SN55LBC173MKGD1 [TI]

四路低功耗差分线路接收器 | KGD | 0 | -55 to 125;
SN55LBC173MKGD1
型号: SN55LBC173MKGD1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

四路低功耗差分线路接收器 | KGD | 0 | -55 to 125

信息通信管理 接口集成电路
文件: 总12页 (文件大小:468K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
SN55LBC173-HIREL  
www.ti.com.cn  
ZHCSBQ1A OCTOBER 2013REVISED OCTOBER 2013  
四路低功耗差动接收器  
查询样品: SN55LBC173-HIREL  
1
特性  
2
符合 EIA 标准 RS-422-ARS-423-A,  
RS-485 CCITT V.11  
输入灵敏度:±200mV  
低功耗:20mA(最大值)  
被设计成支持脉冲时长运行最短 20ns  
开路故障安全设计  
针对嘈杂环境中的长距离总线线路上的多点总线传  
说明  
SN55LBC173 是一款具有 3 态输出的单片四路差动线路接收器,此接收器被设计成符合 EIA 标准 RS-422-ARS-  
423-ARS-485 CCITT V.11。 这个器件针对数据速率高达且超过每秒 1 千万位的平衡多点总线传输进行了优  
化。 4 个接收器共用 2 个进行或操作的使能输入,一个在高电平时有效,一个在低电平时有效。 每个接收器在  
12V -7V 的共模输入电压范围内特有高输入阻抗、输入滞后以增加抗扰度,以及 ±200mV 的输入灵敏度。故障  
安全设计确保了在输入为开路时,输出始终为高电平。 SN55LBC173 使用德州仪器 (TI) 已获专利的 LinBiCMOS™  
技术进行设计,这个技术提供了低功耗、高开关速度和稳健耐用性。  
1
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of  
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
2
LinBiCMOS is a trademark of Texas Instruments.  
PRODUCTION DATA information is current as of publication date.  
Products conform to specifications per the terms of the Texas  
Instruments standard warranty. Production processing does not  
necessarily include testing of all parameters.  
Copyright © 2013, Texas Instruments Incorporated  
English Data Sheet: SGLS415  
SN55LBC173-HIREL  
ZHCSBQ1A OCTOBER 2013REVISED OCTOBER 2013  
www.ti.com.cn  
These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam  
during storage or handling to prevent electrostatic damage to the MOS gates.  
ORDERING INFORMATION(1)  
TA  
PACKAGE  
ORDERABLE PART NUMBER  
TOP-SIDE MARKING  
SN55LBC173MKGD1  
NA  
NA  
–55°C to 125°C  
KGD  
SN55LBC173MKGD2  
(1) For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI  
website at www.ti.com.  
BARE DIE INFORMATION  
BACKSIDE  
POTENTIAL  
BOND PAD  
METALLIZATION COMPOSITION  
BOND PAD  
THICKNESS  
DIE THICKNESS  
BACKSIDE FINISH  
10.5 mils.  
Silicon with backgrind  
Floating  
AlSi(1%)Cu(0.5%)TiW  
1850 nm  
2
Copyright © 2013, Texas Instruments Incorporated  
SN55LBC173-HIREL  
www.ti.com.cn  
ZHCSBQ1A OCTOBER 2013REVISED OCTOBER 2013  
Table 1. Bond Pad Coordinates in Microns  
DESCRIPTION  
PAD NUMBER  
X MIN  
626.5  
Y MIN  
1695  
1690.7  
1432.1  
614.1  
392.1  
132  
X MAX  
740.5  
323  
Y MAX  
1809.5  
1791.3  
1539  
1B  
1A  
1Y  
G
1
2
222.5  
3
167.9  
274.8  
278.3  
273.5  
379.7  
805.3  
1066.7  
1337.7  
1727.2  
1865.6  
1865.4  
1857  
4
171.4  
721  
2Y  
2A  
2B  
GND  
3B  
3A  
3Y  
G
5
166.6  
499  
6
279.2  
232.6  
232.6  
232.6  
232.6  
232.6  
510.6  
855.9  
1515.3  
1799  
7
704.8  
132  
8
966.2  
132  
9
1237.2  
1626.7  
1758.7  
1758.5  
1750.1  
1702.2  
1296.7  
1024.2  
132  
10  
11  
12  
13  
14  
15  
16  
132  
403.7  
749  
4Y  
4A  
4B  
VCC  
1408.4  
1698.4  
1698.4  
1671.9  
1802.7  
1397.2  
1124.7  
1799  
1772.5  
ABSOLUTE MAXIMUM RATINGS(1)  
over operating free-air temperature range unless otherwise noted  
Value  
UNIT  
VCC  
VI  
Supply voltage range(2)  
–0.3 to 7  
±25  
V
V
Input voltage range, (A or B inputs)  
Differential input voltage(3)  
VID  
±25  
V
Data and control voltage range  
Operating free-air temperature range  
Storage temperature range  
–0.3 to 7  
–55 to 125  
–65 to 150  
V
TA  
°C  
°C  
Tstg  
(1) Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings  
only, and functional operation of the device at these or any other conditions beyond those indicated under recommended operating  
conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) All voltage values are with respect to network ground terminal.  
(3) Differential input voltage is measured at the noninverting input with respect to the corresponding inverting input.  
RECOMMENDED OPERATING CONDITIONS  
MIN TYP  
MAX UNIT  
VCC Supply voltage  
4.75  
–7  
2
5
5.25  
12  
V
VIC  
VIH  
VIL  
VID  
IOH  
IOL  
TA  
Common-mode input voltage  
High-level input voltage  
Low-level input voltage  
Differential input voltage  
High-level output current  
Low-level output current  
Operating free-air temperature  
G inputs  
0.8  
6
–6  
–8  
16  
mA  
mA  
°C  
-55  
125  
Copyright © 2013, Texas Instruments Incorporated  
3
SN55LBC173-HIREL  
ZHCSBQ1A OCTOBER 2013REVISED OCTOBER 2013  
www.ti.com.cn  
MAX UNIT  
ELECTRICAL CHARACTERISTICS  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN TYP(1)  
VIT+  
VIT–  
Vhys  
VIK  
Positive-going input threshold voltage  
IO = –8 mA  
0.2  
V
Negative-going input threshold voltage IO = 8 mA  
–0.2  
45  
Hysteresis voltage (VIT+ – VIT–  
Enable input clamp voltage  
High-level output voltage  
)
mV  
II = – 18 mA  
–0.9  
–1.5  
V
V
VOH  
VID = –200 mV, IOH = –8 mA  
VID = –200 mV, IOL = 8 mA  
VID = –200 mV, IOL = 8 mA, TA = 125°  
VO = 0 V to VCC  
3.5  
4.5  
0.3  
0.5  
0.7  
VOL  
IOZ  
Low-level output voltage  
V
High-impedance-state output current  
±20  
1.15  
1.15  
–0.9  
–0.9  
±20  
–20  
–120  
20  
µA  
VIH = 12 V, VCC = 5 V  
VIH = 12 V, VCC = 0 V  
0.7  
0.8  
Bus input  
A or B inputs  
current  
II  
Other inputs at 0 V  
mA  
VIH = –7 V, VCC = 5 V  
VIH = –7 V, VCC = 0 V  
VIH = 5 V  
–0.5  
–0.4  
IIH  
IIL  
High-level input current  
Low-level input current  
Short-circuit output current  
µA  
µA  
VIL = 0 V  
IOS  
VO = 0  
–80  
11  
mA  
Outputs enabled, IO = 0, VID = 5 V  
Outputs disabled  
ICC  
Supply current  
mA  
0.9  
1.4  
(1) All typical values are at 25°C and with a 5 V supply.  
SWITCHING CHARACTERISTICS  
VCC = 5 V, CL = 15 pF, over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
TA  
MIN  
11  
TYP MAX UNIT  
25°C  
22  
22  
17  
18  
30  
25  
0.5  
5
30  
35  
35  
35  
40  
45  
30  
35  
40  
55  
40  
45  
6
Propagation delay time, high-to-low-level VID = –1.5 V to 1.5 V,  
output See Figure 1  
tPHL  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
–55°C to 125°C  
25°C  
11  
11  
Propagation delay time, low-to-high-level VID = –1.5 V to 1.5 V,  
tPLH  
output  
See Figure 1  
–55°C to 125°C  
25°C  
11  
tPZH Output enable time to high level  
See Figure 2  
–55°C to 125°C  
25°C  
tPZL  
Output enable time to low level  
See Figure 3  
See Figure 2  
See Figure 3  
See Figure 1  
See Figure 1  
–55°C to 125°C  
25°C  
tPHZ Output disable time from high level  
–55°C to 125°C  
25°C  
tPLZ  
Output disable time from low level  
–55°C to 125°C  
25°C  
tsk(p) Pulse skew (|tPHL – tPLH|)  
–55°C to 125°C  
25°C  
7
10  
16  
tt  
Transition time  
–55°C to 125°C  
4
Copyright © 2013, Texas Instruments Incorporated  
SN55LBC173-HIREL  
www.ti.com.cn  
ZHCSBQ1A OCTOBER 2013REVISED OCTOBER 2013  
PARAMETER MEASUREMENT INFORMATION  
1.5 V  
Generator  
(see Note A)  
Input  
t
0 V  
0 V  
50  
Output  
= 15 pF  
– 1.5V  
C
t
L
(see Note B)  
PLH  
PHL  
V
OH  
90%  
10%  
Output  
1.3 V  
1.3 V  
V
OL  
t
t
t
t
2 V  
VOLTAGE WAVEFORMS  
TEST CIRCUIT  
A. The input pulse is supplied by a generator having the following characteristics: PRR = 1 MHz, duty cycle 50%,  
tr 6 ns, tf 6 ns, ZO = 50 Ω.  
B. CL includes probe and jig capacitance.  
Figure 1. tpd and tt Test Circuit and Voltage Waveforms  
V
CC  
Output  
2 k  
1.5 V  
S1  
3 V  
Input  
1.3 V  
1.3 V  
C
= 15 pF  
0 V  
L
(see Note B)  
t
t
PHZ  
PZH  
5 kΩ  
See Note C  
0.5 V  
V
OH  
S1 Closed  
1.4 V  
Output  
1.3 V  
S1 Open  
2 V  
0 V  
Generator  
(see Note A)  
VOLTAGE WAVEFORMS  
50 Ω  
(see Note D)  
TEST CIRCUIT  
A. The input pulse is supplied by a generator having the following characteristics: PRR = 1 MHz, duty cycle 50%,  
tr 6 ns, tf 6 ns, ZO = 50 Ω.  
B. CL includes probe and jig capacitance.  
C. All diodes are 1N916 or equivalent.  
D. To test the active-low enable G, ground G and apply an inverted input waveform to G.  
Figure 2. tPHZ and tPZH Test Circuit and Voltage Waveforms  
Copyright © 2013, Texas Instruments Incorporated  
5
SN55LBC173-HIREL  
ZHCSBQ1A OCTOBER 2013REVISED OCTOBER 2013  
www.ti.com.cn  
PARAMETER MEASUREMENT INFORMATION (continued)  
V
CC  
Output  
2 k  
1.5V  
3 V  
0 V  
Input  
t
C
= 15 pF  
1.3 V  
1.3 V  
L
(see Note B)  
5 kΩ  
See Note C  
t
PZL  
PLZ  
S2 Open  
S2 Closed  
1.4 V  
2 V  
Output  
1.3 V  
Generator  
(see Note A)  
V
OL  
S2  
0.5 V  
VOLTAGE WAVEFORMS  
50 Ω  
(see Note D)  
TEST CIRCUIT  
A. The input pulse is supplied by a generator having the following characteristics: PRR = 1 MHz, duty cycle 50%,  
tr 6 ns, tf 6 ns, ZO = 50 Ω.  
B. CL includes probe and jig capacitance.  
C. All diodes are 1N916 or equivalent.  
D. To test the active-low enable G, ground G and apply an inverted input waveform to G.  
Figure 3. tPZL and tPLZ Test Circuit and Voltage Waveforms  
6
Copyright © 2013, Texas Instruments Incorporated  
SN55LBC173-HIREL  
www.ti.com.cn  
ZHCSBQ1A OCTOBER 2013REVISED OCTOBER 2013  
DEVICE INFORMATION  
EQUIVALENT INPUT AND OUTPUT SCHEMATIC DIAGRAMS  
EQUIVALENT OF A AND B INPUTS  
TYPICAL OF ALL OUTPUTS  
TYPICAL OF G AND G INPUTS  
V
CC  
V
CC  
V
CC  
100 k  
A Only  
3 kΩ  
Receiver  
Input  
Input  
18 kΩ  
Y Output  
100 kΩ  
B Only  
12 kΩ  
1 kΩ  
FUNCTION TABLE (EACH RECIEVER)  
DIFFERENTIAL INPUTS  
A - B  
ENABLES  
OUTPUT  
G
H
X
H
X
H
X
L
G
X
L
Y
H
H
?
VID 0.2 V  
X
L
-0.2 < VID < 0.2 V  
?
X
L
L
VID -0.2 V  
X
L
H
X
L
Z
H
H
H
X
Open circuit  
4
4
1  
G
G
G
12  
12  
G
2
1
2
3
1A  
1B  
3
5
1A  
1B  
2A  
2B  
3A  
3B  
4A  
4B  
1Y  
1Y  
2Y  
3Y  
4Y  
1
6
5
11  
13  
6
7
7
2Y  
3Y  
4Y  
2A  
2B  
10  
9
10  
9
14  
15  
3A  
3B  
11  
13  
14  
15  
4A  
4B  
Figure 4. Logic Symbol  
Figure 5. Logic Diagram (Positive Logic)  
Copyright © 2013, Texas Instruments Incorporated  
7
SN55LBC173-HIREL  
ZHCSBQ1A OCTOBER 2013REVISED OCTOBER 2013  
www.ti.com.cn  
TYPICAL CHARACTERISTICS  
OUTPUT VOLTAGE  
vs  
HIGH-LEVEL OUTPUT VOLTAGE  
vs  
DIFFERENTIAL INPUT VOLTAGE  
HIGH-LEVEL OUTPUT CURRENT  
5.5  
5
4.5  
4
V
T
= 5 V  
= 25°C  
CC  
V
CC  
= 5.25 V  
A
4.5  
4
3.5  
3
V
CC  
= 5 V  
3.5  
3
V
CC  
= 4.75 V  
2.5  
2
2.5  
2
1.5  
1
1.5  
1
0.5  
0
V
T
= 0.2 V  
ID  
= 25°C  
0.5  
0
A
0
10 20 30 40 50 60 70 80 90 100  
0
– 4 – 8 – 12 – 16 – 20 – 24 – 28 – 32 – 36 – 40  
V
ID  
– Differential Input Voltage – mV  
I
– High-Level Output Current – mA  
OH  
Figure 6.  
Figure 7.  
LOW-LEVEL OUTPUT VOLTAGE  
vs  
LOW-LEVEL OUTPUT CURRENT  
AVERAGE SUPPLY CURRENT  
vs  
FREQUENCY  
660  
600  
540  
480  
420  
360  
300  
240  
180  
120  
60  
14  
T
= 25°C  
A
T
= 25°C  
A
V
= 5 V  
CC  
V
= 5 V  
CC  
12  
10  
8
V
= 200 mV  
ID  
6
4
2
0
0
10 K  
0
3
6
9
12 15 18 21 24 27 30  
100 K  
2 M  
10 M  
100 M  
I
– Low-Level Output Current – mA  
OL  
Figure 8.  
Figure 9.  
8
Copyright © 2013, Texas Instruments Incorporated  
SN55LBC173-HIREL  
www.ti.com.cn  
ZHCSBQ1A OCTOBER 2013REVISED OCTOBER 2013  
TYPICAL CHARACTERISTICS (continued)  
BUS INPUT CURRENT  
vs  
PROPAGATION DELAY TIME  
vs  
FREE-AIR TEMPERATURE  
INPUT VOLTAGE  
(COMPLEMENTARY INPUT AT 0 V)  
1
0.8  
24.5  
24  
V
= 5 V  
T
V
= 25°C  
CC  
= 15 pF  
A
C
V
= 5 V  
L
CC  
=
1.5 V  
IO  
0.6  
0.4  
t
PHL  
23.5  
23  
0.2  
0
– 0.2  
– 0.4  
– 0.6  
– 0.8  
– 1  
t
PLH  
22.5  
22  
The shaded region of this graph represents  
more than 1 unit load per RS-485.  
– 40 – 20  
0
20  
40  
60  
80  
100  
– 8 – 6 – 4 – 2  
0
2
4
6
8
10 12  
T
A
– Free-Air Temperature – °C  
V – Input Voltage – V  
I
Figure 10.  
Figure 11.  
Copyright © 2013, Texas Instruments Incorporated  
9
PACKAGE OPTION ADDENDUM  
www.ti.com  
14-Jul-2022  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
SN55LBC173MKGD1  
SN55LBC173MKGD2  
ACTIVE  
ACTIVE  
XCEPT  
XCEPT  
KGD  
KGD  
0
0
100  
10  
RoHS & Green  
TBD  
Call TI  
N / A for Pkg Type  
Call TI  
-55 to 125  
-55 to 125  
Samples  
Samples  
Call TI  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
14-Jul-2022  
Addendum-Page 2  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

UL1042

UL1042 - Uk砤d zr體nowa縪nego mieszacza iloczynowego

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

ZXFV201

QUAD VIDEO AMPLIFIER

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ZETEX

ZXFV201N14

IC-SM-VIDEO AMP

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ZETEX

ZXFV201N14TA

QUAD VIDEO AMPLIFIER

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ZETEX

ZXFV201N14TC

QUAD VIDEO AMPLIFIER

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ZETEX

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

ZXFV302N16

IC-SM-4:1 MUX SWITCH

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

ZXFV4089

VIDEO AMPLIFIER WITH DC RESTORATION

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ZETEX

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ZETEX