SN6505B-Q1 [TI]

适用于隔离电源的汽车类低噪声、1A、420kHz 变压器驱动器;
SN6505B-Q1
型号: SN6505B-Q1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

适用于隔离电源的汽车类低噪声、1A、420kHz 变压器驱动器

变压器 驱动 驱动器
文件: 总40页 (文件大小:1751K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
SN6505A-Q1, SN6505B-Q1, SN6505D-Q1  
ZHCSJ04D NOVEMBER 2018 REVISED OCTOBER 2020  
适用于隔离电源SN6505x-Q1 低噪1A 变压器驱动器  
幅降低辐射的应用SN6505B-Q1 SN6505D-Q1  
420kHz 内部振荡适用于需要更高效率和更小变压  
器尺寸的应用。SN6505x-Q1 用小型 6 脚  
SOT23/DBV 封装。该器件的运行温度范围-40°C 至  
125°C。  
1 特性  
• 符合面向汽车应用AEC-Q1001 标准  
– 器件温度等140°C +125°CTA  
提供功能安全  
– 可提供用于功能安全系统设计的文档:  
SN6505A-Q1SN6505B-Q1SN6505D-Q1  
• 用于变压器的推挽式驱动器  
• 宽输入电压范围2.25V 5.5V  
• 高输出驱动5V 电源下1A  
RON4.5V 电源时的最大值0.25Ω  
• 降低了传导和辐EMI  
器件信息  
器件型(1)  
SN6505A-Q1  
封装尺寸标称值)  
封装  
SN6505B-Q1  
SN6505D-Q1  
2.90mm × 1.60mm  
SOT236 引脚)  
(1) 要了解所有可用封装请参见数据表末尾的可订购产品附录。  
• 扩频时钟  
SN6505  
• 精密内部振荡器选项160kHz (SN6505A-Q1) 和  
420kHz (SN6505B-Q1 SN6505D-Q1)  
• 通过外部时钟输入同步多个器件  
• 转换率控制  
VOUT  
4
3
2
1
GND  
EN  
D2  
VCC  
Enable  
5
6
V
CC  
Ext Clock  
CLK  
D1  
1.7A 限流  
10µF 0.1µF  
• 低关断电流< 1μA  
• 热关断  
10µF  
• 小6 SOT23 (DBV) 封装  
• 启用软启动SN6505A-Q1 SN6505B-Q1可减  
小浪涌电流禁用软启(SN6505D-Q1) 可实现快  
速启动  
Copyright © 2016, Texas Instruments Incorporated  
简化版原理图  
2 应用  
• 用于以下应用的隔离式电源:  
– 牵引逆变器和电机控制  
– 直流/直流转换器  
– 电池管理系(BMS)  
– 车载充电(OBC)  
3 说明  
SN6505x-Q1 是一款低噪声、低 EMI 的推挽式变压器  
驱动器为小型隔离式电源而设计。该器件通过  
2.25V 5V 的直流电源来驱动薄型、  
中间抽头的变压器。通过输出开关电压的转换速率控制  
和扩频时钟 (SSC) 实现非常低的噪声和 EMI。  
SN6505x-Q1 包含一个振荡器然后是一个栅极驱动  
器电路此电路提供补偿输出信号以驱动接地参考 N  
通道电源开关。该器件包含两个 1A 电源 MOSFET 开  
以确保在重负载条件下正常启动。开关时钟也可由  
外部提供以准确放置开关谐波或者在与多个变压器驱  
动器搭配工作时。内部保护特性包1.7 A 限流、欠压  
锁定、热关断和先断后合电路。SN6505A-Q1 和  
SN6505B-Q1 具有软启动功能可防止大负载电容器  
在上电过程中出现高浪涌电流。对于需要快速输出启动  
的应用SN6505D-Q1 禁用了软启动功能。  
SN6505A-Q1 160kHz 内部振荡器适用于需要大  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SLLSF95  
 
 
 
 
 
SN6505A-Q1, SN6505B-Q1, SN6505D-Q1  
ZHCSJ04D NOVEMBER 2018 REVISED OCTOBER 2020  
www.ti.com.cn  
Table of Contents  
8.4 Device Functional Modes..........................................17  
9 Application and Implementation..................................18  
9.1 Application Information............................................. 18  
9.2 Typical Application.................................................... 19  
10 Power Supply Recommendations..............................29  
11 Layout...........................................................................30  
11.1 Layout Guidelines................................................... 30  
11.2 Layout Example...................................................... 30  
12 Device and Documentation Support..........................31  
12.1 Device Support....................................................... 31  
12.2 Documentation Support.......................................... 31  
12.3 Related Links.......................................................... 31  
12.4 接收文档更新通知................................................... 31  
12.5 支持资源..................................................................31  
12.6 Trademarks.............................................................31  
12.7 静电放电警告.......................................................... 31  
12.8 术语表..................................................................... 31  
13 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Pin Configuration and Functions...................................3  
6 Specifications.................................................................. 4  
6.1 Absolute Maximum Ratings........................................ 4  
6.2 ESD Ratings............................................................... 4  
6.3 Recommended Operating Conditions.........................4  
6.4 Thermal Information....................................................4  
6.5 Electrical Characteristics.............................................5  
6.6 Timing Requirements..................................................6  
6.7 Typical Characteristics, SN6505A-Q1 ........................7  
6.8 Typical Characteristics, SN6505B-Q1 or  
SN6505D-Q1 ................................................................9  
7 Parameter Measurement Information..........................13  
8 Detailed Description......................................................15  
8.1 Overview...................................................................15  
8.2 Functional Block Diagram.........................................15  
8.3 Feature Description...................................................15  
Information.................................................................... 32  
4 Revision History  
Changes from Revision C (August 2019) to Revision D (October 2020)  
Page  
• 添加了“功能安全”要点....................................................................................................................................1  
Changes from Revision B (July 2019) to Revision C (August 2019)  
Page  
Added UNIT V to EN, CLK Voltage specification in Absolute Maximum Ratings table...................................4  
Changed '<' or 'less than' sign to '' or 'less than or equal' sign in VCC range description at multiple location  
for better clarity...................................................................................................................................................5  
Added Revision History comments for data sheet Revision B........................................................................ 6  
Added 'Power up time' or tPWRUP specification for two VCC TEST CONDITIONS............................................. 6  
Changes from Revision A (April 2019) to Revision B (July 2019)  
Page  
Split 'Soft-start time' or tSS specification for SN6505A-Q1 and SN6505B-Q1.................................................... 6  
Changes from Revision * (November 2018) to Revision A (April 2019)  
Page  
• 将器件状态更改为“量产数据”.........................................................................................................................1  
Added DA2303-AL transformer to 9-3 table.................................................................................................25  
Added DA2304-AL transformer to 9-3 table.................................................................................................25  
Copyright © 2023 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: SN6505A-Q1 SN6505B-Q1 SN6505D-Q1  
English Data Sheet: SLLSF95  
 
SN6505A-Q1, SN6505B-Q1, SN6505D-Q1  
ZHCSJ04D NOVEMBER 2018 REVISED OCTOBER 2020  
www.ti.com.cn  
5 Pin Configuration and Functions  
6
5
4
D1  
CLK  
EN  
1
2
3
VCC  
GND  
D2  
5-1. DBV Package SOT-23 (6 Pin) Top View  
5-1. Pin Functions  
PIN  
NO.  
DESCRIPTION  
NAME  
TYPE  
Open drain output of the first power MOSFETs. Typically connected to the outer terminals of the  
center tap transformer. Because large currents flow through these pins, their external traces  
should be kept short.  
D1  
1
2
3
O
This is the device supply pin. It should be bypassed with a 4.7 μF or greater, low ESR capacitor.  
When VCC 2.25 V, an internal undervoltage lockout circuit trips and turns both outputs off.  
VCC  
D2  
P
Open drain output of the second power MOSFETs. Typically connected to the outer terminals of  
the center tap transformer. Because large currents flow through these pins, their external traces  
should be kept short.  
O
GND is connected to the source of the power MOSFET switches via an internal sense circuit.  
Because large currents flow through it, the GND terminals must be connected to a low-inductance  
quality ground plane.  
GND  
4
P
The EN pin turns the device on or off. Grounding or leaving this pin floating disables all internal  
EN  
5
6
I
I
circuitry. If unused this pin should be tied directly to VCC  
.
This pin is used to run the device with external clock. Internally it is pulled down to GND. If valid  
clock is not detected on this pin, the device shifts automatically to internal clock.  
CLK  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: SN6505A-Q1 SN6505B-Q1 SN6505D-Q1  
English Data Sheet: SLLSF95  
 
SN6505A-Q1, SN6505B-Q1, SN6505D-Q1  
ZHCSJ04D NOVEMBER 2018 REVISED OCTOBER 2020  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1). All typical values are at TA = 25°C, VCC = 5 V.  
MIN  
0.5  
0.5  
MAX  
UNIT  
V
Supply voltage (2)  
VCC  
6
Voltage  
EN, CLK  
D1, D2  
VCC + 0.5(3)  
V
Output switch voltage  
Peak output switch current  
Junction temperature, TJ  
Storage temperature range, Tstg  
16  
2.4  
V
I(D1)Pk, I(D2)Pk  
A
-40  
150  
150  
°C  
°C  
65  
(1) Stresses beyond those listed under Absolute Maximum Ratings cause permanent damage to the device. These are stress ratings only  
and functional operation of the device at these or any other conditions beyond those indicated under 6.3 is not implied. Exposure to  
absolute-maximum-rated conditions for extended periods affects device reliability.  
(2) All voltage values except differential I/O bus voltages are with respect to the local ground terminal (GND) and are peak voltage values.  
(3) Maximum voltage must not exceed 6V. A strongly driven EN or CLK input signal can weakly power the floating VCC via an internal  
protection diode and cause undetermined output.  
6.2 ESD Ratings  
VALUE  
UNIT  
Human-body model (HBM), per AEC Q100-002(1)  
HBM ESD Classification Level 3A  
±6000  
V(ESD)  
Electrostatic discharge  
V
Charged-device model (CDM), per AEC Q100-011  
CDM ESD Classification Level C6  
±1500  
(1) AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.  
6.3 Recommended Operating Conditions  
MIN  
TYP  
MAX  
5.5  
UNIT  
VCC  
Supply voltage  
2.25  
V
0.75  
1
2.25 V VCC 2.8 V  
2.8 V < VCC 5.5 V  
ID1, ID2  
TA  
Output switch current - Primary side  
Ambient temperature  
A
125  
°C  
40  
6.4 Thermal Information  
SN6505x-Q1  
DBV (SOT-23)  
6 PINS  
137.7  
THERMAL METRIC(1)  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
57.7  
Junction-to-board thermal resistance  
46.0  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case(bottom) thermal resistance  
13.4  
ψJT  
44.9  
ψJB  
RθJC(bottom)  
N/A  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
Copyright © 2023 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: SN6505A-Q1 SN6505B-Q1 SN6505D-Q1  
English Data Sheet: SLLSF95  
 
 
 
 
 
 
 
 
 
 
 
SN6505A-Q1, SN6505B-Q1, SN6505D-Q1  
ZHCSJ04D NOVEMBER 2018 REVISED OCTOBER 2020  
www.ti.com.cn  
6.5 Electrical Characteristics  
over full-range of recommended operating conditions, unless otherwise noted. All typical values are at TA = 25°C, VCC = 5 V.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
VOLTAGE SUPPLY  
Supply Current (2.8 V VCC 5.5 V)  
(SN6505A-Q1)  
1
1.4  
mA  
mA  
RL = 50 Ω  
RL = 50 Ω  
I(Vcc)  
Supply Current (2.8 V VCC 5.5 V)  
(SN6505B-Q1 and SN6505D-Q1)  
1.56  
2.3  
20  
IIH  
Leakage Current on EN and CLK pin  
VCC current for EN = 0  
EN / CLK = VCC  
10  
µA  
µA  
IDIS  
0.1  
ILKG(D1)  
ILKG(D2)  
Leakage Current on D1, D2 for EN=0  
Voltage of D1, D2 = VCC  
0.1  
µA  
VCC+ (UVLO)  
VCC- (UVLO)  
Positive-going UVLO threshold  
Negative-going UVLO threshold  
2.25  
0.7  
V
V
1.7  
0.3  
VHYS (UVLO1) UVLO threshold hysteresis  
0.3  
0.2  
V
VIN(ON)  
VIN(OFF)  
VIN(HYS)  
CLK  
EN, CLK pin logic high threshold  
EN, CLK pin logic low threshold  
EN, CLK pin threshold hysteresis  
VCC  
VCC  
VCC  
D1, D2 average switching Frequency (SN6505A-  
Q1)  
138  
363  
100  
100  
160  
424  
203  
517  
Khz  
kHz  
kHz  
kHz  
RL = 50 Ωto VCC; Refer to 7-3  
RL = 50 Ωto VCC; Refer to 7-3.  
FSW  
D1, D2 average switching Frequency (SN6505B-  
Q1 and SN6505D-Q1)  
External clock frequency on CLK pin (SN6505A-  
Q1)  
600  
F(EXT)  
External clock frequency on CLK pin (SN6505B-  
Q1 and SN6505D-Q1)  
1600  
OUTPUT STAGE  
DMM  
Average ON time mismatch between D1 and D2  
0%  
0.16  
0.19  
0.21  
RL = 50 Ω  
VCC = 4.5 V, ID1, ID2 = 1 A  
VCC = 2.8 V, ID1, ID2 = 1 A  
VCC = 2.25 V, ID1, ID2 = 0.5 A  
0.25  
0.31  
0.45  
Ω
Ω
Ω
R(ON)  
Output switch on resistance  
Voltage slew rates on D1 and D2 for SN6505A-  
Q1  
V(SLEW)  
48  
11  
V/µs  
A/µs  
V/µs  
A/µs  
RL = 50 Ωto VCC; Refer to 7-3  
RL = 5 Ωthrough transformer;  
Refer to 7-4  
I(SLEW)  
Current slew rates at D1 and D2 for SN6505A-Q1  
Voltage slew rates on D1 and D2 for SN6505B-  
Q1 and SN6505D-Q1  
V(SLEWHF)  
152  
RL = 50 Ωto VCC; Refer to 7-3  
Current slew rates at D1 and D2 for SN6505B-Q1 RL = 5 Ωthrough transformer;  
and SN6505D-Q1  
I(SLEWHF)  
41  
Refer to 7-4  
1.42  
0.65  
1.75  
2.15  
1.85  
A
A
Current clamp limit (2.8 V < VCC 5.5V )  
Current clamp limit (2.25 V VCC 2.8 V)  
ILIM  
THERMAL SHUT DOWN  
TSD+  
TSD-  
TSD-  
TSD turn on temperature  
154  
135  
13  
168  
150  
17  
181  
166  
°C  
°C  
°C  
TSD turn off temperature  
TSD hysteresis  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: SN6505A-Q1 SN6505B-Q1 SN6505D-Q1  
English Data Sheet: SLLSF95  
 
 
SN6505A-Q1, SN6505B-Q1, SN6505D-Q1  
ZHCSJ04D NOVEMBER 2018 REVISED OCTOBER 2020  
www.ti.com.cn  
6.6 Timing Requirements  
MIN  
NOM  
MAX  
UNIT  
CLK  
tCLKTIMER  
OUTPUT STAGE  
Break-before-make time(SN6505A-  
Duration after which device switches to internal clock in case of invalid external clock  
10  
25  
µs  
Measured as voltage with RL = 50 Ωto VCC  
,
,
115  
90  
ns  
ns  
Q1)  
Refer to 7-3  
tBBM  
Break-before-make time (SN6505B-  
Q1 and SN6505D-Q1)  
Measured as voltage with RL = 50 Ωto VCC  
Refer to 7-3  
SOFT-START ENABLED (SN6505A-Q1 AND SN6505B-Q1)  
10% to 90% transition time on VOUT With  
transformer CLOAD = 40 µF  
RL = 5 Ω  
Soft-start time (SN6505A-Q1)  
Soft-start time (SN6505B-Q1)  
Soft-start time delay  
1
1
2.2  
4.25  
8.5  
8
8
ms  
ms  
ms  
tSS  
10% to 90% transition time on VOUT With  
transformer CLOAD = 40 µF  
RL = 5 Ω  
From power up to 90% transition time on VOUT With  
transformer CLOAD = 40 µF  
RL = 5 Ω  
tSSdelay  
3.5  
18  
SOFT-START DISABLED (SN6505D-Q1)  
From EN=1 to full drive-current available at D1 and  
D2; 2.25 V VCC < 3 V  
75  
60  
1
160  
100  
5
µs  
µs  
µs  
tPWRUP  
Power up time  
From EN=1 to full drive-current available at D1 and  
D2; 3 V VCC 5.5 V  
From EN=0 to output MOSFETs off (no current on  
D1 and D2)  
tPWRDN  
Power down time  
Copyright © 2023 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: SN6505A-Q1 SN6505B-Q1 SN6505D-Q1  
English Data Sheet: SLLSF95  
 
 
SN6505A-Q1, SN6505B-Q1, SN6505D-Q1  
ZHCSJ04D NOVEMBER 2018 REVISED OCTOBER 2020  
www.ti.com.cn  
6.7 Typical Characteristics, SN6505A-Q1  
6
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
5
4
3
2
VCC = 3.3 V  
VCC = 5 V  
VCC = 3.3 V  
VCC = 5 V  
1
25  
25  
125 225 325 425 525 625 725 825 925  
Load Current (mA)  
125 225 325 425 525 625 725 825 925  
Load Current (mA)  
D006  
SN6505A-Q1 + Wurth 750315240  
SN6505A-Q1 + Wurth 750315240  
6-1. Output Voltage vs Load Current  
6-2. Efficiency vs Load Current  
7
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
6.5  
6
5.5  
5
4.5  
4
3.5  
3
2.5  
2
1.5  
1
D029  
Load Current (mA)  
D028  
Load Current (mA)  
SN6505A-Q1 + Wurth 750316031  
VCC = 3.3 V  
SN6505A-Q1 + Wurth 750316031  
VCC = 3.3 V  
6-4. Efficiency vs Load Current  
6-3. Output Voltage vs Load Current  
7
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
6.5  
6
5.5  
5
4.5  
4
3.5  
3
2.5  
2
1.5  
1
D031  
D030  
Load Current (mA)  
Load Current (mA)  
SN6505A-Q1 + Wurth 750316032  
VCC = 3.3 V  
SN6505A-Q1 + Wurth 750316032  
VCC = 3.3 V  
6-6. Efficiency vs Load Current  
6-5. Output Voltage vs Load Current  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: SN6505A-Q1 SN6505B-Q1 SN6505D-Q1  
English Data Sheet: SLLSF95  
 
 
 
 
 
SN6505A-Q1, SN6505B-Q1, SN6505D-Q1  
ZHCSJ04D NOVEMBER 2018 REVISED OCTOBER 2020  
www.ti.com.cn  
7
6.5  
6
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
5.5  
5
4.5  
4
3.5  
3
2.5  
2
1.5  
1
D033  
Load Current (mA)  
D032  
Load Current (mA)  
SN6505A-Q1 + Wurth 750316033  
VCC = 5 V  
SN6505A-Q1 + Wurth 750316033  
VCC = 5 V  
6-8. Efficiency vs Load Current  
6-7. Output Voltage vs Load Current  
170  
1.6  
1.4  
1.2  
1
VCC = 2.25 V  
VCC = 5.5 V  
VCC = 2.25 V  
VCC = 5.5 V  
165  
160  
155  
150  
0.8  
0.6  
0.4  
0.2  
0
-75  
-25  
25  
Temperature (èC)  
75  
125  
100  
200  
300 400  
External Frequency (kHz)  
500  
600  
D003  
D001  
6-9. Frequency vs Free-Air Temperature  
6-10. Current vs External Frequency  
Copyright © 2023 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: SN6505A-Q1 SN6505B-Q1 SN6505D-Q1  
English Data Sheet: SLLSF95  
 
SN6505A-Q1, SN6505B-Q1, SN6505D-Q1  
ZHCSJ04D NOVEMBER 2018 REVISED OCTOBER 2020  
www.ti.com.cn  
6.8 Typical Characteristics, SN6505B-Q1 or SN6505D-Q1  
6
5
4
3
2
1
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
VCC = 3.3 V  
VCC = 5 V  
VCC = 3.3 V  
VCC = 5 V  
25  
125 225 325 425 525 625 725 825 925  
Load Current (mA)  
25  
125 225 325 425 525 625 725 825 925  
Load Current (mA)  
D008  
D007  
SN6505B/D-Q1 + Wurth 750315371  
SN6505B/D-Q1 + Wurth 750315371  
6-12. Efficiency vs Load Current  
6-11. Output Voltage vs Load Current  
4
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
3.5  
3
2.5  
2
1.5  
1
0
20  
40  
60  
80 100 120 140 160 180 200  
Load Current (mA)  
0
20  
40  
60  
80 100 120 140 160 180 200  
Load Current (mA)  
D011  
D010  
SN6505B/D-Q1 + Wurth 760390011  
VCC = 3.3 V  
SN6505B/D-Q1 + Wurth 760390011  
VCC = 3.3 V  
6-14. Efficiency vs Load Current  
6-13. Output Voltage vs Load Current  
6
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
5.5  
5
4.5  
4
3.5  
3
2.5  
2
1.5  
1
0
20  
40  
60  
80 100 120 140 160 180 200  
Load Current (mA)  
0
20  
40  
60  
80 100 120 140 160 180 200  
Load Current (mA)  
D013  
D012  
SN6505B/D-Q1 + Wurth 760390012  
VCC = 5 V  
SN6505B/D-Q1 + Wurth 760390012  
VCC = 5 V  
6-16. Efficiency vs Load Current  
6-15. Output Voltage vs Load Current  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: SN6505A-Q1 SN6505B-Q1 SN6505D-Q1  
English Data Sheet: SLLSF95  
 
 
 
 
 
SN6505A-Q1, SN6505B-Q1, SN6505D-Q1  
ZHCSJ04D NOVEMBER 2018 REVISED OCTOBER 2020  
www.ti.com.cn  
6
5.5  
5
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
4.5  
4
3.5  
3
2.5  
2
1.5  
1
0
0
0
20  
40  
60  
80 100 120 140 160 180 200  
Load Current (mA)  
0
20  
40  
60  
80 100 120 140 160 180 200  
Load Current (mA)  
D013  
D014  
SN6505B/D-Q1 + Wurth 760390013  
VCC = 3.3 V  
SN6505B/D-Q1 + Wurth 760390013  
VCC = 3.3 V  
6-18. Efficiency vs Load Current  
6-17. Output Voltage vs Load Current  
5
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
4.5  
4
3.5  
3
2.5  
2
1.5  
1
20  
40  
60  
80 100 120 140 160 180 200  
Load Current (mA)  
0
20  
40  
60  
80 100 120 140 160 180 200  
Load Current (mA)  
D017  
D016  
SN6505B/D-Q1 + Wurth 760390014  
VCC = 3.3 V  
SN6505B/D-Q1 + Wurth 760390014  
VCC = 3.3 V  
6-20. Efficiency vs Load Current  
6-19. Output Voltage vs Load Current  
7
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
6.5  
6
5.5  
5
4.5  
4
3.5  
3
2.5  
2
1.5  
1
20  
40  
60  
80 100 120 140 160 180 200  
Load Current (mA)  
0
20  
40  
60  
80 100 120 140 160 180 200  
Load Current (mA)  
D019  
D018  
SN6505B/D-Q1 + Wurth 760390014  
VCC = 5 V  
SN6505B/D-Q1 + Wurth 760390014  
VCC = 5 V  
6-22. Efficiency vs Load Current  
6-21. Output Voltage vs Load Current  
Copyright © 2023 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: SN6505A-Q1 SN6505B-Q1 SN6505D-Q1  
English Data Sheet: SLLSF95  
 
 
 
SN6505A-Q1, SN6505B-Q1, SN6505D-Q1  
ZHCSJ04D NOVEMBER 2018 REVISED OCTOBER 2020  
www.ti.com.cn  
7
6.5  
6
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
5.5  
5
4.5  
4
3.5  
3
2.5  
2
1.5  
1
0
20  
40  
60  
80 100 120 140 160 180 200  
Load Current (mA)  
0
20  
40  
60  
80 100 120 140 160 180 200  
Load Current (mA)  
D021  
D020  
SN6505B/D-Q1 + Wurth 760390015  
VCC = 3.3 V  
SN6505B/D-Q1 + Wurth 760390015  
VCC = 3.3 V  
6-24. Efficiency vs Load Current  
6-23. Output Voltage vs Load Current  
7
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
6.5  
6
5.5  
5
4.5  
4
3.5  
3
2.5  
2
1.5  
1
D021  
D022  
Load Current (mA)  
Load Current (mA)  
SN6505B/D-Q1 + Wurth 750316028  
VCC = 3.3 V  
SN6505B/D-Q1 + Wurth 750316028  
VCC = 3.3 V  
6-26. Efficiency vs Load Current  
6-25. Output Voltage vs Load Current  
7
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
6.5  
6
5.5  
5
4.5  
4
3.5  
3
2.5  
2
1.5  
1
0
100 200 300 400 500 600 700 800 900  
Load Current (mA)  
0
100 200 300 400 500 600 700 800 900  
Load Current (mA)  
D025  
D024  
SN6505B/D-Q1 + Wurth 750316029  
VCC = 3.3 V  
SN6505B/D-Q1 + Wurth 750316029  
VCC = 3.3 V  
6-28. Efficiency vs Load Current  
6-27. Output Voltage vs Load Current  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: SN6505A-Q1 SN6505B-Q1 SN6505D-Q1  
English Data Sheet: SLLSF95  
 
 
 
SN6505A-Q1, SN6505B-Q1, SN6505D-Q1  
ZHCSJ04D NOVEMBER 2018 REVISED OCTOBER 2020  
www.ti.com.cn  
4.5  
4
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
3.5  
3
2.5  
2
1.5  
1
D027  
Load Current (mA)  
D026  
Load Current (mA)  
SN6505B/D-Q1 + Wurth 7503160030  
VCC = 5 V  
SN6505B/D-Q1 + Wurth 7503160030  
VCC = 5 V  
6-30. Efficiency vs Load Current  
6-29. Output Voltage vs Load Current  
450  
3
2.5  
2
VCC = 2.25 V  
VCC = 5.5 V  
VCC = 2.25 V  
VCC = 5.5 V  
440  
430  
420  
410  
400  
1.5  
1
0.5  
0
-75  
-25  
25  
Temperature (èC)  
75  
125  
100  
400  
700 1000  
External Frequency (kHz)  
1300  
1600  
D004  
D002  
6-31. Frequency vs Free-Air Temperature  
6-32. Current vs External Frequency  
Time 2.5 ms/div  
6-33. Scope Capture of SN6505 Switching from External to Internal Clock  
Copyright © 2023 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: SN6505A-Q1 SN6505B-Q1 SN6505D-Q1  
English Data Sheet: SLLSF95  
 
SN6505A-Q1, SN6505B-Q1, SN6505D-Q1  
ZHCSJ04D NOVEMBER 2018 REVISED OCTOBER 2020  
www.ti.com.cn  
7 Parameter Measurement Information  
SN6505  
VOUT  
4
3
2
1
GND  
EN  
D2  
VCC  
Enable  
5
6
V
CC  
Ext Clock  
CLK  
D1  
10µF 0.1µF  
10µF  
Copyright © 2016, Texas Instruments Incorporated  
7-1. Measurement Circuit for Unregulated Output (TP1)  
7-2. Timing Diagram  
VCC  
SN6505  
50  
4
3
2
1
GND  
EN  
D2  
Enable  
5
6
V
CC  
50ꢀ  
Ext Clock  
CLK  
D1  
10µF  
Copyright © 2016, Texas Instruments Incorporated  
7-3. Test Circuit for FSW, V(slew), tBBM  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: SN6505A-Q1 SN6505B-Q1 SN6505D-Q1  
English Data Sheet: SLLSF95  
 
 
SN6505A-Q1, SN6505B-Q1, SN6505D-Q1  
ZHCSJ04D NOVEMBER 2018 REVISED OCTOBER 2020  
www.ti.com.cn  
VCC  
C1  
V
(Current)  
SN6505  
VCC  
4
3
2
1
GND  
EN  
D 2  
5
6
Vcc  
D 1  
CLK  
Copyright © 2016, Texas Instruments Incorporated  
7-4. I(slew) Test Setup  
Copyright © 2023 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: SN6505A-Q1 SN6505B-Q1 SN6505D-Q1  
English Data Sheet: SLLSF95  
 
SN6505A-Q1, SN6505B-Q1, SN6505D-Q1  
ZHCSJ04D NOVEMBER 2018 REVISED OCTOBER 2020  
www.ti.com.cn  
8 Detailed Description  
8.1 Overview  
The SN6505x-Q1 is a transformer driver designed for low-cost, small form-factor, isolated DC/DC converters  
utilizing the push-pull topology. The device includes an oscillator that feeds a gate-drive circuit. The gate-drive,  
comprising a frequency divider and a break-before-make (BBM) logic, provides two complementary output  
signals which alternately turn the two output transistors on and off.  
The output frequency of the oscillator is divided down by two . A subsequent break-before-make logic inserts a  
dead-time between the high-pulses of the two signals. Before either one of the gates can assume logic high, the  
BBM logic ensures a short time period during which both signals are low and both transistors are high-  
impedance. This short period, is required to avoid shorting out both ends of the primary. The resulting output  
signals, present the gate-drive signals for the output transistors.  
8.2 Functional Block Diagram  
EN  
D2 D1  
V
CC  
UVLO  
TEMP  
SSC  
OSC  
÷ 2  
MOSFET  
Driver  
CLK  
I-LIM  
Ext CLK  
Detect  
GND GND  
8.3 Feature Description  
8.3.1 Push-Pull Converter  
Push-pull converters require transformers with center-taps to transfer power from the primary to the secondary  
(see 8-1).  
CR  
CR  
1
1
V
V
OUT  
OUT  
C
C
R
R
L
L
V
V
IN  
IN  
CR  
CR  
2
2
Q
Q
Q
Q
1
2
1
2
8-1. Switching Cycles of a Push-Pull Converter  
When Q1 conducts, VIN drives a current through the lower half of the primary to ground, thus creating a negative  
voltage potential at the lower primary end with regards to the VIN potential at the center-tap.  
At the same time the voltage across the upper half of the primary is such that the upper primary end is positive  
with regards to the center-tap in order to maintain the previously established current flow through Q2, which now  
has turned high-impedance. The two voltage sources, each of which equaling VIN, appear in series and cause a  
voltage potential at the open end of the primary of 2×VIN with regards to ground.  
Per dot convention the same voltage polarities that occur at the primary also occur at the secondary. The  
positive potential of the upper secondary end therefore forward biases diode CR1. The secondary current  
starting from the upper secondary end flows through CR1, charges capacitor C, and returns through the load  
impedance RL back to the center-tap.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: SN6505A-Q1 SN6505B-Q1 SN6505D-Q1  
English Data Sheet: SLLSF95  
 
 
 
 
 
SN6505A-Q1, SN6505B-Q1, SN6505D-Q1  
ZHCSJ04D NOVEMBER 2018 REVISED OCTOBER 2020  
www.ti.com.cn  
When Q2 conducts, Q1 goes high-impedance and the voltage polarities at the primary and secondary reverse.  
Now the lower end of the primary presents the open end with a 2×VIN potential against ground. In this case CR2  
is forward biased while CR1 is reverse biased and current flows from the lower secondary end through CR2,  
charging the capacitor and returning through the load to the center-tap.  
8.3.2 Core Magnetization  
8-2 shows the ideal magnetizing curve for a push-pull converter with B as the magnetic flux density and H as  
the magnetic field strength. When Q1 conducts the magnetic flux is pushed from A to A, and when Q2  
conducts the flux is pulled back from Ato A. The difference in flux and thus in flux density is proportional to the  
product of the primary voltage, VP, and the time, tON, it is applied to the primary: B VP × tON  
.
B
V
V
P
IN  
A’  
H
R
V
DS  
DS  
A
V
= V +V  
P DS  
IN  
8-2. Core Magnetization and Self-Regulation Through Positive Temperature Coefficient of RDS(on)  
This volt-seconds (V-t) product is important as it determines the core magnetization during each switching cycle.  
If the V-t products of both phases are not identical, an imbalance in flux density swing results with an offset from  
the origin of the B-H curve. If balance is not restored, the offset increases with each following cycle and the  
transformer slowly creeps toward the saturation region.  
Copyright © 2023 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: SN6505A-Q1 SN6505B-Q1 SN6505D-Q1  
English Data Sheet: SLLSF95  
 
SN6505A-Q1, SN6505B-Q1, SN6505D-Q1  
ZHCSJ04D NOVEMBER 2018 REVISED OCTOBER 2020  
www.ti.com.cn  
8.4 Device Functional Modes  
The functional modes of the device are divided into start-up, operating, and off-mode.  
8.4.1 Start-Up Mode  
When the supply voltage at VCC ramps up to 2.25 V , the internal oscillator starts operating . The output stage  
begins switching but the amplitude of the drain signals at D1 and D2 has not reached its full maximum yet.  
8.4.1.1 Soft-Start  
SN6505A-Q1 and SN6505B-Q1 devices support soft-start feature. Upon power up or when EN pin transitions  
from Low to High, the gate drive of the output power-MOSFET is gradually increased over a period of time from  
0 V to VCC. Soft-start prevents high inrush current from VCC while charging large secondary side decoupling  
capacitors, and also prevents overshoot in secondary voltage during power-up. For applications that need quick  
power-up, the SN6505D-Q1, that has soft-start disabled, can be used.  
8.4.2 Operating Mode  
When the device supply has reached its nominal value ±10% the oscillator is fully operating. However variations  
over supply voltage and operating temperature can vary the switching frequencies at D1 and D2.  
8.4.3 Shutdown-Mode  
The device has a dedicated enable pin to put the device in very low power mode to save power when not in use.  
Enable pin has an internal pull down resistor which keeps device disabled when not driven. When disabled or  
when VCC is < 1.7 V , both drain outputs, D1 and D2, are tri-stated.  
8.4.4 Spread Spectrum Clocking  
Radiated emissions is an important concern in high current switching power supplies. SN6505 addresses this by  
modulating its internal clock in such a way that the emitting energy is spread over multiple frequency bins. This  
Spread Spectrum clocking feature greatly improves the emissions performance of the entire power supply block  
and hence relieves the system designer from one major concern in isolated power supply design.  
8.4.5 External Clock Mode  
The SN6505x-Q1 has a CLK pin which can be used to synchronize the device with system clock and in turn with  
other SN6505x-Q1 devices so that the system can control the exact switching frequency of the device. The  
Rising edge of the CLK is used to divide a clock by two and used to drive the gates. 9-2 shows the timing  
diagram for the same. The device also has external clock fail safe feature which automatically switches the  
device to the internal clock if a valid input clock is not present for long (tCLKTIMER). The in-built emissions  
reduction scheme of Spread Spectrum clocking is disabled when external clock is present.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: SN6505A-Q1 SN6505B-Q1 SN6505D-Q1  
English Data Sheet: SLLSF95  
 
SN6505A-Q1, SN6505B-Q1, SN6505D-Q1  
ZHCSJ04D NOVEMBER 2018 REVISED OCTOBER 2020  
www.ti.com.cn  
9 Application and Implementation  
备注  
以下应用部分的信息不属TI 组件规范TI 不担保其准确性和完整性。客户应负责确定 TI 组件是否适  
用于其应用。客户应验证并测试其设计以确保系统功能。  
9.1 Application Information  
The SN6505x-Q1 is a transformer driver designed for low-cost, small form-factor, isolated DC/DC converters  
using the push-pull topology. The device includes an oscillator that feeds a gate-drive circuit. The gate-drive,  
comprising a frequency divider and a break-before-make (BBM) logic, provides two complementary output  
signals which alternately turn the two output transistors on and off.  
Vcc  
SN6505  
Q off  
2
Q off  
1
D2  
D1  
S
S
G
G
2
Q
2
Freq.  
Divider  
BBM  
Logic  
fOSC  
OSC  
1
Q
1
Q on  
1
Q on  
2
tBBM  
GND  
GND  
Copyright © 2016, Texas Instruments Incorporated  
9-1. Block Diagram and Output Timing With Break-Before-Make Action  
The output frequency of the oscillator is divided down by an asynchronous divider that provides two  
complementary output signals, S and S, with a 50% duty cycle. A subsequent break-before-make logic inserts a  
dead-time between the high-pulses of the two signals. The resulting output signals, G1 and G2, present the gate-  
drive signals for the output transistors Q1 and Q2. As shown in 9-2, before either one of the gates can assume  
logic high, there must be a short time period during which both signals are low and both transistors are high-  
impedance. This short period, known as break-before-make time, is required to avoid shorting out both ends of  
the primary.  
9-2. Detailed Output Signal Waveforms  
Copyright © 2023 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: SN6505A-Q1 SN6505B-Q1 SN6505D-Q1  
English Data Sheet: SLLSF95  
 
 
 
SN6505A-Q1, SN6505B-Q1, SN6505D-Q1  
ZHCSJ04D NOVEMBER 2018 REVISED OCTOBER 2020  
www.ti.com.cn  
9.2 Typical Application  
VIN = 3.3V  
10µF  
SN6505  
TPS76350  
MBR0520L  
VOUT  
1:2.2  
VOUT-REG = 5V  
4
5
6
3
2
1
1
2
3
5
4
GND  
EN  
D2  
Vcc  
D1  
IN  
OUT  
GND  
EN  
ENABLE  
CLOCK  
10µF 0.1µF  
10µF  
NC  
CLK  
MBR0520L  
Copyright © 2016, Texas Instruments Incorporated  
9-3. Typical Application Schematic  
9.2.1 Design Requirements  
For this design example, use the parameters listed in 9-1 as design parameters.  
9-1. Design Parameters  
DESIGN PARAMETER  
Input voltage range  
Output voltage  
EXAMPLE VALUE  
3.3 V ± 3%  
5 V  
Maximum load current  
100 mA  
9.2.2 Detailed Design Procedure  
The following recommendations on components selection focus on the design of an efficient push-pull converter  
with high current drive capability. Contrary to popular belief, the output voltage of the unregulated converter  
output drops significantly over a wide range in load current. The characteristic curve in 6-1 and 6-11 for  
example, shows that the difference between VOUT at minimum load and VOUT at maximum load exceeds a  
transceivers supply range. Therefore, in order to provide a stable, load independent supply while maintaining  
maximum possible efficiency the implementation of a low dropout regulator (LDO) is strongly advised.  
The final converter circuit is shown in 9-8. The measured VOUT and efficiency characteristics for the regulated  
and unregulated outputs are shown in 6-2 and 6-12.  
9.2.2.1 Drive Capability  
The transformer driver is designed for low-power push-pull converters with input and output voltages in the range  
of 2.25 V to 5.5 V. While converter designs with higher output voltages are possible, care must be taken that  
higher turns ratios dont lead to primary currents that exceed the specified current limits of the device.  
9.2.2.2 LDO Selection  
The minimum requirements for a suitable low dropout regulator are:  
Its current drive capability should slightly exceed the specified load current of the application to prevent the  
LDO from dropping out of regulation. Therefore, for a load current of 600 mA, choose a 600 mA to 750 mA  
LDO. While regulators with higher drive capabilities are acceptable, they also usually possess higher dropout  
voltages that will reduce overall converter efficiency.  
The internal dropout voltage, VDO, at the specified load current should be as low as possible to maintain  
efficiency. For a low-cost 750 mA LDO, a VDO of 600 mV at 750 mA is common. Be aware; however, that this  
lower value is usually specified at room temperature and can increase by a factor of 2 over temperature,  
which in turn will raise the required minimum input voltage.  
The required minimum input voltage preventing the regulator from dropping out of line regulation is given  
with:  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: SN6505A-Q1 SN6505B-Q1 SN6505D-Q1  
English Data Sheet: SLLSF95  
 
 
 
SN6505A-Q1, SN6505B-Q1, SN6505D-Q1  
ZHCSJ04D NOVEMBER 2018 REVISED OCTOBER 2020  
www.ti.com.cn  
VI-min = VDO-max + VO-max  
(1)  
This means in order to determine VI for worst-case condition, the user must take the maximum values for VDO  
and VO specified in the LDO data sheet for rated output current (that is, 600 mA) and add them together. Also  
specify that the output voltage of the push-pull rectifier at the specified load current is equal or higher than  
VI-min. If it is not, the LDO will lose line-regulation and any variations at the input passes straight through to  
the output. Hence, below VI-min the output voltage follows the input and the regulator behaves like a simple  
conductor.  
The maximum regulator input voltage must be higher than the rectifier output under no-load. Under this  
condition there is no secondary current reflected back to the primary, thus making the voltage drop across  
RDS-on negligible and allowing the entire converter input voltage to drop across the primary. At this point, the  
secondary reaches its maximum voltage of  
VS-max = VIN-max × n  
(2)  
with VIN-max as the maximum converter input voltage and n as the transformer turns ratio. Thus to prevent the  
LDO from damage the maximum regulator input voltage must be higher than VS-max. 9-2 lists the maximum  
secondary voltages for various turns ratios commonly applied in push-pull converters.  
9-2. Required Maximum LDO Input Voltages for Various Push-Pull Configurations  
PUSH-PULL CONVERTER  
LDO  
VI-max [V]  
6 to 10  
10  
CONFIGURATION  
3.3 VIN to 3.3 VOUT  
3.3 VIN to 5 VOUT  
5 VIN to 5 VOUT  
VIN-max [V]  
TURNS-RATIO  
1.5 ± 3%  
VS-max [V]  
5.6  
3.6  
3.6  
5.5  
2.2 ± 3%  
8.2  
1.5 ± 3%  
8.5  
10  
9.2.2.3 Diode Selection  
A rectifier diode should always possess low-forward voltage to provide as much voltage to the converter output  
as possible. When used in high-frequency switching applications, such as the SN6505x-Q1 however, the diode  
must also possess a short recovery time. Schottky diodes meet both requirements and are therefore strongly  
recommended in push-pull converter designs. A good choice for low-volt applications and ambient temperatures  
of up to 85°C is the low-cost Schottky rectifier MBR0520L with a typical forward voltage of 275 mV at 100-mA  
forward current. For higher output voltages such as ±10 V and above use the MBR0530 which provides a higher  
DC blocking voltage of 30 V.  
Lab measurements have shown that at temperatures higher than 100°C the leakage currents of the above  
Schottky diodes increase significantly. This can cause thermal runaway leading to the collapse of the rectifier  
output voltage. Therefore, for ambient temperatures higher than 85°C use low-leakage Schottky diodes, such as  
RB168MM-40.  
Copyright © 2023 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: SN6505A-Q1 SN6505B-Q1 SN6505D-Q1  
English Data Sheet: SLLSF95  
 
SN6505A-Q1, SN6505B-Q1, SN6505D-Q1  
ZHCSJ04D NOVEMBER 2018 REVISED OCTOBER 2020  
www.ti.com.cn  
1
1
TJ = 125°C  
25°C  
0°C  
-40°C  
75°C  
-25°C  
TJ = 100°C  
25°C  
75°C  
0.1  
0.1  
0.01  
0.01  
0.2  
0.3  
0.4  
0.5  
0.1  
0.2  
0.3  
0.4  
0.5  
Forward Voltage, VF - V  
Forward Voltage, VF - V  
9-5. Diode Forward Characteristics MBR0530  
9-4. Diode Forward Characteristics for  
MBR0520L  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: SN6505A-Q1 SN6505B-Q1 SN6505D-Q1  
English Data Sheet: SLLSF95  
SN6505A-Q1, SN6505B-Q1, SN6505D-Q1  
ZHCSJ04D NOVEMBER 2018 REVISED OCTOBER 2020  
www.ti.com.cn  
9.2.2.4 Capacitor Selection  
The capacitors in the converter circuit in 9-8 are multi-layer ceramic chip (MLCC) capacitors.  
As with all high speed CMOS ICs, the device requires a bypass capacitor in the range of 10 nF to 100 nF.  
The input bulk capacitor at the center-tap of the primary supports large currents into the primary during the fast  
switching transients. For minimum ripple make this capacitor 1 μF to 10 μF. In a 2-layer PCB design with a  
dedicated ground plane, place this capacitor close to the primary center-tap to minimize trace inductance. In a 4-  
layer board design with low-inductance reference planes for ground and VIN, the capacitor can be placed at the  
supply entrance of the board. To ensure low-inductance paths use two vias in parallel for each connection to a  
reference plane or to the primary center-tap.  
The bulk capacitor at the rectifier output smooths the output voltage. Make this capacitor 1 μF to 10 μF.  
The small capacitor at the regulator input is not necessarily required. However, good analog design practice  
suggests, using a small value of 47 nF to 100 nF improves the regulators transient response and noise  
rejection.  
The LDO output capacitor buffers the regulated output for the subsequent isolator and transceiver circuitry. The  
choice of output capacitor depends on the LDO stability requirements specified in the data sheet. However, in  
most cases, a low-ESR ceramic capacitor in the range of 4.7 μF to 10 μF will satisfy these requirements.  
9.2.2.5 Transformer Selection  
9.2.2.5.1 V-t Product Calculation  
To prevent a transformer from saturation its V-t product must be greater than the maximum V-t product applied  
by the device. The maximum voltage delivered by the device is the nominal converter input plus 10%. The  
maximum time this voltage is applied to the primary is half the period of the lowest frequency at the specified  
input voltage. Therefore, the transformers minimum V-t product is determined through:  
T
V
IN-max  
max  
Vt  
³ V  
´
=
min  
IN-max  
2
2 ´ f  
min  
(3)  
Taking an example of fmin as 138 kHz for SN6505A-Q1 and 363 kHZ for SN6505B-Q1 or SN6505D-Q1 with a 5  
V supply, 方程3 yields the minimum V-t products of:  
5.5 V  
= 20 Vµs for SN6505A-Q1, and  
Vtmin  
2 x 138 kHz  
5.5 V  
= 7.6 Vµs for SN6505B/D-Q1 applications.  
Vtmin  
2 x 363 kHz  
(4)  
Common V-t values for low-power center-tapped transformers range from 22 Vμs to 150 Vμs with typical  
footprints of 10 mm x 12 mm. However, transformers specifically designed for PCMCIA applications provide as  
little as 11 Vμs and come with a significantly reduced footprint of 6 mm x 6 mm only.  
While Vt-wise all of these transformers can be driven by the device, other important factors such as isolation  
voltage, transformer wattage, and turns ratio must be considered before making the final decision.  
9.2.2.5.2 Turns Ratio Estimate  
Assume the rectifier diodes and linear regulator has been selected. Also, it has been determined that the  
transformer chosen must have a V-t product of at least 11 Vμs. However, before searching the manufacturer  
web sites for a suitable transformer, the user still needs to know its minimum turns ratio that allows the push-pull  
converter to operate flawlessly over the specified current and temperature range. This minimum transformation  
Copyright © 2023 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: SN6505A-Q1 SN6505B-Q1 SN6505D-Q1  
English Data Sheet: SLLSF95  
 
SN6505A-Q1, SN6505B-Q1, SN6505D-Q1  
ZHCSJ04D NOVEMBER 2018 REVISED OCTOBER 2020  
www.ti.com.cn  
ratio is expressed through the ratio of minimum secondary to minimum primary voltage multiplied by a correction  
factor that takes the transformers typical efficiency of 97% into account:  
VP-min = VIN-min - VDS-max  
(5)  
VS-min must be large enough to allow for a maximum voltage drop, VF-max, across the rectifier diode and still  
provide sufficient input voltage for the regulator to remain in regulation. From the 9.2.2.2 section, this  
minimum input voltage is known and by adding VF-max gives the minimum secondary voltage with:  
VS-min = VF-max + VDO-max + VO-max  
(6)  
V
F
V
DO  
V
V
O
I
V
R
S
L
V
V
IN  
P
V
DS  
R
Q
DS  
9-6. Establishing the Required Minimum Turns Ratio Through Nmin = 1.031 × VS-min / VP-min  
Then calculating the available minimum primary voltage, VP-min, involves subtracting the maximum possible  
drain-source voltage of the device, VDS-max, from the minimum converter input voltage VIN-min  
:
VP-min = VIN-min VDS-max  
(7)  
VDS-max however, is the product of the maximum RDS(on) and ID values for a given supply specified in the data  
sheet:  
VDS-max = RDS-max × IDmax  
(8)  
Then inserting 方程8 into 方程7 yields:  
VP-min = VIN-min - RDS-max x IDmax  
(9)  
and inserting 方程9 and 方程6 into 方程5 provides the minimum turns ration with:  
VF-max + VDO-max + VO-max  
nmin = 1.031 ´  
VIN-min - RDS-max ´ ID-max  
(10)  
Example:  
For a 3.3 VIN to 5 VOUT converter using the rectifier diode MBR0520L and the 5 V LDO, the data sheet values  
taken for a load current of 600 mA and a maximum temperature of 85°C are VF-max = 0.2 V,  
VDO-max = 0.5 V, and VO-max = 5.1 V.  
Then assuming that the converter input voltage is taken from a 3.3 V controller supply with a maximum ±2%  
accuracy makes VIN-min = 3.234 V. Finally the maximum values for drain-source resistance and drain current at  
3.3 V are taken from the data sheet with RDS-max = 0.31 Ωand ID-max = 1 A.  
Inserting the values above into 方程10 yields a minimum turns ratio of:  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: SN6505A-Q1 SN6505B-Q1 SN6505D-Q1  
English Data Sheet: SLLSF95  
 
 
 
 
 
 
SN6505A-Q1, SN6505B-Q1, SN6505D-Q1  
ZHCSJ04D NOVEMBER 2018 REVISED OCTOBER 2020  
www.ti.com.cn  
0.2 V + 0.5 V + 5.1V  
nmin = 1.031 ´  
3.234 V - 0.31 Ω ´ 1 A  
= 2.05  
(11)  
Most commercially available transformers for 3-to-5 V push-pull converters offer turns ratios between 2.0 and 2.3  
with a common tolerance of ±3%.  
Copyright © 2023 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: SN6505A-Q1 SN6505B-Q1 SN6505D-Q1  
English Data Sheet: SLLSF95  
SN6505A-Q1, SN6505B-Q1, SN6505D-Q1  
ZHCSJ04D NOVEMBER 2018 REVISED OCTOBER 2020  
www.ti.com.cn  
9.2.2.5.3 Recommended Transformers  
Depending on the application, use the minimum configuration in 9-7 or standard configuration in 9-8.  
9-7. Unregulated Output for Low-Current Loads With Wide Supply Range  
9-8. Regulated Output for Stable Supplies and High Current Loads  
The Wurth Electronics Midcom isolation transformers in 9-3 are optimized designs for the device, providing  
high efficiency and small form factor at low-cost.  
The 1:1.1 and 1:1.7 turns-ratios are designed for logic applications with wide supply rails and low load currents.  
These applications operate without LDO, thus achieving further cost-reduction.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: SN6505A-Q1 SN6505B-Q1 SN6505D-Q1  
English Data Sheet: SLLSF95  
 
 
 
SN6505A-Q1, SN6505B-Q1, SN6505D-Q1  
ZHCSJ04D NOVEMBER 2018 REVISED OCTOBER 2020  
www.ti.com.cn  
9-3. Recommended Isolation Transformers Optimized for the Device  
TURNS  
RATIO  
V × T  
(Vμs)  
ISOLATION  
DIMENSIONS  
APPLICATION  
LDO(1)  
ORDER NO.  
MANUFACTURER  
(VRMS  
)
(mm)  
3.3 V 3.3 V, 100mA, SN6505B/D-Q1  
Refer to 6-13 and 6-14  
1:1.1 ±2%  
7
760390011  
5 V 5 V, 100mA, SN6505B/D-Q1  
Refer to 6-15 and 6-16  
1:1.1 ±2%  
1:1.7 ±2%  
1:1.3 ±2%  
1:1.3 ±2%  
No  
760390012  
760390013  
760390014  
760390014  
3.3 V 5 V, 100mA, SN6505B/D-Q1  
Refer to 6-17 and 6-18  
6.73 x 10.05 x 4.19  
3.3 V 3.3 V, 100mA, SN6505B/D-Q1  
Refer to 6-19 and 6-20  
11  
5 V 5 V, 100mA, SN6505B/D-Q1  
Refer to 6-21 and 6-22  
Yes  
3.3 V 5 V, 100mA, SN6505B/D-Q1  
Refer to 6-23 and 6-24  
1:2.1 ±2%  
1.23:1 ±2%  
1:1.7 ±2%  
2500  
760390015  
750313710  
750316028  
5 V 3.3 V, 100mA, SN6505B/D-Q1  
3.3 V 3.3 V, 1A, SN6505B/D-Q1  
Refer to 6-25 and 6-26  
8.9  
3.3 V 5 V, 1A, SN6505B/D-Q1  
Refer to 6-27 and 6-28  
1:2.1 ±2%  
1.3:1 ±2%  
750316029  
750316030  
8.3 x 12.6 x 4.1  
5 V 3.3 V, 1A, SN6505B/D-Q1  
Refer to 6-29 and 6-30  
10.8  
8.6  
Wurth Electronics /  
Midcom  
3.3 V 3.3 V , 1A , SN6505B/D-Q1  
5 V 5 V , 1A , SN6505B/D-Q1  
Refer to 6-11 and 6-12  
No  
1:1.1 ±2%  
750315371  
1:1.1 ±2%  
1:1.1 ±2%  
1:1.7 ±2%  
750313734  
750313734  
750313769  
3.3 V 3.3 V, 100mA, SN6505B/D-Q1  
5 V 5 V, 100mA, SN6505B/D-Q1  
3.3 V 5 V, 100mA, SN6505B/D-Q1  
11  
9.14 x 12.7 x 7.37  
3.3 V 3.3 V, 100mA, SN6505B/D-Q1  
5 V 5 V, 100mA, SN6505B/D-Q1  
1:1.3 ±2%  
750313638  
Yes  
1:2.1 ±2%  
1.3:1 ±2%  
750313626  
750313638  
3.3 V 5 V, 100mA, SN6505B/D-Q1  
5 V 3.3 V, 100mA , SN6505B/D-Q1  
No  
5000  
3.3 V 3.3 V, 1A, SN6505A-Q1  
Refer to 6-3 and 6-4  
1:1.75 ±2%  
1:2 ±2%  
Yes  
750316031  
750316032  
750316033  
41  
3.3 V 5 V, 1A, SN6505A-Q1  
Refer to 6-5 and 6-6  
12.32 x 15.41 x 11.05  
5.0 V 3.3 V, 1A, SN6505A-Q1  
Refer to 6-7 and 6-8  
1.3:1 ±2%  
42  
23  
11  
No  
3.3 V 3.3 V, 1A, SN6505A-Q1  
5 V 5 V, 1A , SN6505A-Q1  
Refer to 6-1 and 6-2  
1:1.1 ±2%  
1:1.3 ±3%  
12.32 x 15.41 x 11.89  
10.4 x 12.2 x 6.1  
750315240  
3.3 V 3.3 V, 300mA, SN6505B/D-Q1  
5 V 5 V, 300mA , SN6505B/D-Q1  
5000  
No  
HCT-SM-1.3-8-2  
Bourns  
3.3 V 3.3 V, 1A, SN6505A/B/D-Q1  
5 V 5 V, 1A , SN6505A/B/D-Q1  
1:1.5 ±3%  
1:2.2 ±3%  
34.4  
21.5  
2500  
2500  
10 x 12.07 x 5.97  
10 x 12.07 x 5.97  
DA2303-AL  
DA2304-AL  
Yes  
Coilcraft  
3.3 V 5 V, 1A, SN6505A/B/D-Q1  
(1) For configurations with LDO, a higher voltage than the required output voltage is generated, to allow for LDO drop-out. Figures show  
the voltage and efficiency at the LDO input.  
9.2.3 Application Curves  
See the 6.7 and 6.8 for application curves with transformers optimized for the device, providing high  
efficiency and small form factor at low-cost.  
Copyright © 2023 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: SN6505A-Q1 SN6505B-Q1 SN6505D-Q1  
English Data Sheet: SLLSF95  
 
 
SN6505A-Q1, SN6505B-Q1, SN6505D-Q1  
ZHCSJ04D NOVEMBER 2018 REVISED OCTOBER 2020  
www.ti.com.cn  
9.2.4 System Examples  
9.2.4.1 Higher Output Voltage Designs  
The device can drive push-pull converters that provide high output voltages of up to 30 V, or bipolar outputs of  
up to ±15 V. Using commercially available center-tapped transformers, with their rather low turns ratios of 0.8 to  
5, requires different rectifier topologies to achieve high output voltages. 9-9 to 9-11 show some of these  
topologies together with their respective open-circuit output voltages.  
n
n
V
VOUT = +n·VIN  
V
=2n·V  
IN  
V
IN  
OUT  
IN  
9-10. Bridge Rectifier Without Center-Tapped  
VOUT = -n·VIN  
Secondary Performs Voltage Doubling  
9-9. Bridge Rectifier With Center-Tapped  
Secondary Enables Bipolar Outputs  
V
=4n·V  
IN  
OUT  
n
V
IN  
9-11. Half-Wave Rectifier Without Centered Ground and Center-Tapped Secondary Performs Voltage  
Doubling Twice, Hence Quadrupling VIN  
9.2.4.2 Application Circuits  
The following application circuits are shown for a 3.3 V input supply commonly taken from the local, regulated  
microcontroller supply. For 5 V input voltages requiring different turn ratios refer to the transformer  
manufacturers and their web sites listed in 9-4.  
9-4. Transformer Manufacturers  
MANUFACTURER  
MORE INFORMATION  
Coilcraft Inc.  
http://www.coilcraft.com  
Halo-Electronics Inc.  
Murata Power Solutions  
Wurth Electronics Midcom Inc  
http://www.haloelectronics.com  
http://www.murata-ps.com  
http://www.midcom-inc.com  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: SN6505A-Q1 SN6505B-Q1 SN6505D-Q1  
English Data Sheet: SLLSF95  
 
 
 
SN6505A-Q1, SN6505B-Q1, SN6505D-Q1  
ZHCSJ04D NOVEMBER 2018 REVISED OCTOBER 2020  
www.ti.com.cn  
4
8
1
3
5
4
GND  
D2  
IN  
OUT  
EN  
SN6505-Q1  
3
2
7
6
3.3 V  
TPS76350-Q1  
EN  
VCC  
D1  
2
GND  
NC  
1
5
CLK  
8
3.3 V  
1
VCC1  
TXD  
VCC2  
VDD  
7
6
2
3
CANH  
TXD  
MCU  
RXD  
CANL  
ISO1042-Q1  
RXD  
Optional bus  
protection  
function  
DGND  
4
5
GND2  
GND1  
Galvanic  
Isolation Barrier  
Digital  
Ground  
ISO  
Ground  
9-12. Isolated CAN Interface  
Copyright © 2023 Texas Instruments Incorporated  
28  
Submit Document Feedback  
Product Folder Links: SN6505A-Q1 SN6505B-Q1 SN6505D-Q1  
English Data Sheet: SLLSF95  
SN6505A-Q1, SN6505B-Q1, SN6505D-Q1  
ZHCSJ04D NOVEMBER 2018 REVISED OCTOBER 2020  
www.ti.com.cn  
10 Power Supply Recommendations  
The device is designed to operate from an input voltage supply range between 2.5 V and 5 V nominal. This input  
supply must be regulated within ±10%. If the input supply is located more than a few inches from the device, a  
0.1 μF by-pass capacitor should be connected as close as possible to the device VCC pin and a 10 μF  
capacitor should be connected close to the transformer center-tap pin.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: SN6505A-Q1 SN6505B-Q1 SN6505D-Q1  
English Data Sheet: SLLSF95  
 
SN6505A-Q1, SN6505B-Q1, SN6505D-Q1  
ZHCSJ04D NOVEMBER 2018 REVISED OCTOBER 2020  
www.ti.com.cn  
11 Layout  
11.1 Layout Guidelines  
The VIN pin must be buffered to ground with a low-ESR ceramic bypass-capacitor. The recommended  
capacitor value can range from 1 μF to 10 μF. The capacitor must have a voltage rating of 10 V minimum  
and a X5R or X7R dielectric.  
The optimum placement is closest to the VIN and GND pins at the board entrance to minimize the loop area  
formed by the bypass-capacitor connection, the VIN terminal, and the GND pin. See 11-1 for a PCB layout  
example.  
The connections between the device D1 and D2 pins and the transformer primary endings, and the  
connection of the device VCC pin and the transformer center-tap must be as close as possible for minimum  
trace inductance.  
The connection of the device VCC pin and the transformer center-tap must be buffered to ground with a low-  
ESR ceramic bypass-capacitor. The recommended capacitor value can range from 1μF to 10 μF. The  
capacitor must have a voltage rating of 16 V minimum and a X5R or X7R dielectric.  
The device GND pins must be tied to the PCB ground plane using two vias for minimum inductance.  
The ground connections of the capacitors and the ground plane should use two vias for minimum inductance.  
The rectifier diodes should be Schottky diodes with low forward voltage in the 10 mA to 100 mA current range  
to maximize efficiency.  
The VOUT pin must be buffered to ISO-Ground with a low-ESR ceramic bypass-capacitor. The recommended  
capacitor value can range from 1μF to 10 μF. The capacitor must have a voltage rating of 16 V minimum  
and a X5R or X7R dielectric.  
11.2 Layout Example  
11-1. Layout Example of a 2-Layer Board  
Copyright © 2023 Texas Instruments Incorporated  
30  
Submit Document Feedback  
Product Folder Links: SN6505A-Q1 SN6505B-Q1 SN6505D-Q1  
English Data Sheet: SLLSF95  
 
 
 
 
SN6505A-Q1, SN6505B-Q1, SN6505D-Q1  
ZHCSJ04D NOVEMBER 2018 REVISED OCTOBER 2020  
www.ti.com.cn  
12 Device and Documentation Support  
12.1 Device Support  
12.1.1 第三方产品免责声明  
TI 发布的与第三方产品或服务有关的信息不能构成与此类产品或服务或保修的适用性有关的认可不能构成此  
类产品或服务单独或与任TI 产品或服务一起的表示或认可。  
12.2 Documentation Support  
12.2.1 Related Documentation  
For related documentation see the following:  
Texas Instruments, Digital Isolator Design Guide  
Texas Instruments, Isolation Glossary  
Texas Instruments, How to Isolate Signal and Power in Isolated CAN Systems TI TechNote  
Texas Instruments, Small Form-Factor Reinforced Isolated IGBT Gate Drive Reference Design for 3-Phase  
Inverter TI Design  
12.3 Related Links  
The table below lists quick access links. Categories include technical documents, support and community  
resources, tools and software, and quick access to order now.  
12-1. Related Links  
TECHNICAL  
DOCUMENTS  
TOOLS &  
SOFTWARE  
SUPPORT &  
COMMUNITY  
PARTS  
PRODUCT FOLDER  
ORDER NOW  
SN6505A-Q1  
SN6505B-Q1  
SN6505D-Q1  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
12.4 接收文档更新通知  
要接收文档更新通知请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册即可每周接收产品信息更  
改摘要。有关更改的详细信息请查看任何已修订文档中包含的修订历史记录。  
12.5 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
12.6 Trademarks  
TI E2Eis a trademark of Texas Instruments.  
所有商标均为其各自所有者的财产。  
12.7 静电放电警告  
静电放(ESD) 会损坏这个集成电路。德州仪(TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理  
和安装程序可能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级大至整个器件故障。精密的集成电路可能更容易受到损坏这是因为非常细微的参  
数更改都可能会导致器件与其发布的规格不相符。  
12.8 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
31  
Product Folder Links: SN6505A-Q1 SN6505B-Q1 SN6505D-Q1  
English Data Sheet: SLLSF95  
 
 
 
 
 
 
 
 
 
SN6505A-Q1, SN6505B-Q1, SN6505D-Q1  
ZHCSJ04D NOVEMBER 2018 REVISED OCTOBER 2020  
www.ti.com.cn  
13 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2023 Texas Instruments Incorporated  
32  
Submit Document Feedback  
Product Folder Links: SN6505A-Q1 SN6505B-Q1 SN6505D-Q1  
English Data Sheet: SLLSF95  
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
23-Jun-2023  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
SN6505AQDBVRQ1  
SN6505AQDBVTQ1  
SN6505BQDBVRQ1  
SN6505BQDBVTQ1  
SN6505DQDBVRQ1  
SN6505DQDBVTQ1  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
6
6
6
6
6
6
3000 RoHS & Green NIPDAU | NIPDAUAG Level-2-260C-1 YEAR  
250 RoHS & Green NIPDAU | NIPDAUAG Level-2-260C-1 YEAR  
3000 RoHS & Green NIPDAU | NIPDAUAG Level-2-260C-1 YEAR  
250 RoHS & Green NIPDAU | NIPDAUAG Level-2-260C-1 YEAR  
3000 RoHS & Green NIPDAU | NIPDAUAG Level-2-260C-1 YEAR  
250 RoHS & Green NIPDAU | NIPDAUAG Level-2-260C-1 YEAR  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
65AQ  
65AQ  
65BQ  
65BQ  
65DQ  
65DQ  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
23-Jun-2023  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
OTHER QUALIFIED VERSIONS OF SN6505A-Q1, SN6505B-Q1 :  
Catalog : SN6505A, SN6505B  
NOTE: Qualified Version Definitions:  
Catalog - TI's standard catalog product  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
24-Jun-2023  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
SN6505AQDBVRQ1  
SN6505AQDBVRQ1  
SN6505AQDBVTQ1  
SN6505BQDBVRQ1  
SN6505BQDBVTQ1  
SN6505BQDBVTQ1  
SN6505DQDBVRQ1  
SN6505DQDBVRQ1  
SN6505DQDBVTQ1  
SN6505DQDBVTQ1  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
6
6
6
6
6
6
6
6
6
6
3000  
3000  
250  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
3.23  
3.2  
3.17  
3.2  
1.37  
1.4  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
Q3  
Q3  
Q3  
Q3  
Q3  
Q3  
Q3  
Q3  
Q3  
Q3  
3.23  
3.23  
3.2  
3.17  
3.17  
3.2  
1.37  
1.37  
1.4  
3000  
250  
250  
3.23  
3.2  
3.17  
3.2  
1.37  
1.4  
3000  
3000  
250  
3.23  
3.2  
3.17  
3.2  
1.37  
1.4  
250  
3.23  
3.17  
1.37  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
24-Jun-2023  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
SN6505AQDBVRQ1  
SN6505AQDBVRQ1  
SN6505AQDBVTQ1  
SN6505BQDBVRQ1  
SN6505BQDBVTQ1  
SN6505BQDBVTQ1  
SN6505DQDBVRQ1  
SN6505DQDBVRQ1  
SN6505DQDBVTQ1  
SN6505DQDBVTQ1  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
6
6
6
6
6
6
6
6
6
6
3000  
3000  
250  
213.0  
210.0  
213.0  
213.0  
210.0  
213.0  
210.0  
213.0  
210.0  
213.0  
191.0  
185.0  
191.0  
191.0  
185.0  
191.0  
185.0  
191.0  
185.0  
191.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
3000  
250  
250  
3000  
3000  
250  
250  
Pack Materials-Page 2  
PACKAGE OUTLINE  
DBV0006A  
SOT-23 - 1.45 mm max height  
S
C
A
L
E
4
.
0
0
0
SMALL OUTLINE TRANSISTOR  
C
3.0  
2.6  
0.1 C  
1.75  
1.45  
B
1.45 MAX  
A
PIN 1  
INDEX AREA  
1
2
6
5
2X 0.95  
1.9  
3.05  
2.75  
4
3
0.50  
6X  
0.25  
C A B  
0.15  
0.00  
0.2  
(1.1)  
TYP  
0.25  
GAGE PLANE  
0.22  
0.08  
TYP  
8
TYP  
0
0.6  
0.3  
TYP  
SEATING PLANE  
4214840/C 06/2021  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. Body dimensions do not include mold flash or protrusion. Mold flash and protrusion shall not exceed 0.25 per side.  
4. Leads 1,2,3 may be wider than leads 4,5,6 for package orientation.  
5. Refernce JEDEC MO-178.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DBV0006A  
SOT-23 - 1.45 mm max height  
SMALL OUTLINE TRANSISTOR  
PKG  
6X (1.1)  
1
6X (0.6)  
6
SYMM  
5
2
3
2X (0.95)  
4
(R0.05) TYP  
(2.6)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:15X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
EXPOSED METAL  
EXPOSED METAL  
0.07 MIN  
ARROUND  
0.07 MAX  
ARROUND  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4214840/C 06/2021  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DBV0006A  
SOT-23 - 1.45 mm max height  
SMALL OUTLINE TRANSISTOR  
PKG  
6X (1.1)  
1
6X (0.6)  
6
SYMM  
5
2
3
2X(0.95)  
4
(R0.05) TYP  
(2.6)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE:15X  
4214840/C 06/2021  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

UL1042

UL1042 - Uk砤d zr體nowa縪nego mieszacza iloczynowego

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

ZXFV201

QUAD VIDEO AMPLIFIER

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ZETEX

ZXFV201N14

IC-SM-VIDEO AMP

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ZETEX

ZXFV201N14TA

QUAD VIDEO AMPLIFIER

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ZETEX

ZXFV201N14TC

QUAD VIDEO AMPLIFIER

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ZETEX

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

ZXFV302N16

IC-SM-4:1 MUX SWITCH

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

ZXFV4089

VIDEO AMPLIFIER WITH DC RESTORATION

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ZETEX

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ZETEX