SMJ55166 [TI]

262144 BY 16-BIT MULTIPORT VIDEO RAM; 262144除以16位的多端口视频RAM
SMJ55166
型号: SMJ55166
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

262144 BY 16-BIT MULTIPORT VIDEO RAM
262144除以16位的多端口视频RAM

文件: 总62页 (文件大小:1436K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
SMJ55166  
262144 BY 16-BIT  
MULTIPORT VIDEO RAM  
SGMS057C – APRIL 1995 – REVISED JUNE 1997  
Organization:  
– DRAM: 262144 Words × 16 Bits  
– SAM: 256 Words × 16 Bits  
Enhanced Page-Mode Operation for Faster  
Access  
CAS-Before-RAS (CBR) and  
Hidden-Refresh Modes  
Dual-Port Accessibility – Simultaneous and  
Asynchronous Access From the DRAM and  
SAM Ports  
Long Refresh Period  
Every 8 ms (Max)  
Data-Transfer Function From the DRAM to  
the Serial-Data Register  
Up to 45-MHz Uninterrupted Serial-Data  
Streams  
(4 × 4) × 4 Block-Write Feature for Fast  
Area-Fill Operations; as Many as Four  
Memory-Address Locations Written Per  
Cycle From the 16-Bit On-Chip Color  
Register  
256 Selectable Serial-Register Starting  
Locations  
SE-Controlled Register-Status QSF  
Split-Register-Transfer Read for Simplified  
Real-Time Register Load  
Write-Per-Bit Feature for Selective Write to  
Each RAM I/O; Two Write-Per-Bit Modes to  
Simplify System Design  
Programmable Split-Register Stop Point  
3-State Serial Outputs Allow Easy  
Multiplexing of Video-Data Streams  
Byte-Write Control (WEL, WEU) Provides  
Flexibility  
All Inputs/Outputs and Clocks  
TTL-Compatible  
Extended Data Output (EDO) for Faster  
System Cycle Time  
Compatible With JEDEC Standards  
Designed to Work With the  
Texas Instruments Graphics Family  
Performance Ranges:  
ACCESS TIME ACCESS TIME  
DRAM  
DRAM  
SERIAL  
OPERATING CURRENT  
OPERATING CURRENT  
ROW ENABLE  
SERIAL DATA CYCLE TIME PAGE MODE CYCLE TIME  
SERIALPORT STAND- SERIALPORT  
AC-  
t
t
t
t
t
I
I
CC1A  
a(R)  
a(SQ)  
c(W)  
c(P)  
c(SC)  
BY  
CC1  
TIVE  
(MAX)  
(MAX)  
(MIN)  
(MIN)  
(MIN)  
(MAX)  
(MAX)  
SMJ55166-75  
SMJ55166-80  
75 ns  
80 ns  
23 ns  
25 ns  
140 ns  
150 ns  
48 ns  
50 ns  
24 ns  
30 ns  
165 mA  
160 mA  
210 mA  
195 mA  
description  
The SMJ55166 multiport video RAM is a high-speed, dual-ported memory device. It consists of a dynamic  
random-access memory (DRAM) module organized as 262 144 words of 16 bits each that are interfaced to a  
serial-data register (serial-access memory [SAM]) organized as 256 words of 16 bits each. The SMJ55166  
supports three basic types of operation: random access to and from the DRAM, serial access from the serial  
register, and transfer of data from any row in the DRAM to the serial register. Except during transfer operations,  
the SMJ55166 can be accessed simultaneously and asynchronously from the DRAM and SAM ports.  
The SMJ55166 is equipped with several features designed to provide higher system-level bandwidth and to  
simplify design integration on both the DRAM and SAM ports. On the DRAM port, greater pixel draw rates are  
achieved by the (4 × 4) × 4 block-write feature of the device. The block-write mode allows 16 bits of data (present  
in an on-chip color-data register) to be written to any combination of four adjacent column-address locations.  
As many as 64 bits of data can be written to memory during each CAS cycle time. Also on the DRAM port, a  
write mask or a write-per-bit feature allows masking of any combination of the 16 inputs/outputs on any write  
cycle. The persistent write-per-bit feature uses a mask register that, once loaded, can be used on subsequent  
write cycles without reloading. The SMJ55166 also offers byte control, which can be applied in write cycles,  
block-write cycles, load-write-mask-register cycles, and load-color-register cycles. The SMJ55166 also offers  
extended-data-output (EDO) mode, which is effective in both the page-mode and standard DRAM cycles.  
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of  
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
Copyright 1997, Texas Instruments Incorporated  
PRODUCTION DATA information is current as of publication date.  
Products conform to specifications per the terms of Texas Instruments  
standard warranty. Production processing does not necessarily include  
testing of all parameters.  
1
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
SMJ55166  
262144 BY 16-BIT  
MULTIPORT VIDEO RAM  
SGMS057C – APRIL 1995 – REVISED JUNE 1997  
HKC PACKAGE  
(TOP VIEW)  
V
1
2
3
4
5
6
7
8
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
SC  
SE  
V
CC  
TRG  
V
SS  
SS  
TERMINAL NOMENCLATURE  
SQ0  
DQ0  
SQ1  
DQ1  
SQ15  
DQ15  
SQ14  
DQ14  
A0A8  
CAS  
Address Inputs  
Column-Address Strobe  
V
V
DQ0 DQ15  
DSF  
DRAM-Data I/O, Write-Mask Data  
Special-Function Select  
CC  
CC  
SQ2  
SQ13  
DQ13  
SQ12  
DQ12  
9
10  
11  
DQ2  
SQ3  
DQ3  
NC/V  
No Connect/Ground (Important: Not  
SS  
54  
53  
52  
51  
50  
49  
connected internally to V  
Special-Function Output  
Row-Address Strobe  
Serial Clock  
)
12  
13  
14  
15  
16  
SS  
V
V
SS  
QSF  
RAS  
SC  
SS  
SQ4  
DQ4  
SQ5  
SQ11  
DQ11  
SQ10  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
SE  
Serial Enable  
Serial-Data Output  
Output Enable, Transfer Select  
5-V Supply (TYP)  
Ground  
DQ5  
DQ10  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
V
V
CC  
CC  
SQ0SQ15  
TRG  
SQ6  
DQ6  
SQ7  
DQ7  
SQ9  
DQ9  
SQ8  
DQ8  
V
CC  
V
SS  
WEL, WEU  
V
V
SS  
SS  
DRAM Byte-Write-Enable Selects  
WEL  
DSF  
NC / V  
CAS  
QSF  
A0  
WEU  
RAS  
A8  
SS  
A7  
A6  
A1  
29  
30  
31  
32  
A5  
A4  
A2  
A3  
V
V
CC  
SS  
GB PACKAGE  
(BOTTOM VIEW)  
J
H
G
F
E
D
C
B
A
1
2
3
4
5
6
7
8
9
2
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
SMJ55166  
262144 BY 16-BIT  
MULTIPORT VIDEO RAM  
SGMS057C – APRIL 1995 – REVISED JUNE 1997  
GB Package Terminal Assignments — By Location  
PIN  
NAME NO.  
PIN  
NAME  
PIN  
NAME  
PIN  
NAME  
PIN  
NAME  
PIN  
NAME  
PIN  
NAME  
PIN  
NAME  
PIN  
NAME  
NO.  
J1  
NO.  
J3  
NO.  
J4  
NO.  
J5  
NO.  
J6  
NO.  
J7  
NO.  
J8  
NO.  
J9  
DQ1  
J2  
H2  
G2  
F2  
E2  
D2  
SQ3  
SQ2  
SQ1  
DQ3  
DQ2  
DQ4  
SQ4  
DQ5  
SQ5  
DQ6  
SQ6  
SQ7  
DQ7  
WEL  
WEU  
RAS  
A8  
A7  
H1  
G1  
F1  
E1  
D1  
DQ0  
SQ0  
TRG  
SC  
H3  
G3  
F3  
H4  
G4  
H5  
H6  
G6  
H7  
G7  
F7  
H8  
G8  
F8  
E8  
D8  
C8  
B8  
A8  
H9  
G9  
F9  
E9  
D9  
C9  
B9  
A9  
V
CC2  
V
SS2  
V
CC2  
V
SS2  
A6  
V
SS1  
V
CC1  
V
CC1  
V
CC1  
A5  
V
CC1  
V
SS1  
A3  
A4  
SE  
V
V
D3  
C3  
B3  
A3  
V
V
D7  
C7  
B7  
A7  
V
V
A2  
SS1  
CC1  
SS1  
C1 SQ15 C2  
B1 DQ15 B2  
C4  
B4  
A4  
V
SS2  
C6  
B6  
A6  
V
CC2  
CAS  
DSF  
DQ8  
A1  
SS1  
CC2  
SS2  
DQ14  
SQ13  
DQ13  
SQ12  
DQ12  
SQ11  
B5  
A5  
DQ11  
SQ10  
DQ10  
SQ9  
SQ8  
DQ9  
A0  
A1  
SQ14 A2  
QSF  
GB Package Terminal Assignments — By Signals  
PIN  
PIN  
PIN  
PIN  
PIN  
PIN  
NAME  
NO.  
B9  
C9  
D9  
D8  
E9  
F9  
G9  
H9  
J9  
NAME  
NO.  
H3  
J3  
NAME  
DQ13  
DQ14  
DQ15  
DSF  
QSF  
RAS  
SC  
NO.  
B3  
B2  
B1  
B8  
A9  
G8  
E1  
D1  
G1  
G2  
H2  
NAME  
SQ3  
NO.  
J2  
NAME  
SQ14  
SQ15  
TRG  
NO.  
A1  
C1  
F1  
E2  
F3  
D3  
F7  
F8  
G3  
C3  
G6  
NAME  
NO.  
C6  
F2  
D2  
C2  
D7  
E8  
G4  
C4  
G7  
C7  
J8  
A0  
A1  
DQ2  
DQ3  
DQ4  
DQ5  
DQ6  
DQ7  
DQ8  
DQ9  
DQ10  
DQ11  
DQ12  
V
CC2  
SQ4  
H4  
H5  
H6  
J7  
V
V
V
V
V
V
V
V
V
SS1  
A2  
J4  
SQ5  
SS1  
SS1  
SS1  
SS1  
SS2  
SS2  
SS2  
SS2  
A3  
J5  
SQ6  
V
CC1  
V
CC1  
V
CC1  
V
CC1  
V
CC1  
V
CC2  
V
CC2  
V
CC2  
A4  
J6  
SQ7  
A5  
H7  
A8  
A7  
B6  
B5  
B4  
SQ8  
B7  
A6  
A5  
A4  
A3  
A2  
A6  
SQ9  
A7  
SE  
SQ10  
SQ11  
SQ12  
SQ13  
A8  
SQ0  
SQ1  
SQ2  
CAS  
DQ0  
DQ1  
C8  
H1  
J1  
WEL  
WEU  
H8  
3
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
SMJ55166  
262144 BY 16-BIT  
MULTIPORT VIDEO RAM  
SGMS057C – APRIL 1995 – REVISED JUNE 1997  
description (continued)  
The SMJ55166 offers a split-register-transfer read (DRAM to SAM) feature for the serial register (SAM port) that  
enables real-time register-load implementation for truly continuous serial-data streams without critical timing  
requirements. The register is divided into a high half and a low half. While one half is being read out of the SAM  
port, the other half can be loaded from the memory array. For applications not requiring real-time register load  
(for example, loads done during CRT-retrace periods), the full-register mode of operation is retained to simplify  
system design.  
The SAM port is designed for maximum performance, enabling data to be accessed from the SAM at serial rates  
up to 45 MHz. During the split-register-transfer read operations, internal circuitry detects when the last bit  
position is accessed from the active half of the register and immediately transfers control to the opposite half.  
A separate output, QSF, is included to indicate which half of the serial register is active.  
All inputs, outputs, and clock signals on the SMJ55166 are compatible with Series 54 TTL. All address lines and  
data-in lines are latched on-chip to simplify system design. All data-out lines are unlatched to allow greater  
system flexibility.  
The SMJ55166 is offered in a 68-pin ceramic pin-grid-array package (GB suffix) and a 64-pin ceramic flatpack  
(HKC suffix).  
The SMJ55166 and other TI multiport video RAMs are supported by a broad line of graphics processors and  
control devices from TI. Table 1 is a combination of Table 3 and Table 4, showing the DRAM and SAM functions  
with the terminal signal levels. Table 2 shows the relationship between terminal descriptions and operational  
modes.  
4
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
SMJ55166  
262144 BY 16-BIT  
MULTIPORT VIDEO RAM  
SGMS057C – APRIL 1995 – REVISED JUNE 1997  
functional block diagram  
1 of 4 Subblocks  
(see next page)  
Input  
DSF  
Buffer  
Special-  
Function  
Logic  
Input  
Buffer  
Column  
Buffer  
1 of 4 Subblocks  
(see next page)  
9
16  
DQ0–  
DQ15  
A0A8  
Row  
Buffer  
Output  
Buffer  
SC  
1 of 4 Subblocks  
(see next page)  
Serial-  
Address  
Refresh  
Counter  
Counter  
Split-  
Register  
Status  
Serial-  
Output  
Buffer  
16  
SQ0SQ15  
QSF  
SE  
1 of 4 Subblocks  
(see next page)  
SE  
RAS  
CAS  
Timing  
Generator  
TRG  
WEx  
5
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
SMJ55166  
262144 BY 16-BIT  
MULTIPORT VIDEO RAM  
SGMS057C – APRIL 1995 – REVISED JUNE 1997  
functional block diagram (continued)  
Special-  
DSF  
Input  
Buffer  
Function  
Logic  
Color  
Register  
W/B  
Unlatch  
W/B  
Latch  
DRAM  
Input  
Address  
Mask  
MUX  
Buffer  
DQi  
Write-  
Per-Bit  
Control  
DQi+1  
DQi+2  
DQi+3  
DRAM  
Output  
Buffer  
Column DEC  
Column  
Buffer  
Sense AMP  
9
RAS  
CAS  
TRG  
WEx  
Timing  
Generator  
A0A8  
512 × 512  
Memory  
Array  
Row  
Buffer  
Row  
Decoder  
Serial-Data  
Register  
SC  
Serial-Data  
Pointer  
SQi  
SQi+1  
SQi+2  
SQi+3  
Serial-  
Address  
Counter  
Serial-  
Output  
Buffer  
Refresh  
Counter  
Split-  
Register  
Status  
1 of 4 Subblocks  
SE  
QSF  
SE  
6
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
SMJ55166  
262144 BY 16-BIT  
MULTIPORT VIDEO RAM  
SGMS057C – APRIL 1995 – REVISED JUNE 1997  
operation  
Table 1. DRAM and SAM Function Table  
CAS  
FALL  
DQ0DQ15  
RAS FALL  
ADDRESS  
MNE  
CODE  
FUNCTION  
WEL  
WEU  
CAS  
§
CAS  
TRG WEx  
DSF  
DSF  
RAS  
CAS  
RAS  
Reserved (do not use)  
L
L
L
L
L
L
X
X
X
X
X
X
X
X
CBR refresh (no reset) and stop-point  
Stop  
Point  
X
H
X
CBRS  
#
set (CBRS)  
||  
CBR refresh (option reset)  
L
L
X
X
H
H
L
X
X
X
X
X
X
X
X
X
CBR  
CBR refresh (no reset)  
H
X
CBRN  
Row  
Address  
Tap  
Point  
Full-register-transfer read  
H
H
H
L
L
H
H
L
L
H
L
X
X
L
X
X
X
X
RT  
Row  
Address  
Tap  
Point  
Split-register-transfer read  
DRAM write  
SRT  
RWM  
Row  
Column  
Write  
Mask  
Valid  
Data  
H
(nonpersistent write-per-bit)  
Address Address  
Block  
Row  
DRAM block write  
(nonpersistent write-per-bit)  
Write  
Mask  
Column  
Mask  
H
H
H
H
H
H
H
H
H
H
L
L
L
L
L
L
L
H
L
Address  
BWM  
RWM  
BWM  
RW  
Address  
A2A8  
DRAM write  
(persistent write-per-bit)  
Row  
Column  
Valid  
Data  
X
X
X
X
Address Address  
Block  
Row  
DRAM block write  
(persistent write-per-bit)  
Column  
Mask  
L
H
L
Address  
A2A8  
Address  
Row  
Column  
Valid  
Data  
DRAM write (nonmasked)  
DRAM block write (nonmasked)  
Load write-mask register  
H
H
Address Address  
Block  
Row  
Column  
Mask  
H
Address  
A2A8  
BW  
Address  
Refresh  
X
Write  
Mask  
H
H
H
H
H
H
H
H
L
X
X
LMR  
LCR  
Address  
Refresh  
X
Color  
Data  
Load color register  
Legend:  
H
Address  
Col Mask  
Write Mask  
X
=
=
=
H: Write to address/column enabled  
H: Write to I/O enabled  
Don’t care  
§
#
||  
DQ0DQ15 are latched on either the first falling edge of WEx or the falling edge of CAS, whichever occurs later.  
Logic L is selected when either or both WEL and WEU are low.  
The column address and block address are latched on the first falling edge of CAS.  
CBRS cycle should be performed immediately after the power-up initialization cycle.  
A0A3, A8: don’t care; A4A7 : stop-point code  
CBR refresh (option reset) mode ends persistent write-per-bit mode and stop-point mode.  
CBR refresh (no reset) mode does not end persistent write-per-bit mode or stop-point mode.  
Load write-mask-register cycle sets the persistent write-per-bit mode. The persistent write-per-bit mode is reset only by the CBR (option reset)  
cycle.  
7
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
SMJ55166  
262144 BY 16-BIT  
MULTIPORT VIDEO RAM  
SGMS057C – APRIL 1995 – REVISED JUNE 1997  
operation (continued)  
Table 2. Terminal Description Versus Operational Mode  
PIN  
A0A8  
CAS  
DRAM  
TRANSFER  
Row address, tap point  
Tap-address strobe  
SAM  
Row, column address  
Column-address strobe, DQ output enable  
DRAM data I/O, write mask  
DQ  
DSF  
Block-write enable  
Split-register-transferenable  
Row-address strobe  
Write-mask-register load enable  
Color-register load enable  
CBR (option reset)  
RAS  
SE  
Row-address strobe  
SQ output enable,  
QSF output enable  
SC  
Serial clock  
SQ  
Serial-data output  
TRG  
DQ output enable  
Transfer enable  
WEL  
WEU  
Write enable, write-per-bit enable  
QSF  
Serial-register status  
NC/V  
SS  
Either make no external connection or tie to system V  
SS  
V
5-V supply  
Ground  
CC  
V
SS  
For proper device operation, all V  
pins must be connected to a 5-V supply and all V  
pins must be tied to ground.  
SS  
CC  
terminal definitions  
address (A0A8)  
Eighteen address bits are required to decode each of the 262144 storage cell locations. Nine row-address bits  
are set up on pins A0A8 and latched onto the chip on the falling edge of RAS. Nine column-address bits are  
set up on pins A0A8 and latched onto the chip on the falling edge of CAS. All addresses must be stable on  
or before the falling edge of RAS and the falling edge of CAS.  
During the full-register-transfer read operation, the states of A0A8 are latched on the falling edge of RAS to  
select one of the 512 rows where the transfer occurs. AtthefallingedgeofCAS, thecolumn-addressbitsA0A8  
are latched. The most significant column-address bit (A8) selects which half of the row is transferred to the SAM.  
The appropriate 8-bit column address (A0A7) selects one of 256 tap points (starting positions) for the  
serial-data output.  
During the split-register-transfer read operation, address bit A7 is ignored at the falling edge of CAS. An internal  
counter selects which half of the register is used. If the high half of the SAM is currently in use, the low half of  
theSAMisloadedwiththelowhalfoftheDRAMhalfrowandviceversa. Columnaddress(A8)selectstheDRAM  
half row. The remaining seven address bits (A0A6) are used to select each of the 127 possible starting  
locations within the SAM. Locations 127 and 255 are not valid tap points.  
row-address strobe (RAS)  
RAS is similar to a chip enable so that all DRAM cycles and transfer cycles are initiated by the falling edge of  
RAS. RAS is a control input that latches the states of the row address, WEL, WEU, TRG, CAS, and DSF onto  
the chip to invoke DRAM and transfer functions of the SMJ55166.  
8
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
SMJ55166  
262144 BY 16-BIT  
MULTIPORT VIDEO RAM  
SGMS057C – APRIL 1995 – REVISED JUNE 1997  
column-address strobe (CAS)  
CAS is a control input that latches the states of the column address and DSF to control DRAM and transfer  
functions of the SMJ55166. CAS also acts as output enable for the DRAM output pins DQ0DQ15. During  
transfer operations, address bits A0A8 are latched at the falling edge of CAS as the start position (tap) for the  
serial-data output (SQ0 SQ15).  
output enable/transfer select (TRG)  
TRG selects either DRAM or transfer operation as RAS falls. For DRAM operation, TRG must be held high as  
RAS falls. During DRAM operation, TRG functions as an output enable for the DRAM output pins DQ0DQ15.  
For transfer operation, TRG must be brought low before RAS falls.  
write-mask select, write enable (WEL, WEU)  
In DRAM operation, WEL enables data to be written to the lower byte (DQ0DQ7) and WEU enables data to  
be written to the upper byte (DQ8DQ15) of the DRAM. Both WEL and WEU have to be held high together to  
select the read mode. Bringing either or both WEL and WEU low selects the write mode. WEL and WEU are  
also used to select the DRAM write-per-bit mode. Holding either or both WEL and WEU low on the falling edge  
of RAS invokes the write-per-bit operation. The SMJ55166 supports both the nonpersistent write-per-bit mode  
and the persistent write-per-bit mode.  
special-function select (DSF)  
The DSF input is latched on the falling edge of RAS or the first falling edge of CAS, similar to an address. DSF  
determines which of the following functions is invoked on a particular cycle:  
CBR refresh with reset (CBR)  
CBR refresh with no reset (CBRN)  
CBR refresh with no reset and stop-point set (CBRS)  
Block write (BW)  
Load write-mask register (LMR) loading for the persistent write-per-bit mode  
Load color register (LCR) for the block-write mode  
Split-register-transfer (SRT) read  
DRAM-data I/O, write-mask data (DQ0DQ15)  
DRAM data is written or read through the common I/O DQ pins. The 3-state DQ-output buffers provide direct  
TTL compatibility (no pullup resistors) with a fanout of one Series 54 TTL load. Data out is the same polarity  
as data in. The outputs are in the high-impedance (floating) state as long as either TRG or CAS is held high.  
Data does not appear at the outputs until after both CAS and TRG have been brought low. The write mask is  
latched into the device through the random DQ pins by the falling edge of RAS and is used on all write-per-bit  
cycles. In a transfer operation, the DQ outputs remain in the high-impedance state for the entire cycle.  
serial-data outputs (SQ0SQ15)  
Serial data is read from SQ. SQ output buffers provide direct TTL compatibility (no pullup resistors) with a fanout  
of one Series 54 TTL load. The serial outputs are in the high-impedance (floating) state while the serial-enable  
pin, SE, is high. The serial outputs are enabled when SE is brought low.  
serial clock (SC)  
Serial data is accessed out of the data register from the rising edge of SC. The SMJ55166 is designed to work  
with a wide range of clock duty cycles to simplify system design. There is no refresh requirement because the  
data registers that comprise the SAM are static. There is also no minimum SC clock operating frequency.  
9
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
SMJ55166  
262144 BY 16-BIT  
MULTIPORT VIDEO RAM  
SGMS057C – APRIL 1995 – REVISED JUNE 1997  
serial enable (SE)  
During serial-access operations, SE enables/disables the SQ outputs. SE low enables the serial-data output  
while SE high disables the serial-data output. SE is also used as an enable/disable for output pin QSF.  
NOTE:While SE is held high, the serial clock is not disabled. External SC pulses increment the  
internal serial-address counter, regardless of the state of SE. This ungated serial-clock scheme  
minimizes access time of serial output from SE low because the serial-clock input buffer and the  
serial-address counter are not disabled by SE.  
special-function output (QSF)  
QSFisanoutputpinthatindicateswhichhalfoftheSAMisbeingaccessed. WhenQSFislow, theserial-address  
pointer accesses the lower (least significant) 128 bits of the SAM. When QSF is high, the pointer accesses the  
higher (most significant) 128 bits of the SAM. QSF changes state upon crossing a boundary between the two  
SAM halves.  
During full-register-transfer operations, QSF can change state upon completing the cycle. This state is  
determined by the tap point loaded during the transfer cycle. QSF output is enabled by SE. If SE is high, the  
QSF output is in the high-impedance state.  
no connect/ground (NC/V  
)
SS  
NC/V must be tied to system ground or left floating for proper device operation.  
SS  
10  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
SMJ55166  
262144 BY 16-BIT  
MULTIPORT VIDEO RAM  
SGMS057C – APRIL 1995 – REVISED JUNE 1997  
functional operation description  
Table 3. DRAM Function Table  
CAS  
DQ0DQ15  
RAS FALL  
FALL  
ADDRESS  
MNE  
CODE  
FUNCTION  
WEL  
WEU  
CAS  
§
CAS  
TRG WEx  
DSF  
DSF  
RAS  
CAS  
RAS  
Reserved (do not use)  
L
L
L
L
L
X
X
X
X
X
X
X
X
CBR refresh (no reset) and stop-point  
Stop  
Point  
L
X
H
X
CBRS  
#
set (CBRS)  
||  
CBR refresh (option reset)  
CBR refresh (no reset)  
DRAM write  
L
L
X
X
H
H
L
X
X
X
X
X
X
X
X
X
CBR  
H
X
CBRN  
Row  
Column  
Write  
Mask  
Valid  
Data  
H
H
H
H
H
H
H
H
H
H
H
H
L
L
L
L
L
L
L
L
H
L
RWM  
BWM  
RWM  
BWM  
RW  
(nonpersistent write-per-bit)  
Address Address  
Block  
Row  
Address  
DRAM block write  
Write  
Mask  
Column  
Mask  
L
Address  
A2A8  
(nonpersistent write-per-bit)  
DRAM write  
(persistent write-per-bit)  
Row  
Column  
Valid  
Data  
L
X
X
X
X
Address Address  
Block  
Row  
Address  
DRAM block write  
(persistent write-per-bit)  
Column  
Mask  
L
H
L
Address  
A2A8  
Row  
Column  
Valid  
Data  
DRAM write (nonmasked)  
DRAM block write (nonmasked)  
Load write-mask register  
H
H
Address Address  
Block  
Row  
Address  
Column  
Mask  
H
Address  
A2A8  
BW  
Refresh  
X
Write  
Mask  
H
H
H
H
H
H
H
H
L
X
X
LMR  
LCR  
Address  
Refresh  
X
Color  
Data  
Load color register  
Legend:  
H
Address  
Col Mask  
Write Mask  
X
=
=
=
H: Write to address/column enabled  
H: Write to I/O enabled  
Don’t care  
§
#
||  
DQ0DQ15 are latched on either the first falling edge of WEx or the falling edge of CAS, whichever occurs later.  
Logic L is selected when either or both WEL and WEU are low.  
The column address and block address are latched on the first falling edge of CAS.  
CBRS cycle should be performed immediately after the power-up initialization cycle.  
A0A3, A8: don’t care; A4A7 : stop-point code  
CBR refresh (option reset) mode ends persistent write-per-bit mode and stop-point mode.  
CBR refresh (no reset) mode does not end persistent write-per-bit mode or stop-point mode.  
Load-write-mask-register cycle sets the persistent write-per-bit mode. The persistent write-per-bit mode is reset only by the CBR (option reset)  
cycle.  
11  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
SMJ55166  
262144 BY 16-BIT  
MULTIPORT VIDEO RAM  
SGMS057C – APRIL 1995 – REVISED JUNE 1997  
enhanced page mode  
Enhancedpage-modeoperationallowsfastermemoryaccessbykeepingthesamerowaddresswhileselecting  
random column addresses. This mode eliminates the time required for row-address setup, row-address hold,  
and address multiplex. The maximum RAS low time and CAS-page-cycle time used determine the number of  
columns that can be accessed.  
Unlike conventional page-mode operations, the enhanced page mode allows the SMJ55166 to operate at a  
higher data bandwidth. Data retrieval begins as soon as the column address is valid rather than when CAS  
transitions low. A valid column address can be presented immediately after the row-address hold time has been  
satisfied, usually well in advance of the falling edge of CAS. In this case, data is obtained after t  
max (access  
a(C)  
time from CAS low) if t  
max (access time from column address) has been satisfied.  
a(CA)  
refresh  
CAS-before-RAS (CBR) refresh  
CBR refreshes are accomplished by bringing CAS low earlier than RAS. The external row address is ignored  
and the refresh row address is generated internally. Three types of CBR refresh cycles are available: the CBR  
refresh (option reset) which ends the persistent write-per-bit mode and the stop-point mode and the CBRN  
refresh and CBRS refresh (no reset), which do not end the persistent write-per-bit mode or the stop-point mode.  
The 512 rows of the DRAM do not necessarily need to be refreshed consecutively as long as the entire refresh  
is completed within the required time period, t  
during the CBR refresh cycles regardless of the state of TRG.  
. The output buffers remain in the high-impedance state  
rf(MA)  
hidden refresh  
A hidden refresh is accomplished by holding CAS low in the DRAM read cycle and cycling RAS. The output data  
of the DRAM read cycle remains valid while the refresh is carried out. Like the CBR refresh, the refreshed row  
addresses are generated internally during the hidden refresh.  
RAS-only refresh  
A RAS-only refresh is accomplished by cycling RAS at every row address. Unless CAS and TRG are low, the  
output buffers remain in the high-impedance state to conserve power. Externally generated addresses must be  
supplied during RAS-only refresh. Strobing each of the 512 row addresses with RAS causes all bits in each row  
to be refreshed.  
extended data output  
TheSMJ55166featuresextended-dataoutputduringDRAMaccesses. WhileRASandTRGarelow, theDRAM  
output remains valid. The output remains valid even when CAS returns high (until WEx is low), TRG is high,  
orbothCASandRAS are high (see Figure 1 and Figure 2). The extended-data-outputmodefunctionsinallread  
cycles including DRAM read, page-mode read, and read-modify-write cycles (see Figure 3).  
RAS  
CAS  
t
dis(RH)  
Valid Output  
DQ0 DQ15  
TRG  
t
dis(G)  
Figure 1. DRAM Read Cycle With RAS-Controlled Output  
12  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
SMJ55166  
262144 BY 16-BIT  
MULTIPORT VIDEO RAM  
SGMS057C – APRIL 1995 – REVISED JUNE 1997  
extended data output (continued)  
RAS  
CAS  
DQ0 DQ15  
TRG  
t
dis(CH)  
Valid Output  
t
dis(G)  
Figure 2. DRAM Read Cycle With CAS-Controlled Output  
RAS  
CAS  
Row  
Column  
Column  
A0A8  
t
t
t
a(CP)  
a(CA)  
a(C)  
t
a(C)  
t
a(CA)  
t
h(CLQ)  
Valid Output  
Valid Output  
DQ0DQ15  
TRG  
Figure 3. DRAM Page-Read Cycle With Extended Output  
13  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
SMJ55166  
262144 BY 16-BIT  
MULTIPORT VIDEO RAM  
SGMS057C – APRIL 1995 – REVISED JUNE 1997  
byte-write operation  
Byte-writeoperations can be applied in DRAM-write cycles, block-write cycles, load-write-mask-register cycles,  
and load-color-register cycles. Holding either or both WEL and WEU low selects the write mode. In normal write  
cycles, WEL enables data to be written to the lower byte (DQ0DQ7) and WEU enables data to be written to  
the upper byte (DQ8DQ15). For early-write cycles, one WEx is brought low before CAS falls. The other WEx  
can be brought low before CAS falls or after CAS falls. The data is strobed in with data setup and hold times  
for DQ0DQ15 referenced to CAS (see Figure 4).  
RAS  
CAS  
WEL  
WEU  
t
su(DCL)  
t
h(CLD)  
Valid Input  
DQ0DQ15  
Either WEU or WEL can be brought low prior to CAS to initiate an early-write cycle.  
Figure 4. Example of an Early-Write Cycle  
14  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
SMJ55166  
262144 BY 16-BIT  
MULTIPORT VIDEO RAM  
SGMS057C – APRIL 1995 – REVISED JUNE 1997  
byte-write operation (continued)  
For late-write or read-modify-write cycles, WEL and WEU are both held high before CAS falls. After CAS falls,  
either or both WEL and WEU are brought low to select the corresponding byte or bytes to be written. Data is  
strobed in by either or both WEL and WEU with data setup and hold times for DQ0DQ15 referenced to  
whichever WEx falls earlier (see Figure 5).  
RAS  
CAS  
WEL  
WEU  
t
su(DWL)  
t
h(WLD)  
Valid Input  
DQ0DQ15  
Figure 5. Example of a Late-Write Cycle  
15  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
SMJ55166  
262144 BY 16-BIT  
MULTIPORT VIDEO RAM  
SGMS057C – APRIL 1995 – REVISED JUNE 1997  
write-per-bit  
The write-per-bit feature allows masking any combination of the 16 DQs on any write cycle. The write-per-bit  
operation is invoked when either WEL or WEU is held low on the falling edge of RAS. Assertion of either  
individual WEx allows entry of the entire 16-bit mask on DQ0DQ15. Byte control of the mask input is not  
allowed. If both WEL and WEU are held high on the falling edge of RAS, the write operation is performed without  
any masking. The SMJ55166 offers two write-per-bit modes: nonpersistent write-per-bit and persistent  
write-per-bit.  
nonpersistent write-per-bit  
WheneitherorbothWELandWEUarelowonthefallingedgeofRAS, thewritemaskisreloaded. A16-bitbinary  
code (the write-per-bit mask) is input to the device through the random DQ pins and latched on the falling edge  
of RAS. The write-per-bit mask selects which of the 16 random I/Os are to be written and which are not. After  
RAS has latched the on-chip write-per-bit mask, input data is driven onto the DQ pins and is latched on either  
the first falling edge of WEx or the falling edge of CAS, whichever occurs later. WEL enables the lower byte  
(DQ0 DQ7) to be written through the mask and WEU enables the upper byte (DQ8DQ15) to be written  
through the mask. If a data low (write mask = 0) is strobed into a particular I/O pin on the falling edge of RAS,  
data is not written to that I/O. If a data high (write mask = 1) is strobed into a particular I/O pin on the falling edge  
of RAS, data is written to that I/O (see Figure 6).  
RAS  
CAS  
WEL  
WEU  
t
su(DQR)  
t
t
h(RDQ)  
su(DWL)  
t
h(WLD)  
Write Mask  
Write Input  
DQ0DQ15  
Figure 6. Example of a Nonpersistent Write-Per-Bit (Late-Write) Operation  
16  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
SMJ55166  
262144 BY 16-BIT  
MULTIPORT VIDEO RAM  
SGMS057C – APRIL 1995 – REVISED JUNE 1997  
persistent write-per-bit  
The persistent write-per-bit mode is initiated by performing a load-write-mask-register (LMR) cycle. In the  
persistent write-per-bit mode, the write-per-bit mask is not overwritten but remains valid over an arbitrary  
number of write cycles until another LMR cycle is performed or power is removed.  
The LMR cycle is performed using DRAM write-cycle timing with DSF held high on the falling edge of RAS and  
held low on the falling edge of CAS. A binary code is input to the write-mask register via the random I/O pins  
and latched on either the first WEx falling edge or the falling edge of CAS, whichever occurs later. Byte write  
control can be applied to the write mask during the LMR cycle. The persistent write-per-bit mode can then be  
used in exactly the same way as the nonpersistent write-per-bit mode except that the input data on the falling  
edge of RAS is ignored. When the device is set to the persistent write-per-bit mode, it remains in this mode and  
is reset only by a CBR refresh (option reset) cycle (see Figure 7).  
Load Write-Mask Register  
Persistent Write-Per-Bit  
CBR Refresh (option reset)  
RAS  
CAS  
A0A8  
Refresh  
Address  
Row  
Column  
DSF  
WEx  
DQ0–  
DQ15  
Write-Mask  
Data  
Valid  
Input  
Mask Data  
= . . . . . . 1 : Write to I/O enabled  
0 : Write to I/O disabled  
=
Figure 7. Example of a Persistent Write-Per-Bit Operation  
17  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
SMJ55166  
262144 BY 16-BIT  
MULTIPORT VIDEO RAM  
SGMS057C – APRIL 1995 – REVISED JUNE 1997  
block write  
The block-write feature allows up to 64 bits of data to be written simultaneously to one row of the memory array.  
This function is implemented as 4 columns × 4 DQs and repeated in four quadrants. In this manner, each of the  
four 1M-bit quadrants can have up to four consecutive columns written at a time with up to four DQs per column  
(see Figure 8).  
DQ15  
DQ14  
4th Quadrant  
DQ13  
DQ12  
DQ11  
DQ10  
3rd Quadrant  
DQ9  
DQ8  
One Row of 0511  
DQ7  
DQ6  
2nd Quadrant  
DQ5  
DQ4  
DQ3  
DQ2  
1st Quadrant  
DQ1  
DQ0  
4 Consecutive Columns of 0511  
Figure 8. Block-Write Operation  
Each 1M-bit quadrant has a 4-bit column mask to mask off and prevent any or all of the four columns from being  
written with data. Nonpersistent write-per-bit or persistent write-per-bit functions can be applied to the  
block-write operation to provide write-masking options. The DQ data is provided by four bits from the on-chip  
color register. Bits 0 3 from the 16-bit write-mask register, bits 0 3 from the 16-bit column-mask register, and  
bits 0 3 from the 16-bit color-data register configure the block write for the first quadrant, while bits 4 7, 8 11,  
and 12 15 of the corresponding registers control the other quadrants in a similar fashion (see Figure 9).  
18  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
SMJ55166  
262144 BY 16-BIT  
MULTIPORT VIDEO RAM  
SGMS057C – APRIL 1995 – REVISED JUNE 1997  
block write (continued)  
DQ15  
DQ14  
DQ13  
DQ12  
DQ11  
DQ10  
12  
13  
14  
15  
DQ9  
DQ8  
One Row of 0511  
DQ7  
DQ6  
8
9
DQ5  
10  
11  
DQ4  
DQ3  
DQ2  
4
5
6
7
DQ1  
DQ0  
0
1
2
3
3
7
11  
15  
2
6
10  
14  
1
1
5
9
13  
0
4
8
12  
0
2
3
4
5
6
7
8
9
10 11  
12 13 14 15  
Color Register  
Figure 9. Block Write With Masks  
19  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
SMJ55166  
262144 BY 16-BIT  
MULTIPORT VIDEO RAM  
SGMS057C – APRIL 1995 – REVISED JUNE 1997  
block write (continued)  
Every four columns make a block, which results in 128 blocks along one row. Block 0 comprises columns 0 3,  
block 1 comprises columns 4 7, block 2 comprises columns 8 11, and so forth, as shown in Figure 10.  
Block 0  
Block 1 . . . . . . . . . . . . . . . . . . . . . . Block 127  
One Row of 0511  
0
1
2
3
4
5
6
7 . . . . . . . . . . . . . . . . . . . . . . . . . . . 511  
Columns  
Figure 10. Block Columns Organization  
During block-write cycles, only the seven most significant column addresses (A2 A8) are latched on the falling  
edge of CAS to decode one of the 128 blocks. Address bits A0 A1 are ignored. Each 1M-bit quadrant has the  
same block selected.  
A block-write cycle is entered in a manner similar to a DRAM-write cycle except DSF is held high on the first  
falling edge of CAS. As in a DRAM-write operation, WEL enables writing of the lower DRAM DQ byte while WEH  
enables the upper byte. The column-mask data is input via the DQs and is latched on either the first falling edge  
of WEx or the falling edge of CAS, whichever occurs later. The 16-bit color-data register must be loaded prior  
to performing a block write as described below. Refer to the write-per-bit section for details on use of the  
write-mask capability, allowing additional performance options.  
Example of block write:  
block-write column address = 110000000 (A0 A8 from left to right)  
bit 0  
bit 15  
0111  
1011  
1010  
color-data register = 1011  
write-mask register = 1110  
column-mask register = 1111  
1011  
1111  
0000  
1100  
1111  
0111  
1st  
2nd  
3rd  
4th  
Quad  
Quad  
Quad  
Quad  
Column-address bits A0 and A1 are ignored. Block 0 (columns 0 3) is selected for each 1M-bit quadrant. The  
first quadrant has DQ0 DQ2 written with bits 0 2 from the color-data register (101) to all four columns of block  
0. DQ3 is not written and retains its previous data due to write-mask-register-bit 3 being a 0.  
The second quadrant (DQ4DQ7) has all four columns masked off due to the column-mask bits 4 7 being 0,  
so that no data is written.  
The third quadrant (DQ8DQ11) has its four DQs written with bits 8 11 from the color-data register (1100) to  
columns 1–3 of its block 0. Column 0 is not written and retains its previous data on all four DQs due to  
column-mask-register-bit 8 being 0.  
The fourth quadrant (DQ12DQ15) has DQ12, DQ14, and DQ15 written with bits 12, 14, and 15 from the  
color-data register to column 0 and column 2 of its block 0. DQ13 retains its previous data on all columns due  
to the write mask. Columns 1 and 3 retain their previous data on all DQs due to the column mask. If the previous  
data for the quadrant was all 0s, the fourth quadrant would contain the data pattern shown in Figure 11 after  
the block-write operation shown in the previous example.  
20  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
SMJ55166  
262144 BY 16-BIT  
MULTIPORT VIDEO RAM  
SGMS057C – APRIL 1995 – REVISED JUNE 1997  
block write (continued)  
DQ15  
1
1
0
0
1
0
DQ14  
1
0
0
0
4th Quadrant  
DQ13  
0
0
0
0
DQ12  
0
0
Columns  
0
1
2
3
Figure 11. Example of Fourth Quadrant After Block-Write Operation  
load color register  
The load-color-register cycle is performed using normal DRAM-write-cycle timing except that DSF is held high  
on the falling edges of RAS and CAS. The color register is loaded from pins DQ0 DQ15, which are latched  
on either the first falling edge of WEx or the falling edge of CAS, whichever occurs later. If only one WEx is low,  
only the corresponding byte of the color register is loaded. When the color register is loaded, it retains data until  
power is lost or until another load-color-register cycle is performed (see Figure 12 and Figure 13).  
Load-Color-Register Cycle  
Block-Write Cycle  
(no write mask)  
Block-Write Cycle  
(load and use write mask)  
RAS  
CAS  
A0A8  
WEx  
1
2
3
2
3
TRG  
DSF  
DQ0DQ15  
4
6
5
6
Legend:  
1. Refresh address  
2. Row address  
3. Block address (A2A8) is latched on the falling edge of CAS.  
4. Color-register data  
5. Write-mask data: DQ0DQ15 are latched on the falling edge of RAS.  
6. Column-mask data: DQiDQi + 3 (i = 0, 4, 8, 12) are latched on either the first falling edge of WEx or the falling edge of CAS, whichever  
occurs later.  
= don’t care  
Figure 12. Example of Block Writes  
21  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
SMJ55166  
262144 BY 16-BIT  
MULTIPORT VIDEO RAM  
SGMS057C – APRIL 1995 – REVISED JUNE 1997  
load color register (continued)  
Load-Mask-Register Cycle  
Load-Color-Register Cycle  
Persistent Block-Write Cycle  
(use loaded write mask)  
RAS  
CAS  
A0A8  
WEx  
1
1
2
3
TRG  
DSF  
DQ0DQ15  
5
4
6
Legend:  
1. Refresh address  
2. Row address  
3. Block address (A2A8) is latched on the falling edge of CAS.  
4. Color-register data  
5. Write-mask data: DQ0 DQ15 are latched on the falling edge of CAS.  
6. Column-mask data: DQiDQi + 3 (i = 0, 4, 8, 12) are latched on either the first WEx falling edge or the falling edge of CAS, whichever  
occurs later.  
= don’t care  
Figure 13. Example of a Persistent Block Write  
DRAM-to-SAM transfer operation  
During the DRAM-to-SAM transfer operation, one half of a row (256 columns) in the DRAM array is selected  
to be transferred to the 256-bit serial-data register. The transfer operation is invoked by bringing TRG low and  
holding WEx high on the falling edge of RAS. The state of DSF, which is latched on the falling edge of RAS,  
determines whether the full-register-transfer read operation or the split-register-transfer read operation is  
performed.  
Table 4. SAM Function Table  
CAS  
FALL  
RAS FALL  
ADDRESS  
DQ0 DQ15  
CAS  
MNE  
CODE  
FUNCTION  
CAS  
H
TRG WEx  
DSF  
L
DSF  
RAS  
CAS  
RAS  
WEx  
Row  
Addr  
Tap  
Point  
Full-register-transfer read  
Split-register-transfer read  
L
L
H
H
X
X
X
X
X
RT  
Row  
Addr  
Tap  
Point  
H
H
X
SRT  
Logic L is selected when either or both WEL and WEU are low.  
don’t care  
X
=
22  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
SMJ55166  
262144 BY 16-BIT  
MULTIPORT VIDEO RAM  
SGMS057C – APRIL 1995 – REVISED JUNE 1997  
full-register-transfer read  
A full-register-transfer read operation loads data from a selected half of a row in the DRAM into the serial-access  
memory register (SAM). TRG is brought low and latched at the falling edge of RAS. Nine row-address bits  
(A0 A8) are also latched at the falling edge of RAS to select one of the 512 rows available for the transfer. The  
nine column-address bits (A0 A8) are latched at the falling edge of CAS, where address bit A8 selects which  
half of the row is transferred. Address bits A0 A7 select each of the 256 available tap points (of the SAM  
register) from which the serial data is read (see Figure 14).  
A8 = 0  
A8 = 1  
0
255 256  
511  
512 × 512  
Memory Array  
256-Bit  
Data Register  
0
255  
Figure 14. Full-Register-Transfer Read  
A full-register-transfer read can be performed in three ways: early load, real-time load (or midline load), or late  
load. Each of these offers the flexibility of controlling the TRG trailing edge in the full-register-transfer read cycle  
(see Figure 15).  
Early Load  
Real-Time Load  
Late Load  
RAS  
CAS  
A0A8  
Row  
Tap  
Point  
Row  
Tap  
Point  
Row  
Tap  
Point  
TRG  
WEx  
SC  
Old  
Data  
Tap  
Bit  
Old  
Data  
Old  
Data  
Tap  
Bit  
Old  
Data  
Old  
Data  
Tap  
Bit  
Figure 15. Example of Full-Register-Transfer Read Operations  
23  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
SMJ55166  
262144 BY 16-BIT  
MULTIPORT VIDEO RAM  
SGMS057C – APRIL 1995 – REVISED JUNE 1997  
split-register-transfer read  
In the split-register-transfer read operation, the serial-data register is split into halves (see Figure 16). The low  
half contains bits 0 127, and the high half contains bits 128 – 255. While one half is being read out of the SAM  
port, the other half can be loaded from the memory array.  
A8 = 0  
A8 = 1  
0
255 256  
511  
512 × 512  
Memory Array  
256-Bit  
Data Register  
0
255  
Figure 16. Split-Register-Transfer Read  
To invoke a split-register-transfer read cycle, DSF is brought high, TRG is brought low, and both are latched at  
the falling edge of RAS. Nine row-address bits (A0 A8) are also latched at the falling edge of RAS to select  
one of the 512 rows available for the transfer. Eight of the nine column-address bits (A0 A6 and A8) are latched  
at the falling edge of CAS. Column-address bit A8 selects which half of the row is to be transferred.  
Column-address bits A0A6 select each of the 127 tap points in the specified half of the SAM. Column-address  
bit A7 is ignored, and the split-register-transfer is internally controlled to select the inactive register half  
(see Figure 17).  
Full XFER  
Split XFER  
A8 = 1  
Split XFER  
A8 = 1  
Split XFER  
RAS  
A8 = 0  
A8 = 0  
0
511  
0
A7 = 0 511  
0
A7 = 1 511  
0
A7 = 0  
A
511  
A
B
A
B
C
A
B
C
D
B
C
D
D
E
DRAM  
SAM  
0
255  
0
255  
B
0
255  
0
255  
A
B
C
C
D
E
SQ  
A7 shown as internally controlled.  
SQ  
SQ  
SQ  
Figure 17. Example of a Split-Register-Transfer Read Operation  
A full-register-transfer read must precede the first split-register-transfer read to ensure proper operation. After  
the full-register-transfer read cycle, the first split-register-transfer read can follow immediately without any  
minimum SC clock requirement.  
24  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
SMJ55166  
262144 BY 16-BIT  
MULTIPORT VIDEO RAM  
SGMS057C – APRIL 1995 – REVISED JUNE 1997  
split-register-transfer read (continued)  
QSF indicates which half of the register is being accessed during serial-access operation. When QSF is low,  
the serial-address pointer is accessing the lower (least significant) 128 bits of the SAM. When QSF is high, the  
pointer is accessing the higher (most significant) 128 bits of the SAM. QSF changes state upon completing a  
full-register-transfer read cycle. The tap point loaded during the current transfer cycle determines the state of  
QSF. QSF also changes state when a boundary between two register halves is reached (see Figure 18 and  
Figure 19).  
Full-Register-Transfer Read  
With Tap Point N  
Split-Register-  
Transfer Read  
RAS  
CAS  
TRG  
DSF  
SC  
Tap  
Point N  
t
d(CLQSF)  
t
d(GHQSF)  
QSF  
Figure 18. Example of a Split-Register-Transfer Read After a Full-Register-Transfer Read  
Split-Register-  
Transfer Read  
With Tap Point N  
Split-Register-  
Transfer Read  
RAS  
CAS  
TRG  
DSF  
t
d(MSRL)  
t
d(RHMS)  
SC  
127  
or 255  
Tap  
Point N  
t
d(SCQSF)  
QSF  
Figure 19. Example of Successive Split-Register-Transfer Read Operations  
25  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
SMJ55166  
262144 BY 16-BIT  
MULTIPORT VIDEO RAM  
SGMS057C – APRIL 1995 – REVISED JUNE 1997  
serial-read operation  
The serial-read operation can be performed through the SAM port simultaneously and asynchronously with  
DRAM operations except during transfer operations. Serial data can be read from the SAM by clocking SC  
starting at the tap point loaded by the preceding transfer cycle, proceeding sequentially to the most significant  
bit (bit 255), and then wrapping around to the least significant bit (bit 0), as shown in Figure 20.  
0
1
2
Tap  
254  
255  
Figure 20. Serial-Pointer Direction for Serial Read  
For split-register-transfer read operation, serial data can be read out from the active half of the SAM by clocking  
SCstartingatthetappointloadedbytheprecedingsplit-register-transfercycle. Theserialpointerthenproceeds  
sequentially to the most significant bit of the half, bit 127 or bit 255. If there is a split-register-transfer read to  
the inactive half during this period, the serial pointer points next to the tap point location loaded by that  
split-register-transfer (see Figure 21).  
0
Tap  
126  
127  
128  
Tap  
254  
255  
Figure 21. Serial Pointer for Split-Register-Transfer Read – Case I  
If there is no split-register-transfer read to the inactive half during this period, the serial pointer points next to  
bit 128 or bit 0, respectively (see Figure 22).  
0
Tap  
126  
127  
128  
Tap  
254  
255  
Figure 22. Serial Pointer for Split-Register-Transfer Read – Case II  
split-register programmable stop point  
The SMJ55166 offers programmable stop-point mode for split-register-transfer read operation. This mode can  
be used to improve two-dimensional drawing performance in a nonscanline data format.  
In split-register-transfer read operation, the stop point is defined as a register location at which the serial output  
stops coming from one half of the SAM and switches to the opposite half of the SAM. While in stop-point mode,  
the SAM is divided into partitions whose lengths are programmed via row addresses A4A7 in a CBR set  
(CBRS) cycle. The last serial-address location of each partition is the stop point (see Figure 23).  
127  
128  
255  
0
Partition  
Length  
Stop  
Points  
Figure 23. Example of the SAM With Partitions  
26  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
SMJ55166  
262144 BY 16-BIT  
MULTIPORT VIDEO RAM  
SGMS057C – APRIL 1995 – REVISED JUNE 1997  
split-register programmable stop point (continued)  
Stop-point mode is not active until the CBRS cycle is initiated. The CBRS operation is enabled by holding CAS  
and WEx low and DSF high on the falling edge of RAS. The falling edge of RAS also latches row addresses  
A4A7, which are used to define the SAM partition length. The other row-address inputs are don’t cares.  
Stop-point mode should be initiated after the initialization cycles are performed (see Table 5).  
Table 5. Programming Code for Stop-Point Mode  
MAXIMUM  
PARTITION  
LENGTH  
ADDRESS AT RAS IN CBRS CYCLE  
NUMBER OF  
PARTITIONS  
STOP-POINT LOCATIONS  
A8  
A7  
A6  
A5  
A4  
A0A3  
15, 31, 47, 63, 79, 95, 111, 127, 143, 159, 175,  
191, 207, 223, 239, 255  
16  
X
L
L
L
L
X
16  
32  
64  
X
X
L
L
L
L
L
H
H
X
X
8
4
31, 63, 95, 127, 159, 191, 223, 255  
63, 127, 191, 255  
H
128  
(default)  
X
L
H
H
H
X
2
127, 255  
In stop-point mode, the tap point loaded during the split-register-transfer read cycle determines the SAM  
partition in which the serial output begins, and also determines at which stop point the serial output stops coming  
from one half of the SAM and switches to the opposite half of the SAM (see Figure 24).  
Full  
Split  
Split  
Split  
RAS  
SC  
Read XFER  
Read XFER  
Read XFER  
Read XFER  
Tap = H1  
Tap = L1  
Tap = H2  
Tap = L2  
H1  
191 L1  
63 H2  
255 L2  
SAM Low Half  
63  
SAM High Half  
191  
0
L1  
L2  
127  
128  
H1  
H2  
255  
Figure 24. Example of Split-Register Operation With Programmable Stop Points  
27  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
SMJ55166  
262144 BY 16-BIT  
MULTIPORT VIDEO RAM  
SGMS057C – APRIL 1995 – REVISED JUNE 1997  
256-/512-bit compatibility of split-register programmable stop point  
The stop-point mode is designed to be compatible with both 256-bit SAM and 512-bit SAM devices. After the  
CBRS cycle is initiated, the stop-point mode becomes active. In the stop-point mode, column-address bits AY7  
and AY8 are internally swapped to assure compatibility (see Figure 25). This address-bit swap applies to the  
column address and is effective for all DRAM and transfer cycles. For example, during the split-register-transfer  
cycle with stop point, column-address bit AY8 is a don’t care and AY7 decodes the DRAM row half for the  
split-register-transfer. During stop-point mode, a CBR (option reset) cycle is not recommended because this  
ends the stop-point mode and restores address bits AY7 and AY8 to their normal functions. Consistent use of  
CBR cycles ensures that the SMJ55166 remains in normal mode.  
NONSTOP POINT MODE  
AY8 = 0 AY8 = 1  
AY7 = 0 AY7 = 1 AY7 = 0 AY7 = 1  
STOP-POINT MODE  
AY8 = 0  
AY8 = 1  
AY7 = 0 AY7 = 1 AY7 = 0 AY7 = 1  
512 × 512  
Memory Array  
512 × 512  
Memory Array  
256-Bit  
Data Register  
256-Bit  
Data Register  
0
255  
0
255  
Figure 25. DRAM-to-SAM Mapping, Nonstop Point Versus Stop Point  
IMPORTANT: For proper device operation, a stop-point-mode (CBRS) cycle should be initiated immediately  
after the power-up initialization cycles are performed.  
power up  
To achieve proper device operation, an initial pause of 200 µs is required after power up followed by a minimum  
of eight RAS cycles or eight CBR cycles to initialize the DRAM port. A full-register-transfer read cycle and two  
SC cycles are required to initialize the SAM port.  
After initialization, the internal state of the SMJ55166 is as follows:  
STATE AFTER INITIALIZATION  
QSF  
Defined by the transfer cycle during initialization  
Write mode  
Nonpersistent mode  
Write-mask register  
Color register  
Serial-register tap point  
SAM port  
Undefined  
Undefined  
Defined by the transfer cycle during initialization  
Output mode  
28  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
SMJ55166  
262144 BY 16-BIT  
MULTIPORT VIDEO RAM  
SGMS057C – APRIL 1995 – REVISED JUNE 1997  
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)  
Supply voltage range, V  
(see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 V to 7 V  
CC  
Voltage range on any pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 V to 7 V  
Short-circuit output current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 mA  
Power dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.1 W  
Operating free-air temperature range, T  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 55°C to 125°C  
A
Storage temperature range, T  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65°C to 150°C  
stg  
Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and  
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not  
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
NOTE 1: All voltage values are with respect to V  
.
SS  
recommended operating conditions  
MIN NOM  
MAX  
UNIT  
V
V
V
V
V
Supply voltage  
4.5  
5
0
5.5  
CC  
SS  
IH  
Supply voltage  
V
High-level input voltage  
Low-level input voltage (see Note 2)  
Operating free-air temperature  
2.4  
–1  
6.5  
0.8  
V
V
IL  
T
A
– 55  
125  
°C  
NOTE 2: The algebraic convention, where the more negative (less positive) limit is designated as minimum, is used for logic-voltage levels only.  
electrical characteristics over recommended ranges of supply voltage and operating free-air  
temperature (unless otherwise noted)  
’55166-75  
’55166-80  
SAM  
PORT  
PARAMETER  
TEST CONDITIONS  
UNIT  
MIN  
MAX  
MIN  
MAX  
V
V
High-level output voltage  
Low-level output voltage  
I
I
= 1 mA  
= 2 mA  
2.4  
2.4  
V
V
OH  
OH  
0.4  
0.4  
OL  
OL  
V
= 5.5 V,  
CC  
I
I
Input current (leakage)  
V = 0 V to 5.8 V,  
I
All other pins at 0 V to V  
±10  
±10  
µA  
CC  
I
I
I
I
I
I
I
I
I
I
I
I
I
Output current (leakage) (see Note 3)  
V
= 5.5 V, V = 0 V to V  
CC  
±10  
165  
210  
12  
±10  
160  
195  
12  
µA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
O
CC  
See Note 4  
= MIN  
O
§
§
Operating current  
Operating current  
Standby current  
Standby current  
Standby  
Active  
CC1  
t
CC1A  
CC2  
c(SC)  
All clocks = V  
Standby  
Active  
CC  
t
= MIN  
70  
65  
CC2A  
CC3  
c(SC)  
See Note 4  
RAS-only refresh current  
RAS-only refresh current  
Standby  
Active  
165  
215  
100  
145  
165  
210  
180  
225  
160  
195  
95  
t
t
t
= MIN, (See Note 4)  
CC3A  
CC4  
c(SC)  
§
§
Page-mode current  
Page-mode current  
CBR current  
= MIN,  
(See Note 5)  
Standby  
Active  
c(P)  
= MIN, (See Note 5)  
130  
160  
195  
170  
200  
CC4A  
CC5  
c(SC)  
See Note 4  
t = MIN, (See Note 4)  
Standby  
Active  
CBR current  
CC5A  
CC6  
c(SC)  
See Note 4  
= MIN  
Data-transfer current  
Data-transfer current  
Standby  
Active  
t
CC6A  
c(SC)  
§
For conditions shown as MIN/MAX, use the appropriate value specified in the timing requirements.  
Measured with outputs open  
NOTES: 3. SE is disabled for SQ output leakage tests.  
4. Measured with one address change while RAS = V and t  
, t  
, t  
= MIN  
IL c(rd) c(W) c(TRD)  
5. Measured with one address change while CASx = V  
IH  
29  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
SMJ55166  
262144 BY 16-BIT  
MULTIPORT VIDEO RAM  
SGMS057C – APRIL 1995 – REVISED JUNE 1997  
capacitance over recommended ranges of supply voltage and operating free-air temperature,  
f = 1 MHz (see Note 6)  
PARAMETER  
MIN  
TYP  
5
MAX  
10  
10  
10  
10  
10  
10  
10  
15  
12  
UNIT  
pF  
pF  
pF  
pF  
pF  
pF  
pF  
pF  
pF  
C
C
C
C
C
C
C
C
C
Input capacitance, A0A8  
i(A)  
Input capacitance, CAS and RAS  
8
i(RC)  
i(W)  
Input capacitance, WEL and WEU  
Input capacitance, SC  
7
6
i(SC)  
i(SE)  
i(DSF)  
i(TRG)  
o(O)  
Input capacitance, SE  
7
Input capacitance, QSF  
7
Input capacitance, TRG  
7
Output capacitance, SQ and DQ  
Output capacitance, QSF  
12  
10  
o(QSF)  
NOTE 6:  
V
CC  
= 5 V ± 0.5 V, and the bias on pins under test is 0 V.  
switching characteristics over recommended ranges of supply voltage and operating free-air  
temperature (see Note 7)  
’55166-75  
MIN MAX  
20  
’55166-80  
MIN MAX  
20  
TEST  
CONDITIONS  
ALT.  
SYMBOL  
PARAMETER  
Access time from CAS  
UNIT  
t
t
t
t
t
t
t
t
t
t
t
= MAX  
= MAX  
= MAX  
= MAX  
t
ns  
ns  
ns  
ns  
ns  
ns  
ns  
a(C)  
d(RLCL)  
d(RLCL)  
d(RLCL)  
d(RLCL)  
CAC  
Access time from column address  
Access time from CAS high  
Access time from RAS  
t
38  
43  
75  
20  
23  
18  
40  
45  
80  
20  
25  
20  
a(CA)  
a(CP)  
a(R)  
AA  
t
CPA  
RAC  
OEA  
t
t
Access time of DQ from TRG low  
Access time of SQ from SC high  
Access time of SQ from SE low  
a(G)  
C
C
= 30 pF  
t
SCA  
a(SQ)  
a(SE)  
L
L
= 30 pF  
= 50 pF  
t
SEA  
OFF  
Disable time, random output from CAS high  
(see Note 8)  
t
t
t
C
C
C
t
0
0
0
20  
20  
20  
0
0
0
20  
20  
20  
ns  
ns  
ns  
dis(CH)  
dis(RH)  
dis(G)  
L
L
L
Disable time, random output from RAS high  
(see Note 8)  
= 50 pF  
= 50 pF  
Disable time, random output from TRG high  
(see Note 8)  
t
OEZ  
Disable time, random output from WE low  
(see Note 8)  
t
t
C
C
= 50 pF  
= 30 pF  
t
WEZ  
0
0
25  
18  
0
0
25  
20  
ns  
ns  
dis(WL)  
L
L
Disable time, serial output from SE high (see Note 8)  
t
SEZ  
dis(SE)  
For conditions shown as MIN/MAX, use the appropriate value specified in the timing requirements.  
NOTES: 7. Switching times for RAM-port output are measured with a load equivalent to 1 TTL load and 50 pF. Data-out reference level:  
/ V = 2 V/0.8 V. Switching times for SAM-port output are measured with a load equivalent to 1 TTL load and 30 pF.  
V
OH  
OL  
Serial-data-out reference level: V  
/ V  
= 2 V/0.8 V.  
are specified when the output is no longer driven.  
OH OL  
8.  
t
t
, t  
, t  
and t  
dis(SE)  
dis(CH), dis(RH) dis(G) dis(WL),  
30  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
SMJ55166  
262144 BY 16-BIT  
MULTIPORT VIDEO RAM  
SGMS057C – APRIL 1995 – REVISED JUNE 1997  
timing requirements over recommended ranges of supply voltage and operating free-air  
temperature  
’55166-75  
MAX  
’55166-80  
ALT.  
SYMBOL  
UNIT  
MIN  
140  
140  
188  
48  
88  
140  
24  
10  
20  
55  
75  
13  
20  
9
MIN  
150  
150  
200  
50  
MAX  
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
Cycle time, read  
t
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
c(rd)  
RC  
Cycle time, write  
t
WC  
c(W)  
Cycle time, read-modify-write  
t
RMW  
c(rdW)  
c(P)  
Cycle time, page-mode read, write  
Cycle time, page-mode read-modify-write  
Cycle time, transfer read  
t
PC  
t
90  
c(RDWP)  
c(TRD)  
c(SC)  
PRMW  
t
150  
30  
RC  
Cycle time, SC (see Note 9)  
t
t
SCC  
Pulse duration, CAS high  
10  
w(CH)  
CPN  
Pulse duration, CAS low (see Note 10)  
Pulse duration, RAS high  
t
10 000  
10 000  
20  
10 000  
10 000  
w(CL)  
CAS  
t
60  
w(RH)  
RP  
Pulse duration, RAS low (see Note 11)  
Pulse duration, WEx low  
t
80  
w(RL)  
RAS  
t
15  
w(WL)  
WP  
Pulse duration, TRG low  
20  
w(TRG)  
w(SCH)  
w(SCL)  
w(GH)  
Pulse duration, SC high  
t
10  
SC  
Pulse duration, SC low  
t
9
10  
SCP  
Pulse duration, TRG high  
t
20  
20  
TP  
Pulse duration, RAS low (page mode)  
Setup time, column address before CAS low  
Setup time, DSF before CAS low  
Setup time, row address before RAS low  
Setup time, WEx before RAS low  
Setup time, DQ before RAS low  
Setup time, TRG high before RAS low  
Setup time, DSF low before RAS low  
Setup time, data valid before CAS low  
Setup time, data valid before WEx low  
Setup time, read command, WEx high before CAS low  
Setup time, early write command, WEx low before CAS low  
Setup time, WEx low before CAS high, write  
Setup time, WEx low before RAS high, write  
Hold time, column address after CAS low  
Hold time, DSF after CAS low  
t
75 100 000  
80 100 000  
w(RL)P  
su(CA)  
su(SFC)  
su(RA)  
su(WMR)  
su(DQR)  
su(TRG)  
su(SFR)  
su(DCL)  
su(DWL)  
su(rd)  
RASP  
t
0
0
0
0
ASC  
t
FSC  
ASR  
t
0
0
t
0
0
WSR  
t
0
0
MS  
t
0
0
THS  
FSR  
DSC  
t
0
0
t
0
0
t
0
0
DSW  
t
0
0
RCS  
t
0
0
su(WCL)  
su(WCH)  
su(WRH)  
h(CLCA)  
h(SFC)  
WCS  
t
18  
20  
13  
15  
20  
20  
15  
15  
CWL  
RWL  
t
t
CAH  
t
CFH  
Timing measurements are referenced to V MAX and V MIN.  
IL  
IH  
NOTES: 9. Cycle time assumes t = 3 ns.  
t
10. In a read-modify-write cycle, t  
and t  
and t  
must be observed. Depending on the user’s transition times, this can require  
must be observed. Depending on the user’s transition times, this can require  
d(CLWL)  
su(WCH)  
additional CAS low time [t  
11. In a read-modify-write cycle, t  
].  
w(CL)  
d(RLWL)  
].  
w(RL)  
su(WRH)  
additional RAS low time [t  
31  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
SMJ55166  
262144 BY 16-BIT  
MULTIPORT VIDEO RAM  
SGMS057C – APRIL 1995 – REVISED JUNE 1997  
timing requirements over recommended ranges of supply voltage and operating free-air  
temperature (continued)  
’55166-75  
’55166-80  
ALT.  
SYMBOL  
UNIT  
MIN MAX  
MIN MAX  
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
Hold time, row address after RAS low  
t
10  
15  
15  
15  
10  
33  
15  
35  
15  
0
10  
15  
15  
15  
10  
35  
15  
35  
15  
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
h(RA)  
RAH  
Hold time, TRG after RAS low  
t
THH  
h(TRG)  
h(RWM)  
h(RDQ)  
h(SFR)  
h(RLCA)  
h(CLD)  
h(RLD)  
h(WLD)  
h(CHrd)  
h(RHrd)  
h(CLW)  
h(RLW)  
h(WLG)  
h(SHSQ)  
h(RSF)  
h(CLQ)  
Hold time, write mask after RAS low  
t
RWH  
Hold time, DQ after RAS low (write-mask operation)  
Hold time, DSF after RAS low  
t
MH  
t
RFH  
Hold time, column address valid after RAS low (see Note 12)  
Hold time, data valid after CAS low  
t
AR  
DH  
t
Hold time, data valid after RAS low (see Note 12)  
Hold time, data valid after WEx low  
t
DHR  
t
DH  
Hold time, read, WEx high after CAS high (see Note 13)  
Hold time, read, WEx high after RAS high (see Note 13)  
Hold time, write, WEx low after CAS low  
Hold time, write, WEx low after RAS low (see Note 12)  
Hold time, TRG high after WEx low (see Note 14)  
Hold time, SQ after SC high  
t
t
RCH  
RRH  
0
0
t
t
15  
35  
10  
2
15  
35  
10  
2
WCH  
WCR  
t
OEH  
t
SOH  
Hold time, DSF after RAS low  
t
35  
0
35  
0
FHR  
Hold time, Output after CAS low  
t
DHC  
t
75  
13  
0
80  
15  
0
CSH  
t
ns  
Delay time, RAS low to CAS high  
d(RLCH)  
(See Note 15)  
t
CHR  
t
t
t
t
t
t
t
t
t
t
t
t
Delay time, CAS high to RAS low  
t
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
d(CHRL)  
d(CLRH)  
d(CLWL)  
d(RLCL)  
d(CARH)  
d(CACH)  
d(RLWL)  
d(CAWL)  
d(CLRL)  
d(RHCL)  
d(CLGH)  
d(GHD)  
CRP  
RSH  
Delay time, CAS low to RAS high  
t
20  
48  
20  
50  
Delay time, CAS low to WEx low (see Notes 16 and 17)  
Delay time, RAS low to CAS low (see Note 18)  
Delay time, column address valid to RAS high  
Delay time, column address valid to CAS high  
Delay time, RAS low to WEx low (see Note 16)  
Delay time, column address valid to WEx low (see Note 16)  
Delay time, CAS low to RAS low (see Note 15)  
Delay time, RAS high to CAS low (see Note 15)  
Delay time, CAS low to TRG high for DRAM read cycles  
Delay time, TRG high before data applied at DQ  
t
CWD  
t
20  
38  
38  
95  
63  
0
50  
20  
40  
40  
100  
65  
0
60  
RCD  
t
RAL  
CAL  
t
t
RWD  
t
AWD  
t
CSR  
t
0
0
RPC  
20  
15  
20  
15  
t
OED  
Timing measurements are referenced to V MAX and V MIN.  
IL  
NOTES: 12. The minimum value is measured when t  
IH  
is set to t  
must be satisfied for a read cycle.  
MIN as a reference.  
d(RLCL)  
d(RLCL)  
13. Either t  
or t  
h(RHrd)  
h(CHrd)  
14. Output-enable-controlled write; the output remains in the high-impedance state for the entire cycle.  
15. CBR refresh operation only  
16. Read-modify-write operation only  
17. TRG must disable the output buffers prior to applying data to the DQ pins.  
18. The maximum value is specified only to assure RAS access time.  
32  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
SMJ55166  
262144 BY 16-BIT  
MULTIPORT VIDEO RAM  
SGMS057C – APRIL 1995 – REVISED JUNE 1997  
timing requirements over recommended ranges of supply voltage and operating free-air  
temperature (continued)  
’55166-75  
’55166-80  
ALT.  
SYMBOL  
UNIT  
MIN  
58  
75  
15  
20  
23  
5
MAX  
MIN  
60  
80  
15  
20  
25  
5
MAX  
t
t
t
t
t
t
t
t
t
Delay time, RAS low to TRG high (see Note 19)  
Delay time, RAS low to first SC high after TRG high (see Note 20)  
Delay time, RAS low to column address valid  
t
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
d(RLTH)  
d(RLSH)  
d(RLCA)  
d(GLRH)  
d(CLSH)  
d(SCTR)  
d(THRH)  
d(THRL)  
d(THSC)  
RTH  
RSD  
RAD  
ROH  
t
t
35  
40  
Delay time, TRG low to RAS high  
t
Delay time, CAS low to first SC high after TRG high (see Note 20)  
Delay time, SC high to TRG high (see Notes 19 and 20)  
Delay time, TRG high to RAS high (see Note 19)  
Delay time, TRG high to RAS low (see Note 21)  
Delay time, TRG high to SC high (see Note 19)  
t
CSD  
t
TSL  
t
10  
55  
18  
10  
60  
20  
TRD  
t
TRP  
TSD  
t
Delay time, RAS high to last (most significant) rising edge of SC before  
boundary switch during split-register-transfer read cycles  
t
20  
20  
ns  
d(RHMS)  
t
t
Delay time, CAS low to TRG high in real-time-transfer read cycles  
Delay time, column address to first SC in early-load-transfer read cycles  
t
t
15  
28  
15  
30  
ns  
ns  
d(CLTH)  
CTH  
d(CASH)  
ASD  
Delay time, column address to TRG high in real-time-transfer read  
cycles  
t
t
20  
20  
ns  
d(CAGH)  
ATH  
t
t
Delay time, data to CAS low  
Delay time, data to TRG low  
t
0
0
0
0
ns  
ns  
d(DCL)  
DZC  
t
d(DGL)  
DZO  
Delay time, last (most significant) rising edge of SC to RAS low before  
boundary switch during split-transfer read cycles  
t
t
t
t
t
20  
20  
ns  
ns  
ns  
ns  
ns  
d(MSRL)  
Delay time, last (127 or 255) rising edge of SC to QSF switching at the  
boundary during split-register-transfer read cycles (see Note 22)  
t
28  
33  
28  
73  
30  
35  
30  
75  
d(SCQSF)  
d(CLQSF)  
d(GHQSF)  
d(RLQSF)  
SQD  
Delay time, CAS low to QSF switching in transfer read cycles  
(see Note 22)  
t
CQD  
Delay time, TRG high to QSF switching in transfer read cycles  
(see Note 22)  
t
TQD  
Delay time, RAS low to QSF switching in transfer read cycles  
(see Note 22)  
t
RQD  
t
t
Refresh time interval, memory  
Transition time  
t
8
8
ms  
ns  
rf(MA)  
REF  
t
T
3
50  
3
50  
t
Timing measurements are referenced to V MAX and V MIN.  
IL IH  
NOTES: 19. Real-time-load transfer read or late-load-transfer read cycle only  
20. Early-load-transfer read cycle only  
21. Full-register-(read) transfer cycles only  
22. Switching times for QSF output are measured with a load equivalent to 1 TTL load and 30 pF, and the output reference level is  
/ V = 2 V/0.8 V.  
V
OH OL  
33  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
SMJ55166  
262144 BY 16-BIT  
MULTIPORT VIDEO RAM  
SGMS057C – APRIL 1995 – REVISED JUNE 1997  
PARAMETER MEASUREMENT INFORMATION  
t
c(rd)  
t
w(RL)  
t
d(RLCH)  
RAS  
t
w(RH)  
t
t
t
d(CLRH)  
t
d(RLCL)  
d(CHRL)  
t
t
w(CL)  
CAS  
t
w(CH)  
t
d(CACH)  
t
d(RLCA)  
t
d(CARH)  
t
h(RA)  
su(RA)  
t
h(RLCA)  
t
t
h(CLCA)  
t
su(CA)  
A0A8  
Row  
Column  
t
h(SFR)  
t
su(SFR)  
DSF  
t
d(CLGH)  
t
su(TRG)  
t
d(GLRH)  
t
t
w(TRG)  
h(TRG)  
TRG  
WEx  
t
t
h(RHrd)  
su(rd)  
t
h(CHrd)  
t
dis(CH)  
t
d(DGL)  
t
t
a(G)  
dis(G)  
Data In  
Data Out  
DQ0DQ15  
t
a(C)  
t
a(CA)  
t
a(R)  
Figure 26. Read-Cycle Timing With CAS-Controlled Output  
34  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
SMJ55166  
262144 BY 16-BIT  
MULTIPORT VIDEO RAM  
SGMS057C – APRIL 1995 – REVISED JUNE 1997  
PARAMETER MEASUREMENT INFORMATION  
t
c(rd)  
t
w(RL)  
d(RLCH)  
t
RAS  
t
w(RH)  
t
t
t
d(CLRH)  
t
d(RLCL)  
t
t
w(CL)  
d(CHRL)  
CAS  
t
w(CH)  
t
d(RLCA)  
t
d(CARH)  
t
h(RA)  
t
h(RLCA)  
t
d(CACH)  
t
su(RA)  
t
h(CLCA)  
t
su(CA)  
A0A8  
Row  
Column  
t
h(SFR)  
t
su(SFR)  
DSF  
t
d(CLGH)  
t
t
d(GLRH)  
su(TRG)  
t
t
h(TRG)  
w(TRG)  
TRG  
t
h(RHrd)  
t
su(rd)  
t
h(CHrd)  
WEx  
t
dis(G)  
t
d(DGL)  
t
dis(RH)  
t
a(G)  
Data In  
Data Out  
DQ0DQ15  
t
a(C)  
t
a(CA)  
t
a(R)  
Figure 27. Read-Cycle Timing With RAS-Controlled Output  
35  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
SMJ55166  
262144 BY 16-BIT  
MULTIPORT VIDEO RAM  
SGMS057C – APRIL 1995 – REVISED JUNE 1997  
PARAMETER MEASUREMENT INFORMATION  
t
c(W)  
t
w(RL)  
RAS  
CAS  
t
d(RLCH)  
t
w(RH)  
t
t
t
d(CLRH)  
t
t
t
d(RLCL)  
t
d(CHRL)  
t
d(CHRL)  
t
w(CL)  
t
w(CH)  
t
h(RLCA)  
t
t
d(CACH)  
h(RA)  
d(RLCA)  
su(RA)  
t
su(CA)  
t
t
h(CLCA)  
t
t
d(CARH)  
Row  
Column  
A0A8  
t
su(SFC)  
t
su(SFR)  
t
h(RSF)  
t
t
h(SFC)  
h(SFR)  
DSF  
t
h(TRG)  
t
su(TRG)  
TRG  
t
su(WCH)  
t
t
su(WMR)  
su(WRH)  
t
h(RLW)  
t
t
h(CLW)  
h(RWM)  
t
su(WCL)  
t
w(WL)  
1
2
WEx  
t
su(DQR)  
t
h(CLD)  
t
su(DCL)  
t
h(RDQ)  
t
h(RLD)  
3
DQ0DQ15  
Figure 28. Early-Write-Cycle Timing  
Table 6. Early-Write-Cycle State Table  
STATE  
2
CYCLE  
1
H
L
3
Write operation (nonmasked)  
Don’t care  
Write mask  
Don’t care  
Valid data  
Valid data  
Valid data  
Write operation with nonpersistent write-per-bit  
Write operation with persistent write-per-bit  
L
36  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
SMJ55166  
262144 BY 16-BIT  
MULTIPORT VIDEO RAM  
SGMS057C – APRIL 1995 – REVISED JUNE 1997  
PARAMETER MEASUREMENT INFORMATION  
t
c(W)  
t
w(RL)  
RAS  
CAS  
t
w(RH)  
t
d(RLCH)  
t
t
t
d(CLRH)  
t
t
d(CHRL)  
d(CHRL)  
t
d(RLCL)  
t
t
t
w(CL)  
t
d(RLCA)  
t
h(RLCA)  
t
w(CH)  
t
su(CA)  
t
h(CLCA)  
t
h(RA)  
su(RA)  
t
d(CACH)  
t
t
d(CARH)  
Row  
Column  
t
A0A8  
t
h(RSF)  
t
su(SFC)  
su(SFR)  
t
t
h(SFC)  
h(SFR)  
DSF  
TRG  
t
su(rd)  
t
su(WRH)  
su(WCH)  
h(CLW)  
t
su(TRG)  
t
t
t
d(GHD)  
t
h(RLW)  
t
su(WMR)  
t
h(WLG)  
w(WL)  
t
h(RWM)  
t
WEx  
1
t
su(DWL)  
t
su(DQR)  
t
h(WLD)  
t
h(RDQ)  
t
h(RLD)  
2
3
DQ0DQ15  
Figure 29. Late-Write-Cycle Timing (Output-Enable-Controlled Write)  
Table 7. Late-Write-Cycle State Table  
STATE  
CYCLE  
1
H
L
2
3
Write operation (nonmasked)  
Don’t care  
Write mask  
Don’t care  
Valid data  
Valid data  
Valid data  
Write operation with nonpersistent write-per-bit  
Write operation with persistent write-per-bit  
L
37  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
SMJ55166  
262144 BY 16-BIT  
MULTIPORT VIDEO RAM  
SGMS057C – APRIL 1995 – REVISED JUNE 1997  
PARAMETER MEASUREMENT INFORMATION  
t
c(W)  
t
w(RL)  
RAS  
t
w(RH)  
t
d(RLCH)  
t
t
t
d(CLRH)  
t
t
t
d(RLCL)  
t
d(CHRL)  
t
d(CHRL)  
t
w(CL)  
CAS  
t
w(CH)  
t
h(RA)  
Refresh Row  
t
su(RA)  
A0A8  
t
su(SFC)  
t
su(SFR)  
t
h(RSF)  
t
t
h(SFR)  
h(SFC)  
DSF  
TRG  
t
h(TRG)  
t
su(TRG)  
t
su(WCH)  
t
su(WMR)  
t
su(WRH)  
t
h(RLW)  
t
h(CLW)  
t
h(RWM)  
t
t
su(WCL)  
t
w(WL)  
WEx  
su(DCL)  
t
h(CLD)  
t
h(RLD)  
Write Mask  
DQ0DQ15  
Load-write-mask-register cycle puts the device into the persistent write-per-bit mode.  
Figure 30. Load-Write-Mask-Register-Cycle Timing (Early-Write Load)  
38  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
SMJ55166  
262144 BY 16-BIT  
MULTIPORT VIDEO RAM  
SGMS057C – APRIL 1995 – REVISED JUNE 1997  
PARAMETER MEASUREMENT INFORMATION  
t
c(W)  
t
w(RL)  
RAS  
t
w(RH)  
t
d(RLCH)  
t
t
t
d(CLRH)  
t
d(CHRL)  
t
d(CHRL)  
t
d(RLCL)  
t
t
t
w(CL)  
CAS  
t
w(CH)  
t
h(RA)  
Refresh Row  
t
su(RA)  
A0A8  
t
h(RSF)  
t
su(SFR)  
t
t
su(SFC)  
t
h(SFR)  
h(SFC)  
DSF  
TRG  
t
su(WRH)  
t
t
su(TRG)  
su(WCH)  
t
h(CLW)  
t
d(GHD)  
t
h(RLW)  
t
su(WMR)  
t
h(WLG)  
t
h(RWM)  
t
w(WL)  
WEx  
t
su(DWL)  
t
h(WLD)  
t
h(RLD)  
Write Mask  
DQ0DQ15  
Load-write-mask-register cycle puts the device into the persistent write-per-bit mode.  
Figure 31. Load-Write-Mask-Register-Cycle Timing (Late-Write Load)  
39  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
SMJ55166  
262144 BY 16-BIT  
MULTIPORT VIDEO RAM  
SGMS057C – APRIL 1995 – REVISED JUNE 1997  
PARAMETER MEASUREMENT INFORMATION  
t
c(rdW)  
t
w(RL)  
t
d(RLCH)  
RAS  
t
t
t
w(RH)  
d(CHRL)  
t
t
d(CLRH)  
t
d(RLCL)  
d(CHRL)  
t
w(CL)  
t
h(RA)  
CAS  
t
su(CA)  
t
su(RA)  
w(CH)  
t
h(CLCA)  
t
h(RLCA)  
t
d(CACH)  
t
d(RLCA)  
t
d(CARH)  
A0A8  
Row  
t
Column  
t
h(RSF)  
su(SFR)  
t
h(SFC)  
t
t
h(SFR)  
su(SFC)  
DSF  
TRG  
t
t
su(rd)  
su(WCH)  
t
h(TRG)  
t
su(WRH)  
t
d(CAWL)  
t
w(TRG)  
t
h(WLG)  
t
h(RLW)  
t
t
t
h(CLW)  
su(TRG)  
t
d(CLWL)  
su(WMR)  
t
d(DCL)  
t
h(RWM)  
t
d(CLGH)  
t
w(WL)  
1
t
a(CA)  
WEx  
t
d(RLWL)  
t
h(WLD)  
t
a(R)  
t
t
d(GHD)  
d(DGL)  
t
su(DQR)  
t
t
t
a(C)  
h(RDQ)  
su(DWL)  
Valid  
Out  
2
3
DQ0DQ15  
t
dis(G)  
t
a(G)  
Figure 32. Read-Write-/Read-Modify-Write-Cycle Timing  
Table 8. Read-Write-/Read-Modify-Write-Cycle State Table  
STATE  
2
CYCLE  
1
H
L
3
Write operation (nonmasked)  
Don’t care  
Write mask  
Don’t care  
Valid data  
Valid data  
Valid data  
Write operation with nonpersistent write-per-bit  
Write operation with persistent write-per-bit  
L
40  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
SMJ55166  
262144 BY 16-BIT  
MULTIPORT VIDEO RAM  
SGMS057C – APRIL 1995 – REVISED JUNE 1997  
PARAMETER MEASUREMENT INFORMATION  
t
w(RH)  
t
w(RL)P  
RAS  
CAS  
t
t
d(CLRH)  
d(RLCL)  
t
t
w(CH)  
t
t
d(CHRL)  
t
w(CL)  
t
d(RLCA)  
t
d(RLCH)  
t
c(P)  
t
su(RA)  
t
t
su(CA)  
d(CACH)  
t
h(CLCA)  
t
h(RA)  
t
d(CARH)  
t
h(RLCA)  
Row  
Column  
Column  
A0A8  
t
t
h(SFR)  
h(TRG)  
d(CLGH)  
t
su(SFR)  
DSF  
t
t
su(TRG)  
TRG  
WEx  
t
su(WMR)  
t
t
h(RHrd)  
su(rd)  
t
a(C)  
t
t
t
dis(WL)  
h(CLQ)  
a(CA)  
t
d(DGL)  
t
t
t
a(CA)  
a(G)  
dis(RH)  
t
t
a(R)  
t
dis(G)  
a(CP)  
0–  
15  
Data Out  
Data In  
Data Out  
t
d(DCL)  
dependent.  
a(CA)  
Access time is t  
or t  
a(CP)  
DQ outputs can go from the high-impedance state to an invalid-data state prior to the specified access time.  
NOTE A: A write cycle or a read-modify-write cycle can be mixed with the read cycles as long as the write and read-modify-write timing  
specifications are not violated and the proper polarity of DSF is selected on the falling edge of RAS and CAS to select the desired  
write mode (normal, block write, etc.).  
Figure 33. Enhanced-Page-Mode Read-Cycle Timing  
41  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
SMJ55166  
262144 BY 16-BIT  
MULTIPORT VIDEO RAM  
SGMS057C – APRIL 1995 – REVISED JUNE 1997  
PARAMETER MEASUREMENT INFORMATION  
t
w(RL)P  
RAS  
t
t
d(RLCH)  
t
c(P)  
w(RH)  
t
d(RLCL)  
t
t
d(CLRH)  
w(CH)  
t
t
t
w(CL)  
d(CHRL)  
d(CHRL)  
t
CAS  
d(RLCA)  
t
su(CA)  
t
su(RA)  
t
d(CACH)  
t
t
h(RA)  
h(CLCA)  
h(RLCA)  
t
t
d(CARH)  
Row  
Column  
Column  
A0–  
A8  
t
su(SFR)  
t
d(RSF)  
t
h(SFC)  
t
t
h(SFC)  
h(SFR)  
t
su(SFC)  
t
su(SFC)  
1
2
2
DSF  
t
t
su(TRG)  
t
h(TRG)  
TRG  
WEx  
See Note A  
t
su(WMR)  
su(WCH)  
t
su(WCH)  
t
h(RWM)  
t
su(WRH)  
t
w(WL)  
3
t
su(DWL)  
t
su(DQR)  
t
t
h(CLD)  
su(DCL)  
h(RDQ)  
t
t
h(WLD)  
t
h(RLD)  
5
4
5
5
Referenced to the first falling edge of WEx or the falling edge of CAS, whichever occurs later  
NOTE A: A read cycle or a read-modify-write cycle can be intermixed with write cycles, observing read and read-modify-write timing  
specifications. To ensure page-mode cycle time, TRG must remain high throughout the entire page-mode operation if the late-write  
feature is used. If the early-write-cycle timing is used, the state of TRG is a don’t care after the minimum period t  
edge of RAS.  
from the falling  
h(TRG)  
Figure 34. Enhanced-Page-Mode Write-Cycle Timing  
Table 9. Enhanced-Page-Mode Write-Cycle State Table  
STATE  
CYCLE  
1
L
L
L
2
L
L
L
3
H
L
4
5
Write operation (nonmasked)  
Don’t care  
Write mask  
Don’t care  
Valid data  
Valid data  
Valid data  
Write operation with nonpersistent write-per-bit  
Write operation with persistent write-per-bit  
Load-write-mask register on either the first falling edge of  
L
H
L
H
Don’t care  
Write mask  
WEx or the falling edge of CAS, whichever occurs later.  
Load-write-mask-register cycle puts the device in the persistent write-per-bit mode. Column address at the falling edge of CAS is a don’t care  
during this cycle.  
42  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
SMJ55166  
262144 BY 16-BIT  
MULTIPORT VIDEO RAM  
SGMS057C – APRIL 1995 – REVISED JUNE 1997  
PARAMETER MEASUREMENT INFORMATION  
t
w(RL)P  
RAS  
CAS  
t
w(RH)  
t
d(RLCH)  
t
d(CLRH)  
t
t
d(CHRL)  
c(RDWP)  
t
t
t
d(RLCL)  
w(CH)  
d(CHRL)  
t
t
w(CL)  
h(RA)  
t
d(RLCA)  
t
t
d(CARH)  
su(CA)  
t
t
t
h(CLCA)  
su(RA)  
t
t
d(CACH)  
h(RLCA)  
Row  
Column  
Column  
A0A8  
DSF  
t
h(SFR)  
t
su(SFC)  
t
su(SFR)  
h(SFC)  
t
t
h(SFC)  
su(SFC)  
1
2
t
2
t
su(rd)  
su(WCH)  
d(CLWL)  
d(CAWL)  
t
su(WCH)  
t
t
d(DCL)  
t
t
d(CLGH)  
t
d(RLWL)  
t
t
t
h(TRG)  
d(CLGH)  
su(WRH)  
t
su(TRG)  
t
w(TRG)  
TRG  
WEx  
t
w(TRG)  
t
su(WMR)  
t
t
w(WL)  
h(RWM)  
3
t
a(C)  
t
t
a(CA)  
su(DWL)  
t
t
h(WLD)  
su(DQR)  
t
h(WLD)  
t
d(DCL)  
t
d(GHD)  
5
t
t
su(DWL)  
h(RDQ)  
t
a(CP)  
DQ0DQ15  
4
Valid Out  
5
t
t
Valid Out  
a(G)  
d(DGL)  
t
d(DGL)  
t
t
dis(G)  
d(GHD)  
t
a(R)  
t
a(C)  
Output can go from the high-impedance state to an invalid-data state prior to the specified access time.  
NOTE A: Areadorawritecyclecanbeintermixedwithread-modify-writecyclesaslongasthereadandwritetimingspecificationsarenotviolated.  
Figure 35. Enhanced-Page-Mode Read-Modify-Write-Cycle Timing  
Table 10. Enhanced-Page-Mode Read-Modify-Write-Cycle State Table  
STATE  
CYCLE  
1
L
L
L
2
L
L
L
3
H
L
4
5
Write operation (nonmasked)  
Don’t care  
Write mask  
Don’t care  
Valid data  
Valid data  
Valid data  
Write operation with nonpersistent write-per-bit  
Write operation with persistent write-per-bit  
Load-write-mask register on either the first falling edge of  
L
H
L
H
Don’t care  
Write mask  
WEx or the falling edge of CAS, whichever occurs later.  
Load-write-mask-register cycle sets the device to the persistent write-per-bit mode. Column address at the falling edge of CAS is a don’t care  
during this cycle.  
43  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
SMJ55166  
262144 BY 16-BIT  
MULTIPORT VIDEO RAM  
SGMS057C – APRIL 1995 – REVISED JUNE 1997  
PARAMETER MEASUREMENT INFORMATION  
t
w(RH)  
t
w(RL)P  
RAS  
CAS  
t
t
d(CLRH)  
d(RLCL)  
t
t
w(CH)  
t
t
d(CHRL)  
t
w(CL)  
t
d(RLCA)  
t
d(RLCH)  
t
c(P)  
t
su(RA)  
t
t
su(CA)  
d(CACH)  
t
h(CLCA)  
t
h(RA)  
t
d(CARH)  
t
h(RLCA)  
Row  
Column  
Column  
A0A8  
DSF  
t
t
h(SFR)  
h(TRG)  
d(CLGH)  
t
su(SFR)  
t
su(WCL)  
t
t
su(TRG)  
t
h(CLW)  
TRG  
WEx  
t
su(WMR)  
t
su(rd)  
t
w(WL)  
t
a(C)  
t
a(CA)  
t
h(CLD)  
t
d(DGL)  
t
a(G)  
t
su(DCL)  
t
t
dis(WL)  
a(R)  
5
Data In  
Data In  
Data Out  
t
d(DCL)  
Access time is t  
or t  
a(CA)  
dependent.  
a(CP)  
Output can go from the high-impedance state to an invalid-data state prior to the specified access time.  
NOTE A: A write cycle or a read-modify-write cycle can be mixed with the read cycles as long as the write and read-modify-write timing  
specifications are not violated and the proper polarity of DSF is selected on the falling edge of RAS and CAS to select the desired write  
mode (normal, block write, etc.).  
Figure 36. Enhanced-Page-Mode Read-/Write-Cycle Timing  
44  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
SMJ55166  
262144 BY 16-BIT  
MULTIPORT VIDEO RAM  
SGMS057C – APRIL 1995 – REVISED JUNE 1997  
PARAMETER MEASUREMENT INFORMATION  
t
c(W)  
t
w(RL)  
RAS  
t
w(RH)  
t
d(RLCH)  
t
t
t
t
t
d(CLRH)  
t
d(RLCL)  
t
d(CHRL)  
t
d(CHRL)  
t
w(CL)  
CAS  
t
h(RA)  
t
w(CH)  
t
su(RA)  
Refresh Row  
A0A8  
t
h(SFC)  
t
h(RSF)  
t
su(SFR)  
t
su(SFC)  
t
h(SFR)  
DSF  
t
su(TRG)  
t
h(TRG)  
TRG  
t
su(WCH)  
t
su(WMR)  
t
su(WRH)  
t
h(RLW)  
t
t
h(RWM)  
h(CLW)  
t
su(WCL)  
WEx  
t
t
w(WL)  
t
su(DCL)  
h(CLD)  
t
h(RLD)  
DQ0–  
DQ15  
Valid-Color Input  
Figure 37. Load-Color-Register-Cycle Timing (Early-Write Load)  
45  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
SMJ55166  
262144 BY 16-BIT  
MULTIPORT VIDEO RAM  
SGMS057C – APRIL 1995 – REVISED JUNE 1997  
PARAMETER MEASUREMENT INFORMATION  
t
c(W)  
t
w(RL)  
RAS  
t
w(RH)  
t
d(RLCH)  
t
t
t
t
t
d(CLRH)  
t
t
d(RLCL)  
d(CHRL)  
t
d(CHRL)  
t
w(CL)  
CAS  
t
t
h(RSF)  
w(CH)  
t
h(RA)  
Refresh Row  
t
su(RA)  
A0A8  
t
h(SFC)  
t
su(SFR)  
t
su(SFC)  
t
h(SFR)  
DSF  
TRG  
t
su(TRG)  
t
h(CLW)  
t
su(WRH)  
t
su(WCH)  
t
d(GHD)  
t
h(RLW)  
t
su(WMR)  
t
h(WLG)  
t
w(WL)  
WEx  
t
su(DWL)  
t
h(WLD)  
t
h(RLD)  
DQ0–  
DQ15  
Valid-Color Input  
Figure 38. Load-Color-Register-Cycle Timing (Late-Write Load)  
46  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
SMJ55166  
262144 BY 16-BIT  
MULTIPORT VIDEO RAM  
SGMS057C – APRIL 1995 – REVISED JUNE 1997  
PARAMETER MEASUREMENT INFORMATION  
t
c(W)  
t
w(RL)  
RAS  
t
w(RH)  
t
t
d(RLCH)  
t
t
t
t
d(CLRH)  
t
d(RLCL)  
t
d(CHRL)  
t
d(CHRL)  
t
w(CL)  
CAS  
t
t
t
w(CH)  
d(RLCA)  
h(CLCA)  
t
h(RLCA)  
t
d(RLCA)  
su(RA)  
t
t
d(CARH)  
t
d(CACH)  
t
h(RA)  
t
su(CA)  
Row  
A0A8  
t
d(RSF)  
t
Block Address  
A2A8  
t
su(SFR)  
su(SFC)  
t
h(SFR)  
t
h(SFC)  
DSF  
t
h(TRG)  
t
su(TRG)  
TRG  
t
su(WCH)  
t
h(RWM)  
t
su(WRH)  
t
su(WMR)  
t
su(WCL)  
t
h(CLW)  
t
h(RLW)  
t
w(WL)  
1
2
WEx  
t
h(RLD)  
t
su(DCL)  
t
su(DQR)  
t
h(CLD)  
t
h(RDQ)  
3
DQ0DQ15  
Figure 39. Block-Write-Cycle Timing (Early Write)  
Table 11. Block-Write-Cycle State Table  
STATE  
2
CYCLE  
1
3
Block-write operation (nonmasked)  
H
Don’t care  
Write mask  
Don’t care  
Column mask  
Column mask  
Column mask  
Block-write operation with nonpersistent write-per-bit  
Block-write operation with persistent write-per-bit  
L
L
Write-mask data  
0: I/O write disable  
1: I/O write enable  
Example:  
DQ0 — column 0 (address A1 = 0, A0 = 0)  
DQ1 — column 1 (address A1 = 0, A0 = 1)  
DQ2 — column 2 (address A1 = 1, A0 = 0)  
DQ3 — column 3 (address A1 = 1, A0 = 1)  
Column-mask data DQi – DQi + 3  
(i = 0, 4, 8, 12)  
0: column write disable  
1: column write enable  
47  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
SMJ55166  
262144 BY 16-BIT  
MULTIPORT VIDEO RAM  
SGMS057C – APRIL 1995 – REVISED JUNE 1997  
PARAMETER MEASUREMENT INFORMATION  
t
c(W)  
t
w(RL)  
RAS  
CAS  
t
t
w(RH)  
t
d(RLCH)  
t
t
t
t
d(CLRH)  
t
d(RLCL)  
t
d(CHRL)  
t
d(CHRL)  
t
w(CL)  
t
w(CH)  
t
t
d(RLCA)  
d(CACH)  
t
h(RLCA)  
t
d(CARH)  
t
h(RA)  
t
t
su(CA)  
t
t
su(RA)  
h(CLCA)  
Row  
A0A8  
t
h(RSF)  
Block Address  
A2A8  
t
su(SFR)  
t
su(SFC)  
t
h(SFR)  
h(SFC)  
DSF  
TRG  
t
su(TRG)  
t
h(CLW)  
t
su(WCH)  
t
d(GHD)  
t
h(RLW)  
t
su(WRH)  
t
su(WMR)  
t
h(WLG)  
w(WL)  
t
h(RWM)  
t
1
WEx  
t
su(DQR)  
t
su(DWL)  
t
h(RDQ)  
t
h(WLD)  
t
h(RLD)  
3
2
DQ0DQ15  
Figure 40. Block-Write-Cycle Timing (Late Write)  
Table 12. Block-Write-Cycle State Table  
STATE  
CYCLE  
1
2
3
Block-write operation (nonmasked)  
H
Don’t care  
Column mask  
Column mask  
Column mask  
Block-write operation with nonpersistent write-per-bit  
Block-write operation with persistent write-per-bit  
L
L
Write mask  
Don’t care  
Write-mask data  
0: I/O write disable  
1: I/O write enable  
Example:  
DQ0 — column 0 (address A1 = 0, A0 = 0)  
DQ1 — column 1 (address A1 = 0, A0 = 1)  
DQ2 — column 2 (address A1 = 1, A0 = 0)  
DQ3 — column 3 (address A1 = 1, A0 = 1)  
Column-mask data DQi – DQi + 3  
(i = 0, 4, 8, 12)  
0: column write disable  
1: column write enable  
48  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
SMJ55166  
262144 BY 16-BIT  
MULTIPORT VIDEO RAM  
SGMS057C – APRIL 1995 – REVISED JUNE 1997  
PARAMETER MEASUREMENT INFORMATION  
t
w(RL)P  
RAS  
CAS  
t
t
t
w(RH)  
d(RLCH)  
d(RLCL)  
c(P)  
t
t
d(CLRH)  
t
w(CH)  
w(CL)  
t
t
d(CHRL)  
t
t
d(CHRL)  
t
d(RLCA)  
t
h(CLCA)  
t
su(CA)  
t
t
d(CACH)  
h(RA)  
t
h(RLCA)  
t
d(CARH)  
su(RA)  
Row  
Block Address  
A2A8  
Block Address  
A2A8  
A0A8  
t
h(SFR)  
t
t
h(SFC)  
h(SFC)  
t
t
su(SFC)  
t
su(SFC)  
su(SFR)  
DSF  
TRG  
t
h(TRG)  
su(TRG)  
t
See Note A  
su(WCH)  
t
t
su(WMR)  
t
su(WCH)  
t
t
w(WL)  
t
t
su(WRH)  
h(RWM)  
WEx  
1
t
su(DWL)  
su(DQR)  
t
h(CLD)  
t
h(WLD)  
t
t
h(RDQ)  
su(DCL)  
3
t
h(RLD)  
DQ0DQ15  
2
3
Referenced to the first falling edge of WEx or the falling edge of CAS, whichever occurs later  
NOTE A: To assure page-mode cycle time, TRG must remain high throughout the entire page-mode operation if the late-write feature is used.  
If the early write-cycle timing is used, the state of TRG is a don’t care after the minimum period t from the falling edge of RAS.  
h(TRG)  
Figure 41. Enhanced-Page-Mode Block-Write-Cycle Timing  
Table 13. Enhanced-Page-Mode Block-Write-Cycle State Table  
STATE  
CYCLE  
1
H
L
2
3
Block-write operation (nonmasked)  
Don’t care  
Write mask  
Don’t care  
Column mask  
Column mask  
Column mask  
Block-write operation with nonpersistent write-per-bit  
Block-write operation with persistent write-per-bit  
L
Write-mask data 0: I/O write disable  
1: I/O write enable  
Example:  
DQ0 — column 0 (address A1 = 0, A0 = 0)  
DQ1 — column 1 (address A1 = 0, A0 = 1)  
DQ2 — column 2 (address A1 = 1, A0 = 0)  
DQ3 — column 3 (address A1 = 1, A0 = 1)  
Column-mask data DQi – DQi + 3  
0: column write disable  
(i = 0, 4, 8, 12) 1: column write enable  
49  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
SMJ55166  
262144 BY 16-BIT  
MULTIPORT VIDEO RAM  
SGMS057C – APRIL 1995 – REVISED JUNE 1997  
PARAMETER MEASUREMENT INFORMATION  
t
c(rd)  
t
w(RL)  
RAS  
t
t
t
w(RH)  
t
t
d(CHRL)  
d(RHCL)  
t
d(CHRL)  
CAS  
t
h(RA)  
t
su(RA)  
Row  
A0A8  
DSF  
TRG  
t
h(TRG)  
t
su(TRG)  
WEx  
DQ0–  
DQ15  
Figure 42. RAS-Only Refresh-Cycle Timing  
50  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
SMJ55166  
262144 BY 16-BIT  
MULTIPORT VIDEO RAM  
SGMS057C – APRIL 1995 – REVISED JUNE 1997  
PARAMETER MEASUREMENT INFORMATION  
t
c(rd)  
t
w(RH)  
t
w(RL)  
RAS  
CAS  
t
d(RHCL)  
t
t
t
d(CLRL)  
t
d(RLCH)  
t
d(CHRL)  
t
t
t
su(RA)  
h(RA)  
1
2
A0A8  
t
su(SFR)  
h(SFR)  
DSF  
TRG  
t
t
su(WMR)  
h(RWM)  
3
WEx  
DQ0DQ15  
Figure 43. CBR-Refresh-Cycle Timing  
Table 14. CBR-Cycle State Table  
STATE  
CYCLE  
1
2
L
3
H
H
L
CBR refresh with option reset  
CBR refresh with no reset  
Don’t care  
Don’t care  
Stop address  
H
H
CBR refresh with stop-point set and no reset  
51  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
SMJ55166  
262144 BY 16-BIT  
MULTIPORT VIDEO RAM  
SGMS057C – APRIL 1995 – REVISED JUNE 1997  
PARAMETER MEASUREMENT INFORMATION  
Memory Read Cycle  
Refresh Cycle  
Refresh Cycle  
t
c(rd)  
t
c(rd)  
t
c(rd)  
t
w(RH)  
t
w(RH)  
t
t
w(RL)  
w(RL)  
RAS  
CAS  
t
d(CARH)  
t
d(RLCH)  
t
d(CHRL)  
t
t
t
w(CL)  
t
d(RLCA)  
t
su(RA)  
t
su(RA)  
t
h(CLCA)  
su(CA)  
t
t
h(RA)  
t
h(RA)  
t
h(RA)  
t
t
su(RA)  
t
t
su(RA)  
h(RA)  
Row  
Col  
1
1
2
1
2
A0A8  
DSF  
t
su(SFR)  
t
su(SFR)  
su(SFR)  
t
t
h(SFR)  
t
h(SFR)  
h(SFR)  
2
t
h(RHrd)  
t
dis(CH)  
t
su(TRG)  
t
t
h(TRG)  
dis(G)  
t
d(GLRH)  
TRG  
WEx  
t
su(WMR)  
t
t
su(WMR)  
t
su(rd)  
t
h(RWM)  
t
h(RWM)  
t
a(G)  
3
3
3
t
a(C)  
t
a(R)  
DQ0–  
DQ15  
Data Out  
Figure 44. Hidden-Refresh-Cycle Timing  
Table 15. Hidden-Refresh-Cycle State Table  
STATE  
CYCLE  
1
2
L
3
H
H
L
CBR refresh with option reset  
CBR refresh with no reset  
Don’t care  
Don’t care  
Stop address  
H
H
CBR refresh with stop-point set and no option reset  
52  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
SMJ55166  
262144 BY 16-BIT  
MULTIPORT VIDEO RAM  
SGMS057C – APRIL 1995 – REVISED JUNE 1997  
PARAMETER MEASUREMENT INFORMATION  
t
c(TRD)  
t
w(RL)  
t
d(RLCL)  
RAS  
CAS  
t
w(RH)  
t
d(RLCH)  
t
d(CHRL)  
t
d(CARH)  
t
t
w(CL)  
d(RLCA)  
t
h(RA)  
t
su(CA)  
t
h(CLCA)  
t
su(RA)  
t
h(RLCA)  
Tap Point  
A0A8  
Row  
A0A8  
DSF  
t
su(SFR)  
t
h(SFR)  
t
su(TRG)  
t
h(TRG)  
TRG  
t
w(GH)  
t
h(RWM)  
t
t
su(WMR)  
d(CASH)  
WEx  
DQ0DQ15  
Hi-Z  
t
t
d(SCTR)  
d(CLSH)  
t
t
w(SCH)  
w(SCL)  
t
d(RLSH)  
SC  
SQ  
t
w(SCH)  
t
t
c(SC)  
a(SQ)  
t
a(SQ)  
t
t
h(SHSQ)  
h(SHSQ)  
Old Data  
Old Data  
New Data  
t
d(GHQSF)  
Tap Point Bit A7  
QSF  
SE  
t
d(CLQSF)  
H
L
t
d(RLQSF)  
NOTES: A. DQ outputs remain in the high-impedance state for the entire memory-to-data-register transfer cycle. The memory-to-data-register  
transfer cycle is used to load the data registers in parallel from the memory array. The 256 locations in each data register are written  
into from the 256 corresponding columns of the selected row.  
B. Once data is transferred into the data registers, the SAM is in the serial-read mode (i.e., the SQ is enabled), allowing data to be  
shifted out of the registers. Also, the first bit to read from the data register after TRG has gone high must be activated by a positive  
transition of SC.  
C. A0A7: register tap point; A8: identifies the DRAM row half  
D. Early-load operation is defined as t  
h(TRG)  
min < t min.  
< t  
h(TRG) d(RLTH)  
Figure 45. Full-Register-Transfer Read Timing, Early-Load Operations  
53  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
SMJ55166  
262144 BY 16-BIT  
MULTIPORT VIDEO RAM  
SGMS057C – APRIL 1995 – REVISED JUNE 1997  
PARAMETER MEASUREMENT INFORMATION  
t
c(TRD)  
t
w(RL)  
t
d(RLCL)  
RAS  
CAS  
t
w(RH)  
t
d(RLCH)  
t
d(CHRL)  
t
w(CL)  
t
d(RLCA)  
t
h(RA)  
t
su(CA)  
t
su(RA)  
t
h(RLCA)  
t
h(CLCA)  
Tap Point  
A0A8  
Row  
A0A8  
DSF  
t
t
h(SFR)  
su(SFR)  
t
d(CLTH)  
t
d(THRL)  
d(THRH)  
t
su(TRG)  
t
t
d(CAGH)  
t
d(RLTH)  
TRG  
t
w(GH)  
t
h(RWM)  
t
su(WMR)  
WEx  
t
d(SCTR)  
t
d(THSC)  
DQ0DQ15  
SC  
Hi-Z  
t
w(SCH)  
t
c(SC)  
t
a(SQ)  
t
w(SCL)  
t
a(SQ)  
t
t
h(SHSQ)  
h(SHSQ)  
Old Data  
Old Data  
Old Data  
New Data  
SQ  
t
d(GHQSF)  
QSF  
SE  
Tap Point Bit A7  
t
d(CLQSF)  
H
t
d(RLQSF)  
L
NOTES: A. DQ outputs remain in the high-impedance state for the entire memory-to-data-register transfer cycle. The memory-to-data-register  
transfer cycle is used to load the data registers in parallel from the memory array. The 256 locations in each data register are written  
into from the 256 corresponding columns of the selected row.  
B. Once data is transferred into the data registers, the SAM is in the serial-read mode (i.e., the SQ is enabled), allowing data to be  
shifted out of the registers. Also, the first bit to read from the data register after TRG has gone high must be activated by a positive  
transition of SC.  
C. A0A7: register tap point; A8: identifies the DRAM row half  
D. Late load operation is defined as t  
< 0 ns.  
d(THRH)  
Figure 46. Full-Register-Transfer Read Timing, Real-Time Load Operation/Late-Load Operation  
54  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
SMJ55166  
262144 BY 16-BIT  
MULTIPORT VIDEO RAM  
SGMS057C – APRIL 1995 – REVISED JUNE 1997  
PARAMETER MEASUREMENT INFORMATION  
t
c(TRD)  
t
w(RL)  
t
w(RH)  
t
d(RLCL)  
RAS  
CAS  
t
d(CHRL)  
t
t
w(CH)  
d(RLCH)  
t
t
d(RLCA)  
w(CL)  
t
su(CA)  
t
h(RA)  
t
t
h(CLCA)  
su(RA)  
A0A8  
Tap Point A0A8  
See Note A  
Row  
t
su(TRG)  
t
h(TRG)  
TRG  
DSF  
t
h(SFR)  
t
su(SFR)  
t
h(RWM)  
t
su(WMR)  
WEx  
Q0–  
Q15  
Hi-Z  
t
d(MSRL)  
t
d(RHMS)  
t
c(SC)  
t
t
c(SC)  
w(SCH)  
t
w(SCL)  
Bit 127  
or 255  
Tap  
Point M  
Bit 255  
or 127  
Tap  
Point N  
SC  
SQ  
t
t
a(SQ)  
t
t
a(SQ)  
t
a(SQ)  
w(SCL)  
h(SHSQ)  
Bit 126 or  
Bit 254  
Bit 127 or  
Bit 255  
Bit 127 or  
Bit 255  
Tap  
Point N  
Tap Point M  
t
t
a(SQ)  
d(SCQSF)  
t
d(SCQSF)  
QSF  
SE  
MSB Old  
New MSB  
H
L
NOTE A: A0A6: tap point of the given half; A7: don’t care; A8: identifies the DRAM row half  
Figure 47. Split-Register-Transfer Read Timing  
55  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
SMJ55166  
262144 BY 16-BIT  
MULTIPORT VIDEO RAM  
SGMS057C – APRIL 1995 – REVISED JUNE 1997  
PARAMETER MEASUREMENT INFORMATION  
RAS  
TRG  
t
su(TRG)  
t
h(TRG)  
t
c(SC)  
t
t
w(SCH)  
c(SC)  
t
w(SCH)  
t
w(SCH)  
t
w(SCL)  
t
w(SCL)  
SC  
t
a(SQ)  
t
a(SQ)  
t
a(SQ)  
t
t
h(SHSQ)  
h(SHSQ)  
t
h(SHSQ)  
SQ  
SE  
Valid Out  
Valid Out  
Valid Out  
t
a(SE)  
NOTES: A. While reading data through the serial-data register, TRG is a don’t care, but TRG must be held high when RAS goes low. This  
is to avoid the initiation of a register-data-transfer operation.  
B. The serial-data-out cycle is used to read data out of the data registers. Before data can be read via SQ, the device must be put  
into the read mode by performing a transfer-read cycle.  
Figure 48. Serial-Read-Cycle Timing (SE = V )  
IL  
56  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
SMJ55166  
262144 BY 16-BIT  
MULTIPORT VIDEO RAM  
SGMS057C – APRIL 1995 – REVISED JUNE 1997  
PARAMETER MEASUREMENT INFORMATION  
RAS  
TRG  
t
su(TRG)  
t
h(TRG)  
t
c(SC)  
t
c(SC)  
t
w(SCH)  
t
w(SCH)  
t
w(SCH)  
t
w(SCL)  
t
w(SCL)  
SC  
t
a(SQ)  
t
a(SQ)  
t
a(SQ)  
t
h(SHSQ)  
t
a(SE)  
t
h(SHSQ)  
Valid Out  
SQ  
SE  
Valid Out  
Valid Out  
Valid Out  
t
dis(SE)  
NOTES: A. While reading data through the serial-data register, TRG is a don’t care, but TRG must be held high when RAS goes low. This  
is to avoid the initiation of a register-data-transfer operation.  
B. The serial-data-out cycle is used to read data out of the data registers. Before data can be read via SQ, the device must be  
put into the read mode by performing a transfer-read cycle.  
Figure 49. Serial-Read Timing (SE-Controlled Read)  
57  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
SMJ55166  
262144 BY 16-BIT  
MULTIPORT VIDEO RAM  
SGMS057C – APRIL 1995 – REVISED JUNE 1997  
PARAMETER MEASUREMENT INFORMATION  
RAS  
CAS  
ADDR  
Row Tap1  
(low)  
RowTap1  
(high)  
Row Tap2  
(low)  
Row Tap2  
(high)  
TRG  
DSF  
CASE I  
SC  
Tap1  
(low)  
Bit Tap1  
127 (high)  
Bit  
255  
Tap2  
(low)  
Bit  
127  
QSF  
CASE II  
SC  
Tap1  
(high)  
Tap1  
(low)  
Bit  
127  
Bit  
255  
Tap2  
(low)  
Bit  
127  
QSF  
CASE III  
SC  
Tap1  
(low)  
Bit  
Tap1  
Bit  
255  
Tap2  
(low)  
Bit  
127  
127 (high)  
QSF  
Split Register to the  
High Half of the  
Data Register  
Split Register to the  
Low Half of the  
Data Register  
Split Register to the  
High Half of the  
Data Register  
Full-Register-Transfer Read  
NOTES: A. To achieve proper split-register operation, a full-register-transfer read should be performed before the first split-register-transfer  
cycle. This is necessary to initialize the data register and the starting tap location. First serial access can begin after the  
full-register-transfer read cycle (CASE I), during the first split-register-transfer cycle (CASE II), or even after the first  
split-register-transfer cycle (CASE III). There is no minimum requirement of SC clock between the full-register-transfer read cycle  
and the first split-register cycle.  
B. A split-register transfer into the inactive half is not allowed until t  
is met. t is the minimum delay time between the  
d(MSRL)  
d(MSRL)  
rising edge of the serial clock of the last bit (bit 127 or 255) and the falling edge of RAS of the split-register-transfer cycle into the  
inactive half. After the t is met, the split-register transfer into the inactive half must also satisfy the minimum t  
d(MSRL)  
d(RHMS)  
requirement.t  
is the minimum delay time between the rising edge of RAS of the split-register-transfer cycle into the inactive  
d(RHMS)  
half and the rising edge of the serial clock of the last bit (bit 127 or 255).  
Figure 50. Split-Register Operating Sequence  
58  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
SMJ55166  
262144 BY 16-BIT  
MULTIPORT VIDEO RAM  
SGMS057C – APRIL 1995 – REVISED JUNE 1997  
MECHANICAL DATA  
GB (S-CPGA-P68)  
CERAMIC PIN GRID ARRAY PACKAGE  
0.970 (24,63)  
0.950 (24,13)  
0.536 (13,61)  
0.524 (13,31)  
0.800 (20,32) TYP  
J
H
G
F
E
D
C
B
A
1
2
3
4
5
6
7
8
9
0.088 (2,23)  
0.072 (1,83)  
0.100 (2,54)  
0.194 (4,93)  
0.166 (4,22)  
0.055 (1,39)  
0.045 (1,14)  
0.050 (1,27) DIA  
4 Places  
0.018 (0,46) DIA TYP  
4040114-14/A 2/95  
NOTES: A. All linear dimensions are in inches (millimeters).  
B. This drawing is subject to change without notice.  
C. Index mark may appear on top or bottom depending on package vendor.  
D. Pins are located within 0.005 (0,13) radius of true position relative to each other at maximum material condition and within  
0.015 (0,38) radius relative to the center of the ceramic.  
E. This package can be hermetically sealed with metal lids or with ceramic lids using glass frit.  
F. The pins can be gold plated or solder dipped.  
G. Falls within MIL-STD-1835 CMGA1-PN and CMGA13-PN and JEDEC MO-067AA and MO-066AA, respectively  
59  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
SMJ55166  
262144 BY 16-BIT  
MULTIPORT VIDEO RAM  
SGMS057C – APRIL 1995 – REVISED JUNE 1997  
MECHANICAL DATA  
HKC (R-CDFP-F64)  
CERAMIC DUAL FLATPACK WITH TIE BAR  
1.620 (41,14)  
SQ  
1.580 (40,13)  
1.020 (25,91)  
0.980 (24,89)  
0.765 (19,43)  
0.730 (18,54)  
0.026 (0,66) MIN  
0.150 (3,81)  
0.100 (2,54)  
0.070 (1,78)  
0.055 (1,40)  
33  
64  
0.445 (11,30)  
0.420 (10,67)  
32  
1
0.320 (8,13)  
0.295 (7,49)  
0.0098 (0,250)  
0.0060 (0,150)  
0.185 (4,70)  
0.145 (3,68)  
0.0079 (0,200)  
0.0043 (0,110)  
0.0196 (0,500)  
0.040 (1,02)  
0.030 (0,76)  
4073160/B 10/94  
NOTES: A. All linear dimensions are in inches (millimeters).  
B. This drawing is subject to change without notice.  
C. This package can be hermetically sealed with a metal lid.  
D. The terminals are gold plated.  
E. All leads not shown for clarity purposes.  
device symbolization  
-SS  
Speed (-70, -80)  
SMJ55166 HKC M  
Temperature Range  
Package Code  
F
R
A
XXX LLL  
Lot Traceability Code  
Date Code  
Assembly Site Code  
Die Revision Code  
Wafer Fab Code  
60  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
SMJ55166  
262144 BY 16-BIT  
MULTIPORT VIDEO RAM  
SGMS057C – APRIL 1995 – REVISED JUNE 1997  
61  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
IMPORTANT NOTICE  
Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue  
any product or service without notice, and advise customers to obtain the latest version of relevant information  
to verify, before placing orders, that information being relied on is current and complete. All products are sold  
subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those  
pertaining to warranty, patent infringement, and limitation of liability.  
TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in  
accordance with TI’s standard warranty. Testing and other quality control techniques are utilized to the extent  
TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily  
performed, except those mandated by government requirements.  
CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF  
DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE (“CRITICAL  
APPLICATIONS”). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR  
WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER  
CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO  
BE FULLY AT THE CUSTOMER’S RISK.  
In order to minimize risks associated with the customer’s applications, adequate design and operating  
safeguards must be provided by the customer to minimize inherent or procedural hazards.  
TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent  
that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other  
intellectual property right of TI covering or relating to any combination, machine, or process in which such  
semiconductor products or services might be or are used. TI’s publication of information regarding any third  
party’s products or services does not constitute TI’s approval, warranty or endorsement thereof.  
Copyright 1998, Texas Instruments Incorporated  

相关型号:

SMJ55166-70GB

256KX16 VIDEO DRAM, 70ns, CPGA68
TI

SMJ55166-70HKC

256KX16 VIDEO DRAM, 70ns, CDFP64
TI

SMJ55166-75GBM

256KX16 VIDEO DRAM, 75ns, CPGA68, CERAMIC, PGA-68
TI

SMJ55166-75HKCM

256KX16 VIDEO DRAM, 75ns, CDFP64, CERAMIC, DFP-64
TI

SMJ55166-80GBM

暂无描述
TI

SMJ55166-80HKCM

256KX16 VIDEO DRAM, 80ns, CDFP64, CERAMIC, DFP-64
TI

SMJ5517-15JDM

IC,SRAM,2KX8,CMOS,DIP,24PIN,CERAMIC
TI

SMJ5C1008-20HM

128KX8 STANDARD SRAM, 20ns, CDSO32
TI

SMJ5C1008-20JDC

128KX8 STANDARD SRAM, 20ns, CDIP32
TI

SMJ5C1008-25HM

128KX8 STANDARD SRAM, 25ns, CDSO32
TI

SMJ5C1008-25JDC

128KX8 STANDARD SRAM, 25ns, CDIP32
TI

SMJ5C1008-25JDCM

128KX8 STANDARD SRAM, 25ns, CDIP32, 0.400 INCH, SIDE BRAZED, CERAMIC, DIP-32
ROCHESTER