SMQ320C32_09 [TI]

DIGITAL SIGNAL PROCESSOR;
SMQ320C32_09
型号: SMQ320C32_09
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

DIGITAL SIGNAL PROCESSOR

文件: 总43页 (文件大小:577K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
SMQ320C32  
DIGITAL SIGNAL PROCESSOR  
SGUS027B – APRIL 1998 – REVISED MARCH 1999  
Military Operating Temperature Range  
144-Pin Plastic Quad Flatpack  
– 55°C to 125°C; QML Processing  
(PCM Suffix) 5 V  
High-Performance Floating-Point Digital  
Signal Processor (DSP)  
SMQ320C32-50 (5 V)  
– 40-ns Instruction Cycle Time  
– 275 MOPS  
Eight Extended-Precision Registers  
Two Address Generators With Eight  
Auxiliary Registers and Two Auxiliary  
Register Arithmetic Units (ARAUs)  
Two Low-Power Modes  
– 50 MFLOPS  
– 25 MIPS  
Two- and Three-Operand Instructions  
SMQ320C32-60 (5 V)  
– 33-ns Instruction Cycle Time  
– 330 MOPS  
– 60 MFLOPS  
– 30 MIPS  
Parallel Arithmetic Logic Unit (ALU) and  
Multiplier Execution in a Single Cycle  
Block-Repeat Capability  
Zero-Overhead Loops With Single-Cycle  
Branches  
32-Bit High-Performance CPU  
Conditional Calls and Returns  
16-/32-Bit Integer and 32-/40-Bit  
Floating-Point Operations  
Interlocked Instructions for  
Multiprocessing Support  
32-Bit Instruction Word, 24-Bit Addresses  
One External Pin, PRGW, That Configures  
the External-Program-Memory Width to  
16 or 32 Bits  
Two 256 × 32-Bit Single-Cycle, Dual-Access  
On-Chip RAM Blocks  
Flexible Boot-Program Loader  
Two Sets of Memory Strobes (STRB0 and  
STRB1) and One I/O Strobe (IOSTRB)  
Allow Zero-Glue Logic Interface to Two  
Banks of Memory and One Bank of External  
Peripherals  
On-Chip Memory-Mapped Peripherals:  
– One Serial Port  
– Two 32-Bit Timers  
– Two-Channel Direct Memory Access  
(DMA) Coprocessor With Configurable  
Priorities  
Separate Bus-Control Registers for Each  
Strobe-Control Wait-State Generation,  
External Memory Width, and Data Type Size  
Enhanced External Memory Interface That  
Supports 8-/16-/32-Bit-Wide External RAM  
for Data Access and Program Execution  
From 16-/32-Bit-Wide External RAM  
STRB0 and STRB1 Memory Strobes Handle  
8-, 16-, or 32-Bit External Data Accesses  
(Reads and Writes)  
SMJ320C30 and SMJ320C31 Object Code  
Compatible  
Multiprocessor Support Through the HOLD  
and HOLDA Signals Is Valid for All Strobes  
Fabricated Using 0.7-µm Enhanced  
Performance Implanted CMOS (EPIC )  
Technology by Texas Instruments  
description  
The SMQ320C32 is a member of the ’320C3x generation of digital signal processors from Texas Instruments.  
The SMQ320C32 is an enhanced 32-bit floating-point processor manufactured in 0.7-µm triple-level-metal  
CMOS technology. The enhancements to the ’320C3x architecture include a variable-width external-memory  
interface, faster instruction cycle time, power-down modes, two-channel DMA coprocessor with configurable  
priorities, flexible bootloader, relocatable interrupt-vector table, and edge- or level-triggered interrupts.  
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of  
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
EPIC is a trademark of Texas Instruments Incorporated.  
Copyright 1999, Texas Instruments Incorporated  
On products compliant to MIL-PRF-38535, all parameters are tested  
unless otherwise noted. On all other products, production  
processing does not necessarily include testing of all parameters.  
PRODUCTION DATA information is current as of publication date.  
Products conform to specifications per the terms of Texas Instruments  
standard warranty. Production processing does not necessarily include  
testing of all parameters.  
1
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
SMQ320C32  
DIGITAL SIGNAL PROCESSOR  
SGUS027B – APRIL 1998 – REVISED MARCH 1999  
description (continued)  
The internal busing and special digital signal processing instruction set of the SMQ320C32 have the speed and  
flexibility to execute up to 50 million floating-point operations per second (MFLOPS). The SMQ320C32  
optimizes speed by implementing functions in hardware that other processors implement through software or  
microcode. This hardware-intensive approach provides performance previously unavailable on a single chip.  
PCM PACKAGE  
(TOP VIEW)  
DR0  
1
H3  
H1  
D0  
D1  
D2  
D3  
DV  
D4  
D5  
D6  
D7  
D8  
D9  
108  
107  
106  
105  
104  
103  
102  
101  
100  
99  
DV  
FSR0  
2
DD  
3
CLKR0  
CLKX0  
FSX0  
DX0  
4
5
6
7
DD  
8
IV  
SS  
9
SHZ  
TCLK0  
TCLK1  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
98  
97  
DV  
DD  
96  
EMU3  
EMU0  
95  
V
V
SSL  
SSL  
94  
V
V
DDL  
DDL  
93  
DV  
CV  
D10  
SS  
SS  
92  
EMU1  
EMU2  
91  
90  
V
DV  
SSL  
MCBL/MP  
DD  
D11  
IV  
89  
88  
CV  
DV  
SS  
SS  
SS  
D12  
87  
86  
A23  
A22  
A21  
A20  
A19  
A18  
V
V
DDL  
DDL  
85  
84  
D13  
D14  
D15  
D16  
D17  
83  
82  
81  
80  
DV  
A17  
DD  
79  
DV  
DD  
78  
A16  
A15  
A14  
A13  
D18  
D19  
D20  
D21  
77  
76  
75  
74  
CV  
DV  
DV  
CV  
SS  
SS  
SS  
SS  
73  
NC=No internal connection  
2
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
SMQ320C32  
DIGITAL SIGNAL PROCESSOR  
SGUS027B – APRIL 1998 – REVISED MARCH 1999  
Pin Assignments  
PIN  
PIN  
PIN  
PIN  
PIN  
NUMBER  
1
NAME  
DR0  
DV  
NUMBER  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
NAME  
NUMBER  
NAME  
NUMBER  
88  
NAME  
NUMBER  
117  
NAME  
A17  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
81  
82  
83  
84  
85  
86  
87  
DV  
DD  
D31  
IV  
RDY  
SS  
D11  
DV  
2
A16  
A15  
A14  
A13  
89  
118  
IV  
SS  
DD  
3
FSR0  
CLKR0  
CLKX0  
FSX0  
DX0  
D30  
D29  
D28  
D27  
D26  
90  
119  
IOSTRB  
DD  
D10  
4
91  
120  
121  
122  
123  
124  
125  
126  
127  
128  
129  
130  
131  
132  
133  
134  
135  
136  
137  
138  
139  
140  
141  
142  
143  
144  
STRB0_B3/A  
STRB0_B2/A  
STRB0_B1  
STRB0_B0  
–1  
5
92  
CV  
DV  
SS  
SS  
–2  
6
CV  
DV  
NC  
93  
SS  
7
94  
V
SSL  
V
SSL  
SS  
8
IV  
SS  
IV  
SS  
95  
V
V
DDL  
9
SHZ  
A12  
DV  
D25  
DV  
96  
D9  
D8  
D7  
D6  
D5  
D4  
DV  
D3  
D2  
D1  
D0  
H1  
H3  
NC  
DDL  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
TCLK0  
TCLK1  
97  
STRB1_B3/A  
DD  
DD  
–1  
A11  
A10  
A9  
D24  
D23  
D22  
NC  
98  
V
SSL  
STRB1_B2/A  
DV  
DV  
99  
DD  
–2  
EMU3  
EMU0  
100  
101  
102  
103  
104  
105  
106  
107  
108  
109  
110  
111  
112  
113  
114  
115  
116  
DD  
A8  
STRB1_B1  
STRB1_B0  
R/W  
V
V
A7  
CV  
DV  
DDL  
SS  
SS  
DD  
A6  
DDL  
EMU1  
EMU2  
DV  
A5  
A4  
A3  
D21  
D20  
D19  
D18  
PRGW  
DD  
RESET  
V
CV  
DV  
SSL  
MCBL/MP  
SS  
SS  
CV  
DV  
V
V
DV  
DD  
XF0  
XF1  
IACK  
INT0  
INT1  
INT2  
INT3  
NC  
SS  
SS  
DDL  
D17  
D16  
D15  
D14  
D13  
DDL  
A23  
A22  
A21  
A20  
A19  
A18  
A2  
CV  
DV  
A1  
V
SUBS  
CV  
DV  
SS  
SS  
SS  
SS  
CLKIN  
HOLDA  
HOLD  
V
V
V
V
SSL  
DDL  
SSL  
DDL  
DV  
A0  
D12  
DV  
DD  
DD  
3
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
SMQ320C32  
DIGITAL SIGNAL PROCESSOR  
SGUS027B – APRIL 1998 – REVISED MARCH 1999  
pin functions  
This section provides signal descriptions for the SMQ320C32 device. The following table lists each signal  
(grouped by function), the number of pins, operating modes, and a brief signal description.  
Pin Functions  
CONDITIONS  
PIN  
WHEN  
TYPE  
DESCRIPTION  
SIGNAL IS  
IN HIGH Z  
NAME  
NO.  
EXTERNAL BUS INTERFACE (70 PINS)  
D31D0  
32  
24  
I/O/Z 32-bit data port of the external bus interface  
S
H
H
R
R
A23A0  
O/Z  
O/Z  
O/Z  
O/Z  
24-bit address port of the external bus interface  
S
S
S
S
Read/write for external memory interface. R/W is high when a read is performed  
and low when a write is performed over the parallel interface.  
R/W  
1
1
1
H
H
H
R
IOSTRB  
STRB0_B3/A  
External peripheral I/O strobe for the external memory interface  
External memory-access strobe 0, byte enable 3 for 32-bit external memory  
interface and address pin for 8-bit and 16-bit external memory interface  
–1  
–2  
External memory-access strobe 0, byte enable 2 for 32-bit external memory  
interface and address pin for 8-bit external memory interface  
STRB0_B2/A  
STRB0_B1  
STRB0_B0  
STRB1_B3/A  
STRB1_B2/A  
STRB1_B1  
STRB1_B0  
RDY  
1
1
1
1
1
1
1
1
O/Z  
O/Z  
O/Z  
O/Z  
O/Z  
O/Z  
O/Z  
I
S
S
S
S
S
S
S
H
H
H
H
H
H
H
External memory-access strobe 0, byte enable 1 for the external memory  
interface  
External memory-access strobe 0, byte enable 0 for the external memory  
interface  
External memory-access strobe 1, byte enable 3 for 32-bit external memory  
interface and address pin for 8-bit and 16-bit external memory interface  
–1  
–2  
External memory-access strobe 1, byte enable 2 for 32-bit external memory  
interface and address pin for 8-bit external memory interface  
External memory-access strobe 1, byte enable 1 for the external memory  
interface  
External memory-access strobe 1, byte enable 0 for the external memory  
interface  
Ready. RDY indicates that the external device ispreparedforanexternalmemory  
interface transaction to complete.  
Holdsignalforexternalmemoryinterface. WhenHOLDisalogiclow, anyongoing  
transaction is completed. A23A0, D31D0, IOSTRB, STRB0_Bx, STRB1_Bx,  
and R/W are placed in the high-impedance state, and all transactions over the  
external memory interface are held until HOLD becomes a logic high or the  
NOHOLD bit of the STRB0 bus-control register is set.  
HOLD  
1
I
Hold acknowledge for external memory interface. HOLDA is generated in  
response to a logic low on HOLD. HOLDA indicates that A23A0, D31D0,  
IOSTRB, STRB0_Bx, STRB1_Bx, and R/W are in the high-impedance state and  
that all transactions over the memory are held. HOLDA is high in response to a  
logic high of HOLD or when the NOHOLD bit of the external bus-control register  
is set.  
HOLDA  
PRGW  
1
1
O/Z  
S
Program memory width select. When PRGW is a logic low, program is fetched as  
a single 32-bit word. When PRGW is a logic high, two 16-bit program fetches are  
performed to fetch a single 32-bit instruction word. The status of PRGW at device  
reset affects the reset value of the STRB0 and STRB1 bus-control register.  
I
§
I = input, O = output, Z = high-impedance state  
S = SHZ active, H = HOLD active, R = RESET active  
Recommended decoupling capacitor is 0.1 µF.  
4
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
SMQ320C32  
DIGITAL SIGNAL PROCESSOR  
SGUS027B – APRIL 1998 – REVISED MARCH 1999  
Pin Functions (Continued)  
DESCRIPTION  
CONDITIONS  
WHEN  
PIN  
TYPE  
SIGNAL IS  
NAME  
NO.  
IN HIGH Z  
CONTROL SIGNALS (9 PINS)  
Reset. When RESET is a logic low, the device is in the reset condition. When  
RESET becomes a logic high, execution begins from the location specified by the  
reset vector.  
RESET  
1
4
I
I
INT3INT0  
External interrupts  
CONTROL SIGNALS (9 PINS) (CONTINUED)  
Interrupt acknowledge. IACK is set to a logic high by the IACK instruction. This  
signal can be used to indicate the beginning or end of an interrupt-service routine.  
IACK  
1
1
2
O/Z  
I
S
MCBL/MP  
XF1XF0  
Microcomputer bootloader/microprocessor mode  
Externalflags. XF1 and XF0 are usedasgeneral-purposeI/Os or used to support  
interlocked-processor instructions.  
I/O/Z  
S
R
SERIAL PORT SIGNALS (6 PINS)  
Serial port 0 transmit clock. CLKX0 is the serial shift clock for the serial port 0  
transmitter.  
CLKX0  
DX0  
1
1
1
I/O/Z  
S
S
S
R
R
R
I/O/Z Data transmit output. Serial port 0 transmits serial data on DX0.  
Frame-synchronization pulse for transmit. The FSX0 pulse initiates the  
transmit-data process over DX0.  
FSX0  
I/O/Z  
Serial port 0 receive clock. CLKR0 is the serial shift clock for the serial port 0  
receiver.  
CLKR0  
DR0  
1
1
1
I/O/Z  
S
S
S
R
R
R
I/O/Z Data receive. Serial port 0 receives serial data on DR0.  
Frame-synchronization pulse for receive. The FSR0 pulse initiates the  
receive-data process over DR0.  
FSR0  
I/O/Z  
TIMER SIGNALS (2 PINS)  
Timer clock 0. As an input, TCLK0 is used by timer 0 to count external pulses. As  
an output, TCLK0 outputs pulses generated by timer 0.  
TCLK0  
TCLK1  
1
1
I/O/Z  
S
S
R
R
Timer clock 1. As an input, TCLK1 is used by timer 1 to count external pulses. As  
an output, TCLK1 outputs pulses generated by timer 1.  
I/O/Z  
CLOCK SIGNALS (3 PINS)  
CLKIN  
H1  
1
1
1
I
Input to the internal oscillator from an external clock source  
External H1 clock. H1 has a period equal to twice CLKIN.  
External H3 clock. H3 has a period equal to twice CLKIN.  
RESERVED (5 PINS)  
O/Z  
O/Z  
S
S
H3  
EMU0EMU2  
EMU3  
3
1
I
Reserved for emulation. Use 18 k22 kpullup resistors to 5 V.  
Reserved for emulation  
O/Z  
S
Shutdown high impedance. When active, SHZ shuts down the ’C32 and places  
all3-stateI/Opinsinthehigh-impedancestate.SHZisusedforboard-leveltesting  
to ensure that no dual drive conditions occur. CAUTION: A low on SHZ corrupts  
’C32 memory and register contents. Reset the device with SHZ high to restore it  
to a known operating condition.  
SHZ  
1
I
§
I = input, O = output, Z = high-impedance state  
S = SHZ active, H = HOLD active, R = RESET active  
Recommended decoupling capacitor is 0.1 µF.  
5
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
SMQ320C32  
DIGITAL SIGNAL PROCESSOR  
SGUS027B – APRIL 1998 – REVISED MARCH 1999  
Pin Functions (Continued)  
DESCRIPTION  
CONDITIONS  
WHEN  
PIN  
TYPE  
SIGNAL IS  
NAME  
NO.  
IN HIGH Z  
POWER/GROUND  
CV  
DV  
7
7
I
I
I
I
I
I
I
Ground  
Ground  
Ground  
SS  
SS  
IV  
SS  
4
§
§
DV  
12  
8
5 V supply  
dc  
DD  
DDL  
SSL  
V
V
V
5 V supply  
dc  
6
Ground  
1
Substrate, tie to ground  
SUBS  
§
I = input, O = output, Z = high-impedance state  
S = SHZ active, H = HOLD active, R = RESET active  
Recommended decoupling capacitor is 0.1 µF.  
6
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
SMQ320C32  
DIGITAL SIGNAL PROCESSOR  
SGUS027B – APRIL 1998 – REVISED MARCH 1999  
functional block diagram  
Program  
Cache  
(64 × 32)  
RAM  
Block 0  
(256 × 32)  
RAM  
Block 1  
(256 × 32)  
Boot  
ROM  
24  
32  
24  
32  
24  
32  
32 24  
A23 – A0  
D31 – D0  
R / W  
32  
PDATA Bus  
PADDR Bus  
IR  
PC  
RDY  
External  
Memory  
Interface  
24  
HOLD  
HOLDA  
PRGW  
DDATA Bus  
RESET  
INT(3-0)  
IACK  
DADDR1 Bus  
DADDR2 Bus  
XF(1,0)  
H1  
DMADATA Bus  
H3  
DMAADDR Bus  
MCBL / MP  
CLKIN  
V
DD  
Multiplexer  
STRB0_B3/A  
STRB0_B2/A  
STRB0_B1  
STRB0_B0  
–1  
V
SS  
–2  
DMA Controller  
DMA Channel 0  
STRB0  
STRB0 Control Reg.  
STRB1  
SHZ  
EMU0–3  
STRB1_B3/A  
STRB1_B2/A  
STRB1_B1  
STRB1_B0  
–1  
Global-Contol Register  
Multiplexer  
–2  
Source-Address Register  
Destination-Address Reg.  
Transfer-Counter Reg.  
STRB1 Control Reg.  
IOSTRB  
CPU1  
CPU2  
REG1  
REG2  
IOSTRB  
IOSTRB Control Reg.  
DMA Channel 1  
Global-Control Register  
Serial Port  
Source-Address Register  
Destination-Address Reg.  
Transfer-Counter Reg.  
FSX0  
32  
32  
40  
40  
DX0  
Serial Port-  
32-Bit  
Barrel  
Shifter  
Control Reg.  
CLKX0  
FSR0  
DR0  
Multiplier  
Receive/Transmit  
(R/X)Timer Register  
ALU  
40  
40  
Data-Transmit  
Register  
CLKR0  
40  
40  
Data-Receive  
Register  
40  
Extended-  
Precision  
Registers  
(R0–R7)  
40  
32  
Timer 0  
DISP0, IR0, IR1  
Global-Control  
Register  
TCLK0  
Timer-Period  
Register  
ARAU0  
ARAU1  
BK  
Timer-Counter  
Register  
24  
24  
24  
24  
Auxiliary  
Registers  
(AR0 – AR7)  
Timer 1  
32  
32  
Global-Control  
Register  
32  
32  
Timer-Period  
Register  
TCLK1  
32  
32  
Timer-Counter  
Register  
Other  
Registers  
(12)  
operation  
Operation of the SMQ320C32 is identical to the ’320C30 and ’320C31 digital signal processors, with the  
exception of an enhanced external memory interface and the addition of two CPU power-management modes.  
external memory interface  
The SMQ320C32 has a configurable external memory interface with a 24-bit address bus, a 32-bit data bus,  
and three independent multi-function strobes. The flexibility of this unique interface enables product designers  
to minimize external memory-chip count.  
7
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
SMQ320C32  
DIGITAL SIGNAL PROCESSOR  
SGUS027B – APRIL 1998 – REVISED MARCH 1999  
external memory interface (continued)  
Up to three mutually exclusive memory areas—one program area and two data areas—can be implemented.  
Each memory area configuration is independent of the physical memory width and independent of the other  
memory areas configurations. See Figure 1.  
8-/16-/32-Bit Data in  
’C32  
8-/16-/32-Bit-Wide Memory  
STRB0  
STRB1  
IOSTRB  
32-Bit Program in 16-/32-Bit-  
Wide Memory  
32-Bit  
CPU  
PRGW Pin  
8-/16-/32-Bit Data in  
8-/16-/32-Bit-Wide Memory  
32-Bit Program in 16-/32-Bit-  
Wide Memory  
Memory  
Interface  
Strobe-  
Control  
32-Bit Data in 32-Bit-Wide  
Memory  
Registers  
32-Bit Program in 32-Bit-  
Wide Memory  
Figure 1. ’C32 External Memory Interface  
The SMQ320C32 external memory configuration is controlled by a combination of hardware configuration and  
memory-mapped control registers and can be reconfigured dynamically. The signals that control external  
memory configuration are the PRGW, STRB0, STRB1, and IOSTRB. The signals work as follows:  
The SMQ320C32 is a 32-bit microprocessor, that is, the CPU operates on 32-bit program words. The  
external memory interface provides the capability of fetching instructions as either 32-bit words or two 16-bit  
half words from consecutive addresses. Program memory width is 16 bits if the PRGW signal is high,  
32 bits if the PRGW signal is low.  
STRB0 and STRB1 are sets of control signals, four signals each, that are mapped to specific ranges of  
external memory addresses. When an address within one of these ranges is accessed by a read or write  
instruction (CPU or DMA), the corresponding set of control signals is activated. Figure 8 illustrates the  
SMQ320C32 memory map, showing the address ranges for which the strobe signals become active.  
The behavior of the STRB0 and STRB1 control signals is determined by the contents of the STRB0 and STRB1  
control registers.  
The STRB0 and STRB1 control registers each have a field that specifies the physical memory width (8, 16, or  
32 bits) of the external memory address ranges they control. Another field specifies the data width (8, 16, or  
32 bits) of the data contained in those addresses. The values in these fields are not required to match. For  
example, a 32-bit-wide physical memory space can be configured to segment each 32-bit word into four  
consecutive 8-bit locations, each having its own address.  
Each control signal set has two pins (STRBx_B2/A and STRBx_B3/A ) that can act as either byte-enable  
–2  
–1  
(chip-select) pins or address pins, and two dedicated byte-enable (chip-select) pins (STRBx_B0 and  
STRBx_B1). The pins’ functions are determined by the physical memory width specified in the corresponding  
control register:  
8
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
SMQ320C32  
DIGITAL SIGNAL PROCESSOR  
SGUS027B – APRIL 1998 – REVISED MARCH 1999  
external memory interface (continued)  
For 8-bit-wide physical memory, the STRBx_B2/A and STRBx_B3/A pins function as address pins  
–2  
–1  
(least significant address bits) and the STRBx_B0 pin functions as a byte-enable (chip-select) pin.  
STRBx_B1 is unused. See Figure 2.  
8-Bit Data Bus  
8
8
Data  
A14  
A13  
Data  
A14  
.
A12  
.
.
.
A3  
A2  
A1  
A0  
A1  
A0  
STRB0_B3/A  
–1  
–2  
CS  
STRB0_B2/A  
NC  
STRB0_B1  
STRB0_B0  
Figure 2. ’C32 With 8-Bit-Wide External Memory  
For 16-bit-wide physical memory, the STRBx_B3/A pin functions as an address pin (least significant  
–1  
address bits). The STRBx_B0 and STRBx_B1 pins function as byte-enable (chip-select) pins.  
STRBx_B2/A is unused. See Figure 3.  
–2  
16-Bit Data Bus  
16  
8
8
Data  
A14  
A13  
.
Data  
Data  
A14  
.
A14  
.
.
.
.
A2  
A1  
A0  
A3  
A2  
A1  
A0  
A3  
A2  
A1  
A0  
CS  
CS  
STRB0_B3/A  
STRB0_B2/ A  
–1  
–2  
NC  
STRB0_B1  
STRB0_B0  
Figure 3. ’C32 With 16-Bit-Wide External Memory  
9
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
SMQ320C32  
DIGITAL SIGNAL PROCESSOR  
SGUS027B – APRIL 1998 – REVISED MARCH 1999  
external memory interface (continued)  
For 32-bit-wide physical memory, all STRB0 and STRB1 pins function as byte-enable (chip-select) pins.  
See Figure 4.  
32-Bit Data Bus  
32  
8
8
8
8
Data  
Data  
Data  
Data  
Data  
A14  
A14  
A14  
A14  
A14  
A13  
.
.
A13  
A13  
A13  
A13  
.
.
.
.
.
.
.
.
A2  
A1  
A0  
A2  
A1  
A0  
A2  
A1  
A0  
A2  
A1  
A0  
A2  
A1  
A0  
CS  
CS  
CS  
CS  
STRB0_B3/A  
STRB0_B2/A  
–1  
–2  
STRB0_B1  
STRB0_B0  
Figure 4. ’C32 With 32-Bit-Wide External Memory  
For more detailed information and examples, see TMS320C32 Addendum to the TMS320C3x User’s Guide  
(literature number SPRU132B) and Interfacing Memory to the SMQ320C32 DSP Application Report (literature  
number SPRA040).  
The IOSTRB control signal, like STRB0 and STRB1, is also mapped to a specific range of addresses but  
itisasinglesignalthatcanaccessonly32-bitdatafrom32-bit-widememory. Itsrangeofaddressesappears  
in Figure 8, the SMQ320C32’s memory map. The IOSTRB bus timing is different from the STRB0 and  
STRB1 bus timings to accommodate slower I/O peripherals.  
examples  
Figure 5 and Figure 6 show examples of external memory configurations that can be implemented using the  
SMQ320C32’s external memory interface. The first example has a 32-bit-wide external memory with 8- and  
16-bit data areas and a 32-bit program area.  
10  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
SMQ320C32  
DIGITAL SIGNAL PROCESSOR  
SGUS027B – APRIL 1998 – REVISED MARCH 1999  
examples (continued)  
32-Bit-Wide Memory  
8-Bit Data  
8-Bit Data  
8-Bit Data  
8-Bit Data  
320C32  
32-Bit Program  
16-Bit Data  
16-Bit Data  
8
32  
8
8
8
32-Bit-Wide Data Bus  
Figure 5. ’C32 With 32-Bit-Wide External Memory Configured With 8- and 16-Bit Data Areas and 32-Bit  
Program Memory  
Figure 6 shows a configuration that can be implemented with a 16-bit external memory. Note that 32-bit data  
and program words can be stored and retrieved as half words.  
16-Bit-Wide Memory  
8-Bit Data  
8-Bit Data  
320C32  
32-Bit Program  
16-Bit Data  
16  
8
8
16-Bit-Wide Data Bus  
Figure 6. ’C32 With 16-Bit-Wide External Memory Configured With 8- and 16-Bit Data Areas and a 32-Bit  
Program Area  
11  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
SMQ320C32  
DIGITAL SIGNAL PROCESSOR  
SGUS027B – APRIL 1998 – REVISED MARCH 1999  
examples (continued)  
Figure 7showsonepossibleconfigurationthatcanbeimplementedwith8-bitexternalmemory. Programwords,  
which are 32-bit, cannot be executed from 8-bit-wide memory.  
8-Bit-Wide Memory  
8-Bit Data  
320C32  
16-Bit Data  
8
8
8-Bit-Wide Data Bus  
Figure 7. ’C32 With 8-Bit-Wide External Memory Configured With 8- and 16-Bit Data Areas  
12  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
SMQ320C32  
DIGITAL SIGNAL PROCESSOR  
SGUS027B – APRIL 1998 – REVISED MARCH 1999  
memory map  
Figure 8 depicts the memory map for the SMQ320C32. See the TMS320C32 Addendum to the TMS320C3x  
User’s Guide (literature number SPRU132B) for a detailed description of this memory mapping.  
0h  
0h  
Reserved for  
Boot-Loader Operations  
Reset-Vector Location  
FFFh  
Boot 1  
1000h  
1001h  
External Memory  
STRB0 Active  
(8.192M Words)  
External Memory  
STRB0 Active  
(8.188M Words)  
7FFFFFh  
800000h  
7FFFFFh  
800000h  
Reserved  
(32K Words)  
Reserved  
(32K Words)  
807FFFh  
808000h  
807FFFh  
808000h  
Peripheral-Bus  
Memory-Mapped Registers  
(6K-Word Internal)  
Peripheral-Bus  
Memory-Mapped Registers  
(6K-Word Internal)  
8097FFh  
809800h  
8097FFh  
809800h  
Reserved  
(26K Words)  
Reserved  
(26K Words)  
80FFFFh  
810000h  
80FFFFh  
810000h  
Boot 2  
810001h  
External Memory  
IOSTRB Active (128K)  
(128K Words)  
External Memory  
IOSTRB Active (128K)  
(128K Words)  
82FFFFh  
830000h  
82FFFFh  
830000h  
Reserved  
Reserved  
(314.5K Words)  
(319.5K Words)  
87FDFFh  
87FE00h  
87FDFFh  
87FE00h  
Internal Memory  
RAM Block 0  
RAM Block 0 (256-Word Internal)  
(256-Word Internal)  
87FEFFh  
87FF00h  
87FEFFh  
87FF00h  
Internal Memory  
RAM Block 1  
(256-Word Internal)  
RAM Block 1 (256-Word Internal)  
87FFFFh  
880000h  
87FFFFh  
880000h  
External Memory  
STRB0 Active  
(512K Words)  
External Memory  
STRB0 Active  
(512K Words)  
8FFFFFh  
900000h  
8FFFFFh  
900000h  
Boot 3  
External Memory  
STRB1 Active  
(7.168M Words)  
900001h  
External Memory  
STRB1 Active  
(7.168M Words)  
FFFFFFh  
FFFFFFh  
Microprocessor Mode  
Microcomputer/Boot-LoaderMode  
Figure 8. SMQ320C32 Memory Map  
13  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
SMQ320C32  
DIGITAL SIGNAL PROCESSOR  
SGUS027B – APRIL 1998 – REVISED MARCH 1999  
power management  
The SMQ320C32 CPU has two power-management modes, IDLE2 and LOPOWER (low power). In IDLE2  
mode, no instructions are executed and the CPU, peripherals, and memory retain their previous state while the  
external bus output pins are idle. During IDLE2 mode, the H1 clock signal is held high while the H3 clock signal  
is held low until one of the four external interrupts is asserted. In the LOPOWER mode, the CPU continues to  
execute instructions and the DMA continues to perform transfers, but at a reduced clock rate of the CLKIN  
frequency divided by 16 (that is, SMQ320C32 with a 32-MHz CLKIN frequency performs the same as a 2-MHz  
SMQ320C32 with an instruction cycle time of 1000 ns or 1 MHz.  
bootloader  
The SMQ320C32 flexible bootloader loads programs from the serial port, EPROM, or other standard  
non-volatile memory device. The boot-loader functionality of the SMQ320C32 is equivalent to that of the  
’320C31, and has added modes to handle the data-type sizes and memory widths supported by the external  
memory interface. The memory-bootload supports data transfers with and without handshaking. The  
handshake mode allows synchronous transfer of programs by using two pins as data-acknowledge and  
data-ready signals.  
peripherals  
The SMQ320C32 peripherals are comprised of one serial port, two timers, and two DMA channels. The serial  
port and timers are functionally identical to those in the ’320C31 peripherals. The SMQ320C32 two-channel  
DMA coprocessor has user-configurable priorities: CPU, DMA, or rotating between CPU and DMA.  
14  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
SMQ320C32  
DIGITAL SIGNAL PROCESSOR  
SGUS027B – APRIL 1998 – REVISED MARCH 1999  
peripherals (continued)  
Figure 9 shows the SMQ320C32’s peripheral-bus control-register mapping.  
DMA 0 Global Control  
DMA 0 Source Address  
DMA 0 Destination Address  
DMA 0 Transfer Counter  
DMA 1 Global Control  
DMA 1 Source Address  
DMA 1 Destination Address  
DMA 1 Transfer Counter  
Timer 0 Global Control  
Timer 0 Counter  
808000h  
808004h  
808006h  
808008h  
808009h  
808010h  
808014h  
808016h  
808018h  
808020h  
808024h  
808028h  
808030h  
808034h  
808038h  
808040h  
Timer 0 Period  
Timer 1 Global Control  
Timer 1 Counter  
Timer 1 Period Register  
Serial Port Global Control  
FSX/DX/CLKX Port Control  
FSR/DR/CLKR Port Control  
R/X Timer Control  
808042h  
808043h  
808044h  
808045h  
808046h  
R/X Timer Counter  
R/X Timer Period  
Data Transmit  
808048h  
Data Receive  
Reserved  
80804Ch  
808050h  
80805Fh  
808060h  
IOSTRB-BusControl  
STRB0-BusControl  
STRB1-BusControl  
Reserved  
808064h  
808068h  
808069h  
8097FFh  
Figure 9. Peripheral-Bus Memory-Mapped Registers  
15  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
SMQ320C32  
DIGITAL SIGNAL PROCESSOR  
SGUS027B – APRIL 1998 – REVISED MARCH 1999  
interrupts  
To reduce external logic and simplify the interface, the external interrupts can be either edge- or level-triggered.  
Unlike the fixed interrupt-trap vector-table location of the ’320C30 and ’320C31 devices, the SMQ320C32 has  
a user-relocatable interrupt-trap vector table. The interrupt-trap vector table must start on a 256-word boundary.  
The interrupt and trap vector locations memory mapping is illustrated in Figure 10. The reset vector is fixed to  
address 0h as shown in Figure 8.  
EA (ITTP) + 00h  
EA (ITTP) + 01h  
EA (ITTP) + 02h  
EA (ITTP) + 03h  
EA (ITTP) + 04h  
EA (ITTP) + 05h  
EA (ITTP) + 06h  
EA (ITTP) + 07h  
EA (ITTP) + 08h  
EA (ITTP) + 09h  
EA (ITTP) + 0Ah  
EA (ITTP) + 0Bh  
EA (ITTP) + 0Ch  
EA (ITTP) + 0Dh  
EA (ITTP) + 1Fh  
EA (ITTP) + 20h  
Reserved  
INT0  
INT1  
INT2  
INT3  
XINT0  
RINT0  
Reserved  
Reserved  
TINT0  
TINT1  
DINT0  
DINT1  
Reserved  
TRAP0  
.
.
.
.
EA (ITTP) + 3Bh  
EA (ITTP) + 3Ch  
EA (ITTP) + 3Dh  
EA (ITTP) + 3Eh  
EA (ITTP) + 3Fh  
TRAP27  
TRAP28  
TRAP29  
TRAP30  
TRAP31  
Figure 10. Reset, Interrupt, and Trap Vector/Branches Memory-Map Locations  
16  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
SMQ320C32  
DIGITAL SIGNAL PROCESSOR  
SGUS027B – APRIL 1998 – REVISED MARCH 1999  
absolute maximum ratings over specified temperature ranges (unless otherwise noted)  
Supply voltage range, V  
(see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.3 V to 7 V  
CC  
Input voltage range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 0.3 V to 7 V  
Output voltage range, V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 0.3 V to 7 V  
O
Continuous power dissipation (see Note 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.95 W  
Operating case temperature, T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 55°C to 125°C  
C
Storage temperature, T  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 55°C to 150°C  
stg  
Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and  
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not  
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
NOTES: 1. All voltage values are with respect to V  
.
SS  
2. This value calculated for the ’C32-40. Actual operating power is less. This value was obtained under specially produced worst-case  
test conditions which are not sustained during normal device operation. These conditions consist of continuous parallel writes of  
a checkerboard pattern to the external bus at the maximum rate possible. See normal (I ) current specification in the electrical  
DD  
characteristics table and see the Calculation of TMS320C30 Power Dissipation Application Report (literature number SPRA020).  
recommended operating conditions (see Note 3)  
MIN  
NOM  
MAX  
UNIT  
V
V
V
Supply voltage (DV , V  
)
4.75  
5
0
5.25  
DD  
DD DDL  
Supply voltage (CV , V  
, IV , DV , V  
)
V
SS  
SS SSL SS SS SUBS  
CLKIN  
2.6  
2
V
V
+ 0.3*  
V
DD  
V
IH  
High-level input voltage  
All other inputs  
+ 0.3*  
V
DD  
V
Low-level input voltage  
High-level output current  
Low-level output current  
– 0.3*  
0.8  
V
IL  
I
I
– 300  
2
µA  
mA  
°C  
OH  
OL  
T
C
Operating case temperature (see Note 4)  
– 55  
125  
All nominal values are at V = 5 V, T (ambient-air temperature)= 25°C.  
DD  
A
* This parameter is not production tested.  
NOTE 3: All input and output voltage levels are TTL compatible.  
NOTE 4:  
T
C
MAX at maximum rated operating conditions at any point on case. T MIN at initial (time zero) power-up.  
C
17  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
SMQ320C32  
DIGITAL SIGNAL PROCESSOR  
SGUS027B – APRIL 1998 – REVISED MARCH 1999  
electrical characteristics over recommended ranges of supply voltage (unless otherwise  
noted)  
PARAMETER  
High-level output voltage  
TEST CONDITIONS  
MIN NOM  
MAX  
UNIT  
V
V
V
V
V
V
= MIN,  
= MIN,  
= MAX  
I
I
= MAX  
= MAX  
2.4  
3
OH  
DD  
DD  
DD  
OH  
Low-level output voltage  
High-impedance state output current  
Input current  
0.3  
0.8  
20  
V
OL  
OL  
I
I
– 20  
– 10  
µA  
µA  
OZ  
V = V  
I
to V  
DD  
10  
I
SS  
f = 50 MHz  
x
200  
225  
50  
425  
475  
T
= 25 °C,  
V
= MAX,  
A
DD  
mA  
f = MAX  
x
I
Supply current (see Note 5)  
f = 60 MHz  
x
DD  
Standby  
CLKIN  
IDLE2,  
CLKIN shut off  
µA  
25  
15*  
20*  
C
C
Input capacitance  
Output capacitance  
pF  
pF  
All other  
inputs  
I
o
All nominal values are at V  
= 5 V, T = 25°C.  
A
DD  
f is the input clock frequency.  
x
* This parameter is not production tested.  
NOTE 5: Actual operating current is less than this maximum value (see Note 2).  
PARAMETER MEASUREMENT INFORMATION  
I
OL  
Output  
Under  
Test  
Tester Pin  
Electronics  
V
Load  
C
T
I
OH  
Where: I  
I
= 2 mA (all outputs)  
= 300 µA (all outputs)  
OL  
OH  
V
= Selected to emulate 50-termination (typical value = 1.54 V)  
Load  
C
= 80-pF typical load-circuit capacitance  
T
Figure 11. Test Load Circuit  
18  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
SMQ320C32  
DIGITAL SIGNAL PROCESSOR  
SGUS027B – APRIL 1998 – REVISED MARCH 1999  
PARAMETER MEASUREMENT INFORMATION (CONTINUED)  
signal-transition levels  
TTL-level outputs are driven to a minimum logic-high level of 2.4 V and to a maximum logic-low level of 0.6 V.  
Output transition times are specified in the following paragraph.  
For a high-to-low transition on a TTL-compatible output signal, the level at which the output is said to be no  
longer high is 2 V and the level at which the output is said to be low is 1 V. For a low-to-high transition, the level  
at which the output is said to be no longer low is 1 V and the level at which the output is said to be high is 2 V  
(see Figure 12).  
2.4 V  
2 V  
1 V  
0.6 V  
Figure 12. TTL-Level Outputs  
Transition times for TTL-compatible inputs are specified as follows. For a high-to-low transition on an input  
signal, the level at which the input is said to be no longer high is 2 V and the level at which the input is said to  
be low is 0.8 V. For a low-to-high transition on an input signal, the level at which the input is said to be no longer  
low is 0.8 V and the level at which the input is said to be high is 2 V (see Figure 13).  
2 V  
0.8 V  
Figure 13. TTL-Level Inputs  
19  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
SMQ320C32  
DIGITAL SIGNAL PROCESSOR  
SGUS027B – APRIL 1998 – REVISED MARCH 1999  
PARAMETER MEASUREMENT INFORMATION (CONTINUED)  
timing parameter symbology  
Timing parameter symbols used in this document are in accordance with JEDEC Standard 100-A. Unless  
otherwise noted, in order to shorten the symbols, pin names and other related terminology have been  
abbreviated as follows:  
A23A0 when the physical-memory-width-bit field of the STRBx control register is set to 32 bits  
A23A0 and STRBx_B3/A when the physical-memory-width-bit field of the STRBx control register is  
–1  
A
set to 16 bits  
A23A0, STRBx_B3/A  
control register is set to 8 bits  
and STRBx_B2/A when the physical-memory-width-bit field of the STRBx  
–2  
–1,  
CI  
CLKIN  
RDY RDY  
D
H
D(310)  
H1, H3  
IOS IOSTRB  
P
t
t
c(H)  
Q
c(CI)  
RW R/W  
STRBx_B(3–0) when the physical-memory-width-bit field of the STRBx control register is set to 32 bits  
S
STRBx_B(1–0) when the physical-memory-width-bit field of the STRBx control register is set to 16 bits  
STRBx_B0 when the physical-memory-width-bit field of the STRBx control register is set to 8 bits  
XF  
XF0 or XF1  
20  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
SMQ320C32  
DIGITAL SIGNAL PROCESSOR  
SGUS027B – APRIL 1998 – REVISED MARCH 1999  
timings for CLKIN [Q = t  
] (see Figure 14)  
c(CI)  
’320C32-50  
’320C32-60  
TEST  
CONDITIONS  
NO.  
UNIT  
MIN  
MAX  
MIN  
MAX  
1
2
3
4
5
t
t
t
t
t
Fall time, CLKIN  
5*  
4*  
ns  
ns  
ns  
ns  
ns  
f(CI)  
Pulse duration, CLKIN low  
Pulse duration, CLKIN high  
Rise time, CLKIN  
Q = min  
Q = min  
7
6
w(CIL)  
8
6†  
w(CIH)  
5*  
4*  
r(CI)  
Cycle time, CLKIN  
20  
303 16.67  
303  
c(CI)  
Minimum CLKIN high-pulse duration at 3.3 MHz is 10 ns.  
* This parameter is not production tested.  
5
4
1
CLKIN  
3
2
Figure 14. CLKIN Timing  
switching characteristics for H1 and H3 over recommended operating conditions (unless  
otherwise noted) (see Figure 15)  
’320C32-50  
’320C32-60  
TEST  
CONDITIONS  
NO.  
PARAMETER  
UNIT  
MIN  
MAX  
MIN  
MAX  
6
t
t
t
t
t
t
Fall time, H1/H3  
3
3
ns  
ns  
ns  
ns  
ns  
ns  
f(H)  
7
Pulse duration, H1/H3 low  
Pulse duration, H1/H3 high  
Rise time, H1/H3  
Q–5  
Q–6  
Q–4  
Q–5  
w(HL)  
w(HH)  
r(H)  
8
9
3
4
3
4
9.1  
10  
Delay time, H1/H3 low to H1/H3 high  
Cycle time, H1/H3  
0*  
0*  
d(HL-HH)  
c(H)  
40  
606 33.33  
606  
* This parameter is not production tested.  
21  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
SMQ320C32  
DIGITAL SIGNAL PROCESSOR  
SGUS027B – APRIL 1998 – REVISED MARCH 1999  
switching characteristics for H1 and H3 (see Figure 15) (continued)  
10  
6
9
H1  
8
7
9.1  
9.1  
H3  
8
9
6
7
10  
Figure 15. H1/H3 Timing  
22  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
SMQ320C32  
DIGITAL SIGNAL PROCESSOR  
SGUS027B – APRIL 1998 – REVISED MARCH 1999  
memory-read-cycle and memory-write-cycle timing (STRBx) (see Figure 16 and Figure 17)  
’320C32-50  
’320C32-60  
NO.  
UNIT  
MIN  
0*  
0*  
0*  
0*  
10  
0
MAX  
MIN  
0*  
0*  
0*  
0*  
10  
0
MAX  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
t
t
t
t
t
t
t
t
t
t
t
t
Delay time, H1 low to STRBx low  
Delay time, H1 low to STRBx high  
Delay time, H1 high to R/W low (read)  
Delay time, H1 low to A valid  
9
9
9
9
7
7
8
7
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
d(H1L-SL)  
d(H1L-SH)  
d(H1H-RWL)  
d(H1L-A)  
su(D)R  
Setup time, D valid before H1 low (read)  
Hold time, D after H1 low (read)  
h(D)R  
Setup time, RDY before H1 low  
19  
0
17  
0
su(RDY)  
h(RDY)  
Hold time, RDY after H1 low  
Delay time, H1 high to R/W high (write)  
Valid time, D after H1 low (write)  
9
8
d(H1H-RWH)  
v(D)W  
14  
12  
Hold time, D after H1 high (write)  
Delay time, H1 high to A valid on back-to-back write cycles  
0*  
0*  
h(D)W  
9
8
d(H1H-A)  
* This parameter is not production tested.  
H3  
H1  
11  
14  
12  
STRBx  
R/W  
15  
13  
A
D
16  
18  
17  
RDY  
STRBx remains low during back-to-back operations.  
Figure 16. Memory-Read-Cycle Timing  
23  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
SMQ320C32  
DIGITAL SIGNAL PROCESSOR  
SGUS027B – APRIL 1998 – REVISED MARCH 1999  
memory-read-cycle and memory-write-cycle timing (STRBx) (see Figure 16 and Figure 17)  
(continued)  
H3  
H1  
11  
12  
STRBx  
13  
19  
R/W  
A
22  
14  
20  
21  
D
18  
RDY  
17  
Figure 17. Memory-Write-Cycle Timing  
24  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
SMQ320C32  
DIGITAL SIGNAL PROCESSOR  
SGUS027B – APRIL 1998 – REVISED MARCH 1999  
memory-read-cycle timing using IOSTRB (see Figure 18)  
’320C32-50  
’320C32-60  
NO.  
UNIT  
MIN  
0*  
0*  
0*  
0*  
10  
0
MAX  
MIN  
0*  
0*  
0*  
0*  
9
MAX  
11.1  
12.1  
13.1  
14.1  
15.1  
16.1  
17.1  
18.1  
t
t
t
t
t
t
t
t
Delay time, H3 low to IOSTRB low  
Delay time, H3 low to IOSTRB high  
Delay time, H1 low to R/W high  
Delay time, H1 low to A valid  
Setup time, D before H1 high  
Hold time, D after H1 high  
9
9
9
9
8
8
8
8
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
d(H3L-IOSL)  
d(H3L-IOSH)  
d(H1L-RWL)  
d(H1L-A)  
su(D)R  
0
h(D)R  
Setup time, RDY before H1 high  
Hold time, RDY after H1 high  
8
7
su(RDY)  
0
0
h(RDY)  
* This parameter is not production tested.  
H3  
H1  
11.1  
12.1  
IOSTRB  
R/W  
13.1  
23  
14.1  
A
D
15.1  
16.1  
17.1  
18.1  
RDY  
See Figure 19 and accompanying table  
Figure 18. Memory-Read-Cycle Timing Using IOSTRB  
25  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
SMQ320C32  
DIGITAL SIGNAL PROCESSOR  
SGUS027B – APRIL 1998 – REVISED MARCH 1999  
memory-write-cycle timing using IOSTRB (see Figure 19)  
’320C32-50  
’320C32-60  
NO.  
UNIT  
MIN  
MAX  
MIN  
MAX  
23  
24  
25  
t
t
t
Delay time, H1 low to R/W low  
Valid time, D after H1 high  
Hold time, D after H1 low  
0*  
9
0*  
8
ns  
ns  
ns  
d(H1L-RWH)  
14  
12  
v(D)W  
0
0
h(D)W  
* This parameter is not production tested.  
H3  
H1  
11.1  
12.1  
IOSTRB  
13.1  
23  
R/W  
14.1  
A
D
24  
25  
17.1  
18.1  
RDY  
See Figure 18 and accompanying table  
Figure 19. Memory-Write-Cycle Timing Using IOSTRB  
26  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
SMQ320C32  
DIGITAL SIGNAL PROCESSOR  
SGUS027B – APRIL 1998 – REVISED MARCH 1999  
timing for XF0 and XF1 when executing LDFI or LDII (see Figure 20)  
’320C32-50  
’320C32-60  
NO.  
UNIT  
MIN  
MAX  
MIN  
MAX  
11  
38  
39  
40  
t
t
t
Delay time, H3 high to XF0 low  
Setup time, XF1 before H1 low  
Hold time, XF1 after H1 low  
12  
ns  
ns  
ns  
d(H3H-XF0L)  
9
0
8
0
su(XF1)  
h(XF1)  
Fetch  
LDFI or LDII  
Decode  
Read  
Execute  
H3  
H1  
STRBx  
R/W  
A
D
RDY  
38  
XF0  
XF1  
39  
40  
Figure 20. XF0 and XF1 When Executing LDFI or LDII  
27  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
SMQ320C32  
DIGITAL SIGNAL PROCESSOR  
SGUS027B – APRIL 1998 – REVISED MARCH 1999  
timing for XF0 when executing STFI or STII (see Figure 21)  
’320C32-50  
MIN MAX  
12  
’320C32-60  
MIN MAX  
11  
NO.  
UNIT  
41  
t
Delay time, H3 high to XF0 high  
ns  
d(H3H-XF0H)  
XF0 is always set high at the beginning of the execute phase of the interlock-store instruction. When no pipeline conflicts occur, the address of  
the store is driven at the beginning of the execute phase of the interlock-store instruction. However, if a pipeline conflict prevents the store from  
executing, the address of the store is not driven until the store can execute.  
Fetch  
STFI or STII  
Decode  
Read  
Execute  
H3  
H1  
STRBx  
R/W  
A
D
RDY  
XF0  
41  
Figure 21. XF0 When Executing a STFI or STII  
28  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
SMQ320C32  
DIGITAL SIGNAL PROCESSOR  
SGUS027B – APRIL 1998 – REVISED MARCH 1999  
timing for XF0 and XF1 when executing SIGI (see Figure 22)  
’320C32-50  
’320C32-60  
NO.  
UNIT  
MIN  
MAX  
MIN  
MAX  
41.1  
42  
t
t
t
t
Delay time, H3 high to XF0 low  
Delay time, H3 high to XF0 high  
Setup time, XF1 before H1 low  
Hold time, XF1 after H1 low  
12  
12  
11  
11  
ns  
ns  
ns  
ns  
d(H3H-XF0L)  
d(H3H-XF0H)  
su(XF1)  
43  
9
0
8
0
44  
h(XF1)  
Fetch  
SIGI  
Decode  
Read  
Execute  
H3  
H1  
41.1  
42  
43  
XF0  
44  
XF1  
Figure 22. XF0 and XF1 When Executing SIGI  
timing for loading XF register when configured as an output pin (see Figure 23)  
’320C32-50  
’320C32-60  
MIN MAX  
11  
NO.  
45  
UNIT  
MIN  
MAX  
t
Valid time, H3 high to XF valid  
12  
ns  
v(H3H-XF)  
Fetch Load  
Instruction  
Decode  
Read  
Execute  
H3  
H1  
1 or 0  
OUTXF Bit  
45  
XFx  
OUTXFx represents either bit 2 or 6 of the IOF register.  
Figure 23. Loading XF Register When Configured as an Output Pin  
29  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
SMQ320C32  
DIGITAL SIGNAL PROCESSOR  
SGUS027B – APRIL 1998 – REVISED MARCH 1999  
timing of XF changing from output to input mode (see Figure 24)  
’320C32-50  
MIN MAX MIN  
12*  
’320C32-60  
MAX  
11*  
NO.  
UNIT  
46  
47  
48  
t
t
t
Hold time, XF after H3 high  
Setup time, XF before H1 low  
Hold time, XF after H1 low  
ns  
ns  
ns  
h(H3H-XF01)  
9
8
0
su(XF)  
0
h(XF)  
* This parameter is not production tested.  
Buffers Go  
from Ouput  
to Input  
Synchronizer  
Execute  
Load of IOF  
H3  
Value on Pin  
Seen in IOF  
Delay  
H1  
47  
48  
I/OXFx Bit  
46  
XFx  
Output  
INXFx Bit  
Data  
Sampled  
Data  
Seen  
I/OXFx represents either bit 1 or bit 5 of the IOF register, and INXFx represents either bit 3 or bit 7 of the IOF register.  
Figure 24. Change of XF From Output to Input Mode  
30  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
SMQ320C32  
DIGITAL SIGNAL PROCESSOR  
SGUS027B – APRIL 1998 – REVISED MARCH 1999  
timing of XF changing from input to output mode (see Figure 25)  
’320C32-50  
MIN MAX  
17  
’320C32-60  
MIN MAX  
15  
NO.  
UNIT  
49  
t
Delay time, H3 high to XF switching from input to output  
ns  
d(H3H-XFIO)  
Execution of  
Load of IOF  
H3  
H1  
I/OXFx Bit  
49  
XFx  
I/OXFx represents either bit 1 or bit 5 of the IOF register.  
Figure 25. Change of XF From Input to Output Mode  
31  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
SMQ320C32  
DIGITAL SIGNAL PROCESSOR  
SGUS027B – APRIL 1998 – REVISED MARCH 1999  
timing for RESET [Q = t  
] (see Figure 26)  
c(CI)  
’320C32-50  
’320C32-60  
NO.  
UNIT  
MIN  
10  
2
MAX  
MIN  
17  
2
MAX  
50  
51  
52  
t
t
t
Setup time, RESET before CLKIN low  
Delay time, CLKIN high to H1 high  
Delay time, CLKIN high to H1 low  
Q*  
10  
10  
Q*  
10  
10  
ns  
ns  
ns  
su(RESET)  
d(CLKINH-H1H)  
d(CLKINH-H1L)  
2
2
Setup time, RESET high before H1 low and after ten H1 clock  
cycles  
53  
t
7
6
ns  
su(RESETH-H1L)  
54  
55  
t
t
t
t
t
t
t
Delay time, CLKIN high to H3 low  
2
2
10  
10  
12*  
9*  
2
2
10  
10  
11*  
9*  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
d(CLKINH-H3L)  
d(CLKINH-H3H)  
dis(H1H-D)  
Delay time, CLKIN high to H3 high  
56  
Disable time, H1 low to D in the high-impedance state  
Disable time, H3 low to A in the high-impedance state  
Delay time, H3 high to control signals high  
Delay time, H1 low to R/W high  
57  
dis(H3HL-A)  
58.1  
58.2  
59  
8*  
7*  
d(H3H-CONTROLH)  
d(H1H-RWH)  
8*  
7*  
Delay time, H1 high to IACK high  
8*  
7*  
d(H1H-IACKH)  
Disable time, RESET low to asynchronous reset signals in  
the high-impedance state  
60  
t
17*  
14*  
ns  
dis(RESETL-ASYNCH)  
* This parameter is not production tested.  
CLKIN  
50  
†‡  
RESET  
51  
54  
52  
53  
H1  
H3  
10 H1 Clock Cycles  
56  
55  
§
§
D
A
57  
58.1  
Control  
Signals  
58.2  
R/W  
59  
IACK  
60  
Asynchronous  
Reset Signals  
#
§
RESETisanasynchronousinputandcanbeassertedatanypointduringaclockcycle. Ifthespecifiedtimingsaremet, theexactsequenceshown  
occurs; otherwise, an additional delay of one clock cycle can occur.  
TheR/Woutputisplacedinthehigh-impedancestateduringresetandcanbeprovidedwitharesistivepullup, nominally1822k,ifundesirable  
spurious writes can occur when these outputs go low.  
In microprocessor mode (MCBL /MP = 0), reset vector is fetched twice with seven software wait states each. In microcomputer mode  
(MCBL / MP = 1), the reset vector is fetched two times, with no software wait states.  
Control signals include STRBx and IOSTRB.  
#
Asynchronous reset signals include XF0/1, CLKX0, DX0, FSX0, CLKR0, DR0, FSR0, and TCLKx.  
Figure 26. RESET Timing  
32  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
SMQ320C32  
DIGITAL SIGNAL PROCESSOR  
SGUS027B – APRIL 1998 – REVISED MARCH 1999  
timing for INT3 INT0 interrupt response [P = t  
] (see Figure 27)  
c(H)  
’320C32-50  
’320C32-60  
NO.  
UNIT  
MIN  
MAX  
MIN  
MAX  
61  
t
t
t
Setup time, INT3–INT0 before H1 low  
10  
8
ns  
ns  
ns  
su(INT)  
w(INT)  
w(INT)  
Pulseduration of interrupt to assure only one interrupt seen for level-triggered  
interrupts  
62.1  
62.2  
P
2P*  
P
2P*  
Pulse duration of interrupt for edge-triggered interrupts  
P*  
P*  
* This parameter is not production tested.  
Reset or  
Interrupt  
Vector Read  
Fetch First  
Instruction of  
Service Routine  
H3  
H1  
61  
INT3INT0 Pin  
62.1  
INT3INT0 Flag  
62.2  
A
Vector  
Address  
First  
Instruction  
Address  
D
Figure 27. INT3–INT0 Interrupt-Response Timing  
33  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
SMQ320C32  
DIGITAL SIGNAL PROCESSOR  
SGUS027B – APRIL 1998 – REVISED MARCH 1999  
timing for IACK (see Notes 6, 7, and Figure 28)  
’320C32-50  
MIN MAX  
’320C32-60  
MIN MAX  
NO.  
UNIT  
63  
64  
t
t
Delay time, H1 high to IACK low  
Delay time, H1 high to IACK high  
7
6
ns  
ns  
d(H1H-IACKL)  
7
6
d(H1H-IACKH)  
NOTES: 6. IACK is active for the entire duration of the bus cycle and is extended if the bus cycle utilizes wait states.  
7. IACK goes active on the first half-cycle (H1 rising) of the decode phase of the IACK instruction and goes inactive at the first half-cycle  
(H1 rising) of the read phase of the IACK instruction. Because of pipeline conflicts, IACK remains low for one cycle even if thedecode  
phase of the IACK instruction is extended.  
Decode IACK  
Instruction  
Fetch IACK  
Instruction  
IACK Data  
Read  
H3  
H1  
63  
64  
IACK  
A
D
Figure 28. IACK Timing  
34  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
SMQ320C32  
DIGITAL SIGNAL PROCESSOR  
SGUS027B – APRIL 1998 – REVISED MARCH 19998  
serial-port timing  
serial-port timing [P = t  
] (see Figure 29 and Figure 30)  
c(H)  
’320C32-50  
MIN  
’320C32-60  
UNIT  
NO.  
MAX  
MIN  
MAX  
Delay time, H1 high to internal  
CLKX/R high/low  
65  
66  
t
t
10  
8
ns  
ns  
d(H1-SCK)  
CLKX/R ext  
2.6P  
2P  
2.6P  
2P  
Cycle time,  
CLKX/R  
c(SCK)  
32  
(2 )P  
32  
CLKX/R int  
(2 )P  
CLKX/R ext  
CLKX/R int [t  
P + 10  
/2]–5  
P + 10  
/2]–5  
Pulse duration,  
CLKX/R high/low  
67  
t
ns  
w(SCK)  
[t  
/2]+5 [t  
c(SCK)  
[t  
/2]+5  
c(SCK)  
c(SCK)  
c(SCK)  
68  
69  
t
t
Rise time, CLKX/R  
Fall time, CLKX/R  
6
6
5
5
ns  
ns  
r(SCK)  
f(SCK)  
CLKX ext  
CLKX int  
CLKR ext  
CLKR int  
CLKR ext  
CLKR int  
24  
16  
20  
15  
Delay time, CLKX  
to DX valid  
70  
71  
72  
t
t
t
ns  
ns  
ns  
d(DX)  
su(DR)  
h(DR)  
9
8
Setup time, DR  
before CLKR low  
17  
7
15  
6
Hold time, DR  
from CLKR low  
0
0
Delay time, CLKX  
to internal FSX  
high/low  
CLKX ext  
CLKX int  
22  
15  
20  
14  
73  
74  
75  
t
t
t
ns  
ns  
ns  
d(FSX)  
su(FSR)  
h(FS)  
CLKR ext  
CLKR int  
7
7
6
6
Setup time, FSR  
before CLKR low  
Hold time, FSX/R  
input from  
CLKX/R low  
CLKX/R ext  
CLKX/R int  
CLKX ext  
7
0
6
0
Setup time,  
external FSX  
before CLKX high  
8–P  
21–P  
[t  
/2]–10*  
/2*  
8–P  
21–P  
[t  
/2]–10*  
c(SCK)  
c(SCK)  
76  
77  
t
t
ns  
ns  
su(FSX)  
*
/2  
CLKX int  
t
t
c(SCK)  
c(SCK)  
Delay time, CLKX  
to first DX bit, FSX  
precedes CLKX  
high  
CLKX ext  
CLKX int  
24*  
14*  
24*  
20*  
12*  
20*  
d(CH-DX)V  
Delay time, FSX to first DX bit,  
CLKX precedes FSX  
78  
79  
t
t
ns  
ns  
d(FSX-DX)V  
Delay time, CLKX high to DX in  
the high-impedance state  
following last data bit  
14*  
12*  
d(DXZ)  
* This parameter is not production tested.  
35  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
SMQ320C32  
DIGITAL SIGNAL PROCESSOR  
SGUS027B – APRIL 1998 – REVISED MARCH 19998  
serial-port timing  
66  
65  
H1  
65  
67  
67  
72  
CLKX/R  
69  
68  
79  
77  
70  
Bit n-1  
Bit n-2  
Bit 0  
DX  
DR  
71  
Bit n-1  
Bit n-2  
FSR  
74  
73  
73  
75  
FSX(INT)  
FSX(EXT)  
75  
76  
NOTES: A. Timing diagrams show operations with CLKXP = CLKRP = FSXP = FSRP = 0.  
B. Timing diagrams depend upon the length of the serial-port word, where n = 8, 16, 24, or 32 bits, respectively.  
Figure 29. Fixed Data-Rate-Mode Timing  
CLKX/R  
73  
FSX(INT)  
78  
76  
FSX(EXT)  
DX  
70  
79  
77  
Bit n-1  
75  
Bit n-2  
Bit n-3  
Bit 0  
FSR  
DR  
74  
Bit n-1  
Bit n-2  
Bit n-3  
71  
72  
NOTES: A. Timing diagrams show operation with CLKXP = CLKRP = FSXP = FSRP = 0.  
B. Timing diagrams depend upon the length of the serial-port word, where n = 8, 16, 24, or 32 bits, respectively.  
C. The timings that are not specified expressly for the variable data-rate mode are the same as those that are specified for the fixed  
data-rate mode.  
Figure 30. Variable Data-Rate-Mode Timing  
36  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
SMQ320C32  
DIGITAL SIGNAL PROCESSOR  
SGUS027B – APRIL 1998 – REVISED MARCH 19998  
timing for HOLD/HOLDA [P = t  
] (see Note 8 and Figure 31)  
c(H)  
’320C32-50  
’320C32-60  
NO.  
UNIT  
MIN  
10  
MAX  
MIN  
8
MAX  
80  
81  
t
t
t
t
t
t
Setup time, HOLD before H1 low  
Valid time, HOLDA after H1 low  
ns  
ns  
ns  
ns  
ns  
ns  
su(HOLD)  
v(HOLDA)  
w(HOLD)  
0*  
7
0*  
6
82  
Pulse duration, HOLD low  
2P  
2P  
83  
Pulse duration, HOLDA low  
P–5*  
0*  
P–5*  
0*  
w(HOLDA)  
d(H1L-SH)H  
d(H1H-IOS)H  
84  
Delay time, H1 low to STRBx high for a HOLD  
Delay time, H1 high to IOSTRB high for a HOLD  
7*  
7*  
6*  
6*  
84.1  
0*  
0*  
Disable time, H1 low to STRBx or IOSTRB (in the high-impedance  
state)  
85  
t
0*  
8*  
0*  
7*  
ns  
dis(H1L-S)  
86  
87  
88  
89  
90  
91  
t
t
t
t
t
t
Enable time, H1 low to STRBx or IOSTRB active  
Disable time, H1 low to R/W in the high-impedance state  
Enable time, H1 low to R/W (active)  
0*  
0*  
0*  
0*  
0*  
0*  
7*  
8*  
0*  
0*  
0*  
0*  
0*  
0*  
6*  
7*  
ns  
ns  
ns  
ns  
ns  
ns  
en(H1L-S)  
dis(H1L-RW)  
en(H1L-RW)  
dis(H1L-A)  
en(H1L-A)  
dis(H1H-D)  
7*  
6*  
Disable time, H1 low to A in the high-impedance state  
Enable time, H1 low to A valid  
8*  
7*  
12*  
8*  
11*  
7*  
Disable time, H1 high to D disabled in the high-impedance state  
* This parameter is not production tested.  
NOTE 8: HOLD is an asynchronous input and can be asserted at any point during a clock cycle. If the specified timings are met, the exact  
sequenceshownoccurs;otherwise, anadditionaldelay of one clock cycle can occur. TheNOHOLDbitoftheprimary-bit-controlregister  
overwrites the HOLD signal.  
H3  
H1  
80  
80  
82  
HOLD  
81  
81  
83  
HOLDA  
(see Note A)  
84  
85  
86  
STRBx  
IOSTRB  
R/W  
A
85  
86  
88  
84.1  
87  
90  
89  
91  
D
Write Data  
NOTE A: HOLDA goes low in response to HOLD going low and continues to remain low until one H1 cycle after HOLD goes back high.  
Figure 31. HOLD/HOLDA Timing  
37  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
SMQ320C32  
DIGITAL SIGNAL PROCESSOR  
SGUS027B – APRIL 1998 – REVISED MARCH 19998  
timing of peripheral pin configured as general-purpose I/O (see Figure 32)  
’320C32-50  
MIN MAX  
’320C32-60  
MIN MAX  
NO.  
UNIT  
92  
93  
94  
t
t
t
Setup time, general-purpose input before H1 low  
Hold time, general-purpose input after H1 low  
Delay time, general-purpose output after H1 high  
9
8
ns  
ns  
ns  
su(GPIOH1L)  
h(GPIOH1L)  
d(GPIOH1H)  
0
0
10  
8
H3  
H1  
93  
94  
92  
94  
Peripheral Pin  
(see Note A)  
NOTE A: Peripheral pins include CLKX0, CLKR0, DX0, DR0, FSX0, FSR0, and TCLKx. The modes of these pins are defined by the contents  
of internal control registers associated with each peripheral.  
Figure 32. Peripheral-Pin General-Purpose I/O Timing  
timing of peripheral pin changing from general-purpose output to input mode (see Figure 33)  
’320C32-50  
’320C32-60  
NO.  
UNIT  
MIN  
MAX  
12*  
MIN  
MAX  
95  
96  
97  
t
t
t
Hold time, after H1 high  
11*  
ns  
ns  
ns  
h(H1H)  
Setup time, peripheral pin before H1 low  
Hold time, peripheral pin after H1 low  
9
0
8
0
su(GPI0H1L)  
h(GPIOH1L)  
* This parameter is not production tested.  
Value on  
Pin Seen  
in  
Execute Store  
of Peripheral  
Control  
Buffers  
Go From  
Output to Input  
Synchronizer Delay  
Peripheral  
Control Register  
Register  
H3  
H1  
I/O  
96  
Control Bit  
97  
95  
Peripheral Pin  
(see Note A)  
Output  
Data Bit  
Data Sampled  
Data  
Seen  
NOTE A: Peripheral pins include CLKX0, CLKR0, DX0, DR0, FSX0, FSR0, and TCLKx. The modes of these pins are defined by the contents  
of internal control registers associated with each peripheral.  
Figure 33. Timing of Peripheral Pin Changing From General-Purpose Output to Input Mode  
38  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
SMQ320C32  
DIGITAL SIGNAL PROCESSOR  
SGUS027B – APRIL 1998 – REVISED MARCH 19998  
timing of peripheral pin changing from general-purpose input to output mode (see Figure 34)  
’320C32-50  
MIN MAX  
10  
’320C32-60  
MIN MAX  
NO.  
UNIT  
98  
t
Delay time, H1 high to peripheral pin switching from input to output  
8
ns  
d(GPIOH1H)  
Execution of Store of  
Peripheral Control  
Register  
H3  
H1  
I/O Control Bit  
98  
Peripheral Pin  
(see Note A)  
NOTE A: Peripheral pins include CLKX0, CLKR0, DX0, DR0, FSX0, FSR0, and TCLKx. The modes of these pins are defined by the contents  
of internal control registers associated with each peripheral.  
Figure 34. Timing of Peripheral Pin Changing From General-Purpose Input-to-Output Mode  
39  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
SMQ320C32  
DIGITAL SIGNAL PROCESSOR  
SGUS027B – APRIL 1998 – REVISED MARCH 19998  
timing for timer pin [P = t  
] (see Figure 35)  
c(H)  
’320C32-50  
’320C32-60  
NO.  
UNIT  
MIN  
MAX  
MIN  
MAX  
Setup time, TCLK external  
before H1 low  
99  
t
t
t
8
6
ns  
ns  
ns  
su(TCLKH1L)  
h(TCLKH1L)  
d(TCLKH1H)  
Hold time, TCLK external after  
H1 low  
100  
101  
0
0
Delay time, H1 high to TCLK  
internal valid  
9
8
Cycle time,  
TCLK cycle  
time  
TCLK external  
TCLK internal  
2.6P*  
2P  
2.6P*  
2P  
102  
103  
t
t
ns  
ns  
c(TCLK)  
w(TCLK)  
32  
(2 )P*  
32  
(2 )P*  
Pulse duration,  
TCLK  
high / low  
TCLK external  
TCLK internal [t  
P + 10*  
/2]–5 [t  
P + 10*  
/2]–5 [t  
/2]+5 [t  
c(TCLK)  
/2]+5  
c(TCLK)  
c(TCLK)  
c(TCLK)  
* This parameter is not production tested.  
NOTE: Timing parameters 99 and 100 are applicable for a synchronous input clock. Timing parameters 102 and 103 are applicable for an  
asynchronous input clock.  
H3  
H1  
100  
99  
101  
101  
TCLKx  
103  
102  
Figure 35. Timing for Timer Pin  
40  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
SMQ320C32  
DIGITAL SIGNAL PROCESSOR  
SGUS027B – APRIL 1998 – REVISED MARCH 19998  
timing for SHZ pin [Q = t  
] (see Figure 36)  
c(CI)  
’320C32-50  
’320C32-60  
NO.  
UNIT  
MIN  
MAX  
2Q*  
MIN  
MAX  
2Q*  
104  
t
Disable time, SHZ low to all O, I/O pins in the high-impedance state  
0*  
0*  
ns  
dis(SHZ)  
* This parameter is not production tested.  
H3  
H1  
SHZ  
(see Note A)  
104  
All I/O Pins  
NOTE A: EnablingSHZ destroys ’C32 register and memory contents. Assert SHZ = 1 and reset the ’C32 to restore it to a knowncondition.  
Figure 36. SHZ Pin Timing  
Table 1. Thermal Resistance Characteristics for PCM package  
PARAMETER  
MIN  
MAX  
UNIT  
R
R
Junction-to-free-air  
Junction-to-case  
39 °C/W  
ΘJA  
ΘJC  
10.0 °C/W  
41  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
SMQ320C32  
DIGITAL SIGNAL PROCESSOR  
SGUS027B – APRIL 1998 – REVISED MARCH 19998  
MECHANICAL DATA  
PCM(S-PQFP-G***)  
PLASTIC QUAD FLATPACK  
144 PIN SHOWN  
108  
73  
0,38  
0,22  
72  
109  
0,13  
M
0,65 TYP  
NO. OF PINS***  
A
22,75 TYP  
25,35 TYP  
144  
160  
144  
37  
0,16 NOM  
1
36  
3,60  
3,20  
A
28,20  
27,80  
SQ  
SQ  
31,45  
30,95  
0,25 MIN  
0°7°  
1,03  
0,73  
Seating Plane  
0,10  
4,10 MAX  
(see Note C)  
4040015/A–10/93  
NOTES: A. All linear dimensions are in millimeters.  
B. This drawing is subject to change without notice.  
C. Falls within JEDEC MS-022  
D. The 144PCM is identical to 160PCM except that 4 leads per corner are removed.  
E. Foot length is measured from lead tip to a position on backside of lead 0,25 mm above seating plane (gage plane)  
F. Preliminary drawing  
42  
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251–1443  
IMPORTANT NOTICE  
Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue  
any product or service without notice, and advise customers to obtain the latest version of relevant information  
to verify, before placing orders, that information being relied on is current and complete. All products are sold  
subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those  
pertaining to warranty, patent infringement, and limitation of liability.  
TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in  
accordance with TI’s standard warranty. Testing and other quality control techniques are utilized to the extent  
TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily  
performed, except those mandated by government requirements.  
CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF  
DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE (“CRITICAL  
APPLICATIONS”). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR  
WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER  
CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO  
BE FULLY AT THE CUSTOMER’S RISK.  
In order to minimize risks associated with the customer’s applications, adequate design and operating  
safeguards must be provided by the customer to minimize inherent or procedural hazards.  
TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent  
that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other  
intellectual property right of TI covering or relating to any combination, machine, or process in which such  
semiconductor products or services might be or are used. TI’s publication of information regarding any third  
party’s products or services does not constitute TI’s approval, warranty or endorsement thereof.  
Copyright 1999, Texas Instruments Incorporated  

相关型号:

SMQ320C50

DIGITAL SIGNAL PROCESSOR
TI

SMQ320C50GFA

DIGITAL SIGNAL PROCESSOR
TI

SMQ320C50HFG

DIGITAL SIGNAL PROCESSOR
TI

SMQ320C50PQ

DIGITAL SIGNAL PROCESSOR
TI

SMQ320C50PQM66

DIGITAL SIGNAL PROCESSOR
TI

SMQ320LC31

DIGITAL SIGNAL PROCESSORS
TI

SMQ320LC31PQM40

DIGITAL SIGNAL PROCESSORS
TI

SMQ32S

Quartz Crystal
JAUCH

SMQ32SL

Quartz Crystal
JAUCH

SMQ32SN

SMD Tuning Fork Crystal · 7.0 x 1.5 mm
JAUCH

SMQ400PS12-C

AC-DC Power Supplies
XPPOWER

SMQ400PS15-C

AC-DC Power Supplies
XPPOWER