS is brought high.  
refresh  
A refresh operation must be performed at least once every 8 ms to retain data. This can be achieved by strobing  
each of the 512 rows (A0A8). A normal read or write cycle refreshes all bits in each row that is selected. A  
RAS-only operation can be used by holding CAS at the high (inactive) level, conserving power as the output  
buffer remains in the high-impedance state. Externally generated addresses must be used for a RAS-only  
refresh. Hidden refresh can be performed while maintaining valid data at the output pin. This is accomplished  
by holding CAS at V after a read operation and cycling RAS after a specified precharge period, similar to a  
IL  
RAS-only refresh cycle.  
CBR refresh  
CBR refresh is utilized by bringing CAS low earlier than RAS [see parameter t  
] and holding it low after  
d(CLRL)R  
RAS falls [see parameter t  
]. For successive CBR refresh cycles, CAS can remain low while cycling  
d(RLCH)R  
RAS. The external address is ignored and the refresh address is generated internally. The external address is  
also ignored during the hidden refresh option.  
4
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
SMJ44C256  
262144-WORD BY 4-BIT DYNAMIC RANDOM-ACCESS MEMORY  
SGMS034C – MAY 1989 – REVISED JUNE 1995  
power up  
To achieve proper device operation, an initial pause of 200 µs followed by a minimum of eight initialization  
(refresh) cycles is required after power-up to the full V level.  
CC  
test function pin  
During normal device operation the TF pin must either be disconnected or biased at a voltage less than or equal  
to V  
.
CC  
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)  
Supply voltage range, V  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0 V to 7 V  
CC  
Voltage range on any pin (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 1 V to 7 V  
Short-circuit output current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 mA  
Continuous total power dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 W  
Operating free-air temperature range, T  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 55°C to 125°C  
A
Storage temperature range, T  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 65°C to 150°C  
stg  
Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and  
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not  
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
NOTE 1: All voltage values are with respect to V  
.
SS  
recommended operating conditions  
MIN NOM  
MAX  
UNIT  
V
V
V
V
T
Supply voltage  
4.5  
5
0
5.5  
V
V
V
V
CC  
SS  
IH  
Supply voltage  
High-level input voltage  
Low-level input voltage (see Note 2)  
Operating free-air temperature  
2.4  
– 1  
6.5  
0.8  
IL  
– 55  
°C  
°C  
A
T
C
Case temperature  
125  
NOTE 2: The algebraic convention, where the more negative (less positive) limit is designated as minimum, is used for logic-voltage levels only.  
5
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
SMJ44C256  
262144-WORD BY 4-BIT DYNAMIC RANDOM-ACCESS MEMORY  
SGMS034C – MAY 1989 – REVISED JUNE 1995  
electrical characteristics over recommended ranges of supply voltage and operating free-air  
temperature (unless otherwise noted)  
’44C256-80  
’44C256-10  
’44C256-12  
’44C256-15  
PARAMETER  
TEST CONDITIONS  
UNIT  
MIN  
MAX  
MIN  
MAX  
MIN  
MAX  
MIN  
MAX  
High-level output  
voltage  
V
V
I
I
= – 5 mA  
= 4.2 mA  
2.4  
2.4  
2.4  
2.4  
V
V
OH  
OH  
Low-level output  
voltage  
0.4  
± 10  
± 10  
0.4  
± 10  
± 10  
0.4  
± 10  
± 10  
0.4  
± 10  
± 10  
OL  
OL  
V
= 5 V,  
V = 0 V to 6.5 V,  
I
Input current  
(leakage)  
CC  
All other pins = 0 V to V  
I
I
µA  
µA  
CC  
= 0 to V  
V
= 5.5 V,  
V
,
CC  
Output current  
(leakage)  
CC  
CAS high  
O
I
O
Read- or  
write-cycle  
current  
V
= 5.5 V,  
CC  
I
80  
3
70  
3
60  
3
55  
3
mA  
mA  
CC1  
t
= minimum  
c(rdW)  
After 1 memory cycle,  
RAS and CAS high,  
I
Standby current  
CC2  
V
IH  
= 2.4 V  
V
= 5.5 V,  
CC  
Average refresh  
current  
(RAS only, or  
CBR)  
t
= minimum,  
c(rdW)  
I
I
RAS cycling,  
75  
50  
65  
45  
55  
35  
50  
30  
mA  
mA  
CC3  
CAS high (RAS only),  
RAS low after CAS low (CBR)  
V
= 5.5 V, = minimum,  
t
Average page  
current  
CC  
RAS low,  
c(P)  
CAS cycling  
CC4  
capacitance over recommended ranges of supply voltage and operating free-air temperature,  
f = 1 MHz (see Note 3)  
HL/JD/FQ  
MIN MAX  
HJ  
MIN  
HK  
MIN  
SV  
MIN  
PARAMETER  
UNIT  
MAX  
MAX  
8
MAX  
C
C
C
C
Input capacitance, address inputs  
Input capacitance, strobe inputs  
Input capacitance, write-enable input  
Output capacitance  
6
7
7
7
7
7
7
9
9
8
7
8
pF  
pF  
pF  
pF  
i(A)  
i(RC)  
i(W)  
O
8
7
10  
NOTE 3: Capacitance is sampled only at initial design and after any major change. Samples are tested at 0 V and 25°C with a 1-MHz signal  
applied to the pin under test. All other pins are open.  
6
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
SMJ44C256  
262144-WORD BY 4-BIT DYNAMIC RANDOM-ACCESS MEMORY  
SGMS034C – MAY 1989 – REVISED JUNE 1995  
switching characteristics over recommended ranges of supply voltage and operating free-air  
temperature (see Figure 1)  
’44C256-80  
MIN MAX  
’44C256-10  
MIN MAX  
’44C256-12  
MIN MAX  
’44C256-15  
MIN MAX  
ALT.  
SYMBOL  
PARAMETER  
UNIT  
t
t
t
t
Access time from CAS low  
Access time from column-address  
Access time from RAS low  
Access time from G low  
t
20  
40  
80  
20  
25  
45  
30  
55  
40  
70  
ns  
ns  
ns  
ns  
a(C)  
CAC  
t
a(CA)  
a(RL)  
a(G)  
AA  
t
100  
25  
120  
30  
150  
40  
RAC  
GAC  
t
Access time from CAS high column  
precharge  
t
t
t
t
40  
20  
20  
50  
25  
25  
60  
30  
30  
75  
35  
35  
ns  
ns  
ns  
a(CP)  
CPA  
Output disable time after CAS high  
(see Note 4)  
t
dis(CH)  
OFF  
Output disable time after G high  
(see Note 4)  
t
dis(G)  
GOFF  
NOTE 4:  
t
and t are specified when the output is no longer driven. The outputs are disabled by bringing either G or CAS high.  
dis(G)  
dis(CH)  
timing requirements over recommended ranges of supply voltage and operating free-air  
temperature (see Note 5)  
’44C256-80  
’44C256-10  
’44C256-12  
’44C256-15  
ALT.  
SYMBOL  
PARAMETER  
UNIT  
MIN  
150  
150  
MAX  
MIN  
190  
190  
MAX  
MIN  
220  
220  
MAX  
MIN  
260  
260  
MAX  
t
t
Cycle time, read (see Note 6)  
Cycle time, write  
t
ns  
ns  
c(rd)  
RC  
t
c(W)  
WC  
Cycle time,read-write/read-  
modify-write  
t
t
t
225  
50  
270  
55  
305  
65  
355  
80  
ns  
ns  
c(rdW)  
RWC  
Cycle time, page-mode read  
or write (see Note 7)  
t
c(P)  
PC  
Cycle time, page-mode read-  
modify-write  
t
t
t
t
115  
10  
135  
10  
150  
15  
175  
25  
ns  
ns  
ns  
c(PM)  
w(CH)  
w(CL)  
PRWC  
Pulse duration, CAS high  
t
CP  
Pulse duration, CAS low  
(see Note 8)  
t
20  
10 000  
10 000  
25  
10 000  
10 000  
30  
10 000  
10 000  
40  
10 000  
10 000  
CAS  
Pulse duration, RAS high  
(precharge)  
t
t
60  
80  
80  
90  
100  
150  
ns  
ns  
w(RH)  
w(RL)  
RP  
Pulse duration,  
nonpage mode RAS low  
(see Note 9)  
t
t
100  
120  
RAS  
Pulse duration,  
page mode RAS low  
(see Note 9)  
t
t
80 100 000  
100 100 000  
120 100 000  
150 100 000  
ns  
w(RL)P  
RASP  
t
t
Pulse duration, write low  
t
15  
5
15  
5
20  
5
25  
5
ns  
ns  
w(WL)  
WP  
Setup time, column address  
before CAS low  
t
su(CA)  
ASC  
NOTES: 5. Timing measurements in this table are referenced to V max and V min.  
IL IH  
6. All cycle times assume t = 5 ns.  
t
7. To assure t  
min, t  
should be t  
.
w(CH)  
c(P)  
su(CA)  
8. In a read-modify-write cycle, t  
and t  
must be observed. Depending on the user’s transition times, this can require  
must be observed. Depending on the user’s transition times, this can require  
d(CLWL)  
w(CL)  
su(WCH)  
and t  
su(WRH)  
additional CAS low time [t  
9. In a read-modify-write cycle, t  
].  
d(RLWL)  
].  
additional RAS low time [t  
w(RL)  
7
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
SMJ44C256  
262144-WORD BY 4-BIT DYNAMIC RANDOM-ACCESS MEMORY  
SGMS034C – MAY 1989 – REVISED JUNE 1995  
timing requirements over recommended ranges of supply voltage and operating temperature  
(continued) (see Note 5)  
’44C256-80  
’44C256-10  
’44C256-12  
’44C256-15  
ALT.  
SYMBOL  
PARAMETER  
UNIT  
MIN  
MAX  
MIN  
MAX  
MIN  
MAX  
MIN  
MAX  
Setup time, row address  
before RAS low  
t
t
0
0
0
0
ns  
su(RA)  
ASR  
Setup time, data before  
W low (see Note 10)  
t
t
t
t
0
0
0
0
0
0
0
0
0
0
0
0
ns  
ns  
ns  
su(D)  
DS  
Setup time, W high before CAS low  
t
RCS  
su(rd)  
Setup time, W low before CAS low  
(see Note 11)  
t
su(WCL)  
WCS  
t
t
Setup time, W low before CAS high  
Setup time, W low before RAS high  
t
t
20  
20  
25  
25  
30  
30  
40  
40  
ns  
ns  
su(WCH)  
CWL  
su(WRH)  
RWL  
Hold time, column address after CAS  
low (see Note 10)  
t
t
t
t
t
15  
15  
60  
15  
20  
15  
70  
20  
20  
15  
80  
25  
25  
15  
ns  
ns  
ns  
ns  
h(CA)  
h(RA)  
h(RLCA)  
h(D)  
CAH  
RAH  
Hold time, row address after RAS  
low  
t
Hold time, column address after RAS  
low (see Note 12)  
t
100  
30  
AR  
Hold time, data after CAS low  
(see Note 10)  
t
DH  
Hold time, data after RAS low  
(see Note 12)  
t
t
t
t
60  
20  
0
70  
25  
0
85  
30  
0
110  
40  
0
ns  
ns  
ns  
h(RLD)  
DHR  
Hold time, G high after W low  
t
GH  
h(WLGL)  
h(CHrd)  
Hold time, W high after CAS high  
(see Note 14)  
t
t
RCH  
Hold time, W high after RAS high  
(see Note 14)  
t
t
t
10  
15  
65  
10  
20  
75  
10  
25  
90  
10  
30  
ns  
ns  
ns  
h(RHrd)  
h(CLW)  
h(RLW)  
RRH  
Hold time, W low after CAS low  
(see Note 11)  
t
WCH  
WCR  
Hold time, W low after RAS low  
(see Note 12)  
t
105  
t
t
t
Delay time, RAS low to CAS high  
Delay time, CAS high to RAS low  
Delay time, CAS low to RAS high  
t
80  
0
100  
0
120  
0
150  
0
ns  
ns  
ns  
d(RLCH)  
d(CHRL)  
d(CLRH)  
CSH  
CRP  
RSH  
t
t
20  
25  
30  
40  
Delay time, CAS low to W low  
(see Note 15)  
t
t
t
t
60  
30  
20  
70  
30  
20  
80  
30  
20  
90  
30  
25  
ns  
ns  
ns  
d(CLWL)  
d(RLCL)  
d(RLCA)  
CWD  
Delay time, RAS low to CAS low  
(see Note 13)  
t
60  
40  
75  
55  
90  
65  
110  
80  
RCD  
Delay time, RAS low to column  
address (see Note 13)  
t
RAD  
NOTES: 5. Timing measurements in this table are referenced to V max and V min.  
IL  
IH  
10. Referenced to the later of CAS or W in write operations.  
11. Early-write operation only  
12. The minimum value is measured when t  
is set to t min as a reference.  
d(RLCL)  
d(RLCL)  
13. Maximum value specified only to assure access time.  
14. Either t or t must be satisfied for a read cycle.  
h(RHrd)  
h(CHrd)  
15. Read-modify-write operation only  
8
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
SMJ44C256  
262144-WORD BY 4-BIT DYNAMIC RANDOM-ACCESS MEMORY  
SGMS034C – MAY 1989 – REVISED JUNE 1995  
timing requirements over recommended ranges of supply voltage and operating temperature  
(continued) (see Note 5)  
’44C256-80  
’44C256-10  
’44C256-12  
’44C256-15  
ALT.  
SYMBOL  
PARAMETER  
UNIT  
ns  
MIN  
MAX  
MIN  
MAX  
MIN  
MAX  
MIN  
MAX  
Delay time, column address to  
RAS high  
t
t
t
t
t
40  
45  
55  
70  
d(CARH)  
d(CACH)  
d(RLWL)  
d(CAWL)  
RAL  
CAL  
Delay time, column address to  
CAS high  
t
40  
130  
80  
45  
150  
95  
55  
170  
105  
70  
200  
120  
ns  
Delay time, RAS low to W low  
(see Note 15)  
t
ns  
RWD  
Delay time, column address to W  
low (see Note 15)  
t
ns  
AWD  
Delay time, G high before data at  
DQ  
t
t
t
t
20  
20  
20  
25  
25  
25  
30  
30  
25  
40  
40  
30  
ns  
ns  
ns  
d(GHD)  
GDD  
Delay time, G low to RAS high  
t
d(GLRH)  
d(RLCH)R  
GSR  
Delay time, RAS low to CAS high  
(see Note 16)  
t
CHR  
Delay time, CAS low to RAS low  
(see Note 16)  
t
t
t
t
10  
0
10  
0
10  
0
15  
0
ns  
ns  
d(CLRL)R  
CSR  
Delay time, RAS high to CAS low  
(see Note 16)  
d(RHCL)R  
RPC  
t
t
Refresh time interval  
t
8
8
8
8
ms  
ns  
rf  
REF  
Transition time (see Note 17)  
t
T
t
NOTES: 5. Timing measurements in this table are referenced to V max and V min.  
IL IH  
15. Read-modify-write operation only  
16. CBR refresh only  
17. System transition times (rise and fall) are to be a minimum of 3 ns and a maximum of 50 ns.  
PARAMETER MEASUREMENT INFORMATION  
1.31 V  
5 V  
R
= 218 Ω  
R
R
= 828 Ω  
= 295 Ω  
L
1
2
Output Under Test  
Output Under Test  
C
= 80 pF  
L
(See Note A)  
C
= 80 pF  
L
(See Note A)  
(a) LOAD CIRCUIT  
(b) ALTERNATE LOAD CIRCUIT  
NOTE A: C includes probe and fixture capacitance.  
L
Figure 1. Load Circuits for Timing Parameters  
9
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
SMJ44C256  
262144-WORD BY 4-BIT DYNAMIC RANDOM-ACCESS MEMORY  
SGMS034C – MAY 1989 – REVISED JUNE 1995  
PARAMETER MEASUREMENT INFORMATION  
tc(rd)  
c(rd)  
t
w(RL)  
RAS  
CAS  
t
w(RH)  
t
d(CLRH)  
t
d(RLCL)  
t
d(CHRL)  
t
d(RLCH)  
t
t
t
w(CL)  
t
d(RLCA)  
t
w(CH)  
t
su(CA)  
t
h(RA)  
t
d(CACH)  
t
t
su(RA)  
d(CARH)  
t
h(RLCA)  
A0A8  
Row  
Column  
Don’t Care  
t
h(RHrd)  
t
h(CA)  
t
t
h(CHrd)  
su(rd)  
W
Don’t Care  
Don’t Care  
t
a(C)  
t
a(CA)  
t
dis(CH)  
See Note A  
DQ1DQ4  
Hi-Z  
Valid  
t
a(RL)  
t
dis(G)  
t
a(G)  
t
d(GLRH)  
G
Don’t Care  
Don’t Care  
NOTE B: Output can go from the high-impedance state to an invalid-data state prior to the specified access time.  
Figure 2. Read-Cycle Timing  
10  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
SMJ44C256  
262144-WORD BY 4-BIT DYNAMIC RANDOM-ACCESS MEMORY  
SGMS034C – MAY 1989 – REVISED JUNE 1995  
PARAMETER MEASUREMENT INFORMATION  
t
c(W)  
t
w(RL)  
RAS  
CAS  
t
t
d(CLRH)  
w(RH)  
t
d(CHRL)  
t
t
t
d(RLCL)  
t
d(RLCH)  
t
w(CL)  
t
t
w(CH)  
su(CA)  
t
t
d(CACH)  
su(RA)  
t
t
h(RA)  
d(CARH)  
t
h(RLCA)  
A0A8  
Row  
Column  
Don’t Care  
t
d(RLCA)  
t
h(CA)  
t
su(WCH)  
t
su(WRH)  
t
h(RLW)  
t
h(CLW)  
su(WCL)  
t
W
Don’t Care  
Don’t Care  
t
w(WL)  
t
h(RLD)  
t
t
h(D)  
su(D)  
DQ1DQ4  
Valid Data  
Don’t Care  
G
Don’t Care  
Figure 3. Early-Write-Cycle Timing  
11  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
SMJ44C256  
262144-WORD BY 4-BIT DYNAMIC RANDOM-ACCESS MEMORY  
SGMS034C – MAY 1989 – REVISED JUNE 1995  
PARAMETER MEASUREMENT INFORMATION  
t
c(W)  
t
w(RL)  
RAS  
CAS  
t
d(CLRH)  
t
w(RH)  
t
t
t
d(RLCL)  
t
d(CHRL)  
t
d(RLCH)  
t
w(CL)  
t
t
w(CH)  
h(RLCA)  
t
su(CA)  
t
t
h(RA)  
d(CACH)  
t
t
su(RA)  
d(CARH)  
A0A8  
Row  
Column  
h(CA)  
Don’t Care  
t
t
su(WCH)  
t
d(RLCA)  
t
su(WRH)  
W
Don’t Care  
t
Don’t Care  
t
su(D)  
w(WL)  
h(D)  
t
t
h(RLD)  
t
h(RLW)  
DQ1DQ4  
Don’t Care  
Valid Data  
Don’t Care  
t
t
h(WLGL)  
d(GHD)  
G
Don’t Care  
Figure 4. Write-Cycle Timing  
12  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
SMJ44C256  
262144-WORD BY 4-BIT DYNAMIC RANDOM-ACCESS MEMORY  
SGMS034C – MAY 1989 – REVISED JUNE 1995  
PARAMETER MEASUREMENT INFORMATION  
t
c(rdW)  
t
w(RL)  
RAS  
CAS  
t
t
t
t
w(RH)  
w(CL)  
t
t
d(RLCL)  
d(CHRL)  
t
h(RA)  
t
w(CH)  
t
t
su(RA)  
su(CA)  
d(RLCA)  
t
t
h(CA)  
A0A8  
Column  
Row  
Don’t Care  
su(WCH)  
t
t
h(RLCA)  
t
d(RLWL)  
t
su(WRH)  
t
su(rd)  
t
w(WL)  
W
Don’t Care  
Don’t Care  
t
d(CAWL)  
t
d(CLWL)  
t
su(D)  
t
a(C)  
t
h(D)  
t
a(CA)  
See Note A  
DQ1–  
DQ4  
Don’t Care  
Valid Out  
Valid In  
Don’t Care  
t
a(R)  
t
dis(G)  
t
a(G)  
t
d(GHD)  
G
Don’t Care  
Don’t Care  
t
h(WLGL)  
NOTE A: Output can go from the high-impedance state to an invalid-data state prior to the specified access time.  
Figure 5. Read-Write-/Read-Modify-Write-Cycle Timing  
13  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
SMJ44C256  
262144-WORD BY 4-BIT DYNAMIC RANDOM-ACCESS MEMORY  
SGMS034C – MAY 1989 – REVISED JUNE 1995  
PARAMETER MEASUREMENT INFORMATION  
t
w(RH)  
t
w(RL)P  
RAS  
CAS  
t
t
c(P)  
d(RLCL)  
t
t
d(CLRH)  
d(RLCH)  
t
t
w(CH)  
t
w(CL)  
d(CHRL)  
t
su(RA)  
t
su(CA)  
t
d(CACH)  
t
h(RLCA)  
t
t
t
d(CARH)  
h(RA)  
h(CA)  
A0A8  
Row  
Column  
Don’t Care  
Column  
Don’t Care  
t
d(RLCA)  
t
h(CHrd)  
t
t
su(rd)  
h(RHrd)  
t
W
a(C)  
t
a(CA)  
(see Note A)  
t
a(CA)  
t
t
dis(CH)  
a(R)  
t
a(CP)  
(see Note C)  
See Note A  
See Note A  
DQ1–DQ4  
Valid Out  
Valid Out  
t
t
a(G)  
dis(G)  
t
t
a(G)  
dis(G)  
Don’t Care  
Don’t Care  
G
Don’t Care  
NOTES: A. Output can go from the high-impedance state to an invalid-data state prior to the specified access time.  
B. A write-cycle or read-modify-write cycle can be mixed with the read cycles as long as the write and read-modify-write timing  
specifications are not violated.  
C. Access time is t  
- or t  
-dependent.  
a(CA)  
a(CP)  
Figure 6. Enhanced-Page-Mode Read-Cycle Timing  
14  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
SMJ44C256  
262144-WORD BY 4-BIT DYNAMIC RANDOM-ACCESS MEMORY  
SGMS034C – MAY 1989 – REVISED JUNE 1995  
PARAMETER MEASUREMENT INFORMATION  
t
w(RH)  
t
w(RL)P  
RAS  
CAS  
t
t
c(P)  
d(RLCH)  
d(RLCL)  
t
t
w(CH)  
t
d(CLRH)  
t
d(CHRL)  
t
w(CL)  
t
su(RA)  
t
t
su(CA)  
d(CACH)  
t
h(CA)  
t
t
h(RA)  
d(CARH)  
t
h(RLCA)  
A0A8  
Row  
Column  
Column  
Don’t Care  
t
d(RLCA)  
t
t
su(WCH)  
h(RLW)  
t
su(WCH)  
t
su(WRH)  
t
w(WL)  
W
Don’t Care  
Don’t Care  
Don’t Care  
t
t
h(D)  
(see Note B)  
su(D)  
(see Note B)  
t
h(WLGL)  
t
su(D)  
(see Note B)  
t
h(D)  
(see Note B)  
t
h(RLD)  
DQ1–DQ4  
Valid Data In  
Valid In  
Don’t Care  
t
d(GHD)  
t
t
d(GHD)  
h(WLGL)  
G
Don’t Care  
Don’t Care  
NOTES: A. A read cycle or a read-modify-write cycle can be intermixed with the write cycles as long as the read and read-modify-write timing  
specifications are not violated.  
B. Referenced to CAS or W, whichever occurs last.  
Figure 7. Enhanced-Page-Mode Write-Cycle Timing (see Note A)  
15  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
SMJ44C256  
262144-WORD BY 4-BIT DYNAMIC RANDOM-ACCESS MEMORY  
SGMS034C – MAY 1989 – REVISED JUNE 1995  
PARAMETER MEASUREMENT INFORMATION  
t
w(RH)  
t
w(RL)P  
RAS  
CAS  
t
d(RLCH)  
t
d(CLRH)  
t
d(RLCL)  
t
d(CHRL)  
t
c(PM)  
t
w(CL)  
t
su(RA)  
t
t
w(CH)  
h(RLCA)  
t
su(CA)  
t
t
h(CA)  
d(RLCA)  
A0A8  
Row  
Column  
Column  
Don’t Care  
t
d(CLWL)  
t
t
su(WCH)  
h(RA)  
t
d(CAWL)  
d(RLWL)  
t
t
su(WRH)  
w(WL)  
t
W
t
a(C)  
t
su(rd)  
t
a(CP)  
t
h(WLGL)  
t
a(CA)  
t
h(D)  
t
a(R)  
t
su(D)  
See Note A  
Valid Out  
See Note A  
Valid  
Out  
Valid In  
DQ1–DQ4  
Don’t Care  
Don’t Care  
t
a(G)  
t
d(GHD)  
t
dis(G)  
G
t
h(WLGL)  
NOTES: A. Output can go from the high-impedance state to an invalid-data state prior to the specified access time.  
B. A read or write cycle can be intermixed with read-modify-write cycles as long as the read and write timing specifications are not  
violated.  
Figure 8. Enhanced-Page-Mode Read-Modify-Write-Cycle Timing (see Note B)  
16  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
SMJ44C256  
262144-WORD BY 4-BIT DYNAMIC RANDOM-ACCESS MEMORY  
SGMS034C – MAY 1989 – REVISED JUNE 1995  
PARAMETER MEASUREMENT INFORMATION  
t
c(rd)  
t
w(RL)  
RAS  
t
w(RH)  
t
d(CHRL)  
t
t
t
d(RHCL)R  
CAS  
A0A8  
W
Don’t Care  
Don’t Care  
t
su(RA)  
t
h(RA)  
Row  
Don’t Care  
Row  
Don’t Care  
Don’t Care  
Don’t Care  
DQ1–DQ4  
G
Figure 9. RAS-Only Refresh Timing  
17  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
SMJ44C256  
262144-WORD BY 4-BIT DYNAMIC RANDOM-ACCESS MEMORY  
SGMS034C – MAY 1989 – REVISED JUNE 1995  
PARAMETER MEASUREMENT INFORMATION  
Refresh Cycle  
Refresh Cycle  
t
w(RH)  
Memory Cycle  
t
w(RH)  
t
t
w(RL)  
w(RL)  
RAS  
CAS  
t
d(RLCH)R  
t
w(CL)  
t
su(RA)  
t
h(RA)  
t
su(CA)  
t
h(CA)  
Don’t Care  
A0A8  
Row  
Col  
t
h(RHrd)  
t
su(rd)  
Don’t Care  
W
t
a(C)  
a(CA)  
t
t
dis(CH)  
t
a(R)  
DQ1–DQ4  
Valid Data  
t
t
dis(G)  
a(G)  
G
Figure 10. Hidden-Refresh-Cycle (Enhanced Page Mode) Timing  
18  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
SMJ44C256  
262144-WORD BY 4-BIT DYNAMIC RANDOM-ACCESS MEMORY  
SGMS034C – MAY 1989 – REVISED JUNE 1995  
PARAMETER MEASUREMENT INFORMATION  
t
c(rd)  
t
w(RH)  
t
w(RL)  
RAS  
t
d(RHCL)R  
t
t
t
d(CLRL)R  
CAS  
t
d(RLCH)R  
A0A8  
Don’t Care  
DQ1–DQ4  
Hi-Z  
G
Don’t Care  
W
Don’t Care  
Figure 11. Automatic CBR Refresh-Cycle Timing  
19  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
SMJ44C256  
262144-WORD BY 4-BIT DYNAMIC RANDOM-ACCESS MEMORY  
SGMS034C – MAY 1989 – REVISED JUNE 1995  
20  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
IMPORTANT NOTICE  
Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any semiconductor  
product or service without notice, and advises its customers to obtain the latest version of relevant information  
to verify, before placing orders, that the information being relied on is current.  
TI warrants performance of its semiconductor products and related software to the specifications applicable at  
the time of sale in accordance with TI’s standard warranty. Testing and other quality control techniques are  
utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each  
device is not necessarily performed, except those mandated by government requirements.  
Certain applications using semiconductor products may involve potential risks of death, personal injury, or  
severe property or environmental damage (“Critical Applications”).  
TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED  
TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER  
CRITICAL APPLICATIONS.  
Inclusion of TI products in such applications is understood to be fully at the risk of the customer. Use of TI  
products in such applications requires the written approval of an appropriate TI officer. Questions concerning  
potential risk applications should be directed to TI through a local SC sales office.  
In order to minimize risks associated with the customer’s applications, adequate design and operating  
safeguards should be provided by the customer to minimize inherent or procedural hazards.  
TI assumes no liability for applications assistance, customer product design, software performance, or  
infringement of patents or services described herein. Nor does TI warrant or represent that any license, either  
express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property  
right of TI covering or relating to any combination, machine, or process in which such semiconductor products  
or services might be or are used.  
Copyright 1995, Texas Instruments Incorporated  

相关型号:

SMJ44C256-12FQM

256KX4 FAST PAGE DRAM, 120ns, CDSO20, CERAMIC, LCC-26
TI

SMJ44C256-12HJ

SMJ44C256-12HJ
TI

SMJ44C256-12HLM

256KX4 FAST PAGE DRAM, 120ns, CDSO20, CERAMIC, LCC-26/20
TI

SMJ44C256-12HMM

IC,DRAM,FAST PAGE,256KX4,CMOS,LLCC,20PIN,CERAMIC
TI

SMJ44C256-12JD

SMJ44C256-12JD
TI

SMJ44C256-15FQL

256KX4 FAST PAGE DRAM, 150ns, CDSO20
TI

SMJ44C256-15FQMT

256KX4 FAST PAGE DRAM, 150ns, CDSO20, CERAMIC, LCC-20
TI

SMJ44C256-15HMM

IC,DRAM,FAST PAGE,256KX4,CMOS,LLCC,20PIN,CERAMIC
TI

SMJ44C256-15JDL

256KX4 FAST PAGE DRAM, 150ns, CDIP20, 0.300 INCH, HERMETIC SEALED, SIDE BRAZED, CERAMIC, DIP-20
TI

SMJ44C256-15SVM

256KX4 FAST PAGE DRAM, 150ns, CDIP20, CERAMIC, DIP-20
TI

SMJ44C256-80HJM

256KX4 FAST PAGE DRAM, 80ns, CDSO20, CERAMIC, CC-26/20
TI

SMJ44C256-80HLMT

256KX4 FAST PAGE DRAM, 80ns, CDSO20, CERAMIC, LCC-26/20
TI