SMJ4C1024-80HL [TI]

1048576 BY 1-BIT DYNAMIC RANDOM-ACCESS MEMORY; 1048576 BY 1位动态随机存取存储器
SMJ4C1024-80HL
型号: SMJ4C1024-80HL
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

1048576 BY 1-BIT DYNAMIC RANDOM-ACCESS MEMORY
1048576 BY 1位动态随机存取存储器

存储 内存集成电路 动态存储器 CD
文件: 总27页 (文件大小:414K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
SMJ4C1024  
1048576 BY 1-BIT  
DYNAMIC RANDOM-ACCESS MEMORY  
SGMS023E – DECEMBER 1988 – REVISED MARCH 1996  
HJ PACKAGE  
(TOP VIEW)  
JD PACKAGE  
(TOP VIEW)  
Organization . . . 1048576 × 1-Bit  
Processed to MIL-STD-883, Class B  
Single 5-V Supply (10% Tolerance)  
D
W
RAS  
TF  
1
2
3
4
5
20  
19  
18  
17  
16  
V
SS  
Q
CAS  
NC  
A9  
D
W
RAS  
TF  
A0  
A1  
V
SS  
Q
1
2
3
4
5
6
7
8
9
18  
17  
16  
15  
14  
13  
12  
11  
10  
Performance Ranges:  
CAS  
A9  
A8  
A7  
A6  
A5  
A4  
ACCESS ACCESS ACCESS  
READ  
OR  
WRITE  
CYCLE  
(MIN)  
TIME  
TIME  
TIME  
NC  
t
t
t
a(R)  
a(C)  
a(CA)  
(t  
(t  
RAC  
)
(t  
CAC  
)
)
AA  
(MAX)  
(MAX)  
(MAX)  
A2  
A3  
A0  
A1  
A2  
A3  
6
15  
14  
13  
12  
11  
A8  
A7  
A6  
A5  
A4  
’4C1024-80  
’4C1024-10  
’4C1024-12  
’4C1024-15  
80 ns  
100 ns  
120 ns  
150 ns  
20 ns  
25 ns  
30 ns  
40 ns  
40 ns  
45 ns  
55 ns  
70 ns  
150 ns  
190 ns  
220 ns  
260 ns  
7
V
CC  
8
9
Enhanced Page-Mode Operation for Faster  
Memory Access  
– Higher Data Bandwidth Than  
Conventional Page Mode Parts  
– Random Single-Bit Access Within a Row  
With a Column Address  
V
10  
CC  
HK PACKAGE  
(TOP VIEW)  
V
D
W
RAS  
TF  
NC  
A0  
A1  
A2  
A3  
1
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
SS  
Q
2
CAS  
NC  
A9  
A8  
A7  
A6  
A5  
A4  
3
One of TI’s CMOS Megabit Dynamic  
Random-Access Memory (DRAM) Family  
Including SMJ44C256 — 256K × 4  
Enhanced Page Mode  
4
5
6
7
CAS-Before-RAS (CBR) Refresh  
8
9
Long Refresh Period  
V
10  
CC  
512-Cycle Refresh in 8 ms (Max)  
3-State Unlatched Output  
Low Power Dissipation  
FQ/HL PACKAGES  
(TOP VIEW)  
SV PACKAGE  
(SIDE VIEW)  
A9  
Q
D
RAS  
NC  
A0  
D
W
RAS  
TF  
10 11  
V
SS  
Q
CAS  
NC  
A9  
1
All Inputs/Outputs and Clocks Are  
TTL-Compatible  
CAS  
2
4
9
8
7
6
12  
13  
14  
15  
3
V
SS  
5
Packaging Offered:  
– 20/26-Pin J-Leaded Ceramic Surface  
Mount Package (HJ Suffix)  
– 18-Pin 300-Mil Ceramic Dual-In-Line  
Package (JD Suffix)  
– 20-Pin Ceramic Flatpack (HK Suffix)  
– 20/26-Terminal Leadless Ceramic  
Surface Mount Package (FQ/HL Suffixes)  
– 20-Pin Ceramic Zig-Zag In-Line Package  
(SV Suffix)  
W
6
7
TF  
NC  
A1  
A3  
A4  
A6  
A8  
8
NC  
9
10  
12  
14  
16  
18  
20  
11  
13  
15  
17  
19  
A2  
V
CC  
A5  
A7  
A0  
A1  
A2  
A3  
5
4
3
2
1
16  
17  
18  
19  
20  
A8  
A7  
A6  
A5  
A4  
V
CC  
Operating Temperature Range  
– 55°C to 125°C  
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of  
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
Copyright 1996, Texas Instruments Incorporated  
PRODUCTION DATA information is current as of publication date.  
Products conform to specifications per the terms of Texas Instruments  
standard warranty. Production processing does not necessarily include  
testing of all parameters.  
1
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
SMJ4C1024  
1048576 BY 1-BIT  
DYNAMIC RANDOM-ACCESS MEMORY  
SGMS023E – DECEMBER 1988 – REVISED MARCH 1996  
PIN NOMENCLATURE  
A0A9  
CAS  
D
Address Inputs  
Column Address Strobe  
Data In  
NC  
Q
No Internal Connection  
Data Out  
RAS  
TF  
Row Address Strobe  
Test Function  
5-V Supply  
Ground  
Write Enable  
V
CC  
V
SS  
W
description  
The SMJ4C1024 is a 1048576-bit DRAM organized as 1048576 words of one bit each. It employs technology  
for high performance, reliability, and low power at a low cost.  
This device features maximum RAS access times of 80 ns, 100 ns, 120 ns, and 150 ns. Maximum power  
dissipation is as low as 305 mW operating and 16.5 mW standby on 150-ns devices.  
I
peaks are typIcally 140 mA and a –1 V input voltage undershoot can be tolerated, minimizing system noise.  
DD  
All inputs and outputs, including clocks, are compatible with series 54 TTL. All addresses and data-in lines are  
latched on-chip to simplify system design. Data out is unlatched to allow greater system flexibility.  
The SMJ4C1024 is offered in an 18-pin ceramic dual-in-line package (JD suffix), a 20/26-terminal leadless  
ceramic carrier package (FQ/HL suffixes), a 20/26-pin J-leaded carrier package (HJ suffix), a 20-pin flatpack  
(HK suffix), and a 20-pin ceramic zig-zag in-line package (SV suffix). They are characterized for operation from  
– 55°C to 125°C.  
2
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
SMJ4C1024  
1048576 BY 1-BIT  
DYNAMIC RANDOM-ACCESS MEMORY  
SGMS023E – DECEMBER 1988 – REVISED MARCH 1996  
logic symbol  
RAM 1024K × 1  
20D10/21D0  
5
A0  
A1  
A2  
A3  
A4  
A5  
A6  
A7  
A8  
A9  
6
7
8
10  
11  
12  
13  
14  
15  
0
A
1 048 575  
20D19/21D9  
C20 [ROW]  
G23 [REFRESH ROW]  
3
RAS  
CAS  
24 [PWR DWN]  
C21 [COL]  
G24  
&
16  
23C22  
24EN  
2
1
W
D
23,21D  
A, 22D  
17  
A
Q
This symbol is in accordance with ANSI/IEEE Std. 91-1984 and IEC Publication 617-12.  
The pin numbers shown are for the 18-pin JD package.  
3
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
SMJ4C1024  
1048576 BY 1-BIT  
DYNAMIC RANDOM-ACCESS MEMORY  
SGMS023E – DECEMBER 1988 – REVISED MARCH 1996  
functional block diagram  
RAS  
CAS  
W
Timing and Control  
Row  
Address  
Buffers  
(10)  
256K  
Array  
Sense Amplifiers  
Row  
Decode Array  
256K  
A0  
A1  
A2  
A3  
A4  
A5  
A6  
A7  
A8  
A9  
Data In  
Reg.  
D
Q
I/O  
Buffers  
1 of 8  
Column  
Address  
Buffers  
(10)  
Column Decode  
Data  
Out Reg.  
Selection  
Sense Amplifiers  
256K  
Array  
Row  
Decode Array  
256K  
operation  
enhanced page mode  
Enhancedpage-modeoperationallowsfastermemoryaccessbykeepingthesamerowaddresswhileselecting  
random column addresses. The time for row-address setup and hold and for address multiplexing is eliminated.  
The maximum number of columns that can be accessed is determined by the maximum RAS low time and the  
CAS page-cycle time used. With minimum CAS page-cycle time, all 1024 columns specified by column  
addresses A0 through A9 can be accessed without intervening RAS cycles.  
Unlike conventional page-mode DRAMs, the column-address buffers in this device are activated on the falling  
edge of RAS. The buffers act as transparent or flow-through latches while CAS is high. The falling edge of CAS  
latches the column addresses. This feature lets the SMJ4C1024 operate at a higher data bandwidth than  
conventional page-mode parts, since data retrieval begins as soon as the column address is valid rather than  
when CAS goes low. This performance improvement is referred to as enhanced page mode. A valid column  
address can be presented immediately after the row-address hold time has been satisfied, usually well in  
advance of the falling edge of CAS. In this case, data is obtained after t  
maximum (access time from CAS  
a(C)  
low) if t  
maximum (access time from column address) has been satisfied. If the column addresses for the  
a(CA)  
next page cycle are valid at the same time CAS goes high, access time for the next cycle is determined by the  
later occurrence of t or t (access time from rising edge of CAS).  
a(CA)  
a(CP)  
address (A0A9)  
Twenty address bits are required to decode one of 1048576 storage cell locations. Ten row-address bits are  
set up on inputs A0 through A9 and latched onto the chip by RAS. The ten column-address bits are set up on  
pinsA0throughA9andlatchedontothechipbyCAS. Alladdressesmustbestableonorbeforethefallingedges  
4
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
SMJ4C1024  
1048576 BY 1-BIT  
DYNAMIC RANDOM-ACCESS MEMORY  
SGMS023E – DECEMBER 1988 – REVISED MARCH 1996  
address (A0A9) (continued)  
of RAS and CAS. RAS is similar to a chip enable in that it activates the sense amplifiers as well as the row  
decoder. CAS is used as a chip select to activate the output buffer as well as to latch the address bits into the  
column-address buffer.  
write enable (W)  
The read or write mode is selected through W. A logic high on the W input selects the read mode and a logic  
low selects the write mode. The write-enable pin can be driven from standard TTL circuits without a pullup  
resistor. The data input is disabled when the read mode is selected. When W goes low prior to CAS (early write),  
data out remains in the high-impedance state for the entire cycle, permitting common input/output operation.  
data in (D)  
Data-in is written during a write or a read-modify-write cycle. Depending on the mode of operation, the falling  
edge of CAS or W strobes data into the on-chip latch. In an early-write cycle, W is brought low prior to CAS,  
and the data is strobed in by CAS with setup and hold times referenced to this signal. In a delayed-write or a  
read-modify-write cycle, CAS is already low, and the data is strobed in by W with setup and hold times  
referenced to this signal.  
data out (Q)  
The 3-state output buffers provide direct TTL compatibility (no pullup resistor required) with a fanout of two  
series 54 TTL loads. Data out is the same polarity as data in. The output is in the high-impedance (floating) state  
until CAS is brought low. In a read cycle, the output becomes valid after the access time t  
. The access time  
a(C)  
fromCASlow(t  
)beginswiththenegativetransitionofCASaslongast  
andt  
aresatisfied.Theoutput  
a(C)  
a(R)  
a(CA)  
becomes valid after the access time has elapsed and remains valid while CAS is low; when CAS goes high, the  
output returns to a high-impedance state. In a delayed-write or read-modify-write cycle, the output follows the  
sequence for the read cycle.  
refresh  
A refresh operation must be performed at least once every 8 ms to retain data. This can be achieved by strobing  
each of the 512 rows (A0A8). A normal read or write cycle refreshes all bits in each selected row. A RAS-only  
operation can be used by holding CASatthehigh(inactive)level, conservingpowerastheoutputbufferremains  
in the high-impedance state. Externally generated addresses must be used for a RAS-only refresh. Hidden  
refresh can be performed while maintaining valid data at the output pin. This is accomplished by holding CAS  
at V after a read operation and cycling RAS after a specified precharge period, similar to a RAS-only refresh  
IL  
cycle.  
CAS-before-RAS (CBR) refresh  
CBR refresh is used by bringing CAS low earlier than RAS (see parameter t  
) and holding it low after  
d(CLRL)R  
RAS falls (parameter t  
). For successive CBR refresh cycles, CAS can remain low while cycling RAS.  
d(RLCH)R  
The external address is ignored and the refresh address is generated internally. The external address is also  
ignored during the hidden refresh cycles.  
power up  
To achieve proper device operation, an initial pause of 200 µs followed by a minimum of eight initialization cycles  
is required after full V  
level is achieved.  
CC  
test function (TF) pin  
During normal device operation, TF must be disconnected or biased at a voltage V  
.
CC  
5
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
SMJ4C1024  
1048576 BY 1-BIT  
DYNAMIC RANDOM-ACCESS MEMORY  
SGMS023E – DECEMBER 1988 – REVISED MARCH 1996  
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)  
Voltage range on any pin (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 1 V to 7 V  
Voltage range on V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 1 V to 7 V  
CC  
Short-circuit output current, I  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 mA  
OS  
Power dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 W  
Operating free-air temperature range, T  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 55°C to 125°C  
A
Storage temperature range, T  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 65°C to 150°C  
stg  
Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and  
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not  
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
NOTE 1: All voltage values are with respect to V  
.
SS  
recommended operating conditions  
MIN NOM  
MAX  
5.5  
UNIT  
V
V
V
T
Supply voltage  
4.5  
2.4  
5
V
V
V
CC  
IH  
IL  
High-level input voltage  
6.5  
Low-level input voltage (see Note 2)  
Minimum operating free-air temperature  
– 1  
0.8  
– 55  
°C  
°C  
A
T
C
Maximum operating case temperature  
125  
NOTE 2: The algebraic convention, where the more negative (less positive) limit is designated as minimum, is used for logic-voltage levels only.  
6
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
SMJ4C1024  
1048576 BY 1-BIT  
DYNAMIC RANDOM-ACCESS MEMORY  
SGMS023E – DECEMBER 1988 – REVISED MARCH 1996  
electrical characteristics over recommended ranges of supply voltage and operating free-air  
temperature (unless otherwise noted)  
’4C1024-80  
’4C1024-10  
’4C1024-12  
’4C1024-15  
TEST  
CONDITIONS  
PARAMETER  
UNIT  
MIN  
MAX  
MIN  
MAX  
MIN  
MAX  
MIN  
MAX  
High-level  
output voltage  
V
V
I
I
= – 5 mA  
2.4  
2.4  
2.4  
2.4  
V
V
OH  
OH  
Low-level  
output voltage  
= 4.2 mA  
0.4  
0.4  
0.4  
0.4  
OL  
OL  
Input current  
(leakage)  
V
= 5.5 V,  
V = 0 V to 6.5 V,  
I
CC  
All other pins = 0 V to V  
I
± 10  
± 10  
± 10  
± 10  
µA  
I
CC  
= 0 V to V  
Output  
current  
(leakage)  
V
= 5.5 V,  
V
,
CC  
CC  
CAS high  
O
I
O
± 10  
75  
3
± 10  
70  
3
± 10  
60  
3
± 10  
55  
3
µA  
mA  
mA  
Read- or  
write-cycle  
current  
I
V
CC  
= 5.5 V,  
Minimum cycle  
CC1  
CC2  
After one memory cycle,  
RAS and CAS high,  
Standby  
current  
I
V
IH  
= 2.4 V  
Average  
refresh  
current  
(RAS only or  
CBR)  
V
= 5.5 V,  
Minimum cycle,  
CC  
RAS cycling,  
I
I
70  
50  
65  
45  
55  
35  
50  
30  
mA  
mA  
CC3  
CAS high (RAS only),  
RAS low after CAS low (CBR)  
V
= 5.5 V,  
t
= minimum,  
Average page  
current  
CC  
RAS low,  
PC  
CAS cycling  
CC4  
capacitance over recommended ranges of supply voltage and operating free-air temperature,  
f = 1 MHz (see Note 3)  
HL/JD/FQ  
MIN MAX  
HJ  
MIN  
HK  
MIN  
SV  
MIN  
PARAMETER  
UNIT  
MAX  
MAX  
MAX  
C
C
C
C
C
Input capacitance, address inputs  
Input capacitance, data input  
Input capacitance, strobe inputs  
Input capacitance, write-enable input  
Output capacitance  
6
5
7
7
7
7
5
7
7
9
8
6
9
7
8
7
8
pF  
pF  
pF  
pF  
pF  
i(A)  
i(D)  
i(RC)  
i(W)  
o
8
7
10  
NOTE 3: Capacitance is sampled only at initial design and after any major change. Samples are tested at 0 V and 25°C with a 1-MHz signal  
applied to the pin under test. All other pins are open.  
switching characteristics over recommended ranges of supply voltage and operating free-air  
temperature (see Figure 1)  
’4C1024-80  
MIN MAX  
’4C1024-10  
MIN MAX  
’4C1024-12  
MIN MAX  
’4C1024-15  
MIN MAX  
ALT.  
SYMBOL  
PARAMETER  
UNIT  
t
t
t
t
Access time from CAS low  
t
20  
40  
80  
40  
25  
45  
30  
55  
40  
70  
ns  
ns  
ns  
ns  
a(C)  
CAC  
Access time from column address  
Access time from RAS low  
t
a(CA)  
a(R)  
AA  
t
100  
40  
120  
60  
150  
75  
RAC  
Access time from column precharge  
t
t
a(CP)  
CPA  
Output disable time after CAS high  
(see Note 4)  
t
20  
25  
30  
35  
ns  
dis(CH)  
OFF  
NOTE 4:  
t
is specified when the output is no longer driven. The output is disabled by bringing CAS high.  
dis(CH)  
7
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
SMJ4C1024  
1048576 BY 1-BIT  
DYNAMIC RANDOM-ACCESS MEMORY  
SGMS023E – DECEMBER 1988 – REVISED MARCH 1996  
timing requirements over recommended ranges of supply voltage and operating free-air  
temperature (see Note 5)  
’4C1024-80  
’4C1024-10  
’4C1024-12  
’4C1024-15  
ALT.  
SYMBOL  
UNIT  
MIN  
150  
150  
175  
MAX  
MIN  
190  
190  
220  
MAX  
MIN  
220  
220  
265  
MAX  
MIN  
260  
260  
315  
MAX  
Cycle time, read  
(see Note 6)  
t
t
t
t
ns  
ns  
ns  
c(rd)  
RC  
Cycle time, write  
t
WC  
c(W)  
Cycle time,  
read-write/read-modify-write  
t
c(rdW)  
RWC  
Cycle time, page-mode read  
or write (see Note 7)  
t
t
50  
55  
65  
80  
ns  
c(P)  
PC  
Cycle time, page-mode  
read-modify-write  
t
t
t
t
75  
10  
20  
85  
10  
25  
110  
15  
135  
25  
ns  
ns  
ns  
c(PM)  
w(CH)  
w(CL)  
PRWC  
Pulse duration, CAS high  
t
CP  
Pulse duration, CAS low  
(see Note 8)  
t
10000  
10000  
10000  
10000  
30  
10000  
10000  
40  
10000  
10000  
CAS  
Pulse duration, RAS high  
(precharge)  
t
t
60  
80  
80  
90  
100  
150  
ns  
ns  
w(RH)  
w(RL)  
RP  
Pulse duration, nonpage  
mode, RAS low  
(see Note 9)  
t
t
100  
120  
RAS  
Pulse duration, page mode,  
RAS low (see Note 9)  
t
t
t
t
80 100000  
100 100000  
120 100000  
150 100000  
ns  
ns  
ns  
w(RL)P  
w(WL)  
su(CA)  
RASP  
Pulse duration, write  
t
15  
0
15  
3
20  
3
25  
3
WP  
Setup time, column address  
before CAS low  
t
ASC  
ASR  
Setup time, row address  
before RAS low  
t
t
t
t
t
t
t
t
t
0
0
0
0
0
0
0
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
su(RA)  
su(D)  
Setup time, data  
(see Note 10)  
t
DS  
Setup time, read before CAS  
low  
t
0
0
0
0
su(rd)  
RCS  
Setup time, W low before  
CAS low (see Note 11)  
t
0
0
0
0
su(WCL)  
su(WCH)  
su(WRH)  
h(CA)  
WCS  
Setup time, W low before  
CAS high  
t
t
20  
20  
15  
12  
25  
25  
20  
15  
30  
30  
20  
15  
40  
40  
25  
20  
CWL  
RWL  
Setup time, W low before  
RAS high  
Hold time, column address  
after CAS low  
t
CAH  
Hold time, row address after  
RAS low  
t
h(RA)  
RAH  
NOTES: 5. Timing measurements in this table are referenced to V max and V min.  
IL IH  
6. All cycle times assume t = 5 ns.  
t
7. To assure t  
min, t  
should be t  
.
w(CH)  
su(WCH)  
c(P)  
su(CA)  
8. In a read-modify-write cycle, t  
and t  
must be observed.  
must be observed.  
d(CLWL)  
d(RLWL)  
9. In a read-modify-write cycle, t  
and t  
su(WRH)  
10. Referenced to the later of CAS or W in write operations  
11. Early write operation only  
8
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
SMJ4C1024  
1048576 BY 1-BIT  
DYNAMIC RANDOM-ACCESS MEMORY  
SGMS023E – DECEMBER 1988 – REVISED MARCH 1996  
timing requirements over recommended ranges of supply voltage and operating free-air  
temperature (see Note 5) (continued)  
’4C1024-80  
’4C1024-10  
’4C1024-12  
’4C1024-15  
ALT.  
SYMBOL  
UNIT  
MIN  
MAX  
MIN  
MAX  
MIN  
MAX  
MIN  
100  
30  
MAX  
Hold time, column address after  
RAS low (see Note 12)  
t
t
t
t
60  
70  
80  
ns  
ns  
ns  
h(RLCA)  
AR  
Hold time, data (see Note 10)  
t
15  
20  
25  
h(D)  
DH  
Hold time, data after RAS low  
(see Note 12)  
t
t
t
60  
70  
85  
110  
h(RLD)  
DHR  
RCH  
RRH  
Hold time, read after CAS high  
(see Note 13)  
t
t
t
t
0
10  
15  
60  
0
10  
20  
70  
0
10  
25  
85  
0
10  
ns  
ns  
ns  
ns  
h(CHrd)  
h(RHrd)  
h(CLW)  
h(RLW)  
Hold time, read after RAS high  
(see Note 13)  
Hold time, write after CAS low  
(see Note 11)  
t
t
30  
WCH  
Hold time, write after RAS low  
(see Note 12)  
100  
WCR  
t
t
t
Delay time, RAS low to CAS high  
Delay time, CAS high to RAS low  
Delay time, CAS low to RAS high  
t
80  
0
100  
0
120  
0
150  
0
ns  
ns  
ns  
d(RLCH)  
d(CHRL)  
d(CLRH)  
CSH  
CRP  
RSH  
t
t
20  
25  
30  
40  
Delay time, CAS low to W low  
(see Note 14)  
t
t
t
t
t
t
t
t
t
t
20  
22  
17  
40  
40  
80  
40  
20  
25  
28  
40  
28  
50  
33  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
d(CLWL)  
d(RLCL)  
d(RLCA)  
d(CARH)  
d(CACH)  
d(RLWL)  
d(CAWL)  
d(RLCH)R  
d(CLRL)R  
CWD  
Delay time, RAS low to CAS low  
(see Note 15)  
t
60  
40  
75  
55  
90  
65  
110  
80  
RCD  
Delay time, RAS low to column  
address (see Note 15)  
t
20  
20  
25  
RAD  
Delay time, column address to RAS  
high  
t
45  
55  
70  
RAL  
Delay time, column address to CAS  
high  
t
45  
55  
70  
CAL  
Delay time, RAS low to W low  
(see Note 14)  
t
100  
45  
130  
65  
160  
80  
RWD  
Delay time, column address to W  
low (see Note 14)  
t
AWD  
Delay time, RAS low to CAS high  
(see Note 16)  
t
25  
25  
30  
CHR  
Delay time, CAS low to RAS low  
(see Note 16)  
t
t
10  
0
10  
0
10  
0
15  
0
CSR  
t
t
t
Delay time, RAS high to CAS low  
Refresh time interval  
ns  
ms  
ns  
d(RHCL)R  
RPC  
t
8
8
8
8
rf  
t
REF  
Transition time (see Note 17)  
NOTES: 5. Timing measurements in this table are referenced to V max and V min.  
IL  
IH  
10. Referenced to the later of CAS or W in write operations.  
11. Early-write operation only  
12. The minimum value is measured when t  
is set t min as a reference.  
d(RLCL)  
d(RLCL)  
must be satisfied for a read cycle.  
13. Either t  
or t  
h(RHrd)  
h(CHrd)  
14. Read-modify-write operation only  
15. Maximum value specified only to assure access time.  
16. CBR refresh only  
17. Transition times (rise and fall) for RAS and CAS are to be minimum of 3 ns and a maximum of 50 ns.  
9
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
SMJ4C1024  
1048576 BY 1-BIT  
DYNAMIC RANDOM-ACCESS MEMORY  
SGMS023E – DECEMBER 1988 – REVISED MARCH 1996  
PARAMETER MEASUREMENT INFORMATION  
V
1.31 V  
R
= 218 Ω  
I
/I  
L
OH OL  
Output Under Test  
Output Under Test  
C
= 80 pF  
C
= 80 pF  
L
L
(see Note A)  
(see Note A)  
(a) LOAD CIRCUIT  
NOTE A: C includes probe and fixture capacitance.  
(b) ALTERNATE LOAD CIRCUIT  
L
Figure 1. Load Circuits for Timing Parameters  
10  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
SMJ4C1024  
1048576 BY 1-BIT  
DYNAMIC RANDOM-ACCESS MEMORY  
SGMS023E – DECEMBER 1988 – REVISED MARCH 1996  
PARAMETER MEASUREMENT INFORMATION  
t
c(rd)  
t
w(RL)  
RAS  
t
t
t
t
d(CLRH)  
w(RH)  
t
d(RLCL)  
t
d(CHRL)  
t
d(RLCH)  
t
w(CL)  
CAS  
t
d(RLCA)  
t
w(CH)  
t
t
t
su(CA)  
t
h(RA)  
d(CACH)  
d(CARH)  
t
su(RA)  
t
h(RLCA)  
A0A9  
Row  
Column  
Don’t Care  
t
t
h(CA)  
h(RHrd)  
t
su(rd)  
t
h(CHrd)  
W
Q
Don’t Care  
Don’t Care  
t
a(C)  
t
dis(CH)  
t
a(CA)  
Valid  
Hi-Z  
See Note A  
t
a(R)  
NOTE A: Output can go from the high-impedance state to an invalid-data state prior to the specified access time.  
Figure 2. Read-Cycle Timing  
11  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
SMJ4C1024  
1048576 BY 1-BIT  
DYNAMIC RANDOM-ACCESS MEMORY  
SGMS023E – DECEMBER 1988 – REVISED MARCH 1996  
PARAMETER MEASUREMENT INFORMATION  
t
c(W)  
t
w(RL)  
RAS  
CAS  
t
t
t
d(CLRH)  
t
w(RH)  
t
d(RLCL)  
t
w(CL)  
t
d(CHRL)  
t
d(RLCH)  
t
su(RA)  
t
w(CH)  
t
d(CACH)  
t
t
d(CARH)  
h(RA)  
t
su(CA)  
t
h(RLCA)  
A0A9  
Row  
Column  
Don’t Care  
t
h(CA)  
t
d(RLCA)  
t
su(WCH)  
t
su(WRH)  
t
h(RLW)  
t
h(CLW)  
t
su(WCL)  
W
Don’t Care  
Don’t Care  
t
w(WL)  
t
su(D)  
t
h(D)  
t
h(RLD)  
D
Q
Valid Data  
Don’t Care  
Hi-Z  
Figure 3. Early-Write-Cycle Timing  
12  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
SMJ4C1024  
1048576 BY 1-BIT  
DYNAMIC RANDOM-ACCESS MEMORY  
SGMS023E – DECEMBER 1988 – REVISED MARCH 1996  
PARAMETER MEASUREMENT INFORMATION  
t
c(W)  
t
w(RL)  
RAS  
CAS  
t
d(CLRH)  
t
t
t
w(RH)  
d(CHRL)  
t
d(RLCL)  
t
t
d(RLCH)  
t
w(CL)  
t
t
w(CH)  
su(CA)  
t
t
h(RA)  
d(CARH)  
t
d(CACH)  
t
su(RA)  
t
h(RLCA)  
Row  
Column  
Don’t Care  
A0A9  
t
h(CA)  
t
d(RLCA)  
t
su(WCH)  
t
su(WRH)  
Don’t Care  
Don’t Care  
W
t
h(RLW)  
t
w(WL)  
t
h(D)  
t
su(D)  
t
h(RLD)  
Don’t Care  
Valid Data  
Don’t Care  
D
Q
t
dis(CH)  
Not Valid  
Figure 4. Write-Cycle Timing  
13  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
SMJ4C1024  
1048576 BY 1-BIT  
DYNAMIC RANDOM-ACCESS MEMORY  
SGMS023E – DECEMBER 1988 – REVISED MARCH 1996  
PARAMETER MEASUREMENT INFORMATION  
t
c(rdW)  
t
w(RL)  
RAS  
CAS  
t
w(RH)  
t
t
w(CL)  
t
t
d(CHRL)  
t
d(RLCL)  
t
d(RLCA)  
t
t
w(CH)  
h(RA)  
t
su(CA)  
t
su(RA)  
t
t
t
h(RLCA)  
A0A9  
Row  
Column  
Don’t Care  
t
t
d(CAWL)  
su(WCH)  
t
su(WRH)  
t
d(CLWL)  
t
w(WL)  
t
su(rd)  
t
h(CA)  
W
Don’t Care  
Don’t Care  
t
d(RLWL)  
t
su(D)  
D
Q
Don’t Care  
Valid In  
Don’t Care  
dis(CH)  
t
h(D)  
t
See Note A  
Hi-Z  
Valid Out  
t
a(C)  
a(CA)  
t
t
a(R)  
NOTE A: Output can go from the high-impedance state to an invalid-data state prior to the specified access time.  
Figure 5. Read-Write-/Read-Modify-Write-Cycle Timing  
14  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
SMJ4C1024  
1048576 BY 1-BIT  
DYNAMIC RANDOM-ACCESS MEMORY  
SGMS023E – DECEMBER 1988 – REVISED MARCH 1996  
PARAMETER MEASUREMENT INFORMATION  
t
w(RH)  
t
w(RL)P  
RAS  
t
d(RLCL)  
t
d(CHRL)  
t
c(P)  
t
d(RLCH)  
t
w(CH)  
t
t
d(CLRH)  
w(CL)  
CAS  
t
h(CA)  
t
h(RLCA)  
t
d(CACH)  
t
su(RA)  
t
su(CA)  
t
d(CARH)  
t
h(RA)  
A0A9  
Row  
Column  
Column  
Don’t Care  
h(RHrd)  
t
t
d(RLCA)  
See Note C  
t
h(CHrd)  
t
su(rd)  
t
a(CA)  
W
t
a(C)  
t
a(CP)  
(see Note C)  
t
a(CA)  
t
dis(CH)  
t
a(R)  
Valid  
Out  
See Note A  
Valid  
Out  
Q
See Note A  
NOTES: A. Output can go from the high-impedance state to an invalid-data state prior to the specified access time.  
B. Awritecycleoraread-modifycyclecanbemixedwiththereadcyclesaslongasthewriteandread-modify-writetimingspecifications  
are not violated.  
C. Access time is t  
or t  
dependent.  
a(CA)  
a(CP)  
Figure 6. Enhanced-Page-Mode Read-Cycle Timing  
15  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
SMJ4C1024  
1048576 BY 1-BIT  
DYNAMIC RANDOM-ACCESS MEMORY  
SGMS023E – DECEMBER 1988 – REVISED MARCH 1996  
PARAMETER MEASUREMENT INFORMATION  
t
w(RH)  
t
w(RL)P  
RAS  
CAS  
t
t
d(CLRH)  
d(RLCH)  
t
w(CL)  
t
t
d(CHRL)  
c(P)  
t
d(RLCL)  
t
w(CH)  
t
su(CA)  
t
t
h(RLCA)  
d(CACH)  
t
t
h(RA)  
d(CARH)  
t
h(CA)  
t
su(RA)  
A0A9  
Row  
Column  
Column  
Don’t Care  
t
su(WCH)  
t
su(WCH)  
t
d(RLCA)  
t
w(WL)  
t
su(WRH)  
t
h(RLW)  
W
Don’t Care  
Don’t Care  
Don’t Care  
t
h(D)  
(see Note B)  
h(D)  
t
t
h(RLD)  
t
su(D)  
(see Note B)  
t
su(D)  
Valid  
In  
D
Q
Valid Data In  
Don’t Care  
Hi-Z  
NOTES: A. A read cycle or a read-modify-write cycle can be intermixed with write cycles as long as read and read-modify-write timing  
specifications are not violated.  
B. Referenced to CAS or W, whichever occurs last.  
Figure 7. Enhanced-Page-Mode Write-Cycle Timing  
16  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
SMJ4C1024  
1048576 BY 1-BIT  
DYNAMIC RANDOM-ACCESS MEMORY  
SGMS023E – DECEMBER 1988 – REVISED MARCH 1996  
PARAMETER MEASUREMENT INFORMATION  
t
w(RH)  
t
w(RL)P  
RAS  
CAS  
t
t
c(PM)  
t
t
d(CLRH)  
d(RLCH)  
w(CH)  
t
d(CHRL)  
t
d(RLCL)  
t
w(CL)  
t
su(CA)  
t
h(RLCA)  
t
d(RLCA)  
t
h(RA)  
su(RA)  
t
h(CA)  
t
A0A9  
Row  
Column  
Column  
Don’t Care  
t
su(rd)  
t
t
su(WCH)  
d(CLWL)  
t
d(CAWL)  
t
t
su(WRH)  
w(WL)  
t
d(RLWL)  
W
Don’t Care  
t
h(D)  
t
su(D)  
D
Don’t Care  
Valid  
Valid  
Don’t Care  
t
a(C)  
t
a(CA)  
t
dis(CH)  
t
a(R)  
t
a(CP)  
See Note A  
See Note A  
Valid  
Out  
Valid  
Out  
Q
NOTES: A. Output can go from high-impedance state to an invalid-data state prior to the specified access time.  
B. A read or a write cycle can be intermixed with read-modify-write cycles as long as the read and write timing specifications are  
not violated.  
Figure 8. Enhanced-Page-Mode Read-Modify-Write-Cycle Timing  
17  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
SMJ4C1024  
1048576 BY 1-BIT  
DYNAMIC RANDOM-ACCESS MEMORY  
SGMS023E – DECEMBER 1988 – REVISED MARCH 1996  
PARAMETER MEASUREMENT INFORMATION  
t
c(rd)  
t
w(RL)  
RAS  
CAS  
t
t
t
w(RH)  
t
d(RHCL)R  
Don’t Care  
t
t
d(CHRL)  
su(RA)  
t
h(RA)  
Don’t Care  
Row  
Don’t Care  
Row  
A0A9  
W
D
Don’t Care  
Don’t Care  
Q
Hi-Z  
Figure 9. RAS-Only Refresh-Cycle Timing  
18  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
SMJ4C1024  
1048576 BY 1-BIT  
DYNAMIC RANDOM-ACCESS MEMORY  
SGMS023E – DECEMBER 1988 – REVISED MARCH 1996  
PARAMETER MEASUREMENT INFORMATION  
Refresh Cycle  
Memory Cycle  
Refresh Cycle  
w(RH)  
t
t
w(RH)  
t
w(RL)  
t
w(RL)  
RAS  
CAS  
t
d(RLCH)R  
t
w(CL)  
t
h(CA)  
t
su(CA)  
t
h(RA)  
t
su(RA)  
A0A9  
Row  
Col  
Don’t Care  
t
h(RHrd)  
t
su(rd)  
W
D
Don’t Care  
Don’t Care  
t
a(C)  
t
t
dis(CH)  
a(CA)  
t
a(R)  
Valid Data  
Q
Figure 10. Hidden-Refresh-Cycle Timing  
19  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
SMJ4C1024  
1048576 BY 1-BIT  
DYNAMIC RANDOM-ACCESS MEMORY  
SGMS023E – DECEMBER 1988 – REVISED MARCH 1996  
PARAMETER MEASUREMENT INFORMATION  
t
c(rd)  
t
w(RH)  
t
w(RL)  
RAS  
t
d(CLRL)R  
t
d(RLCH)R  
t
d(RHCL)R  
t
t
CAS  
A0A9  
Don’t Care  
Don’t Care  
Hi-Z  
D
Q
Figure 11. Automatic-CBR-Refresh-Cycle Timing  
20  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
SMJ4C1024  
1048576 BY 1-BIT  
DYNAMIC RANDOM-ACCESS MEMORY  
SGMS023E – DECEMBER 1988 – REVISED MARCH 1996  
MECHANICAL DATA  
HJ (R-CDCC-J20)  
J-LEADED CERAMIC CHIP CARRIER  
0.685 (17,40)  
0.665 (16,89)  
0.608 (15,44)  
0.592 (15,04)  
0.048 (1,22)  
0.028 (0,71)  
4 Places  
20  
11  
0.338 (8,59)  
0.322 (8,18)  
1
10  
0.056 (1,42)  
0.044 (1,12)  
0.102 (2,59)  
0.080 (2,03)  
0.010 (0,25)  
0.006 (0,15)  
0.137 (3,48)  
0.114 (2,90)  
0.022 (0,56)  
0.012 (0,30)  
0.308 (7,82)  
0.264 (6,71)  
0.050 (1,27)  
0.035 (0,89)  
Radius  
0.025 (0,64)  
4040144-2/B 10/94  
NOTES: A. All linear dimensions are in inches (millimeters).  
B. This drawing is subject to change without notice.  
C. This package can be hermetically sealed with a metal lid.  
D. The terminals will be gold plated.  
21  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
SMJ4C1024  
1048576 BY 1-BIT  
DYNAMIC RANDOM-ACCESS MEMORY  
SGMS023E – DECEMBER 1988 – REVISED MARCH 1996  
MECHANICAL DATA  
HK (R-CDFP-F20)  
CERAMIC DUAL FLATPACK  
0.035 (0,89)  
0.025 (0,64)  
0.010 (0,25)  
0.004 (0,10)  
0.095 (2,41)  
0.075 (1,91)  
0.310 (7,87)  
0.290 (7,37)  
Lid  
0.120 (3,05)  
0.090 (2,29)  
1
20  
0.050 (1,27)  
0.680 (17,27)  
0.660 (16,76)  
0.021 (0,53)  
0.015 (0,38)  
10  
11  
0.390 (9,91)  
0.370 (9,40)  
0.315 (8,00)  
0.295 (7,49)  
4040174/C 08/95  
NOTES: A. All linear dimensions are in inches (millimeters).  
B. This drawing is subject to change without notice.  
C. This package can be hermetically sealed with a metal lid.  
D. The terminals are gold plated.  
22  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
SMJ4C1024  
1048576 BY 1-BIT  
DYNAMIC RANDOM-ACCESS MEMORY  
SGMS023E – DECEMBER 1988 – REVISED MARCH 1996  
MECHANICAL DATA  
FQ (R-CDCC-N20)  
LEADLESS CERAMIC CHIP CARRIER  
0.685 (17,40)  
0.665 (16,89)  
0.030 (0,76) MIN  
0.357 (9,07)  
0.343 (8,71)  
0.092 (2,34)  
0.069 (1,75)  
0.028 (0,71)  
0.022 (0,56)  
10  
11  
0.008 (0,20) RAD TYP  
0.608 (15,44)  
0.592 (15,04)  
0.050 (1,27)  
1
20  
0.090 (2,29) TYP  
0.050 (1,27) TYP  
4040143/B 10/94  
NOTES: A. All linear dimensions are in inches (millimeters).  
B. This drawing is subject to change without notice.  
C. This package can be hermetically sealed with a metal lid.  
D. The terminals are gold plated.  
23  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
SMJ4C1024  
1048576 BY 1-BIT  
DYNAMIC RANDOM-ACCESS MEMORY  
SGMS023E – DECEMBER 1988 – REVISED MARCH 1996  
MECHANICAL DATA  
HL (R-CDCC-N20/26)  
LEADLESS CERAMIC CHIP CARRIER  
0.685 (17,40)  
0.665 (16,89)  
0.030 (0,76) MIN  
0.357 (9,07)  
0.343 (8,71)  
0.080 (2,03)  
0.065 (1,65)  
11  
10  
0.028 (0,71)  
0.022 (0,56)  
0.008 (0,20) RAD TYP  
0.608 (15,44)  
0.592 (15,04)  
0.050 (1,27)  
20  
1
0.090 (2,29) TYP  
0.050 (1,27) TYP  
4040145/B 4/95  
NOTES: A. All linear dimensions are in inches (millimeters).  
B. This drawing is subject to change without notice.  
C. This package can be hermetically sealed with a metal lid.  
D. The terminals are gold plated.  
24  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
SMJ4C1024  
1048576 BY 1-BIT  
DYNAMIC RANDOM-ACCESS MEMORY  
SGMS023E – DECEMBER 1988 – REVISED MARCH 1996  
MECHANICAL DATA  
SV (R-CZIP-T**)  
CERAMIC ZIG-ZAG PACKAGE  
20 PIN SHOWN  
0.130 (3,30)  
0.100 (2,54)  
A
B
Seating Plane  
0.200 (5,08)  
0.125 (3,18)  
0.050 (1,27)  
0.015 (0,38)  
0.015 (0,38)  
0.008 (0,20)  
0.060 (1,52)  
0.040 (1,02)  
0.100 (2,54)  
19  
0.115 (2,92)  
0.085 (2,16)  
1
PINS **  
20  
24  
28  
DIM  
C
1.065  
1.265  
1.465  
0.023 (0,58)  
A MAX  
(27,05) (32,13) (37,21)  
0.015 (0,38)  
1.035 1.235 1.435  
(26,29) (31,37) (36,45)  
A MIN  
B MAX  
B MIN  
C MAX  
C MIN  
0.380  
(9,65)  
0.465  
(11,81) (11,81)  
0.465  
0.355  
(9,02)  
0.440  
(11,18) (11,18)  
0.440  
2
4
6
8
10  
12  
14  
16  
18  
20  
0.910  
1.110 1.310  
0.375 (9,53)  
0.355 (9,02)  
(23,11) (28,19) (33,27)  
0.070 (1,78)  
0.040 (1,02)  
0.890 1.090 1.290  
(22,61) (27,69) (32,77)  
4040002/C 08/95  
NOTES: A. All linear dimensions are in inches (millimeters).  
B. This drawing is subject to change without notice.  
25  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
SMJ4C1024  
1048576 BY 1-BIT  
DYNAMIC RANDOM-ACCESS MEMORY  
SGMS023E – DECEMBER 1988 – REVISED MARCH 1996  
MECHANICAL DATA  
JD (R-CDIP-T**)  
CERAMIC SIDE-BRAZE DUAL-IN-LINE PACKAGE  
20 PIN SHOWN  
A
PINS **  
16  
18  
20  
24  
DIM  
20  
11  
0.810  
0.910  
1.010  
1.100  
A MAX  
(20,57) (23,11) (25,65) (27,94)  
0.290 (7,37)  
TYP  
1
10  
0.065 (1,65)  
0.045 (1,14)  
0.175 (4,45)  
0.140 (3,56)  
0.320 (8,13)  
0.290 (7,37)  
0.075 (1,91) MAX 4 Places  
Seating Plane  
0.020 (0,51) MIN  
0.125 (3,18) MIN  
0°15°  
0.100 (2,54)  
0.021 (0,53)  
0.015 (0,38)  
0.012 (0,30)  
0.008 (0,20)  
4040086/C 08/95  
NOTES: A. All linear dimensions are in inches (millimeters).  
B. This drawing is subject to change without notice.  
C. This package can be hermetically sealed with a metal lid.  
D. The terminals are gold plated.  
26  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
IMPORTANT NOTICE  
Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue  
any product or service without notice, and advise customers to obtain the latest version of relevant information  
to verify, before placing orders, that information being relied on is current and complete. All products are sold  
subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those  
pertaining to warranty, patent infringement, and limitation of liability.  
TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in  
accordance with TI’s standard warranty. Testing and other quality control techniques are utilized to the extent  
TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily  
performed, except those mandated by government requirements.  
CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF  
DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE (“CRITICAL  
APPLICATIONS”). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR  
WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER  
CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO  
BE FULLY AT THE CUSTOMER’S RISK.  
In order to minimize risks associated with the customer’s applications, adequate design and operating  
safeguards must be provided by the customer to minimize inherent or procedural hazards.  
TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent  
that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other  
intellectual property right of TI covering or relating to any combination, machine, or process in which such  
semiconductor products or services might be or are used. TI’s publication of information regarding any third  
party’s products or services does not constitute TI’s approval, warranty or endorsement thereof.  
Copyright 1998, Texas Instruments Incorporated  

相关型号:

SMJ4C1024-80HLM

暂无描述
TI

SMJ4C1024-80HLMT

1MX1 FAST PAGE DRAM, 80ns, CDSO20, CERAMIC, LCC-26/20
TI

SMJ4C1024-80JD

1048576 BY 1-BIT DYNAMIC RANDOM-ACCESS MEMORY
TI

SMJ4C1024-80SV

1048576 BY 1-BIT DYNAMIC RANDOM-ACCESS MEMORY
TI

SMJ4C1024-80SVM

暂无描述
TI

SMJ4C1024FQ

1048576 BY 1-BIT DYNAMIC RANDOM-ACCESS MEMORY
TI

SMJ4C1024HJ

1048576 BY 1-BIT DYNAMIC RANDOM-ACCESS MEMORY
TI

SMJ4C1024HK

1048576 BY 1-BIT DYNAMIC RANDOM-ACCESS MEMORY
TI

SMJ4C1024HL

1048576 BY 1-BIT DYNAMIC RANDOM-ACCESS MEMORY
TI

SMJ4C1024JD

1048576 BY 1-BIT DYNAMIC RANDOM-ACCESS MEMORY
TI

SMJ4C1024SV

1048576 BY 1-BIT DYNAMIC RANDOM-ACCESS MEMORY
TI

SMJ4C1027-12JD

SMJ4C1027-12JD
TI