SN54HC161FH [TI]

暂无描述;
SN54HC161FH
型号: SN54HC161FH
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

暂无描述

计数器
文件: 总14页 (文件大小:203K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
SN54HC161, SN74HC161  
4-BIT SYNCHRONOUS BINARY COUNTERS  
SCLS297A – JANUARY 1996 – REVISED MAY 1997  
SN54HC161 . . . J OR W PACKAGE  
SN74HC161 . . . D OR N PACKAGE  
(TOP VIEW)  
Internal Look-Ahead for Fast Counting  
Carry Output for n-Bit Cascading  
Synchronous Counting  
CLR  
CLK  
A
V
CC  
RCO  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
Synchronously Programmable  
Package Options Include Plastic  
Small-Outline (D) and Ceramic Flat (W)  
Packages, Ceramic Chip Carriers (FK), and  
Standard Plastic (N) and Ceramic (J)  
300-mil DIPs  
Q
A
B
C
D
Q
B
Q
C
Q
D
ENT  
ENP  
GND  
LOAD  
description  
These synchronous, presettable counters feature  
an internal carry look-ahead for application in  
high-speed counting designs. The ’HC161 are  
4-bit binary counters. Synchronous operation is  
provided by having all flip-flops clocked  
simultaneously so that the outputs change  
coincident with each other when so instructed by  
the count-enable (ENP, ENT) inputs and internal  
gating. This mode of operation eliminates the  
output counting spikes that are normally  
associated with synchronous (ripple-clock)  
counters. A buffered clock (CLK) input triggers the  
four flip-flops on the rising (positive-going) edge of  
the clock waveform.  
SN54HC161 . . . FK PACKAGE  
(TOP VIEW)  
3
2
1
20 19  
18  
A
B
Q
Q
4
5
6
7
8
A
B
17  
16  
15  
14  
NC  
C
NC  
Q
Q
C
D
D
9 10 11 12 13  
These counters are fully programmable; that is,  
they can be preset to any number between 0 and  
9 or 15. As presetting is synchronous, setting up  
a low level at the load input disables the counter  
and causes the outputs to agree with the setup  
data after the next clock pulse, regardless of the  
levels of the enable inputs.  
NC – No internal connection  
The clear function for the ’HC161 is asynchronous. A low level at the clear (CLR) input sets all four of the flip-flop  
outputs low, regardless of the levels of the CLK, load (LOAD), or enable inputs.  
The carry look-ahead circuitry provides for cascading counters for n-bit synchronous applications without  
additional gating. Instrumental in accomplishing this function are ENP, ENT, and a ripple-carry output (RCO).  
Both ENP and ENT must be high to count, and ENT is fed forward to enable RCO. Enabling RCO produces a  
high-level pulse while the count is maximum (9 or 15 with Q high). This high-level overflow ripple-carry pulse  
A
can be used to enable successive cascaded stages. Transitions at ENP or ENT are allowed, regardless of the  
level of CLK.  
These counters feature a fully independent clock circuit. Changes at control inputs (ENP, ENT, or LOAD) that  
modify the operating mode have no effect on the contents of the counter until clocking occurs. The function of  
the counter (whether enabled, disabled, loading, or counting) is dictated solely by the conditions meeting the  
stable setup and hold times.  
The SN54HC161 is characterized for operation over the full military temperature range of –55°C to 125°C. The  
SN74HC161 is characterized for operation from –40°C to 85°C.  
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of  
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
Copyright 1997, Texas Instruments Incorporated  
PRODUCTION DATA information is current as of publication date.  
Products conform to specifications per the terms of Texas Instruments  
standard warranty. Production processing does not necessarily include  
testing of all parameters.  
1
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
SN54HC161, SN74HC161  
4-BIT SYNCHRONOUS BINARY COUNTERS  
SCLS297A – JANUARY 1996 – REVISED MAY 1997  
logic symbol  
CTRDIV16  
1
9
CT=0  
CLR  
M1  
M2  
G3  
LOAD  
15  
3CT=15  
RCO  
10  
ENT  
7
2
ENP  
CLK  
G4  
C5/2,3,4+  
3
4
5
6
14  
13  
12  
11  
[1]  
[2]  
[4]  
[8]  
Q
A
A
B
C
D
1,5D  
Q
B
Q
C
Q
D
This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.  
Pin numbers shown are for the D, J, N, and W packages.  
2
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
SN54HC161, SN74HC161  
4-BIT SYNCHRONOUS BINARY COUNTERS  
SCLS297A – JANUARY 1996 – REVISED MAY 1997  
logic diagram (positive logic)  
9
LOAD  
10  
ENT  
15  
RCO  
LD  
7
ENP  
CK  
2
CLK  
CK  
LD  
1
CLR  
R
M1  
G2  
1, 2T/1C3  
14  
13  
Q
Q
A
B
G4  
3D  
4R  
3
A
M1  
G2  
1, 2T/1C3  
G4  
3D  
4R  
4
B
M1  
G2  
1, 2T/1C3  
12  
Q
C
G4  
3D  
4R  
5
C
M1  
G2  
1, 2T/1C3  
11  
Q
D
G4  
3D  
4R  
6
D
For simplicity, routing of complementary signals LD and CK is not shown on this overall logic diagram. The uses of these signals are shown  
on the logic diagram of the D/T flip-flops.  
Pin numbers shown are for the D, J, N, and W packages.  
3
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
SN54HC161, SN74HC161  
4-BIT SYNCHRONOUS BINARY COUNTERS  
SCLS297A – JANUARY 1996 – REVISED MAY 1997  
logic symbol, each D/T flip-flop  
LD (Load)  
M1  
G2  
TE (Toggle Enable)  
CK (Clock)  
1, 2T/1C3  
Q (Output)  
G4  
3D  
4R  
D (Inverted Data)  
R (Inverted Reset)  
logic diagram, each D/T flip-flop (positive logic)  
CK  
LD  
TE  
TG  
TG  
LD  
TG  
Q
TG  
LD  
CK  
D
R
CK  
TG  
TG  
CK  
CK  
The origins of LD and CK are shown in the logic diagram of the overall device.  
4
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
SN54HC161, SN74HC161  
4-BIT SYNCHRONOUS BINARY COUNTERS  
SCLS297A – JANUARY 1996 – REVISED MAY 1997  
typical clear, preset, count, and inhibit sequence  
The following sequence is illustrated below:  
1. Clear outputs to zero (asynchronous)  
2. Preset to binary 12  
3. Count to 13, 14, 15, 0, 1, and 2  
4. Inhibit  
CLR  
LOAD  
A
B
Data  
Inputs  
C
D
CLK  
ENP  
ENT  
Q
A
Q
Q
Q
B
C
D
Data  
Outputs  
RCO  
12  
13  
14  
15  
0
1
2
Count  
Inhibit  
Sync Preset  
Clear  
Async  
Clear  
5
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
SN54HC161, SN74HC161  
4-BIT SYNCHRONOUS BINARY COUNTERS  
SCLS297A – JANUARY 1996 – REVISED MAY 1997  
absolute maximum ratings over operating free-air temperature range  
Supply voltage range, V  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.5 V to 7 V  
CC  
I
Input clamp current, I (V < 0 or V > V ) (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±20 mA  
IK  
I
CC  
Output clamp current, I  
(V < 0 or V > V ) (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±20 mA  
OK  
O O CC  
Continuous output current, I (V = 0 to V ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±25 mA  
Continuous current through V  
Package thermal impedance, θ (see Note 2): D package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113°C/W  
O
O
CC  
CC  
or GND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±50 mA  
JA  
N package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78°C/W  
Storage temperature range, T  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –65°C to 150°C  
stg  
Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and  
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not  
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
NOTES: 1. The input and output voltage ratings may be exceeded if the input and output current ratings are observed.  
2. The package thermal impedance is calculated in accordance with JESD 51, except for through-hole packages, which use a trace  
length of zero.  
recommended operating conditions  
SN54HC161  
MIN NOM  
SN74HC161  
MIN NOM  
UNIT  
MAX  
MAX  
V
V
Supply voltage  
2
1.5  
3.15  
4.2  
0
5
6
2
1.5  
3.15  
4.2  
0
5
6
V
CC  
V
CC  
V
CC  
V
CC  
V
CC  
V
CC  
V
CC  
= 2 V  
High-level input voltage  
= 4.5 V  
= 6 V  
V
V
IH  
= 2 V  
0.5  
1.35  
1.8  
0.5  
1.35  
1.8  
V
IL  
Low-level input voltage  
= 4.5 V  
= 6 V  
0
0
0
0
V
V
Input voltage  
0
V
V
0
V
V
V
V
I
CC  
CC  
Output voltage  
0
0
O
CC  
CC  
V
CC  
V
CC  
V
CC  
= 2 V  
0
1000  
500  
400  
125  
0
1000  
500  
400  
85  
t
Input transition (rise and fall) time  
Operating free-air temperature  
= 4.5 V  
= 6 V  
0
0
ns  
t
0
0
T
A
–55  
–40  
°C  
If this device is used in the threshold region (from V max = 0.5 V to V min = 1.5 V), there is a potential to go into the wrong state from induced  
IL IH  
grounding, causing double clocking. Operating with the inputs at t = 1000 ns and V  
= 2 V does not damage the device; however, functionally,  
t
CC  
the CLK inputs are not ensured while in the shift, count, or toggle operating modes.  
6
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
SN54HC161, SN74HC161  
4-BIT SYNCHRONOUS BINARY COUNTERS  
SCLS297A – JANUARY 1996 – REVISED MAY 1997  
electrical characteristics over recommended operating free-air temperature range (unless  
otherwise noted)  
T
= 25°C  
SN54HC161  
SN74HC161  
A
PARAMETER  
TEST CONDITIONS  
V
UNIT  
CC  
MIN  
TYP  
MAX  
MIN  
1.9  
4.4  
5.9  
3.7  
5.2  
MAX  
MIN  
1.9  
MAX  
2 V  
4.5 V  
6 V  
1.9 1.998  
4.4 4.499  
5.9 5.999  
I
= –20 µA  
4.4  
OH  
V
V = V or V  
IH  
5.9  
V
OH  
OL  
I
IL  
IL  
I
I
= –4 mA  
4.5 V  
6 V  
3.98  
5.48  
4.3  
5.8  
3.84  
5.34  
OH  
= –5.2 mA  
OH  
2 V  
0.002  
0.001  
0.001  
0.17  
0.1  
0.1  
0.1  
0.1  
0.1  
0.1  
I
= 20 µA  
4.5 V  
6 V  
OL  
V
V = V or V  
0.1  
0.1  
0.1  
V
I
IH  
I
I
= 4 mA  
4.5 V  
6 V  
0.26  
0.26  
±100  
8
0.4  
0.33  
0.33  
±1000  
80  
OL  
= 5.2 mA  
0.15  
0.4  
OL  
I
I
V = V  
I
or 0  
6 V  
±0.1  
±1000  
160  
10  
nA  
µA  
pF  
I
CC  
CC  
V = V  
I
or 0,  
I
O
= 0  
6 V  
CC  
C
2 V to 6 V  
3
10  
10  
i
timing requirements over recommended operating free-air temperature range (unless otherwise  
noted)  
T
= 25°C  
SN54HC161  
SN74HC161  
A
V
UNIT  
CC  
MIN  
0
MAX  
6
MIN  
0
MAX  
4.2  
21  
MIN  
0
MAX  
5
2 V  
4.5 V  
6 V  
f
Clock frequency  
Pulse duration  
0
31  
0
0
25  
MHz  
clock  
0
36  
0
25  
0
29  
2 V  
80  
16  
14  
80  
16  
14  
150  
30  
26  
135  
27  
23  
170  
34  
29  
125  
25  
21  
0
120  
24  
20  
120  
24  
20  
225  
45  
38  
205  
41  
35  
255  
51  
43  
190  
38  
32  
0
100  
20  
17  
100  
20  
17  
190  
38  
32  
170  
34  
29  
215  
43  
37  
155  
31  
26  
0
CLK high or low  
CLR low  
4.5 V  
6 V  
t
w
ns  
2 V  
4.5 V  
6 V  
2 V  
A, B, C, or D  
LOAD low  
4.5 V  
6 V  
2 V  
4.5 V  
6 V  
t
su  
Setup time before CLK↑  
ns  
2 V  
ENP, ENT  
4.5 V  
6 V  
2 V  
CLR inactive  
4.5 V  
6 V  
2 V  
t
h
Hold time, all synchronous inputs after CLK↑  
4.5 V  
6 V  
0
0
0
ns  
0
0
0
7
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
SN54HC161, SN74HC161  
4-BIT SYNCHRONOUS BINARY COUNTERS  
SCLS297A – JANUARY 1996 – REVISED MAY 1997  
switching characteristics over recommended operating free-air temperature range, C = 50 pF  
L
(unless otherwise noted) (see Figure 1)  
T
A
= 25°C  
TYP  
14  
SN54HC161  
SN74HC161  
FROM  
(INPUT)  
TO  
(OUTPUT)  
PARAMETER  
V
UNIT  
CC  
MIN  
6
MAX  
MIN  
4.2  
21  
MAX  
MIN  
5
MAX  
2 V  
4.5 V  
6 V  
f
max  
31  
36  
40  
25  
29  
MHz  
44  
25  
2 V  
83  
215  
43  
325  
65  
270  
54  
RCO  
Any Q  
RCO  
Any Q  
RCO  
Any  
4.5 V  
6 V  
24  
20  
37  
55  
46  
CLK  
ENT  
CLR  
2 V  
80  
205  
41  
310  
62  
255  
51  
t
pd  
4.5 V  
6 V  
25  
ns  
21  
35  
53  
43  
2 V  
62  
195  
39  
295  
59  
245  
49  
4.5 V  
6 V  
17  
14  
33  
50  
42  
2 V  
105  
21  
210  
42  
315  
63  
265  
53  
4.5 V  
6 V  
18  
36  
54  
45  
t
t
ns  
ns  
PHL  
2 V  
110  
22  
220  
44  
330  
66  
275  
55  
4.5 V  
6 V  
19  
37  
56  
47  
2 V  
38  
75  
110  
22  
95  
4.5 V  
6 V  
8
15  
19  
t
6
13  
19  
16  
operating characteristics, T = 25°C  
A
PARAMETER  
TEST CONDITIONS  
TYP  
UNIT  
C
Power dissipation capacitance  
No load  
60  
pF  
pd  
8
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
SN54HC161, SN74HC161  
4-BIT SYNCHRONOUS BINARY COUNTERS  
SCLS297A – JANUARY 1996 – REVISED MAY 1997  
PARAMETER MEASUREMENT INFORMATION  
V
CC  
High-Level  
Pulse  
50%  
50%  
50%  
From Output  
Under Test  
Test  
Point  
0 V  
t
w
C
= 50 pF  
L
V
CC  
Low-Level  
Pulse  
(see Note A)  
50%  
0 V  
LOAD CIRCUIT  
VOLTAGE WAVEFORMS  
PULSE DURATIONS  
V
CC  
Input  
50%  
50%  
0 V  
V
t
t
PLH  
PHL  
90%  
V
CC  
OH  
In-Phase  
Output  
Reference  
Input  
90%  
t
50%  
50%  
10%  
50%  
10%  
V
OL  
0 V  
V
t
r
f
f
t
t
h
su  
t
t
PLH  
PHL  
90%  
V
CC  
OH  
OL  
Data  
Input  
90%  
90%  
90%  
t
Out-of-Phase  
Output  
50%  
10%  
50%  
10%  
50%  
10%  
50%  
10%  
0 V  
V
t
t
t
r
r
f
VOLTAGE WAVEFORMS  
SETUP AND HOLD AND INPUT RISE AND FALL TIMES  
VOLTAGE WAVEFORMS  
PROPAGATION DELAY AND OUTPUT TRANSITION TIMES  
NOTES: A.  
B. Phase relationships between waveforms were chosen arbitrarily. All input pulses are supplied by generators having the following  
characteristics: PRR 1 MHz, Z = 50 , t = 6 ns, t = 6 ns.  
C includes probe and test-fixture capacitance.  
L
O
r
f
C. For clock inputs, f  
is measured when the input duty cycle is 50%.  
max  
D. The outputs are measured one at a time with one input transition per measurement.  
E. and t are the same as t  
t
.
pd  
PLH  
PHL  
Figure 1. Load Circuit and Voltage Waveforms  
9
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
SN54HC161, SN74HC161  
4-BIT SYNCHRONOUS BINARY COUNTERS  
SCLS297A – JANUARY 1996 – REVISED MAY 1997  
APPLICATION INFORMATION  
n-bit synchronous counters  
This application demonstrates how the look-ahead carry circuit can be used to implement a high-speed n-bit  
counter. The ’HC161 count in binary. Virtually any count mode (modulo-N, N -to-N , N -to-maximum) can be  
1
2
1
used with this fast look-ahead circuit.  
The application circuit shown in Figure 2 is not valid for clock frequencies above 18 MHz (at 25°C and  
4.5-V V ). The reason for this is that there is a glitch that is produced on the second stage’s RCO and every  
CC  
succeeding stage’s RCO. This glitch is common to all HC vendors that Texas Instruments has evaluated, in  
addition to the bipolar equivalents (LS, ALS, AS).  
10  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
SN54HC161, SN74HC161  
4-BIT SYNCHRONOUS BINARY COUNTERS  
SCLS297A – JANUARY 1996 – REVISED MAY 1997  
LSB  
CTR  
CLR  
Clear (L)  
CT=0  
LOAD  
ENT  
M1  
G3  
RCO  
RCO  
RCO  
RCO  
3CT=MAX  
Count (H)/  
Disable (L)  
ENP  
CLK  
G4  
C5/2,3,4+  
Load (L)  
[1]  
[2]  
[3]  
[4]  
A
B
C
D
1,5D  
Q
Q
Q
Q
A
B
C
D
Count (H)/  
Disable (L)  
Clock  
CTR  
CLR  
LOAD  
ENT  
CT=0  
M1  
3CT=MAX  
G3  
ENP  
CLK  
G4  
C5/2,3,4+  
[1]  
[2]  
[3]  
[4]  
A
B
C
D
1,5D  
Q
Q
Q
Q
A
B
C
D
CTR  
CLR  
LOAD  
ENT  
CT=0  
M1  
3CT=MAX  
G3  
ENP  
CLK  
G4  
C5/2,3,4+  
[1]  
[2]  
[3]  
[4]  
A
B
C
D
1,5D  
Q
Q
Q
Q
A
B
C
D
CTR  
CLR  
CT=0  
M1  
LOAD  
ENT  
3CT=MAX  
G3  
ENP  
CLK  
G4  
C5/2,3,4+  
A
B
C
D
1,5D [1]  
Q
Q
Q
Q
A
B
C
D
[2]  
[3]  
[4]  
To More Significant Stages  
Figure 2  
11  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
SN54HC161, SN74HC161  
4-BIT SYNCHRONOUS BINARY COUNTERS  
SCLS297A – JANUARY 1996 – REVISED MAY 1997  
The glitch on RCO is caused because the propagation delay of the rising edge of Q of the second stage is  
A
shorter than the propagation delay of the falling edge of ENT. RCO is the product of ENT, Q , Q , Q , and Q  
A
B
C
D
(ENT × Q × Q × Q × Q ). The resulting glitch is about 7–12 ns in duration. Figure 3 shows the condition in  
A
B
C
D
which the glitch occurs. For simplicity, only two stages are being considered, but the results can be applied to  
other stages. Q , Q , and Q of the first and second stage are at logic one, and Q of both stages are at logic  
B
C
D
A
zero (1110 1110) after the first clock pulse. On the rising edge of the second clock pulse, Q and RCO of the  
A
first stage go high. On the rising edge of the third clock pulse, Q and RCO of the first stage return to a low level,  
A
and Q of the second stage goes to a high level. At this time, the glitch on RCO of the second stage appears  
A
because of the race condition inside the chip.  
1
2
3
4
5
CLK  
ENT1  
Q
, Q , Q  
B1 C1 D1  
Q
A1  
RCO1, ENT2  
Q
, Q , Q  
B2 C2 D2  
Q
A2  
RCO2  
Glitch (7–12 ns)  
Figure 3  
The glitch causes a problem in the next stage (stage three) if the glitch is still present when the next rising clock  
edge appears (clock pulse 4). To ensure that this does not happen, the clock frequency must be less than the  
inverse of the sum of the clock-to-RCO propagation delay and the glitch duration (t ). In other words,  
g
f
= 1/(t CLK-to-RCO + t ). For example, at 25°C at 4.5-V V , the clock-to-RCO propagation delay is  
max  
pd g CC  
43 ns and the maximum duration of the glitch is 12 ns. Therefore, the maximum clock frequency that the  
cascaded counters can use is 18 MHz. The following tables contain the f  
applications that use more than two ’HC161 devices cascaded together.  
, t , and f  
specifications for  
clock  
w
max  
12  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
SN54HC161, SN74HC161  
4-BIT SYNCHRONOUS BINARY COUNTERS  
SCLS297A – JANUARY 1996 – REVISED MAY 1997  
timing requirements over recommended operating free-air temperature range (unless otherwise  
noted)  
T
= 25°C  
SN54HC161  
SN74HC161  
A
V
UNIT  
CC  
MIN  
0
MAX  
3.6  
18  
MIN  
0
MAX  
2.5  
12  
MIN  
0
MAX  
2.9  
14  
2 V  
4.5 V  
6 V  
f
t
Clock frequency  
0
0
0
MHz  
clock  
0
21  
0
14  
0
17  
2 V  
140  
28  
24  
200  
40  
36  
170  
36  
30  
Pulse duration, CLK high or low  
4.5 V  
6 V  
ns  
w
switching characteristics over recommended operating free-air temperature range, C = 50 pF  
L
(unless otherwise noted) (see Note 3)  
T = 25°C  
A
SN54HC161  
SN74HC161  
FROM  
(INPUT)  
TO  
(OUTPUT)  
PARAMETER  
V
UNIT  
CC  
MIN  
3.6  
18  
MAX  
MIN  
2.5  
12  
MAX  
MIN  
2.9  
14  
MAX  
2 V  
4.5 V  
6 V  
f
MHz  
max  
21  
14  
17  
NOTE 3: These limits apply only to applications that use more than two ’HC161 devices cascaded together.  
If the ’HC161 are used as a single unit, or only two cascaded together, then the maximum clock frequency that  
the device can use is not limited because of the glitch. In these situations, the device can be operated at the  
maximum specifications.  
A glitch can appear on RCO of a single ’HC161 device, depending on the relationship of ENT to CLK. Any  
application that uses RCO to drive any input except an ENT of another cascaded ’HC161 must take this  
into consideration.  
13  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
IMPORTANT NOTICE  
Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue  
any product or service without notice, and advise customers to obtain the latest version of relevant information  
to verify, before placing orders, that information being relied on is current and complete. All products are sold  
subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those  
pertaining to warranty, patent infringement, and limitation of liability.  
TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in  
accordance with TI’s standard warranty. Testing and other quality control techniques are utilized to the extent  
TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily  
performed, except those mandated by government requirements.  
CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF  
DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE (“CRITICAL  
APPLICATIONS”). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR  
WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER  
CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO  
BE FULLY AT THE CUSTOMER’S RISK.  
In order to minimize risks associated with the customer’s applications, adequate design and operating  
safeguards must be provided by the customer to minimize inherent or procedural hazards.  
TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent  
that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other  
intellectual property right of TI covering or relating to any combination, machine, or process in which such  
semiconductor products or services might be or are used. TI’s publication of information regarding any third  
party’s products or services does not constitute TI’s approval, warranty or endorsement thereof.  
Copyright 1998, Texas Instruments Incorporated  

相关型号:

SN54HC161FK

4-BIT SYNCHRONOUS BINARY COUNTERS
TI

SN54HC161FK

Binary Counter, HC/UH Series, Synchronous, Positive Edge Triggered, 4-Bit, Up Direction, CMOS, CQCC20, CERAMIC, LCC-20
ROCHESTER

SN54HC161FK-00

HC/UH SERIES, SYN POSITIVE EDGE TRIGGERED 4-BIT UP BINARY COUNTER, CQCC20
TI

SN54HC161FKR

HC/UH SERIES, SYN POSITIVE EDGE TRIGGERED 4-BIT UP BINARY COUNTER, CQCC20, CERAMIC, LCC-20
TI

SN54HC161J

4-BIT SYNCHRONOUS BINARY COUNTERS
TI

SN54HC161J-00

HC/UH SERIES, SYN POSITIVE EDGE TRIGGERED 4-BIT UP BINARY COUNTER, CDIP16
TI

SN54HC161W

4-BIT SYNCHRONOUS BINARY COUNTERS
TI

SN54HC161WR

暂无描述
TI

SN54HC162

SYNCHRONOUS 4-BIT DECADE AND BINARY COUNTERS
TI

SN54HC162FH

IC,COUNTER,UP,DECADE,HC-CMOS,LLCC,20PIN,CERAMIC
TI

SN54HC162FK

HC/UH SERIES, SYN POSITIVE EDGE TRIGGERED 4-BIT UP DECADE COUNTER, CQCC20, CERAMIC, LCC-20
TI

SN54HC162FK-00

HC/UH SERIES, SYN POSITIVE EDGE TRIGGERED 4-BIT UP DECADE COUNTER, CQCC20
TI