SN54LVTH18504A_12 [TI]

3.3-V ABT SCAN TEST DEVICES WITH 20-BIT UNIVERSAL BUS TRANSCEIVERS;
SN54LVTH18504A_12
型号: SN54LVTH18504A_12
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

3.3-V ABT SCAN TEST DEVICES WITH 20-BIT UNIVERSAL BUS TRANSCEIVERS

文件: 总35页 (文件大小:544K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
SN54LVTH18504A, SN54LVTH182504A, SN74LVTH18504A, SN74LVTH182504A  
3.3-V ABT SCAN TEST DEVICES  
WITH 20-BIT UNIVERSAL BUS TRANSCEIVERS  
SCBS667B – JULY 1996 – REVISED JUNE 1997  
Members of the Texas Instruments  
SCOPE Family of Testability Products  
Compatible With the IEEE Std 1149.1-1990  
(JTAG) Test Access Port and  
Boundary-Scan Architecture  
Members of the Texas Instruments  
Widebus Family  
SCOPE Instruction Set  
– IEEE Std 1149.1-1990 Required  
Instructions and Optional CLAMP and  
HIGHZ  
– Parallel-Signature Analysis at Inputs  
– Pseudo-Random Pattern Generation  
From Outputs  
State-of-the-Art 3.3-V ABT Design Supports  
Mixed-Mode Signal Operation (5-V Input  
and Output Voltages With 3.3-V V  
)
CC  
Support Unregulated Battery Operation  
Down to 2.7 V  
UBT (Universal Bus Transceiver)  
Combines D-Type Latches and D-Type  
Flip-Flops for Operation in Transparent,  
Latched, or Clocked Mode  
– Sample Inputs/Toggle Outputs  
– Binary Count From Outputs  
– Device Identification  
– Even-Parity Opcodes  
Bus Hold on Data Inputs Eliminates the  
Need for External Pullup/Pulldown  
Resistors  
Packaged in 64-Pin Plastic Thin Quad Flat  
(PM) Packages Using 0.5-mm  
Center-to-Center Spacings and 68-Pin  
Ceramic Quad Flat (HV) Packages Using  
25-mil Center-to-Center Spacings  
B-Port Outputs of ’LVTH182504A Devices  
Have Equivalent 25-Series Resistors, So  
No External Resistors Are Required  
description  
The ’LVTH18504A and ’LVTH182504A scan test devices with 20-bit universal bus transceivers are members  
of the Texas Instruments (TI) SCOPE testability integrated-circuit family. This family of devices supports  
IEEE Std 1149.1-1990 boundary scan to facilitate testing of complex circuit-board assemblies. Scan access to  
the test circuitry is accomplished via the 4-wire test access port (TAP) interface.  
Additionally, these devices are designed specifically for low-voltage (3.3-V) V  
capability to provide a TTL interface to a 5-V system environment.  
operation, but with the  
CC  
In the normal mode, these devices are 20-bit universal bus transceivers that combine D-type latches and D-type  
flip-flops to allow data flow in transparent, latched, or clocked modes. The test circuitry can be activated by the  
TAP to take snapshot samples of the data appearing at the device pins or to perform a self-test on the  
boundary-test cells. Activating the TAP in the normal mode does not affect the functional operation of the  
SCOPE universal bus transceivers.  
Data flow in each direction is controlled by output-enable (OEAB and OEBA), latch-enable (LEAB and LEBA),  
clock-enable (CLKENAB and CLKENBA), and clock (CLKAB and CLKBA) inputs. For A-to-B data flow, the  
device operates in the transparent mode when LEAB is high. When LEAB is low, the A-bus data is latched while  
CLKENAB is high and/or CLKAB is held at a static low or high logic level. Otherwise, if LEAB is low and  
CLKENAB is low, A-bus data is stored on a low-to-high transition of CLKAB. When OEAB is low, the B outputs  
are active. When OEAB is high, the B outputs are in the high-impedance state. B-to-A data flow is similar to  
A-to-B data flow, but uses the OEBA, LEBA, CLKENBA, and CLKBA inputs.  
Inthetestmode, thenormaloperationoftheSCOPEuniversalbustransceiversisinhibited, andthetestcircuitry  
is enabled to observe and control the I/O boundary of the device. When enabled, the test circuitry performs  
boundary-scan test operations according to the protocol described in IEEE Std 1149.1-1990.  
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of  
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
SCOPE, UBT, and Widebus are trademarks of Texas Instruments Incorporated.  
Copyright 1997, Texas Instruments Incorporated  
UNLESS OTHERWISE NOTED this document contains PRODUCTION  
DATA information current as of publication date. Products conform to  
specifications per the terms of Texas Instruments standard warranty.  
Production processing does not necessarily include testing of all  
parameters.  
1
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
SN54LVTH18504A, SN54LVTH182504A, SN74LVTH18504A, SN74LVTH182504A  
3.3-V ABT SCAN TEST DEVICES  
WITH 20-BIT UNIVERSAL BUS TRANSCEIVERS  
SCBS667B – JULY 1996 – REVISED JUNE 1997  
description (continued)  
Four dedicated test pins are used to observe and control the operation of the test circuitry: test data input (TDI),  
test data output (TDO), test mode select (TMS), and test clock (TCK). Additionally, the test circuitry performs  
other testing functions, such as parallel-signature analysis (PSA) on data inputs and pseudo-random pattern  
generation (PRPG) from data outputs. All testing and scan operations are synchronized to the TAP interface.  
Active bus-hold circuitry is provided to hold unused or floating data inputs at a valid logic level.  
TheB-portoutputsofLVTH182504A, whicharedesignedtosourceorsinkupto12mA, includeequivalent25-Ω  
series resistors to reduce overshoot and undershoot.  
The SN54LVTH18504A and SN54LVTH182504A are characterized for operation over the full military  
temperature range of –55°C to 125°C. The SN74LVTH18504A and SN74LVTH182504A are characterized for  
operation from –40°C to 85°C.  
SN54LVTH18504A, SN54LVTH182504A . . . HV PACKAGE  
(TOP VIEW)  
9
8
7
6
5
4
3
2 1 68 67 66 65 64 63 62 61  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
A4  
A5  
A6  
GND  
A7  
A8  
A9  
A10  
NC  
B5  
B6  
B7  
GND  
B8  
B9  
B10  
V
CC  
NC  
V
B11  
B12  
B13  
B14  
GND  
B15  
B16  
B17  
CC  
A11  
A12  
A13  
GND  
A14  
A15  
A16  
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43  
NC – No internal connection  
2
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
SN54LVTH18504A, SN54LVTH182504A, SN74LVTH18504A, SN74LVTH182504A  
3.3-V ABT SCAN TEST DEVICES  
WITH 20-BIT UNIVERSAL BUS TRANSCEIVERS  
SCBS667B – JULY 1996 – REVISED JUNE 1997  
SN74LVTH18504A, SN74LVTH182504A . . . PM PACKAGE  
(TOP VIEW)  
64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49  
A4  
A5  
A6  
GND  
A7  
A8  
B5  
B6  
B7  
GND  
B8  
1
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
2
3
4
5
6
B9  
B10  
A9  
A10  
7
8
V
CC  
9
V
B11  
B12  
B13  
B14  
GND  
B15  
B16  
B17  
CC  
10  
11  
12  
13  
14  
15  
16  
A11  
A12  
A13  
GND  
A14  
A15  
A16  
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32  
FUNCTION TABLE  
(normal mode, each register)  
INPUTS  
OUTPUT  
B
OEAB  
LEAB CLKENAB CLKAB  
A
L
L
L
L
L
L
H
L
L
L
L
L
X
L
B
0
L
L
L
H
X
L
H
L
H
X
X
X
X
X
X
X
B
0
L
H
H
X
H
X
H
Z
A-to-B data flow is shown. B-to-A data flow is similar, but uses  
OEBA, LEBA, CLKENBA, and CLKBA.  
Output level before the indicated steady-state input conditions were  
established  
3
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
SN54LVTH18504A, SN54LVTH182504A, SN74LVTH18504A, SN74LVTH182504A  
3.3-V ABT SCAN TEST DEVICES  
WITH 20-BIT UNIVERSAL BUS TRANSCEIVERS  
SCBS667B – JULY 1996 – REVISED JUNE 1997  
functional block diagram  
Boundary-Scan Register  
22  
CLKENAB  
27  
LEAB  
23  
CLKAB  
V
CC  
28  
OEAB  
54  
59  
CLKENBA  
LEBA  
55  
CLKBA  
OEBA  
V
CC  
60  
C1  
1D  
C1  
1D  
62  
53  
A1  
B1  
C1  
C1  
1D  
1D  
1 of 20 Channels  
Bypass Register  
Boundary-Control  
Register  
Identification  
Register  
V
58  
CC  
TDO  
Instruction  
Register  
24  
TDI  
TMS  
TCK  
V
CC  
56  
TAP  
Controller  
26  
Pin numbers shown are for the PM package.  
4
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
SN54LVTH18504A, SN54LVTH182504A, SN74LVTH18504A, SN74LVTH182504A  
3.3-V ABT SCAN TEST DEVICES  
WITH 20-BIT UNIVERSAL BUS TRANSCEIVERS  
SCBS667B – JULY 1996 – REVISED JUNE 1997  
Terminal Functions  
TERMINAL NAME  
A1–A20  
DESCRIPTION  
Normal-function A-bus I/O ports. See function table for normal-mode logic.  
Normal-function B-bus I/O ports. See function table for normal-mode logic.  
Normal-function clock inputs. See function table for normal-mode logic.  
B1–B20  
CLKAB, CLKBA  
CLKENAB, CLKENBA  
GND  
Normal-function clock enables. See function table for normal-mode logic.  
Ground  
LEAB, LEBA  
Normal-function latch enables. See function table for normal-mode logic.  
Normal-functionoutput enables. See function table for normal-mode logic. An internal pullup at each terminal forces  
the terminal to a high level if left unconnected.  
OEAB, OEBA  
TCK  
Test clock. One of four terminals required by IEEE Std 1149.1-1990. Test operations of the device are synchronous  
to TCK. Data is captured on the rising edge of TCK and outputs change on the falling edge of TCK.  
Test data input. One of four terminals required by IEEE Std 1149.1-1990. TDI is the serial input for shifting data  
through the instruction register or selected data register. An internal pullup forces TDI to a high level if left  
unconnected.  
TDI  
Test data output. One of four terminals required by IEEE Std 1149.1-1990. TDO is the serial output for shifting data  
through the instruction register or selected data register.  
TDO  
TMS  
Test mode select. One of four terminals required by IEEE Std 1149.1-1990. TMS directs the device through its TAP  
controller states. An internal pullup forces TMS to a high level if left unconnected.  
V
CC  
Supply voltage  
5
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
SN54LVTH18504A, SN54LVTH182504A, SN74LVTH18504A, SN74LVTH182504A  
3.3-V ABT SCAN TEST DEVICES  
WITH 20-BIT UNIVERSAL BUS TRANSCEIVERS  
SCBS667B – JULY 1996 – REVISED JUNE 1997  
test architecture  
Serial-testinformationisconveyedbymeansofa4-wiretestbusorTAPthatconformstoIEEEStd1149.1-1990.  
Test instructions, test data, and test control signals are passed along this serial-test bus. The TAP controller  
monitors two signals from the test bus: TCK and TMS. The TAP controller extracts the synchronization (TCK)  
and state control (TMS) signals from the test bus and generates the appropriate on-chip control signals for the  
test structures in the device. Figure 1 shows the TAP-controller state diagram.  
The TAP controller is fully synchronous to the TCK signal. Input data is captured on the rising edge of TCK and  
output data changes on the falling edge of TCK. This scheme ensures data to be captured is valid for fully  
one-half of the TCK cycle.  
The functional block diagram shows the IEEE Std 1149.1-1990 4-wire test bus and boundary-scan architecture  
and the relationships of the test bus, the TAP controller, and the test registers. As shown, the device contains  
an 8-bit instruction register and four test data registers: a 48-bit boundary-scan register, a 3-bitboundary-control  
register, a 1-bit bypass register, and a 32-bit device-identification register.  
Test-Logic-Reset  
TMS = L  
TMS = H  
TMS = H  
TMS = H  
TMS = H  
Run-Test/Idle  
Select-DR-Scan  
TMS = L  
Select-IR-Scan  
TMS = L  
TMS = L  
TMS = H  
TMS = H  
Capture-DR  
TMS = L  
Capture-IR  
TMS = L  
Shift-DR  
Shift-IR  
TMS = L  
TMS = L  
TMS = H  
TMS = H  
TMS = H  
Exit1-IR  
TMS = H  
Exit1-DR  
TMS = L  
TMS = L  
Pause-DR  
TMS = H  
Pause-IR  
TMS = H  
Exit2-IR  
TMS = L  
TMS = L  
TMS = L  
TMS = L  
Exit2-DR  
TMS = H  
TMS = H  
Update-DR  
Update-IR  
TMS = H  
TMS = L  
TMS = H  
TMS = L  
Figure 1. TAP-Controller State Diagram  
6
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
SN54LVTH18504A, SN54LVTH182504A, SN74LVTH18504A, SN74LVTH182504A  
3.3-V ABT SCAN TEST DEVICES  
WITH 20-BIT UNIVERSAL BUS TRANSCEIVERS  
SCBS667B – JULY 1996 – REVISED JUNE 1997  
state diagram description  
The TAP controller is a synchronous finite-state machine that provides test control signals throughout the  
device. The state diagram shown in Figure 1 is in accordance with IEEE Std 1149.1-1990. The TAP controller  
proceeds through its states, based on the level of TMS at the rising edge of TCK.  
As shown, the TAP controller consists of 16 states. There are six stable states (indicated by a looping arrow in  
the state diagram) and ten unstable states. A stable state is defined as a state the TAP controller can retain for  
consecutive TCK cycles. Any state that does not meet this criterion is an unstable state.  
There are two main paths through the state diagram: one to access and control the selected data register and  
one to access and control the instruction register. Only one register at a time can be accessed.  
Test-Logic-Reset  
The device powers up in the Test-Logic-Reset state. In the stable Test-Logic-Reset state, the test logic is reset  
and is disabled so that the normal logic function of the device is performed. The instruction register is reset to  
an opcode that selects the optional IDCODE instruction, if supported, or the BYPASS instruction. Certain data  
registers also can be reset to their power-up values.  
The state machine is constructed such that the TAP controller returns to the Test-Logic-Reset state in no more  
than five TCK cycles if TMS is left high. The TMS pin has an internal pullup resistor that forces it high if left  
unconnected or if a board defect causes it to be open circuited.  
For the ’LVTH18504A and ’LVTH182504A, the instruction register is reset to the binary value 10000001, which  
selects the IDCODE instruction. Bits 47–46 in the boundary-scan register are reset to logic 1, ensuring that  
these cells, which control A-port and B-port outputs, are set to benign values (i.e., if test mode were invoked,  
the outputs would be at high-impedance state). Reset values of other bits in the boundary-scan register should  
be considered indeterminate. The boundary-control register is reset to the binary value 010, which selects the  
PSA test operation.  
Run-Test/Idle  
The TAP controller must pass through the Run-Test/Idle state (from Test-Logic-Reset) before executing any test  
operations. The Run-Test/Idle state also can be entered following data-register or instruction-register scans.  
Run-Test/Idle is a stable state in which the test logic can be actively running a test or can be idle. The test  
operations selected by the boundary-control register are performed while the TAP controller is in the  
Run-Test/Idle state.  
Select-DR-Scan, Select-lR-Scan  
No specific function is performed in the Select-DR-Scan and Select-lR-Scan states, and the TAP controller exits  
either of these states on the next TCK cycle. These states allow the selection of either data-register scan or  
instruction-register scan.  
Capture-DR  
When a data-register scan is selected, the TAP controller must pass through the Capture-DR state. In the  
Capture-DR state, the selected data register can capture a data value as specified by the current instruction.  
Such capture operations occur on the rising edge of TCK, upon which the TAP controller exits the  
Capture-DR state.  
7
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
SN54LVTH18504A, SN54LVTH182504A, SN74LVTH18504A, SN74LVTH182504A  
3.3-V ABT SCAN TEST DEVICES  
WITH 20-BIT UNIVERSAL BUS TRANSCEIVERS  
SCBS667B – JULY 1996 – REVISED JUNE 1997  
Shift-DR  
Upon entry to the Shift-DR state, the data register is placed in the scan path between TDI and TDO. On the first  
falling edge of TCK, TDO goes from the high-impedance state to an active state. TDO enables to the logic level  
present in the least-significant bit of the selected data register.  
While in the stable Shift-DR state, data is serially shifted through the selected data register on each TCK cycle.  
The first shift occurs on the first rising edge of TCK after entry to the Shift-DR state (i.e., no shifting occurs during  
the TCK cycle, in which the TAP controller changes from Capture-DR to Shift-DR or from Exit2-DR to Shift-DR).  
The last shift occurs on the rising edge of TCK, upon which the TAP controller exits the Shift-DR state.  
Exit1-DR, Exit2-DR  
The Exit1-DR and Exit2-DR states are temporary states that end a data-register scan. It is possible to return  
to the Shift-DR state from either Exit1-DR or Exit2-DR without recapturing the data register. On the first falling  
edge of TCK after entry to Exit1-DR, TDO goes from the active state to the high-impedance state.  
Pause-DR  
No specific function is performed in the stable Pause-DR state, in which the TAP controller can remain  
indefinitely. The Pause-DR state suspends and resumes data-register scan operations without loss of data.  
Update-DR  
If the current instruction calls for the selected data register to be updated with current data, such updates occur  
on the falling edge of TCK, following entry to the Update-DR state.  
Capture-IR  
When an instruction-register scan is selected, the TAP controller must pass through the Capture-IR state. In  
the Capture-IR state, the instruction register captures its current status value. This capture operation occurs  
on the rising edge of TCK, upon which the TAP controller exits the Capture-IR state. For the ’LVTH18504A and  
’LVTH182504A, the status value loaded in the Capture-IR state is the fixed binary value 10000001.  
Shift-IR  
Upon entry to the Shift-IR state, the instruction register is placed in the scan path between TDI and TDO. On  
the first falling edge of TCK, TDO goes from the high-impedance state to the active state. TDO enables to the  
logic level present in the least-significant bit of the instruction register.  
While in the stable Shift-IR state, instruction data is serially shifted through the instruction register on each TCK  
cycle. The first shift occurs on the first rising edge of TCK after entry to the Shift-IR state (i.e., no shifting occurs  
during the TCK cycle in which the TAP controller changes from Capture-IR to Shift-IR or from Exit2-IR to  
Shift-IR). The last shift occurs on the rising edge of TCK, upon which the TAP controller exits the Shift-IR state.  
Exit1-IR, Exit2-IR  
The Exit1-IR and Exit2-IR states are temporary states that end an instruction-register scan. It is possible to  
return to the Shift-IR state from either Exit1-IR or Exit2-IR without recapturing the instruction register. On the  
first falling edge of TCK after entry to Exit1-IR, TDO goes from the active state to the high-impedance state.  
Pause-IR  
No specific function is performed in the stable Pause-IR state, in which the TAP controller can remain  
indefinitely. The Pause-IR state suspends and resumes instruction-register scan operations without loss  
of data.  
Update-IR  
The current instruction is updated and takes effect on the falling edge of TCK, following entry to the  
Update-IR state.  
8
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
SN54LVTH18504A, SN54LVTH182504A, SN74LVTH18504A, SN74LVTH182504A  
3.3-V ABT SCAN TEST DEVICES  
WITH 20-BIT UNIVERSAL BUS TRANSCEIVERS  
SCBS667B – JULY 1996 – REVISED JUNE 1997  
register overview  
With the exception of the bypass and device-identification registers, any test register can be thought of as a  
serial-shift register with a shadow latch on each bit. The bypass and device-identification registers differ in that  
they contain only a shift register. During the appropriate capture state (Capture-IR for instruction register,  
Capture-DR for data registers), the shift register can be parallel loaded from a source specified by the current  
instruction. During the appropriate shift state (Shift-IR or Shift-DR), the contents of the shift register are shifted  
out from TDO while new contents are shifted in at TDI. During the appropriate update state (Update-IR or  
Update-DR), the shadow latches are updated from the shift register.  
instruction register description  
The instruction register (IR) is eight bits long and tells the device what instruction is to be executed. Information  
contained in the instruction includes the mode of operation (either normal mode, in which the device performs  
itsnormallogicfunction, ortestmode, inwhichthenormallogicfunctionisinhibitedoraltered), thetestoperation  
to be performed, which of the four data registers is to be selected for inclusion in the scan path during  
data-register scans, and the source of data to be captured into the selected data register during Capture-DR.  
Table 3 lists the instructions supported by the ’LVTH18504A and ’LVTH182504A. The even-parity feature  
specified for SCOPE devices is supported in this device. Bit 7 of the instruction opcode is the parity bit. Any  
instructions that are defined for SCOPE devices but are not supported by this device default to BYPASS.  
During Capture-IR, the IR captures the binary value 10000001. As an instruction is shifted in, this value is shifted  
out via TDO and can be inspected as verification that the IR is in the scan path. During Update-IR, the value  
that has been shifted into the IR is loaded into shadow latches. At this time, the current instruction is updated  
and any specified mode change takes effect. At power up or in the Test-Logic-Reset state, the IR is reset to the  
binary value 10000001, which selects the IDCODE instruction. The instruction register order of scan is shown  
in Figure 2.  
Bit 7  
Parity  
(MSB)  
Bit 0  
(LSB)  
TDI  
TDO  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Figure 2. Instruction Register Order of Scan  
9
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
SN54LVTH18504A, SN54LVTH182504A, SN74LVTH18504A, SN74LVTH182504A  
3.3-V ABT SCAN TEST DEVICES  
WITH 20-BIT UNIVERSAL BUS TRANSCEIVERS  
SCBS667B – JULY 1996 – REVISED JUNE 1997  
data register description  
boundary-scan register  
The boundary-scan register (BSR) is 48 bits long. It contains one boundary-scan cell (BSC) for each  
normal-function input pin and one BSC for each normal-function I/O pin (one single cell for both input data and  
output data). The BSR is used to store test data that is to be applied externally to the device output pins, and/or  
to capture data that appears internally at the outputs of the normal on-chip logic and/or externally at the device  
input pins.  
The source of data to be captured into the BSR during Capture-DR is determined by the current instruction. The  
contents of the BSR can change during Run-Test/Idle as determined by the current instruction. At power up or  
in Test-Logic-Reset, BSCs 47–46 are reset to logic 1, ensuring that these cells, which control A-port and B-port  
outputs, are set to benign values (i.e., if test mode were invoked, the outputs would be at high-impedance state).  
Reset values of other BSCs should be considered indeterminate.  
The BSR order of scan is from TDI through bits 47–0 to TDO. Table 1 shows the BSR bits and their associated  
device pin signals.  
Table 1. Boundary-Scan Register Configuration  
BSR BIT  
NUMBER  
DEVICE  
SIGNAL  
BSR BIT  
NUMBER  
DEVICE  
SIGNAL  
BSR BIT  
NUMBER  
DEVICE  
SIGNAL  
47  
46  
45  
44  
43  
42  
41  
40  
––  
––  
––  
––  
––  
––  
––  
––  
––  
––  
OEAB  
OEBA  
CLKAB  
CLKBA  
CLKENAB  
CLKENBA  
LEAB  
LEBA  
––  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
A20-I/O  
A19-I/O  
A18-I/O  
A17-I/O  
A16-I/O  
A15-I/O  
A14-I/O  
A13-I/O  
A12-I/O  
A11-I/O  
A10-I/O  
A9-I/O  
19  
18  
17  
16  
15  
14  
13  
12  
11  
10  
9
B20-I/O  
B19-I/O  
B18-I/O  
B17-I/O  
B16-I/O  
B15-I/O  
B14-I/O  
B13-I/O  
B12-I/O  
B11-I/O  
B10-I/O  
B9-I/O  
––  
––  
––  
8
––  
A8-I/O  
7
B8-I/O  
––  
A7-I/O  
6
B7-I/O  
––  
A6-I/O  
5
B6-I/O  
––  
A5-I/O  
4
B5-I/O  
––  
A4-I/O  
3
B4-I/O  
––  
A3-I/O  
2
B3-I/O  
––  
––  
––  
––  
21  
20  
A2-I/O  
A1-I/O  
1
0
B2-I/O  
B1-I/O  
10  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
SN54LVTH18504A, SN54LVTH182504A, SN74LVTH18504A, SN74LVTH182504A  
3.3-V ABT SCAN TEST DEVICES  
WITH 20-BIT UNIVERSAL BUS TRANSCEIVERS  
SCBS667B – JULY 1996 – REVISED JUNE 1997  
boundary-control register  
The boundary-control register (BCR) is three bits long. The BCR is used in the context of the boundary-run  
(RUNT) instruction to implement additional test operations not included in the basic SCOPE instruction set.  
Such operations include PRPG, PSA, and binary count up (COUNT). Table 4 shows the test operations that  
are decoded by the BCR.  
During Capture-DR, the contents of the BCR are not changed. At power up or in Test-Logic-Reset, the BCR is  
reset to the binary value 010, which selects the PSA test operation. The boundary-control register order of scan  
is shown in Figure 3.  
Bit 2  
(MSB)  
Bit 0  
(LSB)  
TDI  
TDO  
Bit 1  
Figure 3. Boundary-Control Register Order of Scan  
bypass register  
The bypass register is a 1-bit scan path that can be selected to shorten the length of the system scan path,  
reducing the number of bits per test pattern that must be applied to complete a test operation. During  
Capture-DR, the bypass register captures a logic 0. The bypass register order of scan is shown in Figure 4.  
TDI  
TDO  
Bit 0  
Figure 4. Bypass Register Order of Scan  
11  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
SN54LVTH18504A, SN54LVTH182504A, SN74LVTH18504A, SN74LVTH182504A  
3.3-V ABT SCAN TEST DEVICES  
WITH 20-BIT UNIVERSAL BUS TRANSCEIVERS  
SCBS667B – JULY 1996 – REVISED JUNE 1997  
device-identification register  
The device-identification register (IDR) is 32 bits long. It can be selected and read to identify the manufacturer,  
part number, and version of this device.  
For the ’LVTH18504A, either of the binary values 00100000000000011101000000101111 (2001D02F, hex) or  
00110000000000011101000000101111 (3001D02F, hex) is captured (during Capture-DR state) in the IDR to  
identify this device as TI SN54/74LVTH18504A.  
For the ’LVTH182504A, either of the binary values 00010000000000100010000000101111 (1002202F, hex)  
or 00100000000000100010000000101111 (2002202F, hex) is captured (during Capture-DR state) in the IDR  
to identify this device as TI SN54/74LVTH182504A.  
The IDR order of scan is from TDI through bits 31–0 to TDO. Table 2 shows the IDR bits and their significance.  
Table 2. Device-Identification Register Configuration  
IDR BIT  
NUMBER  
IDENTIFICATION  
SIGNIFICANCE  
IDR BIT  
NUMBER  
IDENTIFICATION  
SIGNIFICANCE  
IDR BIT  
NUMBER  
IDENTIFICATION  
SIGNIFICANCE  
31  
30  
29  
28  
––  
––  
––  
––  
––  
––  
––  
––  
––  
––  
––  
––  
VERSION3  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
12  
PARTNUMBER15  
PARTNUMBER14  
PARTNUMBER13  
PARTNUMBER12  
PARTNUMBER11  
PARTNUMBER10  
PARTNUMBER09  
PARTNUMBER08  
PARTNUMBER07  
PARTNUMBER06  
PARTNUMBER05  
PARTNUMBER04  
PARTNUMBER03  
PARTNUMBER02  
PARTNUMBER01  
PARTNUMBER00  
11  
10  
9
MANUFACTURER10  
MANUFACTURER09  
MANUFACTURER08  
MANUFACTURER07  
MANUFACTURER06  
MANUFACTURER05  
MANUFACTURER04  
MANUFACTURER03  
MANUFACTURER02  
MANUFACTURER01  
MANUFACTURER00  
VERSION2  
VERSION1  
VERSION0  
8
––  
––  
––  
––  
––  
––  
––  
––  
––  
––  
––  
––  
7
6
5
4
3
2
1
0
LOGIC1  
––  
––  
––  
––  
––  
––  
––  
––  
Note that for TI products, bits 11–0 of the device-identification register always contain the binary value 000000101111  
(02F, hex).  
12  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
SN54LVTH18504A, SN54LVTH182504A, SN74LVTH18504A, SN74LVTH182504A  
3.3-V ABT SCAN TEST DEVICES  
WITH 20-BIT UNIVERSAL BUS TRANSCEIVERS  
SCBS667B – JULY 1996 – REVISED JUNE 1997  
instruction-register opcode description  
The instruction-register opcodes are shown in Table 3. The following descriptions detail the operation of  
each instruction.  
Table 3. Instruction-Register Opcodes  
BINARY CODE  
BIT 7 BIT 0  
MSB LSB  
SELECTED  
DATA REGISTER  
SCOPE OPCODE  
DESCRIPTION  
MODE  
00000000  
10000001  
10000010  
00000011  
10000100  
00000101  
00000110  
10000111  
10001000  
00001001  
00001010  
10001011  
00001100  
10001101  
10001110  
00001111  
All others  
EXTEST  
IDCODE  
Boundary scan  
Identification read  
Boundary scan  
Device identification  
Boundary scan  
Bypass  
Test  
Normal  
Normal  
Normal  
Normal  
Normal  
Modified test  
Test  
SAMPLE/PRELOAD  
Sample boundary  
BYPASS  
BYPASS  
BYPASS  
HIGHZ  
Bypass scan  
Bypass scan  
Bypass  
Bypass scan  
Bypass  
Control boundary to high impedance  
Control boundary to 1/0  
Bypass scan  
Bypass  
CLAMP  
Bypass  
BYPASS  
Bypass  
Normal  
Test  
RUNT  
Boundary-run test  
Bypass  
READBN  
READBT  
CELLTST  
TOPHIP  
SCANCN  
SCANCT  
BYPASS  
Boundary read  
Boundary scan  
Boundary scan  
Boundary scan  
Bypass  
Normal  
Test  
Boundary read  
Boundary self test  
Boundary toggle outputs  
Boundary-control-register scan  
Boundary-control-register scan  
Bypass scan  
Normal  
Test  
Boundary control  
Boundary control  
Bypass  
Normal  
Test  
Normal  
Bit 7 is used to maintain even parity in the 8-bit instruction.  
The BYPASS instruction is executed in lieu of a SCOPE instruction that is not supported in the LVTH18504A or LVTH182504A.  
boundary scan  
This instruction conforms to the IEEE Std 1149.1-1990 EXTEST instruction. The BSR is selected in the scan  
path. Data appearing at the device input and I/O pins is captured in the associated BSCs. Data that has been  
scannedintotheI/OBSCsforpinsintheoutputmodeisappliedtothedeviceI/Opins. Datapresentatthedevice  
pins, except for output-enables, is passed through the BSCs to the normal on-chip logic. For I/O pins, the  
operation of a pin as input or output is determined by the contents of the output-enable BSCs (bits 47–46 of the  
BSR). When a given output enable is active (logic 0), the associated I/O pins operate in the output mode.  
Otherwise, the I/O pins operate in the input mode. The device operates in the test mode.  
identification read  
This instruction conforms to the IEEE Std 1149.1-1990 IDCODE instruction. The IDR is selected in the scan  
path. The device operates in the normal mode.  
sample boundary  
This instruction conforms to the IEEE Std 1149.1-1990 SAMPLE/PRELOAD instruction. The BSR is selected  
in the scan path. Data appearing at the device input pins and I/O pins in the input mode is captured in the  
associated BSCs, while data appearing at the outputs of the normal on-chip logic is captured in the BSCs  
associated with I/O pins in the output mode. The device operates in the normal mode.  
13  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
SN54LVTH18504A, SN54LVTH182504A, SN74LVTH18504A, SN74LVTH182504A  
3.3-V ABT SCAN TEST DEVICES  
WITH 20-BIT UNIVERSAL BUS TRANSCEIVERS  
SCBS667B – JULY 1996 – REVISED JUNE 1997  
bypass scan  
This instruction conforms to the IEEE Std 1149.1-1990 BYPASS instruction. The bypass register is selected in  
the scan path. A logic 0 value is captured in the bypass register during Capture-DR. The device operates in the  
normal mode.  
control boundary to high impedance  
This instruction conforms to the IEEE Std 1149.1a-1993 HIGHZ instruction. The bypass register is selected in  
the scan path. A logic 0 value is captured in the bypass register during Capture-DR. The device operates in a  
modified test mode in which all device I/O pins are placed in the high-impedance state, the device input pins  
remain operational, and the normal on-chip logic function is performed.  
control boundary to 1/0  
This instruction conforms to the IEEE Std 1149.1a-1993 CLAMP instruction. The bypass register is selected in  
the scan path. A logic 0 value is captured in the bypass register during Capture-DR. Data in the I/O BSCs for  
pins in the output mode is applied to the device I/O pins. The device operates in the test mode.  
boundary-run test  
The bypass register is selected in the scan path. A logic 0 value is captured in the bypass register during  
Capture-DR. The device operates in the test mode. The test operation specified in the BCR is executed during  
Run-Test/Idle. The five test operations decoded by the BCR are: sample inputs/toggle outputs (TOPSIP),  
PRPG, PSA, simultaneous PSA and PRPG (PSA/PRPG), and simultaneous PSA and binary count up  
(PSA/COUNT).  
boundary read  
The BSR is selected in the scan path. The value in the BSR remains unchanged during Capture-DR. This  
instruction is useful for inspecting data after a PSA operation.  
boundary self test  
The BSR is selected in the scan path. All BSCs capture the inverse of their current values during Capture-DR.  
In this way, the contents of the shadow latches can be read out to verify the integrity of both shift register and  
shadow latch elements of the BSR. The device operates in the normal mode.  
boundary toggle outputs  
The bypass register is selected in the scan path. A logic 0 value is captured in the bypass register during  
Capture-DR. Data in the shift-register elements of the selected output-mode BSCs is toggled on each rising  
edge of TCK in Run-Test/Idle and is then updated in the shadow latches and applied to the associated device  
I/O pins on each falling edge of TCK in Run-Test/Idle. Data in the input-mode BSCs remains constant. Data  
appearing at the device input or I/O pins is not captured in the input-mode BSCs. The device operates in the  
test mode.  
boundary-control-register scan  
The BCR is selected in the scan path. The value in the BCR remains unchanged during Capture-DR. This  
operation must be performed before a boundary-run test operation to specify which test operation is to  
be executed.  
14  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
SN54LVTH18504A, SN54LVTH182504A, SN74LVTH18504A, SN74LVTH182504A  
3.3-V ABT SCAN TEST DEVICES  
WITH 20-BIT UNIVERSAL BUS TRANSCEIVERS  
SCBS667B – JULY 1996 – REVISED JUNE 1997  
boundary-control-register opcode description  
TheBCRopcodesaredecodedfromBCRbits20asshowninTable4. Theselectedtestoperationisperformed  
while the RUNT instruction is executed in the Run-Test/Idle state. The following descriptions detail the operation  
of each BCR instruction and illustrate the associated PSA and PRPG algorithms.  
Table 4. Boundary-Control Register Opcodes  
BINARY CODE  
BIT 2 BIT 0  
MSB LSB  
DESCRIPTION  
X00  
X01  
X10  
011  
111  
Sample inputs/toggle outputs (TOPSIP)  
Pseudo-random pattern generation/40-bit mode (PRPG)  
Parallel-signature analysis/40-bit mode (PSA)  
Simultaneous PSA and PRPG/20-bit mode (PSA/PRPG)  
Simultaneous PSA and binary count up/20-bit mode (PSA/COUNT)  
While the control input BSCs (bits 47–36) are not included in the toggle, PSA, PRPG, or COUNT algorithms,  
theoutput-enableBSCs(bits47–46oftheBSR)controlthedrivestate(activeorhighimpedance)oftheselected  
device output pins. These BCR instructions are only valid when the device is operating in one direction of data  
flow (that is, OEAB OEBA). Otherwise, the bypass instruction is operated.  
sample inputs/toggle outputs (TOPSIP)  
Data appearing at the selected device input-mode I/O pins is captured in the shift-register elements of the  
associated BSCs on each rising edge of TCK. Data in the shift-register elements of the selected output-mode  
BSCs is toggled on each rising edge of TCK, updated in the shadow latches, and applied to the associated  
device I/O pins on each falling edge of TCK.  
15  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
SN54LVTH18504A, SN54LVTH182504A, SN74LVTH18504A, SN74LVTH182504A  
3.3-V ABT SCAN TEST DEVICES  
WITH 20-BIT UNIVERSAL BUS TRANSCEIVERS  
SCBS667B – JULY 1996 – REVISED JUNE 1997  
pseudo-random pattern generation (PRPG)  
A pseudo-random pattern is generated in the shift-register elements of the selected BSCs on each rising edge  
of TCK, updated in the shadow latches, and applied to the associated device output-mode I/O pins on each  
falling edge of TCK. Figures 5 and 6 show the 40-bit linear-feedback shift-register algorithms through which the  
patterns are generated. An initial seed value should be scanned into the BSR before performing this operation.  
A seed value of all zeroes does not produce additional patterns.  
A20-I/O A19-I/O A18-I/O A17-I/O A16-I/O A15-I/O A14-I/O A13-I/O A12-I/O A11-I/O  
A10-I/O  
A9-I/O  
A8-I/O  
A7-I/O  
A6-I/O  
A5-I/O  
A4-I/O  
A3-I/O  
A2-I/O  
A1-I/O  
B20-I/O B19-I/O B18-I/O B17-I/O B16-I/O B15-I/O B14-I/O B13-I/O B12-I/O B11-I/O  
=
B10-I/O  
B9-I/O  
B8-I/O  
B7-I/O  
B6-I/O  
B5-I/O  
B4-I/O  
B3-I/O  
B2-I/O  
B1-I/O  
Figure 5. 40-Bit PRPG Configuration (OEAB = 0, OEBA = 1)  
16  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
SN54LVTH18504A, SN54LVTH182504A, SN74LVTH18504A, SN74LVTH182504A  
3.3-V ABT SCAN TEST DEVICES  
WITH 20-BIT UNIVERSAL BUS TRANSCEIVERS  
SCBS667B – JULY 1996 – REVISED JUNE 1997  
B20-I/O B19-I/O B18-I/O B17-I/O B16-I/O B15-I/O B14-I/O B13-I/O B12-I/O B11-I/O  
B10-I/O  
B9-I/O  
B8-I/O  
B7-I/O  
B6-I/O  
B5-I/O  
B4-I/O  
B3-I/O  
B2-I/O  
B1-I/O  
A20-I/O A19-I/O A18-I/O A17-I/O A16-I/O A15-I/O A14-I/O A13-I/O A12-I/O A11-I/O  
=
A10-I/O  
A9-I/O  
A8-I/O  
A7-I/O  
A6-I/O  
A5-I/O  
A4-I/O  
A3-I/O  
A2-I/O  
A1-I/O  
Figure 6. 40-Bit PRPG Configuration (OEAB = 1, OEBA = 0)  
17  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
SN54LVTH18504A, SN54LVTH182504A, SN74LVTH18504A, SN74LVTH182504A  
3.3-V ABT SCAN TEST DEVICES  
WITH 20-BIT UNIVERSAL BUS TRANSCEIVERS  
SCBS667B – JULY 1996 – REVISED JUNE 1997  
parallel-signature analysis (PSA)  
Data appearing at the selected device input-mode I/O pins is compressed into a 40-bit parallel signature in the  
shift-register elements of the selected BSCs on each rising edge of TCK. Data in the shadow latches of the  
selected output-mode BSCs remains constant and is applied to the associated device I/O pins. Figures 7 and 8  
show the 40-bit linear-feedback shift-register algorithms through which the signature is generated. An initial  
seed value should be scanned into the BSR before performing this operation.  
A20-I/O A19-I/O A18-I/O A17-I/O A16-I/O A15-I/O A14-I/O A13-I/O A12-I/O A11-I/O  
A10-I/O  
A9-I/O  
A8-I/O  
A7-I/O  
A6-I/O  
A5-I/O  
A4-I/O  
A3-I/O  
A2-I/O  
A1-I/O  
=
B20-I/O B19-I/O B18-I/O B17-I/O B16-I/O B15-I/O B14-I/O B13-I/O B12-I/O B11-I/O  
=
B10-I/O  
B9-I/O  
B8-I/O  
B7-I/O  
B6-I/O  
B5-I/O  
B4-I/O  
B3-I/O  
B2-I/O  
B1-I/O  
Figure 7. 40-Bit PSA Configuration (OEAB = 0, OEBA = 1)  
18  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
SN54LVTH18504A, SN54LVTH182504A, SN74LVTH18504A, SN74LVTH182504A  
3.3-V ABT SCAN TEST DEVICES  
WITH 20-BIT UNIVERSAL BUS TRANSCEIVERS  
SCBS667B – JULY 1996 – REVISED JUNE 1997  
B20-I/O B19-I/O B18-I/O B17-I/O B16-I/O B15-I/O B14-I/O B13-I/O B12-I/O B11-I/O  
B10-I/O  
B9-I/O  
B8-I/O  
B7-I/O  
B6-I/O  
B5-I/O  
B4-I/O  
B3-I/O  
B2-I/O  
B1-I/O  
A20-I/O A19-I/O A18-I/O A17-I/O A16-I/O A15-I/O A14-I/O A13-I/O A12-I/O A11-I/O  
=
=
A10-I/O  
A9-I/O  
A8-I/O  
A7-I/O  
A6-I/O  
A5-I/O  
A4-I/O  
A3-I/O  
A2-I/O  
A1-I/O  
Figure 8. 40-Bit PSA Configuration (OEAB = 1, OEBA = 0)  
19  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
SN54LVTH18504A, SN54LVTH182504A, SN74LVTH18504A, SN74LVTH182504A  
3.3-V ABT SCAN TEST DEVICES  
WITH 20-BIT UNIVERSAL BUS TRANSCEIVERS  
SCBS667B – JULY 1996 – REVISED JUNE 1997  
simultaneous PSA and PRPG (PSA/PRPG)  
Data appearing at the selected device input-mode I/O pins is compressed into a 20-bit parallel signature in the  
shift-register elements of the selected input-mode BSCs on each rising edge of TCK. At the same time, a 20-bit  
pseudo-random pattern is generated in the shift-register elements of the selected output-mode BSCs on each  
rising edge of TCK, updated in the shadow latches, and applied to the associated device I/O pins on each falling  
edge of TCK. Figures 9 and 10 show the 20-bit linear-feedback shift-register algorithms through which the  
signature and patterns are generated. An initial seed value should be scanned into the BSR before performing  
this operation. A seed value of all zeroes does not produce additional patterns.  
A20-I/O A19-I/O A18-I/O A17-I/O A16-I/O A15-I/O A14-I/O A13-I/O A12-I/O A11-I/O  
A10-I/O  
A9-I/O  
A8-I/O  
A7-I/O  
A6-I/O  
A5-I/O  
A4-I/O  
A3-I/O  
A2-I/O  
A1-I/O  
=
=
B20-I/O B19-I/O B18-I/O B17-I/O B16-I/O B15-I/O B14-I/O B13-I/O B12-I/O B11-I/O  
B10-I/O  
B9-I/O  
B8-I/O  
B7-I/O  
B6-I/O  
B5-I/O  
B4-I/O  
B3-I/O  
B2-I/O  
B1-I/O  
Figure 9. 20-Bit PSA/PRPG Configuration (OEAB = 0, OEBA = 1)  
20  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
SN54LVTH18504A, SN54LVTH182504A, SN74LVTH18504A, SN74LVTH182504A  
3.3-V ABT SCAN TEST DEVICES  
WITH 20-BIT UNIVERSAL BUS TRANSCEIVERS  
SCBS667B – JULY 1996 – REVISED JUNE 1997  
B20-I/O B19-I/O B18-I/O B17-I/O B16-I/O B15-I/O B14-I/O B13-I/O B12-I/O B11-I/O  
B10-I/O  
B9-I/O  
B8-I/O  
B7-I/O  
B6-I/O  
B5-I/O  
B4-I/O  
B3-I/O  
B2-I/O  
B1-I/O  
=
=
A20-I/O A19-I/O A18-I/O A17-I/O A16-I/O A15-I/O A14-I/O A13-I/O A12-I/O A11-I/O  
A10-I/O  
A9-I/O  
A8-I/O  
A7-I/O  
A6-I/O  
A5-I/O  
A4-I/O  
A3-I/O  
A2-I/O  
A1-I/O  
Figure 10. 20-Bit PSA/PRPG Configuration (OEAB = 1, OEBA = 0)  
21  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
SN54LVTH18504A, SN54LVTH182504A, SN74LVTH18504A, SN74LVTH182504A  
3.3-V ABT SCAN TEST DEVICES  
WITH 20-BIT UNIVERSAL BUS TRANSCEIVERS  
SCBS667B – JULY 1996 – REVISED JUNE 1997  
simultaneous PSA and binary count up (PSA/COUNT)  
Data appearing at the selected device input-mode I/O pins is compressed into a 20-bit parallel signature in the  
shift-register elements of the selected input-mode BSCs on each rising edge of TCK. At the same time, a 20-bit  
binary count-up pattern is generated in the shift-register elements of the selected output-mode BSCs on each  
rising edge of TCK, updated in the shadow latches, and applied to the associated device I/O pins on each falling  
edge of TCK. Figures 11 and 12 show the 20-bit linear-feedback shift-register algorithms through which the  
signature is generated. An initial seed value should be scanned into the BSR before performing this operation.  
A20-I/O A19-I/O A18-I/O A17-I/O A16-I/O A15-I/O A14-I/O A13-I/O A12-I/O A11-I/O  
A10-I/O  
A9-I/O  
A8-I/O  
A7-I/O  
A6-I/O  
A5-I/O  
A4-I/O  
A3-I/O  
A2-I/O  
A1-I/O  
MSB  
B20-I/O B19-I/O B18-I/O B17-I/O B16-I/O B15-I/O B14-I/O B13-I/O B12-I/O B11-I/O  
LSB  
=
=
B10-I/O  
B9-I/O  
B8-I/O  
B7-I/O  
B6-I/O  
B5-I/O  
B4-I/O  
B3-I/O  
B2-I/O  
B1-I/O  
Figure 11. 20-Bit PSA/COUNT Configuration (OEAB = 0, OEBA = 1)  
22  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
SN54LVTH18504A, SN54LVTH182504A, SN74LVTH18504A, SN74LVTH182504A  
3.3-V ABT SCAN TEST DEVICES  
WITH 20-BIT UNIVERSAL BUS TRANSCEIVERS  
SCBS667B – JULY 1996 – REVISED JUNE 1997  
B20-I/O B19-I/O B18-I/O B17-I/O B16-I/O B15-I/O B14-I/O B13-I/O B12-I/O B11-I/O  
B10-I/O  
B9-I/O  
B8-I/O  
B7-I/O  
B6-I/O  
B5-I/O  
B4-I/O  
B3-I/O  
B2-I/O  
B1-I/O  
MSB  
A20-I/O A19-I/O A18-I/O A17-I/O A16-I/O A15-I/O A14-I/O A13-I/O A12-I/O A11-I/O  
LSB  
=
=
A10-I/O  
A9-I/O  
A8-I/O  
A7-I/O  
A6-I/O  
A5-I/O  
A4-I/O  
A3-I/O  
A2-I/O  
A1-I/O  
Figure 12. 20-Bit PSA/COUNT Configuration (OEAB = 1, OEBA = 0)  
23  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
SN54LVTH18504A, SN54LVTH182504A, SN74LVTH18504A, SN74LVTH182504A  
3.3-V ABT SCAN TEST DEVICES  
WITH 20-BIT UNIVERSAL BUS TRANSCEIVERS  
SCBS667B – JULY 1996 – REVISED JUNE 1997  
timing description  
Alltest operations of the ’LVTH18504A and ’LVTH182504A are synchronous to the TCK signal. Data on the TDI,  
TMS, and normal-function inputs is captured on the rising edge of TCK. Data appears on the TDO and  
normal-function output pins on the falling edge of TCK. The TAP controller is advanced through its states (as  
shown in Figure 1) by changing the value of TMS on the falling edge of TCK and then applying a rising edge  
to TCK.  
A simple timing example is shown in Figure 13. In this example, the TAP controller begins in the  
Test-Logic-Reset state and is advanced through its states to perform one instruction-register scan and one  
data-register scan. While in the Shift-IR and Shift-DR states, TDI is used to input serial data, and TDO is used  
to output serial data. The TAP controller is then returned to the Test-Logic-Reset state. Table 5 details the  
operation of the test circuitry during each TCK cycle.  
Table 5. Explanation of Timing Example  
TCK  
CYCLE(S)  
TAP STATE  
AFTER TCK  
DESCRIPTION  
TMS is changed to a logic 0 value on the falling edge of TCK to begin advancing the TAP controller toward  
the desired state.  
1
Test-Logic-Reset  
2
3
4
Run-Test/Idle  
Select-DR-Scan  
Select-IR-Scan  
The IR captures the 8-bit binary value 10000001 on the rising edge of TCK as the TAP controller exits the  
Capture-IR state.  
5
6
Capture-IR  
Shift-IR  
TDO becomes active and TDI is made valid on the falling edge of TCK. The first bit is shifted into the TAP  
on the rising edge of TCK as the TAP controller advances to the next state.  
One bit is shifted into the IR on each TCK rising edge. With TDI held at a logic 1 value, the 8-bit binary value  
11111111 is seriallyscannedintotheIR.Atthesametime,the8-bitbinaryvalue10000001isseriallyscanned  
out of the IR via TDO. In TCK cycle 13, TMS is changed to a logic 1 value to end the instruction register scan  
on the next TCK cycle. The last bit of the instruction is shifted as the TAP controller advances from Shift-IR  
to Exit1-IR.  
7–13  
Shift-IR  
14  
15  
16  
Exit1-IR  
Update-IR  
TDO becomes inactive (goes to the high-impedance state) on the falling edge of TCK.  
The IR is updated with the new instruction (BYPASS) on the falling edge of TCK.  
Select-DR-Scan  
The bypass register captures a logic 0 value on the rising edge of TCK as the TAP controller exits the  
Capture-DR state.  
17  
18  
Capture-DR  
Shift-DR  
TDO becomes active and TDI is made valid on the falling edge of TCK. The first bit is shifted into the TAP  
on the rising edge of TCK as the TAP controller advances to the next state.  
19–20  
21  
Shift-DR  
Exit1-DR  
The binary value 101 is shifted in via TDI, while the binary value 010 is shifted out via TDO.  
TDO becomes inactive (goes to the high-impedance state) on the falling edge of TCK.  
In general, the selected data register is updated with the new data on the falling edge of TCK.  
22  
Update-DR  
23  
Select-DR-Scan  
Select-IR-Scan  
Test-Logic-Reset  
24  
25  
Test operation completed.  
24  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
SN54LVTH18504A, SN54LVTH182504A, SN74LVTH18504A, SN74LVTH182504A  
3.3-V ABT SCAN TEST DEVICES  
WITH 20-BIT UNIVERSAL BUS TRANSCEIVERS  
SCBS667B – JULY 1996 – REVISED JUNE 1997  
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25  
TCK  
TMS  
TDI  
TDO  
TAP  
Controller  
State  
3-State (TDO) or Don’t Care (TDI)  
Figure 13. Timing Example  
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)  
Supply voltage range, V  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.5 V to 4.6 V  
CC  
Input voltage range, V (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.5 V to 7 V  
I
Voltage range applied to any output in the high or power-off state, V (see Note 1) . . . . . . . . . –0.5 V to 7 V  
O
Current into any output in the low state, I : SN54LVTH18504A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 mA  
O
SN54LVTH182504A (A port or TDO) . . . . . . . . . . . . . . . . 96 mA  
SN54LVTH182504A (B port) . . . . . . . . . . . . . . . . . . . . . . . 30 mA  
SN74LVTH18504A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128 mA  
SN74LVTH182504A (A port or TDO) . . . . . . . . . . . . . . . 128 mA  
SN74LVTH182504A (B port) . . . . . . . . . . . . . . . . . . . . . . . 30 mA  
Current into any output in the high state, I (see Note 2): SN54LVTH18504A . . . . . . . . . . . . . . . . . . . . 48 mA  
O
SN54LVTH182504A (A port or TDO) . . . . 48 mA  
SN54LVTH182504A (B port) . . . . . . . . . . . 30 mA  
SN74LVTH18504A . . . . . . . . . . . . . . . . . . . . 64 mA  
SN74LVTH182504A (A port or TDO) . . . . 64 mA  
SN74LVTH182504A (B port) . . . . . . . . . . . 30 mA  
Input clamp current, I (V < 0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –50 mA  
IK  
OK  
I
Output clamp current, I  
(V < 0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –50 mA  
O
Package thermal impedance, θ (see Note 3): PM package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67°C/W  
Storage temperature range, T  
JA  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –65°C to 150°C  
stg  
Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and  
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not  
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
NOTES: 1. The input and output negative-voltage ratings can be exceeded if the input and output clamp-current ratings are observed.  
2. This current flows only when the output is in the high state and V > V  
.
CC  
O
3. The package thermal impedance is calculated in accordance with JESD 51.  
25  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
SN54LVTH18504A, SN54LVTH182504A, SN74LVTH18504A, SN74LVTH182504A  
3.3-V ABT SCAN TEST DEVICES  
WITH 20-BIT UNIVERSAL BUS TRANSCEIVERS  
SCBS667B – JULY 1996 – REVISED JUNE 1997  
recommended operating conditions  
SN54LVTH18504A SN74LVTH18504A  
UNIT  
MIN  
2.7  
2
MAX  
MIN  
2.7  
2
MAX  
V
V
V
V
Supply voltage  
3.6  
3.6  
V
V
CC  
High-level input voltage  
Low-level input voltage  
Input voltage  
IH  
0.8  
5.5  
–24  
24  
0.8  
5.5  
–32  
32  
V
IL  
V
I
I
I
I
High-level output current  
Low-level output current  
Low-level output current  
Input transition rise or fall rate  
Operating free-air temperature  
mA  
mA  
mA  
ns/V  
°C  
OH  
OL  
48  
64  
OL  
t/v  
Outputs enabled  
10  
10  
T
A
–55  
125  
–40  
85  
Current duty cycle 50%, f 1 kHz  
PRODUCT PREVIEW information concerns products in the formative or  
design phase of development. Characteristic data and other  
specifications are design goals. Texas Instruments reserves the right to  
change or discontinue these products without notice.  
26  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
SN54LVTH18504A, SN54LVTH182504A, SN74LVTH18504A, SN74LVTH182504A  
3.3-V ABT SCAN TEST DEVICES  
WITH 20-BIT UNIVERSAL BUS TRANSCEIVERS  
SCBS667B – JULY 1996 – REVISED JUNE 1997  
electrical characteristics over recommended operating free-air temperature range (unless  
otherwise noted)  
SN54LVTH18504A  
SN74LVTH18504A  
PARAMETER  
TEST CONDITIONS  
UNIT  
MIN TYP  
MAX  
MIN TYP  
MAX  
V
V
V
V
= 2.7 V,  
I = –18 mA  
–1.2  
–1.2  
V
IK  
CC  
CC  
CC  
I
= MIN to MAX ,  
= 2.7 V,  
I
I
I
I
I
I
I
I
I
I
I
= –100 µA  
= –3 mA  
= –8 mA  
= –24 mA  
= –32 mA  
= 100 µA  
= 24 mA  
= 16 mA  
= 32 mA  
= 48 mA  
= 64 mA  
V
CC  
–0.2  
2.4  
2.4  
2
V
CC  
–0.2  
2.4  
OH  
OH  
OH  
OH  
OH  
OL  
OL  
OL  
OL  
OL  
OL  
V
OH  
2.4  
V
V
V
= 3 V  
CC  
CC  
2
0.2  
0.5  
0.2  
0.5  
0.4  
0.5  
V
= 2.7 V  
0.4  
V
OL  
0.5  
V
CC  
= 3 V  
0.55  
0.55  
CLK,  
CLKEN,  
LE, TCK  
V
V
= 3.6 V,  
V = V  
or GND  
±1  
±1  
CC  
I
CC  
= 0 or MAX ,  
V = 5.5 V  
I
10  
10  
CC  
V = 5.5 V  
5
1
5
1
I
OE, TDI,  
TMS  
V
= 3.6 V  
= 3.6 V  
V = V  
I CC  
I
I
CC  
CC  
µA  
V = 0  
I
–25  
–100  
20  
–25  
–100  
20  
V = 5.5 V  
I
A or B  
V
V = V  
I
1
1
CC  
§
ports  
V = 0  
I
–5  
–5  
I
I
V
V
= 0,  
V or V = 0 to 4.5 V  
±100  
500  
–500  
1
µA  
µA  
off  
CC  
I
O
V = 0.8 V  
I
75  
500  
–500  
1
75  
150  
A or B  
ports  
= 3 V  
CC  
I(hold)  
V = 2 V  
I
–75  
–75  
–150  
I
I
I
I
TDO  
TDO  
TDO  
TDO  
V
CC  
V
CC  
V
CC  
V
CC  
= 3.6 V,  
V
O
V
O
V
O
V
O
= 3 V  
µA  
µA  
µA  
µA  
OZH  
= 3.6 V,  
= 0.5 V  
–1  
–1  
OZL  
= 0 to 1.5 V,  
= 1.5 V to 0,  
= 0.5 V or 3 V  
= 0.5 V or 3 V  
±50  
±50  
2
±50  
±50  
2
OZPU  
OZPD  
Outputs high  
Outputs low  
0.6  
19.5  
0.6  
0.6  
19.5  
0.6  
V
I
= 3.6 V,  
= 0,  
CC  
O
I
27  
27  
mA  
CC  
V = V  
I
or GND  
CC  
Outputs disabled  
2
2
V
= 3 V to 3.6 V, One input at V – 0.6 V,  
CC  
CC  
Other inputs at V  
#
0.5  
0.5  
mA  
I  
CC  
or GND  
CC  
C
C
C
V = 3 V or 0  
4
10  
8
4
10  
8
pF  
pF  
pF  
i
I
V
= 3 V or 0  
= 3 V or 0  
io  
o
O
O
V
§
#
All typical values are at V  
= 3.3 V, T = 25°C.  
A
CC  
For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.  
Unused pins at V  
or GND  
CC  
The parameter I  
includes the off-state output leakage current.  
I(hold)  
This is the increase in supply current for each input that is at the specified TTL voltage level rather than V  
or GND.  
CC  
PRODUCT PREVIEW information concerns products in the formative or  
design phase of development. Characteristic data and other  
specifications are design goals. Texas Instruments reserves the right to  
change or discontinue these products without notice.  
27  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
SN54LVTH18504A, SN54LVTH182504A, SN74LVTH18504A, SN74LVTH182504A  
3.3-V ABT SCAN TEST DEVICES  
WITH 20-BIT UNIVERSAL BUS TRANSCEIVERS  
SCBS667B – JULY 1996 – REVISED JUNE 1997  
timing requirements over recommended operating free-air temperature range (unless otherwise  
noted) (normal mode) (see Figure 14)  
SN54LVTH18504A  
= 3.3 V  
SN74LVTH18504A  
= 3.3 V  
V
CC  
V
CC  
V
= 2.7 V  
V
= 2.7 V  
UNIT  
CC  
CC  
± 0.3 V  
± 0.3 V  
MIN  
0
MAX  
MIN  
0
MAX  
MIN  
0
MAX  
MIN  
0
MAX  
f
t
Clock frequency CLKAB or CLKBA  
CLKAB or CLKBA high or low  
100  
80  
100  
80  
MHz  
ns  
clock  
4.4  
3
5.6  
3
4.4  
3
5.6  
3
Pulse duration  
w
LEAB or LEBA high  
A before CLKABor  
B before CLKBA↑  
2.4  
2.8  
2.4  
2.8  
CLK high  
CLK low  
1.5  
1.6  
2.8  
1
0.7  
1.6  
3.4  
0.8  
1.1  
3.5  
0.2  
1.5  
1.6  
2.8  
1
0.7  
1.6  
3.4  
0.8  
1.1  
3.5  
0.2  
t
Setup time  
ns  
ns  
A before LEABor  
B before LEBA↓  
su  
CLKEN before CLK↑  
A after CLKAB↑  
B after CLKBA↑  
1.4  
3.1  
0.7  
1.4  
3.1  
0.7  
t
h
Hold time  
A after LEABor B after LEBA↓  
CLKEN after CLK↑  
timing requirements over recommended operating free-air temperature range (unless otherwise  
noted) (test mode) (see Figure 14)  
SN54LVTH18504A  
= 3.3 V  
SN74LVTH18504A  
= 3.3 V  
V
CC  
V
CC  
V
= 2.7 V  
V
= 2.7 V  
UNIT  
CC  
CC  
± 0.3 V  
± 0.3 V  
MIN  
0
MAX  
MIN  
0
MAX  
MIN  
0
MAX  
MIN  
0
MAX  
f
t
Clock frequency TCK  
50  
40  
50  
40  
MHz  
ns  
clock  
Pulse duration  
TCK high or low  
9.5  
10.5  
9.5  
10.5  
w
A, B, CLK, CLKEN, LE, or OE  
before TCK↑  
6.5  
7
6.5  
7
t
Setup time  
ns  
ns  
su  
h
TDI before TCK↑  
TMS before TCK↑  
2.5  
2.5  
3.5  
3.5  
2.5  
2.5  
3.5  
3.5  
A, B, CLK, CLKEN, LE, or OE  
after TCK↑  
1.5  
1
1.5  
1
t
Hold time  
TDI after TCK↑  
TMS after TCK↑  
Power up to TCK↑  
1.5  
1.5  
50  
1
1
1
1.5  
1.5  
50  
1
1
1
t
t
Delay time  
Rise time  
50  
1
50  
1
ns  
d
V
CC  
power up  
µs  
r
PRODUCT PREVIEW information concerns products in the formative or  
design phase of development. Characteristic data and other  
specifications are design goals. Texas Instruments reserves the right to  
change or discontinue these products without notice.  
28  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
SN54LVTH18504A, SN54LVTH182504A, SN74LVTH18504A, SN74LVTH182504A  
3.3-V ABT SCAN TEST DEVICES  
WITH 20-BIT UNIVERSAL BUS TRANSCEIVERS  
SCBS667B – JULY 1996 – REVISED JUNE 1997  
switching characteristics over recommended operating free-air temperature range (unless  
otherwise noted) (normal mode) (see Figure 14)  
SN54LVTH18504A  
= 3.3 V  
SN74LVTH18504A  
= 3.3 V  
FROM  
(INPUT)  
TO  
(OUTPUT)  
V
CC  
V
CC  
V
= 2.7 V  
V
= 2.7 V  
PARAMETER  
UNIT  
CC  
CC  
± 0.3 V  
± 0.3 V  
MIN  
100  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
2
MAX  
MIN  
MAX  
MIN  
100  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
2
MAX  
MIN  
MAX  
f
t
t
t
t
t
t
t
t
t
t
t
t
CLKAB or CLKBA  
A or B  
80  
80  
MHz  
ns  
max  
PLH  
PHL  
PLH  
PHL  
PLH  
PHL  
PLH  
PHL  
PZH  
PZL  
PHZ  
PLZ  
5.4  
5.4  
6.9  
6.9  
6.9  
6.9  
8.7  
7.1  
9.5  
10  
5.8  
5.8  
5.1  
5.1  
5.8  
5.8  
6.4  
6.4  
8.1  
6.7  
9.1  
9.6  
10.4  
9.1  
5.6  
5.6  
6.8  
6.8  
7.4  
7.4  
8.8  
7.1  
10  
B or A  
B
7.8  
CLKAB  
ns  
ns  
ns  
ns  
ns  
7.8  
7.8  
CLKBA  
A
7.8  
9.5  
LEAB or LEBA  
OEAB or OEBA  
OEAB or OEBA  
B or A  
B or A  
B or A  
2
7.4  
2
2
10.5  
10.8  
12.7  
9.9  
2
2
2
10.4  
11.2  
9.5  
2.5  
2.5  
12  
2.5  
2.5  
9.6  
switching characteristics over recommended operating free-air temperature range (unless  
otherwise noted) (test mode) (see Figure 14)  
SN54LVTH18504A  
= 3.3 V  
SN74LVTH18504A  
= 3.3 V  
FROM  
(INPUT)  
TO  
(OUTPUT)  
V
CC  
V
CC  
V
= 2.7 V  
V
= 2.7 V  
PARAMETER  
UNIT  
CC  
CC  
± 0.3 V  
± 0.3 V  
MIN  
50  
2.5  
2.5  
1
MAX  
MIN  
MAX  
MIN  
50  
2.5  
2.5  
1
MAX  
MIN  
MAX  
f
t
t
t
t
t
t
t
t
t
t
t
t
TCK  
40  
40  
MHz  
ns  
max  
PLH  
PHL  
PLH  
PHL  
PZH  
PZL  
PZH  
PZL  
PHZ  
PLZ  
PHZ  
PLZ  
15  
15  
6
18  
18  
7
14  
14  
5.5  
6.5  
17  
17  
5.5  
5.5  
18  
17  
7
17  
17  
TCK↓  
A or B  
TDO  
6.5  
7.5  
20  
TCK↓  
TCK↓  
TCK↓  
TCK↓  
TCK↓  
ns  
ns  
ns  
ns  
ns  
1.5  
4
7
8
1.5  
4
18  
18  
6
21  
21  
7
A or B  
TDO  
4
4
20  
1
1
6.5  
6.5  
20  
1.5  
4
6
7
1.5  
4
19  
18  
7.5  
7.5  
21  
19.5  
9
A or B  
TDO  
4
4
18.5  
8.5  
8
1.5  
1.5  
1.5  
1.5  
8.5  
7
PRODUCT PREVIEW information concerns products in the formative or  
design phase of development. Characteristic data and other  
specifications are design goals. Texas Instruments reserves the right to  
change or discontinue these products without notice.  
29  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
SN54LVTH18504A, SN54LVTH182504A, SN74LVTH18504A, SN74LVTH182504A  
3.3-V ABT SCAN TEST DEVICES  
WITH 20-BIT UNIVERSAL BUS TRANSCEIVERS  
SCBS667B – JULY 1996 – REVISED JUNE 1997  
recommended operating conditions  
SN54LVTH182504A SN74LVTH182504A  
UNIT  
MIN  
2.7  
2
MAX  
MIN  
2.7  
2
MAX  
V
CC  
V
IH  
V
IL  
V
I
Supply voltage  
3.6  
3.6  
V
V
V
V
High-level input voltage  
Low-level input voltage  
Input voltage  
0.8  
5.5  
–24  
–12  
24  
0.8  
5.5  
–32  
–12  
32  
A port, TDO  
B port  
I
High-level output current  
Low-level output current  
mA  
mA  
OH  
A port, TDO  
B port  
I
I
OL  
12  
12  
Low-level output current  
A port, TDO  
Outputs enabled  
48  
64  
mA  
ns/V  
°C  
OL  
t/v  
Input transition rise or fall rate  
Operating free-air temperature  
10  
10  
T
–55  
125  
–40  
85  
A
Current duty cycle 50%, f 1 kHz  
PRODUCT PREVIEW information concerns products in the formative or  
design phase of development. Characteristic data and other  
specifications are design goals. Texas Instruments reserves the right to  
change or discontinue these products without notice.  
30  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
SN54LVTH18504A, SN54LVTH182504A, SN74LVTH18504A, SN74LVTH182504A  
3.3-V ABT SCAN TEST DEVICES  
WITH 20-BIT UNIVERSAL BUS TRANSCEIVERS  
SCBS667B – JULY 1996 – REVISED JUNE 1997  
electrical characteristics over recommended operating free-air temperature range (unless  
otherwise noted)  
SN54LVTH182504A  
SN74LVTH182504A  
PARAMETER  
TEST CONDITIONS  
UNIT  
MIN TYP  
MAX  
MIN TYP  
MAX  
V
V
V
V
= 2.7 V,  
I = –18 mA  
–1.2  
–1.2  
V
IK  
CC  
CC  
CC  
I
A, B, TDO  
= MIN to MAX ,  
= 2.7 V,  
I
I
I
I
I
I
I
I
I
I
I
I
I
= –100 µA  
= –3 mA  
= –8 mA  
= –24 mA  
= –32 mA  
= –12 mA  
= 100 µA  
= 24 mA  
= 16 mA  
= 32 mA  
= 48 mA  
= 64 mA  
= 12 mA  
V
CC  
–0.2  
2.4  
2.4  
2
V
CC  
–0.2  
2.4  
OH  
OH  
OH  
OH  
OH  
OH  
OL  
OL  
OL  
OL  
OL  
OL  
OL  
2.4  
A port,  
TDO  
V
OH  
V
V
CC  
= 3 V  
2
2
B port  
V
CC  
V
CC  
V
CC  
= 3 V,  
2
A, B, TDO  
= 2.7 V,  
= 2.7 V,  
0.2  
0.5  
0.2  
0.5  
0.4  
0.5  
0.4  
A port,  
TDO  
V
OL  
0.5  
V
V
CC  
= 3 V  
0.55  
0.55  
0.8  
B port  
V
V
= 3 V,  
0.8  
CC  
CLK,  
CLKEN,  
LE, TCK  
= 3.6 V,  
V = V  
I
or GND  
±1  
±1  
CC  
CC  
V
= 0 or MAX ,  
V = 5.5 V  
I
10  
10  
CC  
CC  
V = 5.5 V  
I
5
1
5
1
OE,  
TDI,  
TMS  
V
= 3.6 V  
= 3.6 V  
V = V  
I
I
I
CC  
µA  
V = 0  
I
–25  
–100  
20  
–25  
–100  
20  
V = 5.5 V  
I
A or B  
V
CC  
V = V  
I CC  
1
1
§
ports  
V = 0  
I
–5  
–5  
I
I
V
V
= 0,  
V or V = 0 to 4.5 V  
±100  
500  
–500  
1
µA  
µA  
off  
CC  
I
O
V = 0.8 V  
I
75  
500  
–500  
1
75  
150  
A or B  
ports  
= 3 V  
CC  
I(hold)  
V = 2 V  
I
–75  
–75  
–150  
I
I
I
I
TDO  
TDO  
TDO  
TDO  
V
CC  
V
CC  
V
CC  
V
CC  
= 3.6 V,  
V
O
V
O
V
O
V
O
= 3 V  
µA  
µA  
µA  
µA  
OZH  
= 3.6 V,  
= 0.5 V  
–1  
–1  
OZL  
= 0 to 1.5 V,  
= 1.5 V to 0,  
= 0.5 V or 3 V  
= 0.5 V or 3 V  
±50  
±50  
2
±50  
±50  
2
OZPU  
OZPD  
Outputs high  
Outputs low  
0.6  
19.5  
0.6  
0.6  
19.5  
0.6  
V
I
= 3.6 V,  
= 0,  
CC  
O
I
27  
27  
mA  
CC  
V = V  
I
or GND  
CC  
Outputs disabled  
2
2
V
= 3 V to 3.6 V, One input at V – 0.6 V,  
CC  
CC  
Other inputs at V  
#
0.5  
0.5  
mA  
I  
CC  
or GND  
CC  
C
C
C
V = 3 V or 0  
4
10  
8
4
10  
8
pF  
pF  
pF  
i
I
V
= 3 V or 0  
= 3 V or 0  
io  
o
O
O
V
§
#
All typical values are at V  
= 3.3 V, T = 25°C.  
A
CC  
For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.  
Unused pins at V  
or GND  
CC  
The parameter I  
includes the off-state output leakage current.  
I(hold)  
This is the increase in supply current for each input that is at the specified TTL voltage level rather than V  
or GND.  
CC  
PRODUCT PREVIEW information concerns products in the formative or  
design phase of development. Characteristic data and other  
specifications are design goals. Texas Instruments reserves the right to  
change or discontinue these products without notice.  
31  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
SN54LVTH18504A, SN54LVTH182504A, SN74LVTH18504A, SN74LVTH182504A  
3.3-V ABT SCAN TEST DEVICES  
WITH 20-BIT UNIVERSAL BUS TRANSCEIVERS  
SCBS667B – JULY 1996 – REVISED JUNE 1997  
timing requirements over recommended operating free-air temperature range (unless otherwise  
noted) (normal mode) (see Figure 14)  
SN54LVTH182504A  
SN74LVTH182504A  
V = 3.3 V  
CC  
± 0.3 V  
V = 3.3 V  
CC  
± 0.3 V  
V
CC  
= 2.7 V  
V
CC  
= 2.7 V  
UNIT  
MIN  
0
MAX  
MIN  
0
MAX  
MIN  
0
MAX  
MIN  
0
MAX  
f
t
Clock frequency CLKAB or CLKBA  
CLKAB or CLKBA high or low  
100  
80  
100  
80  
MHz  
ns  
clock  
4.4  
3
5.6  
3
4.4  
3
5.6  
3
Pulse duration  
w
LEAB or LEBA high  
A before CLKABor  
B before CLKBA↑  
2.8  
3
2.8  
3
CLK high  
CLK low  
1.5  
1.6  
2.8  
0.7  
1.6  
3.4  
1.5  
1.6  
2.8  
0.7  
1.6  
3.4  
t
Setup time  
ns  
ns  
A before LEABor  
B before LEBA↓  
su  
h
CLKEN before CLK↑  
A after CLKABor  
B after CLKBA↑  
1.4  
1.1  
1.4  
1.1  
t
Hold time  
A after LEABor B after LEBA↓  
CLKEN after CLK↑  
3.1  
0.7  
3.5  
0.2  
3.1  
0.7  
3.5  
0.2  
timing requirements over recommended operating free-air temperature range (unless otherwise  
noted) (test mode) (see Figure 14)  
SN54LVTH182504A  
SN74LVTH182504A  
V = 3.3 V  
CC  
± 0.3 V  
V = 3.3 V  
CC  
± 0.3 V  
V
CC  
= 2.7 V  
V
CC  
= 2.7 V  
UNIT  
MIN  
0
MAX  
MIN  
0
MAX  
MIN  
0
MAX  
MIN  
0
MAX  
f
t
Clock frequency TCK  
50  
40  
50  
40  
MHz  
ns  
clock  
Pulse duration  
TCK high or low  
9.5  
10.5  
9.5  
10.5  
w
A, B, CLK, CLKEN, LE, or OE  
before TCK↑  
6.5  
7
6.5  
7
t
Setup time  
ns  
ns  
su  
h
TDI before TCK↑  
TMS before TCK↑  
2.5  
2.5  
3.5  
3.5  
2.5  
2.5  
3.5  
3.5  
A, B, CLK, CLKEN, LE, or OE  
after TCK↑  
1.5  
1
1.5  
1
t
Hold time  
TDI after TCK↑  
TMS after TCK↑  
Power up to TCK↑  
1.5  
1.5  
50  
1
1
1
1.5  
1.5  
50  
1
1
1
t
t
Delay time  
Rise time  
50  
1
50  
1
ns  
d
V
CC  
power up  
µs  
r
PRODUCT PREVIEW information concerns products in the formative or  
design phase of development. Characteristic data and other  
specifications are design goals. Texas Instruments reserves the right to  
change or discontinue these products without notice.  
32  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
SN54LVTH18504A, SN54LVTH182504A, SN74LVTH18504A, SN74LVTH182504A  
3.3-V ABT SCAN TEST DEVICES  
WITH 20-BIT UNIVERSAL BUS TRANSCEIVERS  
SCBS667B – JULY 1996 – REVISED JUNE 1997  
switching characteristics over recommended operating free-air temperature range (unless  
otherwise noted) (normal mode) (see Figure 14)  
SN54LVTH182504A  
= 3.3 V  
SN74LVTH182504A  
= 3.3 V  
FROM  
(INPUT)  
TO  
(OUTPUT)  
V
V
CC  
± 0.3 V  
CC  
± 0.3 V  
V
CC  
= 2.7 V  
V
CC  
= 2.7 V  
PARAMETER  
UNIT  
MIN  
100  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
2
MAX  
MIN  
MAX  
MIN  
100  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
2
MAX  
MIN  
MAX  
f
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
CLKAB or CLKBA  
A
80  
80  
MHz  
ns  
max  
PLH  
PHL  
PLH  
PHL  
PLH  
PHL  
PLH  
PHL  
PLH  
PHL  
PLH  
PHL  
PZH  
PZL  
PHZ  
PLZ  
6.4  
6.4  
5.4  
5.4  
6.9  
6.9  
6.9  
6.9  
8.7  
7.1  
8.7  
7.1  
9.9  
10.2  
12  
6.9  
6.9  
5.8  
5.8  
7.8  
7.8  
7.8  
7.8  
9.5  
7.4  
9.5  
7.4  
11.1  
11  
5.9  
5.9  
5.1  
5.1  
6.7  
6.7  
6.4  
6.4  
8.2  
6.7  
8.1  
6.7  
9.5  
9.7  
11.1  
9.8  
6.6  
6.6  
5.6  
5.6  
7.7  
7.7  
7.4  
7.4  
9.2  
7.1  
8.8  
7.1  
10.6  
10.5  
11.8  
10  
B
B
CLKAB  
A
ns  
ns  
ns  
ns  
ns  
ns  
ns  
B
A
CLKBA  
LEAB  
B
2
2
2
2
LEBA  
A
2
2
2
2
B or A  
B or A  
OEAB or OEBA  
OEAB or OEBA  
2
2
2.5  
2.5  
12.7  
11.2  
2.5  
2.5  
11  
switching characteristics over recommended operating free-air temperature range (unless  
otherwise noted) (test mode) (see Figure 14)  
SN54LVTH182504A  
= 3.3 V  
SN74LVTH182504A  
= 3.3 V  
FROM  
(INPUT)  
TO  
(OUTPUT)  
V
V
CC  
± 0.3 V  
CC  
± 0.3 V  
V
CC  
= 2.7 V  
V
CC  
= 2.7 V  
PARAMETER  
UNIT  
MIN  
50  
2.5  
2.5  
1
MAX  
MIN  
MAX  
MIN  
50  
2.5  
2.5  
1
MAX  
MIN  
MAX  
f
t
t
t
t
t
t
t
t
t
t
t
t
TCK  
40  
40  
MHz  
ns  
max  
PLH  
PHL  
PLH  
PHL  
PZH  
PZL  
PZH  
PZL  
PHZ  
PLZ  
PHZ  
PLZ  
15  
15  
6
18  
18  
7
14  
14  
5.5  
6.5  
17  
17  
5.5  
5.5  
18  
17  
7
17  
17  
TCK↓  
A or B  
TDO  
6.5  
7.5  
20  
TCK↓  
TCK↓  
TCK↓  
TCK↓  
TCK↓  
ns  
ns  
ns  
ns  
ns  
1.5  
4
7
8
1.5  
4
18  
18  
6
21  
21  
7
A or B  
TDO  
4
4
20  
1
1
6.5  
6.5  
20  
1.5  
4
6
7
1.5  
4
19  
18  
7.5  
7.5  
21  
19.5  
9
A or B  
TDO  
4
4
18.5  
8.5  
8
1.5  
1.5  
1.5  
1.5  
8.5  
7
PRODUCT PREVIEW information concerns products in the formative or  
design phase of development. Characteristic data and other  
specifications are design goals. Texas Instruments reserves the right to  
change or discontinue these products without notice.  
33  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
SN54LVTH18504A, SN54LVTH182504A, SN74LVTH18504A, SN74LVTH182504A  
3.3-V ABT SCAN TEST DEVICES  
WITH 20-BIT UNIVERSAL BUS TRANSCEIVERS  
SCBS667B – JULY 1996 – REVISED JUNE 1997  
PARAMETER MEASUREMENT INFORMATION  
6 V  
TEST  
/t  
S1  
Open  
S1  
500 Ω  
From Output  
Under Test  
t
Open  
6 V  
PLH PHL  
GND  
t
/t  
PLZ PZL  
C
= 50 pF  
t
/t  
GND  
L
PHZ PZH  
500 Ω  
(see Note A)  
2.7 V  
0 V  
LOAD CIRCUIT  
1.5 V  
Timing Input  
Data Input  
t
w
t
t
h
su  
2.7 V  
2.7 V  
0 V  
1.5 V  
1.5 V  
Input  
1.5 V  
1.5 V  
0 V  
VOLTAGE WAVEFORMS  
PULSE DURATION  
VOLTAGE WAVEFORMS  
SETUP AND HOLD TIMES  
2.7 V  
0 V  
2.7 V  
0 V  
Output  
Control  
1.5 V  
1.5 V  
Input  
1.5 V  
1.5 V  
t
t
PLZ  
t
t
t
PHL  
PZL  
PLH  
PHL  
Output  
Waveform 1  
S1 at 6 V  
3 V  
V
V
OH  
1.5 V  
Output  
1.5 V  
1.5 V  
1.5 V  
t
V
V
+ 0.3 V  
OL  
V
OL  
(see Note B)  
OL  
t
t
PZH  
PHZ  
PLH  
Output  
Waveform 2  
S1 at GND  
V
OH  
V
V
OH  
– 0.3 V  
OH  
1.5 V  
Output  
1.5 V  
0 V  
(see Note B)  
OL  
VOLTAGE WAVEFORMS  
PROPAGATION DELAY TIMES  
INVERTING AND NONINVERTING OUTPUTS  
VOLTAGE WAVEFORMS  
ENABLE AND DISABLE TIMES  
LOW- AND HIGH-LEVEL ENABLING  
NOTES: A. includes probe and jig capacitance.  
C
L
B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control.  
Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.  
C. All input pulses are supplied by generators having the following characteristics: PRR 10 MHz, Z = 50 , t 2.5 ns, t 2.5 ns.  
O
r
f
D. The outputs are measured one at a time with one transition per measurement.  
Figure 14. Load Circuit and Voltage Waveforms  
34  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
IMPORTANT NOTICE  
Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue  
any product or service without notice, and advise customers to obtain the latest version of relevant information  
to verify, before placing orders, that information being relied on is current and complete. All products are sold  
subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those  
pertaining to warranty, patent infringement, and limitation of liability.  
TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in  
accordance with TI’s standard warranty. Testing and other quality control techniques are utilized to the extent  
TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily  
performed, except those mandated by government requirements.  
CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF  
DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE (“CRITICAL  
APPLICATIONS”). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR  
WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER  
CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO  
BE FULLY AT THE CUSTOMER’S RISK.  
In order to minimize risks associated with the customer’s applications, adequate design and operating  
safeguards must be provided by the customer to minimize inherent or procedural hazards.  
TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent  
that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other  
intellectual property right of TI covering or relating to any combination, machine, or process in which such  
semiconductor products or services might be or are used. TI’s publication of information regarding any third  
party’s products or services does not constitute TI’s approval, warranty or endorsement thereof.  
Copyright 1998, Texas Instruments Incorporated  

相关型号:

SN54LVTH18512

3.3-V ABT SCAN TEST DEVICES WITH 18-BIT UNIVERSAL BUS TRANSCEIVERS
TI

SN54LVTH18512HKC

3.3-V ABT SCAN TEST DEVICES WITH 18-BIT UNIVERSAL BUS TRANSCEIVERS
TI

SN54LVTH18512_07

3.3-V ABT SCAN TEST DEVICES WITH 18-BIT UNIVERSAL BUS TRANSCEIVERS
TI

SN54LVTH18514

3.3-V ABT SCAN TEST DEVICES WITH 20-BIT UNIVERSAL BUS TRANSCEIVERS
TI

SN54LVTH18514HKC

3.3-V ABT SCAN TEST DEVICES WITH 20-BIT UNIVERSAL BUS TRANSCEIVERS
TI

SN54LVTH18514_17

3.3-V ABT SCAN TEST DEVICES WITH 20-BIT UNIVERSAL BUS TRANSCEIVERS
TI

SN54LVTH18640WD

LVT SERIES, DUAL 9-BIT BOUNDARY SCAN TRANSCEIVER, INVERTED OUTPUT, CDFP56
TI

SN54LVTH18646A

3.3-V ABT SCAN TEST DEVICES WITH 18-BIT TRANSCEIVERS AND REGISTERS
TI

SN54LVTH18646AHV

3.3-V ABT SCAN TEST DEVICES WITH 18-BIT TRANSCEIVERS AND REGISTERS
TI

SN54LVTH18646A_08

3.3-V ABT SCAN TEST DEVICES
TI

SN54LVTH18652A

3.3-V ABT SCAN TEST DEVICES WITH 18-BIT TRANSCEIVERS AND REGISTERS
TI

SN54LVTH18652AHV

3.3-V ABT SCAN TEST DEVICES WITH 18-BIT TRANSCEIVERS AND REGISTERS
TI