SN3257QPWRQ1 [TI]

具有 1.8V 逻辑电平和断电保护的汽车类 5V、2:1 (SPDT)、4 通道开关 | PW | 16 | -40 to 125;
SN3257QPWRQ1
型号: SN3257QPWRQ1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有 1.8V 逻辑电平和断电保护的汽车类 5V、2:1 (SPDT)、4 通道开关 | PW | 16 | -40 to 125

开关 光电二极管
文件: 总38页 (文件大小:1889K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
SN3257-Q1  
ZHCSK05D JULY 2019 REVISED OCTOBER 2022  
SN3257-Q1 1.8V 逻辑电平的汽车5V 低传播延迟、2:1 (SPDT)  
4 通道开关  
1 特性  
3 说明  
提供功能安全  
SN3257-Q1 一款汽车级互补金属氧化物半导体  
(CMOS) 持高速信号有低传播延迟。  
SN3257-Q1 提供具有 4 个通道的 2:1 (SPDT) 开关配  
非常适合 SPI I2S 等各通道协议。此器件可在  
源极SxASxB和漏极 (Dx) 引脚上支持双向模拟  
可帮助进行功能安全系统设计的文档  
• 符合面向汽车应用AEC-Q100 标准  
– 温度等1-40°C +125°CTA  
• 宽电源电压范围1.5V 5.5V  
• 低传播延迟78 ps  
和数字信号并且能够传递高于电源电压最高 VDD  
2的信号最大输入和输出电压5.5V。  
x
• 低导通电阻5Ω  
• 高带宽2 GHz  
双向信号路径  
支持超出电源的输入电压  
1.8V 逻辑电平  
SN3257-Q1 具有一个低电平有效 EN 引脚用于同时  
启用和禁用所有通道。EN 引脚为低电平时会根据  
SEL 引脚的状态选择两个开关路径之一。  
逻辑引脚上带有集成下拉电阻器  
失效防护逻辑  
• 高3.6V 信号的断电保护  
SN3257-Q1 的信号路径上高达 3.6V 的关断保护功能  
可在移除电源电压 (VDD = 0V) 时提供隔离。如果没有  
该保护功能开关可通过内部 ESD 二极管为电源轨进  
行反向供电从而对系统造成潜在损坏。  
2 应用  
失效防护逻辑电路允许在施加电源引脚上的电压之前,  
先施加逻辑控制引脚上的电压从而保护器件免受潜在  
的损害。两个逻辑控制输入都具有兼容 1.8V 逻辑的阈  
可确保 TTL CMOS 逻辑兼容性。逻辑引脚上带  
有集成下拉电阻器无需外部组件可减小系统尺寸、  
降低系统成本。  
SPI 多路复用  
I2S 多路复用  
eSIM 多路复用  
eMMC 多路复用  
• 闪存存储器共享  
电池管理系(BMS)  
远程信息处理控制单(TCU)  
智能远程信息处理网关  
后座娱乐系统  
数字驾驶舱处理单元  
汽车音响主机  
汽车导航  
封装信息(1)  
封装尺寸标称值)  
器件型号  
封装  
PW (TSSOP, 16)  
5.00mm × 4.40mm  
SN3257-Q1  
DYY (SOT-23-THIN,16) 4.20mm × 2.00mm  
(1) 如需了解所有可用封装请参阅数据表末尾的封装选项附录。  
ADAS 域控制器  
环视系ECU  
车载充电(OBC) 和无线充电器  
SN3257-Q1  
S1A  
D1  
S1B  
S2A  
D2  
S2B  
VI/O  
VDD  
VDD  
S3A  
0.1µF  
D3  
S3B  
VDD  
Processor / MCU /  
External Header #1  
S4A  
D4  
S4B  
S1A  
S2A  
S3A  
S4A  
LOGIC CONTROL*  
SPI / eSIM / eMMC  
Device  
PORT  
DEBUG,  
SPI, GPIO  
1.8V  
Logic  
I/O  
SEL  
EN  
D1  
MISO / CMD / GPIO  
MOSI / CLK / GPIO  
*Internal 6MO Pull-Down on Logic Pins  
D2  
D3  
D4  
方框图  
Processor / MCU /  
External Header #2  
SCLK / DAT0 / GPIO  
SS / DAT1 / GPIO  
S1B  
S2B  
S3B  
S4B  
PORT  
DEBUG,  
SPI, GPIO  
1.8V  
Logic  
I/O  
SEL  
EN  
1.8V Control Logic  
From Processor / MCU  
GND  
应用示例  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SCDS411  
 
 
 
 
SN3257-Q1  
ZHCSK05D JULY 2019 REVISED OCTOBER 2022  
www.ti.com.cn  
Table of Contents  
7.12 Capacitance............................................................16  
7.13 Off Isolation.............................................................17  
7.14 Channel-to-Channel Crosstalk................................17  
7.15 Bandwidth............................................................... 19  
8 Detailed Description......................................................20  
8.1 Overview...................................................................20  
8.2 Functional Block Diagram.........................................20  
8.3 Feature Description...................................................20  
8.4 Device Functional Modes..........................................22  
9 Application and Implementation..................................23  
9.1 Application Information............................................. 23  
9.2 Typical Application.................................................... 23  
10 Power Supply Recommendations..............................24  
11 Layout...........................................................................25  
11.1 Layout Guidelines................................................... 25  
11.2 Layout Example...................................................... 26  
12 Device and Documentation Support..........................27  
12.1 Documentation Support.......................................... 27  
12.2 接收文档更新通知................................................... 27  
12.3 支持资源..................................................................27  
12.4 Trademarks.............................................................27  
12.5 Electrostatic Discharge Caution..............................27  
12.6 术语表..................................................................... 27  
13 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Pin Configuration and Functions...................................3  
6 Specifications.................................................................. 4  
6.1 Absolute Maximum Ratings........................................ 4  
6.2 ESD Ratings............................................................... 4  
6.3 Recommended Operating Conditions.........................4  
6.4 Thermal Information....................................................4  
6.5 Electrical Characteristics.............................................5  
6.6 Dynamic Characteristics............................................. 6  
6.7 Timing Requirements..................................................7  
7 Parameter Measurement Information.......................... 11  
7.1 On-Resistance.......................................................... 11  
7.2 Off-Leakage Current..................................................11  
7.3 On-Leakage Current................................................. 12  
7.4 IPOFF Leakage Current..............................................12  
7.5 Transition Time......................................................... 13  
7.6 tON (EN) and tOFF (EN) Time......................................... 13  
7.7 tON (VDD) and tOFF (VDD) Time..................................... 14  
7.8 Break-Before-Make Delay.........................................14  
7.9 Propagation Delay.................................................... 15  
7.10 Skew....................................................................... 15  
7.11 Charge Injection......................................................16  
Information.................................................................... 27  
4 Revision History  
以前版本的页码可能与当前版本的页码不同  
Changes from Revision C (December 2021) to Revision D (October 2022)  
Page  
• 将带宽规格1.2GHz 更新2GHz................................................................................................................... 1  
Changes from Revision B (January 2020) to Revision C (December 2021)  
Page  
• 向部分添加了提供功能安信息................................................................................................................ 1  
• 更新了整个文档中的表格、图和交叉参考的编号格式.........................................................................................1  
Changes from Revision A (August 2016) to Revision B (January 2020)  
Page  
• 将文档状态从预告信更改为量产数.............................................................................................................1  
Copyright © 2022 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: SN3257-Q1  
 
SN3257-Q1  
ZHCSK05D JULY 2019 REVISED OCTOBER 2022  
www.ti.com.cn  
5 Pin Configuration and Functions  
SEL  
S1A  
S1B  
D1  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
VDD  
EN  
SEL  
S1A  
S1B  
D1  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
VDD  
EN  
S4A  
S4B  
D4  
S4A  
S4B  
D4  
S2A  
S2B  
D2  
S2A  
S2B  
D2  
S3A  
S3B  
D3  
S3A  
S3B  
D3  
GND  
GND  
Not to scale  
Not to scale  
5-2. DYY Package,  
16-Pin SOT-23  
(Top View)  
5-1. PW Package,  
16-Pin TSSOP  
(Top View)  
5-1. Pin Functions  
PIN  
TYPE(1)  
DESCRIPTION(2)  
NAME  
NO.  
1
SEL  
S1A  
S1B  
D1  
I
Select pin: controls state of switches according to 8-1. Internal 6 MΩpull-down to GND.  
Source pin 1A. Can be an input or output.  
Source pin 1B. Can be an input or output.  
Drain pin 1. Can be an input or output.  
2
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
P
3
4
S2A  
S2B  
D2  
5
Source pin 2A. Can be an input or output.  
Source pin 2B. Can be an input or output.  
Drain pin 2. Can be an input or output.  
6
7
GND  
D3  
8
Ground (0 V) reference  
9
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
Drain pin 3. Can be an input or output.  
S3B  
S3A  
D4  
10  
11  
12  
13  
14  
Source pin 3B. Can be an input or output.  
Source pin 3A. Can be an input or output.  
Drain pin 4. Can be an input or output.  
S4B  
S4A  
Source pin 4B. Can be an input or output.  
Source pin 4A. Can be an input or output.  
Active low enable: When this pin is high, all switches are turned off. When this pin is low, SEL pin  
controls the signal path selection. Internal 6 MΩpull-down to GND.  
EN  
15  
16  
I
Positive power supply. This pin is the most positive power-supply potential. For reliable operation,  
connect a decoupling capacitor ranging from 0.1 µF to 10 µF between VDD and GND.  
VDD  
P
(1) I = input, O = output, I/O = input and output, P = power  
(2) Refer to 8.4 for what to do with unused pins.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: SN3257-Q1  
 
 
 
SN3257-Q1  
ZHCSK05D JULY 2019 REVISED OCTOBER 2022  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
Over operating free-air temperature range (unless otherwise noted)(1) (2) (3)  
MIN  
0.5  
0.5  
30  
0.5  
25  
65  
MAX  
UNIT  
V
VDD  
Supply voltage  
6
6
VSEL or VEN  
ISEL or IEN  
VS or VD  
IS or ID (CONT)  
Tstg  
Logic control input pin voltage (SEL or EN)  
Logic control input pin current (SEL or EN)  
Source or drain pin voltage  
V
30  
6
mA  
V
Source and drain pin continuous current: (SxA, SxB, Dx)  
Storage temperature  
25  
150  
150  
mA  
°C  
°C  
TJ  
Junction temperature  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under  
Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device  
reliability.  
(2) The algebraic convention, whereby the most negative value is a minimum and the most positive value is a maximum.  
(3) All voltages are with respect to ground, unless otherwise specified.  
6.2 ESD Ratings  
VALUE  
UNIT  
Human body model (HBM), per AEC Q100-002(1)  
HBM ESD Classification Level 2  
±2000  
Electrostatic  
discharge  
V(ESD)  
V
Charged device model (CDM), per AEC Q100-011  
CDM ESD Classification Level C4B  
±750  
(1) AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.  
6.3 Recommended Operating Conditions  
MIN  
1.5  
0
MAX  
UNIT  
V
VDD  
Supply voltage  
5.5  
VDD x 2  
3.6  
Signal path input or output voltage (source or drain pin), VDD 1.5 V(1)  
Signal path input or output voltage (source or drain pin), VDD < 1.5 V(2)  
Logic control input voltage ( EN, SEL)  
VS or VD  
VS_off or VD_off  
VSEL or VEN  
IS or ID (CONT)  
TA  
V
0
V
0
5.5  
V
Source and drain pin continuous current: (SxA, SxB, Dx)  
Ambient temperature  
25  
mA  
°C  
25  
40  
125  
(1) Device input/output can operate up to VDD x 2, with a maximum input/output voltage of 5.5 V.  
(2) VS_off and VD_off refers to the voltage at the source or drain pins when supply is less than 1.5 V.  
6.4 Thermal Information  
DEVICE  
DEVICE  
DYY (SOT-23)  
16 PINS  
123.0  
THERMAL METRIC(1)  
PW (TSSOP)  
16 PINS  
117.4  
47.9  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
70.5  
63.7  
50.4  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
6.9  
5.0  
ΨJT  
63.1  
50.3  
ΨJB  
RθJC(bot)  
N/A  
N/A  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
Copyright © 2022 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: SN3257-Q1  
 
 
 
 
 
 
 
 
 
 
 
 
SN3257-Q1  
ZHCSK05D JULY 2019 REVISED OCTOBER 2022  
www.ti.com.cn  
6.5 Electrical Characteristics  
VDD = 1.5 V to 5.5 V, GND = 0V, TA = 40°C to +125°C  
Typical values are at VDD = 3.3 V, TA = 25°C, (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
POWER SUPPLY  
VDD  
Power supply voltage  
Active supply current  
1.5  
5.5  
68  
V
VSEL = 0 V, 1.4 V or VDD  
VS = 0 V to 5.5 V  
IDD  
40  
μA  
VEN = 1.4 V or VDD  
VS = 0 V to 5.5 V  
IDD_STANDBY Supply current when disabled  
7.5  
15  
µA  
DC CHARACTERISTICS  
VS = 0 V to VDD×2  
VS(max) = 5.5 V  
ISD = 8 mA  
RON  
On-resistance  
2
5
Refer to ON-State Resistance Figure  
VS = VDD  
On-resistance match between channels  
On-resistance flatness  
ISD = 8 mA  
Refer to ON-State Resistance Figure  
0.07  
1
0.8  
2.5  
ΔRON  
VS = 0 V to VDD  
ISD = 8 mA  
Refer to ON-State Resistance Figure  
RON (FLAT)  
VDD = 0 V  
VS = 0 V to 3.6 V  
VD = 0 V  
Refer to Ipoff Leakage Figure  
IPOFF  
Powered-off I/O pin leakage current  
OFF leakage current  
0.01  
0.03  
8
µA  
nA  
8  
Switch Off  
IS(OFF)  
ID(OFF)  
VD = 0.8×VDD / 0.2×VDD  
VS = 0.2×VDD / 0.8×VDD  
Refer to Off Leakage Figure  
900  
900  
Switch On  
VD = 0.8×VDD / 0.2×VDD, S pins floating  
or  
VS = 0.8×VDD / 0.2×VDD, D pins floating  
Refer to On Leakage Figure  
ID(ON)  
IS(ON)  
ON leakage current  
0.01  
900  
nA  
900  
LOGIC INPUTS  
VIH  
VIL  
IIH  
Input logic high  
1.2  
0
5.5  
0.45  
±2  
V
Input logic low  
V
Input high leakage current  
Input low leakage current  
Internal pull-down resistor on logic pins  
VSEL = 1.8 V, VDD  
VSEL = 0 V  
1
0.2  
6
μA  
μA  
MΩ  
IIL  
±2  
RPD  
VSEL = 0 V, 1.8 V or VDD  
f = 1 MHz  
CI  
Logic input capacitance  
3
pF  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: SN3257-Q1  
 
SN3257-Q1  
ZHCSK05D JULY 2019 REVISED OCTOBER 2022  
www.ti.com.cn  
6.6 Dynamic Characteristics  
VDD = 1.5 V to 5.5 V, GND = 0 V, TA = 40°C to +125°C  
Typical values are at VDD = 3.3 V, TA = 25°C, (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
VS = 2.5 V  
VSEL= 0 V  
f = 1 MHz  
Switch  
OFF  
COFF  
Source and drain off capacitance  
4
pF  
Refer to Capacitance Figure  
VS = 2.5 V  
VSEL= 0 V  
f = 1 MHz  
Refer to Capacitance Figure  
Switch  
ON  
CON  
Source and drain on capacitance  
Charge Injection  
8
pF  
VS = VDD/2  
RS = 0 Ω, CL =1 nF  
Refer to Charge Injection Figure  
Switch  
ON  
QC  
3.5  
90  
75  
pC  
dB  
dB  
RL = 50 Ω  
f = 100 kHz  
Refer to Off Isolation Figure  
Switch  
OFF  
OISO  
Off isolation  
RL = 50 Ω  
f = 1 MHz  
Refer to Off Isolation Figure  
Switch  
OFF  
RL = 50 Ω  
f = 100 kHz  
Refer to Crosstalk Figure  
Switch  
ON  
XTALK  
BW  
Channel to Channel crosstalk  
Bandwidth  
dB  
GHz  
dB  
90  
2
Switch  
ON  
RL = 50 Ω  
Refer to Bandwidth Figure  
RL = 50 Ω  
f = 1 MHz  
Refer to Bandwidth Figure  
Switch  
ON  
ILOSS  
Insertion loss  
0.12  
Copyright © 2022 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: SN3257-Q1  
 
SN3257-Q1  
ZHCSK05D JULY 2019 REVISED OCTOBER 2022  
www.ti.com.cn  
6.7 Timing Requirements  
VDD = 1.5 V to 5.5 V, GND = 0V, TA = 40°C to +125°C  
Typical values are at VDD = 3.3 V, TA = 25°C, (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
NOM  
MAX  
UNIT  
VDD = 2.5 V to 5.5 V  
VS = VDD  
RL = 200 Ω, CL = 15 pF  
Refer to Transition Timing Figure  
tTRAN  
Transition time from control input  
160  
350  
ns  
VDD < 2.5 V  
VS = VDD  
RL = 200 Ω, CL = 15 pF  
Refer to Transition Timing Figure  
tTRAN  
Transition time from control input  
180  
580  
ns  
VS = VDD  
tON(EN)  
Device turn on time from enable pin  
Device turn off time from enable pin  
12  
50  
35  
95  
µs  
ns  
RL = 200 Ω, CL = 15 pF  
Refer to Ton(EN) and Toff(EN) Figure  
VS = VDD  
tOFF(EN)  
RL = 200 Ω, CL = 15 pF  
Refer to Ton(EN) and Toff(EN) Figure  
VS = 3.6 V  
VDD rise time = 1 µs  
RL = 200 Ω, CL = 15 pF  
Refer to Ton(vdd) and Toff(vdd) Figure  
tON(VDD)  
Device turn on time (VDD to output)  
Device turn off time (VDD to output)  
20  
60  
µs  
VS = 3.6 V  
VDD fall time = 1 µs  
RL = 200 Ω, CL = 15 pF  
Refer to Ton(vdd) and Toff(vdd) Figure  
tOFF(VDD)  
1.2  
2.7  
µs  
ns  
VS = 1 V  
RL = 200 Ω, CL = 15 pF  
Refer to Topen(BBM) Figure  
tOPEN (BBM) Break before make time  
0.5  
tSK(P)  
tSK(P)  
tPD  
Refer to Tsk Figure  
Refer to Tsk Figure  
Refer to Tpd Figure  
Refer to Tpd Figure  
10  
18  
78  
95  
ps  
ps  
ps  
ps  
Inter-channel skew SOT-23 (DYY)  
Inter-channel skew TSSOP (PW)  
Propagation delay SOT-23 (DYY)  
Propagation delay TSSOP (PW)  
tPD  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: SN3257-Q1  
 
SN3257-Q1  
ZHCSK05D JULY 2019 REVISED OCTOBER 2022  
www.ti.com.cn  
Typical Characteristics  
At TA = 25°C, VDD = 3.3 V (unless otherwise noted).  
5
4
3
5
4
3
2
1
0
TA = 125èC  
TA = 85èC  
VDD = 1.5 V  
VDD = 5.5 V  
2
1
0
TA = 25èC  
VDD = 3.3 V  
TA = -40èC  
0
1
2
Source or Drain Voltage (V)  
3
4
5
5.5  
0
1
2
Source or Drain Voltage (V)  
3
4
5
5.5  
D001  
D002  
TA = 25°C  
VDD = 5.5 V  
6-1. On-Resistance vs Source or Drain Voltage  
6-2. On-Resistance vs Source or Drain Voltage  
4
3
2
1
0
4
3
2
1
0
TA = 125èC  
TA = 85èC  
TA = 125èC  
TA = 85èC  
TA = 25èC  
TA = -40èC  
TA = 25èC  
TA = -40èC  
1.5  
Source or Drain Voltage (V)  
0
0.5  
1
2
2.5  
3
3.5  
0
0.5  
Source or Drain Voltage (V)  
1
1.5  
D003  
D004  
VDD = 3.3 V  
VDD = 1.5 V  
6-3. On-Resistance vs Source or Drain Voltage  
6-4. On-Resistance vs Source or Drain Voltage  
65  
60  
55  
50  
45  
40  
35  
30  
25  
60  
55  
50  
45  
40  
35  
30  
TA = 125èC  
TA = 85èC  
VDD = 3.3 V  
VDD = 5.5 V  
TA = 25èC  
VDD = 1.5 V  
TA = -40èC  
2.5  
0
0.5  
1
1.5  
2
2.5  
Logic Voltage (V)  
3
3.5  
4
4.5  
5
5.5  
1.5  
2
3
3.5  
Supply Voltage (V)  
4
4.5  
5
5.5  
6
D005  
D006  
TA = 25°C  
.
6-5. Supply Current vs Logic Voltage  
6-6. Supply Current vs Supply Voltage  
Copyright © 2022 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: SN3257-Q1  
SN3257-Q1  
ZHCSK05D JULY 2019 REVISED OCTOBER 2022  
www.ti.com.cn  
Typical Characteristics  
At TA = 25°C, VDD = 3.3 V (unless otherwise noted).  
1
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
700  
600  
500  
400  
300  
200  
100  
0
-100  
0
0.5  
1
1.5  
Source Voltage (V)  
2
2.5  
3
3.5  
4
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
Temperature (èC)  
D011  
D013  
TA = 25°C  
.
VSource = 3.6 V  
VDrain = 0 V  
6-7. IPOFF Leakage vs Source or Drain Voltage  
6-8. IPOFF Leakage vs Temperature  
180  
160  
140  
120  
100  
80  
Transiton_Falling  
Transiton_Rising  
60  
40  
20  
1.5  
2
2.5  
3
3.5  
4
Supply Voltage (V)  
4.5  
5
5.5  
6
D015  
TA = 25°C  
.
TA = 25°C  
RL= 200 Ω  
6-10. TTRANSITION vs Supply Voltage  
6-9. IPOFF Leakage vs Source or Drain Voltage  
220  
25  
20  
15  
10  
5
Transiton_Falling  
Transiton_Rising  
195  
170  
145  
120  
95  
70  
45  
20  
0
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
1.5  
2
2.5  
3
Supply Voltage (V)  
3.5  
4
4.5  
5
5.5  
Temperature (èC)  
D016  
D018  
VDD = 5.5 V  
TA = 25°C  
6-11. TTRANSITION vs Temperature  
6-12. TON (EN) vs Supply Voltage  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: SN3257-Q1  
SN3257-Q1  
ZHCSK05D JULY 2019 REVISED OCTOBER 2022  
www.ti.com.cn  
Typical Characteristics  
At TA = 25°C, VDD = 3.3 V (unless otherwise noted).  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
Propagation Delay - PW  
Propagation Delay - DYY  
Skew - PW  
Skew - DYY  
1.5  
2
2.5  
3
3.5  
4
Supply Voltage (V)  
4.5  
5
5.5  
1.5  
2
2.5  
3
3.5  
4
Supply Voltage (V)  
4.5  
5
5.5  
D019  
D020  
TA = 25°C  
TA = 25°C  
6-13. TOFF (EN) vs Supply Voltage  
6-14. Skew and Propagation Delay vs Supply Voltage  
0
0
Off Isolation  
Crosstalk  
-10  
-20  
-30  
-1  
-2  
-3  
-4  
-5  
-6  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
-120  
100k  
1M  
10M  
Frequency (Hz)  
100M  
1G  
1M  
10M  
Frequency (Hz)  
100M  
1G  
D023  
D024  
TA = 25°C  
TA = 25°C  
VDD = 3.3 V  
VDD = 1.5 V to 5.5 V  
6-15. Off Isolation and Crosstalk vs Frequency  
6-16. On-Response vs Frequency  
Copyright © 2022 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: SN3257-Q1  
SN3257-Q1  
ZHCSK05D JULY 2019 REVISED OCTOBER 2022  
www.ti.com.cn  
7 Parameter Measurement Information  
7.1 On-Resistance  
The on-resistance of a device is the ohmic resistance between the source (Sx) and drain (Dx) pins of the device.  
The on-resistance varies with input voltage and supply voltage. The symbol RON is used to denote on-  
resistance. The measurement setup used to measure RON is shown in 7-1. Voltage (V) and current (ISD) are  
measured using this setup, and RON is computed with RON = V / ISD as shown in the following figure.  
V
ISD  
Sx  
Dx  
VS  
7-1. On-Resistance Measurement Setup  
7.2 Off-Leakage Current  
Source leakage current is defined as the leakage current flowing into or out of the source pin when the switch is  
off. This current is denoted by the symbol IS (OFF)  
.
Drain leakage current is defined as the leakage current flowing into or out of the drain pin when the switch is off.  
This current is denoted by the symbol ID (OFF)  
.
The setup used to measure both off-leakage currents is shown in 7-2.  
VDD  
VDD  
IS (OFF)  
A
VDD  
VDD  
ID (OFF)  
S1A  
S1B  
S1A  
D1  
D1  
A
S1B  
VS  
VD  
VD  
VD  
VS  
ID (OFF)  
A
IS (OFF)  
A
S4A  
S4B  
D4  
S1A  
S1B  
D1  
VD  
VS  
VS  
VD  
GND  
GND  
VD  
7-2. Off-Leakage Measurement Setup  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: SN3257-Q1  
 
 
 
 
 
SN3257-Q1  
ZHCSK05D JULY 2019 REVISED OCTOBER 2022  
www.ti.com.cn  
7.3 On-Leakage Current  
Source on-leakage current is defined as the leakage current flowing into or out of the source pin when the switch  
is on. This current is denoted by the symbol IS (ON)  
.
Drain on-leakage current is defined as the leakage current flowing into or out of the drain pin when the switch is  
on. This current is denoted by the symbol ID (ON)  
.
Either the source pin or drain pin is left floating during the measurement. 7-3 shows the circuit used for  
measuring the on-leakage current, denoted by IS(ON) or ID(ON)  
.
VDD  
VDD  
IS (ON)  
VDD  
VDD  
ID (ON)  
S1A  
S1A  
S1B  
A
N.C.  
D1  
D1  
A
N.C.  
S1B  
N.C.  
N.C.  
VS  
VD  
IS (ON)  
ID (ON)  
A
S4A  
S4B  
S4A  
S4B  
N.C.  
N.C.  
A
D4  
D4  
N.C.  
N.C.  
VS  
VD  
GND  
GND  
7-3. On-Leakage Measurement Setup  
7.4 IPOFF Leakage Current  
IPOFF leakage current is defined as the leakage current flowing into or out of the source pin when the device is  
powered off. This current is denoted by the symbol IPOFF  
.
The setup used to measure both IPOFF leakage current is shown in 7-4.  
VDD  
IPOFF  
VDD  
S1A  
A
D1  
S1B  
N.C.  
VS  
VD  
IPOFF  
S4A  
S4B  
A
D4  
N.C.  
VS  
VD  
GND  
7-4. IPOFF Leakage Measurement Setup  
Copyright © 2022 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: SN3257-Q1  
 
 
 
 
SN3257-Q1  
ZHCSK05D JULY 2019 REVISED OCTOBER 2022  
www.ti.com.cn  
7.5 Transition Time  
Transition time is defined as the time taken by the output of the device to rise or fall 10% after the select signal  
has risen or fallen past the logic threshold. The 10% transition measurement is utilized to provide the timing of  
the device. The time constant from the load resistance and load capacitance can be added to the transition time  
to calculate system level timing. 7-5 shows the setup used to measure transition time, denoted by the symbol  
tTRANSITION  
.
VDD  
0.1F  
VDD  
VDD  
ADDRESS  
DRIVE  
tf < 5ns  
tr < 5ns  
VIH  
S1A  
S1B  
(VSEL  
)
VS  
VIL  
OUTPUT  
RL  
D1  
D4  
0 V  
CL  
tTRANSITION  
tTRANSITION  
S4A  
S4B  
VS  
OUTPUT  
RL  
CL  
90%  
OUTPUT  
SEL  
GND  
VSEL  
10%  
0 V  
7-5. Transition-Time Measurement Setup  
7.6 tON (EN) and tOFF (EN) Time  
The tON (EN) time is defined as the time taken by the output of the device to rise to 90% after the enable has  
fallen past the logic threshold. The 90% measurement is used to provide the timing of the device being enabled  
in the system. 7-6 shows the setup used to measure the enable time, denoted by the symbol tON (EN)  
.
The tOFF (EN) time is defined as the time taken by the output of the device to fall to 90% after the enable has  
fallen past the logic threshold. The 90% measurement is used to provide the timing of the device being disabled  
in the system. 7-6 shows the setup used to measure enable time, denoted by the symbol tOFF (EN)  
.
VDD  
0.1F  
VDD  
VDD  
VIH  
ENABLE  
VIL  
DRIVE  
(VEN)  
S1A  
S1B  
VS  
OUTPUT  
RL  
D1  
D4  
tr < 5ns  
tf < 5ns  
CL  
0 V  
S4A  
S4B  
VS  
tOFF  
tON  
(EN)  
(EN)  
OUTPUT  
RL  
CL  
90%  
90%  
OUTPUT  
0 V  
EN  
VEN  
GND  
7-6. tON (EN) and tOFF (EN) Time Measurement Setup  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: SN3257-Q1  
 
 
 
 
SN3257-Q1  
ZHCSK05D JULY 2019 REVISED OCTOBER 2022  
www.ti.com.cn  
7.7 tON (VDD) and tOFF (VDD) Time  
The tON (VDD) time is defined as the time taken by the output of the device to rise to 90% after the supply has  
risen past the supply threshold. The 90% measurement is used to provide the timing of the device turning on in  
the system. 7-7 shows the setup used to measure turn on time, denoted by the symbol tON (VDD)  
.
The tOFF (VDD) time is defined as the time taken by the output of the device to fall to 90% after the supply has  
fallen past the supply threshold. The 90% measurement is used to provide the timing of the device turning off in  
the system. 7-7 shows the setup used to measure turn off time, denoted by the symbol tOFF (VDD)  
.
VDD  
0.1F  
VDD  
VDD  
VDD  
Supply  
Ramp  
1.5 V  
1.5 V  
(VDD  
)
S1A  
S1B  
VS  
OUTPUT  
D1  
D4  
0 V  
CL  
RL  
tON  
tOFF  
(VDD)  
(VDD)  
S4A  
S4B  
90%  
90%  
VS  
OUTPUT  
RL  
OUTPUT  
0 V  
CL  
EN  
GND  
7-7. tON (VDD) and tOFF (VDD) Time Measurement Setup  
7.8 Break-Before-Make Delay  
Break-before-make delay is a safety feature that prevents two inputs from connecting when the device is  
switching. The output first breaks from the on-state switch before making the connection with the next on-state  
switch. The time delay between the break and the make is known as break-before-make delay. 7-8 shows the  
setup used to measure break-before-make delay, denoted by the symbol tOPEN(BBM)  
.
VDD  
0.1F  
VDD  
VDD  
VSEL  
0 V  
S1A  
VS  
OUTPUT  
RL  
D1  
D4  
tr < 5ns  
tf < 5ns  
S1B  
CL  
S4A  
S4B  
VS  
OUTPUT  
RL  
90%  
Output  
0 V  
tBBM  
1
tBBM  
2
CL  
tOPEN (BBM) = min ( tBBM 1, tBBM 2)  
SEL  
VSEL  
GND  
7-8. Break-Before-Make Delay Measurement Setup  
Copyright © 2022 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: SN3257-Q1  
 
 
 
 
SN3257-Q1  
ZHCSK05D JULY 2019 REVISED OCTOBER 2022  
www.ti.com.cn  
7.9 Propagation Delay  
Propagation delay is defined as the time taken by the output of the device to rise or fall 50% after the input signal  
has risen or fallen past the 50% threshold. 7-9 shows the setup used to measure propagation delay, denoted  
by the symbol tPD  
.
VDD  
0.1F  
VDD  
250 mV  
Input  
(VS)  
S1A  
S1B  
50%  
50%  
VS  
VS  
OUTPUT  
D1  
0 V  
RL  
50  
tPD 1  
tPD 2  
S4A  
S4B  
VS  
VS  
OUTPUT  
D4  
Output  
0 V  
50%  
50%  
RL  
50ꢁ  
GND  
tProp Delay = max ( tPD 1, tPD 2  
)
7-9. Propagation Delay Measurement Setup  
7.10 Skew  
Skew is defined as the difference between propagation delays of any two outputs of the same device. The skew  
measurement is taken from the output of one channel rising or falling past 50% to a second channel rising or  
falling past the 50% threshold when the input signals are switched at the same time. 7-10 shows the setup  
used to measure skew, denoted by the symbol tSK  
.
VDD  
0.1F  
VDD  
S1A  
S1B  
Output 1  
50%  
50%  
VS  
VS  
OUTPUT  
D1  
0 V  
RL  
50  
tSK 1  
tSK 2  
S4A  
S4B  
VS  
VS  
OUTPUT  
D4  
Output 2  
0 V  
50%  
50%  
RL  
50ꢁ  
GND  
tSKEW = max ( tSK 1, tSK 2  
)
7-10. Skew Measurement Setup  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: SN3257-Q1  
 
 
 
 
SN3257-Q1  
ZHCSK05D JULY 2019 REVISED OCTOBER 2022  
www.ti.com.cn  
7.11 Charge Injection  
The amount of charge injected into the source or drain of the device during the falling or rising edge of the gate  
signal is known as charge injection, and is denoted by the symbol QC. 7-11 shows the setup used to measure  
charge injection from source (Sx) to drain (Dx).  
VDD  
0.1F  
VDD  
VDD  
S1A  
VS  
OUTPUT  
D1  
VOUT  
CL  
VEN  
0 V  
S1B  
S4A  
S4B  
VS  
Output  
VS  
OUTPUT  
D4  
VOUT  
CL  
VOUT  
QC = CL  
×
VOUT  
EN  
VEN  
GND  
7-11. Charge-Injection Measurement Setup  
7.12 Capacitance  
The parasitic capacitance of the device is captured at the source (Sx), drain (Dx), and select (SELx) pins. The  
capacitance is measured in both the ON and OFF state and is denoted by the symbol CON and COFF. 7-12  
shows the setup used to measure capacitance.  
VDD  
VDD  
S1A  
S1B  
D1  
1 MHz  
Capacitance  
Meter  
Capacitance is measured at SX, DX,  
and logic pins during ON and OFF  
conditions  
S4A  
D4  
S4B  
LOGIC CONTROL  
SEL  
EN  
GND  
7-12. Capacitance Measurement Setup  
Copyright © 2022 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: SN3257-Q1  
 
 
 
 
SN3257-Q1  
ZHCSK05D JULY 2019 REVISED OCTOBER 2022  
www.ti.com.cn  
7.13 Off Isolation  
Off isolation is defined as the ratio of the signal at the drain pin (Dx) of the device when a signal is applied to the  
source pin (Sx) of an off-channel. The characteristic impedance, Z0, for the measurement is 50 Ω. 7-13  
shows the setup used to measure off isolation. Use off isolation equation to compute off isolation.  
0.1µF  
NETWORK  
VDD  
ANALYZER  
VS  
S
D
50Ω  
VSIG  
VOUT  
RL  
SxA / SxB / Dx  
50Ω  
RL  
GND  
50Ω  
7-13. Off Isolation Measurement Setup  
«
÷
VOUT  
VS  
Off Isolation = 20 Log  
(1)  
7.14 Channel-to-Channel Crosstalk  
Crosstalk is defined as the ratio of the signal at the drain pin (Dx) of a different channel, when a signal is applied  
at the source pin (Sx) of an on-channel. The characteristic impedance, Z0, for the measurement is 50 Ω. 7-14  
shows the setup used to measure, and the equation used to compute crosstalk.  
VDD  
0.1µF  
NETWORK  
VDD  
ANALYZER  
D1  
D4  
S1A  
VOUT  
RL  
RL  
50Ω  
50Ω  
VS  
S4A  
RL  
50Ω  
50Ω  
SxA / SxB / Dx  
VSIG = 200 mVpp  
VBIAS = VDD / 2  
RL  
50Ω  
GND  
7-14. Channel-to-Channel Crosstalk Measurement Setup  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: SN3257-Q1  
 
 
 
 
SN3257-Q1  
ZHCSK05D JULY 2019 REVISED OCTOBER 2022  
www.ti.com.cn  
«
÷
VOUT  
VS  
Channel-to-Channel Crosstalk = 20 Log  
(2)  
Copyright © 2022 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: SN3257-Q1  
SN3257-Q1  
ZHCSK05D JULY 2019 REVISED OCTOBER 2022  
www.ti.com.cn  
7.15 Bandwidth  
Bandwidth is defined as the range of frequencies that are attenuated by less than 3 dB when the input is applied  
to the source pin (Sx) of an on-channel, and the output is measured at the drain pin (Dx) of the device. The  
characteristic impedance, Z0, for the measurement is 50 Ω. 7-15 shows the setup used to measure  
bandwidth.  
VDD  
0.1µF  
NETWORK  
VDD  
ANALYZER  
VS  
50Ω  
S
D
VSIG  
VOUT  
RL  
50Ω  
SxA / SxB / Dx  
RL  
GND  
50Ω  
7-15. Bandwidth Measurement Setup  
#PPAJQ=PEKJ = 20 × .KC (8  
)
176  
8
5
(3)  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: SN3257-Q1  
 
 
SN3257-Q1  
ZHCSK05D JULY 2019 REVISED OCTOBER 2022  
www.ti.com.cn  
8 Detailed Description  
8.1 Overview  
The SN3257-Q1 is an automotive qualified 2:1 (SPDT) 4-channel switch with powered-off protection up to 3.6 V.  
Wide operating supply of 1.5 V to 5.5 V allows for use in applications where different supply voltages are  
available. The device supports bidirectional analog and digital signals on the source (SxA, SxB) and drain (Dx)  
pins. The wide bandwidth of this switch allows little or no attenuation of high-speed signals with minimum  
propagation delay.  
The enable (EN) pin is an active-low logic pin that controls the connection between the source (SxA, SxB) and  
drain (Dx) pins of the device. The select pin (SEL) controls the state of all four channels of the SN3257-Q1 and  
determines which source pin is connected to the drain. Fail-Safe Logic circuitry allows voltages on the logic  
control pins to be applied before the supply pin, protecting the device from potential damage. All logic control  
inputs have 1.8 V logic compatible thresholds, ensuring both TTL and CMOS logic compatibility when operating  
in the valid supply voltage range.  
Powered-off protection up to 3.6 V on the signal path of the SN3257-Q1 provides isolation when the supply  
voltage is removed (VDD = 0 V). Without this protection feature, the system can back-power the supply rail  
through an internal ESD diode and cause potential damage to the system.  
8.2 Functional Block Diagram  
SN3257-Q1  
S1A  
D1  
S1B  
S2A  
D2  
S2B  
S3A  
D3  
S3B  
S4A  
D4  
S4B  
LOGIC CONTROL*  
SEL  
EN  
*Internal 6MO Pull-Down on Logic Pins  
8.3 Feature Description  
8.3.1 Bidirectional Operation  
The SN3257-Q1 conducts equally well from source (SxA, SxB) to drain (Dx) or from drain (Dx) to source (SxA,  
SxB). Each channel has very similar characteristics in both directions and supports both analog and digital  
signals.  
8.3.2 Beyond Supply Operation  
When the SN3257-Q1 is powered from 1.5 V to 5.5 V, the valid signal path input or output voltage ranges from  
GND to VDD x 2, with a maximum input or output voltage of 5.5 V.  
Example 1: If the SN3257-Q1 is powered at 1.5 V, the signal range is 0 V to 3 V.  
Example 2: If the SN3257-Q1 is powered at 2.5 V, the signal range is 0 V to 5.0 V.  
Example 2: If the SN3257-Q1 is powered at 3.6 V, the signal range is 0 V to 5.5 V.  
Example 3: If the SN3257-Q1 is powered at 5.5 V, the signal range is 0 V to 5.5 V.  
Other voltage levels not mentioned in the examples support Beyond Supply Operation as long as the supply  
voltage falls within the recommended operation conditions of 1.5 V to 5.5 V.  
Copyright © 2022 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: SN3257-Q1  
 
 
 
 
 
 
SN3257-Q1  
ZHCSK05D JULY 2019 REVISED OCTOBER 2022  
www.ti.com.cn  
8.3.3 1.8 V Logic Compatible Inputs  
The SN3257-Q1 has 1.8-V logic compatible control inputs. Regardless of the VDD voltage, the control input  
thresholds remain fixed, allowing a 1.8-V processor GPIO to control the SN3257-Q1 without the need for an  
external translator. This saves both space and BOM cost. For more information on 1.8 V logic implementations,  
refer to Simplifying Design with 1.8 V logic Muxes and Switches.  
8.3.4 Powered-off Protection  
Powered-off protection up to 3.6 V on the signal path of the SN3257-Q1 provides isolation when the supply  
voltage is removed (VDD = 0 V). When the SN3257-Q1 is powered-off, the I/Os of the device remain in a high-Z  
state. Powered-off protection minimizes system complexity by removing the need for power supply sequencing  
on the signal path. The device performance remains within the leakage performance mentioned in the Electrical  
Specifications. For more information on powered-off protection, refer to Eliminate Power Sequencing with  
Powered-off Protection Signal Switches.  
8.3.5 Fail-Safe Logic  
The SN3257-Q1 has Fail-Safe Logic on the control input pins (SELx) which allows for operation up to 5.5 V,  
regardless of the state of the supply pin. This feature allows voltages on the control pins to be applied before the  
supply pin, protecting the device from potential damage. Fail-Safe Logic minimizes system complexity by  
removing the need for power supply sequencing on the logic control pins. For example, the Fail-Safe Logic  
feature allows the select pins of the SN3257-Q1 to be ramped to 5.5 V while VDD = 0 V. Additionally, the feature  
enables operation of the SN3257-Q1 with VDD = 1.5 V while allowing the select pins to interface with a logic level  
of another device up to 5.5 V.  
8.3.6 Integrated Pull-Down Resistors  
The SN3257-Q1 has internal weak pull-down resistors (6 MΩ) to GND to ensure the logic pins are not left  
floating. This feature integrates up to four external components and reduces system size and cost.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: SN3257-Q1  
 
 
 
 
SN3257-Q1  
ZHCSK05D JULY 2019 REVISED OCTOBER 2022  
www.ti.com.cn  
8.4 Device Functional Modes  
The enable (EN) pin is an active-low logic pin that controls the connection between the source (SxA, SxB) and  
drain (Dx) pins of the device. When the enable pin is pulled high, all switches are turned off. When the enable  
pin is pulled low, the select pin controls the signal path selection. The select pin (SEL) controls the state of all  
four channels of the SN3257-Q1 and determines which source pin is connected to the drain pins. When the  
select pin is pulled low, the SxA pin conducts to the corresponding Dx pins. When the select pin is pulled high,  
the SxB pin conducts to the corresponding Dx pins. The SN3257-Q1 logic pins have internal weak pull-down  
resistors (6 MΩ) to GND so that it powers-on in a known state.  
The SN3257-Q1 can be operated without any external components except for the supply decoupling capacitors.  
Unused logic control pins should be tied to GND or VDD to ensure the device does not consume additional  
current as highlighted in Implications of Slow or Floating CMOS Inputs. Unused signal path inputs (SxA, SxB, or  
Dx) should be connected to GND.  
8.4.1 Truth Tables  
8-1. SN3257-Q1 Truth Table  
INPUTS  
Selected Source Pins Connected To Drain Pins  
(Dx)  
EN  
SEL  
S1A connected to D1  
S2A connected to D2  
S3A connected to D3  
S4A connected to D4  
0
0
S1B connected to D1  
S2B connected to D2  
S3B connected to D3  
S4B connected to D4  
0
1
1
X(1)  
Hi-Z (OFF)  
(1) X denotes do not care.  
SN3257-Q1  
S1A  
S1B  
D1  
D2  
D3  
D4  
S2A  
S2B  
S3A  
S3B  
S4A  
S4B  
LOGIC CONTROL*  
SEL  
EN  
*Internal 6MO Pull-Down on Logic Pins  
8-1. SN3257-Q1 Functional Block Diagram  
Copyright © 2022 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: SN3257-Q1  
 
 
 
 
SN3257-Q1  
ZHCSK05D JULY 2019 REVISED OCTOBER 2022  
www.ti.com.cn  
9 Application and Implementation  
备注  
以下应用部分中的信息不属TI 器件规格的范围TI 不担保其准确性和完整性。TI 的客 户应负责确定  
器件是否适用于其应用。客户应验证并测试其设计以确保系统功能。  
9.1 Application Information  
The SN3257-Q1 operates across a wide supply 1.5 V to 5.5 V and operating temperature range  
(40°C to +125°C). The SN3257-Q1 supports a number of features that improve system performance such as  
1.8 V logic compatibility, supports input voltages beyond supply, Fail-Safe Logic, and Powered-off Protetion up  
to 3.6 V. These features reduce system complexity, board size, and overall system cost.  
9.2 Typical Application  
Common applications that require the features of the SN3257-Q1 include multiplexing various protocols from a  
processor or MCU such as SPI, eMMC, I2S, or standard GPIO signals. The SN3257-Q1 provides superior  
isolation performance when the device is powered. The added benefit of powered-off protection allows a system  
to minimize complexity by eliminating the need for power sequencing in hot-swap and live insertion applications.  
9-1 shows how to use the SN3257-Q1 to multiplex an SPI bus to multiple flash memory devices.  
1.8 V  
3.3 V  
3.3 V  
0.1µF  
FLASH Device #1  
VI/O  
VDD  
VDD  
Processor  
S1A  
S2A  
S3A  
S4A  
MISO  
MOSI  
SCLK  
SS  
D1  
D2  
D3  
D4  
RAM  
CPU  
SPI PORT  
FLASH Device #2  
S1B  
S2B  
S3B  
S4B  
MISO  
MOSI  
SCLK  
SS  
Peripherals  
1.8V Logic  
I/O  
SEL  
EN  
GND  
GND  
9-1. Multiplexing Flash Memory  
9.2.1 Design Requirements  
For this design example, use the parameters listed in 9-1.  
9-1. Design Parameters  
PARAMETERS  
VALUES  
3.3 V  
Supply (VDD  
)
Input and Output signals  
Control logic thresholds  
0 V to 3.3 V SPI  
1.8 V compatible  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: SN3257-Q1  
 
 
 
 
 
SN3257-Q1  
ZHCSK05D JULY 2019 REVISED OCTOBER 2022  
www.ti.com.cn  
9.2.2 Detailed Design Procedure  
The SN3257-Q1 can be operated without any external components except for the supply decoupling capacitors.  
The SN3257-Q1 has internal weak pull-down resistors (6 MΩ) to GND so that it powers-on with the switches in  
a known state. All inputs signals passing through the switch must fall within the recommended operating  
conditions of the SN3257-Q1 including signal range and continuous current. This design example can support  
SPI signals that range from 0 V to 3.3 V when the device is powered. This example can also utilize the Powered-  
off Protection feature and the inputs can range from 0 V to 3.6 V when VDD = 0 V. The maximum continuous  
current can be 25 mA. Due to the voltage range and high speed capability, the SN3257-Q1 example is suitable  
for use in SPI, JTAG, and I2S applications.  
9.2.3 Application Curves  
Two important specifications when using a switch or multiplexer to pass signals are the device propagation delay  
and skew.  
100  
90  
Propagation Delay - PW  
80  
70  
Propagation Delay - DYY  
60  
50  
40  
Skew - PW  
30  
Skew - DYY  
20  
10  
0
1.5  
2
2.5  
3
3.5  
4
Supply Voltage (V)  
4.5  
5
5.5  
D020  
9-2. Propagation Delay and Skew Measurement  
10 Power Supply Recommendations  
The SN3257-Q1 operates across a wide supply range of 1.5 V to 5.5 V. Do not exceed the absolute maximum  
ratings because stresses beyond the listed ratings can cause permanent damage to the devices.  
Power-supply bypassing improves noise margin and prevents switching noise propagation from the VDD supply  
to other components. Good power-supply decoupling is important to achieve optimum performance. For  
improved supply noise immunity, use a supply decoupling capacitor ranging from 0.1 μF to 10 μF from the VDD  
to ground. Place the bypass capacitors as close to the power supply pins of the device as possible using low-  
impedance connections. TI recommends using multi-layer ceramic chip capacitors (MLCCs) that offer low  
equivalent series resistance (ESR) and inductance (ESL) characteristics for power-supply decoupling purposes.  
For very sensitive systems, or for systems in harsh noise environments, avoiding the use of vias for connecting  
the capacitors to the device pins may offer superior noise immunity. The use of multiple vias in parallel lowers  
the overall inductance and is beneficial for connections to ground planes.  
Copyright © 2022 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: SN3257-Q1  
 
SN3257-Q1  
ZHCSK05D JULY 2019 REVISED OCTOBER 2022  
www.ti.com.cn  
11 Layout  
11.1 Layout Guidelines  
When a PCB trace turns a corner at a 90° angle, a reflection can occur. A reflection occurs primarily because of  
the change of width of the trace. At the apex of the turn, the trace width increases to 1.414 times the width. This  
increase upsets the transmission-line characteristics, especially the distributed capacitance and selfinductance  
of the trace which results in the reflection. Not all PCB traces can be straight and therefore some traces must  
turn corners. 11-1 shows progressively better techniques of rounding corners. Only the last example (BEST)  
maintains constant trace width and minimizes reflections.  
WORST  
BETTER  
BEST  
2W  
1W min.  
W
11-1. Trace Example  
Route the high-speed signals using a minimum of vias and corners which reduces signal reflections and  
impedance changes. When a via must be used, increase the clearance size around it to minimize its  
capacitance. Each via introduces discontinuities in the signals transmission line and increases the chance of  
picking up interference from the other layers of the board. Be careful when designing test points, through-hole  
pins are not recommended at high frequencies.  
Do not route high speed signal traces under or near crystals, oscillators, clock signal generators, switching  
regulators, mounting holes, magnetic devices or ICs that use or duplicate clock signals.  
Avoid stubs on the high-speed signals traces because they cause signal reflections.  
Route all high-speed signal traces over continuous GND planes, with no interruptions.  
Avoid crossing over anti-etch, commonly found with plane splits.  
When working with high frequencies, a printed circuit board with at least four layers is recommended; two signal  
layers separated by a ground and power layer as shown in 11-2.  
Signal 1  
GND Plane  
Power Plane  
Signal 2  
11-2. Example Layout  
The majority of signal traces must run on a single layer, preferably Signal 1. Immediately next to this layer must  
be the GND plane, which is solid with no cuts. Avoid running signal traces across a split in the ground or power  
plane. When running across split planes is unavoidable, sufficient decoupling must be used. Minimizing the  
number of signal vias reduces EMI by reducing inductance at high frequencies.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: SN3257-Q1  
 
 
 
 
SN3257-Q1  
ZHCSK05D JULY 2019 REVISED OCTOBER 2022  
www.ti.com.cn  
11-3 shows an example of a PCB layout with the SN3257-Q1. Some key considerations are:  
Decouple the VDD pin with a 0.1-μF capacitor, placed as close to the pin as possible. Make sure that the  
capacitor voltage rating is sufficient for the VDD supply.  
High-speed switches require proper layout and design procedures for optimum performance.  
Keep the input lines as short as possible.  
Use a solid ground plane to help reduce electromagnetic interference (EMI) noise pickup.  
Do not run sensitive analog traces in parallel with digital traces. Avoid crossing digital and analog traces if  
possible, and only make perpendicular crossings when necessary.  
11.2 Layout Example  
Wide (low inductance)  
Via to  
trace for power  
GND plane  
C
SEL  
VDD  
EN  
S1A  
S1B  
D1  
S4A  
S4B  
SN3257-Q1  
S2A  
D4  
S3A  
S3B  
D3  
S2B  
D2  
GND  
11-3. Example Layout  
Copyright © 2022 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: SN3257-Q1  
 
 
SN3257-Q1  
ZHCSK05D JULY 2019 REVISED OCTOBER 2022  
www.ti.com.cn  
12 Device and Documentation Support  
12.1 Documentation Support  
12.1.1 Related Documentation  
For related documenation, see the following:  
Texas Instruments, SN3257-Q1 Functional Safety FIT Rate, FMD, and Pin FMA application report  
Texas Instruments, Eliminate Power Sequencing with Powered-off Protection Signal Switches application  
briefs  
Texas Instruments, Simplifying Design with 1.8 V logic Muxes and Switches application brief  
Texas Instruments, System-Level Protection for High-Voltage Analog Multiplexers application reports  
Texas Instruments, Improve Stability Issues with Low CON Multiplexers application brief  
Texas Instruments, High-Speed Interface Layout Guidelines application report  
Texas Instruments, High-Speed Layout Guidelines application report  
12.2 接收文档更新通知  
要接收文档更新通知请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册即可每周接收产品信息更  
改摘要。有关更改的详细信息请查看任何已修订文档中包含的修订历史记录。  
12.3 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
12.4 Trademarks  
TI E2Eis a trademark of Texas Instruments.  
所有商标均为其各自所有者的财产。  
12.5 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
12.6 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
13 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: SN3257-Q1  
 
 
 
 
 
 
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
3-Oct-2022  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
SN3257QDYYRQ1  
SN3257QPWRQ1  
ACTIVE SOT-23-THIN  
DYY  
PW  
16  
16  
3000 RoHS & Green  
2000 RoHS & Green  
NIPDAU  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 125  
-40 to 125  
SN3257  
SN3257  
Samples  
Samples  
ACTIVE  
TSSOP  
NIPDAU  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
3-Oct-2022  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
3-Oct-2022  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
SN3257QDYYRQ1  
SN3257QPWRQ1  
SOT-23-  
THIN  
DYY  
PW  
16  
16  
3000  
2000  
330.0  
12.4  
4.8  
3.6  
1.6  
8.0  
12.0  
Q3  
TSSOP  
330.0  
12.4  
6.9  
5.6  
1.6  
8.0  
12.0  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
3-Oct-2022  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
SN3257QDYYRQ1  
SN3257QPWRQ1  
SOT-23-THIN  
TSSOP  
DYY  
PW  
16  
16  
3000  
2000  
336.6  
356.0  
336.6  
356.0  
31.8  
35.0  
Pack Materials-Page 2  
PACKAGE OUTLINE  
PW0016A  
TSSOP - 1.2 mm max height  
S
C
A
L
E
2
.
5
0
0
SMALL OUTLINE PACKAGE  
SEATING  
PLANE  
C
6.6  
6.2  
TYP  
A
0.1 C  
PIN 1 INDEX AREA  
14X 0.65  
16  
1
2X  
5.1  
4.9  
4.55  
NOTE 3  
8
9
0.30  
16X  
4.5  
4.3  
NOTE 4  
1.2 MAX  
0.19  
B
0.1  
C A B  
(0.15) TYP  
SEE DETAIL A  
0.25  
GAGE PLANE  
0.15  
0.05  
0.75  
0.50  
A
20  
0 -8  
DETAIL A  
TYPICAL  
4220204/A 02/2017  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.15 mm per side.  
4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.  
5. Reference JEDEC registration MO-153.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
PW0016A  
TSSOP - 1.2 mm max height  
SMALL OUTLINE PACKAGE  
SYMM  
16X (1.5)  
(R0.05) TYP  
16  
1
16X (0.45)  
SYMM  
14X (0.65)  
8
9
(5.8)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE: 10X  
METAL UNDER  
SOLDER MASK  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL  
EXPOSED METAL  
EXPOSED METAL  
0.05 MAX  
ALL AROUND  
0.05 MIN  
ALL AROUND  
NON-SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
15.000  
(PREFERRED)  
SOLDER MASK DETAILS  
4220204/A 02/2017  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
PW0016A  
TSSOP - 1.2 mm max height  
SMALL OUTLINE PACKAGE  
16X (1.5)  
SYMM  
(R0.05) TYP  
16  
1
16X (0.45)  
SYMM  
14X (0.65)  
8
9
(5.8)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE: 10X  
4220204/A 02/2017  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
PACKAGE OUTLINE  
SOT-23-THIN - 1.1 mm max height  
PLASTIC SMALL OUTLINE  
DYY0016A  
C
3.36  
3.16  
SEATING PLANE  
PIN 1 INDEX  
AREA  
A
0.1 C  
14X 0.5  
16  
1
4.3  
4.1  
NOTE 3  
2X  
3.5  
8
9
0.31  
16X  
0.11  
0.1  
C A  
B
1.1 MAX  
2.1  
1.9  
B
0.2  
0.08  
TYP  
SEE DETAIL A  
0.25  
GAUGE PLANE  
0°- 8°  
0.1  
0.0  
0.63  
0.33  
DETAIL A  
TYP  
4224642/B 07/2021  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed  
0.15 per side.  
4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.50 per side.  
5. Reference JEDEC Registration MO-345, Variation AA  
www.ti.com  
EXAMPLE BOARD LAYOUT  
SOT-23-THIN - 1.1 mm max height  
PLASTIC SMALL OUTLINE  
DYY0016A  
16X (1.05)  
SYMM  
16  
1
16X (0.3)  
SYMM  
14X (0.5)  
9
8
(R0.05) TYP  
(3)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE: 20X  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
SOLDER MASK  
OPENING  
METAL  
NON- SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4224642/B 07/2021  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
SOT-23-THIN - 1.1 mm max height  
PLASTIC SMALL OUTLINE  
DYY0016A  
16X (1.05)  
SYMM  
16  
1
16X (0.3)  
SYMM  
14X (0.5)  
9
8
(R0.05) TYP  
(3)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE: 20X  
4224642/B 07/2021  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

UL1042

UL1042 - Uk砤d zr體nowa縪nego mieszacza iloczynowego

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

ZXFV201

QUAD VIDEO AMPLIFIER

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ZETEX

ZXFV201N14

IC-SM-VIDEO AMP

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ZETEX

ZXFV201N14TA

QUAD VIDEO AMPLIFIER

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ZETEX

ZXFV201N14TC

QUAD VIDEO AMPLIFIER

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ZETEX

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

ZXFV302N16

IC-SM-4:1 MUX SWITCH

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

ZXFV4089

VIDEO AMPLIFIER WITH DC RESTORATION

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ZETEX

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ZETEX