SN6501-Q1 [TI]

适用于隔离电源的汽车类低噪声、350mA、410kHz 变压器驱动器;
SN6501-Q1
型号: SN6501-Q1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

适用于隔离电源的汽车类低噪声、350mA、410kHz 变压器驱动器

变压器 驱动 驱动器
文件: 总36页 (文件大小:3309K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
SN6501-Q1  
ZHCSB64C JUNE 2013 REVISED MARCH 2021  
SN6501-Q1 用于隔离电源的变压器驱动器  
1 特性  
3 说明  
• 符合汽车应用要求  
• 具有符AEC-Q100 标准的下列特性  
SN6501-Q1 是一款单片振荡器/电源驱动器特别设计  
用于隔离接口应用中的小外形尺寸隔离电源。该器件可  
驱动来自 3.3V 或者 5V 直流 (DC) 电源的薄型中间抽  
头的变压器初级。根据变压器的匝数比变压器的次级  
可被卷绕以提供任意隔离电压。  
– 器件温度等140°C 125°C 环境工作温  
度范围  
– 器件人体放电模(HBM) 静电防(ESD) 分类  
H2  
SN6501-Q1 包含一个振荡器之后是一个栅极驱动电  
此电路提供互补输出信号用于驱动以地为基准的  
N 沟道开关管。此内部逻辑电路确保了两个开关之间的  
先开后和操作。  
– 器CDM ESD 分类等C4B  
提供功能安全  
有助于进行功能安全系统设计的文档  
• 用于小型变压器的推挽驱动器  
3.3V 5V 单电源  
SN6501-Q1 采用小型 SOT-23 (5) 封装其额定运行  
温度范围-40°C 125°C。  
• 初级侧高电流驱动:  
5V 电源350mA最大值)  
3.3V 电源150mA最大值)  
• 整流输出上的低纹波允许使用小型输出电容器  
• 小5 SOT-23 封装  
器件信息  
器件型号(1)  
SN6501-Q1  
封装尺寸标称值)  
封装  
SOT-23 (5)  
2.90mm x 1.60mm  
(1) 如需了解所有可用封装请参阅数据表末尾的可订购产品附  
录。  
2 应用  
• 用于控制器局域(CAN)RS-485RS-422,  
RS-232串行外设接(SPI)I2C低功耗局域网  
(LAN) 的隔离接口电源  
• 工业自动化  
• 过程控制  
• 医疗设备  
简化版原理图  
输出电压和效率与输出电流间的关系  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SLLSEF3  
 
 
 
 
SN6501-Q1  
ZHCSB64C JUNE 2013 REVISED MARCH 2021  
www.ti.com.cn  
Table of Contents  
8.3 Feature Description...................................................12  
8.4 Device Functional Modes..........................................13  
9 Application and Implementation..................................14  
9.1 Application Information............................................. 14  
9.2 Typical Application.................................................... 15  
10 Power Supply Recommendations..............................27  
11 Layout...........................................................................28  
11.1 Layout Guidelines................................................... 28  
11.2 Layout Example...................................................... 28  
12 Device and Documentation Support..........................29  
12.1 Device Support....................................................... 29  
12.2 Trademarks.............................................................29  
12.3 静电放电警告.......................................................... 29  
12.4 术语表..................................................................... 29  
13 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Pin Configuration and Functions...................................3  
6 Specifications.................................................................. 4  
6.1 Absolute Maximum Ratings........................................ 4  
6.2 Handling Ratings.........................................................4  
6.3 Recommended Operating Conditions.........................5  
6.4 Thermal Information....................................................5  
6.5 Electrical Characteristics.............................................5  
6.6 Switching Characteristics............................................5  
6.7 Typical Characteristics................................................6  
7 Parameter Measurement Information.......................... 11  
8 Detailed Description......................................................12  
8.1 Overview...................................................................12  
8.2 Functional Block Diagram.........................................12  
Information.................................................................... 29  
4 Revision History  
以前版本的页码可能与当前版本的页码不同  
Changes from Revision B (October 2020 ) to Revision C (March 2021)  
Page  
Added a short-circuit protection note to SN6501 Drive Capability ...................................................................15  
Changed 方程4 ........................................................................................................................................... 18  
Removed duplicate equation labeled as (5) in Revision B............................................................................... 18  
Added 17 line items to Recommended Isolation Transformers Optimized for SN6501 ...................................20  
Changes from Revision A (September 2014) to Revision B (October 2020)  
Page  
• 添加了“功能安全”要点.................................................................................................................................... 1  
Changes from Revision * (June 2013) to Revision A (September 2014)  
Page  
• 添加了引脚配置和功部分、处理等表、特性说部分、器件功能模式应用和实部分、电源相关建议  
部分、部分、器件和文档支部分以及机械、封装和可订购信部分......................................................1  
Changed 方程10 ......................................................................................................................................... 18  
Changed 方程11 ..........................................................................................................................................18  
Changed 9-4, From: Wuerth-Elektronik / Midcom To: Wurth Electronics Midcom Inc..................................22  
Changed 9-16 ............................................................................................................................................. 22  
Copyright © 2023 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: SN6501-Q1  
 
SN6501-Q1  
ZHCSB64C JUNE 2013 REVISED MARCH 2021  
www.ti.com.cn  
5 Pin Configuration and Functions  
D1  
1
2
3
5
4
GND  
GND  
VCC  
D2  
5-1. 5-Pin SOT-23 DBV Package Top View  
5-1. Pin Functions  
DESCRIPTION  
PIN  
NUMBER  
1
NAME  
TYPE  
D1  
OD  
Open Drain output 1. Connect this pin to one end of the transformer primary side.  
Supply voltage input. Connect this pin to the center-tap of the transformer primary side. Buffer this  
voltage with a 1 μF to 10 μF ceramic capacitor.  
VCC  
2
P
D2  
3
OD  
P
Open Drain output 2. Connect this pin to the other end of the transformer primary side.  
Device ground. Connect this pin to board ground.  
GND  
4,5  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: SN6501-Q1  
 
SN6501-Q1  
ZHCSB64C JUNE 2013 REVISED MARCH 2021  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
MAX  
6
UNIT  
V
VCC  
Supply voltage  
0.3  
VD1, VD2 Output switch voltage  
14  
V
ID1P, ID2P Peak output switch current  
500  
250  
170  
mA  
mW  
°C  
PTOT  
TJ  
Continuous power dissipation  
Junction temperature  
(1) Stresses beyond those listed under Absolute Maximum Ratings cause permanent damage to the device. These are stress ratings only  
and functional operation of the device at these or any other conditions beyond those indicated under 6.3 is not implied. Exposure to  
absolute-maximum-rated conditions for extended periods affects device reliability.  
6.2 Handling Ratings  
MIN  
65  
2  
MAX  
150  
2
UNIT  
Tstg  
Storage temperature range  
°C  
Human body model (HBM) AEC-Q100 Classification Level H2, all pins  
Charged device model (CDM) AEC-Q100 Classification Level C4B, all pins  
kV  
V
Electrostatic  
discharge  
V(ESD)  
750  
750  
Copyright © 2023 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: SN6501-Q1  
 
 
 
 
SN6501-Q1  
ZHCSB64C JUNE 2013 REVISED MARCH 2021  
www.ti.com.cn  
6.3 Recommended Operating Conditions  
MIN TYP MAX UNIT  
VCC  
Supply voltage  
3
0
0
5.5  
11  
V
VCC = 5 V ± 10%,  
VCC = 3.3 V ± 10%  
When connected to Transformer with  
primary winding Center-tapped  
VD1, VD2 Output switch voltage  
V
7.2  
VD1, VD2 Swing 3.8 V,  
see 6-32 for typical characteristics  
VCC = 5 V ± 10%  
350  
D1 and D2 output switch  
ID1, ID2  
mA  
°C  
current Primary-side  
VD1, VD2 Swing 2.5 V,  
see 6-31 for typical characteristics  
VCC = 3.3 V ± 10%  
150  
125  
TA  
Ambient temperature  
40  
6.4 Thermal Information  
SN6501  
DBV 5-PINS  
208.3  
87.1  
THERMAL METRIC(1)  
UNIT  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
θJA  
θJCtop  
θJB  
Junction-to-board thermal resistance  
40.4  
°C/W  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
5.2  
ψJT  
39.7  
ψJB  
N/A  
θJCbot  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report (SPRA953).  
6.5 Electrical Characteristics  
over full-range of recommended operating conditions, unless otherwise noted  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
1
MAX UNIT  
3
VCC = 3.3 V ± 10%, See 7-4  
VCC = 5 V ± 10%, See 7-4  
VCC = 3.3 V ± 10%, no load  
VCC = 5 V ± 10%, no load  
VCC = 2.4 V, See 7-4  
RON  
Switch-on resistance  
Ω
0.6  
150  
300  
300  
360  
410  
2
400  
µA  
700  
ICC  
fST  
Average supply current(1)  
Startup frequency  
kHz  
250  
300  
495  
kHz  
620  
VCC = 3.3 V ± 10%, See 7-4  
VCC = 5 V ± 10%, See 7-4  
fSW  
D1, D2 Switching frequency  
(1) Average supply current is the current used by SN6501 only. It does not include load current.  
6.6 Switching Characteristics  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
70  
MAX UNIT  
tr-D  
D1, D2 output rise time  
ns  
VCC = 3.3 V ± 10%, See 7-4  
VCC = 5 V ± 10%, See 7-4  
VCC = 3.3 V ± 10%, See 7-4  
VCC = 5 V ± 10%, See 7-4  
VCC = 3.3 V ± 10%, See 7-4  
VCC = 5 V ± 10%, See 7-4  
80  
tf-D  
D1, D2 output fall time  
Break-before-make time  
110  
60  
ns  
ns  
tBBM  
150  
50  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: SN6501-Q1  
 
 
 
 
 
 
 
SN6501-Q1  
ZHCSB64C JUNE 2013 REVISED MARCH 2021  
www.ti.com.cn  
6.7 Typical Characteristics  
TP1 Curves are measured with the Circuit in 7-1; whereas, TP1 and TP2 Curves are measured with Circuit in  
7-3 (TA = 25°C unless otherwise noted). See 9-3 for Transformer Specifications.  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
TP1  
5
4
3
2
1
0
TP1  
T1 = 760390011 (2.5kV)  
VIN = 3.3V, VOUT = 3.3V  
T1 = 760390011 (2.5kV)  
VIN = 3.3V, VOUT = 3.3V  
0
10 20 30 40 50 60 70 80 90 100  
0
10 20 30 40 50 60 70 80 90 100  
ILOAD - mA  
ILOAD - mA  
6-1. Output Voltage vs Load Current  
6-2. Efficiency vs Load Current  
6
90  
80  
TP1  
5
TP1  
70  
60  
50  
40  
30  
20  
10  
0
4
3
2
T1 = 760390012 (2.5kV)  
VIN = 5V, VOUT = 5V  
1
T1 = 760390012 (2.5kV)  
VIN = 5V, VOUT = 5V  
0
0
10 20 30 40 50 60 70 80 90 100  
0
10 20 30 40 50 60 70 80 90 100  
ILOAD - mA  
ILOAD - mA  
6-3. Output Voltage vs. Load Current  
6-4. Efficiency vs Load Current  
6
90  
TP1  
80  
70  
60  
50  
40  
30  
20  
10  
0
TP1  
5
4
3
2
T1 = 760390013 (2.5kV)  
VIN = 3.3V, VOUT = 5V  
1
T1 = 760390013 (2.5kV)  
VIN = 3.3V, VOUT = 5V  
0
0
10 20 30 40 50 60 70 80 90 100  
0
10 20 30 40 50 60 70 80 90 100  
ILOAD - mA  
ILOAD - mA  
6-6. Efficiency vs Load Current  
6-5. Output Voltage vs Load Current  
Copyright © 2023 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: SN6501-Q1  
 
 
 
 
SN6501-Q1  
ZHCSB64C JUNE 2013 REVISED MARCH 2021  
www.ti.com.cn  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
TP1  
TP2  
5
4
3
2
1
0
TP1  
TP2  
T1 = 760390014 (2.5kV)  
VIN = 3.3V, VOUT = 3.3V  
T1 = 760390014 (2.5kV)  
VIN = 3.3V, VOUT = 3.3V  
0
10 20 30 40 50 60 70 80 90 100  
0
10 20 30 40 50 60 70 80 90 100  
ILOAD - mA  
ILOAD - mA  
6-7. Output Voltage vs Load Current  
6-8. Efficiency vs Load Current  
8
7
90  
TP1  
80  
TP1  
70  
60  
50  
40  
30  
20  
10  
0
TP2  
6
5
TP2  
4
3
2
T1 = 760390014 (2.5kV)  
VIN = 5V, VOUT = 5V  
T1 = 760390014 (2.5kV)  
VIN = 5V, VOUT = 5V  
1
0
0
10 20 30 40 50 60 70 80 90 100  
0
10 20 30 40 50 60 70 80 90 100  
ILOAD - mA  
ILOAD - mA  
6-10. Efficiency vs Load Current  
6-9. Output Voltage vs Load Current  
7
TP1  
6
5
TP2  
4
3
2
T1 = 760390015 (2.5kV)  
VIN = 3.3V, VOUT = 5V  
1
0
0
10 20 30 40 50 60 70 80 90 100  
ILOAD - mA  
6-11. Output Voltage vs Load Current  
6-12. Efficiency vs Load Current  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
TP1  
5
TP2  
4
3
2
1
0
TP1  
TP2  
T1 = 750313710 (2.5kV)  
VIN = 5V, VOUT = 3.3V  
T1 = 750313710 (2.5kV)  
VIN = 5V, VOUT = 3.3V  
0
10 20 30 40 50 60 70 80 90 100  
0
10 20 30 40 50 60 70 80 90 100  
ILOAD - mA  
ILOAD - mA  
6-13. Output Voltage vs Load Current  
6-14. Efficiency vs Load Current  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: SN6501-Q1  
 
 
 
 
SN6501-Q1  
ZHCSB64C JUNE 2013 REVISED MARCH 2021  
www.ti.com.cn  
6
5
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
TP1  
4
TP1  
3
2
T1 = 750313734 (5kV)  
VIN = 3.3V, VOUT = 3.3V  
1
T1 = 750313734 (5kV)  
VIN = 3.3V, VOUT = 3.3V  
0
0
10 20 30 40 50 60 70 80 90 100  
ILOAD - mA  
0
10 20 30 40 50 60 70 80 90  
100  
6-15. Output Voltage vs Load Current  
6-16. Efficiency vs Load Current  
6
90  
80  
TP1  
5
TP1  
70  
60  
50  
40  
30  
20  
10  
0
4
3
2
T1 = 750313734 (5kV)  
VIN = 5V, VOUT = 5V  
1
T1 = 750313734 (5kV)  
VIN = 5V, VOUT = 5V  
0
0
10 20 30 40 50 60 70 80 90 100  
0
10 20 30 40 50 60 70 80 90 100  
ILOAD - mA  
ILOAD - mA  
6-18. Efficiency vs Load Current  
6-17. Output Voltage vs Load Current  
6-19. Output Voltage vs Load Current  
6-20. Efficiency vs Load Current  
6
90  
TP1  
TP2  
80  
70  
5
TP1  
4
60  
50  
40  
30  
3
2
1
0
TP2  
20  
T1 = 750313638 (5kV)  
VIN = 3.3V, VOUT = 3.3V  
T1 = 750313638 (5kV)  
VIN = 3.3V, VOUT = 3.3V  
10  
0
0
10 20 30 40 50 60 70 80 90 100  
0
10 20 30 40 50 60 70 80 90 100  
ILOAD - mA  
ILOAD - mA  
6-21. Output Voltage vs Load Current  
6-22. Efficiency vs Load Current  
Copyright © 2023 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: SN6501-Q1  
 
 
 
 
SN6501-Q1  
ZHCSB64C JUNE 2013 REVISED MARCH 2021  
www.ti.com.cn  
8
7
6
5
4
3
2
1
0
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
TP1  
TP1  
TP2  
TP2  
T1 = 750313638 (5kV)  
VIN = 5V, VOUT = 5V  
T1 = 750313638 (5kV)  
VIN = 5V, VOUT = 5V  
0
10 20 30 40 50 60 70 80 90 100  
0
10 20 30 40 50 60 70 80 90 100  
ILOAD - mA  
ILOAD - mA  
6-23. Output Voltage vs Load Current  
6-24. Efficiency vs Load Current  
8
7
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
TP1  
TP2  
TP1  
6
5
TP2  
4
3
2
T1 = 750313626 (5kV)  
VIN = 3.3V, VOUT = 5V  
T1 = 750313626 (5kV)  
VIN = 3.3V, VOUT = 5V  
1
0
0
10 20 30 40 50 60 70 80 90 100  
0
10 20 30 40 50 60 70 80 90 100  
ILOAD - mA  
ILOAD - mA  
6-25. Output Voltage vs Load Current  
6-26. Efficiency vs Load Current  
6
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
TP1  
5
4
TP2  
TP1  
3
2
1
0
TP2  
T1 = 750313638 (5kV)  
VIN = 5V, VOUT = 3.3V  
T1 = 750313638 (5kV)  
VIN = 5V, VOUT = 3.3V  
0
10 20 30 40 50 60 70 80 90 100  
ILOAD - mA  
0
10 20 30 40 50 60 70 80 90 100  
6-27. Output Voltage vs Load Current  
6-28. Efficiency vs Load Current  
350  
460  
V
= 5V  
300  
250  
200  
150  
100  
50  
440  
CC  
V
CC  
= 5V  
420  
400  
380  
360  
340  
320  
V
= 3.3V  
CC  
V
= 3.3V  
CC  
0
-55 -35 -15  
5
25 45 65 85 105 125  
-55 -35 -15  
5
25 45 65 85 105 125  
TA - Free Air Temperature - o  
C
TA - Free Air Temperature - o  
C
6-29. Average Supply Current vs Free-Air  
6-30. D1, D2 Switching Frequency vs Free-Air  
Temperature  
Temperature  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: SN6501-Q1  
 
 
 
SN6501-Q1  
ZHCSB64C JUNE 2013 REVISED MARCH 2021  
www.ti.com.cn  
3.30  
3.25  
5.00  
4.95  
4.90  
4.85  
4.80  
4.75  
4.70  
4.65  
4.60  
4.55  
V
CC  
= 5V  
V
CC  
= 3.3V  
3.20  
3.15  
3.10  
3.05  
3.00  
0
50  
100  
150  
200  
0
100  
200  
300  
400  
ID1, ID2 - Switching Current - mA  
ID1, ID2 - Switching Current - mA  
6-31. D1, D2 Primary-Side Output Switch Voltage  
6-32. D1, D2 Primary-Side Output Switch Voltage  
Swing vs Current  
Swing vs Current  
Copyright © 2023 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: SN6501-Q1  
 
SN6501-Q1  
ZHCSB64C JUNE 2013 REVISED MARCH 2021  
www.ti.com.cn  
7 Parameter Measurement Information  
7.1  
7-2. Timing Diagram  
7-1. Measurement Circuit for Unregulated  
Output (TP1)  
7-3. Measurement Circuit for regulated Output (TP1 and TP2)  
7-4. Test Circuit For RON, FSW, FSt, Tr-D, Tf-D, TBBM  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: SN6501-Q1  
 
 
 
 
SN6501-Q1  
ZHCSB64C JUNE 2013 REVISED MARCH 2021  
www.ti.com.cn  
8 Detailed Description  
8.1 Overview  
The SN6501-Q1 is a transformer driver designed for low-cost, small form-factor, isolated DC-DC converters  
utilizing the push-pull topology. The device includes an oscillator that feeds a gate-drive circuit. The gate-drive,  
comprising a frequency divider and a break-before-make (BBM) logic, provides two complementary output  
signals which alternately turn the two output transistors on and off.  
The output frequency of the oscillator is divided down by an asynchronous divider that provides two  
complementary output signals with a 50% duty cycle. A subsequent break-before-make logic inserts a dead-time  
between the high-pulses of the two signals. The resulting output signals, present the gate-drive signals for the  
output transistors. As shown in the functional block diagram, before either one of the gates can assume logic  
high, there must be a short time period during which both signals are low and both transistors are high-  
impedance. This short period, known as break-before-make time, is required to avoid shorting out both ends of  
the primary.  
8.2 Functional Block Diagram  
8.3 Feature Description  
8.3.1 Push-Pull Converter  
Push-pull converters require transformers with center-taps to transfer power from the primary to the secondary  
(see 8-1).  
CR  
CR  
1
1
V
V
OUT  
OUT  
C
C
R
R
L
L
V
V
IN  
IN  
CR  
CR  
2
2
Q
Q
Q
Q
1
2
1
2
8-1. Switching Cycles of a Push-Pull Converter  
When Q1 conducts, VIN drives a current through the lower half of the primary to ground, thus creating a negative  
voltage potential at the lower primary end with regards to the VIN potential at the center-tap.  
At the same time the voltage across the upper half of the primary is such that the upper primary end is positive  
with regards to the center-tap in order to maintain the previously established current flow through Q2, which now  
has turned high-impedance. The two voltage sources, each of which equaling VIN, appear in series and cause a  
voltage potential at the open end of the primary of 2×VIN with regards to ground.  
Copyright © 2023 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: SN6501-Q1  
 
 
 
 
 
SN6501-Q1  
ZHCSB64C JUNE 2013 REVISED MARCH 2021  
www.ti.com.cn  
Per dot convention the same voltage polarities that occur at the primary also occur at the secondary. The  
positive potential of the upper secondary end therefore forward biases diode CR1. The secondary current  
starting from the upper secondary end flows through CR1, charges capacitor C, and returns through the load  
impedance RL back to the center-tap.  
When Q2 conducts, Q1 goes high-impedance and the voltage polarities at the primary and secondary reverse.  
Now the lower end of the primary presents the open end with a 2×VIN potential against ground. In this case CR2  
is forward biased while CR1 is reverse biased and current flows from the lower secondary end through CR2,  
charging the capacitor and returning through the load to the center-tap.  
8.3.2 Core Magnetization  
8-2 shows the ideal magnetizing curve for a push-pull converter with B as the magnetic flux density and H as  
the magnetic field strength. When Q1 conducts the magnetic flux is pushed from A to A, and when Q2  
conducts the flux is pulled back from Ato A. The difference in flux and thus in flux density is proportional to the  
product of the primary voltage, VP, and the time, tON, it is applied to the primary: B VP × tON  
.
B
V
V
P
IN  
A’  
H
R
V
DS  
DS  
A
V
= V +V  
P DS  
IN  
8-2. Core Magnetization and Self-Regulation Through Positive Temperature Coefficient of RDS(on)  
This volt-seconds (V-t) product is important as it determines the core magnetization during each switching cycle.  
If the V-t products of both phases are not identical, an imbalance in flux density swing results with an offset from  
the origin of the B-H curve. If balance is not restored, the offset increases with each following cycle and the  
transformer slowly creeps toward the saturation region.  
Fortunately, due to the positive temperature coefficient of a MOSFETs on-resistance, the output FETs of the  
SN6501 have a self-correcting effect on V-t imbalance. In the case of a slightly longer on-time, the prolonged  
current flow through a FET gradually heats the transistor which leads to an increase in RDS-on. The higher  
resistance then causes the drain-source voltage, VDS, to rise. Because the voltage at the primary is the  
difference between the constant input voltage, VIN, and the voltage drop across the MOSFET, VP = VIN VDS  
,
VP is gradually reduced and V-t balance restored.  
8.4 Device Functional Modes  
The functional modes of the SN6501 are divided into start-up, operating, and off-mode.  
8.4.1 Start-Up Mode  
When the supply voltage at Vcc ramps up to 2.4V typical, the internal oscillator starts operating at a start  
frequency of 300 kHz. The output stage begins switching but the amplitude of the drain signals at D1 and D2 has  
not reached its full maximum yet.  
8.4.2 Operating Mode  
When the device supply has reached its nominal value ±10% the oscillator is fully operating. However variations  
over supply voltage and operating temperature can vary the switching frequencies at D1 and D2 between 250  
kHz and 495 kHz for VCC = 3.3 V ±10%, and between 300 kHz and 620 kHz for VCC = 5 V ±10%.  
8.4.3 Off-Mode  
The SN6501 is deactivated by reducing VCC to 0 V. In this state both drain outputs, D1 and D2, are high-  
impedance.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: SN6501-Q1  
 
 
SN6501-Q1  
ZHCSB64C JUNE 2013 REVISED MARCH 2021  
www.ti.com.cn  
9 Application and Implementation  
备注  
Information in the following applications sections is not part of the TI component specification, and TI  
does not warrant its accuracy or completeness. TIs customers are responsible for determining  
suitability of components for their purposes. Customers should validate and test their design  
implementation to confirm system functionality.  
9.1 Application Information  
The SN6501-Q1 is a transformer driver designed for low-cost, small form-factor, isolated DC-DC converters  
utilizing the push-pull topology. The device includes an oscillator that feeds a gate-drive circuit. The gate-drive,  
comprising a frequency divider and a break-before-make (BBM) logic, provides two complementary output  
signals which alternately turn the two output transistors on and off.  
9-1. SN6501-Q1 Block Diagram  
The output frequency of the oscillator is divided down by an asynchronous divider that provides two  
complementary output signals, S and S, with a 50% duty cycle. A subsequent break-before-make logic inserts a  
dead-time between the high-pulses of the two signals. The resulting output signals, G1 and G2, present the gate-  
drive signals for the output transistors Q1 and Q2. As shown in 9-2, before either one of the gates can assume  
logic high, there must be a short time period during which both signals are low and both transistors are high-  
impedance. This short period, known as break-before-make time, is required to avoid shorting out both ends of  
the primary.  
fOSC  
S
S
G1  
G2  
Q1  
Q2  
9-2. Detailed Output Signal Waveforms  
Copyright © 2023 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: SN6501-Q1  
 
 
 
SN6501-Q1  
ZHCSB64C JUNE 2013 REVISED MARCH 2021  
www.ti.com.cn  
9.2 Typical Application  
9-3. Typical Application Schematic (SN6501-Q1)  
9.2.1 Design Requirements  
For this design example, use the parameters listed in 9-1 as design parameters.  
9-1. Design Parameters  
DESIGN PARAMETER  
Input voltage range  
Output voltage  
EXAMPLE VALUE  
3.3 V ± 3%  
5 V  
Maximum load current  
100 mA  
9.2.2 Detailed Design Procedure  
The following recommendations on components selection focus on the design of an efficient push-pull converter  
with high current drive capability. Contrary to popular belief, the output voltage of the unregulated converter  
output drops significantly over a wide range in load current. The characteristic curve in 6-11 for example  
shows that the difference between VOUT at minimum load and VOUT at maximum load exceeds a transceivers  
supply range. Therefore, in order to provide a stable, load independent supply while maintaining maximum  
possible efficiency the implementation of a low dropout regulator (LDO) is strongly advised.  
The final converter circuit is shown in 9-7. The measured VOUT and efficiency characteristics for the regulated  
and unregulated outputs are shown in 6-1 to 6-28.  
9.2.2.1 SN6501 Drive Capability  
The SN6501 transformer driver is designed for low-power push-pull converters with input and output voltages in  
the range of 3 V to 5.5 V. While converter designs with higher output voltages are possible, care must be taken  
that higher turns ratios dont lead to primary currents that exceed the SN6501 specified current limits.  
Unlike SN6505 devices, SN6501 does not have soft-start, internal current limit, or thermal shutdown (TSD)  
features. Therefore, unregulated large currents exceeding device absolute maximum current ratings may  
damage the device or affect its long-term reliability. In addition, high capacitive loads at the isolated power  
supply output may appear as short circuits to SN6501 during power-up and may exceed the device's maximum  
current ratings. When using SN6501, it is recommended to incorporate LDOs with low short-circuit current limits  
or soft-start features to ensure excessive current is not drawn from SN6501.  
9.2.2.2 LDO Selection  
The minimum requirements for a suitable low dropout regulator are:  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: SN6501-Q1  
 
 
 
SN6501-Q1  
ZHCSB64C JUNE 2013 REVISED MARCH 2021  
www.ti.com.cn  
Its current drive capability should slightly exceed the specified load current of the application to prevent the  
LDO from dropping out of regulation. Therefore for a load current of 100 mA, choose a 100 mA to 150 mA  
LDO. While regulators with higher drive capabilities are acceptable, they also usually possess higher dropout  
voltages that will reduce overall converter efficiency.  
The internal dropout voltage, VDO, at the specified load current should be as low as possible to maintain  
efficiency. For a low-cost 150 mA LDO, a VDO of 150 mV at 100 mA is common. Be aware however, that this  
lower value is usually specified at room temperature and can increase by a factor of 2 over temperature,  
which in turn will raise the required minimum input voltage.  
The required minimum input voltage preventing the regulator from dropping out of line regulation is given  
with:  
VI-min = VDO-max + VO-max  
(1)  
This means in order to determine VI for worst-case condition, the user must take the maximum values for VDO  
and VO specified in the LDO data sheet for rated output current (i.e., 100 mA) and add them together. Also  
specify that the output voltage of the push-pull rectifier at the specified load current is equal or higher than  
VI-min. If it is not, the LDO will lose line-regulation and any variations at the input will pass straight through to  
the output. Hence below VI-min the output voltage will follow the input and the regulator behaves like a simple  
conductor.  
The maximum regulator input voltage must be higher than the rectifier output under no-load. Under this  
condition there is no secondary current reflected back to the primary, thus making the voltage drop across  
RDS-on negligible and allowing the entire converter input voltage to drop across the primary. At this point the  
secondary reaches its maximum voltage of  
VS-max = VIN-max × n  
(2)  
with VIN-max as the maximum converter input voltage and n as the transformer turns ratio. Thus to prevent the  
LDO from damage the maximum regulator input voltage must be higher than VS-max. 9-2 lists the maximum  
secondary voltages for various turns ratios commonly applied in push-pull converters with 100 mA output drive.  
9-2. Required Maximum LDO Input Voltages for Various Push-Pull Configurations  
PUSH-PULL CONVERTER  
LDO  
VI-max [V]  
6 to 10  
10  
CONFIGURATION  
3.3 VIN to 3.3 VOUT  
3.3 VIN to 5 VOUT  
5 VIN to 5 VOUT  
VIN-max [V]  
TURNS-RATIO  
1.5 ± 3%  
VS-max [V]  
5.6  
3.6  
3.6  
5.5  
2.2 ± 3%  
8.2  
1.5 ± 3%  
8.5  
10  
9.2.2.3 Diode Selection  
A rectifier diode should always possess low-forward voltage to provide as much voltage to the converter output  
as possible. When used in high-frequency switching applications, such as the SN6501 however, the diode must  
also possess a short recovery time. Schottky diodes meet both requirements and are therefore strongly  
recommended in push-pull converter designs. A good choice for low-volt applications and ambient temperatures  
of up to 85°C is the low-cost Schottky rectifier MBR0520L with a typical forward voltage of 275 mV at 100-mA  
forward current. For higher output voltages such as ±10 V and above use the MBR0530 which provides a higher  
DC blocking voltage of 30 V.  
Lab measurements have shown that at temperatures higher than 100°C the leakage currents of the above  
Schottky diodes increase significantly. This can cause thermal runaway leading to the collapse of the rectifier  
output voltage. Therefore, for ambient temperatures higher than 85°C use low-leakage Schottky diodes, such as  
RB168M-40.  
Copyright © 2023 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: SN6501-Q1  
 
SN6501-Q1  
ZHCSB64C JUNE 2013 REVISED MARCH 2021  
www.ti.com.cn  
1
1
TJ = 125°C  
25°C  
0°C  
-40°C  
75°C  
-25°C  
TJ = 100°C  
25°C  
75°C  
0.1  
0.1  
0.01  
0.01  
0.2  
0.3  
0.4  
0.5  
0.1  
0.2  
0.3  
0.4  
0.5  
Forward Voltage, VF - V  
Forward Voltage, VF - V  
9-4. Diode Forward Characteristics for MBR0520L (Left) and MBR0530 (Right)  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: SN6501-Q1  
SN6501-Q1  
ZHCSB64C JUNE 2013 REVISED MARCH 2021  
www.ti.com.cn  
9.2.2.4 Capacitor Selection  
The capacitors in the converter circuit in 9-7 are multi-layer ceramic chip (MLCC) capacitors.  
As with all high speed CMOS ICs, the SN6501 requires a bypass capacitor in the range of 10 nF to 100 nF.  
The input bulk capacitor at the center-tap of the primary supports large currents into the primary during the fast  
switching transients. For minimum ripple make this capacitor 1 μF to 10 μF. In a 2-layer PCB design with a  
dedicated ground plane, place this capacitor close to the primary center-tap to minimize trace inductance. In a 4-  
layer board design with low-inductance reference planes for ground and VIN, the capacitor can be placed at the  
supply entrance of the board. To ensure low-inductance paths use two vias in parallel for each connection to a  
reference plane or to the primary center-tap.  
The bulk capacitor at the rectifier output smoothes the output voltage. Make this capacitor 1 μF to 10 μF.  
The small capacitor at the regulator input is not necessarily required. However, good analog design practice  
suggests, using a small value of 47 nF to 100 nF improves the regulators transient response and noise  
rejection.  
The LDO output capacitor buffers the regulated output for the subsequent isolator and transceiver circuitry. The  
choice of output capacitor depends on the LDO stability requirements specified in the data sheet. However, in  
most cases, a low-ESR ceramic capacitor in the range of 4.7 μF to 10 μF will satisfy these requirements.  
9.2.2.5 Transformer Selection  
9.2.2.5.1 V-t Product Calculation  
To prevent a transformer from saturation its V-t product must be greater than the maximum V-t product applied  
by the SN6501. The maximum voltage delivered by the SN6501 is the nominal converter input plus 10%. The  
maximum time this voltage is applied to the primary is half the period of the lowest frequency at the specified  
input voltage. Therefore, the transformers minimum V-t product is determined through:  
T
V
IN-max  
max  
Vt  
³ V  
´
=
min  
IN-max  
2
2 ´ f  
min  
(3)  
Inserting the numeric values from the data sheet into the equation above yields the minimum V-t products of  
3.6 V  
Vtmin  
³
= 7.2 Vμs  
for 3.3 V, and  
2 ´ 250 kHz  
5.5 V  
Vtmin  
³
= 9.1Vμs for 5 V applications.  
2 ´ 300 kHz  
(4)  
Common V-t values for low-power center-tapped transformers range from 22 Vμs to 150 Vμs with typical  
footprints of 10 mm x 12 mm. However, transformers specifically designed for PCMCIA applications provide as  
little as 11 Vμs and come with a significantly reduced footprint of 6 mm x 6 mm only.  
While Vt-wise all of these transformers can be driven by the SN6501, other important factors such as isolation  
voltage, transformer wattage, and turns ratio must be considered before making the final decision.  
9.2.2.5.2 Turns Ratio Estimate  
Assume the rectifier diodes and linear regulator has been selected. Also, it has been determined that the  
transformer choosen must have a V-t product of at least 11 Vμs. However, before searching the manufacturer  
websites for a suitable transformer, the user still needs to know its minimum turns ratio that allows the push-pull  
converter to operate flawlessly over the specified current and temperature range. This minimum transformation  
ratio is expressed through the ratio of minimum secondary to minimum primary voltage multiplied by a correction  
factor that takes the transformers typical efficiency of 97% into account.  
Copyright © 2023 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: SN6501-Q1  
 
 
 
SN6501-Q1  
ZHCSB64C JUNE 2013 REVISED MARCH 2021  
www.ti.com.cn  
vs-min  
nmin = 1.031ì  
vp-min  
(5)  
VS-min must be large enough to allow for a maximum voltage drop, VF-max, across the rectifier diode and still  
provide sufficient input voltage for the regulator to remain in regulation. From the LDO SELECTION section, this  
minimum input voltage is known and by adding VF-max gives the minimum secondary voltage with:  
VS-min = VF-max + VDO-max + VO-max  
(6)  
V
F
V
DO  
V
V
O
I
V
R
S
L
V
V
IN  
P
V
DS  
R
Q
DS  
9-5. Establishing the Required Minimum Turns Ratio Through Nmin = 1.031 × VS-min / VP-min  
Then calculating the available minimum primary voltage, VP-min, involves subtracting the maximum possible  
drain-source voltage of the SN6501, VDS-max, from the minimum converter input voltage VIN-min  
:
VP-min = VIN-min VDS-max  
(7)  
VDS-max however, is the product of the maximum RDS(on) and ID values for a given supply specified in the  
SN6501 data sheet:  
VDS-max = RDS-max × IDmax  
(8)  
Then inserting 方程8 into 方程7 yields:  
VP-min = VIN-min - RDS-max x IDmax  
(9)  
and inserting 方程9 and 方程6 into 方程5 provides the minimum turns ration with:  
VF-max + VDO-max + VO-max  
nmin = 1.031 ´  
VIN-min - RDS-max ´ ID-max  
(10)  
Example:  
For a 3.3 VIN to 5 VOUT converter using the rectifier diode MBR0520L and the 5 V LDO TPS76350, the data  
sheet values taken for a load current of 100 mA and a maximum temperature of 85°C are VF-max = 0.2 V,  
VDO-max = 0.2 V, and VO-max = 5.175 V.  
Then assuming that the converter input voltage is taken from a 3.3 V controller supply with a maximum ±2%  
accuracy makes VIN-min = 3.234 V. Finally the maximum values for drain-source resistance and drain current at  
3.3 V are taken from the SN6501 data sheet with RDS-max = 3 Ωand ID-max = 150 mA.  
Inserting the values above into 方程10 yields a minimum turns ratio of:  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: SN6501-Q1  
 
 
 
 
 
 
SN6501-Q1  
ZHCSB64C JUNE 2013 REVISED MARCH 2021  
www.ti.com.cn  
0.2V + 0.2V + 5.175 V  
3.234 V - 3 Ω ´ 150 mA  
nmin = 1.031 ´  
= 2  
(11)  
Most commercially available transformers for 3-to-5 V push-pull converters offer turns ratios between 2.0 and 2.3  
with a common tolerance of ±3%.  
9.2.2.5.3 Recommended Transformers  
Depending on the application, use the minimum configuration in 9-6 or standard configuration in 9-7.  
9-7. Regulated Output for Stable Supplies and  
9-6. Unregulated Output for Low-Current Loads  
High Current Loads  
With Wide Supply Range  
The Wurth Electronics Midcom isolation transformers in 9-3 are optimized designs for the SN6501, providing  
high efficiency and small form factor at low-cost.  
The 1:1.1 and 1:1.7 turns-ratios are designed for logic applications with wide supply rails and low load currents.  
These applications operate without LDO, thus achieving further cost-reduction.  
9-3. Recommended Isolation Transformers Optimized for SN6501  
Turns  
Ratio  
V x T  
(Vμs)  
Isolation  
(VRMS  
Dimensions  
(mm)  
Application  
LDO  
Figures  
Order No.  
Manufacturer  
)
6-1  
6-2  
1:1.1 ±2%  
1:1.1 ±2%  
1:1.7 ±2%  
7
760390011  
3.3 V 3.3 V  
6-3  
6-4  
No  
Yes  
No  
760390012  
760390013  
5 V 5 V  
6-5  
6-6  
3.3 V 5 V  
6-7  
6-8  
6-9  
6-10  
2500  
6.73 x 10.05 x 4.19  
3.3 V 3.3 V  
5 V 5 V  
1:1.3 ±2%  
11  
760390014  
6-11  
6-12  
1:2.1 ±2%  
1.23:1 ±2%  
1:1.1 ±2%  
1:1.1 ±2%  
1:1.7 ±2%  
760390015  
750313710  
750313734  
750313734  
750313769  
3.3 V 5 V  
5 V 3.3 V  
3.3 V 3.3 V  
5 V 5 V  
6-13  
6-14  
Wurth  
Electronics/  
Midcom  
6-15  
6-16  
6-17  
6-18  
6-19  
6-20  
3.3 V 5 V  
6-21  
6-22  
6-23  
6-24  
11  
5000  
9.14 x 12.7 x 7.37  
3.3 V 3.3 V  
5 V 5 V  
1:1.3 ±2%  
750313638  
Yes  
6-25  
6-26  
1:2.1 ±2%  
1.3:1 ±2%  
750313626  
750313638  
3.3 V 5 V  
5 V 3.3 V  
6-27  
6-28  
Copyright © 2023 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: SN6501-Q1  
 
 
 
 
SN6501-Q1  
ZHCSB64C JUNE 2013 REVISED MARCH 2021  
www.ti.com.cn  
9-3. Recommended Isolation Transformers Optimized for SN6501 (continued)  
Turns  
Ratio  
V x T  
(Vμs)  
Isolation  
(VRMS  
Dimensions  
(mm)  
Application  
LDO  
Figures  
Order No.  
Manufacturer  
)
1:1.1 ±2%  
1:1.1 ±2%  
EPC3804G-L  
7
No  
No  
1500  
N/A  
N/A  
3.3 V 3.3V  
EPC3805G-L  
EPC3806G-L  
11  
11  
5V 5V  
No / Yes  
3.3V 5V  
1:1.7 ±2%  
1:1.3 ±2%  
N/A  
N/A  
7.1 x 11 x 4.19  
3.3V 3.3V  
PCA Electronics  
Yes  
2500  
3.3V 3.3V  
5V 5V  
11  
EPC3807G-L  
1:2 ±2%  
N/A  
N/A  
EPC3808G-L  
EPC3809G-L  
11  
Yes  
No  
3.3V 5V  
5V 5V  
1:1.1 ±2%  
4.3  
8.6 x 12.5 x 5.97  
3.3V 3.3V  
5V 5V  
1:1  
No  
N/A  
HCTSM80101AAL  
1:2  
2:1  
N/A  
N/A  
HCTSM80102AAL  
HCTSM80201AAL  
Yes  
Yes  
Yes  
3.3V 5V  
5V 1.8V  
3.3V 3.3V  
5V 5V  
3:4  
N/A  
HCTSM80304BAL  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
HCTSM80305BAL  
HCTSM80308BAL  
HCTSM80403AAL  
HCTSM80803AAL  
HCTSM80809AAL  
HCTSM80910BAL  
HCTSM81017CAL  
3:5  
3:8  
No  
Yes  
No  
3.3V 5V  
5V 12V  
5V 3.3V  
5V 1.8V  
11  
4200  
10.8 x 15.2 x 6.6  
Bourns  
4:3  
8:3  
No  
8:9  
3.3V 3.3V  
5V 5V  
No  
9:10  
10:17  
Yes  
3.3V 5V  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: SN6501-Q1  
SN6501-Q1  
ZHCSB64C JUNE 2013 REVISED MARCH 2021  
www.ti.com.cn  
9.2.3 Application Curve  
See 9-3 for application curves.  
9.2.4 Higher Output Voltage Designs  
The SN6501 can drive push-pull converters that provide high output voltages of up to 30 V, or bipolar outputs of  
up to ±15 V. Using commercially available center-tapped transformers, with their rather low turns ratios of 0.8 to  
5, requires different rectifier topologies to achieve high output voltages. 9-8 to 9-11 show some of these  
topologies together with their respective open-circuit output voltages.  
n
n
V
OUT+  
= n·V  
IN  
V
V =2n·V  
OUT IN  
V
IN  
IN  
9-9. Bridge Rectifier Without Center-Tapped  
V
OUT-  
= n·V  
IN  
Secondary Performs Voltage Doubling  
9-8. Bridge Rectifier With Center-Tapped  
Secondary Enables Bipolar Outputs  
V
OUT+  
=2n·V  
IN  
V
=4n·V  
IN  
n
OUT  
n
V
V
IN  
IN  
V
OUT-  
=2n·V  
IN  
9-10. Half-Wave Rectifier Without Center-Tapped  
Secondary Performs Voltage Doubling, Centered  
Ground Provides Bipolar Outputs  
9-11. Half-Wave Rectifier Without Centered  
Ground and Center-Tapped Secondary Performs  
Voltage Doubling Twice, Hence Quadrupling VIN  
9.2.5 Application Circuits  
The following application circuits are shown for a 3.3 V input supply commonly taken from the local, regulated  
micro-controller supply. For 5 V input voltages requiring different turn ratios refer to the transformer  
manufacturers and their websites listed in 9-4.  
9-4. Transformer Manufacturers  
Coilcraft Inc.  
http://www.coilcraft.com  
Halo-Electronics Inc.  
Murata Power Solutions  
Wurth Electronics Midcom Inc  
http://www.haloelectronics.com  
http://www.murata-ps.com  
http://www.midcom-inc.com  
Certain components might not possess AEC-Q100 Q1 qualification. For more detailed information on qualified  
components for automotive applications please refer to the automotive web page: http://www.ti.com/lsds/ti/apps/  
automotive/applications.page.  
Copyright © 2023 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: SN6501-Q1  
 
 
 
 
SN6501-Q1  
ZHCSB64C JUNE 2013 REVISED MARCH 2021  
www.ti.com.cn  
9-12. Isolated RS-485 Interface  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: SN6501-Q1  
SN6501-Q1  
ZHCSB64C JUNE 2013 REVISED MARCH 2021  
www.ti.com.cn  
9-13. Isolated Can Interface  
9-14. Isolated RS-232 Interface  
Copyright © 2023 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: SN6501-Q1  
SN6501-Q1  
ZHCSB64C JUNE 2013 REVISED MARCH 2021  
www.ti.com.cn  
9-15. Isolated Digital Input Module  
9-16. Isolated SPI Interface for an Analog Input Module With 16 Inputs  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: SN6501-Q1  
 
SN6501-Q1  
ZHCSB64C JUNE 2013 REVISED MARCH 2021  
www.ti.com.cn  
9-17. Isolated I2C Interface for an Analog Data Acquisition System With 4 Inputs and 4 Outputs  
V
S
0.1 F  
3.3 V  
2
MBR0520L  
1:1.33  
3.3VISO  
10 F  
3
1
1
3
5
2
V
CC  
D2  
D1  
IN  
OUT  
GND  
TPS76333  
SN6501  
4.7 F 0.1 F  
EN  
GND  
4, 5  
10 F  
MBR0520L  
0.1 F  
0.1 F  
20 ꢁ  
ISO-BARRIER  
0.1 F  
LOOP+  
15  
3
0.1 F  
0.1 F  
VA  
VD  
10  
8
16  
LOW  
BASE  
OUT  
1
8
0.1 F 1 F  
2
ERRLVL  
V
V
CC2  
CC1  
DAC161P997  
DV  
CC  
7
5
4
5
22 ꢁ  
OUTA  
INB  
INA  
DBACK  
DIN  
11  
12  
2
3
XOUT  
P3.0  
P3.1  
ISO7421  
9
MSP430  
G2132  
6
OUTB  
6
LOOPœ  
C1 C2 C3 COMA COMD  
XIN  
GND1  
GND2  
5
14 13 12  
1
2
DV  
SS  
3 × 22 nF  
4
4
9-18. Isolated 4-20 mA Current Loop  
Copyright © 2023 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: SN6501-Q1  
SN6501-Q1  
ZHCSB64C JUNE 2013 REVISED MARCH 2021  
www.ti.com.cn  
10 Power Supply Recommendations  
10.1  
The device is designed to operate from an input voltage supply range between 3.3 V and 5 V nominal. This input  
supply must be regulated within ±10%. If the input supply is located more than a few inches from the SN6501 a  
0.1μF by-pass capacitor should be connected as possible to the device VCC pin, and a 10 μF capacitor should  
be connected close to the transformer center-tap pin.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: SN6501-Q1  
 
SN6501-Q1  
ZHCSB64C JUNE 2013 REVISED MARCH 2021  
www.ti.com.cn  
11 Layout  
11.1 Layout Guidelines  
The VIN pin must be buffered to ground with a low-ESR ceramic bypass-capacitor. The recommended  
capacitor value can range from 1 μF to 10 μF. The capacitor must have a voltage rating of 10 V minimum  
and a X5R or X7R dielectric.  
The optimum placement is closest to the VIN and GND pins at the board entrance to minimize the loop area  
formed by the bypass-capacitor connection, the VIN terminal, and the GND pin. See 11-1 for a PCB layout  
example.  
The connections between the device D1 and D2 pins and the transformer primary endings, and the  
connection of the device VCC pin and the transformer center-tap must be as close as possible for minimum  
trace inductance.  
The connection of the device VCC pin and the transformer center-tap must be buffered to ground with a low-  
ESR ceramic bypass-capacitor. The recommended capacitor value can range from 1μF to 10 μF. The  
capacitor must have a voltage rating of 16 V minimum and a X5R or X7R dielectric.  
The device GND pins must be tied to the PCB ground plane using two vias for minimum inductance.  
The ground connections of the capacitors and the ground plane should use two vias for minimum inductance.  
The rectifier diodes should be Schottky diodes with low forward voltage in the 10 mA to 100 mA current range  
to maximize efficiency.  
The VOUT pin must be buffered to ISO-Ground with a low-ESR ceramic bypass-capacitor. The recommended  
capacitor value can range from 1μF to 10 μF. The capacitor must have a voltage rating of 16 V minimum  
and a X5R or X7R dielectric.  
11.2 Layout Example  
11-1. Layout Example of a 2-Layer Board (SN6501)  
Copyright © 2023 Texas Instruments Incorporated  
28  
Submit Document Feedback  
Product Folder Links: SN6501-Q1  
 
 
 
 
SN6501-Q1  
ZHCSB64C JUNE 2013 REVISED MARCH 2021  
www.ti.com.cn  
12 Device and Documentation Support  
12.1 Device Support  
12.1.1 第三方产品免责声明  
TI 发布的与第三方产品或服务有关的信息不能构成与此类产品或服务或保修的适用性有关的认可不能构成此  
类产品或服务单独或与任TI 产品或服务一起的表示或认可。  
12.2 Trademarks  
所有商标均为其各自所有者的财产。  
12.3 静电放电警告  
静电放(ESD) 会损坏这个集成电路。德州仪(TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理  
和安装程序可能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级大至整个器件故障。精密的集成电路可能更容易受到损坏这是因为非常细微的参  
数更改都可能会导致器件与其发布的规格不相符。  
12.4 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
13 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: SN6501-Q1  
 
 
 
 
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
27-Feb-2021  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
SN6501QDBVRQ1  
ACTIVE  
SOT-23  
DBV  
5
3000 RoHS & Green  
NIPDAU  
Level-1-260C-UNLIM  
-40 to 125  
SBRQ  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
27-Feb-2021  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
SN6501QDBVRQ1  
SOT-23  
DBV  
5
3000  
178.0  
9.0  
3.23  
3.17  
1.37  
4.0  
8.0  
Q3  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
27-Feb-2021  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SOT-23 DBV  
SPQ  
Length (mm) Width (mm) Height (mm)  
180.0 180.0 18.0  
SN6501QDBVRQ1  
5
3000  
Pack Materials-Page 2  
PACKAGE OUTLINE  
DBV0005A  
SOT-23 - 1.45 mm max height  
S
C
A
L
E
4
.
0
0
0
SMALL OUTLINE TRANSISTOR  
C
3.0  
2.6  
0.1 C  
1.75  
1.45  
1.45  
0.90  
B
A
PIN 1  
INDEX AREA  
1
2
5
(0.1)  
2X 0.95  
1.9  
3.05  
2.75  
1.9  
(0.15)  
4
3
0.5  
5X  
0.3  
0.15  
0.00  
(1.1)  
TYP  
0.2  
C A B  
NOTE 5  
0.25  
GAGE PLANE  
0.22  
0.08  
TYP  
8
0
TYP  
0.6  
0.3  
TYP  
SEATING PLANE  
4214839/G 03/2023  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. Refernce JEDEC MO-178.  
4. Body dimensions do not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.25 mm per side.  
5. Support pin may differ or may not be present.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DBV0005A  
SOT-23 - 1.45 mm max height  
SMALL OUTLINE TRANSISTOR  
PKG  
5X (1.1)  
1
5
5X (0.6)  
SYMM  
(1.9)  
2
3
2X (0.95)  
4
(R0.05) TYP  
(2.6)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:15X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
EXPOSED METAL  
EXPOSED METAL  
0.07 MIN  
ARROUND  
0.07 MAX  
ARROUND  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4214839/G 03/2023  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DBV0005A  
SOT-23 - 1.45 mm max height  
SMALL OUTLINE TRANSISTOR  
PKG  
5X (1.1)  
1
5
5X (0.6)  
SYMM  
(1.9)  
2
3
2X(0.95)  
4
(R0.05) TYP  
(2.6)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE:15X  
4214839/G 03/2023  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

SN65010

One Channel Direct Drive Speech Controller
SONIX

SN65012

One Channel Direct Drive Speech Controller
SONIX

SN65016

One Channel Direct Drive Speech Controller
SONIX

SN6501DBV

Transformer Driver for Isolated Power Supplies
TI

SN6501DBVR

Transformer Driver for Isolated Power Supplies
TI

SN6501DBVT

Transformer Driver for Isolated Power Supplies
TI

SN6501QDBVRQ1

适用于隔离电源的汽车类低噪声、350mA、410kHz 变压器驱动器 | DBV | 5 | -40 to 125
TI

SN6501_13

Transformer Driver for Isolated Power Supplies
TI

SN65020

One Channel Direct Drive Speech Controller
SONIX

SN6503

Wide Band Low Power Amplifier, 5MHz Min, 500MHz Max, SM-3, 4 PIN
APITECH

SN65031

Two Channels Direct Drive Speech Controller
SONIX

SN65042

Two Channels Direct Drive Speech Controller
SONIX