SN65DSI84TPAPRQ1 [TI]

汽车类单通道 MIPI® DSI 转双链路 LVDS 桥接器 | PAP | 64 | -40 to 105;
SN65DSI84TPAPRQ1
型号: SN65DSI84TPAPRQ1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

汽车类单通道 MIPI® DSI 转双链路 LVDS 桥接器 | PAP | 64 | -40 to 105

电信 电信集成电路
文件: 总54页 (文件大小:1839K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
SN65DSI84-Q1  
ZHCSFS1A DECEMBER 2016REVISED JUNE 2018  
SN65DSI84-Q1 汽车用单通道 MIPI® DSI 转双链路 LVDS 桥接器  
1 特性  
3 说明  
1
符合汽车类应用的 要求  
SN65DSI84-Q1 DSI LVDS 桥接器 具有 一个单通  
MIPI D-PHY 接收器前端配置,此配置中在每个通  
道上具有 4 条信道,每条信道的运行速率为 1Gbps,  
最大输入带宽为 4Gbps。桥接器可解码 MIPI®DSI  
18bpp RGB666 24bpp RGB888 包,并将格式化视  
频数据流转换为 LVDS 输出(像素时钟范围为 25MHz  
154MHz),从而提供双链路 LVDS 或单链路  
LVDS(每个链路具有 4 个数据信道)。  
具有符合 AEC-Q100 标准的下列特性:  
器件温度等级 2-40°C 105°C 的环境运行  
温度范围  
器件 HBM ESD 分类等级 3A  
器件 CDM ESD 分类等级 C6  
实现了 MIPI D-PHY 版本 1.00.00 物理层前端和显  
示屏串行接口 (DSI) 版本 1.02.00  
单通道 DSI 接收器每通道可配置 123 4 条  
D-PHY 数据信道,每条信道的运行速率高达  
1Gbps  
SN65DSI84-Q1 器件非常适用于每秒帧数 (fps) 60  
WUXGA (1920 × 1080),每像素位数 (bpp) 高达  
24 位。该器件实现了部分线路缓冲以适应 DSI 与  
LVDS 接口间的数据流不匹配的情况。  
支持 RGB666 RGB888 格式的 18bpp 24bpp  
DSI 视频流  
适合 60fps WUXGA 1920 × 1200 分辨率(18bpp  
24bpp 颜色),以及 60fps 1366 × 768 分辨率  
18bpp 24bpp 颜色)  
SN65DSI84-Q1 器件采用小外形 10mm × 10mm  
HTQFP  
0.5mm 间距)封装,工作温度范围为 –40ºC 至  
+105ºC。  
针对单链路或双链路 LVDS 的输出配置  
支持单通道 DSI 转单链路 LVDS 的操作模式  
器件信息(1)  
双链路或单链路模式下 LVDS 输出时钟范围为  
25MHz 154MHz  
器件编号  
封装  
封装尺寸(标称值)  
LVDS 像素时钟可采用自由运行持续 D-PHY 时钟  
或外部基准时钟 (REFCLK)  
SN65DSI84-Q1  
HTQFP (64)  
10.00mm x 10.00mm  
(1) 如需了解所有可用封装,请参阅产品说明书末尾的可订购产品  
附录。  
1.8V VCC 电源  
低功耗 特性 包括关断模式、低 LVDS 输出电压摆  
幅、共模以及 MIPI 超低功耗状态 (ULPS) 支持  
1. 典型应用  
针对简化印刷电路板 (PCB) 走线的 LVDS 通道交  
(SWAP)LVDS 引脚顺序反向特性  
TFT LCD Display  
DA[3:0]P  
A_Y0:3N  
DA[3:0]N  
Single-Channel  
DSI to Dual  
LVDS Bridge  
A_Y0:3P  
A_CLKN/P  
B_Y0:3N  
B_Y0:3P  
采用 64 引脚 10mm × 10mm HTQFP (PAP) 封装  
PowerPAD™IC 封装  
Application  
Processor  
With DSI  
Output  
DACP/N  
SN65SDSI84-Q1  
SCL/SDA  
2 应用  
IRQ  
EN  
集成显示屏的信息娱乐系统主机  
B_CLKN/P  
具有远程显示屏的信息娱乐系统主机  
后座信息娱乐系统  
Copyright © 2016, Texas Instruments Incorporated  
混合动力汽车仪表板  
便携式导航设备 (PND)  
导航  
工业人机界面 (HMI) 和显示屏  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SLLSEW9  
 
 
 
SN65DSI84-Q1  
ZHCSFS1A DECEMBER 2016REVISED JUNE 2018  
www.ti.com.cn  
目录  
8.6 Register Maps......................................................... 23  
Application and Implementation ........................ 38  
9.1 Application Information............................................ 38  
9.2 Typical Application ................................................. 38  
1
2
3
4
5
6
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 5  
6.1 Absolute Maximum Ratings ...................................... 5  
6.2 ESD Ratings.............................................................. 5  
6.3 Recommended Operating Conditions....................... 6  
6.4 Thermal Information.................................................. 6  
6.5 Electrical Characteristics........................................... 6  
6.6 Switching Characteristics.......................................... 9  
Parameter Measurement Information .................. 9  
Detailed Description ............................................ 12  
8.1 Overview ................................................................. 12  
8.2 Functional Block Diagram ....................................... 12  
8.3 Feature Description................................................. 13  
8.4 Device Functional Modes........................................ 14  
8.5 Programming........................................................... 22  
9
10 Power Supply Recommendations ..................... 45  
10.1 VCC Power Supply................................................. 45  
10.2 VCORE Power Supply ......................................... 45  
11 Layout................................................................... 45  
11.1 Layout Guidelines ................................................. 45  
11.2 Layout Example .................................................... 46  
12 器件和文档支持 ..................................................... 47  
12.1 文档支持 ............................................................... 47  
12.2 接收文档更新通知 ................................................. 47  
12.3 社区资源................................................................ 47  
12.4 ....................................................................... 47  
12.5 静电放电警告......................................................... 47  
12.6 术语表 ................................................................... 47  
13 机械、封装和可订购信息....................................... 48  
7
8
4 修订历史记录  
Changes from Original (December 2016) to Revision A  
Page  
Deleted figure RESET and Initialization Timing Definition While VCC is High ...................................................................... 11  
Changed the paragraph following Figure 8 ......................................................................................................................... 14  
Changed Recommended Initialization Sequence To: Initialization Sequence ..................................................................... 15  
Changed Table 2 .................................................................................................................................................................. 15  
Changed item 3 in Video Stop and Restart Sequence From: Drive all DSI input lanes including DSI CLK lane to  
LP11. To: Drive all DSI data lanes to LP11, but keep the DSI CLK lanes in HS. ............................................................... 38  
2
Copyright © 2016–2018, Texas Instruments Incorporated  
 
SN65DSI84-Q1  
www.ti.com.cn  
ZHCSFS1A DECEMBER 2016REVISED JUNE 2018  
5 Pin Configuration and Functions  
PAP Package  
64-Pin HTQFP With PowerPAD™  
Top View  
RSVD2  
EN  
1
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
VCC  
2
A_Y0N  
A_Y0P  
A_Y1N  
A_Y1P  
VCC  
VCC  
3
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
VCC  
4
5
6
7
A_Y2N  
A_Y2P  
VCC  
8
Thermal  
Pad  
9
10  
11  
12  
13  
14  
15  
16  
A_CLKN  
A_CLKP  
A_Y3N  
A_Y3P  
VCC  
SCL  
RSVD1  
IRQ  
SDA  
Not to scale  
Copyright © 2016–2018, Texas Instruments Incorporated  
3
SN65DSI84-Q1  
ZHCSFS1A DECEMBER 2016REVISED JUNE 2018  
www.ti.com.cn  
Pin Functions  
PIN  
TYPE  
DESCRIPTION  
NAME  
NO.  
Local I2C interface target address select. See Table 4. In normal operation this pin is an  
input. When the ADDR pin is programmed high, it must be tied to the same 1.8-V power  
rails where the SN65DSI84-Q1 VCC 1.8-V power rail is connected.  
ADDR  
64  
I/O  
A_Y0P  
A_Y0N  
A_Y1P  
A_Y1N  
A_Y2P  
A_Y2N  
A_Y3P  
A_Y3N  
A_CLKP  
A_CLKN  
B_Y0P  
B_Y0N  
B_Y1P  
B_Y1N  
B_Y2P  
B_Y2N  
B_Y3P  
B_Y3N  
B_CLKP  
B_CLKN  
DA0P  
46  
47  
44  
45  
41  
42  
36  
37  
38  
39  
61  
62  
59  
60  
56  
57  
50  
51  
53  
54  
19  
20  
21  
22  
27  
28  
29  
30  
24  
25  
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
I
LVDS channel A, LVDS data output 0  
LVDS channel A, LVDS data output 1  
LVDS channel A, LVDS data output 2  
LVDS channel A, LVDS data output 3. A_Y3P and A_Y3N must be left not connected  
(NC) for 18-bpp panels.  
LVDS channel A, LVDS clock output  
LVDS channel B, LVDS data output 0  
LVDS channel B, LVDS data output 1  
LVDS channel B, LVDS data output 2  
LVDS channel B, LVDS data output 3. B_Y3P and B_Y3N must be left NC for 18-bpp  
panels.  
LVDS channel B, LVDS clock output  
MIPI D-PHY channel A, data lane 0; data rate up to 1 Gbps.  
MIPI D-PHY channel A, data lane 1; data rate up to 1 Gbps  
MIPI D-PHY channel A, data lane 2; data rate up to 1 Gbps.  
MIPI D-PHY channel A, data lane 3; data rate up to 1 Gbps.  
DA0N  
I
DA1P  
I
DA1N  
I
DA2P  
I
DA2N  
I
DA3P  
I
DA3N  
I
DACP  
I
MIPI D-PHY channel A, clock lane; data rate up to 1 Gbps.  
Leave unconnected  
DACN  
I
4, 5, 6, 7, 8, 9,  
10, 11, 12, 13  
RSVD  
EN  
2
23, 26, 52  
33  
I
Chip enable and reset. The device is reset (shutdown) when the EN pin is low.  
GND  
IRQ  
G
O
Reference ground  
Interrupt signal  
This pin is an optional external reference clock for the LVDS pixel clock. If an external  
reference clock is not used, this pin must be pulled to ground with an external resistor.  
The source of the reference clock must be placed as close as possible with a series  
resistor near the source to reduce EMI.  
REFCLK  
17  
I
RSVD1  
RSVD2  
SCL  
34  
1
I/O  
Reserved. This pin must be left unconnected for normal operation.  
Reserved. This pin must be left unconnected for normal operation.  
Local I2C interface clock.  
I
I
15  
16  
SDA  
I/O  
Local I2C interface data  
4
Copyright © 2016–2018, Texas Instruments Incorporated  
SN65DSI84-Q1  
www.ti.com.cn  
ZHCSFS1A DECEMBER 2016REVISED JUNE 2018  
Pin Functions (continued)  
PIN  
TYPE  
DESCRIPTION  
NAME  
NO.  
3
14  
18  
32  
35  
40  
43  
48  
49  
55  
58  
63  
VCC  
1.8-V power supply  
1.1-V output from the voltage regulator. This pin must have a 1-µF external capacitor to  
ground.  
VCORE  
31  
P
PowerPAD  
Reference ground  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
–0.3  
–0.5  
–0.4  
–40  
–40  
–65  
MAX  
2.175  
2.175  
1.4  
UNIT  
V
VCC  
Supply voltage  
Input voltage  
CMOS input pins  
V
DSI input pins (DAxP, DAxN, DBxP, and DBxN)  
V
TA  
Operating free-air temperature  
Junction temperature  
105  
°C  
°C  
°C  
TJ  
115  
Tstg  
Storage temperature  
150  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Procedures. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
6.2 ESD Ratings  
VALUE  
±4000  
±1000  
UNIT  
Human-body model (HBM), per AEC Q100-002(1)  
Charged-device model (CDM), per AEC Q100-011  
Electrostatic  
discharge  
V(ESD)  
V
(1) AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.  
Copyright © 2016–2018, Texas Instruments Incorporated  
5
SN65DSI84-Q1  
ZHCSFS1A DECEMBER 2016REVISED JUNE 2018  
www.ti.com.cn  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
1.65  
TYP  
MAX  
1.95  
0.05  
1350  
400  
UNIT  
V
VCC  
VCC power supply  
1.8  
VPSN  
V(DSI)  
ƒ(I2C)  
ƒHS(CLK)  
tsu  
Supply noise on any VCC pin  
DSI input pin voltage  
Local I2C input frequency  
ƒ(noise) > 1 MHz  
–50  
V
mV  
kHz  
MHz  
UI(1)  
UI(1)  
Ω
DSI high-speed (HS) clock input frequency  
DSI HS data to clock setup time  
DSI HS data to clock hold time  
LVDS output differential impedance  
Case temperature  
40  
0.15  
0.15  
90  
500  
th  
ZOD(LVDS)  
TC  
132  
92.2  
°C  
(1) The unit interval (UI) is one half of the period of the HS clock; at 500 MHz the minimum setup and hold time is 150 ps.  
6.4 Thermal Information  
SN65DSI84-Q1  
THERMAL METRIC(1)  
PAP (HTQFP)  
64 PINS  
36.1  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
18.2  
20.6  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
0.8  
ψJB  
20.5  
RθJC(bot)  
2.2  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
6.5 Electrical Characteristics  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP(1)  
MAX  
UNIT  
V
VIL  
VIH  
VOH  
VOL  
ILKG  
IIH  
Low-level control signal input voltage  
High-level control signal input voltage  
High-level output voltage  
Low-level output voltage  
0.3 × VCC  
0.7 × VCC  
1.25  
V
IOH = –4 mA  
V
IOL = 4 mA  
0.4  
±30  
±30  
±30  
±10  
±50  
164  
V
Input failsafe leakage current  
High level input current  
VCC = 0; VCC(PIN) = 1.8 V  
Any input terminal  
μA  
μA  
μA  
μA  
mA  
mA  
IIL  
Low level input current  
Any input terminal  
IOZ  
IOS  
ICC  
High-impedance output current  
Short-circuit output current  
Device active current  
CMOS output terminals  
Any output driving GND short  
(2)  
See  
106  
7.7  
All data and clock lanes are in ultra-low  
power state (ULPS)  
IULPS  
Device standby current  
14  
mA  
IRST  
REN  
Shutdown current  
EN = 0  
0.04  
200  
130  
µA  
EN control input resistor  
kΩ  
(1) All typical values are at VCC = 1.8V and TA = 25°C  
(2) SN65DSI84-Q1: SINGLE Channel DSI to DUAL Channel LVDS, 1400 x 900  
(a) number of LVDS lanes = 2 × (3 data lanes + 1 CLK lane)  
(b) number of DSI lanes = 2 data lanes + 1 CLK lane  
(c) LVDS CLK OUT = 53.25 M  
(d) DSI CLK = 500 M  
(e) RGB888, LVDS18 bpp  
Maximum values are at VCC = 1.95 V and TA = 105°C  
6
Copyright © 2016–2018, Texas Instruments Incorporated  
 
SN65DSI84-Q1  
www.ti.com.cn  
ZHCSFS1A DECEMBER 2016REVISED JUNE 2018  
Electrical Characteristics (continued)  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
880  
100  
TYP(1)  
MAX  
UNIT  
MIPI DSI INTERFACE  
VIH-LP  
VIL-LP  
LP receiver input high threshold  
LP receiver input low threshold  
HS differential input voltage  
See Figure 2  
See Figure 2  
mV  
mV  
mV  
mV  
550  
270  
50  
|VID  
|
|VIDT  
|
HS differential input voltage threshold  
LP receiver input low threshold; ultra-low  
power state (ULPS)  
VIL-ULPS  
VCM-HS  
300  
330  
100  
460  
mV  
mV  
mV  
HS common mode voltage; steady-state  
70  
HS common mode peak-to-peak variation  
including symbol delta and interference  
ΔVCM-HS  
VIH-HS  
VIL-HS  
HS single-ended input high voltage  
HS single-ended input low voltage  
See Figure 2  
See Figure 2  
mV  
mV  
–40  
80  
HS termination enable; single-ended input  
voltage (both Dp AND Dn apply to  
enable)  
Termination is switched simultaneous for  
Dn and Dp  
VTERM-EN  
450  
125  
mV  
RDIFF-HS  
HS mode differential input impedance  
Ω
LVDS OUTPUT  
CSR 0x19.3:2=00 and, or CSR  
0x19.1:0=00  
100 Ω near end termination  
180  
215  
250  
290  
150  
200  
250  
300  
245  
293  
341  
389  
204  
271  
337  
402  
330  
392  
455  
515  
275  
365  
450  
535  
CSR 0x19.3:2=01 and, or CSR  
0x19.1:0=01  
100 Ω near end termination  
CSR 0x19.3:2=10 and, or CSR  
0x19.1:0=10  
100 Ω near end termination  
CSR 0x19.3:2=11 and, or CSR  
0x19.1:0=11  
100 Ω near end termination  
Steady-state differential output voltage for  
A_Yx P/N and B_Yx P/N  
|VOD  
|
mV  
CSR 0x19.3:2=00 and, or CSR  
0x19.1:0=00  
200 Ω near end termination  
CSR 0x19.3:2=01 and, or CSR  
0x19.1:0=01  
200 Ω near end termination  
CSR 0x19.3:2=10 and, or CSR  
0x19.1:0=10  
200 Ω near end termination  
CSR 0x19.3:2=11 and, or CSR  
0x19.1:0=11  
200 Ω near end termination  
Copyright © 2016–2018, Texas Instruments Incorporated  
7
SN65DSI84-Q1  
ZHCSFS1A DECEMBER 2016REVISED JUNE 2018  
www.ti.com.cn  
Electrical Characteristics (continued)  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP(1)  
MAX  
UNIT  
CSR 0x19.3:2=00 and, or CSR  
0x19.1:0=00  
100 Ω near end termination  
140  
191  
262  
315  
365  
415  
220  
295  
362  
CSR 0x19.3:2=01 and, or CSR  
0x19.1:0=01  
100 Ω near end termination  
168  
195  
226  
117  
156  
195  
234  
229  
266  
303  
159  
211  
263  
314  
CSR 0x19.3:2=10 and, or CSR  
0x19.1:0=10  
100 Ω near end termination  
CSR 0x19.3:2=11 and, or CSR  
0x19.1:0=11  
100 Ω near end termination  
Steady-state differential output voltage for  
A_CLKP/N and B_CLKP/N  
|VOD  
|
mV  
CSR 0x19.3:2=00 and, or CSR  
0x19.1:0=00  
200 Ω near end termination  
CSR 0x19.3:2=01 and, or CSR  
0x19.1:0=01  
200 Ω near end termination  
CSR 0x19.3:2=10 and, or CSR  
0x19.1:0=10  
200 Ω near end termination  
CSR 0x19.3:2=11 and, or CSR  
0x19.1:0=11  
200 Ω near end termination  
435  
35  
Change in steady-state differential output  
voltage between opposite binary states  
Δ|VOD  
|
RL = 100 Ω  
mV  
V
CSR 0x19.6 = 1 and CSR 0x1B.6 = 1;  
and, or CSR 0x19.4 = 1 and  
CSR 0x1B.4 = 1; see Figure 3  
0.75  
1
0.9  
1.13  
Steady state common-mode output  
voltage(3)  
VOC(SS)  
CSR 0x19.6 = 0 and, or CSR 0x19.4 = 0;  
see Figure 3  
1.25  
1.5  
35  
Peak-to-peak common-mode output  
voltage  
VOC(PP)  
see Figure 3  
mV  
Pulldown resistance for disabled LVDS  
outputs  
RLVDS_DIS  
1
kΩ  
(3) Tested at VCC = 1.8V , TA = –40°C for MIN, TA = 25°C for TYP, TA = 105°C for MAX.  
8
Copyright © 2016–2018, Texas Instruments Incorporated  
SN65DSI84-Q1  
www.ti.com.cn  
ZHCSFS1A DECEMBER 2016REVISED JUNE 2018  
6.6 Switching Characteristics  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN TYP(1)  
MAX UNIT  
DSI  
tGS  
LVDS  
tc  
DSI LP glitch suppression pulse width  
300  
40  
ps  
Output clock period  
6.49  
4/7 tc  
–0.15  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tw  
High-level output clock (CLK) pulse duration  
Delay time, CLKto 1st serial bit position  
Delay time, CLKto 2nd serial bit position  
Delay time, CLKto 3rd serial bit position  
Delay time, CLKto 4th serial bit position  
Delay time, CLKto 5th serial bit position  
Delay time, CLKto 6th serial bit position  
Delay time, CLKto 7th serial bit position  
Differential output rise-time  
t0  
0.15  
1/7 tc + 0.15  
2/7 tc + 0.15  
3/7 tc + 0.15  
4/7 tc + 0.15  
5/7 tc + 0.15  
6/7 tc + 0.15  
t1  
1/7 tc – 0.15  
t2  
2/7 tc – 0.15  
3/7 tc – 0.15  
4/7 tc – 0.15  
5/7 tc – 0.15  
6/7 tc – 0.15  
tc = 6.49 ns;  
Input clock jitter < 25 ps  
(REFCLK)  
t3  
See Figure 4  
t4  
t5  
t6  
tr  
See Figure 4  
180  
–10  
500  
10  
ps  
ps  
tf  
Differential output fall-time  
LVDS CLK A to CLK B skew  
EN, ULPS, RESET  
ten  
Enable time from EN or ULPS; see  
tc(o) = 12.9 ns  
tc(o) = 12.9 ns  
1
ms  
ms  
ms  
tdis  
Disable time to standby  
Reset Time  
0.1  
treset  
REFCLK  
10  
REFCLK Freqeuncy. Supported frequencies:  
25 MHz - 15 4MHz  
FREFCLK  
25  
154  
MHz  
tr, tf  
tpj  
REFCLK rise and fall time  
REFCLK Peak-to-Peak Phase Jitter  
REFCLK Duty Cycle  
0.1  
1
50  
ns  
ps  
Duty  
40%  
50%  
1%  
60%  
REFCLK or DSI CLK (DACP/N, DBCP/N)  
SSC enabled Input CLK center spread depth(2)  
0.5%  
30  
2%  
60  
SSC_CLKIN  
Modulation Frequency Range  
kHz  
(1) All typical values are at VCC = 1.8 V and TA = 25°C  
(2) For EMI reduction purpose, SN65DSI84-Q1 supports the center spreading of the LVDS CLK output through the REFCLK or DSI CLK  
input. The center spread CLK input to the REFCLK or DSI CLK is passed through to the LVDS CLK output A_CLKP/N and/or  
B_CLKP/N.  
7 Parameter Measurement Information  
1.3 V  
LP-RX  
Input HIGH  
V
IH(LP)  
V
IL(LP)  
V
IH(HS)  
V
ID  
VCM(HS)max  
LP-RX  
Input LOW  
HS-RX  
Common Mode  
Range  
VCM(HS)min  
GND  
VIL(HS)  
High Speed (HS) Mode  
Receiver  
Low Power (LP)  
Mode Receiver  
Figure 2. DSI Receiver Voltage Definitions  
Copyright © 2016–2018, Texas Instruments Incorporated  
9
SN65DSI84-Q1  
ZHCSFS1A DECEMBER 2016REVISED JUNE 2018  
www.ti.com.cn  
Parameter Measurement Information (continued)  
A_YnP  
B_YnP  
49.9 Ω 1%ꢀ(2ꢀPLCꢁ)  
VOD  
A_YnN  
B_YnN  
VOC  
100%  
80%  
VOD(H)  
0 V  
VOD(L)  
20%  
0%  
tf  
tr  
VOC(PP)  
VOC(s)  
VOC(s)  
0 V  
Figure 3. Test Load and Voltage Definitions for LVDS Outputs  
CLK  
t6  
t5  
t4  
t3  
t2  
t1  
t0  
Yn  
VOD(H)  
0.00V  
VOD(L)  
t0-6  
Figure 4. SN65DSI84-Q1 LVDS Timing Definitions  
10  
Copyright © 2016–2018, Texas Instruments Incorporated  
SN65DSI84-Q1  
www.ti.com.cn  
ZHCSFS1A DECEMBER 2016REVISED JUNE 2018  
Parameter Measurement Information (continued)  
ULPS (LP00) State  
DSI lane  
t
ten  
dis  
A_CLKP/N  
(LVDS_CHA_CLK)  
(1) See the ULPS section of the data sheet for the ULPS entry and exit sequence.  
(2) ULPS entry and exit protocol and timing requirements must be met according to the MIPI DPHY specification.  
Figure 5. ULPS Timing Definition  
Copyright © 2016–2018, Texas Instruments Incorporated  
11  
SN65DSI84-Q1  
ZHCSFS1A DECEMBER 2016REVISED JUNE 2018  
www.ti.com.cn  
8 Detailed Description  
8.1 Overview  
The SN65DSI84-Q1 DSI to LVDS bridge features a single-channel MIPI D-PHY receiver front-end configuration  
with 4 lanes per channel operating at 1 Gbps per lane; a maximum input bandwidth of 4 Gbps. The bridge  
decodes MIPI DSI 18-bpp RGB666 and 240-bpp RG888 packets and converts the formatted video data stream  
to a LVDS compatible LVDS output operating at pixel clocks operating from 25 MHx to 154 MHz, offering a Dual-  
Link LVDS, Single-Link LVDS interface with four data lanes per link.  
8.2 Functional Block Diagram  
LVDS SERIALIZER  
DSI PACKET  
PROCESSORS  
AVCC  
AGND  
VCC  
A_Y0P  
ERR  
A_Y0N  
A_Y1P  
PACKET  
ULPS  
LPRX  
HEADERS  
ERR  
A_Y1N  
A_Y2P  
A_Y2N  
LANE  
MERGE  
GND  
(ODD )  
18  
8
DA0P  
DA0N  
HSRX  
LONG PACKETS  
A_CLKP  
A_CLKN  
A_Y3P  
(EVEN)  
18  
7-BIT SHIFT  
REGISTER  
DATA LANE 0  
EOT  
SOT  
DA1P  
DA1N  
DA2P  
DA2N  
DA3P  
DA3N  
8
8
8
DATA LANE1  
(Circuit same as DATA LANE 0)  
Timers  
A_Y3N  
32  
BE  
DATA LANE 2  
(Circuit same as DATA LANE 0)  
DE  
VS  
HS  
B_Y0P  
B_Y0N  
B_Y1P  
SHORT PACKETS  
DATA LANE 3  
(Circuit same as DATA LANE 0)  
DSI CHANNEL  
MERGING  
CHANNEL  
B_Y1N  
B_Y2P  
B_Y2N  
B_CLKP  
B_CLKN  
B_Y3P  
B_Y3N  
FORMATTER  
PARTIAL  
LINE BUFFER  
ULPS  
LPRX  
LVDSPLL  
PLL  
DACP  
DACN  
Lock  
CLOCK CIRCUITS  
HSRX  
PIXEL CLOCK  
CLK LANE  
SCL  
CSR  
LOCAL I 2  
C
SDA  
IRQ  
HS Clock Sourced  
M /N Pixel Clock  
PLL  
CSR READ  
CSR WRITE  
ADDR  
Clock Dividers  
REFCLK  
EN  
Reset  
RSVD1  
RSVD2  
SN65DSI84  
12  
Copyright © 2016–2018, Texas Instruments Incorporated  
SN65DSI84-Q1  
www.ti.com.cn  
ZHCSFS1A DECEMBER 2016REVISED JUNE 2018  
8.3 Feature Description  
8.3.1 Clock Configurations and Multipliers  
The LVDS clock may be derived from the DSI channel A clock, or from an external reference clock source. When  
the MIPI D-PHY channel A HS clock is used as the LVDS clock source, the D-PHY clock lane must operate in  
HS free-running (continuous) mode; this feature eliminates the requirement for an external reference clock  
reducing system costs  
The reference clock source is selected by HS_CLK_SRC (CSR 0x0A.0) programmed through the local I2C  
interface. If an external reference clock is selected, it is multiplied by the factor in REFCLK_MULTIPLIER (CSR  
0x0B.1:0) to generate the LVDS output clock. When an external reference clock is selected, it must be between  
25 MHz and 154 MHz. If the DSI channel A clock is selected, it is divided by the factor in DSI_CLK_DIVIDER  
(CSR 0x0B.7:3) to generate the LVDS output clock. Additionally, LVDS_CLK_RANGE (CSR 0x0A.3:1) and  
CH_DSI_CLK_RANGE(CSR 0x12) must be set to the frequency range of the LVDS output clock for and DSI  
Channel A input clock respectively the internal PLL to operate correctly. After these settings are programmed,  
PLL_EN (CSR 0x0D.0) must be set to enable the internal PLL.  
8.3.2 ULPS  
The SN65DSI84-Q1 supports the MIPI defined ultra-low power state (ULPS). While the device is in the ULPS,  
the CSR registers are accessible via I2C interface. ULPS sequence should be issued to all active DSI CLK  
and/or DSI data lanes of the enabled DSI Channels for the SN65DSI84-Q1 enter the ULPS. The Following  
sequence should be followed to enter and exit the ULPS.  
1. Host issues a ULPS entry sequence to all DSI CLK and data lanes enabled.  
2. When host is ready to exit the ULPS mode, host issues a ULPS exit sequence to all DSI CLK and data lanes  
that must be active in normal operation.  
3. Wait for a minimum of 3 ms.  
4. Set the SOFT_RESET bit (CSR 0x09.0).  
5. Device resumes normal operation.(i.e video streaming resumes on the panel).  
8.3.3 LVDS Pattern Generation  
The SN65DSI84-Q1 supports a pattern generation feature on LVDS Channels. This feature can be used to test  
the LVDS output path and LVDS panels in a system platform. The pattern generation feature can be enabled by  
setting the CHA_TEST_PATTERN bit at address 0x3C. No DSI data is received while the pattern generation  
feature is enabled.  
Three modes are available for LVDS test pattern generation. The mode of test pattern generation is determined  
by register configuration as shown in Table 1.  
Table 1. Video Registers  
Addr. bit  
0x20.7:0  
0x21.3:0  
0x24.7:0  
0x25.3:0  
0x2C.7:0  
0x2D.1:0  
0x30.7:0  
0x31.1:0  
0x34.7:0  
0x36.7:0  
0x38.7:0  
0x3A.7:0  
Register Name  
CHA_ACTIVE_LINE_LENGTH_LOW  
CHA_ACTIVE_LINE_LENGTH_HIGH  
CHA_VERTICAL_DISPLAY_SIZE_LOW  
CHA_VERTICAL_DISPLAY_SIZE_HIGH  
CHA_HSYNC_PULSE_WIDTH_LOW  
CHA_HSYNC_PULSE_WIDTH_HIGH  
CHA_VSYNC_PULSE_WIDTH_LOW  
CHA_VSYNC_PULSE_WIDTH_HIGH  
CHA_HORIZONTAL_BACK_PORCH  
CHA_VERTICAL_BACK_PORCH  
CHA_HORIZONTAL_FRONT_PORCH  
CHA_VERTICAL_FRONT_PORCH  
Copyright © 2016–2018, Texas Instruments Incorporated  
13  
 
SN65DSI84-Q1  
ZHCSFS1A DECEMBER 2016REVISED JUNE 2018  
www.ti.com.cn  
8.4 Device Functional Modes  
8.4.1 Reset Implementation  
When EN is de-asserted (low), the SN65DSI84-Q1 is in SHUTDOWN or RESET state. In this state, CMOS  
inputs are ignored, the MIPI® D-PHY inputs are disabled and outputs are high impedance. The EN input must  
transmit from a low to a high level after the VCC supply has reached the minimum operating voltage as shown in  
Figure 6. This is achieved by a control signal to the EN input, or by an external capacitor connected between EN  
and GND.  
VCC  
1.65V  
EN  
tVCC  
Figure 6. Cold Start VCC Ramp up to EN  
ten  
When implementing the external capacitor, the size of the external capacitor depends on the power up ramp  
of the VCC supply, where a slower ramp-up results in a larger value external capacitor. See the latest  
reference schematic for the SN65DSI84-Q1 device and, or consider approximately 200 nF capacitor as a  
reasonable first estimate for the size of the external capacitor.  
Both EN implementations are shown in Figure 7 and Figure 8.  
VCC  
GPO  
EN  
EN  
C
REN =200 kΩ  
C
SN65DSI84  
controller  
SN65DSI84  
Figure 7. External Capacitor Controlled EN  
Figure 8. EN Input From Active Controller  
When the SN65DSI84-Q1 is reset while VCC is high, the EN pin must be held low for at least 10 ms before being  
asserted high as described in Table 2 to be sure that the device is properly reset. The DSI CLK lane MUST be in  
HS and the DSI data lanes MUST be driven to LP11 while the device is in reset before the EN pin is asserted  
per the timing described in Table 2.  
8.4.2 Initialization Sequence  
Use the following initialization sequence to setup the SN65DSI84-Q1. This sequence is required for proper  
operation of the device. Steps 9 through 11 in the sequence are optional.  
Also see to Figure 6.  
14  
Copyright © 2016–2018, Texas Instruments Incorporated  
 
 
 
 
SN65DSI84-Q1  
www.ti.com.cn  
ZHCSFS1A DECEMBER 2016REVISED JUNE 2018  
Device Functional Modes (continued)  
Table 2. Initialization Sequence  
INITIALIZATION  
SEQUENCE  
NUMBER  
INITIALIZATION SEQUENCE DESCRIPTION  
Init seq 1  
Power on  
After power is applied and stable, the DSI CLK lanes MUST be in HS state and the DSI data lanes MUST be driven  
to LP11 state  
Init seq 2  
Init seq 3  
Wait 10 ms  
Init seq 4  
Wait 10 ms  
Init seq 5  
Set EN pin to Low  
(1)  
(1)  
Tie EN pin to High  
Initialize all CSR registers to their appropriate values based on the implementation (The SN65DSI8x is not  
functional until the CSR registers are initialized)  
Init seq 6  
Wait 10 ms  
Init seq 7  
Wait 10 ms  
Init seq 8  
Set the PLL_EN bit (CSR 0x0D.0)  
(1)  
(1)  
Set the SOFT_RESET bit (CSR 0x09.0)  
Change DSI data lanes to HS state and start DSI video stream  
(1)  
Wait 5 ms  
Init seq 9  
Init seq 10  
Wait 1 ms  
Init seq 11  
Read back all resisters and confirm they were correctly written  
Write 0xFF to CSR 0xE5 to clear the error registers  
(1)  
Read CSR 0xE5. If CSR 0xE5!= 0x00, then go back to step #2 and re-initialize  
(1) Minimum recommended delay. It is fine to exceed these.  
8.4.3 LVDS Output Formats  
The SN65DSI84-Q1 processes DSI packets and produces video data driven to the LVDS interface in an industry  
standard format. Single-Link LVDS and Dual-Link LVDS are supported by the SN65DSI84-Q1; when the LVDS  
output is implemented in a Dual-Link configuration, channel A carries the odd pixel data, and channel B carries  
the even pixel data. During conditions such as the default condition, and some video synchronization periods,  
where no video stream data is passing from the DSI input to the LVDS output, the SN65DSI84-Q1 transmits zero  
value pixel data on the LVDS outputs while maintaining transmission of the vertical sync and horizontal sync  
status.  
Figure 9 illustrates a Single-Link LVDS 18bpp application.  
Figure 10 illustrates a Dual-Link 24 bpp application using Format 2, controlled by CHA_24BPP_FORMAT1 (CSR  
0x18.1) and CHB_24BPP_FORMAT1 (CSR 0x18.0). In data Format 2, the two MSB per color are transferred on  
the Y3P/N LVDS lane.  
Figure 11 illustrates a 24 bpp Single-Link application using Format 1. In data Format 1, the two LSB per color are  
transferred on the Y3P/N LVDS lane.  
Figure 12 illustrates a Single-Link LVDS application where 24 bpp data is received from DSI and converted to 18  
bpp data for transmission to an 18 bpp panel. This application is configured by setting CHA_24BPP_FORMAT1  
(CSR 0x18.1) to ‘1’ and CHA_24BPP_MODE (CSR 0x18.3) to ‘0’. In this configuration, the SN65DSI84-Q1 will  
not transmit the 2 LSB per color because the Y3P/N LVDS lane is disabled.  
NOTE  
Note: Figure 9, Figure 10, Figure 11, and Figure 12 only illustrate a few example  
applications for the SN65DSI84-Q1. Other applications are also supported.  
Copyright © 2016–2018, Texas Instruments Incorporated  
15  
SN65DSI84-Q1  
ZHCSFS1A DECEMBER 2016REVISED JUNE 2018  
www.ti.com.cn  
A_CLKP/N  
B_CLKP/N  
cycle ‘n-1’  
cycle ‘n’  
G0  
B1  
DE  
R5  
B0  
VS  
R4  
G5  
HS  
R3  
R2  
G3  
B4  
R1  
G2  
B3  
R0  
G1  
B2  
A_Y0P/N  
A_Y1P/N  
A_Y2P/N  
A_Y3P/N  
G4  
B5  
B_YxP/N  
DE = Data Enable; Channel B Clock, Channel B Data, and A_Y3P/N are Output Low  
Figure 9. LVDS Output Data; Single-Link 18 Bpp  
A_CLKP/N  
B_CLKP/N  
cycle ‘n-1’  
cycle ‘n’  
G0  
(o)  
R5  
(o)  
R4  
(o)  
R3  
(o)  
R2  
(o)  
R1  
(o)  
R0  
(o)  
A_Y0P/N  
A_Y1P/N  
A_Y2P/N  
A_Y3P/N  
B1  
(o)  
B0  
(o)  
G5  
(o)  
G4  
(o)  
G3  
(o)  
G2  
(o)  
G1  
(o)  
DE  
(o)  
VS  
(o)  
HS  
(o)  
B5  
(o)  
B4  
(o)  
B3  
(o)  
B2  
(o)  
0
(o)  
B7  
(o)  
B6  
(o)  
G7  
(o)  
G6  
(o)  
R7  
(o)  
R6  
(o)  
G0  
(e)  
R5  
(e)  
R4  
(e)  
R3  
(e)  
R2  
(e)  
R1  
(e)  
R0  
(e)  
B_Y0P/N  
B_Y1P/N  
B_Y2P/N  
B_Y3P/N  
B1  
(e)  
B0  
(e)  
G5  
(e)  
G4  
(e)  
G3  
(e)  
G2  
(e)  
G1  
(e)  
DE  
(e)  
VS  
(e)  
HS  
(e)  
B5  
(e)  
B4  
(e)  
B3  
(e)  
B2  
(e)  
0
(e)  
B7  
(e)  
B6  
(e)  
G7  
(e)  
G6  
(e)  
R7  
(e)  
R6  
(e)  
DE = Data Enable; (o) = Odd Pixels; (e) = Even Pixels  
Figure 10. LVDS Output Data (Format 2); Dual-Link 24 Bpp  
A_CLKP/N  
B_CLKP/N  
cycle ‘n-1’  
cycle ‘n’  
G2  
B3  
DE  
R7  
B2  
VS  
R6  
G7  
HS  
R5  
R4  
G5  
B6  
R3  
G4  
B5  
R2  
G3  
B4  
A_Y0P/N  
A_Y1P/N  
A_Y2P/N  
A_Y3P/N  
G6  
B7  
0
B1  
B0  
G1  
G0  
R1  
R0  
B_YxP/N  
DE = Data Enable; Channel B Clock and Data are Output Low  
Figure 11. LVDS Output Data (Format 1); Single-Link 24 Bpp  
16  
Copyright © 2016–2018, Texas Instruments Incorporated  
SN65DSI84-Q1  
www.ti.com.cn  
ZHCSFS1A DECEMBER 2016REVISED JUNE 2018  
A_CLKP/N  
B_CLKP/N  
cycle ‘n-1’  
cycle ‘n’  
G2  
B3  
DE  
R7  
B2  
VS  
R6  
G7  
HS  
R5  
G6  
B7  
R4  
G5  
B6  
R3  
G4  
B5  
R2  
G3  
B4  
A_Y0P/N  
A_Y1P/N  
A_Y2P/N  
A_Y3P/N  
B_YxP/N  
DE = Data Enable; Channel B Clock, Channel B Data, and A_Y3P/N a re Output Low; Channel B Clock, Channel B  
Data, and A_Y3P/N are Output Low  
Figure 12. LVDS Output Data (Format 1); 24-Bpp to Single-Link 18-Bpp Conversion  
Copyright © 2016–2018, Texas Instruments Incorporated  
17  
SN65DSI84-Q1  
ZHCSFS1A DECEMBER 2016REVISED JUNE 2018  
www.ti.com.cn  
8.4.4 DSI Lane Merging  
The SN65DSI84-Q1 supports four DSI data lanes per input channel, and may be configured to support one, two,  
or three DSI data lanes per channel. Unused DSI input pins on the SN65DSI84-Q1 should be left unconnected or  
driven to LP11 state. The bytes received from the data lanes are merged in HS mode to form packets that carry  
the video stream. DSI data lanes are bit and byte aligned.  
Figure 13 illustrates the lane merging function for each channel; 4-Lane, 3-Lane, and 2-Lane modes are  
illustrated  
HS BYTES TRANSMITTED (n) IS INTEGER MULTIPLE OF 4  
HS BYTES TRANSMITTED (n) IS INTEGER MULTIPLE OF 3  
LANE 0  
LANE 1  
LANE 2  
LANE 3  
SOT  
SOT  
SOT  
SOT  
BYTE 0  
BYTE1  
BYTE2  
BYTE 3  
BYTE 4  
BYTE5  
BYTE6  
BYTE 7  
BYTE 8  
BYTE9  
BYTE n-4  
BYTE n-3  
BYTE n-2  
BYTE n-1  
EOT  
EOT  
EOT  
EOT  
SOT  
SOT  
SOT  
BYTE0  
BYTE 1  
BYTE2  
BYTE3  
BYTE 4  
BYTE5  
BYTE6  
BYTE 7  
BYTE8  
BYTE n-3  
BYTE n-2  
BYTE n-1  
EOT  
EOT  
EOT  
LANE 0  
LANE 1  
LANE 2  
BYTE 10  
BYTE 11  
HS BYTES TRANSMITTED (n) IS 1 LESS THAN INTEGER MULTIPLE OF 3  
HS BYTES TRANSMITTED (n) IS 1 LESS THAN INTEGER MULTIPLE OF 4  
SOT  
SOT  
SOT  
BYTE0  
BYTE 1  
BYTE2  
BYTE3  
BYTE 4  
BYTE5  
BYTE6  
BYTE 7  
BYTE8  
BYTE n-2  
BYTE n-1  
EOT  
EOT  
EOT  
LANE 0  
LANE 1  
LANE 2  
LANE 0  
LANE 1  
LANE 2  
LANE 3  
SOT  
SOT  
SOT  
SOT  
BYTE 0  
BYTE1  
BYTE2  
BYTE 3  
BYTE 4  
BYTE5  
BYTE6  
BYTE 7  
BYTE 8  
BYTE9  
BYTE n-3  
BYTE n-2  
BYTE n-1  
EOT  
EOT  
EOT  
EOT  
BYTE 10  
BYTE 11  
HS BYTES TRANSMITTED (n) IS 2 LESS THAN INTEGER MULTIPLE OF 3  
SOT  
SOT  
SOT  
BYTE0  
BYTE 1  
BYTE2  
BYTE3  
BYTE 4  
BYTE5  
BYTE6  
BYTE 7  
BYTE8  
BYTE n-1  
EOT  
EOT  
LANE 0  
LANE 1  
LANE 2  
HS BYTES TRANSMITTED (n) IS 2 LESS THAN INTEGER MULTIPLE OF 4  
LANE 0  
LANE 1  
LANE 2  
LANE 3  
SOT  
SOT  
SOT  
SOT  
BYTE 0  
BYTE1  
BYTE2  
BYTE 3  
BYTE 4  
BYTE5  
BYTE6  
BYTE 7  
BYTE 8  
BYTE9  
BYTE n-2  
BYTE n-1  
EOT  
EOT  
EOT  
EOT  
BYTE 10  
BYTE 11  
3 DSI Data Lane Configuration  
EOT  
HS BYTES TRANSMITTED (n) IS INTEGER MULTIPLE OF 2  
HS BYTES TRANSMITTED (n) IS 3 LESS THAN INTEGER MULTIPLE OF 4  
LANE 0  
LANE 1  
LANE 2  
LANE 3  
SOT  
SOT  
SOT  
SOT  
BYTE 0  
BYTE1  
BYTE2  
BYTE 3  
BYTE 4  
BYTE5  
BYTE6  
BYTE 7  
BYTE 8  
BYTE9  
BYTE n-1  
EOT  
EOT  
LANE 0  
LANE 1  
SOT  
SOT  
BYTE 0  
BYTE1  
BYTE 2  
BYTE 3  
BYTE 4  
BYTE 5  
BYTE n-2  
BYTE n-1  
EOT  
EOT  
BYTE 10  
BYTE 11  
EOT  
HS BYTES TRANSMITTED (n) IS 1 LESS THAN INTEGER MULTIPLE OF 2  
EOT  
LANE 0  
LANE 1  
SOT  
SOT  
BYTE 0  
BYTE1  
BYTE 2  
BYTE 3  
BYTE 4  
BYTE 5  
BYTE n-1  
EOT  
EOT  
4 DSI Data Lane Configuration (default)  
2 DSI Data Lane Configuration  
Figure 13. SN65DSI84-Q1 DSI Lane Merging Illustration  
8.4.5 DSI Pixel Stream Packets  
The SN65DSI84-Q1 processes 18bpp (RGB666) and 24 bpp (RGB888) DSI packets on each channel as shown  
in Figure 14, Figure 15, andFigure 16.  
18  
Copyright © 2016–2018, Texas Instruments Incorporated  
 
SN65DSI84-Q1  
www.ti.com.cn  
ZHCSFS1A DECEMBER 2016REVISED JUNE 2018  
1 Byte  
2 Bytes  
1 Byte  
WORD COUNT Bytes  
2 Bytes  
18 bpp Loosely Packed Pixel Stream  
(Variable Size Payload)  
WORD COUNT  
ECC  
CRC CHECKSUM  
Packet Payload  
Packet Footer  
Packet Header  
1 Byte  
1 Byte  
1 Byte  
1 Byte  
1 Byte  
1 Byte  
1 Byte  
1 Byte  
1 Byte  
0 1  
2
7
2
7
2
7
2
7
2
7
2
7
2
7
2
7
2
7
R0  
R5  
G0  
G5  
B0  
B5  
R0  
R5  
G0  
G5  
B0  
B5  
R0  
R5  
G0  
G5  
B0  
B5  
6-bits  
RED  
6-bits  
GREEN  
6-bits  
BLUE  
6-bits  
RED  
6-bits  
GREEN  
6-bits  
BLUE  
6-bits  
RED  
6-bits  
GREEN  
6-bits  
BLUE  
First Pixel in Packet  
Second Pixel in Packet  
Third Pixel in Packet  
Variable Size Payload (Three Pixels Per Nine Bytes of Payload)  
Figure 14. 18 Bpp (Loosely Packed) DSI Packet Structure  
1 Byte  
2 Bytes  
1 Byte  
WORD COUNT Bytes  
2 Bytes  
18 bpp Packed Pixel Stream  
(Variable Size Payload)  
WORD COUNT  
ECC  
CRC CHECKSUM  
Packet Payload  
Packet Footer  
Packet Header  
1 Byte  
1 Byte  
1 Byte  
1 Byte  
1 Byte  
1 Byte  
1 Byte  
1 Byte  
1 Byte  
0
5
6
7
0
3
4
7
0 1  
2
7
0
5
6
7
0
3
4
7
0 1  
2
7
0
5
6
7
0
3
4
7
0 1  
2
7
R0  
R5 G0  
G5 B0  
B5 R0  
R5 G0  
G5 B0  
B5 R0  
R5 G0  
G5 B0  
B5 R0  
R5 G0  
G5 B0  
B5  
6-bits  
RED  
6-bits  
GREEN  
6-bits  
BLUE  
6-bits  
RED  
6-bits  
GREEN  
6-bits  
BLUE  
6-bits  
RED  
6-bits  
GREEN  
6-bits  
BLUE  
6-bits  
RED  
6-bits  
GREEN  
6-bits  
BLUE  
First Pixel in Packet  
Second Pixel in Packet  
Third Pixel in Packet  
Fourth Pixel in Packet  
Variable Size Payload (Four Pixels Per Nine Bytes of Payload)  
Figure 15. 18-Bpp (Tightly Packed) DSI Packet Structure  
Copyright © 2016–2018, Texas Instruments Incorporated  
19  
SN65DSI84-Q1  
ZHCSFS1A DECEMBER 2016REVISED JUNE 2018  
www.ti.com.cn  
1 Byte  
2 Bytes  
1 Byte  
WORD COUNT Bytes  
2 Bytes  
24 bpp Packed Pixel Stream  
(Variable Size Payload)  
WORD COUNT  
ECC  
CRC CHECKSUM  
Packet Payload  
Packet Footer  
Packet Header  
1 Byte  
1 Byte  
1 Byte  
1 Byte  
1 Byte  
1 Byte  
1 Byte  
1 Byte  
1 Byte  
0
7
0
7
0
7
0
7
0
7
0
7
0
7
0
7
0
7
R0  
R7 G0  
G 7 B0  
B7 R0  
R7 G0  
G 7 B0  
B7 R0  
R7 G0  
G7 B0  
B7  
8-bits  
RED  
8-bits  
GREEN  
8-bits  
BLUE  
8-bits  
RED  
8-bits  
GREEN  
8-bits  
BLUE  
8-bits  
RED  
8-bits  
GREEN  
8-bits  
BLUE  
First Pixel in Packet  
Second Pixel in Packet  
Third Pixel in Packet  
Variable Size Payload (Three Pixels Per Nine Bytes of Payload)  
Figure 16. 24-Bpp DSI Packet Structure  
8.4.6 DSI Video Transmission Specifications  
The SN65DSI84-Q1 supports burst video mode and non-burst video mode with sync events or with sync pulses  
packet transmission as described in the DSI specification. The burst mode supports time-compressed pixel  
stream packets that leave added time per scan line for power savings LP mode. The SN65DSI84-Q1 requires a  
transition to LP mode once per frame to enable PHY synchronization with the DSI host processor; however, for a  
robust and low-power implementation, the transition to LP mode is recommended on every video line.  
Figure 17 illustrates the DSI video transmission applied to SN65DSI84-Q1 applications. In all applications, the  
LVDS output rate must be less than or equal to the DSI input rate. The first line of a video frame shall start with a  
VSS packet, and all other lines start with VSE or HSS. The position of the synchronization packets in time is of  
utmost importance because this has a direct impact on the visual performance of the display panel; that is, these  
packets generate the HS and VS (horizontal and vertical sync) signals on the LVDS interface after the delay  
programmed into CHA_SYNC_DELAY_LOW/HIGH (CSR 0x28.7:0 and 0x29.3:0).  
As required in the DSI specification, the SN65DSI84-Q1 requires that pixel stream packets contain an integer  
number of pixels (i.e. end on a pixel boundary); TI recommends transmitting an entire scan line on one pixel  
stream packet. When a scan line is broken in to multiple packets, inter-packet latency shall be considered such  
that the video pipeline (ie. pixel queue or partial line buffer) does not run empty (i.e. under-run); during scan line  
processing, if the pixel queue runs empty, the SN65DSI84-Q1 transmits zero data (18’b0 or 24’b0) on the LVDS  
interface.  
NOTE  
When the HS clock is used as a source for the LVDS pixel clock, the LP mode transitions  
apply only to the data lanes, and the DSI clock lane remains in the HS mode during the  
entire video transmission.  
The DSI84 does not support the DSI Virtual Channel capability or reverse direction  
(peripheral to processor) transmissions.  
20  
Copyright © 2016–2018, Texas Instruments Incorporated  
SN65DSI84-Q1  
www.ti.com.cn  
ZHCSFS1A DECEMBER 2016REVISED JUNE 2018  
One Video Frame  
t LINE  
t LINE  
t LINE  
t LINE  
t LINE  
t LINE  
t LINE  
DSI  
Channel A  
NOP/  
LP  
NOP/  
LP  
NOP/  
LP  
NOP/  
RGB  
NOP/  
LP  
NOP/  
LP  
NOP/  
LP  
...  
...  
...  
RGB  
LP  
Vertical sync / blanking  
Active Lines  
Vertical sync / blanking  
* VSS and HSS packets are required for DSI Channel B, although LVDS video sync signals are derived from DSI Channel A VSS and HSS packets  
Vertical Blanking Period LVDS Transfer Function  
Active Video Line LVDS Transfer Function  
t LINE  
t LINE  
tLINE  
DSI  
DSI  
DSI  
NOP/  
LP  
NOP/  
LP  
NOP/  
LP  
...  
RGB  
Channel A  
Channel A  
Channel(s)  
tW (HS )  
t W(HS)  
HS (1)  
HS(1)  
HS (1)  
t PD  
tPD  
VS (2)  
DE (3)  
DATA  
VS (2)  
DE(3)  
DATA  
VS (2)  
DE (3)  
DATA  
0x000  
0x000  
0x000  
PixelStream Data  
0x000 (4)  
LEGEND  
VSS  
(1) The assertion of HS is delayed (tPD) by a programmable number of pixel clocks from the  
last bit of VSS/HSS packet received on DSI. The HS pulse width (tW(HS)) is also programmable.  
The illustration shows HS active low.  
DSI Sync Event Packet: V Sync Start  
DSI Sync Event Packet: H Sync Start  
(2) VS is signaled for a programmable number of lines (tLINE ) and is asserted when HS is  
asserted for the first line of the frame . VS is de -asserted when HS is asserted after the  
number of lines programmed has been reached. The illustration shows VS active low  
HSS  
RGB  
A sequence of DSI Pixel Stream Packets  
and Null Packets  
(3) DE is asserted when active pixel data is transmitted on LVDS , and polarity is set  
independent to HS/VS. The illustration shows DE active high  
NOP/LP  
DSI Null Packet , Blanking Packet , or a  
transition to LP Mode  
(4) After the last pixel in an active line is output to LVDS, the LVDS data is output zero  
Figure 17. DSI Channel Transmission and Transfer Function  
8.4.7 Operating Modes  
The SN65DSI84-Q1 can be configured for several different operating modes via LVDS_LINK_CFG (CSR  
0x18.4), LEFT_RIGHT_PIXELS (CSR 0x10.7), and DSI_CHANNEL_MODE (CSR 0x10.6:5). These modes are  
summarized in Table 3. In each of the modes, video data can be 18 bpp or 24 bpp.  
Table 3. SN65DSI84-Q1 Operating Modes  
CSR 0x18.4  
MODE  
DESCRIPTION  
LVDS_LINK_CFG  
Single DSI Input to Single-Link LVDS  
Single DSI Input to Dual-Link LVDS  
1
Single DSI Input on Channel A to Single-Link LVDS output on Channel A.  
Single DSI Input on Channel A to Dual-Link LVDS output with Odd pixels on  
Channel A and Even pixels on Channel B.  
0
Copyright © 2016–2018, Texas Instruments Incorporated  
21  
 
SN65DSI84-Q1  
ZHCSFS1A DECEMBER 2016REVISED JUNE 2018  
www.ti.com.cn  
8.5 Programming  
8.5.1 Local I2C Interface Overview  
The SN65DSI84-Q1 local I2C interface is enabled when EN is input high, access to the CSR registers is  
supported during ultra-low power state (ULPS). The SCL and SDA terminals are used for I2C clock and I2C data  
respectively. The SN65DSI84-Q1 I2C interface conforms to the two-wire serial interface defined by the I2C Bus  
Specification, Version 2.1 (January 2000), and supports fast mode transfers up to 400 kbps.  
The device address byte is the first byte received following the START condition from the master device. The 7  
bit device address for SN65DSI84-Q1 is factory preset to 010110X with the least significant bit being determined  
by the ADDR control input. Table 4 clarifies the SN65DSI84-Q1 target address.  
(1)(2)  
Table 4. SN65DSI84-Q1 I2C Target Address Description  
SN65DSI84-Q1 I2C TARGET ADDRESS  
BIT 7 (MSB)  
BIT 6  
BIT 5  
BIT 4  
BIT 3  
BIT 2  
BIT 1  
BIT 0 (W/R)  
0
1
0
1
1
0
ADDR  
0/1  
(1) When ADDR=1, Address Cycle is 0x5A (Write) and 0x5B (Read)  
(2) When ADDR=0, Address Cycle is 0x58 (Write) and 0x59 (Read)  
The following procedure is followed to write to the SN65DSI84-Q1 I2C registers.  
1. The master initiates a write operation by generating a start condition (S), followed by the SN65DSI84-Q1 7-  
bit address and a zero-value “W/R” bit to indicate a write cycle.  
2. The SN65DSI84-Q1 acknowledges the address cycle.  
3. The master presents the sub-address (I2C register within SN65DSI84-Q1) to be written, consisting of one  
byte of data, MSB-first.  
4. The SN65DSI84-Q1 acknowledges the sub-address cycle.  
5. The master presents the first byte of data to be written to the I2C register.  
6. The SN65DSI84-Q1 acknowledges the byte transfer.  
7. The master may continue presenting additional bytes of data to be written, with each byte transfer completing  
with an acknowledge from the SN65DSI84-Q1.  
8. The master terminates the write operation by generating a stop condition (P).  
The following procedure is followed to read the SN65DSI84-Q1 I2C registers:  
1. The master initiates a read operation by generating a start condition (S), followed by the SN65DSI84-Q1 7-bit  
address and a one-value “W/R” bit to indicate a read cycle.  
2. The SN65DSI84-Q1 acknowledges the address cycle.  
3. The SN65DSI84-Q1 transmit the contents of the memory registers MSB-first starting at register 00h. If a write  
to the SN65DSI84-Q1 I2C register occurred prior to the read, then the SN65DSI84-Q1 will start at the sub-  
address specified in the write.  
4. The SN65DSI84-Q1 will wait for either an acknowledge (ACK) or a not-acknowledge (NACK) from the master  
after each byte transfer; the I2C master acknowledges reception of each data byte transfer.  
5. If an ACK is received, the SN65DSI84-Q1 transmits the next byte of data.  
6. The master terminates the read operation by generating a stop condition (P).  
The following procedure is followed for setting a starting sub-address for I2C reads:  
1. The master initiates a write operation by generating a start condition (S), followed by the SN65DSI84-Q1 7-  
bit address and a zero-value “W/R” bit to indicate a write cycle  
2. The SN65DSI84-Q1 acknowledges the address cycle.  
3. The master presents the sub-address (I2C register within SN65DSI84-Q1) to be written, consisting of one  
byte of data, MSB-first.  
4. The SN65DSI84-Q1 acknowledges the sub-address cycle.  
5. The master terminates the write operation by generating a stop condition (P).  
22  
Copyright © 2016–2018, Texas Instruments Incorporated  
 
SN65DSI84-Q1  
www.ti.com.cn  
ZHCSFS1A DECEMBER 2016REVISED JUNE 2018  
8.6 Register Maps  
8.6.1 Control and Status Registers Overview  
Many of the SN65DSI84-Q1 functions are controlled by the Control and Status Registers (CSR). All CSR  
registers are accessible through the local I2C interface.  
See the following tables for the SN65DSI84-Q1 CSR descriptions. Reserved or undefined bit fields should not be  
modified. Otherwise, the device may operate incorrectly.  
8.6.1.1 CSR Bit Field Definitions – ID Registers  
8.6.1.1.1 Registers 0x00 – 0x08  
Figure 18. Registers 0x00 – 0x08  
7
6
5
4
3
2
1
0
Reserved  
R
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 5. Registers 0x00 – 0x08 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
Reserved  
R
Reserved  
Addresses 0x08 - 0x00 = {0x01, 0x20, 0x20, 0x20, 0x44, 0x53,  
0x49, 0x38, 0x35}  
8.6.1.2 CSR Bit Field Definitions – Reset and Clock Registers  
8.6.1.2.1 Register 0x09  
Figure 19. Register 0x09  
7
6
5
4
Reserved  
R
3
2
1
0
SOFT_RESET  
W
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 6. Register 0x09 Field Descriptions  
Bit  
7-1  
0
Field  
Type  
R
Reset  
Description  
Reserved  
SOFT_RESET  
Reserved  
W
0
This bit automatically clears when set to ‘1’ and returns zeros  
when read. This bit must be set after the CSR’s are updated.  
This bit must also be set after making any changes to the DIS  
clock rate or after changing between DSI burst and non-burst  
modes.  
0 – No action (default)  
1 – Reset device to default condition excluding the CSR bits.  
Copyright © 2016–2018, Texas Instruments Incorporated  
23  
SN65DSI84-Q1  
ZHCSFS1A DECEMBER 2016REVISED JUNE 2018  
www.ti.com.cn  
8.6.1.2.2 Register 0x0A  
Figure 20. Register 0x0A  
7
6
5
Reserved  
R
4
3
2
LVDS_CLK_RANGE  
R/W  
1
0
PLL_EN_STAT  
R
HS_CLK_SRC  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 7. Register 0x0A Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
PLL_EN_STAT  
R
0
0 – PLL not enabled (default)  
1 – PLL enabled  
Note: After PLL_EN_STAT = 1, wait at least 3ms for PLL to lock.  
6-4  
3-1  
Reserved  
R
LVDS_CLK_RANGE  
R/W  
101  
This field selects the frequency range of the LVDS output clock.  
000 – 25 MHz LVDS_CLK < 37.5 MHz  
001 – 37.5 MHz LVDS_CLK < 62.5 MHz  
010 – 62.5 MHz LVDS_CLK < 87.5 MHz  
011 – 87.5 MHz LVDS_CLK < 112.5 MHz  
100 – 112.5 MHz LVDS_CLK < 137.5 MHz  
101 – 137.5 MHz LVDS_CLK 154 MHz (default)  
110 – Reserved  
111 – Reserved  
0
HS_CLK_SRC  
R/W  
0
0 – LVDS pixel clock derived from input REFCLK (default)  
1 – LVDS pixel clock derived from MIPI D-PHY channel A HS  
continuous clock  
8.6.1.2.3 Register 0x0B  
Figure 21. Register 0x0B  
7
6
5
DSI_CLK_DIVIDER  
R/W  
4
3
2
Reserved  
R
1
0
REFCLK_MULTIPLIER  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 8. Register 0x0B Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-3  
DSI_CLK_DIVIDER  
R/W  
00000  
When CSR 0x0A.0 = ‘1’, this field controls the divider used to  
generate the LVDS output clock from the MIPI D-PHY Channel  
A HS continuous clock. When CSR 0x0A.0 = ‘0’, this field must  
be programmed to 00000.  
00000 – LVDS clock = source clock (default)  
00001 – Divide by 2  
00010 – Divide by 3  
00011 – Divide by 4  
10111 – Divide by 24  
11000 – Divide by 25  
11001 through 11111 – Reserved  
2
Reserved  
R
1-0  
REFCLK_MULTIPLIER  
R/W  
00  
When CSR 0x0A.0 = ‘0’, this field controls the multiplier used to  
generate the LVDS output clock from the input REFCLK. When  
CSR 0x0A.0 = ‘1’, this field must be programmed to 00.  
00 – LVDS clock = source clock (default)  
01 – Multiply by 2  
10 – Multiply by 3  
11 – Multiply by 4  
24  
Copyright © 2016–2018, Texas Instruments Incorporated  
SN65DSI84-Q1  
www.ti.com.cn  
ZHCSFS1A DECEMBER 2016REVISED JUNE 2018  
8.6.1.2.4 Register 0x0D  
Figure 22. Register 0x0D  
7
6
5
4
Reserved  
R
3
2
1
0
PLL_EN  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 9. Register 0x0D Field Descriptions  
Bit  
7-1  
0
Field  
Type  
R
Reset  
Description  
Reserved  
PLL_EN  
Reserved  
R/W  
0
When this bit is set, the PLL is enabled with the settings  
programmed into CSR 0x0A and CSR 0x0B. The PLL should be  
disabled before changing any of the settings in CSR 0x0A and  
CSR 0x0B. The input clock source must be active and stable  
before the PLL is enabled.  
0 – PLL disabled (default)  
1 – PLL enabled  
8.6.1.3 CSR Bit Field Definitions – DSI Registers  
8.6.1.3.1 Register 0x10  
Figure 23. Register 0x10  
7
6
5
4
3
2
1
0
Reserved  
CHA_DSI_LANES  
Reserved  
R
SOT_ERR_TO  
L_DIS  
R
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 10. Register 0x10 Field Descriptions  
Bit  
7-5  
4-3  
Field  
Type  
R
Reset  
Description  
Reserved  
Reserved  
CHA_DSI_LANES  
R/W  
11  
This field controls the number of lanes that are enabled for DSI  
Channel A.  
00 – Four lanes are enabled  
01 – Three lanes are enabled  
10 – Two lanes are enabled  
11 – One lane is enabled (default)  
Note: Unused DSI input pins on the SN65DSI84-Q1 should be  
left unconnected.  
2-1  
0
Reserved  
R
Reserved  
SOT_ERR_TOL_DIS  
R/W  
0
0 – Single bit errors are tolerated for the start of transaction SoT  
leader sequence (default)  
1 – No SoT bit errors are tolerated  
Copyright © 2016–2018, Texas Instruments Incorporated  
25  
SN65DSI84-Q1  
ZHCSFS1A DECEMBER 2016REVISED JUNE 2018  
www.ti.com.cn  
8.6.1.3.2 Register 0x11  
Figure 24. Register 0x11  
7
6
5
4
3
2
1
0
CHA_DSI_DATA_EQ  
R/W  
Reserved  
R
CHA_DSI_CLK_EQ  
R/W  
Reserved  
R
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 11. Register 0x11 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-6  
CHA_DSI_DATA_EQ  
R/W  
00  
This field controls the equalization for the DSI Channel A Data  
Lanes  
00 – No equalization (default)  
01 – 1 dB equalization  
10 – Reserved  
11 – 2 dB equalization  
5-4  
3-2  
Reserved  
R
Reserved  
CHA_DSI_CLK_EQ  
R/W  
00  
This field controls the equalization for the DSI Channel A Clock  
00 – No equalization (default)  
01 – 1 dB equalization  
10 – Reserved  
11 – 2 dB equalization  
1-0  
Reserved  
R
Reserved  
8.6.1.3.3 Register 0x12  
Figure 25. Register 0x12  
7
6
5
4
3
2
1
0
CHA_DSI_CLK_RANGE  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 12. Register 0x12 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
CHA_DSI_CLK_RANGE  
R/W  
0
This field specifies the DSI Clock frequency range in 5 MHz  
increments for the DSI Channel A Clock  
0x00 through 0x07 – Reserved  
0x08 – 40 frequency < 45 MHz  
0x09 – 45 frequency < 50 MHz  
...  
0x63 – 495 frequency < 500 MHz  
0x64 – 500 MHz  
0x65 through 0xFF – Reserved  
26  
Copyright © 2016–2018, Texas Instruments Incorporated  
SN65DSI84-Q1  
www.ti.com.cn  
ZHCSFS1A DECEMBER 2016REVISED JUNE 2018  
8.6.1.4 CSR Bit Field Definitions – LVDS Registers  
8.6.1.4.1 Register 0x18  
Figure 26. Register 0x18  
7
6
5
4
3
2
1
0
DE_NEG_POL HS_NEG_POL VS_NEG_POL LVDS_LINK_C CHA_24BPP_  
CHB_24BPP_ CHA_24BPP_F CHB_24BPP_F  
ARITY  
ARITY  
ARITY  
FG  
MODE  
MODE  
ORMAT1  
ORMAT  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 13. Register 0x18 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
DE_NEG_POLARITY  
R/W  
0
0 – DE is positive polarity driven ‘1’ during active pixel  
transmission on LVDS (default)  
1 – DE is negative polarity driven ‘0’ during active pixel  
transmission on LVDS  
6
5
4
HS_NEG_POLARITY  
VS_NEG_POLARITY  
LVDS_LINK_CFG  
R/W  
R/W  
R/W  
1
1
1
0 – HS is positive polarity driven ‘1’ during corresponding sync  
conditions  
1 – HS is negative polarity driven ‘0’ during corresponding sync  
(default)  
0 – VS is positive polarity driven ‘1’ during corresponding sync  
conditions  
1 – VS is negative polarity driven ‘0’ during corresponding sync  
(default)  
0 – LVDS Channel A and Channel B outputs enabled  
When CSR 0x10.6:5 = ’00’ or ‘01’, the LVDS is in Dual-Link  
configuration  
When CSR 0x10.6:5 = ‘10’, the LVDS is in two Single-Link  
configuration  
1 – LVDS Single-Link configuration; Channel A output enabled  
and Channel B output disabled (default)  
3
2
CHA_24BPP_MODE  
CHB_24BPP_MODE  
R/W  
R/W  
0
0
0 – Force 18bpp; LVDS channel A lane 4 (A_Y3P/N) is disabled  
(default)  
1 – Force 24bpp; LVDS channel A lane 4 (B_Y3P/N) is enabled  
CHB_24BPP_MODE  
0 – Force 18bpp; LVDS channel B lane 4 (A_Y3P/N) is disabled  
(default)  
1 – Force 24bpp; LVDS channel B lane 4 (B_Y3P/N) is enabled  
1
CHA_24BPP_FORMAT1  
R/W  
0
This field selects the 24bpp data format  
0 – LVDS channel A lane A_Y3P/N transmits the 2 most  
significant bits (MSB) per color; Format 2 (default)  
1 – LVDS channel B lane A_Y3P/N transmits the 2 least  
significant bits (LSB) per color; Format 1  
Note1: This field must be ‘0’ when 18bpp data is received from  
DSI.  
Note2: If this field is set to ‘1’ and CHA_24BPP_MODE is ‘0’, the  
SN65DSI84-Q1 will convert 24bpp data to 18bpp data for  
transmission to an 18bpp panel. In this configuration, the  
SN65DSI84-Q1 will not transmit the 2 LSB per color on LVDS  
channel A, because LVDS channel A lane A_Y3P/N is disabled.  
0
CHB_24BPP_FORMAT  
R/W  
0
This field selects the 24bpp data format  
0 – LVDS channel B lane B_Y3P/N transmits the 2 most  
significant bits (MSB) per color; Format 2 (default)  
1 – LVDS channel B lane B_Y3P/N transmits the 2 least  
significant bits (LSB) per color; Format 1  
Note1: This field must be ‘0’ when 18bpp data is received from  
DSI.  
Note2: If this field is set to ‘1’ and CHB_24BPP_MODE is ‘0’, the  
SN65DSI84-Q1 will convert 24bpp data to 18bpp data for  
transmission to an 18bpp panel. In this configuration, the  
SN65DSI84-Q1 will not transmit the 2 LSB per color on LVDS  
channel B, because LVDS channel B lane B_Y3P/Nis disabled.  
Copyright © 2016–2018, Texas Instruments Incorporated  
27  
SN65DSI84-Q1  
ZHCSFS1A DECEMBER 2016REVISED JUNE 2018  
www.ti.com.cn  
8.6.1.4.2 Register 0x19  
Figure 27. Register 0x19  
7
6
5
4
3
2
1
0
Reserved  
CHA_LVDS_V  
OCM  
Reserved  
CHB_LVDS_V  
OCM  
CHA_LVDS_VOD_SWING  
CHB_LVDS_VOD_SWING  
R/W  
R/W  
R/W  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 14. Register 0x19 Field Descriptions  
Bit  
7
Field  
Type  
R
Reset  
Description  
Reserved  
Reserved  
6
CHA_LVDS_VOCM  
R/W  
0
This field controls the common mode output voltage for LVDS  
Channel A  
0 – 1.2V (default)  
1 – 0.9V (CSR 0x1B.5:4 CHA_LVDS_CM_ADJUST must be set  
to ‘01b’)  
5
4
Reserved  
R
Reserved  
CHB_LVDS_VOCM  
R/W  
0
This field controls the common mode output voltage for LVDS  
Channel B  
0 – 1.2V (default)  
1 – 0.9V (CSR 0x1B.1:0 CHB_LVDS_CM_ADJUST must be set  
to ‘01b’)  
3-2  
1-0  
CHA_LVDS_VOD_SWING  
CHB_LVDS_VOD_SWING  
R/W  
R/W  
01  
01  
This field controls the differential output voltage for LVDS  
Channel A. See the Electrical Characteristics table for |VOD| for  
each setting:  
00, 01 (default), 10, 11.  
This field controls the differential output voltage for LVDS  
Channel B. See the Electrical Characteristics table for |VOD| for  
each setting:  
00, 01 (default), 10, 11.  
8.6.1.4.3 Register 0x1A  
Figure 28. Register 0x1A  
7
6
5
4
3
2
1
0
Reserved  
EVEN_ODD_S CHA_REVERS CHB_REVERS  
Reserved  
R
CHA_LVDS_TE CHB_LVDS_TE  
WAP  
E_LVDS  
E_LVDS  
RM  
RM  
R
R/W  
R/W  
R/W  
R/W  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 15. Register 0x1A Field Descriptions  
Bit  
7
Field  
Type  
R
Reset  
Description  
Reserved  
Reserved  
6
EVEN_ODD_SWAP  
R/W  
0
0 – Odd pixels routed to LVDS Channel A and Even pixels  
routed to LVDS Channel B (default)  
1 – Odd pixels routed to LVDS Channel B and Even pixels  
routed to LVDS Channel A  
Note: When the SN65DSI84-Q1 is in two stream mode (CSR  
0x10.6:5 = ‘10’), setting this bit to ‘1’ will cause the video stream  
from DSI Channel A to be routed to LVDS Channel B and the  
video stream from DSI Channel B to be routed to LVDS Channel  
A.  
28  
Copyright © 2016–2018, Texas Instruments Incorporated  
SN65DSI84-Q1  
www.ti.com.cn  
ZHCSFS1A DECEMBER 2016REVISED JUNE 2018  
Table 15. Register 0x1A Field Descriptions (continued)  
Bit  
Field  
CHA_REVERSE_LVDS  
Type  
Reset  
Description  
5
R/W  
0
This bit controls the order of the LVDS pins for Channel A.  
0 – Normal LVDS Channel A pin order. LVDS Channel A pin  
order is the same as listed in the Terminal Assignments Section.  
(default)  
1 – Reversed LVDS Channel A pin order. LVDS Channel A pin  
order is remapped as follows:  
A_Y0P A_Y3P  
A_Y0N A_Y3N  
A_Y1P A_CLKP  
A_Y1N A_CLKN  
A_Y2P A_Y2P  
A_Y2N A_Y2N  
A_CLKP A_Y1P  
A_CLKN A_Y1N  
A_Y3P A_Y0P  
A_Y3N A_Y0N  
4
CHB_REVERSE_LVDS  
R/W  
0
This bit controls the order of the LVDS pins for Channel B.  
0 – Normal LVDS Channel B pin order. LVDS Channel B pin  
order is the same as listed in the Terminal Assignments Section.  
(default)  
1 – Reversed LVDS Channel B pin order. LVDS Channel B pin  
order is remapped as follows:  
B_Y0P B_Y3P  
B_Y0N B_Y3N  
B_Y1P B_CLKP  
B_Y1N B_CLKN  
B_Y2P B_Y2P  
B_Y2N B_Y2N  
B_CLKP B_Y1P  
B_CLKN B_Y1N  
B_Y3P B_Y0P  
B_Y3N B_Y0N  
3-2  
1
Reserved  
R
Reserved  
CHA_LVDS_TERM  
R/W  
1
1
This bit controls the near end differential termination for LVDS  
Channel A. This bit also affects the output voltage for LVDS  
Channel A.  
0 – 100Ω differential termination  
1 – 200Ω differential termination (default)  
0
CHB_LVDS_TERM  
R/W  
This bit controls the near end differential termination for LVDS  
Channel B. This bit also affects the output voltage for LVDS  
Channel B.  
0 – 100Ω differential termination  
1 – 200Ω differential termination (default)  
Copyright © 2016–2018, Texas Instruments Incorporated  
29  
SN65DSI84-Q1  
ZHCSFS1A DECEMBER 2016REVISED JUNE 2018  
www.ti.com.cn  
8.6.1.4.4 Register 0x1B  
Figure 29. Register 0x1B  
7
6
5
4
3
2
1
0
Reserved  
R
CHA_LVDS_CM_ADJUST  
R/W  
Reserved  
R
CHB_LVDS_CM_ADJUST  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 16. Register 0x1B Field Descriptions  
Bit  
7-6  
5-4  
Field  
Type  
R
Reset  
Description  
Reserved  
Reserved  
CHA_LVDS_CM_ADJUST  
R/W  
00  
This field can be used to adjust the common mode output  
voltage for LVDS Channel A.  
00 – No change to common mode voltage (default)  
01 – Adjust common mode voltage down 3%  
10 – Adjust common mode voltage up 3%  
11 – Adjust common mode voltage up 6%  
3-2  
1-0  
Reserved  
R
Reserved  
CHB_LVDS_CM_ADJUST  
R/W  
00  
This field can be used to adjust the common mode output  
voltage for LVDS Channel B.  
00 – No change to common mode voltage (default)  
01 – Adjust common mode voltage down 3%  
10 – Adjust common mode voltage up 3%  
11 – Adjust common mode voltage up 6%  
Note for all video registers:  
1. TEST PATTERN GENERATION PURPOSE ONLY registers are for test pattern generation use only. Others  
are for normal operation unless the test pattern generation feature is enabled.  
8.6.1.5 CSR Bit Field Definitions – Video Registers  
8.6.1.5.1 Register 0x20  
Figure 30. Register 0x20  
7
6
5
4
3
2
1
0
CHA_ACTIVE_LINE_LENGTH_LOW  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 17. Register 0x20 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
CHA_ACTIVE_LINE_LENGTH_LO R/W  
W
0
This field controls the length in pixels of the active horizontal line  
line that are received on DSI Channel A and output to LVDS  
Channel A in single LVDS Channel mode(CSR 0x18.4=1),  
Channel A and B in dual LVDS Channel mode(CSR 0x18.4=0).  
The value in this field is the lower 8 bits of the 12-bit value for  
the horizontal line length.  
30  
Copyright © 2016–2018, Texas Instruments Incorporated  
SN65DSI84-Q1  
www.ti.com.cn  
ZHCSFS1A DECEMBER 2016REVISED JUNE 2018  
8.6.1.5.2 Register 0x21  
Figure 31. Register 0x21  
7
6
5
4
3
2
1
0
Reserved  
R
CHA_ACTIVE_LINE_LENGTH_HIGH  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 18. Register 0x21 Field Descriptions  
Bit  
7-4  
3-0  
Field  
Type  
Reset  
Description  
Reserved  
R
Reserved  
CHA_ACTIVE_LINE_LENGTH_HIG R/W  
H
0
This field controls the length in pixels of the active horizontal line  
that are received on DSI Channel A and output to LVDS  
Channel A in single LVDS Channel mode(CSR 0x18.4=1),  
Channel A and B in dual LVDS Channel mode(CSR 0x18.4=0).  
The value in this field is the upper 4 bits of the 12-bit value for  
the horizontal line length.  
8.6.1.5.3 Register 0x24  
Figure 32. Register 0x24  
7
6
5
4
3
2
1
0
CHA_VERTICAL_DISPLAY_SIZE_LOW  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 19. Register 0x24 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
CHA_VERTICAL_DISPLAY_SIZE_L R/W  
OW  
0
TEST PATTERN GENERATION PURPOSE ONLY. This field  
controls the vertical display size in lines for LVDS Channel A in  
single LVDS Channel mode(CSR 0x18.4=1), Channel A and B in  
dual LVDS Channel mode(CSR 0x18.4=0. The value in this field  
is the lower 8 bits of the 12-bit value for the vertical display size.  
8.6.1.5.4 Register 0x25  
Figure 33. Register 0x25  
7
6
5
4
3
2
1
0
Reserved  
R
CHA_VERTICAL_DISPLAY_SIZE_HIGH  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 20. Register 0x25 Field Descriptions  
Bit  
7-4  
3-0  
Field  
Type  
Reset  
Description  
Reserved  
R
Reserved  
CHA_VERTICAL_DISPLAY_SIZE_ R/W  
HIGH  
0
TEST PATTERN GENERATION PURPOSE ONLY. This field  
controls the vertical display size in lines for LVDS Channel A in  
single LVDS Channel mode(CSR 0x18.4=1), Channel A and B in  
dual LVDS Channel mode(CSR 0x18.4=0). The value in this  
field is the upper 4 bits of the 12-bit value for the vertical display  
size  
8.6.1.5.5 Register 0x28  
Copyright © 2016–2018, Texas Instruments Incorporated  
31  
SN65DSI84-Q1  
ZHCSFS1A DECEMBER 2016REVISED JUNE 2018  
www.ti.com.cn  
Figure 34. Register 0x28  
7
6
5
4
3
2
1
0
CHA_SYNC_DELAY_LOW  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 21. Register 0x28 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
CHA_SYNC_DELAY_LOW  
R/W  
0
This field controls the delay in pixel clocks from when an HSync  
or VSync is received on the DSI to when it is transmitted on the  
LVDS interface for Channel A in single LVDS Channel  
mode(CSR 0x18.4=1), Channel A and B in dual LVDS Channel  
mode(CSR 0x18.4=0). The delay specified by this field is in  
addition to the pipeline and synchronization delays in the  
SN65DSI84-Q1. The additional delay is approximately 10 pixel  
clocks. The Sync delay must be programmed to at least 32 pixel  
clocks to ensure proper operation. The value in this field is the  
lower 8 bits of the 12-bit value for the Sync delay.  
8.6.1.5.6 Register 0x29  
Figure 35. Register 0x29  
7
6
5
4
3
2
1
0
Reserved  
R
CHA_SYNC_DELAY_HIGH  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 22. Register 0x29 Field Descriptions  
Bit  
7-4  
3-0  
Field  
Type  
R
Reset  
Description  
Reserved  
Reserved  
CHA_SYNC_DELAY_HIGH  
R/W  
0
This field controls the delay in pixel clocks from when an HSync  
or VSync is received on the DSI to when it is transmitted on the  
LVDS interface for Channel A in single LVDS Channel  
mode(CSR 0x18.4=1), Channel A and B in dual LVDS Channel  
mode(CSR 0x18.4=0). The delay specified by this field is in  
addition to the pipeline and synchronization delays in the  
SN65DSI84-Q1. The additional delay is approximately 10 pixel  
clocks. The Sync delay must be programmed to at least 32 pixel  
clocks to ensure proper operation. The value in this field is the  
upper 4 bits of the 12-bit value for the Sync delay.  
8.6.1.5.7 Register 0x2C  
Figure 36. Register 0x2C  
7
6
5
4
3
2
1
0
CHA_HSYNC_PULSE_WIDTH_LOW  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 23. Register 0x2C Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
CHA_HSYNC_PULSE_WIDTH_LO R/W  
W
0
This field controls the width in pixel clocks of the HSync Pulse  
Width for LVDS Channel A in single LVDS Channel mode(CSR  
0x18.4=1), Channel A and B in dual LVDS Channel mode(CSR  
0x18.4=0). The value in this field is the lower 8 bits of the 10-bit  
value for the HSync Pulse Width.  
32  
Copyright © 2016–2018, Texas Instruments Incorporated  
SN65DSI84-Q1  
www.ti.com.cn  
ZHCSFS1A DECEMBER 2016REVISED JUNE 2018  
8.6.1.5.8 Register 0x2D  
Figure 37. Register 0x2D  
7
6
5
4
3
2
1
0
Reserved  
R
CHA_HSYNC_PULSE_WIDTH_  
HIGH  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 24. Register 0x2D Field Descriptions  
Bit  
7-2  
1-0  
Field  
Type  
Reset  
Description  
Reserved  
R
Reserved  
CHA_HSYNC_PULSE_WIDTH_HIG R/W  
H
0
This field controls the width in pixel clocks of the HSync Pulse  
Width for LVDS Channel A in single LVDS Channel mode(CSR  
0x18.4=1), Channel A and B in dual LVDS Channel mode(CSR  
0x18.4=0). The value in this field is the upper 2 bits of the 10-bit  
value for the HSync Pulse Width.  
8.6.1.5.9 Register 0x30  
Figure 38. Register 0x30  
7
6
5
4
3
2
1
0
CHA_VSYNC_PULSE_WIDTH_LOW  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 25. Register 0x30 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
CHA_VSYNC_PULSE_WIDTH_LO R/W  
W
0
This field controls the length in lines of the VSync Pulse Width  
for LVDS Channel A in single LVDS Channel mode(CSR  
0x18.4=1), Channel A and B in dual LVDS Channel mode(CSR  
0x18.4=0). The value in this field is the lower 8 bits of the 10-bit  
value for the VSync Pulse Width.  
8.6.1.5.10 Register 0x31  
Figure 39. Register 0x31  
7
6
5
4
3
2
1
0
Reserved  
R
CHA_VSYNC_PULSE_WIDTH_  
HIGH  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 26. Register 0x31 Field Descriptions  
Bit  
7-2  
1-0  
Field  
Type  
Reset  
Description  
Reserved  
R
Reserved  
CHA_VSYNC_PULSE_WIDTH_HIG R/W  
H
0
This field controls the length in lines of the VSync Pulse Width  
for LVDS Channel A in single LVDS Channel mode(CSR  
0x18.4=1), Channel A and B in dual LVDS Channel mode(CSR  
0x18.4=0). The value in this field is the upper 2 bits of the 10-bit  
value for the VSync Pulse Width.  
8.6.1.5.11 Register 0x34  
Copyright © 2016–2018, Texas Instruments Incorporated  
33  
SN65DSI84-Q1  
ZHCSFS1A DECEMBER 2016REVISED JUNE 2018  
www.ti.com.cn  
Figure 40. Register 0x34  
7
6
5
4
3
2
1
0
CHA_HORIZONTAL_BACK_PORCH  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 27. Register 0x34 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
CHA_HORIZONTAL_BACK_PORC R/W  
H
0
This field controls the time in pixel clocks between the end of the  
HSync Pulse and the start of the active video data for LVDS  
Channel A in single LVDS Channel mode(CSR 0x18.4=1),  
Channel A and B in dual LVDS Channel mode(CSR 0x18.4=0).  
8.6.1.5.12 Register 0x36  
Figure 41. Register 0x36  
7
6
5
4
3
2
1
0
CHA_VERTICAL_BACK_PORCH  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 28. Register 0x36 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
CHA_VERTICAL_BACK_PORCH  
R/W  
0
TEST PATTERN GENERATION PURPOSE ONLY. This field  
controls the number of lines between the end of the VSync  
Pulse and the start of the active video data for LVDS Channel A  
in single LVDS Channel mode(CSR 0x18.4=1), Channel A and B  
in dual LVDS Channel mode(CSR 0x18.4=0).  
8.6.1.5.13 Register 0x38  
Figure 42. Register 0x38  
7
6
5
4
3
2
1
0
CHA_HORIZONTAL_FRONT_PORCH  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 29. Register 0x38 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
CHA_HORIZONTAL_FRONT_POR R/W  
CH  
0
TEST PATTERN GENERATION PURPOSE ONLY. This field  
controls the time in pixel clocks between the end of the active  
video data and the start of the HSync Pulse for LVDS Channel A  
in single LVDS Channel mode(CSR 0x18.4=1), Channel A and B  
in dual LVDS Channel mode(CSR 0x18.4=0).  
34  
Copyright © 2016–2018, Texas Instruments Incorporated  
SN65DSI84-Q1  
www.ti.com.cn  
ZHCSFS1A DECEMBER 2016REVISED JUNE 2018  
8.6.1.5.14 Register 0x3A  
Figure 43. Register 0x3A  
7
6
5
4
3
2
1
0
CHA_VERTICAL_FRONT_PORCH  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 30. Register 0x3A Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
CHA_VERTICAL_FRONT_PORCH R/W  
0
TEST PATTERN GENERATION PURPOSE ONLY. This field  
controls the number of lines between the end of the active video  
data and the start of the VSync Pulse for LVDS Channel A in  
single LVDS Channel mode(CSR 0x18.4=1), Channel A and B in  
dual LVDS Channel mode(CSR 0x18.4=0).  
8.6.1.5.15 Register 0x3C  
Figure 44. Register 0x3C  
7
6
5
4
3
2
1
0
Reserved  
CHA_TEST_PA  
TTERN  
Reserved  
R
R
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 31. Register 0x3C Field Descriptions  
Bit  
7-5  
4
Field  
Type  
R
Reset  
Description  
Reserved  
Reserved  
CHA_TEST_PATTERN  
R/W  
0
TEST PATTERN GENERATION PURPOSE ONLY. When this  
bit is set, the SN65DSI84-Q1 will generate a video test pattern  
based on the values programmed into the Video Registers for  
LDS Channel A in single LVDS Channel mode(CSR 0x18.4=1),  
Channel A and B in dual LVDS Channel mode(CSR 0x18.4=0).  
3-0  
Reserved  
R
Reserved  
8.6.1.6 CSR Bit Field Definitions – IRQ Registers  
8.6.1.6.1 Register 0xE0  
Figure 45. Register 0xE0  
7
6
5
4
3
2
1
0
Reserved  
R
IRQ_EN  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 32. Register 0xE0 Field Descriptions  
Bit  
7-1  
0
Field  
Type  
R
Reset  
Description  
Reserved  
IRQ_EN  
Reserved  
R/W  
0
When enabled by this field, the IRQ output is driven high to  
communicate IRQ events.  
0 – IRQ output is high-impedance (default)  
1 – IRQ output is driven high when a bit is set in registers 0xE5  
that also has the corresponding IRQ_EN bit set to enable the  
interrupt condition  
Copyright © 2016–2018, Texas Instruments Incorporated  
35  
SN65DSI84-Q1  
ZHCSFS1A DECEMBER 2016REVISED JUNE 2018  
www.ti.com.cn  
8.6.1.6.2 Register 0xE1  
Figure 46. Register 0xE1  
7
6
5
4
3
2
1
0
CHA_SYNCH_ CHA_CRC_ER CHA_UNC_EC CHA_COR_EC CHA_LLP_ERR CHA_SOT_BIT  
Reserved  
PLL_UNLOCK_  
EN  
ERR_EN  
R_EN  
C_ERR_EN  
C_ERR_EN  
_EN  
_ERR_EN  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 33. Register 0xE1 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
CHA_SYNCH_ERR_EN  
R/W  
0
0 – CHA_SYNCH_ERR is masked  
1 – CHA_SYNCH_ERR is enabled to generate IRQ events  
6
5
4
3
2
CHA_CRC_ERR_EN  
R/W  
R/W  
R/W  
R/W  
R/W  
0
0
0
0
0
0 – CHA_CRC_ERR is masked  
1 – CHA_CRC_ERR is enabled to generate IRQ events  
CHA_UNC_ECC_ERR_EN  
CHA_COR_ECC_ERR_EN  
CHA_LLP_ERR_EN  
0 – CHA_UNC_ECC_ERR is masked  
1 – CHA_UNC_ECC_ERR is enabled to generate IRQ events  
0 – CHA_COR_ECC_ERR is masked  
1 – CHA_COR_ECC_ERR is enabled to generate IRQ events  
0 – CHA_LLP_ERR is masked  
1 – CHA_ LLP_ERR is enabled to generate IRQ events  
CHA_SOT_BIT_ERR_EN  
0 – CHA_SOT_BIT_ERR is masked  
1 – CHA_SOT_BIT_ERR is enabled to generate IRQ events  
1
0
Reserved  
R
Reserved  
PLL_UNLOCK_EN  
R/W  
0
0 – PLL_UNLOCK is masked  
1 – PLL_UNLOCK is enabled to generate IRQ events  
36  
Copyright © 2016–2018, Texas Instruments Incorporated  
SN65DSI84-Q1  
www.ti.com.cn  
ZHCSFS1A DECEMBER 2016REVISED JUNE 2018  
8.6.1.6.3 Register 0xE5  
Figure 47. Register 0xE5  
7
6
5
4
3
2
1
0
CHA_SYNCH_ CHA_CRC_ER CHA_UNC_EC CHA_COR_EC CHA_LLP_ERR CHA_SOT_BIT  
Reserved  
PLL_UNLOCK  
ERR  
R
C_ERR  
C_ERR  
_ERR  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 34. Register 0xE5 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
CHA_SYNCH_ERR  
R/W  
0
When the DSI channel A packet processor detects an HS or VS  
synchronization error, that is, an unexpected sync packet; this  
bit is set; this bit is cleared by writing a ‘1’ value.  
6
5
CHA_CRC_ERR  
R/W  
R/W  
0
0
When the DSI channel A packet processor detects a data  
stream CRC error, this bit is set; this bit is cleared by writing a  
‘1’ value.  
CHA_UNC_ECC_ERR  
When the DSI channel A packet processor detects an  
uncorrectable ECC error, this bit is set; this bit is cleared by  
writing a ‘1’ value.  
4
3
CHA_COR_ECC_ERR  
CHA_LLP_ERR  
R/W  
R/W  
0
0
When the DSI channel A packet processor detects a correctable  
ECC error, this bit is set; this bit is cleared by writing a ‘1’ value.  
When the DSI channel A packet processor detects a low level  
protocol error, this bit is set; this bit is cleared by writing a ‘1’  
value.  
Low level protocol errors include SoT and EoT sync errors,  
Escape Mode entry command errors, LP transmission sync  
errors, and false control errors. Lane merge errors are reported  
by this status condition.  
2
CHA_SOT_BIT_ERR  
R/W  
0
1
When the DSI channel A packet processor detects an SoT  
leader sequence bit error, this bit is set; this bit is cleared by  
writing a ‘1’ value.  
1
0
Reserved  
R
Reserved  
PLL_UNLOCK  
R/W  
This bit is set whenever the PLL Lock status transitions from  
LOCK to UNLOCK.  
Copyright © 2016–2018, Texas Instruments Incorporated  
37  
SN65DSI84-Q1  
ZHCSFS1A DECEMBER 2016REVISED JUNE 2018  
www.ti.com.cn  
9 Application and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
9.1 Application Information  
The SN65DSI84-Q1 device is primarily targeted for portable applications such as tablets and smart phones that  
utilize the MIPI DSI video format. The SN65DSI84-Q1 device can be used between a GPU with DSI output and a  
video panel with LVDS inputs  
9.1.1 Video Stop and Restart Sequence  
When the system requires to stop outputting video to the display, it is recommended to use the following  
sequence for the SN65DSI84-Q1:  
1. Clear the PLL_EN bit to 0 (CSR 0x0D.0)  
2. Stop video streaming on DSI inputs  
3. Drive all DSI data lanes to LP11, but keep the DSI CLK lanes in HS.  
When the system is ready to restart the video streaming.  
1. Start video streaming on DSI inputs.  
2. Set the PLL_EN bit to 1(CSR 0x0D.0).  
3. Wait for a minimum of 3 ms.  
4. Set the SOFT_RESET bit(0x09.0).  
9.1.2 Reverse LVDS Pin Order Option  
For ease of PCB routing, the SN65DSI84-Q1 supports swapping/reversing the channel or pin order via  
configuration register programming. The order of the LVDS pin for LVDS Channel A or Channel B can be  
reversed by setting the address 0x1A bit 5 CHA_REVERSE_LVDS or bit 4 CHB_REVERSE_LVDS. The LVDS  
Channel A and Channel B can be swapped by setting the 0x1A.6 EVEN_ODD_SWAP bit. See the corresponding  
register bit definition for details.  
9.1.3 IRQ Usage  
The SN65DSI84-Q1 provides an IRQ pin that can be used to indicate when certain errors occur on DSI. The IRQ  
output is enabled through the IRQ_EN bit (CSR 0xE0.0). The IRQ pin will be asserted when an error occurs on  
DSI, the corresponding error enable bit is set, and the IRQ_EN bit is set. An error is cleared by writing a ‘1’ to the  
corresponding error status bit.  
NOTE  
If the SOFT_RESET bit is set while the DSI video stream is active, some of the error  
status bits may be set.  
If the DSI video stream is stopped, some of the error status bits may be set. These error  
status bits should be cleared before restarting the video stream.  
If the DSI video stream starts before the device is configured, some of the error status bits  
may be set. TI recommends starting streaming after the device is correctly configured as  
recommended in the initialization sequence in the Initialization Sequence section.  
9.2 Typical Application  
Figure 48 illustrates a typical application using the SN65DSI84-Q1 for a single channel DSI receiver to interface  
a single-channel DSI application processor to an LVDS Dual-Link 18 bit-per-pixel panel supporting 1920 x 1200  
WUXGA resolutions at 60 frames per second.  
38  
Copyright © 2016–2018, Texas Instruments Incorporated  
SN65DSI84-Q1  
www.ti.com.cn  
ZHCSFS1A DECEMBER 2016REVISED JUNE 2018  
Typical Application (continued)  
SN65DSI84-Q1 A_Y0N  
A_Y0P  
100Ω  
DA0P  
DA0N  
A_Y1N  
A_Y1P  
Application  
Processor  
100Ω  
100Ω  
100Ω  
to odd pixel  
row and column  
drivers  
DA1P  
DA1N  
A_Y2N  
A_Y2P  
DA2P  
DA2N  
A_CLKN  
A_CLKP  
DA3P  
DA3N  
A_Y3N  
A_Y3P  
DACP  
DACN  
B_Y0N  
B_Y0P  
SCL  
SDA  
100Ω  
100Ω  
100Ω  
100Ω  
IRQ  
EN  
B_Y1N  
B_Y1P  
to even pixel  
row and column  
drivers  
ADDR  
REFCLK  
GND  
B_Y2N  
B_Y2P  
B_CLKN  
B_CLKP  
1.8V  
B_Y3N  
B_Y3P  
VCC  
C1  
Copyright © 2016, Texas Instruments Incorporated  
Figure 48. Typical 1920 x 1200 WUXGA 18-bpp Panel Application  
9.2.1 Design Requirements  
For the 1920 x 1200 WUXGA 18-bpp Panel typical application design parameters, see Table 35.  
Table 35. Design Parameters  
DESIGN PARAMETER  
VCC  
EXAMPLE VALUE  
1.8V (±5%)  
DSIA_CLK  
N/A  
CLOCK  
REFCKL Frequency  
DSIA Clock Frequency  
PANEL INFORMATION  
LVDS Output Clock Frequency  
Resolution  
490 MHz  
81 MHz  
1920 x 1200  
Horizontal Active (pixels)  
Horizontal Blanking (pixels)  
Vertical Active (lines)  
960  
144  
1200  
Vertical Blanking (lines)  
Horizontal Sync Offset (pixels)  
Horizontal Sync Pulse Width (pixels)  
Vertical Sync Offset (lines)  
Vertical Sync Pulse Width (lines)  
Horizontal Sync Pulse Polarity  
Vertical Sync Pulse Polarity  
Color Bit Depth (6bpc or 8bpc)  
Number of LVDS Lanes  
20  
50  
50  
1
5
Negative  
Negative  
6-bit  
2 X [3 Data Lanes + 1 Clock Lane]  
Copyright © 2016–2018, Texas Instruments Incorporated  
39  
 
SN65DSI84-Q1  
ZHCSFS1A DECEMBER 2016REVISED JUNE 2018  
www.ti.com.cn  
Typical Application (continued)  
Table 35. Design Parameters (continued)  
DESIGN PARAMETER  
EXAMPLE VALUE  
DSI INFORMATION  
Number of DSI Lanes  
1 X [4 Data Lanes + 1 Clock Lane]  
DSI Input Clock Frequency  
Dual DSI Configuration(Odd/Even or Left/Right)  
490MHz  
N/A  
9.2.2 Detailed Design Procedure  
The video resolution parameters required by the panel must be programmed into the SN65DSI84-Q1. For this  
example, the parameters programmed would be the following:  
Horizontal active = 1920 or 0x780  
CHA_ACTIVE_LINE_LENGTH_LOW = 0X80  
CHA_ACTIVE_LINE_LENGTH_HIGH = 0x07  
Horizontal pulse Width = 50 or 0x32  
CHA_HSYNC_PULSE_WIDTH_LOW = 0x32  
CHA_HSYNC_PULSE_WIDTH_HIGH= 0x00  
Horizontal back porch = Horizontal blanking – (Horizontal sync offset + Horizontal sync pulse width)  
Horizontal back porch = 144– (50 + 50)  
Horizontal back porch = 44 or 0x2C  
CHA_HORIZONTAL_BACK_PORCH = 0x2C  
Vertical pulse width = 5  
CHA_VSYNC_PULSE_WIDTH_LOW = 0x05  
CHA_VSYNC_PULSE_WIDTH_HIGH= 0x00  
The pattern generation feature can be enabled by setting the CHA_TEST_PATTERN bit at address 0x3C and  
configuring the following TEST PATTERN GENERATION PURPOSE ONLY registers.  
Vertical active = 1200 or 0x4B0  
CHA_VERTICAL_DISPLAY_SIZE_LOW = 0xB0  
CHA_VERTICAL_DISPLAY_SIZE_HIGH = 0x04  
Vertical back porch = Vertical blanking – (Vertical sync offset +Vertical sync pulse width)  
Vertical back porch = 20 – (1 + 5)  
Vertical back porch = 14 or 0x0E  
CHA_VERTICAL_BACK_PORCH = 0x0E  
Horizontal front porch = Horizontal sync offset  
Horizontal front porch = 50 or 0x32  
CHA_HORIZONTAL_FRONT_PORCH = 0x32  
Vertical front porch = Vertical sync offset  
Vertical front porch =1  
CHA_VERTICAL_FRONT_PORCH = 0x01  
40  
Copyright © 2016–2018, Texas Instruments Incorporated  
SN65DSI84-Q1  
www.ti.com.cn  
ZHCSFS1A DECEMBER 2016REVISED JUNE 2018  
In this example, the clock source for the SN65DSI84-Q1 is the DSI clock. When the MIPI D-PHY clock is used as  
the LVDS clock source, it is divided by the factor in DSI_CLK_DIVIDER (CSR 0x0B.7:3) to generate the LVDS  
output clock. Additionally, LVDS_CLK_RANGE (CSR 0x0A.3:1) and CH_DSI_CLK_RANGE(CSR 0x12) must be  
set to the frequency range of the LVDS output clock and DSI Channel A input clock respectively for the internal  
PLL to operate correctly. After these settings are programmed, PLL_EN (CSR 0x0D.0) should be set to enable  
the internal PLL.  
LVDS_CLK_RANGE = 010b-62.5 MHz LVDS_CLK < 87.5 MHz  
HS_CLK_SRC = 1 – LVDS pixel clock derived from MIPI D-PHY channel A HS continuous clock  
DSI_CLK_DIVIDER = 0010b – Divide by 6  
CHA_DSI_LANES = 00 – Four lanes are enabled  
CHA_DSI_CLK_RANGE = 0x62 – 490 MHz frequency < 495 MHz  
9.2.2.1 Example Script  
This example configures the SN65DSI84-Q1 for the following configuration:  
<aardvark>  
<configure i2c="1" spi="1" gpio="0" tpower="1" pullups="1"/>  
<i2c_bitrate khz="100"/>  
=====SOFTRESET=======  
<i2c_write addr="0x2D" count="1" radix="16"glt;09 01</i2c_writeglt;  
<sleep ms="10"/>  
======ADDR 0D=======  
======PLL_EN(bit 0) - Enable LAST after addr 0A and 0B configured======  
<i2c_write addr="0x2D" count="1" radix="16"glt;0D 00</i2c_writeglt;  
<sleep ms="10"/>  
======ADDR 0A=======  
======HS_CLK_SRC bit0===  
======LVDS_CLK_Range bit 3:1======  
<i2c_write addr="0x2D" count="1" radix="16"glt;0A 05</i2c_writeglt;  
<sleep ms="10"/>  
======ADDR 0B=======  
======DSI_CLK_DIVIDER bit7:3=====  
======RefCLK multiplier(bit1:0)====== ======00 - LVDSclk=source clk, 01 - x2, 10 -x3, 11 - x4======  
<i2c_write addr="0x2D" count="1" radix="16"glt;0B 28</i2c_writeglt;  
<sleep ms="10"/>  
======ADDR 10=======  
======DSI Ch Confg Left_Right Pixels(bit7 - 0 for A ODD, B EVEN, 1 for the other config)======  
======DSI Ch Mode(bit6:5) 00 - Dual, 01 - single, 10 - two single =======  
======CHA_DSI_Lanes(bit4:3), CHB_DSI_Lanes(bit2:1), 00 - 4, 01 - 3, 10 - 2, 11 - 1  
======SOT_ERR_TOL_DIS(bit0)=======  
<i2c_write addr="0x2D" count="1" radix="16"glt;10 26</i2c_writeglt;  
<sleep ms="10"/>  
======ADDR 12=======  
<i2c_write addr="0x2D" count="1" radix="16"glt;12 62</i2c_writeglt;  
<sleep ms="10"/>  
======ADDR 18=======  
======bit7: DE_Pol, bit6:HS_Pol, bit5:VS_Pol, bit4: LVDS Link Cfg, bit3:CHA 24bpp, bit2: CHB 24bpp,  
bit1: CHA 24bpp fmt1, bit0: CHB 24bpp fmt1======  
<i2c_write addr="0x2D" count="1" radix="16"glt;18 63</i2c_writeglt;  
<sleep ms="10"/>  
======ADDR 19=======  
<i2c_write addr="0x2D" count="1" radix="16"glt;19 00</i2c_writeglt;  
<sleep ms="10"/>  
======ADDR 1A=======  
<i2c_write addr="0x2D" count="1" radix="16"glt;1A 03</i2c_writeglt;  
<sleep ms="10"/>  
======ADDR 20=======  
Copyright © 2016–2018, Texas Instruments Incorporated  
41  
SN65DSI84-Q1  
ZHCSFS1A DECEMBER 2016REVISED JUNE 2018  
www.ti.com.cn  
======CHA_LINE_LENGTH_LOW========  
<i2c_write addr="0x2D" count="1" radix="16"glt;20 80</i2c_writeglt;  
<sleep ms="10"/>  
======ADDR 21=======  
======CHA_LINE_LENGTH_HIGH========  
<i2c_write addr="0x2D" count="1" radix="16"glt;21 07</i2c_writeglt;  
<sleep ms="10"/>  
======ADDR 22=======  
======CHB_LINE_LENGTH_LOW========  
<i2c_write addr="0x2D" count="1" radix="16"glt;22 00</i2c_writeglt;  
<sleep ms="10"/>  
======ADDR 23=======  
======CHB_LINE_LENGTH_HIGH========  
<i2c_write addr="0x2D" count="1" radix="16"glt;23 00</i2c_writeglt;  
<sleep ms="10"/>  
======ADDR 24=======  
======CHA_VERTICAL_DISPLAY_SIZE_LOW========  
<i2c_write addr="0x2D" count="1" radix="16"glt;24 00</i2c_writeglt;  
<sleep ms="10"/>  
======ADDR 25=======  
======CHA_VERTICAL_DISPLAY_SIZE_HIGH========  
<i2c_write addr="0x2D" count="1" radix="16"glt;25 00</i2c_writeglt;  
<sleep ms="10"/>  
======ADDR 26=======  
======CHB_VERTICAL_DISPLAY_SIZE_LOW========  
<i2c_write addr="0x2D" count="1" radix="16"glt;26 00</i2c_writeglt;  
<sleep ms="10"/>  
======ADDR 27=======  
======CHB_VERTICAL_DISPLAY_SIZE_HIGH========  
<i2c_write addr="0x2D" count="1" radix="16"glt;27 00</i2c_writeglt;  
<sleep ms="10"/>  
======ADDR 28=======  
======CHA_SYNC_DELAY_LOW========  
<i2c_write addr="0x2D" count="1" radix="16"glt;28 20</i2c_writeglt;  
<sleep ms="10"/>  
======ADDR 29=======  
======CHA_SYNC_DELAY_HIGH========  
<i2c_write addr="0x2D" count="1" radix="16"glt;29 00</i2c_writeglt;  
<sleep ms="10"/>  
======ADDR 2A=======  
======CHB_SYNC_DELAY_LOW========  
<i2c_write addr="0x2D" count="1" radix="16"glt;2A 00</i2c_writeglt;  
<sleep ms="10"/>  
======ADDR 2B=======  
======CHB_SYNC_DELAY_HIGH========  
<i2c_write addr="0x2D" count="1" radix="16"glt;2B 00</i2c_writeglt;  
<sleep ms="10"/>  
======ADDR 2C=======  
======CHA_HSYNC_PULSE_WIDTH_LOW========  
<i2c_write addr="0x2D" count="1" radix="16"glt;2C 32</i2c_writeglt;  
<sleep ms="10"/>  
======ADDR 2D=======  
======CHA_HSYNC_PULSE_WIDTH_HIGH========  
<i2c_write addr="0x2D" count="1" radix="16"glt;2D 00</i2c_writeglt;  
<sleep ms="10"/>  
======ADDR 2E=======  
======CHB_HSYNC_PULSE_WIDTH_LOW========  
<i2c_write addr="0x2D" count="1" radix="16"glt;2E 00</i2c_writeglt;  
<sleep ms="10"/>  
42  
Copyright © 2016–2018, Texas Instruments Incorporated  
SN65DSI84-Q1  
www.ti.com.cn  
ZHCSFS1A DECEMBER 2016REVISED JUNE 2018  
======ADDR 2F=======  
======CHB_HSYNC_PULSE_WIDTH_HIGH========  
<i2c_write addr="0x2D" count="1" radix="16"glt;2F 00</i2c_writeglt;  
<sleep ms="10"/>  
======ADDR 30=======  
======CHA_VSYNC_PULSE_WIDTH_LOW========  
<i2c_write addr="0x2D" count="1" radix="16"glt;30 05</i2c_writeglt;  
<sleep ms="10"/>  
======ADDR 31=======  
======CHA_VSYNC_PULSE_WIDTH_HIGH========  
<i2c_write addr="0x2D" count="1" radix="16"glt;31 00</i2c_writeglt;  
<sleep ms="10"/>  
======ADDR 32=======  
======CHB_VSYNC_PULSE_WIDTH_LOW========  
<i2c_write addr="0x2D" count="1" radix="16"glt;32 00</i2c_writeglt;  
<sleep ms="10"/>  
======ADDR 33=======  
======CHB_VSYNC_PULSE_WIDTH_HIGH========  
<i2c_write addr="0x2D" count="1" radix="16"glt;33 00</i2c_writeglt;  
<sleep ms="10"/>  
======ADDR 34=======  
======CHA_HOR_BACK_PORCH========  
<i2c_write addr="0x2D" count="1" radix="16"glt;34 2C</i2c_writeglt;  
<sleep ms="10"/>  
======ADDR 35=======  
======CHB_HOR_BACK_PORCH========  
<i2c_write addr="0x2D" count="1" radix="16"glt;35 00</i2c_writeglt;  
<sleep ms="10"/>  
======ADDR 36=======  
======CHA_VER_BACK_PORCH========  
<i2c_write addr="0x2D" count="1" radix="16"glt;36 00</i2c_writeglt;  
<sleep ms="10"/>  
======ADDR 37=======  
======CHB_VER_BACK_PORCH========  
<i2c_write addr="0x2D" count="1" radix="16"glt;37 00</i2c_writeglt;  
<sleep ms="10"/>  
======ADDR 38=======  
======CHA_HOR_FRONT_PORCH========  
<i2c_write addr="0x2D" count="1" radix="16"glt;38 00</i2c_writeglt;  
<sleep ms="10"/>  
======ADDR 39=======  
======CHB_HOR_FRONT_PORCH========  
<i2c_write addr="0x2D" count="1" radix="16"glt;39 00</i2c_writeglt;  
<sleep ms="10"/>  
======ADDR 3A=======  
======CHA_VER_FRONT_PORCH========  
<i2c_write addr="0x2D" count="1" radix="16"glt;3A 00</i2c_writeglt;  
<sleep ms="10"/>  
======ADDR 3B=======  
======CHB_VER_FRONT_PORCH========  
<i2c_write addr="0x2D" count="1" radix="16"glt;3B 00</i2c_writeglt;  
<sleep ms="10"/>  
======ADDR 3C=======  
======CHA/CHB TEST PATTERN(bit4 CHA, bit0 CHB)========  
<i2c_write addr="0x2D" count="1" radix="16"glt;3C 00</i2c_writeglt;  
<sleep ms="10"/>  
======ADDR 0D=======  
======PLL_EN(bit 0) - Enable LAST after addr 0A and 0B configured======  
Copyright © 2016–2018, Texas Instruments Incorporated  
43  
SN65DSI84-Q1  
ZHCSFS1A DECEMBER 2016REVISED JUNE 2018  
www.ti.com.cn  
<i2c_write addr="0x2D" count="1" radix="16"glt;0D 01</i2c_writeglt;  
<sleep ms="10"/>  
=====SOFTRESET=======  
<i2c_write addr="0x2D" count="1" radix="16"glt;09 00</i2c_writeglt;  
<sleep ms="10"/>  
======write======  
<i2c_write addr="0x2D" count="196" radix="16"glt;00</i2c_writeglt;  
<sleep ms="10"/>  
======Read======  
<i2c_read addr="0x2D" count="256" radix="16"glt;00</i2c_readglt;  
<sleep ms="10"/>  
</aardvark>  
9.2.3 Application Curve  
SN65DSI84-Q1: SINGLE Channel DSI to DUAL Channel LVDS, 1440 x 900  
111.0  
Unit 1  
110.0  
Unit 2  
109.0  
Unit 3  
108.0  
107.0  
106.0  
105.0  
104.0  
103.0  
102.0  
0.0  
20.0  
40.0  
60.0  
80.0  
œ40.0  
œ20.0  
Temperature (°C)  
C001  
Figure 49. Supply Current vs Temperature  
44  
Copyright © 2016–2018, Texas Instruments Incorporated  
SN65DSI84-Q1  
www.ti.com.cn  
ZHCSFS1A DECEMBER 2016REVISED JUNE 2018  
10 Power Supply Recommendations  
10.1 VCC Power Supply  
Each VCC power supply pin must have a 100-nF capacitor to ground connected as close as possible to the  
SN65DSI84-Q1 device. It is recommended to have one bulk capacitor (1 µF to 10 µF) on it. It is also  
recommended to have the pins connected to a solid power plane.  
10.2 VCORE Power Supply  
This pin must have a 100-nF capacitor to ground connected as close as possible to the SN65DSI84-Q1 device. It  
is recommended to have one bulk capacitor (1 µF to 10 µF) on it. It is also recommended to have the pins  
connected to a solid power plane.  
11 Layout  
11.1 Layout Guidelines  
11.1.1 Package Specific  
For the ZQE package, to minimize the power supply noise floor, provide good decoupling near the SN65DSI84-  
Q1 device power pins. The use of four ceramic capacitors (2 × 0.1 μF and 2 × 0.01 μF) provides good  
performance. At the least, TI recommends to install one 0.1-μF and one 0.01-μF capacitor near the SN65DSI84-  
Q1 device. To avoid large current loops and trace inductance, the trace length between decoupling capacitor and  
device power inputs pins must be minimized. Placing the capacitor underneath the SN65DSI84-Q1 device on the  
bottom of the PCB is often a good choice.  
11.1.2 Differential Pairs  
Differential pairs must be routed with controlled 100-Ω differential impedance (± 20%) or 50-Ω single-ended  
impedance (±15%).  
Keep away from other high speed signals  
Keep lengths to within 5 mils of each other.  
Length matching must be near the location of mismatch.  
Each pair must be separated at least by 3 times the signal trace width.  
The use of bends in differential traces must be kept to a minimum. When bends are used, the number of left  
and right bends must be as equal as possible and the angle of the bend must be 135 degrees. This  
arrangement minimizes any length mismatch caused by the bends and therefore minimizes the impact that  
bends have on EMI.  
Route all differential pairs on the same of layer.  
The number of vias must be kept to a minimum. It is recommended to keep the via count to 2 or less.  
Keep traces on layers adjacent to ground plane.  
Do NOT route differential pairs over any plane split.  
Adding Test points will cause impedance discontinuity and will therefore negatively impact signal  
performance. If test points are used, they must be placed in series and symmetrically. They must not be  
placed in a manner that causes a stub on the differential pair.  
11.1.3 Ground  
TI recommends that only one board ground plane be used in the design. This provides the best image plane for  
signal traces running above the plane. The thermal pad of the SN65DSI84-Q1 must be connected to this plane  
with vias.  
Copyright © 2016–2018, Texas Instruments Incorporated  
45  
SN65DSI84-Q1  
ZHCSFS1A DECEMBER 2016REVISED JUNE 2018  
www.ti.com.cn  
11.2 Layout Example  
NC pins must not be connected  
to any signal, power or ground.  
Place Vcc decoupling caps as  
close to Vcc as possible  
VCC 1.8V  
B_Y3P  
VCC 1.8V  
1uF  
DA3N  
B_Y3N  
DA3P  
GND  
B_CLKP  
B_CLKN  
VCC 1.8V  
B_Y2P  
DA2N  
DA2P  
GND  
DACN  
DACP  
GND  
GND  
B_Y2N  
VCC 1.8V  
B_Y1P  
DA1N  
DA1P  
DA0N  
DA0P  
VCC 1.8V  
B_Y1N  
B_Y0P  
B_Y0N  
VCC 1.8V  
4.7lQ  
10lQ  
GND  
VCC 1.8V  
1
SDA  
4.7lQ  
4.7lQ  
VCC 1.8V  
VCC 1.8V  
Differential pairs must be routed  
with controlled 100-O differential  
impedance  
SCL  
Figure 50. SN65DSI8x Layout Example  
46  
版权 © 2016–2018, Texas Instruments Incorporated  
SN65DSI84-Q1  
www.ti.com.cn  
ZHCSFS1A DECEMBER 2016REVISED JUNE 2018  
12 器件和文档支持  
12.1 文档支持  
12.1.1 相关文档  
请参阅如下相关文档:  
SN65DSI8x 视频配置指南和配置工具用户手册(文献编号:SLLA332)  
SN65DSI83SN65DSI84 SN65DSI85 硬件实现指南(文献编号:SLLA340)  
12.2 接收文档更新通知  
要接收文档更新通知,请导航至 TI.com.cn 上的器件产品文件夹。单击右上角的通知我 进行注册,即可每周接收产  
品信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
12.3 社区资源  
下列链接提供到 TI 社区资源的连接。链接的内容由各个分销商按照原样提供。这些内容并不构成 TI 技术规范,  
并且不一定反映 TI 的观点;请参阅 TI 《使用条款》。  
TI E2E™ 在线社区 TI 的工程师对工程师 (E2E) 社区。此社区的创建目的在于促进工程师之间的协作。在  
e2e.ti.com 中,您可以咨询问题、分享知识、拓展思路并与同行工程师一道帮助解决问题。  
设计支持  
TI 参考设计支持 可帮助您快速查找有帮助的 E2E 论坛、设计支持工具以及技术支持的联系信息。  
12.4 商标  
PowerPAD, E2E are trademarks of Texas Instruments.  
MIPI is a registered trademark of Arasan Chip Systems, Inc..  
All other trademarks are the property of their respective owners.  
12.5 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
12.6 术语表  
SLYZ022 TI 术语表。  
这份术语表列出并解释术语、缩写和定义。  
版权 © 2016–2018, Texas Instruments Incorporated  
47  
SN65DSI84-Q1  
ZHCSFS1A DECEMBER 2016REVISED JUNE 2018  
www.ti.com.cn  
13 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,且  
不会对此文档进行修订。如需获取此产品说明书的浏览器版本,请查阅左侧的导航栏。  
48  
版权 © 2016–2018, Texas Instruments Incorporated  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
SN65DSI84TPAPRQ1  
ACTIVE  
HTQFP  
PAP  
64  
1000 RoHS & Green  
NIPDAU  
Level-3-260C-168 HR  
-40 to 105  
DSI84TQ1  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
GENERIC PACKAGE VIEW  
PAP 64  
10 x 10, 0.5 mm pitch  
HTQFP - 1.2 mm max height  
QUAD FLATPACK  
This image is a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4226442/A  
www.ti.com  
PACKAGE OUTLINE  
TM  
PAP0064Q  
PowerPAD TQFP - 1.2 mm max height  
SCALE 1.300  
PLASTIC QUAD FLATPACK  
10.2  
9.8  
B
NOTE 3  
64  
49  
PIN 1 ID  
1
48  
10.2  
9.8  
12.2  
TYP  
11.8  
NOTE 3  
16  
33  
17  
32  
A
0.27  
64X  
60X 0.5  
0.17  
0.08  
C A B  
4X 7.5  
C
SEATING PLANE  
1.2 MAX  
(0.127)  
TYP  
SEE DETAIL A  
17  
32  
0.25  
GAGE PLANE  
(1)  
4X 0.4 MAX  
NOTE 4  
33  
16  
4X 0.31 MAX  
NOTE 4  
0.15  
0.05  
0.08 C  
0 -7  
0.75  
0.45  
3.30  
2.62  
DETAIL A  
65  
A
17  
4X (0.18)  
NOTE 4  
TYPICAL  
4X (0.18)  
NOTE 4  
1
48  
49  
64  
4223672/A 04/2017  
PowerPAD is a trademark of Texas Instruments.  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs.  
4. Strap features may not be present.  
5. Reference JEDEC registration MS-026.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
TM  
PAP0064Q  
PowerPAD TQFP - 1.2 mm max height  
PLASTIC QUAD FLATPACK  
(
8)  
NOTE 8  
(
3.3)  
SYMM  
SOLDER MASK  
49  
64  
DEFINED PAD  
64X (1.5)  
(R0.05)  
TYP  
1
48  
64X (0.3)  
65  
(11.4)  
SYMM  
(1.3 TYP)  
60X (0.5)  
33  
16  
(
0.2) TYP  
VIA  
METAL COVERED  
BY SOLDER MASK  
17  
32  
SEE DETAILS  
(1.3 TYP)  
(11.4)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:6X  
0.05 MAX  
ALL AROUND  
0.05 MIN  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL  
EXPOSED METAL  
EXPOSED METAL  
METAL UNDER  
SOLDER MASK  
SOLDER MASK  
OPENING  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
4223672/A 04/2017  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
8. This package is designed to be soldered to a thermal pad on the board. See technical brief, Powerpad thermally enhanced package,  
Texas Instruments Literature No. SLMA002 (www.ti.com/lit/slma002) and SLMA004 (www.ti.com/lit/slma004).  
9. Vias are optional depending on application, refer to device data sheet. It is recommended that vias under paste be filled,  
plugged or tented.  
10. Size of metal pad may vary due to creepage requirement.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
TM  
PAP0064Q  
PowerPAD TQFP - 1.2 mm max height  
PLASTIC QUAD FLATPACK  
(
3.3)  
BASED ON  
0.125 THICK STENCIL  
SYMM  
SEE TABLE FOR  
DIFFERENT OPENINGS  
FOR OTHER STENCIL  
THICKNESSES  
64  
49  
64X (1.5)  
1
48  
64X (0.3)  
(R0.05) TYP  
SYMM  
65  
(11.4)  
60X (0.5)  
33  
16  
METAL COVERED  
BY SOLDER MASK  
17  
32  
(11.4)  
SOLDER PASTE EXAMPLE  
EXPOSED PAD  
100% PRINTED SOLDER COVERAGE BY AREA  
SCALE:6X  
STENCIL  
THICKNESS  
SOLDER STENCIL  
OPENING  
0.1  
3.69 X 3.69  
3.3 X 3.3 (SHOWN)  
3.01 X 3.01  
0.125  
0.15  
0.175  
2.79 X 2.79  
4223672/A 04/2017  
NOTES: (continued)  
11. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
12. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI 均以原样提供技术性及可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资  
源,不保证其中不含任何瑕疵,且不做任何明示或暗示的担保,包括但不限于对适销性、适合某特定用途或不侵犯任何第三方知识产权的暗示  
担保。  
所述资源可供专业开发人员应用TI 产品进行设计使用。您将对以下行为独自承担全部责任:(1) 针对您的应用选择合适的TI 产品;(2) 设计、  
验证并测试您的应用;(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。所述资源如有变更,恕不另行通知。TI 对您使用  
所述资源的授权仅限于开发资源所涉及TI 产品的相关应用。除此之外不得复制或展示所述资源,也不提供其它TI或任何第三方的知识产权授权  
许可。如因使用所述资源而产生任何索赔、赔偿、成本、损失及债务等,TI对此概不负责,并且您须赔偿由此对TI 及其代表造成的损害。  
TI 所提供产品均受TI 的销售条款 (http://www.ti.com.cn/zh-cn/legal/termsofsale.html) 以及ti.com.cn上或随附TI产品提供的其他可适用条款的约  
束。TI提供所述资源并不扩展或以其他方式更改TI 针对TI 产品所发布的可适用的担保范围或担保免责声明。IMPORTANT NOTICE  
邮寄地址:上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码:200122  
Copyright © 2020 德州仪器半导体技术(上海)有限公司  

相关型号:

UL1042

UL1042 - Uk砤d zr體nowa縪nego mieszacza iloczynowego

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

ZXFV201

QUAD VIDEO AMPLIFIER

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ZETEX

ZXFV201N14

IC-SM-VIDEO AMP

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ZETEX

ZXFV201N14TA

QUAD VIDEO AMPLIFIER

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ZETEX

ZXFV201N14TC

QUAD VIDEO AMPLIFIER

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ZETEX

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

ZXFV302N16

IC-SM-4:1 MUX SWITCH

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

ZXFV4089

VIDEO AMPLIFIER WITH DC RESTORATION

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ZETEX

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ZETEX