SN65DSI85TPAPRQ1 [TI]

汽车类双通道 MIPI DSI 转双链路 FlatLink™ LVDS 桥接器 | PAP | 64 | -40 to 105;
SN65DSI85TPAPRQ1
型号: SN65DSI85TPAPRQ1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

汽车类双通道 MIPI DSI 转双链路 FlatLink™ LVDS 桥接器 | PAP | 64 | -40 to 105

PC 电信 电信集成电路
文件: 总70页 (文件大小:2474K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
SN65DSI85-Q1  
ZHCSFS6B JULY 2016REVISED JUNE 2018  
SN65DSI85-Q1 汽车类双通道 MIPI®DSI 转双链路 LVDS 桥接器  
1 特性  
3 说明  
1
符合汽车类应用的 要求  
SN65DSI85-Q1 DSI LVDS 桥接器 具有 一个双通  
MIPI D-PHY 接收器前端  
具有符合 AEC-Q100 标准的下列特性:  
器件温度等级 2-40°C 105°C 的环境运行  
温度范围  
配置,此配置中在每个通道上具有 4 条信道,每条信  
道的运行速率为 1Gbps,最大输入带宽为 8Gbps。该  
桥接器可解码 MIPI DSI 18bpp RGB666 24bpp  
RGB888 视频流,并将格式化视频数据流转换为  
LVDS 输出(像素时钟范围为 25MHz 154MHz),  
从而提供一个双链路 LVDS、单链路 LVDS 或两个单  
链路 LVDS 接口(每个链路具有 4 个数据信道)。  
器件 HBM ESD 分类等级 3A  
器件 CDM ESD 分类等级 C6  
实现了 MIPI D-PHY 版本 1.00.00 物理层前端和显  
示屏串行接口 (DSI) 版本 1.02.00  
双通道 DSI 接收器在每个通道上可针对 1 条,2  
条,3 条或 4 D-PHY 数据信道进行配置,每信  
道的运行速率高达 1Gbps  
SN65DSI85-Q1 器件非常适用于 60fps WQXGA  
(2560 × 1600),以及等效 120fps(高达 24 bpp)的  
WUXGA 3D 图形和全高清 (1920x1080) 分辨率。该器  
件实现了部分线路缓冲以适应 DSI LVDS 接口间的  
数据流不匹配的情况。  
支持 RGB666 RGB888 格式的 18bpp 24bpp  
DSI 视频流  
适合 60fps WQXGA 2560 × 1600 分辨率(18bpp  
24bpp 颜色),以及 60fps120fps 等效)  
WUXGA 1920 × 1200 分辨率和 3D 图形显示  
24bpp 颜色)  
SN65DSI85-Q1 器件采用小外形 10mm × 10mm  
HTQFP  
MIPI 前端可配置为单通道或双通道 DSI 配置  
针对单链路或双链路 LVDS 的输出配置  
0.5mm 间距)封装,工作温度范围为 –40ºC 至  
+105ºC。  
支持双通道 DSI ODD/EVEN LEFT/RIGHT 操作  
模式  
器件信息(1)  
支持两个单通道 DSI 转两条单链路 LVDS 的操作模  
器件编号  
封装  
封装尺寸(标称值)  
SN65DSI85-Q1  
HTQFP (64)  
10.00mm x 10.00mm  
双链路或单链路模式下 LVDS 输出时钟范围为  
25MHz 154MHz  
(1) 如需了解所有可用封装,请参阅产品说明书末尾的可订购产品  
附录。  
LVDS 像素时钟可采用自由运行持续 D-PHY 时钟  
或外部基准时钟 (REFCLK)  
典型应用  
1.8V VCC 电源  
TFT LCD Display  
DA[3:0]P  
A_Y0:3N  
低功耗 特性 包括关断模式、低 LVDS 输出电压摆  
幅、共模以及 MIPI 超低功耗状态 (ULPS) 支持  
DA[3:0]N  
Dual-Channel  
DSI to LVDS  
Bridge  
A_Y0:3P  
A_CLKN/P  
B_Y0:3N  
B_Y0:3P  
Application  
Processor  
With DSI  
Output  
DACP/N  
DB[3:0]P  
针对简化印刷电路板 (PCB) 走线的 LVDS 通道交  
(SWAP)LVDS 引脚顺序反向特性  
SN65SDSI85-Q1  
采用 64 引脚 10mm × 10mm HTQFP (PAP) 封装  
PowerPAD™IC 封装  
DB[3:0]N  
SCL/SDA  
B_CLKN/P  
2 应用  
Copyright © 2016, Texas Instruments Incorporated  
集成显示屏的信息娱乐系统主机  
具有远程显示屏的信息娱乐系统主机  
后座信息娱乐系统  
混合动力汽车仪表板  
便携式导航设备  
导航  
工业人机界面 (HMI) 和显示屏  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SLLSEJ4  
 
 
 
 
SN65DSI85-Q1  
ZHCSFS6B JULY 2016REVISED JUNE 2018  
www.ti.com.cn  
目录  
8.6 Register Maps......................................................... 25  
Application and Implementation ........................ 53  
9.1 Application Information............................................ 53  
9.2 Typical Applications ................................................ 54  
1
2
3
4
5
6
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 5  
6.1 Absolute Maximum Ratings ...................................... 5  
6.2 ESD Ratings.............................................................. 5  
6.3 Recommended Operating Conditions....................... 6  
6.4 Thermal Information.................................................. 6  
6.5 Electrical Characteristics........................................... 6  
6.6 Switching Characteristics.......................................... 9  
Parameter Measurement Information ................ 10  
Detailed Description ............................................ 13  
8.1 Overview ................................................................. 13  
8.2 Functional Block Diagram ....................................... 13  
8.3 Feature Description................................................. 14  
8.4 Device Functional Modes........................................ 24  
8.5 Programming........................................................... 24  
9
10 Power Supply Recommendations ..................... 60  
10.1 VCC Power Supply................................................. 60  
10.2 VCORE Power Supply .......................................... 60  
11 Layout................................................................... 60  
11.1 Layout Guidelines ................................................. 60  
11.2 Layout Example .................................................... 61  
12 器件和文档支持 ..................................................... 62  
12.1 文档支持................................................................ 62  
12.2 接收文档更新通知 ................................................. 62  
12.3 社区资源................................................................ 62  
12.4 ....................................................................... 62  
12.5 静电放电警告......................................................... 62  
12.6 术语表 ................................................................... 62  
13 机械、封装和可订购信息....................................... 62  
7
8
4 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
Changes from Revision A (December 2016) to Revision B  
Page  
Deleted figure RESET and Initialization Timing Definition While VCC is High ...................................................................... 12  
Changed the paragraph following Figure 8 ......................................................................................................................... 14  
Changed Table 1 .................................................................................................................................................................. 15  
Changes from Original (July 2016) to Revision A  
Page  
已将器件状态更改为量产数据 ................................................................................................................................................. 1  
2
Copyright © 2016–2018, Texas Instruments Incorporated  
 
SN65DSI85-Q1  
www.ti.com.cn  
ZHCSFS6B JULY 2016REVISED JUNE 2018  
5 Pin Configuration and Functions  
PAP Package  
64-Pin HTQFP With PowerPAD™  
Top View  
V
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
V
CC  
CC  
B_Y3P  
B_Y3N  
GND  
VCORE  
DA3N  
DA3P  
DA2N  
DA2P  
GND  
B_CLKP  
B_CLKN  
V
CC  
B_Y2P  
B_Y2N  
DACN  
DACP  
GND  
Thermal  
Pad  
V
CC  
B_Y1P  
B_Y1N  
B_Y0P  
B_Y0N  
DA1N  
DA1P  
DA0N  
DA0P  
V
V
CC  
CC  
ADDR  
REFCLK  
See the Layout section for layout information.  
Copyright © 2016–2018, Texas Instruments Incorporated  
3
 
SN65DSI85-Q1  
ZHCSFS6B JULY 2016REVISED JUNE 2018  
www.ti.com.cn  
Pin Functions  
PIN  
TYPE  
DESCRIPTION  
NAME  
NO.  
Local I2C interface target address select. See Table 6. In normal operation this pin is an  
input. When the ADDR pin is programmed high, it must be tied to the same 1.8-V power  
rails where the SN65DSI85-Q1 VCC 1.8-V power rail is connected.  
ADDR  
64  
I/O  
A_Y0P  
A_Y0N  
A_Y1P  
A_Y1N  
A_Y2P  
A_Y2N  
A_Y3P  
A_Y3N  
A_CLKP  
A_CLKN  
B_Y0P  
B_Y0N  
B_Y1P  
B_Y1N  
B_Y2P  
B_Y2N  
B_Y3P  
B_Y3N  
B_CLKP  
B_CLKN  
DA0P  
46  
47  
44  
45  
41  
42  
36  
37  
38  
39  
61  
62  
59  
60  
56  
57  
50  
51  
53  
54  
19  
20  
21  
22  
27  
28  
29  
30  
24  
25  
4
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
I
LVDS channel A, LVDS data output 0  
LVDS channel A, LVDS data output 1  
LVDS channel A, LVDS data output 2  
LVDS channel A, LVDS data output 3. A_Y3P and A_Y3N must be left not connected  
(NC) for 18-bpp panels.  
LVDS channel A, LVDS clock output  
LVDS channel B, LVDS data output 0  
LVDS channel B, LVDS data output 1  
LVDS channel B, LVDS data output 2  
LVDS channel B, LVDS data output 3. B_Y3P and B_Y3N must be left NC for 18-bpp  
panels.  
LVDS channel B, LVDS clock output  
MIPI D-PHY channel A, data lane 0; data rate up to 1 Gbps.  
MIPI D-PHY channel A, data lane 1; data rate up to 1 Gbps  
MIPI D-PHY channel A, data lane 2; data rate up to 1 Gbps.  
MIPI D-PHY channel A, data lane 3; data rate up to 1 Gbps.  
MIPI D-PHY channel A, clock lane; data rate up to 1 Gbps.  
MIPI D-PHY channel B, data lane 0; data rate up to 1 Gbps.  
MIPI D-PHY channel B, data lane 1; data rate up to 1 Gbps.  
MIPI D-PHY channel B, data lane 2; data rate up to 1 Gbps.  
MIPI D-PHY channel B, data lane 3; data rate up to 1 Gbps.  
DA0N  
I
DA1P  
I
DA1N  
I
DA2P  
I
DA2N  
I
DA3P  
I
DA3N  
I
DACP  
DACN  
DB0P  
I
I
I
DB0N  
5
I
DB1P  
6
I
DB1N  
7
I
DB2P  
10  
11  
12  
13  
8
I
DB2N  
I
DB3P  
I
DB3N  
I
DBCP  
DBCN  
EN  
I
MIPI D-PHY channel B, clock lane; operates up to 1 Gbps.  
9
I
2
I
Chip enable and reset. The device is reset (shutdown) when the EN pin is low.  
23  
26  
52  
G
G
G
GND  
Reference ground  
4
Copyright © 2016–2018, Texas Instruments Incorporated  
SN65DSI85-Q1  
www.ti.com.cn  
ZHCSFS6B JULY 2016REVISED JUNE 2018  
Pin Functions (continued)  
PIN  
TYPE  
DESCRIPTION  
NAME  
NO.  
IRQ  
33  
O
Interrupt signal  
This pin is an optional external reference clock for the LVDS pixel clock. If an external  
reference clock is not used, this pin must be pulled to ground with an external resistor.  
The source of the reference clock must be placed as close as possible with a series  
resistor near the source to reduce EMI.  
REFCLK  
17  
I
RSVD1  
RSVD2  
SCL  
34  
1
I/O  
I
Reserved. This pin must be left unconnected for normal operation.  
Reserved. This pin must be left unconnected for normal operation.  
Local I2C interface clock.  
15  
16  
3
I
SDA  
I/O  
Local I2C interface data  
14  
18  
32  
35  
40  
43  
48  
49  
55  
58  
63  
VCC  
1.8-V power supply  
1.1-V output from the voltage regulator. This pin must have a 1-µF external capacitor to  
ground.  
VCORE  
31  
P
PowerPAD  
Reference ground  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
–0.3  
–0.5  
–0.4  
–40  
–40  
–65  
MAX  
2.175  
2.175  
1.4  
UNIT  
V
VCC  
Supply voltage  
Input voltage  
CMOS input pins  
V
DSI input pins (DAxP, DAxN, DBxP, and DBxN)  
V
TA  
Operating free-air temperature  
Junction temperature  
105  
°C  
°C  
°C  
TJ  
115  
Tstg  
Storage temperature  
150  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
6.2 ESD Ratings  
VALUE  
±4000  
±1000  
UNIT  
Human-body model (HBM), per AEC Q100-002(1)  
Charged-device model (CDM), per AEC Q100-011  
Electrostatic  
discharge  
V(ESD)  
V
(1) AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.  
Copyright © 2016–2018, Texas Instruments Incorporated  
5
SN65DSI85-Q1  
ZHCSFS6B JULY 2016REVISED JUNE 2018  
www.ti.com.cn  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
1.65  
NOM  
MAX  
1.95  
0.05  
1350  
400  
UNIT  
V
VCC  
VCC power supply  
1.8  
VPSN  
V(DSI)  
ƒ(I2C)  
ƒHS(CLK)  
tsu  
Supply noise on any VCC pin  
DSI input pin voltage  
Local I2C input frequency  
ƒ(noise) > 1 MHz  
–50  
V
mV  
kHz  
MHz  
UI(1)  
UI(1)  
Ω
DSI high-speed (HS) clock input frequency  
DSI HS data to clock setup time; see Figure 1  
DSI HS data to clock hold time; see Figure 1  
LVDS output differential impedance  
Case temperature  
40  
0.15  
0.15  
90  
500  
th  
ZOD(LVDS)  
TC  
132  
92.2  
°C  
(1) The unit interval (UI) is one half of the period of the HS clock; at 500 MHz the minimum setup and hold time is 150 ps.  
6.4 Thermal Information  
SN65DSI85-Q1  
THERMAL METRIC(1)  
PAP (HTQFP)  
64 PINS  
36.1  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
18.2  
20.6  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
0.8  
ψJB  
20.5  
RθJC(bot)  
2.2  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
6.5 Electrical Characteristics  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP(1)  
MAX  
UNIT  
V
VIL  
VIH  
VOH  
VOL  
ILKG  
IIH  
Low-level control signal input voltage  
High-level control signal input voltage  
High-level output voltage  
Low-level output voltage  
0.3 × VCC  
0.7 × VCC  
1.25  
V
IOH = –4 mA  
V
IOL = 4 mA  
0.4  
±30  
±30  
±30  
±10  
±50  
232  
V
Input failsafe leakage current  
High level input current  
VCC = 0; VCC(PIN) = 1.8 V  
Any input terminal  
μA  
μA  
μA  
μA  
mA  
mA  
IIL  
Low level input current  
Any input terminal  
IOZ  
IOS  
ICC  
High-impedance output current  
Short-circuit output current  
Device active current  
CMOS output terminals  
Any output driving GND short  
(2)  
See  
127  
7.7  
All data and clock lanes are in ultra-low  
power state (ULPS)  
IULPS  
Device standby current  
14  
mA  
IRST  
REN  
Shutdown current  
EN = 0  
0.04  
200  
130  
µA  
EN control input resistor  
kΩ  
(1) All typical values are at VCC = 1.8V and TA = 25°C  
(2) SN65DSI85-Q1: DUAL Channel DSI to DUAL Channel LVDS, 1920 x 1200  
(a) number of LVDS lanes = 2 × (3 data lanes + 1 CLK lane)  
(b) number of DSI lanes = 2 × (4 data lanes + 1 CLK lane  
(c) LVDS CLK OUT = 81.6 M  
(d) DSI CLK = 490 M  
(e) RGB888, LVDS18bpp  
Maximum values are at VCC = 1.95 V and TA = 105°C  
6
Copyright © 2016–2018, Texas Instruments Incorporated  
 
SN65DSI85-Q1  
www.ti.com.cn  
ZHCSFS6B JULY 2016REVISED JUNE 2018  
Electrical Characteristics (continued)  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
880  
100  
TYP(1)  
MAX  
UNIT  
MIPI DSI INTERFACE  
VIH-LP  
VIL-LP  
LP receiver input high threshold  
LP receiver input low threshold  
HS differential input voltage  
See Figure 2  
See Figure 2  
mV  
mV  
mV  
mV  
550  
270  
50  
|VID  
|
|VIDT  
|
HS differential input voltage threshold  
LP receiver input low threshold; ultra-low  
power state (ULPS)  
VIL-ULPS  
VCM-HS  
300  
330  
100  
460  
mV  
mV  
mV  
HS common mode voltage; steady-state  
70  
HS common mode peak-to-peak variation  
including symbol delta and interference  
ΔVCM-HS  
VIH-HS  
VIL-HS  
HS single-ended input high voltage  
HS single-ended input low voltage  
See Figure 2  
See Figure 2  
mV  
mV  
–40  
80  
HS termination enable; single-ended input  
voltage (both Dp AND Dn apply to  
enable)  
Termination is switched simultaneous for  
Dn and Dp  
VTERM-EN  
450  
125  
mV  
RDIFF-HS  
HS mode differential input impedance  
Ω
LVDS OUTPUT  
CSR 0x19.3:2=00 and, or CSR  
0x19.1:0=00  
100 Ω near end termination  
180  
215  
250  
290  
150  
200  
250  
300  
245  
293  
341  
389  
204  
271  
337  
402  
330  
392  
455  
515  
275  
365  
450  
535  
CSR 0x19.3:2=01 and, or CSR  
0x19.1:0=01  
100 Ω near end termination  
CSR 0x19.3:2=10 and, or CSR  
0x19.1:0=10  
100 Ω near end termination  
CSR 0x19.3:2=11 and, or CSR  
0x19.1:0=11  
100 Ω near end termination  
Steady-state differential output voltage for  
A_Yx P/N and B_Yx P/N  
|VOD  
|
mV  
CSR 0x19.3:2=00 and, or CSR  
0x19.1:0=00  
200 Ω near end termination  
CSR 0x19.3:2=01 and, or CSR  
0x19.1:0=01  
200 Ω near end termination  
CSR 0x19.3:2=10 and, or CSR  
0x19.1:0=10  
200 Ω near end termination  
CSR 0x19.3:2=11 and, or CSR  
0x19.1:0=11  
200 Ω near end termination  
Copyright © 2016–2018, Texas Instruments Incorporated  
7
SN65DSI85-Q1  
ZHCSFS6B JULY 2016REVISED JUNE 2018  
www.ti.com.cn  
Electrical Characteristics (continued)  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP(1)  
MAX  
UNIT  
CSR 0x19.3:2=00 and, or CSR  
0x19.1:0=00  
100 Ω near end termination  
140  
191  
262  
315  
365  
415  
220  
295  
362  
CSR 0x19.3:2=01 and, or CSR  
0x19.1:0=01  
100 Ω near end termination  
168  
195  
226  
117  
156  
195  
234  
229  
266  
303  
159  
211  
263  
314  
CSR 0x19.3:2=10 and, or CSR  
0x19.1:0=10  
100 Ω near end termination  
CSR 0x19.3:2=11 and, or CSR  
0x19.1:0=11  
100 Ω near end termination  
Steady-state differential output voltage for  
A_CLKP/N and B_CLKP/N  
|VOD  
|
mV  
CSR 0x19.3:2=00 and, or CSR  
0x19.1:0=00  
200 Ω near end termination  
CSR 0x19.3:2=01 and, or CSR  
0x19.1:0=01  
200 Ω near end termination  
CSR 0x19.3:2=10 and, or CSR  
0x19.1:0=10  
200 Ω near end termination  
CSR 0x19.3:2=11 and, or CSR  
0x19.1:0=11  
200 Ω near end termination  
435  
35  
Change in steady-state differential output  
voltage between opposite binary states  
Δ|VOD  
|
RL = 100 Ω  
mV  
V
CSR 0x19.6 = 1 and CSR 0x1B.6 = 1;  
and, or CSR 0x19.4 = 1 and  
CSR 0x1B.4 = 1; see Figure 3  
0.75  
1
0.9  
1.13  
Steady state common-mode output  
voltage(3)  
VOC(SS)  
CSR 0x19.6 = 0 and, or CSR 0x19.4 = 0;  
see Figure 3  
1.25  
1.5  
35  
Peak-to-peak common-mode output  
voltage  
VOC(PP)  
see Figure 3  
mV  
Pulldown resistance for disabled LVDS  
outputs  
RLVDS_DIS  
1
kΩ  
(3) Tested at VCC = 1.8V , TA = –40°C for MIN, TA = 25°C for TYP, TA = 105°C for MAX.  
8
Copyright © 2016–2018, Texas Instruments Incorporated  
SN65DSI85-Q1  
www.ti.com.cn  
ZHCSFS6B JULY 2016REVISED JUNE 2018  
6.6 Switching Characteristics  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP(1)  
MAX  
300  
40  
UNIT  
DSI  
tGS  
LVDS  
tc  
DSI LP glitch suppression pulse width  
ps  
Output clock period  
6.49  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tw  
High-level output clock (CLK) pulse duration  
Delay time, CLKto 1st serial bit position  
Delay time, CLKto 2nd serial bit position  
Delay time, CLKto 3rd serial bit position  
Delay time, CLKto 4th serial bit position  
Delay time, CLKto 5th serial bit position  
Delay time, CLKto 6th serial bit position  
Delay time, CLKto 7th serial bit position  
Differential output rise-time  
4/7 tc  
t0  
–0.15  
1/7 tc – 0.15  
2/7 tc – 0.15  
3/7 tc – 0.15  
4/7 tc – 0.15  
5/7 tc – 0.15  
6/7 tc – 0.15  
0.15  
1/7 tc + 0.15  
2/7 tc + 0.15  
3/7 tc + 0.15  
4/7 tc + 0.15  
5/7 tc + 0.15  
6/7 tc + 0.15  
t1  
t2  
tc = 6.49 ns;  
Input clock jitter < 25 ps  
(REFCLK)  
t3  
See Figure 4  
t4  
t5  
t6  
tr  
See Figure 4  
180  
–10  
500  
10  
ps  
ps  
tf  
Differential output fall-time  
LVDS CLK A to CLK B skew  
EN, ULPS, RESET  
ten  
Enable time from EN or ULPS; see  
tc(o) = 12.9 ns  
tc(o) = 12.9 ns  
1
ms  
ms  
ms  
tdis  
Disable time to standby  
Reset Time  
0.1  
treset  
REFCLK  
10  
REFCLK Freqeuncy. Supported frequencies:  
25 MHz - 15 4MHz  
FREFCLK  
25  
154  
MHz  
tr, tf  
tpj  
REFCLK rise and fall time  
REFCLK Peak-to-Peak Phase Jitter  
REFCLK Duty Cycle  
100ps  
1ns  
50  
s
ps  
Duty  
40%  
50%  
1%  
60%  
REFCLK or DSI CLK (DACP/N, DBCP/N)  
SSC enabled Input CLK center spread depth(2)  
0.5%  
30  
2%  
60  
SSC_CLKIN  
Modulation Frequency Range  
kHz  
(1) All typical values are at VCC = 1.8 V and TA = 25°C  
(2) For EMI reduction purpose, SN65DSI85-Q1 supports the center spreading of the LVDS CLK output through the REFCLK or DSI CLK  
input. The center spread CLK input to the REFCLK or DSI CLK is passed through to the LVDS CLK output A_CLKP/N and/or  
B_CLKP/N.  
Copyright © 2016–2018, Texas Instruments Incorporated  
9
SN65DSI85-Q1  
ZHCSFS6B JULY 2016REVISED JUNE 2018  
www.ti.com.cn  
7 Parameter Measurement Information  
t
h
DACP, DACN  
DBCP, DBCN  
...  
...  
t
su  
DAxP, DAxN  
DBxP, DBxN  
1 UI  
Figure 1. DSI HS Mode Receiver Timing Definitions  
1.3 V  
LP-RX  
Input HIGH  
V
IH(LP)  
V
IL(LP)  
V
IH(HS)  
V
ID  
VCM(HS)max  
LP-RX  
Input LOW  
HS-RX  
Common Mode  
Range  
VCM(HS)min  
GND  
VIL(HS)  
High Speed (HS) Mode  
Receiver  
Low Power (LP)  
Mode Receiver  
Figure 2. DSI Receiver Voltage Definitions  
10  
Copyright © 2016–2018, Texas Instruments Incorporated  
SN65DSI85-Q1  
www.ti.com.cn  
ZHCSFS6B JULY 2016REVISED JUNE 2018  
Parameter Measurement Information (continued)  
A_YnP  
B_YnP  
49.9 Ω 1%ꢀ(2ꢀPLCꢁ)  
VOD  
A_YnN  
B_YnN  
VOC  
100%  
80%  
VOD(H)  
0 V  
VOD(L)  
20%  
0%  
tf  
tr  
VOC(PP)  
VOC(s)  
VOC(s)  
0 V  
Figure 3. Test Load and Voltage Definitions for LVDS Outputs  
CLK  
td(6)  
td(5)  
td(4)  
td(3)  
td(2)  
td(1)  
td(0)  
Yn  
VOD(H)  
0 V  
VOD(L)  
td(0) to td(6)  
Figure 4. SN65DSI85-Q1 LVDS Timing Definitions  
Copyright © 2016–2018, Texas Instruments Incorporated  
11  
SN65DSI85-Q1  
ZHCSFS6B JULY 2016REVISED JUNE 2018  
www.ti.com.cn  
Parameter Measurement Information (continued)  
ULPS (LP00) State  
DSI lane  
t
ten  
dis  
A_CLKP/N  
(LVDS_CHA_CLK)  
(1) See the ULPS section of the data sheet for the ULPS entry and exit sequence.  
(2) ULPS entry and exit protocol and timing requirements must be met according to the MIPI DPHY specification.  
Figure 5. ULPS Timing Definition  
12  
Copyright © 2016–2018, Texas Instruments Incorporated  
SN65DSI85-Q1  
www.ti.com.cn  
ZHCSFS6B JULY 2016REVISED JUNE 2018  
8 Detailed Description  
8.1 Overview  
The SN65DSI85-Q1 device is an AEC-Q100 qualified, 2-channel MIPI DSI to dual-link LVDS transmitter. The  
device features a dual-channel MIPI D-PHY receiver front-end configurable for 1 to 4 data lanes per channel  
operating at 1 Gbps/lane for a maximum input bandwidth of 8 Gbps. This device decodes MIPI DSI 18-bpp  
RGB666 and 24-bpp RGB888 data stream and converts it to an LVDS output operating at pixel-clock frequencies  
of 25 MHz to 154 MHz. The LVDS output can be configured as a dual-link LVDS, two single-link LVDS, or a  
single-link LVDS output interface with four data lanes per link.  
8.2 Functional Block Diagram  
LVDS Serializer  
AVCC  
AGND  
A_Y0P  
A_Y0N  
A_YNP  
A_Y1N  
DSI Packet  
Processors  
ERR  
VCC  
ULPS  
LPRX  
Packet  
Headers  
ERR  
Lane  
Merge  
GND  
A_Y2P  
(Odd)  
18  
8
7-Bit Shift  
Register  
DA0P  
DA0N  
A_Y2N  
HSRX  
A_CLKP  
A_CLKN  
Long  
Packets  
(Even)  
18  
Data Lane 0  
EOT  
SOT  
32  
A_Y3P  
A_Y3N  
DA1P  
DA1N  
DA2P  
DA2N  
DA3P  
DA3N  
8
Data Lane 1  
(Circuit same as Data Lane 0)  
Timers  
8
8
Data Lane 2  
(Circuit same as Data Lane 0)  
Short  
Packets  
B_Y0P  
DE  
VS  
HS  
B_Y0N  
B_Y1P  
B_Y1N  
B_Y2P  
B_Y2N  
B_CLKP  
B_CLKN  
B_Y3P  
Data Lane 3  
(Circuit same as Data Lane 0)  
DSI Channel  
Merging  
Channel  
Formatter  
EOT  
SOT  
32  
Partial  
Line Buffer  
ULPS  
LPRX  
LVDSPLL  
PLL  
Lock  
DACP  
DACN  
HSRX  
Clock Circuits  
B_Y3N  
CLK Lane  
Pixel Clock  
CSR  
DB0P  
DB0N  
SCL  
Lane  
Merge  
8
8
8
SDA  
IRQ  
Local I2C  
CSR Read  
HS-Clock  
Sourced  
M/N Pixel Clock  
PLL  
DB1P  
DB1N  
CSR Write  
ADDR  
Channel B  
DB2P  
DB2N  
Clock Dividers  
(Circuit same as Channel A)  
REFCLK  
8
DB3P  
DB3N  
DBCN  
DBCP  
Reset  
EN  
RSVD1  
RSVD2  
SN65DSI85-Q1  
Copyright © 2016, Texas Instruments Incorporated  
Copyright © 2016–2018, Texas Instruments Incorporated  
13  
SN65DSI85-Q1  
ZHCSFS6B JULY 2016REVISED JUNE 2018  
www.ti.com.cn  
8.3 Feature Description  
8.3.1 Reset Implementation  
When the EN pin is deasserted (low), the SN65DSI85-Q1 device is in SHUTDOWN or RESET state. In this state,  
CMOS inputs are ignored, the MIPI D-PHY inputs are disabled and outputs are high impedance. Transitioning  
the EN input from a low to a high level after the VCC supply has reached the minimum operating voltage as  
shown in Figure 6 is critical. This transition is achieved by a control signal to the EN input, or by an external  
capacitor connected between EN and GND.  
VCC  
1.65 V  
EN  
tVCC  
Figure 6. Cold-Start VCC Ramp Up to EN  
ten  
When implementing the external capacitor, the size of the external capacitor depends on the power up ramp of  
the VCC supply, where a slower ramp-up results in a larger value external capacitor. See the latest reference  
schematic for the SN65DSI85-Q1 device and, or consider an approximately 200-nF capacitor as a reasonable  
first estimate for the size of the external capacitor.  
Figure 7 and Figure 8 show both EN implementations.  
VCC  
GPO  
EN  
C
EN  
R(EN) = 200 kΩ  
C
SN65DSI85-Q1  
Controller  
SN65DSI85-Q1  
Figure 7. External Capacitor Controlled EN  
Figure 8. EN Input from Active Controller  
When the SN65DSI85-Q1 is reset while VCC is high, the EN pin must be held low for at least 10 ms before being  
asserted high as described in Table 1 to be sure that the device is properly reset. The DSI CLK lane MUST be in  
HS and the DSI data lanes MUST be driven to LP11 while the device is in reset before the EN pin is asserted  
per the timing described in Table 1.  
8.3.2 Initialization Setup  
Use the following initialization sequence to setup the SN65DSI85-Q1. This sequence is required for proper  
operation of the device. Steps 9 through 11 in the sequence are optional.  
For additional information see Figure 6.  
14  
Copyright © 2016–2018, Texas Instruments Incorporated  
 
 
 
SN65DSI85-Q1  
www.ti.com.cn  
ZHCSFS6B JULY 2016REVISED JUNE 2018  
Feature Description (continued)  
Table 1. Initialization Sequence  
INITIALIZATION  
SEQUENCE  
NUMBER  
INITIALIZATION SEQUENCE DESCRIPTION  
Init seq 1  
Power on  
After power is applied and stable, the DSI CLK lanes MUST be in HS state and the DSI data lanes MUST be driven  
to LP11 state  
Init seq 2  
Init seq 3  
Wait 10 ms  
Init seq 4  
Wait 10 ms  
Init seq 5  
Set EN pin to Low  
(1)  
(1)  
Tie EN pin to High  
Initialize all CSR registers to their appropriate values based on the implementation (The SN65DSI8x is not  
functional until the CSR registers are initialized)  
Init seq 6  
Wait 10 ms  
Init seq 7  
Wait 10 ms  
Init seq 8  
Set the PLL_EN bit (CSR 0x0D.0)  
(1)  
(1)  
Set the SOFT_RESET bit (CSR 0x09.0)  
Change DSI data lanes to HS state and start DSI video stream  
(1)  
Wait 5 ms  
Init seq 9  
Init seq 10  
Wait 1 ms  
Init seq 11  
Read back all resisters and confirm they were correctly written  
Write 0xFF to CSR 0xE5 to clear the error registers  
(1)  
Read CSR 0xE5. If CSR 0xE5!= 0x00, then go back to step #2 and re-initialize  
(1) Minimum recommended delay. This value can be exceeded.  
8.3.3 LVDS Output Formats  
The SN65DSI85-Q1 device processes DSI packets and produces video data driven to the LVDS interface in an  
industry standard format. Single-Link LVDS and Dual-Link LVDS are supported by the SN65DSI85-Q1 device.  
When the LVDS output is implemented in a Dual-Link configuration, channel A carries the odd pixel data, and  
channel B carries the even pixel data. During conditions such as the default condition, and some video  
synchronization periods, where no video stream data is passing from the DSI input to the LVDS output, the  
SN65DSI85-Q1 device transmits zero value pixel data on the LVDS outputs while maintaining transmission of the  
vertical sync and horizontal sync status.  
Figure 9 shows a Single-Link LVDS 18-bpp application.  
Figure 10 shows a Dual-Link 24-bpp application using Format 2, controlled by CHA_24BPP_FORMAT1 (CSR  
0x18.1) and CHB_24BPP_FORMAT1 (CSR 0x18.0). In data Format 2, the two MSB per color are transferred on  
the Y3P/N LVDS lane.  
Figure 11 shows a 24 bpp Single-Link application using Format 1. In data Format 1, the two LSB per color are  
transferred on the Y3P/N LVDS lane.  
Figure 12 shows a Single-Link LVDS application where 24 bpp data is received from DSI and converted to 18  
bpp data for transmission to an 18 bpp panel. This application is configured by setting CHA_24BPP_FORMAT1  
(CSR 0x18.1) to 1 and CHA_24BPP_MODE (CSR 0x18.3) to 0. In this configuration, the SN65DSI85-Q1 will not  
transmit the 2 LSB per color since the Y3P/N LVDS lane is disabled.  
NOTE  
Note: Figure 9, Figure 10, Figure 11, and Figure 12 only illustrate a few example  
applications for the SN65DSI85-Q1. Other applications are also supported.  
Copyright © 2016–2018, Texas Instruments Incorporated  
15  
SN65DSI85-Q1  
ZHCSFS6B JULY 2016REVISED JUNE 2018  
www.ti.com.cn  
A_CLKP/N  
B_CLKP/N  
cycle n-1  
cycle n  
G0  
B1  
DE  
R5  
B0  
VS  
R4  
G5  
HS  
R3  
R2  
G3  
B4  
R1  
G2  
B3  
R0  
G1  
B2  
A_Y0P/N  
A_Y1P/N  
A_Y2P/N  
A_Y3P/N  
G4  
B5  
B_YxP/N  
DE = Data Enable; Channel B Clock, Channel B Data, and A_Y3P/N are Output Low  
Figure 9. LVDS Output Data  
Single-Link 18 bpp  
A_CLKP/N  
B_CLKP/N  
cycle n-1  
cycle n  
G0  
(o)  
R5  
(o)  
R4  
(o)  
R3  
(o)  
R2  
(o)  
R1  
(o)  
R0  
(o)  
A_Y0P/N  
A_Y1P/N  
A_Y2P/N  
A_Y3P/N  
B1  
(o)  
B0  
(o)  
G5  
(o)  
G4  
(o)  
G3  
(o)  
G2  
(o)  
G1  
(o)  
DE  
(o)  
VS  
(o)  
HS  
(o)  
B5  
(o)  
B4  
(o)  
B3  
(o)  
B2  
(o)  
0
(o)  
B7  
(o)  
B6  
(o)  
G7  
(o)  
G6  
(o)  
R7  
(o)  
R6  
(o)  
G0  
(e)  
R5  
(e)  
R4  
(e)  
R3  
(e)  
R2  
(e)  
R1  
(e)  
R0  
(e)  
B_Y0P/N  
B_Y1P/N  
B_Y2P/N  
B_Y3P/N  
B1  
(e)  
B0  
(e)  
G5  
(e)  
G4  
(e)  
G3  
(e)  
G2  
(e)  
G1  
(e)  
DE  
(e)  
VS  
(e)  
HS  
(e)  
B5  
(e)  
B4  
(e)  
B3  
(e)  
B2  
(e)  
0
(e)  
B7  
(e)  
B6  
(e)  
G7  
(e)  
G6  
(e)  
R7  
(e)  
R6  
(e)  
DE = Data Enable; (o) = Odd Pixels; (e) = Even Pixels  
Figure 10. LVDS Output Data (Format 2)  
Dual-Link 24 bpp  
A_CLKP/N  
B_CLKP/N  
cycle n-1  
cycle n  
G2  
B3  
DE  
R7  
B2  
VS  
R6  
G7  
HS  
R5  
R4  
G5  
B6  
R3  
R2  
A_Y0P/N  
A_Y1P/N  
A_Y2P/N  
A_Y3P/N  
G6  
B7  
G4  
B5  
G3  
B4  
0
B1  
B0  
G1  
G0  
R1  
R0  
B_YxP/N  
DE = Data Enable; Channel B Clock and Data are Output Low  
Figure 11. LVDS Output Data (Format 1)  
Single-Link 24 bpp  
16  
Copyright © 2016–2018, Texas Instruments Incorporated  
SN65DSI85-Q1  
www.ti.com.cn  
ZHCSFS6B JULY 2016REVISED JUNE 2018  
A_CLKP/N  
B_CLKP/N  
cycle n-1  
cycle n  
G2  
B3  
DE  
R7  
B2  
VS  
R6  
G7  
HS  
R5  
R4  
G5  
B6  
R3  
G4  
B5  
R2  
G3  
B4  
A_Y0P/N  
A_Y1P/N  
A_Y2P/N  
A_Y3P/N  
G6  
B7  
B_YxP/N  
DE = Data Enable; Channel B Clock, Channel B Data, and A_Y3P/N are Output Low; Channel B Clock, Channel B  
Data, and A_Y3P/N are Output Low  
Figure 12. LVDS Output Data (Format 1)  
24 bpp to Single-Link 18 bpp Conversion  
Copyright © 2016–2018, Texas Instruments Incorporated  
17  
SN65DSI85-Q1  
ZHCSFS6B JULY 2016REVISED JUNE 2018  
www.ti.com.cn  
8.3.4 DSI Lane Merging  
The SN65DSI85-Q1 supports four DSI data lanes per input channel, and may be configured to support one, two,  
or three DSI data lanes per channel. Unused DSI input pins on the SN65DSI85-Q1 should be left unconnected or  
driven to LP11 state.The bytes received from the data lanes are merged in HS mode to form packets that carry  
the video stream. DSI data lanes are bit and byte aligned.  
Figure 13 shows the lane merging function for each channel; 4-Lane, 3-Lane, and 2-Lane modes are illustrated  
HS BYTES TRANSMITTED (n) IS INTEGER MULTIPLE OF 4  
HS BYTES TRANSMITTED (n) IS INTEGER MULTIPLE OF 3  
LANE 0  
LANE 1  
LANE 2  
LANE 3  
SOT  
SOT  
SOT  
SOT  
BYTE 0  
BYTE1  
BYTE2  
BYTE 3  
BYTE 4  
BYTE5  
BYTE6  
BYTE 7  
BYTE 8  
BYTE9  
BYTE n-4  
BYTE n-3  
BYTE n-2  
BYTE n-1  
EOT  
EOT  
EOT  
EOT  
SOT  
SOT  
SOT  
BYTE0  
BYTE 1  
BYTE2  
BYTE3  
BYTE 4  
BYTE5  
BYTE6  
BYTE 7  
BYTE8  
BYTE n-3  
BYTE n-2  
BYTE n-1  
EOT  
EOT  
EOT  
LANE 0  
LANE 1  
LANE 2  
BYTE 10  
BYTE 11  
HS BYTES TRANSMITTED (n) IS 1 LESS THAN INTEGER MULTIPLE OF 3  
HS BYTES TRANSMITTED (n) IS 1 LESS THAN INTEGER MULTIPLE OF 4  
SOT  
SOT  
SOT  
BYTE0  
BYTE 1  
BYTE2  
BYTE3  
BYTE 4  
BYTE5  
BYTE6  
BYTE 7  
BYTE8  
BYTE n-2  
BYTE n-1  
EOT  
EOT  
EOT  
LANE 0  
LANE 1  
LANE 2  
LANE 0  
LANE 1  
LANE 2  
LANE 3  
SOT  
SOT  
SOT  
SOT  
BYTE 0  
BYTE1  
BYTE2  
BYTE 3  
BYTE 4  
BYTE5  
BYTE6  
BYTE 7  
BYTE 8  
BYTE9  
BYTE n-3  
BYTE n-2  
BYTE n-1  
EOT  
EOT  
EOT  
EOT  
BYTE 10  
BYTE 11  
HS BYTES TRANSMITTED (n) IS 2 LESS THAN INTEGER MULTIPLE OF 3  
SOT  
SOT  
SOT  
BYTE0  
BYTE 1  
BYTE2  
BYTE3  
BYTE 4  
BYTE5  
BYTE6  
BYTE 7  
BYTE8  
BYTE n-1  
EOT  
EOT  
LANE 0  
LANE 1  
LANE 2  
HS BYTES TRANSMITTED (n) IS 2 LESS THAN INTEGER MULTIPLE OF 4  
LANE 0  
LANE 1  
LANE 2  
LANE 3  
SOT  
SOT  
SOT  
SOT  
BYTE 0  
BYTE1  
BYTE2  
BYTE 3  
BYTE 4  
BYTE5  
BYTE6  
BYTE 7  
BYTE 8  
BYTE9  
BYTE n-2  
BYTE n-1  
EOT  
EOT  
EOT  
EOT  
BYTE 10  
BYTE 11  
3 DSI Data Lane Configuration  
EOT  
HS BYTES TRANSMITTED (n) IS INTEGER MULTIPLE OF 2  
HS BYTES TRANSMITTED (n) IS 3 LESS THAN INTEGER MULTIPLE OF 4  
LANE 0  
LANE 1  
LANE 2  
LANE 3  
SOT  
SOT  
SOT  
SOT  
BYTE 0  
BYTE1  
BYTE2  
BYTE 3  
BYTE 4  
BYTE5  
BYTE6  
BYTE 7  
BYTE 8  
BYTE9  
BYTE n-1  
EOT  
EOT  
LANE 0  
LANE 1  
SOT  
SOT  
BYTE 0  
BYTE1  
BYTE 2  
BYTE 3  
BYTE 4  
BYTE 5  
BYTE n-2  
BYTE n-1  
EOT  
EOT  
BYTE 10  
BYTE 11  
EOT  
HS BYTES TRANSMITTED (n) IS 1 LESS THAN INTEGER MULTIPLE OF 2  
EOT  
LANE 0  
LANE 1  
SOT  
SOT  
BYTE 0  
BYTE1  
BYTE 2  
BYTE 3  
BYTE 4  
BYTE 5  
BYTE n-1  
EOT  
EOT  
4 DSI Data Lane Configuration (default)  
2 DSI Data Lane Configuration  
Figure 13. SN65DSI85-Q1 DSI Lane Merging Illustration  
8.3.5 DSI Pixel Stream Packets  
The SN65DSI85-Q1 processes 18-bpp (RGB666) and 24-bpp (RGB888) DSI packets on each channel as shown  
in Figure 14, Figure 15, and Figure 16.  
18  
Copyright © 2016–2018, Texas Instruments Incorporated  
 
SN65DSI85-Q1  
www.ti.com.cn  
ZHCSFS6B JULY 2016REVISED JUNE 2018  
1 Byte  
2 Bytes  
1 Byte  
WORD COUNT Bytes  
2 Bytes  
18 bpp Loosely Packed Pixel Stream  
(Variable Size Payload)  
WORD COUNT  
ECC  
CRC CHECKSUM  
Packet Payload  
Packet Footer  
Packet Header  
1 Byte  
1 Byte  
1 Byte  
1 Byte  
1 Byte  
1 Byte  
1 Byte  
1 Byte  
1 Byte  
0 1  
2
7
2
7
2
7
2
7
2
7
2
7
2
7
2
7
2
7
R0  
R5  
G0  
G5  
B0  
B5  
R0  
R5  
G0  
G5  
B0  
B5  
R0  
R5  
G0  
G5  
B0  
B5  
6-bits  
RED  
6-bits  
GREEN  
6-bits  
BLUE  
6-bits  
RED  
6-bits  
GREEN  
6-bits  
BLUE  
6-bits  
RED  
6-bits  
GREEN  
6-bits  
BLUE  
First Pixel in Packet  
Second Pixel in Packet  
Third Pixel in Packet  
Variable Size Payload (Three Pixels Per Nine Bytes of Payload)  
Figure 14. 18-bpp (Loosely Packed) DSI Packet Structure  
1 Byte  
2 Bytes  
1 Byte  
WORD COUNT Bytes  
2 Bytes  
18 bpp Packed Pixel Stream  
(Variable Size Payload)  
WORD COUNT  
ECC  
CRC CHECKSUM  
Packet Payload  
Packet Footer  
Packet Header  
1 Byte  
1 Byte  
1 Byte  
1 Byte  
1 Byte  
1 Byte  
1 Byte  
1 Byte  
1 Byte  
0
5
6
7
0
3
4
7
0 1  
2
7
0
5
6
7
0
3
4
7
0 1  
2
7
0
5
6
7
0
3
4
7
0 1  
2
7
R0  
R5 G0  
G5 B0  
B5 R0  
R5 G0  
G5 B0  
B5 R0  
R5 G0  
G5 B0  
B5 R0  
R5 G0  
G5 B0  
B5  
6-bits  
RED  
6-bits  
GREEN  
6-bits  
BLUE  
6-bits  
RED  
6-bits  
GREEN  
6-bits  
BLUE  
6-bits  
RED  
6-bits  
GREEN  
6-bits  
BLUE  
6-bits  
RED  
6-bits  
GREEN  
6-bits  
BLUE  
First Pixel in Packet  
Second Pixel in Packet  
Third Pixel in Packet  
Fourth Pixel in Packet  
Variable Size Payload (Four Pixels Per Nine Bytes of Payload)  
Figure 15. 18-bpp (Tightly Packed) DSI Packet Structure  
Copyright © 2016–2018, Texas Instruments Incorporated  
19  
SN65DSI85-Q1  
ZHCSFS6B JULY 2016REVISED JUNE 2018  
www.ti.com.cn  
1 Byte  
2 Bytes  
1 Byte  
WORD COUNT Bytes  
2 Bytes  
24 bpp Packed Pixel Stream  
(Variable Size Payload)  
WORD COUNT  
ECC  
CRC CHECKSUM  
Packet Payload  
Packet Footer  
Packet Header  
1 Byte  
1 Byte  
1 Byte  
1 Byte  
1 Byte  
1 Byte  
1 Byte  
1 Byte  
1 Byte  
0
7
0
7
0
7
0
7
0
7
0
7
0
7
0
7
0
7
R0  
R7 G0  
G 7 B0  
B7 R0  
R7 G0  
G 7 B0  
B7 R0  
R7 G0  
G7 B0  
B7  
8-bits  
RED  
8-bits  
GREEN  
8-bits  
BLUE  
8-bits  
RED  
8-bits  
GREEN  
8-bits  
BLUE  
8-bits  
RED  
8-bits  
GREEN  
8-bits  
BLUE  
First Pixel in Packet  
Second Pixel in Packet  
Third Pixel in Packet  
Variable Size Payload (Three Pixels Per Nine Bytes of Payload)  
Figure 16. 24-bpp DSI Packet Structure  
8.3.6 DSI Video Transmission Specifications  
The SN65DSI85-Q1 supports burst video mode and non-burst video mode with sync events or with sync pulses  
packet transmission as described in the DSI specification. The burst mode supports time-compressed pixel  
stream packets that leave added time per scan line for power savings LP mode. The SN65DSI85-Q1 requires a  
transition to LP mode once per frame to enable PHY synchronization with the DSI host processor; however, for a  
robust and low-power implementation, the transition to LP mode is recommended on every video line.  
Figure 17 shows the DSI video transmission applied to SN65DSI85-Q1 applications. In all applications, the LVDS  
output rate must be less than or equal to the DSI input rate. The first line of a video frame shall start with a VSS  
packet, and all other lines start with VSE or HSS. The position of the synchronization packets in time is of utmost  
importance since this has a direct impact on the visual performance of the display panel; that is, these packets  
generate the HS and VS (horizontal and vertical sync) signals on the LVDS interface after the delay programmed  
into CHA_SYNC_DELAY_LOW/HIGH (CSR 0x28.7:0 and 0x29.3:0) and/or CHB_SYNC_DELAY_LOW/HIGH  
(CSR 0x2A.7:0 and 0x2B.3:0). When configured for dual DSI channels, the SN65DSI85-Q1 uses the VSS, VSE,  
and HSS packets from channel A to generate the HS and VS (horizontal and vertical sync) signals on the LVDS  
interface, and the VSS, VSE, and HSS packets from channel B are ignored.  
As required in the DSI specification, the SN65DSI85-Q1 requires that pixel stream packets contain an integer  
number of pixels (i.e. end on a pixel boundary); it is recommended to transmit an entire scan line on one pixel  
stream packet. When a scan line is broken in to multiple packets, inter-packet latency shall be considered such  
that the video pipeline (ie. pixel queue or partial line buffer) does not run empty (i.e. under-run); during scan line  
processing, if the pixel queue runs empty, the SN65DSI85-Q1 transmits zero data (18’b0 or 24’b0) on the LVDS  
interface.  
When configured for dual DSI channels, the SN65DSI85-Q1 supports ODD/EVEN configurations and  
LEFT/RIGHT configurations. In the ODD/EVEN configuration, the odd pixels for each scan line are received on  
channel A, and the even pixels are received on channel B. In LEFT/RIGHT mode, the LEFT portion of the line is  
received on channel A, and the right portion of the line is received on channel B. Neither the channel A LEFT  
portion input or the channel B RIGHT portion input per line shall exceed 1408 pixels, which is defined as ½ of the  
maximum line size (2560 pixels in WQXGA 2560x1600 mode) plus 10% headroom. The pixels received on  
channel B in LEFT/RIGHT mode are buffered during the LEFT side transmission to LVDS, and begin  
transmission to LVDS when the LEFT-side input buffer runs empty.  
When configured for two single DSI channels, the SN65DSI85-Q1 requires that the LVDS output clocks for both  
video data streams be the same.  
20  
Copyright © 2016–2018, Texas Instruments Incorporated  
SN65DSI85-Q1  
www.ti.com.cn  
ZHCSFS6B JULY 2016REVISED JUNE 2018  
NOTE  
When the HS clock is used as a source for the LVDS pixel clock, the LP mode transitions  
apply only to the data lanes, and the DSI clock lane remains in the HS mode during the  
entire video transmission.  
The DSI85 does not support the DSI Virtual Channel capability or reverse direction  
(peripheral to processor) transmissions.  
One Video Frame  
t LINE  
t LINE  
t LINE  
t LINE  
t LINE  
t LINE  
t LINE  
DSI  
Channel A  
NOP/  
LP  
NOP/  
LP  
NOP/  
LP  
NOP/  
LP  
NOP/  
LP  
NOP/  
LP  
NOP/  
LP  
...  
...  
...  
RGB  
RGB  
Vertical sync / blanking  
Active Lines  
Vertical sync / blanking  
Vertical Blanking Period LVDS Transfer Function  
Active Video Line LVDS Transfer Function  
t LINE  
t LINE  
tLINE  
DSI  
DSI  
DSI  
NOP/  
LP  
NOP/  
LP  
NOP/  
LP  
...  
RGB  
Channel A  
Channel A  
Channel(s)  
tW (HS )  
t W(HS)  
HS (1)  
HS(1)  
HS (1)  
t PD  
tPD  
VS (2)  
DE (3)  
DATA  
VS (2)  
DE(3)  
DATA  
VS (2)  
DE (3)  
DATA  
0x000  
0x000  
0x000  
PixelStream Data  
0x000 (4)  
LEGEND  
VSS  
(1) The assertion of HS is delayed (tPD) by a programmable number of pixel clocks from the  
last bit of VSS/HSS packet received on DSI. The HS pulse width (tW(HS)) is also programmable.  
The illustration shows HS active low.  
DSI Sync Event Packet: V Sync Start  
DSI Sync Event Packet: H Sync Start  
(2) VS is signaled for a programmable number of lines (tLINE ) and is asserted when HS is  
asserted for the first line of the frame . VS is de -asserted when HS is asserted after the  
number of lines programmed has been reached. The illustration shows VS active low  
HSS  
RGB  
A sequence of DSI Pixel Stream Packets  
and Null Packets  
(3) DE is asserted when active pixel data is transmitted on LVDS , and polarity is set  
independent to HS/VS. The illustration shows DE active high  
NOP/LP  
DSI Null Packet , Blanking Packet , or a  
transition to LP Mode  
(4) After the last pixel in an active line is output to LVDS, the LVDS data is output zero  
Figure 17. DSI Channel Transmission and Transfer Function  
Copyright © 2016–2018, Texas Instruments Incorporated  
21  
SN65DSI85-Q1  
ZHCSFS6B JULY 2016REVISED JUNE 2018  
www.ti.com.cn  
8.3.7 ULPS  
The SN65DSI85-Q1 supports the MIPI defined ultra-low power state (ULPS). While the device is in the ULPS,  
the CSR registers are accessible via I2C interface. ULPS sequence should be issued to all active DSI CLK  
and/or DSI data lanes of the enabled DSI Channels for the SN65DSI85-Q1 enter the ULPS. The Following  
sequence should be followed to enter and exit the ULPS.  
1. Host issues a ULPS entry sequence to all DSI CLK and data lanes enabled.  
2. When host is ready to exit the ULPS mode, host issues a ULPS exit sequence to all DSI CLK and data lanes  
that need to be active in normal operation.  
3. Wait for the PLL_LOCK bit (CSR 0x0A.7) to be set.  
4. Set the SOFT_RESET bit (CSR 0x09.0).  
5. Device resumes normal operation.(i.e video streaming resumes on the panel).  
8.3.8 LVDS Pattern Generation  
The SN65DSI85-Q1 supports a pattern generation feature on LVDS Channels. This feature can be used to test  
the LVDS output path and LVDS panels in a system platform. The pattern generation feature can be enabled by  
setting the CHA_TEST_PATTERN bit at address 0x3C. No DSI data is received while the pattern generation  
feature is enabled.  
There are three modes available for LVDS test pattern generation. The mode of test pattern generation is  
determined by register configuration as shown in the tables below.  
Table 2. Test Pattern Generation  
Test pattern generation mode  
Register configurations  
LVDS_LINK_CFG(CSR 0x18.4) = 1b  
DSI_CH_MODE(CSR 0x10.6:5) = XXb  
CHA_TEST_PATTERN(CSR 0x3C.4) = 1b  
CHB_TEST_PATTERN(CSR 0x3C.0) = 0b  
Single LVDS configuration mode  
LVDS_LINK_CFG(CSR 0x18.4) = 0b  
DSI_CH_MODE(CSR 0x10.6:5) = 0Xb  
CHA_TEST_PATTERN(CSR 0x3C.4) = 1b  
CHB_TEST_PATTERN(CSR 0x3C.0) = 0b  
Dual LVDS configuration mode  
LVDS_LINK_CFG(CSR 0x18.4) = 0b  
DSI_CH_MODE(CSR 0x10.6:5) = 10b  
CHA_TEST_PATTERN(CSR 0x3C.4) = 1b  
CHB_TEST_PATTERN(CSR 0x3C.0) = 1b  
Two independent LVDS configuration  
mode  
The Table 3 and Table 4 list video registers that must be configured for test pattern generation video parameters.  
1. Single LVDS configuration  
Table 3. Video Registers  
ADDRESS BIT  
0x20.7:0  
0x21.3:0  
0x24.7:0  
0x25.3:0  
0x2C.7:0  
0x2D.1:0  
0x30.7:0  
0x31.1:0  
0x34.7:0  
0x36.7:0  
0x38.7:0  
0x3A.7:0  
REGISTER NAME  
SECTION  
CHA_ACTIVE_LINE_LENGTH_LOW  
CHA_ACTIVE_LINE_LENGTH_HIGH  
CHA_VERTICAL_DISPLAY_SIZE_LOW  
CHA_VERTICAL_DISPLAY_SIZE_HIGH  
CHA_HSYNC_PULSE_WIDTH_LOW  
CHA_HSYNC_PULSE_WIDTH_HIGH  
CHA_VSYNC_PULSE_WIDTH_LOW  
CHA_VSYNC_PULSE_WIDTH_HIGH  
CHA_HORIZONTAL_BACK_PORCH  
CHA_VERTICAL_BACK_PORCH  
CHA_HORIZONTAL_FRONT_PORCH  
CHA_VERTICAL_FRONT_PORCH  
Video Registers  
22  
Copyright © 2016–2018, Texas Instruments Incorporated  
 
SN65DSI85-Q1  
www.ti.com.cn  
ZHCSFS6B JULY 2016REVISED JUNE 2018  
2. Dual LVDS configuration  
Same set of video registers are used as in single LVDS configuration.  
3. Two independent LVDS configuration mode.  
Both Channel A and Channel B register parameters need to be configured.  
Table 4. Channel A and B Registers  
ADDRESS BIT  
Channel A  
REGISTER NAME  
SECTION  
0x20.7:0  
0x21.3:0  
0x24.7:0  
0x25.3:0  
0x2C.7:0  
0x2D.1:0  
0x30.7:0  
0x31.1:0  
0x34.7:0  
0x36.7:0  
0x38.7:0  
0x3A.7:0  
CHA_ACTIVE_LINE_LENGTH_LOW  
CHA_ACTIVE_LINE_LENGTH_HIGH  
CHA_VERTICAL_DISPLAY_SIZE_LOW  
CHA_VERTICAL_DISPLAY_SIZE_HIGH  
CHA_HSYNC_PULSE_WIDTH_LOW  
CHA_HSYNC_PULSE_WIDTH_HIGH  
CHA_VSYNC_PULSE_WIDTH_LOW  
CHA_VSYNC_PULSE_WIDTH_HIGH  
CHA_HORIZONTAL_BACK_PORCH  
CHA_VERTICAL_BACK_PORCH  
Video Registers  
CHA_HORIZONTAL_FRONT_PORCH  
CHA_VERTICAL_FRONT_PORCH  
Channel B  
0x22.7:0  
0x23.3:0  
0x26.7:0  
0x27.3:0  
0x2E.7:0  
0x2F.1:0  
0x32.7:0  
0x33.1:0  
0x35.7:0  
0x37.7:0  
0x39.7:0  
0x3B.7:0  
CHB_ACTIVE_LINE_LENGTH_LOW  
CHB_ACTIVE_LINE_LENGTH_HIGH  
CHB_VERTICAL_DISPLAY_SIZE_LOW  
CHB_VERTICAL_DISPLAY_SIZE_HIGH  
CHB_HSYNC_PULSE_WIDTH_LOW  
CHB_HSYNC_PULSE_WIDTH_HIGH  
CHB_VSYNC_PULSE_WIDTH_LOW  
CHB_VSYNC_PULSE_WIDTH_HIGH  
CHB_HORIZONTAL_BACK_PORCH  
CHB_VERTICAL_BACK_PORCH  
Video Registers  
CHB_HORIZONTAL_FRONT_PORCH  
CHB_VERTICAL_FRONT_PORCH  
Copyright © 2016–2018, Texas Instruments Incorporated  
23  
SN65DSI85-Q1  
ZHCSFS6B JULY 2016REVISED JUNE 2018  
www.ti.com.cn  
8.4 Device Functional Modes  
8.4.1 Operating Modes  
The SN65DSI85-Q1 can be configured for several different operating modes via LVDS_LINK_CFG (CSR  
0x18.4), LEFT_RIGHT_PIXELS (CSR 0x10.7), and DSI_CHANNEL_MODE (CSR 0x10.6:5). These modes are  
summarized in Table 5. In each of the modes, video data can be 18 bpp or 24 bpp.  
Table 5. SN65DSI85-Q1 Operating Modes  
CSR 0x18.4  
CSR 0x10.7  
CSR 0x10.6:5  
MODE  
DESCRIPTION  
LVDS_LINK_CFG LEFT_RIGHT_PIXES  
DSI_CH_MODE  
Single DSI Input on Channel A to Single-Link LVDS  
output on Channel A.  
Single DSI Input to Single-Link LVDS  
1
0
N/A  
N/A  
01  
01  
Single DSI Input on Channel A to Dual-Link LVDS  
output with Odd pixels on Channel A and Even  
pixels on Channel B.  
Single DSI Input to Dual-Link LVDS  
Dual DSI Input with Odd pixels received on Channel  
A and Even pixels received on Channel B. Data is  
output to Single-Link LVDS on Channel A.  
Dual DSI Input (Odd/Even) to Single-  
Link LVDS  
1
0
1
0
0
0
1
1
00  
00  
00  
00  
(1)  
Dual DSI Input with Odd pixels received on Channel  
A and Even pixels received on Channel B. Data is  
output to Dual-Link LVDS with Odd pixels on  
Channel A and Even pixels on Channel B.  
Dual DSI Input (Odd/Even) to Dual-Link  
(1)  
LVDS  
Dual DSI Input with Left pixels received on Channel  
A and Right pixels received on Channel B. Data is  
output to Single-Link LVDS on Channel A.  
Dual DSI Input (Left/Right) to Single-  
(2)  
Link LVDS  
Dual DSI Input with Left pixels received on Channel  
A and Right pixels received on Channel B. Data is  
output to Dual-Link LVDS with Odd pixels on  
Channel A and Even pixels on Channel B.  
Dual DSI Input (Left/Right) to Dual-Link  
(2)  
LVDS  
One video stream input on DSI Channel A and  
output to Single-Link LVDS on Channel A. Another  
video stream input on DSI Channel B and output to  
Single-Link LVDS on Channel B.  
Dual DSI Inputs (two streams) to two  
Single-Link LVDS  
0
N/A  
10  
(3)  
(1) In these modes, DSI Channel A and DSI Channel B must be set to have the same number of data lanes enabled and the data format  
must be the same for both lanes.  
(2) In these modes, DSI Channel A and DSI Channel B can each have a different number of data lanes enabled, but the data format must  
be the same for both lanes.  
(3) In this mode, DSI Channel A and DSI Channel B can each have a different number of data lanes enabled, and the data format for each  
Channel can be different.  
8.5 Programming  
8.5.1 Clock Configurations and Multipliers  
The LVDS clock may be derived from the DSI channel A clock, or from an external reference clock source. When  
the MIPI D-PHY channel A HS clock is used as the LVDS clock source, the D-PHY clock lane must operate in  
HS free-running (continuous) mode; this feature eliminates the need for an external reference clock reducing  
system costs  
The reference clock source is selected by HS_CLK_SRC (CSR 0x0A.0) programmed through the local I2C  
interface. If an external reference clock is selected, it is multiplied by the factor in REFCLK_MULTIPLIER (CSR  
0x0B.1:0) to generate the LVDS output clock. When an external reference clock is selected, it must be between  
25 MHz and 154 MHz. If the DSI channel A clock is selected, it is divided by the factor in DSI_CLK_DIVIDER  
(CSR 0x0B.7:3) to generate the LVDS output clock. Additionally, LVDS_CLK_RANGE (CSR 0x0A.3:1) and  
CH_DSI_CLK_RANGE(CSR 0x12) must be set to the frequency range of the LVDS output clock and DSI  
Channel A input clock respectively for the internal PLL to operate correctly. After these settings are programmed,  
PLL_EN (CSR 0x0D.0) must be set to enable the internal PLL.  
24  
Copyright © 2016–2018, Texas Instruments Incorporated  
 
SN65DSI85-Q1  
www.ti.com.cn  
ZHCSFS6B JULY 2016REVISED JUNE 2018  
8.6 Register Maps  
8.6.1 Local I2C Interface Overview  
The SN65DSI85-Q1 local I2C interface is enabled when EN is input high, access to the CSR registers is  
supported during ultra-low power state (ULPS). The SCL and SDA pins are used for I2C clock and I2C data  
respectively. The SN65DSI85-Q1 I2C interface conforms to the two-wire serial interface defined by the I2C Bus  
Specification, Version 2.1 (January 2000), and supports fast mode transfers up to 400 kbps.  
The device address byte is the first byte received following the START condition from the master device. The 7  
bit device address for SN65DSI85-Q1 device is factory preset to 010110X with the least significant bit being  
determined by the ADDR control input. Table 6 clarifies the SN65DSI85-Q1 target address.  
Table 6. SN65DSI85-Q1 I2C Target Address Description(1)(2)  
SN65DSI85 I2C TARGET ADDRESS  
BIT 7 (MSB)  
0
BIT 6  
1
BIT 5  
0
BIT 4  
1
BIT 3  
1
BIT 2  
0
BIT 1  
BIT 0 (W/R)  
0/1  
ADDR  
(1) When ADDR=1, Address Cycle is 0x5A (Write) and 0x5B (Read)  
(2) When ADDR=0, Address Cycle is 0x58 (Write) and 0x59 (Read)  
8.6.1.1 Write Procedure  
The following procedure is followed to write to the SN65DSI85-Q1 I2C registers.  
1. The master initiates a write operation by generating a start condition (S), followed by the SN65DSI85-Q1 7-  
bit address and a zero-value “W/R” bit to indicate a write cycle.  
2. The SN65DSI85-Q1 device acknowledges the address cycle.  
3. The master presents the sub-address (I2C register within the SN65DSI85-Q1 device) to be written, consisting  
of one byte of data, MSB-first.  
4. The SN65DSI85-Q1 device acknowledges the sub-address cycle.  
5. The master presents the first byte of data to be written to the I2C register.  
6. The SN65DSI85-Q1 device acknowledges the byte transfer.  
7. The master may continue presenting additional bytes of data to be written, with each byte transfer completing  
with an acknowledge from the SN65DSI85-Q1 device.  
8. The master terminates the write operation by generating a stop condition (P).  
8.6.1.2 Read Procedure  
The following procedure is followed to read the SN65DSI85-Q1 I2C registers:  
1. The master initiates a read operation by generating a start condition (S), followed by the SN65DSI85-Q1 7-bit  
address and a one-value W/R bit to indicate a read cycle.  
2. The SN65DSI85-Q1 device acknowledges the address cycle.  
3. The SN65DSI85-Q1 device transmits the contents of the memory registers MSB-first starting at register 00h.  
If a write to the SN65DSI85-Q1 I2C register occurred prior to the read, then the SN65DSI85-Q1 will start at  
the sub-address specified in the write.  
4. The SN65DSI85-Q1 device waits for either an acknowledge (ACK) or a not-acknowledge (NACK) from the  
master after each byte transfer; the I2C master acknowledges reception of each data byte transfer.  
5. If an ACK is received, the SN65DSI85-Q1 device transmits the next byte of data.  
6. The master terminates the read operation by generating a stop condition (P).  
8.6.1.3 Setting a Starting Sub-Address Procedure  
The following procedure is followed for setting a starting sub-address for I2C reads:  
1. The master initiates a write operation by generating a start condition (S), followed by the SN65DSI85-Q1 7-  
bit address and a zero-value W/R bit to indicate a write cycle  
2. The SN65DSI85-Q1 device acknowledges the address cycle.  
3. The master presents the sub-address (I2C register within the SN65DSI85-Q1 device) to be written, consisting  
Copyright © 2016–2018, Texas Instruments Incorporated  
25  
 
 
SN65DSI85-Q1  
ZHCSFS6B JULY 2016REVISED JUNE 2018  
www.ti.com.cn  
of one byte of data, MSB-first.  
4. The SN65DSI85-Q1 device acknowledges the sub-address cycle.  
5. The master terminates the write operation by generating a stop condition (P).  
8.6.2 Control and Status Registers Overview  
Many of the SN65DSI85-Q1 functions are controlled by the Control and Status Registers (CSR). All CSR  
registers are accessible through the local I2C interface.  
See the following tables for the SN65DSI85-Q1 CSR descriptions. Reserved or undefined bit fields should not be  
modified. Otherwise, the device may operate incorrectly.  
8.6.3 CSR Bit  
8.6.3.1 ID Registers (address = 0x00 to 0x08)  
The ID registers are shown in Figure 18 and described in Table 7.  
Figure 18. ID Registers  
7
6
5
4
3
2
1
0
Reserved  
R
LEGEND: R/W = Read/Write; R = Read only; W = Write only (reads return undetermined values); R/W1C = Read and Write 1 to Clear  
Table 7. ID Register Field Descriptions  
BIT FIELD  
TYPE  
RESET  
DESCRIPTION  
7-0 Reserved  
R
Addresses 0x08 - 0x00 = {0x01, 0x20, 0x20, 0x20, 0x44, 0x53, 0x49, 0x38, 0x35}  
8.6.3.2 Reset and Clock Registers  
8.6.3.2.1 Address 0x09  
Address 0x09 is shown in Figure 19 and described in Table 8.  
Figure 19. Address 0x09  
7
6
5
4
3
2
1
0
Reserved  
SOFT_RESET  
W-0  
LEGEND: R/W = Read/Write; R = Read only; W = Write only (reads return undetermined values); R/W1C = Read and Write 1 to Clear  
Table 8. Address 0x09 Definitions  
BIT FIELD  
TYPE RESET  
DESCRIPTION  
7-1 Reserved  
Reserved  
0
SOFT_RESET  
W
0
This bit automatically clears when set to 1 and returns zeros when read. This bit must be set after  
the CSRs are updated. This bit must also be set after making any changes to the DSI clock rate or  
after changing between DSI burst and non-burst modes.  
0: No action (default)  
1: Reset device to default condition excluding the CSR bits.  
26  
Copyright © 2016–2018, Texas Instruments Incorporated  
 
 
 
 
SN65DSI85-Q1  
www.ti.com.cn  
ZHCSFS6B JULY 2016REVISED JUNE 2018  
8.6.3.2.2 Address 0x0A  
Address 0x0A is shown in Figure 20 and described in Table 9.  
Figure 20. Address 0x0A  
7
PLL_EN_STAT  
R-0  
6
5
4
3
2
1
0
Reserved  
LVDS_CLK_RANGE  
R/W-101  
HS_CLK_SRC  
R/W-0  
LEGEND: R/W = Read/Write; R = Read only; W = Write only (reads return undetermined values); R/W1C = Read and Write 1 to Clear  
Table 9. Address 0x0A Field Descriptions  
BIT FIELD  
TYPE RESET  
DESCRIPTION  
Note: After PLL_EN_STAT = 1, wait at least 3 ms for PLL to lock.  
0: PLL not enabled (default)  
7
PLL_EN_STAT  
R
0
1: PLL enabled  
6–4 Reserved  
Reserved  
3-1 LVDS_CLK_RANGE  
R/W  
101  
This field selects the frequency range of the LVDS output clock.  
000: 25 MHz LVDS_CLK < 37.5 MHz  
001: 37.5 MHz LVDS_CLK < 62.5 MHz  
010: 62.5 MHz LVDS_CLK < 87.5 MHz  
011: 87.5 MHz LVDS_CLK < 112.5 MHz  
100: 112.5 MHz LVDS_CLK < 137.5 MHz  
101: 137.5 MHz LVDS_CLK 154 MHz (default)  
110: Reserved  
111: Reserved  
0
HS_CLK_SRC  
R/W  
0
0: LVDS pixel clock derived from input REFCLK (default)  
1: LVDS pixel clock derived from MIPI D-PHY channel A HS continuous clock  
Copyright © 2016–2018, Texas Instruments Incorporated  
27  
 
 
SN65DSI85-Q1  
ZHCSFS6B JULY 2016REVISED JUNE 2018  
www.ti.com.cn  
8.6.3.2.3 Address 0x0B  
Address 0x0B is shown in Figure 21 and described in Table 10.  
Figure 21. Address 0x0B  
7
6
5
4
3
2
1
0
DSI_CLK_DIVIDER  
R/W-0000  
Reserved  
REFCLK_MULTIPLIER  
R/W-00  
LEGEND: R/W = Read/Write; R = Read only; W = Write only (reads return undetermined values); R/W1C = Read and Write 1 to Clear  
Table 10. Address 0x0B Field Descriptions  
BIT FIELD  
TYPE RESET  
R/W  
DESCRIPTION  
7-3 DSI_CLK_DIVIDER  
0000 When CSR 0x0A.0 = 1, this field controls the divider used to generate the LVDS output clock from  
the MIPI D-PHY Channel A HS continuous clock. When CSR 0x0A.0 = 0, this field must be  
programmed to 00000.  
00000: LVDS clock = source clock (default)  
00001: Divide by 2  
00010: Divide by 3  
00011: Divide by 4  
...  
10111: Divide by 24  
11000: Divide by 25  
11001–11111: Reserved  
Reserved  
2
Reserved  
1-0 REFCLK_MULTIPLIER  
R/W  
00  
When CSR 0x0A.0 = 0, this field controls the multiplier used to generate the LVDS output clock  
from the input REFCLK. When CSR 0x0A.0 = 1, this field must be programmed to 00.  
00: LVDS clock = source clock (default)  
01: Multiply by 2  
10: Multiply by 3  
11: Multiply by 4  
8.6.3.2.4 Address 0x0D  
Address 0x0D is shown in Figure 22 and described in Table 11.  
Figure 22. Address 0x0D  
7
6
5
4
3
2
1
0
Reserved  
PLL_EN  
R/W-0  
LEGEND: R/W = Read/Write; R = Read only; W = Write only (reads return undetermined values); R/W1C = Read and Write 1 to Clear  
Table 11. Address 0x0D Field Descriptions  
BIT FIELD  
TYPE RESET  
DESCRIPTION  
7-1 Reserved  
Reserved  
0
PLL_EN  
R/W  
0
When this bit is set, the PLL is enabled with the settings programmed into CSR 0x0A and CSR  
0x0B. The PLL should be disabled before changing any of the settings in CSR 0x0A and CSR  
0x0B. The input clock source must be active and stable before the PLL is enabled.  
0: PLL disabled (default)  
1: PLL enabled  
28  
Copyright © 2016–2018, Texas Instruments Incorporated  
 
 
 
 
SN65DSI85-Q1  
www.ti.com.cn  
ZHCSFS6B JULY 2016REVISED JUNE 2018  
8.6.3.3 DSI Registers  
8.6.3.3.1 Address 0x10  
Address 0x10 is shown in Figure 23 and described in Table 12.  
Figure 23. Address 0x10  
7
6
5
4
3
2
1
0
LEFT_RIGHT_  
PIXELS  
DSI_CHANNEL_MODE  
CHA_DSI_LANES  
CHB_DSI_LANES  
SOT_ERR_TO  
L_DIS  
R/W-0  
R/W-01  
R/W-11  
R/W-11  
R/W-0  
LEGEND: R/W = Read/Write; R = Read only; W = Write only (reads return undetermined values); R/W1C = Read and Write 1 to Clear  
Table 12. Address 0x10 Field Descriptions  
BIT FIELD  
TYPE  
RESET  
DESCRIPTION  
7
LEFT_RIGHT_PIXELS  
R/W  
0
This bit selects the pixel arrangement in dual channel DSI implementations.  
0: DSI channel A receives ODD pixels and channel B receives EVEN (default)  
1: DSI channel A receives LEFT image pixels and channel B receives RIGHT image  
pixels  
6-5 DSI_CHANNEL_MODE  
R/W  
R/W  
01  
11  
00: Dual-channel DSI receiver  
01: Single channel DSI receiver (default)  
10: Two single channel DSI receivers  
11: Reserved  
4-3 CHA_DSI_LANES  
This field controls the number of lanes that are enabled for DSI Channel A.  
Note: Unused DSI input pins on the SN65DSI85-Q1 device must be left unconnected.  
00: Four lanes are enabled  
01: Three lanes are enabled  
10: Two lanes are enabled  
11: One lane is enabled (default)  
2-1 CHB_DSI_LANES  
R/W  
R/W  
11  
This field controls the number of lanes that are enabled for DSI Channel B.  
Note: Unused DSI input pins on the SN65DSI85-Q1 must be left unconnected.  
00: Four lanes are enabled  
01: Three lanes are enabled  
10: Two lanes are enabled  
11: One lane is enabled (default)  
0
SOT_ERR_TOL_DIS  
0
0: Single bit errors are tolerated for the start of transaction SoT leader sequence  
(default)  
1: No SoT bit errors are tolerated  
Copyright © 2016–2018, Texas Instruments Incorporated  
29  
 
 
SN65DSI85-Q1  
ZHCSFS6B JULY 2016REVISED JUNE 2018  
www.ti.com.cn  
8.6.3.3.2 Address 0x11  
Address 0x11 is shown in Figure 24 and described in Table 13.  
Figure 24. Address 0x11  
7
6
5
4
3
2
1
0
CHA_DSI_DATA_EQ  
R/W-00  
CHB_DSI_DATA_EQ  
R/W-00  
CHA_DSI_CLK_EQ  
R/W-00  
CHB_DSI_CLK_EQ  
R/W-00  
LEGEND: R/W = Read/Write; R = Read only; W = Write only (reads return undetermined values); R/W1C = Read and Write 1 to Clear  
Table 13. Address 0x11 Field Descriptions  
BIT FIELD  
TYPE RESET  
DESCRIPTION  
This field controls the equalization for the DSI Channel A Data Lanes  
00: No equalization (default)  
01: 1-dB equalization  
7-6 CHA_DSI_DATA_EQ  
R/W  
R/W  
R/W  
R/W  
00  
00  
00  
00  
10: Reserved  
11: 2-dB equalization  
5–4 CHB_DSI_DATA_EQ  
3-2 CHA_DSI_CLK_EQ  
1-0 CHB_DSI_CLK_EQ  
This field controls the equalization for the DSI Channel B Data Lanes  
00: No equalization (default)  
01: 1-dB equalization  
10: Reserved  
11: 2-dB equalization  
This field controls the equalization for the DSI Channel A Clock  
00: No equalization (default)  
01: 1-dB equalization  
10: Reserved  
11: 2-dB equalization  
This field controls the equalization for the DSI Channel A Clock  
00: No equalization (default)  
01: 1-dB equalization  
10: Reserved  
11: 2-dB equalization  
8.6.3.3.3 Address 0x12  
Address 0x12 is shown in Figure 25 and described in Table 14.  
Figure 25. Address 0x12  
7
6
5
4
3
2
1
0
CHA_DSI_CLK_RANGE  
R/W-0  
LEGEND: R/W = Read/Write; R = Read only; W = Write only (reads return undetermined values); R/W1C = Read and Write 1 to Clear  
Table 14. Address 0x12 Field Descriptions  
BIT FIELD  
TYPE  
RESET  
DESCRIPTION  
7-0 CHA_DSI_CLK_RANGE  
R/W  
0
This field specifies the DSI Clock frequency range in 5 MHz increments for the DSI Channel A  
Clock  
0x00–0x07: Reserved  
0x08: 40 frequency < 45 MHz  
0x09: 45 frequency < 50 MHz  
...  
0x63: 495 frequency < 500 MHz  
0x64: 500 MHz  
0x65–0xFF: Reserved  
30  
Copyright © 2016–2018, Texas Instruments Incorporated  
 
 
 
 
SN65DSI85-Q1  
www.ti.com.cn  
ZHCSFS6B JULY 2016REVISED JUNE 2018  
8.6.3.3.4 Address 0x13  
Address 0x13 is shown in Figure 26 and described in Table 15.  
Figure 26. Address 0x13  
7
6
5
4
3
2
1
0
CHB_DSI_CLK_RANGE  
R/W-0  
LEGEND: R/W = Read/Write; R = Read only; W = Write only (reads return undetermined values); R/W1C = Read and Write 1 to Clear  
Table 15. Address 0x13 Field Descriptions  
BIT FIELD  
TYPE RESET  
R/W  
DESCRIPTION  
7-0 CHB_DSI_CLK_RANGE  
0
This field specifies the DSI Clock frequency range in 5 MHz increments for the DSI Channel B  
Clock  
0x00–0x07: Reserved  
0x08: 40 frequency < 45 MHz  
0x09: 45 frequency < 50 MHz  
...  
0x63: 495 frequency < 500 MHz  
0x64: 500 MHz  
0x65–0xFF: Reserved  
Copyright © 2016–2018, Texas Instruments Incorporated  
31  
 
 
SN65DSI85-Q1  
ZHCSFS6B JULY 2016REVISED JUNE 2018  
www.ti.com.cn  
8.6.3.4 LVDS Registers  
8.6.3.4.1 Address 0x18  
Address 0x18 is shown in Figure 27 and described in Table 16.  
Figure 27. Address 0x18  
7
6
5
4
3
2
1
0
DE_NEG_POL HS_NEG_POL VS_NEG_POL LVDS_LINK_C CHA_24BPP_  
CHB_24BPP_ CHA_24BPP_F CHB_24BPP_F  
ARITY  
ARITY  
ARITY  
FG  
MODE  
MODE  
ORMAT1  
ORMAT1  
R/W-0  
R/W-1  
R/W-1  
R/W-1  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
LEGEND: R/W = Read/Write; R = Read only; W = Write only (reads return undetermined values); R/W1C = Read and Write 1 to Clear  
Table 16. Address 0x18 Field Descriptions  
BIT FIELD  
TYPE RESET  
DESCRIPTION  
7
6
5
4
DE_NEG_POLARITY  
R/W  
R/W  
R/W  
R/W  
0
1
1
1
0: DE is positive polarity driven 1 during active pixel transmission on LVDS (default)  
1: DE is negative polarity driven 0 during active pixel transmission on LVDS  
HS_NEG_POLARITY  
VS_NEG_POLARITY  
LVDS_LINK_CFG  
0: HS is positive polarity driven 1 during corresponding sync conditions  
1: HS is negative polarity driven 0 during corresponding sync (default)  
0: VS is positive polarity driven 1 during corresponding sync conditions  
1: VS is negative polarity driven 0 during corresponding sync (default)  
0: LVDS Channel A and Channel B outputs enabled  
When CSR 0x10.6:5 = 00 or 01, the LVDS is in Dual-Link configuration  
When CSR 0x10.6:5 = 10, the LVDS is in two Single-Link configuration  
1: LVDS Single-Link configuration; Channel A output enabled and Channel B output  
disabled (default)  
3
2
1
CHA_24BPP_MODE  
CHB_24BPP_MODE  
CHA_24BPP_FORMAT1  
R/W  
R/W  
R/W  
0
0
0
0: Force 18 bpp; LVDS channel A lane 4 (A_Y3P or A_Y3N) is disabled (default)  
1: Force 24 bpp; LVDS channel A lane 4 (B_Y3P or B_Y3N) is enabled  
0: Force 18bpp; LVDS channel B lane 4 (A_Y3P or A_Y3N) is disabled (default)  
1: Force 24bpp; LVDS channel B lane 4 (B_Y3P or B_Y3N) is enabled  
This field selects the 24-bpp data format  
Note 1: This field must be 0 when 18-bpp data is received from DSI.  
Note 2: If this field is set to 1 and CHA_24BPP_MODE is 0, the SN65DSI85-Q1 device converts  
24-bpp data to 18-bpp data for transmission to an 18-bpp panel. In this configuration, the  
SN65DSI85-Q1 device does not transmit the two LSB per color on LVDS channel A, because LVDS  
channel A lane A_Y3P or A_Y3N is disabled.  
0: LVDS channel A lane A_Y3P or A_Y3N transmits the two most significant bits (MSB)  
per color; Format 2 (default)  
1: LVDS channel A lane A_Y3P or A_Y3N transmits the two least significant bits (LSB)  
per color; Format 1  
0
CHB_24BPP_FORMAT1  
R/W  
0
This field selects the 24-bpp data format  
Note 1: This field must be 0 when 18-bpp data is received from DSI.  
Note 2: If this field is set to 1 and CHB_24BPP_MODE is 0, the SN65DSI85-Q1 device converts  
24-bpp data to 18-bpp data for transmission to an 18-bpp panel. In this configuration, the  
SN65DSI85-Q1 device does not transmit the two LSB per color on LVDS channel B, because LVDS  
channel B lane B_Y3P or B_Y3N is disabled.  
0: LVDS channel B lane B_Y3P or B_Y3N transmits the two most significant bits (MSB)  
per color; Format 2 (default)  
1: LVDS channel B lane B_Y3P or B_Y3N transmits the two least significant bits (LSB)  
per color; Format 1  
32  
Copyright © 2016–2018, Texas Instruments Incorporated  
 
 
SN65DSI85-Q1  
www.ti.com.cn  
ZHCSFS6B JULY 2016REVISED JUNE 2018  
8.6.3.4.2 Address 0x19  
Address 0x19 is shown in Figure 28 and described in Table 17.  
Figure 28. Address 0x19  
7
6
5
4
3
2
1
0
Reserved  
CHA_LVDS_V  
OCM  
Reserved  
CHB_LVDS_V  
OCM  
CHA_LVDS_VOD_SWING  
CHB_LVDS_VOD_SWING  
R/W-0  
R/W-0  
R/W-01  
R/W-01  
LEGEND: R/W = Read/Write; R = Read only; W = Write only (reads return undetermined values); R/W1C = Read and Write 1 to Clear  
Table 17. Address 0x19 Field Descriptions  
BIT FIELD  
TYPE RESET  
DESCRIPTION  
7
6
Reserved  
Reserved  
CHA_LVDS_VOCM  
R/W  
0
This field controls the common mode output voltage for LVDS channel A  
0: 1.2 V (default)  
1: 0.9 V (CSR 0x1B.5:4 CHA_LVDS_CM_ADJUST must be set to 01b)  
Reserved  
5
4
Reserved  
CHB_LVDS_VOCM  
R/W  
0
This field controls the common mode output voltage for LVDS Channel B  
0: 1.2 V (default)  
1: 0.9 V (CSR 0x1B.1:0 CHB_LVDS_CM_ADJUST must be set to 01b)  
3-2 CHA_LVDS_VOD_SWING  
1-0 CHB_LVDS_VOD_SWING  
R/W  
R/W  
01  
01  
This field controls the differential output voltage for LVDS channel A. See the Electrical  
Characteristics table for VOD for each setting:  
00, 01 (default), 10, 11  
This field controls the differential output voltage for LVDS channel B. See the Electrical  
Characteristics table for VOD for each setting:  
00, 01 (default), 10, 11  
Copyright © 2016–2018, Texas Instruments Incorporated  
33  
 
 
SN65DSI85-Q1  
ZHCSFS6B JULY 2016REVISED JUNE 2018  
www.ti.com.cn  
8.6.3.4.3 Address 0x1A  
Address 0x1A is shown in Figure 29 and described in Table 18.  
Figure 29. Address 0x1A  
7
6
5
4
3
2
1
0
Reserved  
EVEN_ODD_S CHA_REVERS CHB_REVERS  
Reserved  
CHA_LVDS_TE CHB_LVDS_TE  
WAP  
E_LVDS  
E_LVDS  
RM  
RM  
R/W-0  
R/W-0  
R/W-0  
R/W-1  
R/W-1  
LEGEND: R/W = Read/Write; R = Read only; W = Write only (reads return undetermined values); R/W1C = Read and Write 1 to Clear  
Table 18. Address 0x1A Field Descriptions  
BIT FIELD  
TYPE RESET  
DESCRIPTION  
7
6
Reserved  
Reserved  
EVEN_ODD_SWAP  
R/W  
R/W  
0
0
Note: When the SN65DSI85-Q1 device is in two stream mode (CSR 0x10.6:5 = 10), setting this bit to  
1 causes the video stream from DSI Channel A to be routed to LVDS channel B and the video stream  
from DSI Channel B to be routed to LVDS channel A.  
0: Odd pixels routed to LVDS Channel A and Even pixels routed to LVDS channel B  
(default)  
1: Odd pixels routed to LVDS Channel B and Even pixels routed to LVDS channel A  
This bit controls the order of the LVDS pins for channel A.  
5
CHA_REVERSE_LVDS  
0: Normal LVDS Channel A pin order. LVDS channel A pin order is the same as listed in  
the Pin Configuration and Functions section. (default)  
1: Reversed LVDS Channel A pin order. LVDS channel A pin order is remapped as  
follows:  
A_Y0P A_Y3P  
A_Y0N A_Y3N  
A_Y1P A_CLKP  
A_Y1N A_CLKN  
A_Y2P A_Y2P  
A_Y2N A_Y2N  
A_CLKP A_Y1P  
A_CLKN A_Y1N  
A_Y3P A_Y0P  
A_Y3N A_Y0N  
4
CHB_REVERSE_LVDS  
R/W  
0
This bit controls the order of the LVDS pins for channel B.  
0: Normal LVDS channel B pin order. LVDS channel B pin order is the same as listed in  
the Pin Configuration and Functions section. (default)  
1: Reversed LVDS channel B pin order. LVDS channel B pin order is remapped as  
follows:  
B_Y0P B_Y3P  
B_Y0N B_Y3N  
B_Y1P B_CLKP  
B_Y1N B_CLKN  
B_Y2P B_Y2P  
B_Y2N B_Y2N  
B_CLKP B_Y1P  
B_CLKN B_Y1N  
B_Y3P B_Y0P  
B_Y3N B_Y0N  
3-2 Reserved  
Reserved  
1
CHA_LVDS_TERM  
R/W  
R/W  
1
1
This bit controls the near end differential termination for LVDS channel A. This bit also affects the  
output voltage for LVDS channel A.  
0: 100-Ω differential termination  
1: 200-Ω differential termination (default)  
0
CHB_LVDS_TERM  
This bit controls the near end differential termination for LVDS channel B. This bit also affects the  
output voltage for LVDS channel B.  
0: 100-Ω differential termination  
1: 200-Ω differential termination (default)  
34  
Copyright © 2016–2018, Texas Instruments Incorporated  
 
 
SN65DSI85-Q1  
www.ti.com.cn  
ZHCSFS6B JULY 2016REVISED JUNE 2018  
8.6.3.4.4 Address 0x1B  
Address 0x1B is shown in Figure 30 and described in Table 19.  
Figure 30. Address 0x1B  
7
6
5
4
3
2
1
0
Reserved  
CHA_LVDS_CM_ADJUST  
R/W-00  
Reserved  
CHB_LVDS_CM_ADJUST  
R/W-00  
LEGEND: R/W = Read/Write; R = Read only; W = Write only (reads return undetermined values); R/W1C = Read and Write 1 to Clear  
Table 19. Address 0x1B Field Descriptions  
BIT FIELD  
TYPE RESET  
DESCRIPTION  
7-6 Reserved  
Reserved  
5–4 CHA_LVDS_CM_ADJUST  
R/W  
00  
This field can be used to adjust the common mode output voltage for LVDS channel A.  
00: No change to common mode voltage (default)  
01: Adjust common mode voltage down 3%  
10: Adjust common mode voltage up 3%  
11: Adjust common mode voltage up 6%  
3-2 Reserved  
Reserved  
1-0 CHB_LVDS_CM_ADJUST  
R/W  
00  
This field can be used to adjust the common mode output voltage for LVDS channel B.  
00: No change to common mode voltage (default)  
01: Adjust common mode voltage down 3%  
10: Adjust common mode voltage up 3%  
11: Adjust common mode voltage up 6%  
Copyright © 2016–2018, Texas Instruments Incorporated  
35  
 
 
SN65DSI85-Q1  
ZHCSFS6B JULY 2016REVISED JUNE 2018  
www.ti.com.cn  
8.6.3.5 Video Registers  
Notes:  
1. TEST PATTERN GENERATION PURPOSE ONLY registers are for test pattern generation use only. Others  
are for normal operation unless the test pattern generation feature is enabled. CHB* registers are used only  
when the device is configured for two stream mode -both LVDS output channels are enabled (CSR 0x18.4 =  
0) and DSI channel mode configured as two stream (CSR 0x10.6:5  
=
0X10b).  
CH*_SYNC_DELAY_HIGH/LOW registers are not used for test pattern generation. In all other configurations,  
CHA* registers are used for test pattern generation.  
2. The CHB* register fields with a note This field is only applicable when CSR 0x10.6:5 = 10. are used only  
when the device is configured as two stream mode with CSR 0x18.4 = 0 and CSR 0x10.6:5 = 10.  
8.6.3.5.1 Address 0x20  
Address 0x20 is shown in Figure 31 and described in Table 20.  
Figure 31. Address 0x20  
7
6
5
4
3
2
1
0
CHA_ACTIVE_LINE_LENGTH_LOW  
R/W-0  
LEGEND: R/W = Read/Write; R = Read only; W = Write only (reads return undetermined values); R/W1C = Read and Write 1 to Clear  
Table 20. Address 0x20 Field Descriptions  
BIT FIELD  
TYPE RESET  
R/W  
DESCRIPTION  
7-0 CHA_ACTIVE_LINE_LENGTH_LOW  
0
When the SN65DSI85-Q1 is configured for a single DSI input, this field controls the length  
in pixels of the active horizontal line.  
When configured for Dual DSI inputs in Odd/Even mode, this field controls the number of  
odd pixels in the active horizontal line that are received on DSI Channel A and output to  
LVDS Channel A in single LVDS Channel mode(CSR 0x18.4 = 1), Channel A and B in  
dual LVDS Channel mode(CSR 0x18.4 = 0) with DSI_CHANNEL_MODE set to 01 or  
00(CSR 0x10.6:5).  
When configured for Dual DSI inputs in Left/Right mode, this field controls the number of  
left pixels in the active horizontal line that are received on DSI Channel A and output to  
LVDS Channel A.  
When configured for Dual DSI inputs in two stream mode, this field controls the number of  
pixels in the active horizontal line for the video stream received on DSI Channel A and  
output to LVDS Channel A. The value in this field is the lower 8 bits of the 12-bit value for  
the horizontal line length.  
Note: When the SN65DSI85-Q1 is configured for dual DSI inputs in Left/Right mode and  
LEFT_CROP field is programmed to a value other than 0x00, the  
CHA_ACTIVE_LINE_LENGTH_LOW/HIGH registers must be programmed to the number  
of active pixels in the Left portion of the line after LEFT_CROP has been applied.  
36  
Copyright © 2016–2018, Texas Instruments Incorporated  
 
 
SN65DSI85-Q1  
www.ti.com.cn  
ZHCSFS6B JULY 2016REVISED JUNE 2018  
8.6.3.5.2 Address 0x21  
Address 0x21 is shown in Figure 32 and described in Table 21.  
Figure 32. Address 0x21  
7
6
5
4
3
2
1
0
Reserved  
CHA_ACTIVE_LINE_LENGTH_HIGH  
R/W-0  
LEGEND: R/W = Read/Write; R = Read only; W = Write only (reads return undetermined values); R/W1C = Read and Write 1 to Clear  
Table 21. Address 0x21 Field Descriptions  
BIT FIELD  
TYPE RESET  
DESCRIPTION  
7–4 Reserved  
Reserved  
3-0 CHA_ACTIVE_LINE_LENGTH_HIGH  
R/W  
0
When the SN65DSI85-Q1 is configured for a single DSI input, this field controls the  
length in pixels of the active horizontal line.  
When configured for Dual DSI inputs in Odd/Even mode, this field controls the number of  
odd pixels in the active horizontal line that are received on DSI Channel A and output to  
LVDS Channel A in single LVDS Channel mode(CSR 0x18.4 = 1), Channel A and B in  
dual LVDS Channel mode(CSR 0x18.4 = 0) with DSI_CHANNEL_MODE set to 01 or  
00(CSR 0x10.6:5).  
When configured for Dual DSI inputs in Left/Right mode, this field controls the number of  
left pixels in the active horizontal line that are received on DSI Channel A and output to  
LVDS Channel A.  
When configured for Dual DSI inputs in two stream mode, this field controls the number  
of pixels in the active horizontal line for the video stream received on DSI Channel A and  
output to LVDS Channel A. The value in this field is the upper 4 bits of the 12-bit value  
for the horizontal line length.  
Note: When the SN65DSI85-Q1 is configured for dual DSI inputs in Left/Right mode and  
LEFT_CROP field is programmed to a value other than 0x00, the  
CHA_ACTIVE_LINE_LENGTH_LOW/HIGH registers must be programmed to the  
number of active pixels in the Left portion of the line after LEFT_CROP has been  
applied.  
8.6.3.5.3 Address 0x22  
Address 0x22 is shown in Figure 33 and described in Table 22.  
Figure 33. Address 0x22  
7
6
5
4
3
2
1
0
CHB_ACTIVE_LINE_LENGTH_LOW  
R/W-0  
LEGEND: R/W = Read/Write; R = Read only; W = Write only (reads return undetermined values); R/W1C = Read and Write 1 to Clear  
Table 22. Address 0x22 Field Descriptions  
BIT FIELD  
TYPE RESET  
R/W  
DESCRIPTION  
7-0 CHB_ACTIVE_LINE_LENGTH_LOW  
0
When the SN65DSI85-Q1 is configured for a single DSI input, this field is not applicable.  
When configured for Dual DSI inputs in Odd/Even mode, this field controls the number of  
even pixels in the active horizontal line that are received on DSI Channel B.  
When configured for Dual DSI inputs in Left/Right mode, this field controls the number of  
right pixels in the active horizontal line that are received on DSI Channel B and output to  
LVDS Channel B.  
When configured for Dual DSI inputs in two stream mode, this field controls the number of  
pixels in the active horizontal line for the video stream received on DSI Channel B and  
output to LVDS Channel B. The value in this field is the lower 8 bits of the 12-bit value for  
the horizontal line length.  
Note: When the SN65DSI85-Q1 is configured for dual DSI inputs in Left/Right mode and  
RIGHT_CROP field is programmed to a value other than 0x00, the  
CHB_ACTIVE_LINE_LENGTH_LOW/HIGH registers must be programmed to the number  
of active pixels in the Right portion of the line after RIGHT_CROP has been applied.  
Copyright © 2016–2018, Texas Instruments Incorporated  
37  
 
 
 
 
SN65DSI85-Q1  
ZHCSFS6B JULY 2016REVISED JUNE 2018  
www.ti.com.cn  
8.6.3.5.4 Address 0x23  
Address 0x23 is shown in Figure 34 and described in Table 23.  
Figure 34. Address 0x23  
7
6
5
4
3
2
1
0
Reserved  
CHB_ACTIVE_LINE_LENGTH_HIGH  
R/W-0  
LEGEND: R/W = Read/Write; R = Read only; W = Write only (reads return undetermined values); R/W1C = Read and Write 1 to Clear  
Table 23. Address 0x23 Field Descriptions  
BIT FIELD  
TYPE RESET DESCRIPTION  
7–4 Reserved  
Reserved  
3-0 CHB_ACTIVE_LINE_LENGTH_HIGH  
R/W  
0
When the SN65DSI85-Q1 is configured for a single DSI input, this field is not applicable.  
When configured for Dual DSI inputs in Odd/Even mode, this field controls the number of  
even pixels in the active horizontal line that are received on DSI Channel B.  
When configured for Dual DSI inputs in Left/Right mode, this field controls the number of  
right pixels in the active horizontal line that are received on DSI Channel B and output to  
LVDS Channel B.  
When configured for Dual DSI inputs in two stream mode, this field controls the number of  
pixels in the active horizontal line for the video stream received on DSI Channel B and  
output to LVDS Channel B. The value in this field is the upper 4 bits of the 12-bit value for  
the horizontal line length.  
Note: When the SN65DSI85-Q1 is configured for dual DSI inputs in Left/Right mode and  
RIGHT_CROP field is programmed to a value other than 0x00, the  
CHB_ACTIVE_LINE_LENGTH_LOW/HIGH registers must be programmed to the number  
of active pixels in the Right portion of the line after RIGHT_CROP has been applied.  
8.6.3.5.5 Address 0x24  
Address 0x24 is shown in Figure 35 and described in Table 24.  
Figure 35. Address 0x24  
7
6
5
4
3
2
1
0
CHA_VERTICAL_DISPLAY_SIZE_LOW  
R/W-0  
LEGEND: R/W = Read/Write; R = Read only; W = Write only (reads return undetermined values); R/W1C = Read and Write 1 to Clear  
Table 24. Address 0x24 Field Descriptions  
BIT FIELD  
TYPE RESET  
R/W  
DESCRIPTION  
7-0 CHA_VERTICAL_DISPLAY_SIZE_LOW  
0
TEST PATTERN GENERATION PURPOSE ONLY  
This field controls the vertical display size in lines for LVDS Channel A/B test pattern  
generation. The value in this field is the lower 8 bits of the 12-bit value for the vertical  
display size.  
38  
Copyright © 2016–2018, Texas Instruments Incorporated  
 
 
 
 
SN65DSI85-Q1  
www.ti.com.cn  
ZHCSFS6B JULY 2016REVISED JUNE 2018  
8.6.3.5.6 Address 0x25  
Address 0x25 is shown in Figure 36 and described in Table 25.  
Figure 36. Address 0x25  
7
6
5
4
3
2
1
0
Reserved  
CHA_VERTICAL_DISPLAY_SIZE_HIGH  
R/W-0  
LEGEND: R/W = Read/Write; R = Read only; W = Write only (reads return undetermined values); R/W1C = Read and Write 1 to Clear  
Table 25. Address 0x25 Field Descriptions  
BIT FIELD  
TYPE RESET  
DESCRIPTION  
7–4 Reserved  
Reserved  
3-0 CHA_VERTICAL_DISPLAY_SIZE_HIGH  
R/W  
0
TEST PATTERN GENERATION PURPOSE ONLY.  
This field controls the vertical display size in lines forLVDS Channel A/B test pattern  
generation. The value in this field is the upper 4 bits of the 12-bit value for the vertical  
display size  
8.6.3.5.7 Address 0x26  
Address 0x26 is shown in Figure 37 and described in Table 26.  
Figure 37. Address 0x26  
7
6
5
4
3
2
1
0
CHB_VERTICAL_DISPLAY_SIZE_LOW  
R/W-0  
LEGEND: R/W = Read/Write; R = Read only; W = Write only (reads return undetermined values); R/W1C = Read and Write 1 to Clear  
Table 26. Address 0x26 Field Descriptions  
BIT FIELD  
TYPE  
RESET  
DESCRIPTION  
7-0 CHB_VERTICAL_DISPLAY_SIZE_LOW  
R/W  
0
TEST PATTERN GENERATION PURPOSE ONLY.  
This field controls the vertical display size in lines for LVDS Channel B test pattern  
generation. The value in this field is the lower 8 bits of the 12-bit value for the vertical  
display size. This field is only applicable when CSR 0x10.6:5 = 10  
8.6.3.5.8 Address 0x27  
Address 0x27 is shown in Figure 38 and described in Table 27.  
Figure 38. Address 0x27  
7
6
5
4
3
2
1
0
Reserved  
CHB_VERTICAL_DISPLAY_SIZE_HIGH  
R/W-0  
LEGEND: R/W = Read/Write; R = Read only; W = Write only (reads return undetermined values); R/W1C = Read and Write 1 to Clear  
Table 27. Address 0x27 Field Descriptions  
BIT FIELD  
TYPE RESET  
DESCRIPTION  
7–4 Reserved  
Reserved  
3-0 CHB_VERTICAL_DISPLAY_SIZE_HIGH  
R/W  
0
TEST PATTERN GENERATION PURPOSE ONLY.  
This field controls the vertical display size in lines for LVDS Channel B test pattern  
generation. The value in this field is the upper 4 bits of the 12-bit value for the vertical  
display size. This field is only applicable when CSR 0x10.6:5 = 10 .  
Copyright © 2016–2018, Texas Instruments Incorporated  
39  
 
 
 
 
 
 
SN65DSI85-Q1  
ZHCSFS6B JULY 2016REVISED JUNE 2018  
www.ti.com.cn  
8.6.3.5.9 Address 0x28  
Address 0x28 is shown in Figure 39 and described in Table 28.  
Figure 39. Address 0x28  
7
6
5
4
3
2
1
0
CHA_SYNC_DELAY_LOW  
R/W-0  
LEGEND: R/W = Read/Write; R = Read only; W = Write only (reads return undetermined values); R/W1C = Read and Write 1 to Clear  
Table 28. Address 0x28 Field Descriptions  
BIT FIELD  
TYPE RESET  
R/W  
DESCRIPTION  
7-0 CHA_SYNC_DELAY_LOW  
0
This field controls the delay in pixel clocks from when an HSync or VSync is received on  
the DSI to when it is transmitted on the LVDS interface for Channel A in single LVDS  
Channel mode(CSR 0x18.4 = 1), Channel A and B in dual LVDS Channel mode(CSR  
0x18.4 = 0) with DSI_CHANNEL_MODE set to 01 or 00(CSR 0x10.6:5).  
The delay specified by this field is in addition to the pipeline and synchronization delays in  
the SN65DSI85-Q1. The additional delay is approximately 10 pixel clocks. The Sync delay  
must be programmed to at least 32 pixel clocks to ensure proper operation. The value in  
this field is the lower 8 bits of the 12-bit value for the Sync delay.  
8.6.3.5.10 Address 0x29  
Address 0x29 is shown in Figure 40 and described in Table 29.  
Figure 40. Address 0x29  
7
6
5
4
3
2
1
0
Reserved  
CHA_SYNC_DELAY_HIGH  
R/W-0  
LEGEND: R/W = Read/Write; R = Read only; W = Write only (reads return undetermined values); R/W1C = Read and Write 1 to Clear  
Table 29. Address 0x29 Field Descriptions  
BIT FIELD  
TYPE RESET  
DESCRIPTION  
7–4 Reserved  
Reserved  
3-0 CHA_SYNC_DELAY_HIGH  
R/W  
0
This field controls the delay in pixel clocks from when an HSync or VSync is received on  
the DSI to when it is transmitted on the LVDS interface for Channel A in single LVDS  
Channel mode(CSR 0x18.4 = 1), Channel A and B in dual LVDS Channel mode(CSR  
0x18.4 = 0) with DSI_CHANNEL_MODE set to 01 or 00(CSR 0x10.6:5).  
The delay specified by this field is in addition to the pipeline and synchronization delays in  
the SN65DSI85-Q1. The additional delay is approximately 10 pixel clocks. The Sync delay  
must be programmed to at least 32 pixel clocks to ensure proper operation. The value in  
this field is the upper 4 bits of the 12-bit value for the Sync delay.  
40  
Copyright © 2016–2018, Texas Instruments Incorporated  
 
 
 
 
SN65DSI85-Q1  
www.ti.com.cn  
ZHCSFS6B JULY 2016REVISED JUNE 2018  
8.6.3.5.11 Address 0x2A  
Address 0x2A is shown in Figure 41 and described in Table 30.  
Figure 41. Address 0x2A  
7
6
5
4
3
2
1
0
CHB_SYNC_DELAY_LOW  
R/W-0  
LEGEND: R/W = Read/Write; R = Read only; W = Write only (reads return undetermined values); R/W1C = Read and Write 1 to Clear  
Table 30. Address 0x2A Field Descriptions  
BIT FIELD  
TYPE RESET  
R/W  
DESCRIPTION  
7-0 CHB_SYNC_DELAY_LOW  
0
This field controls the delay in pixel clocks from when an HSync or VSync is received on  
the DSI to when it is transmitted on the LVDS interface for Channel B when the  
SN65DSI85-Q1 is configured as two single stream mode with CSR 0x18.4 = 0 and CSR  
0x10.6:5 = 10.  
The delay specified by this field is in addition to the pipeline and synchronization delays in  
the SN65DSI85-Q1. The additional delay is approximately 10 pixel clocks. The Sync delay  
must be programmed to at least 32 pixel clocks to ensure proper operation. The value in  
this field is the lower 8 bits of the 12-bit value for the Sync delay.  
8.6.3.5.12 Address 0x2B  
Address 0x2B is shown in Figure 42 and described in Table 31.  
Figure 42. Address 0x2B  
7
6
5
4
3
2
1
0
Reserved  
CHB_SYNC_DELAY_HIGH  
R/W-0  
LEGEND: R/W = Read/Write; R = Read only; W = Write only (reads return undetermined values); R/W1C = Read and Write 1 to Clear  
Table 31. Address 0x2B Field Descriptions  
BIT FIELD  
TYPE RESET  
DESCRIPTION  
7–4 Reserved  
Reserved  
3-0 CHB_SYNC_DELAY_HIGH  
R/W  
0
This field controls the delay in pixel clocks from when an HSync or VSync is received on  
the DSI to when it is transmitted on the LVDS interface for Channel B when the  
SN65DSI85-Q1 is configured as two single stream mode with CSR 0x18.4 = 0 and CSR  
0x10.6:5 = 10.  
The delay specified by this field is in addition to the pipeline and synchronization delays in  
the SN65DSI85-Q1. The additional delay is approximately 10 pixel clocks. The Sync delay  
must be programmed to at least 32 pixel clocks to ensure proper operation. The value in  
this field is the upper 4 bits of the 12-bit value for the Sync delay.  
Copyright © 2016–2018, Texas Instruments Incorporated  
41  
 
 
 
 
SN65DSI85-Q1  
ZHCSFS6B JULY 2016REVISED JUNE 2018  
www.ti.com.cn  
8.6.3.5.13 Address 0x2C  
Address 0x2C is shown in Figure 43 and described in Table 32.  
Figure 43. Address 0x2C  
7
6
5
4
3
2
1
0
CHA_HSYNC_PULSE_WIDTH_LOW  
R/W-0  
LEGEND: R/W = Read/Write; R = Read only; W = Write only (reads return undetermined values); R/W1C = Read and Write 1 to Clear  
Table 32. Address 0x2C Field Descriptions  
BIT FIELD  
TYPE  
RESET  
DESCRIPTION  
7-0 CHA_HSYNC_PULSE_WIDTH_LOW  
R/W  
0
This field controls the width in pixel clocks of the HSync Pulse Width for LVDS Channel A  
in single LVDS Channel mode(CSR 0x18.4 = 1), Channel A and B in dual LVDS Channel  
mode(CSR 0x18.4 = 0) with DSI_CHANNEL_MODE set to 01 or 00(CSR 0x10.6:5).  
The value in this field is the lower 8 bits of the 10-bit value for the HSync Pulse Width.  
8.6.3.5.14 Address 0x2D  
Address 0x2D is shown in Figure 44 and described in Table 33.  
Figure 44. Address 0x2D  
7
6
5
4
3
2
1
0
Reserved  
CHA_HSYNC_PULSE_WIDTH_HIGH  
R/W-0  
LEGEND: R/W = Read/Write; R = Read only; W = Write only (reads return undetermined values); R/W1C = Read and Write 1 to Clear  
Table 33. Address 0x2D Field Descriptions  
BIT FIELD  
TYPE  
RESET  
DESCRIPTION  
7–4 Reserved  
Reserved  
3-0 CHA_HSYNC_PULSE_WIDTH_HIGH  
R/W  
0
This field controls the width in pixel clocks of the HSync Pulse Width for LVDS Channel A  
in single LVDS Channel mode(CSR 0x18.4 = 1), Channel A and B in dual LVDS Channel  
mode(CSR 0x18.4 = 0) with DSI_CHANNEL_MODE set to 01 or 00(CSR 0x10.6:5).  
The value in this field is the upper 2 bits of the 10-bit value for the HSync Pulse Width.  
8.6.3.5.15 Address 0x2E  
Address 0x2E is shown in Figure 45 and described in Table 34.  
Figure 45. Address 0x2E  
7
6
5
4
3
2
1
0
CHB_HSYNC_PULSE_WIDTH_LOW  
R/W-0  
LEGEND: R/W = Read/Write; R = Read only; W = Write only (reads return undetermined values); R/W1C = Read and Write 1 to Clear  
Table 34. Address 0x2E Field Descriptions  
BIT FIELD  
TYPE  
RESET  
DESCRIPTION  
7-0 CHB_HSYNC_PULSE_WIDTH_LOW  
R/W  
0
This field controls the width in pixel clocks of the HSync Pulse Width for LVDS Channel B.  
The value in this field is the lower 8 bits of the 10-bit value for the HSync Pulse Width.  
This field is only applicable when CSR 0x10.6:5 = 10.  
42  
Copyright © 2016–2018, Texas Instruments Incorporated  
 
 
 
 
 
 
SN65DSI85-Q1  
www.ti.com.cn  
ZHCSFS6B JULY 2016REVISED JUNE 2018  
8.6.3.5.16 Address 0x2F  
Address 0x2F is shown in Figure 46 and described in Table 35.  
Figure 46. Address 0x2F  
7
6
5
4
3
2
1
0
Reserved  
CHB_HSYNC_PULSE_WIDTH_HIGH  
R/W-0  
LEGEND: R/W = Read/Write; R = Read only; W = Write only (reads return undetermined values); R/W1C = Read and Write 1 to Clear  
Table 35. Address 0x2F Field Descriptions  
BIT FIELD  
TYPE  
RESET  
DESCRIPTION  
7–4 Reserved  
Reserved  
3-0  
CHB_HSYNC_PULSE_WIDTH_HIGH  
R/W  
0
This field controls the width in pixel clocks of the HSync Pulse Width for LVDS Channel B.  
The value in this field is the upper 2 bits of the 10-bit value for the HSync Pulse Width.  
This field is only applicable when CSR 0x10.6:5 = 10.  
8.6.3.5.17 Address 0x30  
Address 0x30 is shown in Figure 47 and described in Table 36.  
Figure 47. Address 0x30  
7
6
5
4
3
2
1
0
CHA_VSYNC_PULSE_WIDTH_LOW  
R/W-0  
LEGEND: R/W = Read/Write; R = Read only; W = Write only (reads return undetermined values); R/W1C = Read and Write 1 to Clear  
Table 36. Address 0x30 Field Descriptions  
BIT FIELD  
TYPE  
RESET  
DESCRIPTION  
7-0 CHA_VSYNC_PULSE_WIDTH_LOW  
R/W  
0
This field controls the length in lines of the VSync Pulse Width for LVDS Channel A in  
single LVDS Channel mode(CSR 0x18.4 = 1), Channel A and B in dual LVDS Channel  
mode(CSR 0x18.4 = 0) with DSI_CHANNEL_MODE set to 01 or 00(CSR 0x10.6:5).  
The value in this field is the lower 8 bits of the 10-bit value for the VSync Pulse Width.  
8.6.3.5.18 Address 0x31  
Address 0x31 is shown in Figure 48 and described in Table 37.  
Figure 48. Address 0x31  
7
6
5
4
3
2
1
0
Reserved  
CHA_VSYNC_PULSE_WIDTH_HIGH  
R/W-0  
LEGEND: R/W = Read/Write; R = Read only; W = Write only (reads return undetermined values); R/W1C = Read and Write 1 to Clear  
Table 37. Address 0x31 Field Descriptions  
BIT FIELD  
TYPE  
RESET  
DESCRIPTION  
7–4 Reserved  
Reserved  
3-0 CHA_VSYNC_PULSE_WIDTH_HIGH  
R/W  
0
This field controls the length in lines of the VSync Pulse Width for LVDS Channel A in  
single LVDS Channel mode(CSR 0x18.4 = 1), Channel A and B in dual LVDS Channel  
mode(CSR 0x18.4 = 0) with DSI_CHANNEL_MODE set to 01 or 00(CSR 0x10.6:5).  
The value in this field is the upper 2 bits of the 10-bit value for the VSync Pulse Width.  
Copyright © 2016–2018, Texas Instruments Incorporated  
43  
 
 
 
 
 
 
SN65DSI85-Q1  
ZHCSFS6B JULY 2016REVISED JUNE 2018  
www.ti.com.cn  
8.6.3.5.19 Address 0x32  
Address 0x32 is shown in Figure 49 and described in Table 38.  
Figure 49. Address 0x32  
7
6
5
4
3
2
1
0
CHB_VSYNC_PULSE_WIDTH_LOW  
R/W-0  
LEGEND: R/W = Read/Write; R = Read only; W = Write only (reads return undetermined values); R/W1C = Read and Write 1 to Clear  
Table 38. Address 0x32 Field Descriptions  
BIT FIELD  
TYPE  
RESET  
DESCRIPTION  
7-0 CHB_VSYNC_PULSE_WIDTH_LOW  
R/W  
0
This field controls the length in lines of the VSync Pulse Width for LVDS Channel B.  
The value in this field is the lower 8 bits of the 10-bit value for the VSync Pulse Width.  
This field is only applicable when CSR 0x10.6:5 = 10.  
8.6.3.5.20 Address 0x33  
Address 0x33 is shown in Figure 50 and described in Table 39.  
Figure 50. Address 0x33  
7
6
5
4
3
2
1
0
Reserved  
CHB_VSYNC_PULSE_WIDTH_HIGH  
R/W-0  
LEGEND: R/W = Read/Write; R = Read only; W = Write only (reads return undetermined values); R/W1C = Read and Write 1 to Clear  
Table 39. Address 0x33 Field Descriptions  
BIT FIELD  
TYPE  
RESET  
DESCRIPTION  
7–4 Reserved  
Reserved  
3-0  
CHB_VSYNC_PULSE_WIDTH_HIGH  
R/W  
0
This field controls the length in lines of the VSync Pulse Width for LVDS Channel B.  
The value in this field is the upper 2 bits of the 10-bit value for the VSync Pulse Width.  
This field is only applicable when CSR 0x10.6:5 = 10.  
8.6.3.5.21 Address 0x34  
Address 0x34 is shown in Figure 51 and described in Table 40.  
Figure 51. Address 0x34  
7
6
5
4
3
2
1
0
CHA_HORIZONTAL_BACK_PORCH  
R/W-0  
LEGEND: R/W = Read/Write; R = Read only; W = Write only (reads return undetermined values); R/W1C = Read and Write 1 to Clear  
Table 40. Address 0x34 Field Descriptions  
BIT FIELD  
7-0 CHA_HORIZONTAL_BACK_PORCH  
TYPE  
RESET  
DESCRIPTION  
R/W  
0
This field controls the time in pixel clocks between the end of the HSync Pulse and the  
start of the active video data for LVDS Channel A in single LVDS Channel mode (CSR  
0x18.4 = 1), Channel A and B in dual LVDS Channel mode(CSR 0x18.4 = 0) with  
DSI_CHANNEL_MODE set to 01 or 00(CSR 0x10.6:5).  
44  
Copyright © 2016–2018, Texas Instruments Incorporated  
 
 
 
 
 
 
SN65DSI85-Q1  
www.ti.com.cn  
ZHCSFS6B JULY 2016REVISED JUNE 2018  
8.6.3.5.22 Address 0x35  
Address 0x35 is shown in Figure 52 and described in Table 41.  
Figure 52. Address 0x35  
7
6
5
4
3
2
1
0
CHB_HORIZONTAL_BACK_PORCH  
R/W-0  
LEGEND: R/W = Read/Write; R = Read only; W = Write only (reads return undetermined values); R/W1C = Read and Write 1 to Clear  
Table 41. Address 0x35 Field Descriptions  
BIT FIELD  
TYPE  
RESET  
DESCRIPTION  
7-0  
CHB_HORIZONTAL_BACK_PORCH  
R/W  
0
This field controls the time in pixel clocks between the end of the HSync Pulse and the  
start of the active video data for LVDS Channel B.  
This field is only applicable when CSR 0x10.6:5 = 10.  
8.6.3.5.23 Address 0x36  
Address 0x36 is shown in Figure 53 and described in Table 42.  
Figure 53. Address 0x36  
7
6
5
4
3
2
1
0
CHA_VERTICAL_BACK_PORCH  
R/W-0  
LEGEND: R/W = Read/Write; R = Read only; W = Write only (reads return undetermined values); R/W1C = Read and Write 1 to Clear  
Table 42. Address 0x36 Field Descriptions  
BIT FIELD  
TYPE  
RESET  
DESCRIPTION  
7-0  
CHA_VERTICAL_BACK_PORCH  
R/W  
0
TEST PATTERN GENERATION PURPOSE ONLY.  
This field controls the number of lines between the end of the VSync Pulse and the start  
of the active video data for Channel A/B.  
8.6.3.5.24 Address 0x37  
Address 0x37 is shown in Figure 54 and described in Table 43.  
Figure 54. Address 0x37  
7
6
5
4
3
2
1
0
CHB_VERTICAL_BACK_PORCH  
R/W-0  
LEGEND: R/W = Read/Write; R = Read only; W = Write only (reads return undetermined values); R/W1C = Read and Write 1 to Clear  
Table 43. Address 0x37 Field Descriptions  
BIT FIELD  
7-0 CHB_VERTICAL_BACK_PORCH  
TYPE  
RESET  
DESCRIPTION  
R/W  
0
TEST PATTERN GENERATION PURPOSE ONLY.  
This field controls the number of lines between the end of the VSync Pulse and the start  
of the active video data for Channel B. This field is only applicable when CSR 0x10.6:5  
= 10.  
Copyright © 2016–2018, Texas Instruments Incorporated  
45  
 
 
 
 
 
 
SN65DSI85-Q1  
ZHCSFS6B JULY 2016REVISED JUNE 2018  
www.ti.com.cn  
8.6.3.5.25 Address 0x38  
Address 0x38 is shown in Figure 55 and described in Table 44.  
Figure 55. Address 0x38  
7
6
5
4
3
2
1
0
CHA_HORIZONTAL_FRONT_PORCH  
R/W-0  
LEGEND: R/W = Read/Write; R = Read only; W = Write only (reads return undetermined values); R/W1C = Read and Write 1 to Clear  
Table 44. Address 0x38 Field Descriptions  
BIT FIELD  
TYPE  
RESET  
DESCRIPTION  
7-0 CHA_HORIZONTAL_FRONT_PORCH  
R/W  
0
TEST PATTERN GENERATION PURPOSE ONLY.  
This field controls the time in pixel clocks between the end of the active video data and  
the start of the HSync Pulse for Channel A/B.  
8.6.3.5.26 Address 0x39  
Address 0x39 is shown in Figure 56 and described in Table 45.  
Figure 56. Address 0x39  
7
6
5
4
3
2
1
0
CHB_HORIZONTAL_FRONT_PORCH  
R/W-0  
LEGEND: R/W = Read/Write; R = Read only; W = Write only (reads return undetermined values); R/W1C = Read and Write 1 to Clear  
Table 45. Address 0x39 Field Descriptions  
BIT FIELD  
TYPE  
RESET  
DESCRIPTION  
7-0 CHB_HORIZONTAL_FRONT_PORCH  
R/W  
0
TEST PATTERN GENERATION PURPOSE ONLY.  
This field controls the time in pixel clocks between the end of the active video data and  
the start of the HSync Pulse for Channel B. This field is only applicable when CSR  
0x10.6:5 = 10.  
8.6.3.5.27 Address 0x3A  
Address 0x3A is shown in Figure 57 and described in Table 46.  
Figure 57. Address 0x3A  
7
6
5
4
3
2
1
0
CHA_VERTICAL_FRONT_PORCH  
R/W-0  
LEGEND: R/W = Read/Write; R = Read only; W = Write only (reads return undetermined values); R/W1C = Read and Write 1 to Clear  
Table 46. Address 0x3A Field Descriptions  
BIT FIELD  
TYPE  
RESET  
DESCRIPTION  
7-0 CHA_VERTICAL_FRONT_PORCH  
R/W  
0
TEST PATTERN GENERATION PURPOSE ONLY.  
This field controls the number of lines between the end of the active video data and the  
start of the VSync Pulse for Channel A/B.  
46  
Copyright © 2016–2018, Texas Instruments Incorporated  
 
 
 
 
 
 
SN65DSI85-Q1  
www.ti.com.cn  
ZHCSFS6B JULY 2016REVISED JUNE 2018  
8.6.3.5.28 Address 0x3B  
Address 0x3B is shown in Figure 58 and described in Table 47.  
Figure 58. Address 0x3B  
7
6
5
4
3
2
1
0
CHB_VERTICAL_FRONT_PORCH  
R/W-0  
LEGEND: R/W = Read/Write; R = Read only; W = Write only (reads return undetermined values); R/W1C = Read and Write 1 to Clear  
Table 47. Address 0x3B Field Descriptions  
BIT FIELD  
TYPE  
RESET  
DESCRIPTION  
7-0 CHB_VERTICAL_FRONT_PORCH  
R/W  
0
TEST PATTERN GENERATION PURPOSE ONLY.  
This field controls the number of lines between the end of the active video data and the  
start of the VSync Pulse for Channel B. This field is only applicable when CSR 0x10.6:5  
= 10.  
8.6.3.5.29 Address 0x3C  
Address 0x3C is shown in Figure 59 and described in Table 48.  
Figure 59. Address 0x3C  
7
6
5
4
3
2
1
0
Reserved  
CHA_TEST_PA  
TTERN  
Reserved  
CHB_TEST_PA  
TTERN  
R/W-0  
R/W-0  
LEGEND: R/W = Read/Write; R = Read only; W = Write only (reads return undetermined values); R/W1C = Read and Write 1 to Clear  
Table 48. Address 0x3C Field Descriptions  
BIT FIELD  
TYPE  
RESET  
DESCRIPTION  
7-5 Reserved  
Reserved  
4
CHA_TEST_PATTERN  
R/W  
0
TEST PATTERN GENERATION PURPOSE ONLY.  
When this bit is set, the SN65DSI85-Q1 will generate a video test pattern for Channel  
A based on the values programmed into the Video Registers for Channel A  
3-1 Reserved  
Reserved  
0
CHB_TEST_PATTERN  
R/W  
0
TEST PATTERN GENERATION PURPOSE ONLY.  
When this bit is set, the SN65DSI85-Q1 will generate a video test pattern for Channel  
B based on the values programmed into the Video Registers for Channel B. This field  
is only applicable when CSR 0x10.6:5 = 10  
Copyright © 2016–2018, Texas Instruments Incorporated  
47  
 
 
 
 
SN65DSI85-Q1  
ZHCSFS6B JULY 2016REVISED JUNE 2018  
www.ti.com.cn  
8.6.3.5.30 Address 0x3D  
Address 0x3D is shown in Figure 60 and described in Table 49.  
Figure 60. Address 0x3D  
7
6
5
4
3
2
1
0
RIGHT_CROP  
R/W-0  
LEGEND: R/W = Read/Write; R = Read only; W = Write only (reads return undetermined values); R/W1C = Read and Write 1 to Clear  
Table 49. Address 0x3D Field Descriptions  
BIT FIELD  
TYPE  
RESET  
DESCRIPTION  
7-0 RIGHT_CROP  
R/W  
0
This field controls the number of pixels removed from the beginning of the active video  
line for DSI Channel B.  
This field only has meaning if LEFT_RIGHT_PIXELS = 1.  
This field defaults to 0x00.  
Note: When the SN65DSI85-Q1 device is configured for dual DSI inputs in Left/Right  
mode and this field is programmed to a value other than 0x00, the  
CHB_ACTIVE_LINE_LENGTH_LOW/HIGH registers must be programmed to the  
number of active pixels in the Right portion of the line after RIGHT_CROP has been  
applied.  
8.6.3.5.31 Address 0x3E  
Address 0x3E is shown in Figure 61 and described in Table 50.  
Figure 61. Address 0x3E  
7
6
5
4
3
2
1
0
LEFT_CROP  
R/W-0  
LEGEND: R/W = Read/Write; R = Read only; W = Write only (reads return undetermined values); R/W1C = Read and Write 1 to Clear  
Table 50. Address 0x3E Field Descriptions  
BIT FIELD  
TYPE  
RESET  
DESCRIPTION  
7-0 LEFT_CROP  
R/W  
0
This field controls the number of pixels removed from the end of the active video line for  
DSI Channel A.  
This field only has meaning if LEFT_RIGHT_PIXELS = 1.  
This field defaults to 0x00.  
Note: When the SN65DSI85-Q1 is configured for dual DSI inputs in Left/Right mode  
and this field is programmed to a value other than 0x00, the  
CHA_ACTIVE_LINE_LENGTH_LOW/HIGH registers must be programmed to the  
number of active pixels in the Left portion of the line after LEFT_CROP has been  
applied.  
48  
Copyright © 2016–2018, Texas Instruments Incorporated  
 
 
 
 
SN65DSI85-Q1  
www.ti.com.cn  
ZHCSFS6B JULY 2016REVISED JUNE 2018  
8.6.3.6 IRQ Registers  
8.6.3.6.1 Address 0xE0  
Address 0xE0 is shown in Figure 62 and described in Table 51.  
Figure 62. Address 0xE0  
7
6
5
4
3
2
1
0
Reserved  
IRQ_EN  
R/W-0  
LEGEND: R/W = Read/Write; R = Read only; W = Write only (reads return undetermined values); R/W1C = Read and Write 1 to Clear  
Table 51. Address 0xE0 Field Descriptions  
BIT FIELD  
TYPE  
RESET  
DESCRIPTION  
7-1 Reserved  
Reserved  
0
IRQ_EN  
R/W  
0
When enabled by this field, the IRQ output is driven high to communicate IRQ events.  
0: IRQ output is high-impedance (default)  
1: IRQ output is driven high when a bit is set in registers 0xE5 or 0xE6 that also has  
the corresponding IRQ_EN bit set to enable the interrupt condition  
8.6.3.6.2 Address 0xE1  
Address 0xE1 is shown in Figure 63 and described in Table 52.  
Figure 63. Address 0xE1  
7
6
5
4
3
2
1
0
CHA_SYNCH_ CHA_CRC_ER CHA_UNC_EC CHA_COR_EC CHA_LLP_ERR CHA_SOT_BIT  
Reserved  
PLL_UNLOCK_  
EN  
ERR_EN  
R_EN  
C_ERR_EN  
C_ERR_EN  
_EN  
_ERR_EN  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
LEGEND: R/W = Read/Write; R = Read only; W = Write only (reads return undetermined values); R/W1C = Read and Write 1 to Clear  
Table 52. Address 0xE1 Field Descriptions  
BIT FIELD  
TYPE  
RESET  
DESCRIPTION  
7
6
5
4
3
2
CHA_SYNCH_ERR_EN  
R/W  
0
0: CHA_SYNCH_ERR is masked  
1: CHA_SYNCH_ERR is enabled to generate IRQ events  
CHA_CRC_ERR_EN  
R/W  
R/W  
R/W  
R/W  
R/W  
0
0
0
0
0
0: CHA_CRC_ERR is masked  
1: CHA_CRC_ERR is enabled to generate IRQ events  
CHA_UNC_ECC_ERR_EN  
CHA_COR_ECC_ERR_EN  
CHA_LLP_ERR_EN  
0: CHA_UNC_ECC_ERR is masked  
1: CHA_UNC_ECC_ERR is enabled to generate IRQ events  
0: CHA_COR_ECC_ERR is masked  
1: CHA_COR_ECC_ERR is enabled to generate IRQ events  
0: CHA_LLP_ERR is masked  
1: CHA_ LLP_ERR is enabled to generate IRQ events  
CHA_SOT_BIT_ERR_EN  
0: CHA_SOT_BIT_ERR is masked  
1: CHA_SOT_BIT_ERR is enabled to generate IRQ events  
Reserved  
1
0
Reserved  
PLL_UNLOCK_EN  
R/W  
0
0: PLL_UNLOCK is masked  
1: PLL_UNLOCK is enabled to generate IRQ events  
Copyright © 2016–2018, Texas Instruments Incorporated  
49  
 
 
 
 
SN65DSI85-Q1  
ZHCSFS6B JULY 2016REVISED JUNE 2018  
www.ti.com.cn  
8.6.3.6.3 Address 0xE2  
Address 0xE2 is shown in Figure 64 and described in Table 53.  
Figure 64. Address 0xE2  
7
6
5
4
3
2
1
0
CHB_SYNCH_ CHB_CRC_ER CHB_UNC_EC CHB_COR_EC CHB_LLP_ERR CHB_SOT_BIT  
Reserved  
ERR_EN  
R_EN  
C_ERR_EN  
C_ERR_EN  
_EN  
_ERR_EN  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
LEGEND: R/W = Read/Write; R = Read only; W = Write only (reads return undetermined values); R/W1C = Read and Write 1 to Clear  
Table 53. Address 0xE2 Field Descriptions  
BIT FIELD  
TYPE  
RESET  
DESCRIPTION  
7
6
5
4
3
2
CHB_SYNCH_ERR_EN  
R/W  
0
0: CHB_SYNCH_ERR is masked  
1: CHB_SYNCH_ERR is enabled to generate IRQ events  
CHB_CRC_ERR_EN  
R/W  
R/W  
R/W  
R/W  
R/W  
0
0
0
0
0
0: CHB_CRC_ERR is masked  
1: CHB_CRC_ERR is enabled to generate IRQ events  
CHB_UNC_ECC_ERR_EN  
CHB_COR_ECC_ERR_EN  
CHB_LLP_ERR_EN  
0: CHB_UNC_ECC_ERR is masked  
1: CHB_UNC_ECC_ERR is enabled to generate IRQ events  
0: CHB_COR_ECC_ERR is masked  
1: CHB_COR_ECC_ERR is enabled to generate IRQ events  
0: CHB_LLP_ERR is masked  
1: CHB_ LLP_ERR is enabled to generate IRQ events  
CHB_SOT_BIT_ERR_EN  
0: CHB_SOT_BIT_ERR is masked  
1: CHB_SOT_BIT_ERR is enabled to generate IRQ events  
Reserved  
1-0 Reserved  
50  
Copyright © 2016–2018, Texas Instruments Incorporated  
 
 
SN65DSI85-Q1  
www.ti.com.cn  
ZHCSFS6B JULY 2016REVISED JUNE 2018  
8.6.3.6.4 Address 0xE5  
Address 0xE5 is shown in Figure 65 and described in Table 54.  
Figure 65. Address 0xE5  
7
6
5
4
3
2
1
0
CHA_SYNCH_ CHA_CRC_ER CHA_UNC_EC CHA_COR_EC CHA_LLP_ERR CHA_SOT_BIT  
Reserved  
PLL_UNLOCK  
ERR  
R
C_ERR  
C_ERR  
_ERR  
R/W1C-0  
R/W1C-0  
R/W1C-0  
R/W1C-0  
R/W1C-0  
R/W1C-0  
R/W1C-1  
LEGEND: R/W = Read/Write; R = Read only; W = Write only (reads return undetermined values); R/W1C = Read and Write 1 to Clear  
Table 54. Address 0xE5 Field Descriptions  
BIT FIELD  
TYPE  
RESET  
DESCRIPTION  
7
CHA_SYNCH_ERR  
R/W1C  
0
This bit is set when the DSI channel A packet processor detects an HS or VS synchronization  
error, that is, an unexpected sync packet).  
This bit is cleared by writing a 1 value.  
6
5
4
3
CHA_CRC_ERR  
R/W1C  
R/W1C  
R/W1C  
R/W1C  
0
0
0
0
This bit is set when the DSI channel A packet processor detects a data stream CRC error.  
This bit is cleared by writing a 1 value.  
CHA_UNC_ECC_ERR  
CHA_COR_ECC_ERR  
CHA_LLP_ERR  
This bit is set when the DSI channel A packet processor detects an uncorrectable ECC error.  
This bit is cleared by writing a 1 value.  
This bit is set when the DSI channel A packet processor detects a correctable ECC error.  
This bit is cleared by writing a 1 value.  
This bit is set when the DSI channel A packet processor detects a low level protocol error.  
This bit is cleared by writing a 1 value.  
Low level protocol errors include SoT and EoT sync errors, Escape Mode entry command  
errors, LP transmission sync errors, and false control errors.  
Lane merge errors are reported by this status condition.  
2
CHA_SOT_BIT_ERR  
R/W1C  
R/W1C  
0
1
This bit is set when the DSI channel A packet processor detects an SoT leader sequence bit  
error.  
This bit is cleared by writing a 1 value.  
1
0
Reserved  
Reserved  
PLL_UNLOCK  
This bit is set whenever the PLL Lock status transitions from LOCK to UNLOCK.  
Copyright © 2016–2018, Texas Instruments Incorporated  
51  
 
 
SN65DSI85-Q1  
ZHCSFS6B JULY 2016REVISED JUNE 2018  
www.ti.com.cn  
8.6.3.6.5 Address 0xE6  
Address 0xE6 is shown in Figure 66 and described in Table 55.  
Figure 66. Address 0xE6  
7
6
5
4
3
2
1
0
CHB_SYNCH_ CHB_CRC_ER CHB_UNC_EC CHB_COR_EC CHB_LLP_ERR CHB_SOT_BIT  
Reserved  
ERR  
R
C_ERR  
C_ERR  
_ERR  
R/W1C-0  
R/W1C-0  
R/W1C-0  
R/W1C-0  
R/W1C-0  
R/W1C-0  
LEGEND: R/W = Read/Write; R = Read only; W = Write only (reads return undetermined values); R/W1C = Read and Write 1 to Clear  
Table 55. Address 0xE6 Field Descriptions  
BIT FIELD  
TYPE  
RESET  
DESCRIPTION  
7
CHB_SYNCH_ERR  
R/W1C  
0
This bit is set when the DSI channel B packet processor detects an HS or VS synchronization  
error, that is, an unexpected sync packet.  
This bit is cleared by writing a 1 value.  
6
5
4
3
CHB_CRC_ERR  
R/W1C  
R/W1C  
R/W1C  
R/W1C  
0
0
0
0
This bit is set when the DSI channel B packet processor detects a data stream CRC error.  
This bit is cleared by writing a 1 value.  
CHB_UNC_ECC_ERR  
CHB_COR_ECC_ERR  
CHB_LLP_ERR  
This bit is set when the DSI channel B packet processor detects an uncorrectable ECC error.  
This bit is cleared by writing a 1 value.  
This bit is set when the DSI channel B packet processor detects a correctable ECC error.  
This bit is cleared by writing a 1 value.  
This bit is set when the DSI channel B packet processor detects a low level protocol error.  
This bit is cleared by writing a 1 value.  
Low level protocol errors include SoT and EoT sync errors, Escape Mode entry command  
errors, LP transmission sync errors, and false control errors.  
Lane merge errors are reported by this status condition.  
2
CHB_SOT_BIT_ERR  
R/W1C  
0
This bit is set when the DSI channel B packet processor detects an SoT leader sequence bit  
error.  
This bit is cleared by writing a 1 value.  
1-0 Reserved  
Reserved  
52  
Copyright © 2016–2018, Texas Instruments Incorporated  
 
 
SN65DSI85-Q1  
www.ti.com.cn  
ZHCSFS6B JULY 2016REVISED JUNE 2018  
9 Application and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
9.1 Application Information  
9.1.1 Video STOP and Restart Sequence  
When the system requires to stop outputting video to the display, using the following sequence for the  
SN65DSI85-Q1 device is recommended:  
1. Clear the PLL_EN bit to 0(CSR 0x0D.0).  
2. Stop video streaming on DSI inputs.  
3. Drive all DSI input lanes including DSI CLK lane to LP11.  
When the system is ready to restart the video streaming.  
1. Start video streaming on DSI inputs.  
2. Set the PLL_EN bit to 1 (CSR 0x0D.0).  
3. Wait for a minimum of 3 ms.  
4. Set the SOFT_RESET bit (0x09.0).  
9.1.2 Reverse LVDS Pin Order Option  
For ease of PCB routing, the SN65DSI85-Q1 supports swapping, or reversing, the channel or pin order through  
configuration register programming. The order of the LVDS pin for LVDS Channel A or Channel B can be  
reversed by setting the address 0x1A bit 5 CHA_REVERSE_LVDS or bit 4 CHB_REVERSE_LVDS. The LVDS  
Channel A and Channel B can be swapped by setting the 0x1A.6 EVEN_ODD_SWAP bit. See the corresponding  
register bit definition in the Register Maps section for details.  
9.1.3 IRQ Usage  
The SN65DSI85-Q1 device provides an IRQ pin that can indicate when certain errors occur on DSI. The IRQ  
output is enabled through the IRQ_EN bit (CSR 0xE0.0). Individual error conditions for DSI Channel A are  
enabled through the Channel A Error Enable bits (CSR 0xE1.7-2). Individual error conditions for DSI Channel B  
are enabled through the Channel B Error Enable bits (CSR 0xE2.7-2). The IRQ pin is asserted when an error  
occurs on DSI, the corresponding error enable bit is set, and the IRQ_EN bit is set. An error is cleared by writing  
a 1 to the corresponding error status bit.  
NOTE  
If the SOFT_RESET bit is set while the DSI video stream is active, some of the error  
status bits may be set.  
NOTE  
If the DSI video stream is stopped, some of the error status bits may be set. These error  
status bits should be cleared before restarting the video stream.  
NOTE  
If the DSI video stream starts before the device is configured, some of the error status bits  
may be set. TI recommends to start streaming after the device is correctly configured as  
recommended in the initialization sequence in the Initialization Setup section.  
Copyright © 2016–2018, Texas Instruments Incorporated  
53  
SN65DSI85-Q1  
ZHCSFS6B JULY 2016REVISED JUNE 2018  
www.ti.com.cn  
9.2 Typical Applications  
9.2.1 Typical WUXGA 18-bpp Application  
Figure 67 shows a typical application using the SN65DSI85-Q1 configured for a single channel DSI receiver to  
interface a single-channel DSI application processor to an LVDS Dual-Link 18 bit-per-pixel panel supporting 1920  
× 1200 WUXGA resolutions at 60 frames per second.  
A_Y0N  
SN65DSI85-Q1  
100 Ω  
A_Y0P  
A_Y1N  
DA0P  
Application  
Processor  
100 Ω  
To odd pixel  
row and column  
drivers  
DA0N  
DA1P  
A_YNP  
A_Y2N  
A_Y2P  
100 Ω  
100 Ω  
DA1N  
DA2P  
DA2N  
DA3P  
DA3N  
DACP  
DACN  
SCL  
A_CLKN  
A_CLKP  
A_Y3N  
A_Y3P  
B_Y0N  
B_Y0P  
B_Y1N  
B_Y1P  
B_Y2N  
B_Y2P  
B_CLKN  
B_CLKP  
100 Ω  
100 Ω  
100 Ω  
100 Ω  
SDA  
IRQ  
EN  
To even pixel  
row and column  
drivers  
ADDR  
REFCLK  
GND  
1.8 V  
B_Y3N  
B_Y3P  
VCC  
C1  
Copyright © 2016, Texas Instruments Incorporated  
Figure 67. Typical WUXGA 18-bpp Panel Application  
9.2.1.1 Design Requirements  
Table 56 lists the design parameters for SN65DSI85-Q1.  
Table 56. Design Parameters  
DESIGN PARAMETER  
VCC  
EXAMPLE VALUE  
1.8 V (±5%)  
DSIA_CLK  
N/A  
CLOCK  
REFCKL Frequency  
DSIA Clock Frequency  
PANEL INFORMATION  
LVDS Output Clock Frequency  
Resolution  
490 MHz  
81 MHz  
1920 × 1200  
960  
Horizontal Active (pixels)  
Horizontal Blanking (pixels)  
Vertical Active (Lines)  
Vertical Blanking (lines)  
Horizontal Sync Offset (pixels)  
144  
1200  
20  
50  
54  
Copyright © 2016–2018, Texas Instruments Incorporated  
 
 
SN65DSI85-Q1  
www.ti.com.cn  
ZHCSFS6B JULY 2016REVISED JUNE 2018  
Typical Applications (continued)  
Table 56. Design Parameters (continued)  
DESIGN PARAMETER  
EXAMPLE VALUE  
Horizontal Sync Pulse Width (pixels)  
Vertical Sync Offset (lines)  
Vertical Sync Pulse Width (lines)  
Horizontal Sync Pulse Polarity  
Vertical Sync Pulse Polarity  
Color Bit Depth (6 bpc or 8 bpc)  
Number of LVDS Lanes  
50  
1
5
Negative  
Negative  
6-bit  
2 × [3 Data lanes + 1 Clock lane]  
DSI INFORMATION  
Number of DSI Lanes  
1 × [4 Data Lanes + 1 Clock Lane]  
DSI Input Clock Frequency  
Dual DSI Configuration (Odd/Even or Left/Right)  
490 MHz  
N/A  
9.2.1.2 Detailed Design Procedure  
The video resolution parameters required by the panel must be programmed into the SN65DSI85-Q1. For this  
example, the parameters programmed should be the following:  
Horizontal active = 1920 or 0x780  
CHA_ACTIVE_LINE_LENGTH_LOW = 0X80  
CHA_ACTIVE_LINE_LENGTH_HIGH = 0x07  
Horizontal pulse Width = 50 or 0x32  
CHA_HSYNC_PULSE_WIDTH_LOW = 0x32  
CHA_HSYNC_PULSE_WIDTH_HIGH= 0x00  
Horizontal back porch = Horizontal blanking – (Horizontal sync offset + Horizontal sync pulse width)  
Horizontal back porch = 144– (50 + 50)  
Horizontal back porch = 44 or 0x2C  
CHA_HORIZONTAL_BACK_PORCH = 0x2C  
Vertical pulse width = 5  
CHA_VSYNC_PULSE_WIDTH_LOW = 0x05  
CHA_VSYNC_PULSE_WIDTH_HIGH= 0x00  
The pattern generation feature can be enabled by setting the CHA_TEST_PATTERN bit at address 0x3C and  
configuring the following TEST PATTERN GENERATION PURPOSE ONLY registers.  
Vertical active = 1200 or 0x4B0  
CHA_VERTICAL_DISPLAY_SIZE_LOW = 0xB0  
CHA_VERTICAL_DISPLAY_SIZE_HIGH = 0x04  
Vertical back porch = Vertical blanking – (Vertical sync offset +Vertical sync pulse width)  
Vertical back porch = 20: (1 + 5)  
Vertical back porch = 14 or 0x0E  
CHA_VERTICAL_BACK_PORCH = 0x0E  
Horizontal front porch = Horizontal sync offset  
Horizontal front porch = 50 or 0x32  
CHA_HORIZONTAL_FRONT_PORCH = 0x32  
Copyright © 2016–2018, Texas Instruments Incorporated  
55  
SN65DSI85-Q1  
ZHCSFS6B JULY 2016REVISED JUNE 2018  
www.ti.com.cn  
Vertical front porch = Vertical sync offset  
Vertical front porch =1  
CHA_VERTICAL_FRONT_PORCH = 0x01  
In this example, the clock source for the SN65DSI85-Q1 is the DSI clock. When the MIPI D-PHY clock is used as  
the LVDS clock source, it is divided by the factor in DSI_CLK_DIVIDER (CSR 0x0B.7:3) to generate the LVDS  
output clock. Additionally, LVDS_CLK_RANGE (CSR 0x0A.3:1) and CH_DSI_CLK_RANGE(CSR 0x12) must be  
set to the frequency range of the LVDS output clock and DSI Channel A input clock respectively for the internal  
PLL to operate correctly. After these settings are programmed, PLL_EN (CSR 0x0D.0) should be set to enable  
the internal PLL.  
LVDS_CLK)RANGE = 010b – 62.5 MHz LVDS_CLK < 87.5 MHz  
HS_CLK_SRC = 1: LVDS pixel clock derived from MIPI D-PHY channel A HS continuous clock  
DSI_CLK_DIVIDER = 00101b – Divide by 6  
CHA_DSI_LANES = 00: Four lanes are enabled  
CHA_DSI_CLK_RANGE = 0x62 – 490 MHz frequency < 495 MHz  
9.2.1.2.1 Example Script  
<aardvark>  
<configure i2c="1" spi="1" gpio="0" tpower="1" pullups="1" />  
<i2c_bitrate khz="100" />  
=====SOFTRESET=======  
<i2c_write addr="0x2D" count="1" radix="16">09 01</i2c_write>  
<sleep ms="10" />  
======ADDR 0D======= ======PLL_EN(bit 0) - Enable LAST after addr 0A and 0B configured======  
<i2c_write addr="0x2D" count="1" radix="16">0D 00</i2c_write>  
<sleep ms="10" />  
======ADDR 0A======= ======HS_CLK_SRC bit0=== ======LVDS_CLK_Range bit 3:1======  
<i2c_write addr="0x2D" count="1" radix="16">0A 05</i2c_write>  
<sleep ms="10" />  
======ADDR 0B======= ======DSI_CLK_DIVIDER bit7:3===== ======RefCLK multiplier(bit1:0)====== ======00 -  
LVDSclk=source clk, 01 - x2, 10 -x3, 11 - x4======  
<i2c_write addr="0x2D" count="1" radix="16">0B 28</i2c_write>  
<sleep ms="10" />  
======ADDR 10======= ======DSI Ch Confg Left_Right Pixels(bit7 -  
0 for A ODD, B EVEN, 1 for the other config)====== ======DSI Ch Mode(bit6:5) 00 - Dual, 01 -  
single, 10 - two single ======= ======CHA_DSI_Lanes(bit4:3), CHB_DSI_Lanes(bit2:1), 00 - 4, 01 -  
3, 10 - 2, 11 - 1 ======SOT_ERR_TOL_DIS(bit0)=======  
<i2c_write addr="0x2D" count="1" radix="16">10 26</i2c_write>  
<sleep ms="10" />  
======ADDR 12=======  
<i2c_write addr="0x2D" count="1" radix="16">12 62</i2c_write>  
<sleep ms="10" />  
======ADDR 18======= ======bit7: DE_Pol, bit6:HS_Pol, bit5:VS_Pol, bit4: LVDS Link Cfg, bit3:CHA  
24bpp, bit2: CHB 24bpp, bit1: CHA 24bpp fmt1, bit0: CHB 24bpp fmt1======  
<i2c_write addr="0x2D" count="1" radix="16">18 63</i2c_write>  
<sleep ms="10" />  
======ADDR 19=======  
<i2c_write addr="0x2D" count="1" radix="16">19 00</i2c_write>  
<sleep ms="10" />  
======ADDR 1A=======  
<i2c_write addr="0x2D" count="1" radix="16">1A 03</i2c_write>  
<sleep ms="10" />  
======ADDR 20======= ======CHA_LINE_LENGTH_LOW========  
<i2c_write addr="0x2D" count="1" radix="16">20 80</i2c_write>  
<sleep ms="10" />  
======ADDR 21======= ======CHA_LINE_LENGTH_HIGH========  
<i2c_write addr="0x2D" count="1" radix="16">21 07</i2c_write>  
<sleep ms="10" />  
======ADDR 22======= ======CHB_LINE_LENGTH_LOW========  
<i2c_write addr="0x2D" count="1" radix="16">22 00</i2c_write>  
<sleep ms="10" />  
======ADDR 23======= ======CHB_LINE_LENGTH_HIGH========  
<i2c_write addr="0x2D" count="1" radix="16">23 00</i2c_write>  
<sleep ms="10" />  
======ADDR 24======= ======CHA_VERTICAL_DISPLAY_SIZE_LOW========  
56  
Copyright © 2016–2018, Texas Instruments Incorporated  
SN65DSI85-Q1  
www.ti.com.cn  
ZHCSFS6B JULY 2016REVISED JUNE 2018  
<i2c_write addr="0x2D" count="1" radix="16">24 00</i2c_write>  
<sleep ms="10" />  
======ADDR 25======= ======CHA_VERTICAL_DISPLAY_SIZE_HIGH========  
<i2c_write addr="0x2D" count="1" radix="16">25 00</i2c_write>  
<sleep ms="10" />  
======ADDR 26======= ======CHB_VERTICAL_DISPLAY_SIZE_LOW========  
<i2c_write addr="0x2D" count="1" radix="16">26 00</i2c_write>  
<sleep ms="10" />  
======ADDR 27======= ======CHB_VERTICAL_DISPLAY_SIZE_HIGH========  
<i2c_write addr="0x2D" count="1" radix="16">27 00</i2c_write>  
<sleep ms="10" />  
======ADDR 28======= ======CHA_SYNC_DELAY_LOW========  
<i2c_write addr="0x2D" count="1" radix="16">28 20</i2c_write>  
<sleep ms="10" />  
======ADDR 29======= ======CHA_SYNC_DELAY_HIGH========  
<i2c_write addr="0x2D" count="1" radix="16">29 00</i2c_write>  
<sleep ms="10" />  
======ADDR 2A======= ======CHB_SYNC_DELAY_LOW========  
<i2c_write addr="0x2D" count="1" radix="16">2A 00</i2c_write>  
<sleep ms="10" />  
======ADDR 2B======= ======CHB_SYNC_DELAY_HIGH========  
<i2c_write addr="0x2D" count="1" radix="16">2B 00</i2c_write>  
<sleep ms="10" />  
======ADDR 2C======= ======CHA_HSYNC_PULSE_WIDTH_LOW========  
<i2c_write addr="0x2D" count="1" radix="16">2C 32</i2c_write>  
<sleep ms="10" />  
======ADDR 2D======= ======CHA_HSYNC_PULSE_WIDTH_HIGH========  
<i2c_write addr="0x2D" count="1" radix="16">2D 00</i2c_write>  
<sleep ms="10" />  
======ADDR 2E======= ======CHB_HSYNC_PULSE_WIDTH_LOW========  
<i2c_write addr="0x2D" count="1" radix="16">2E 00</i2c_write>  
<sleep ms="10" />  
======ADDR 2F======= ======CHB_HSYNC_PULSE_WIDTH_HIGH========  
<i2c_write addr="0x2D" count="1" radix="16">2F 00</i2c_write>  
<sleep ms="10" />  
======ADDR 30======= ======CHA_VSYNC_PULSE_WIDTH_LOW========  
<i2c_write addr="0x2D" count="1" radix="16">30 05</i2c_write>  
<sleep ms="10" />  
======ADDR 31======= ======CHA_VSYNC_PULSE_WIDTH_HIGH========  
<i2c_write addr="0x2D" count="1" radix="16">31 00</i2c_write>  
<sleep ms="10" />  
======ADDR 32======= ======CHB_VSYNC_PULSE_WIDTH_LOW========  
<i2c_write addr="0x2D" count="1" radix="16">32 00</i2c_write>  
<sleep ms="10" />  
======ADDR 33======= ======CHB_VSYNC_PULSE_WIDTH_HIGH========  
<i2c_write addr="0x2D" count="1" radix="16">33 00</i2c_write>  
<sleep ms="10" />  
======ADDR 34======= ======CHA_HOR_BACK_PORCH========  
<i2c_write addr="0x2D" count="1" radix="16">34 2C</i2c_write>  
<sleep ms="10" />  
======ADDR 35======= ======CHB_HOR_BACK_PORCH========  
<i2c_write addr="0x2D" count="1" radix="16">35 00</i2c_write>  
<sleep ms="10" />  
======ADDR 36======= ======CHA_VER_BACK_PORCH========  
<i2c_write addr="0x2D" count="1" radix="16">36 00</i2c_write>  
<sleep ms="10" />  
======ADDR 37======= ======CHB_VER_BACK_PORCH========  
<i2c_write addr="0x2D" count="1" radix="16">37 00</i2c_write>  
<sleep ms="10" />  
======ADDR 38======= ======CHA_HOR_FRONT_PORCH========  
<i2c_write addr="0x2D" count="1" radix="16">38 00</i2c_write>  
<sleep ms="10" />  
======ADDR 39======= ======CHB_HOR_FRONT_PORCH========  
<i2c_write addr="0x2D" count="1" radix="16">39 00</i2c_write>  
<sleep ms="10" />  
======ADDR 3A======= ======CHA_VER_FRONT_PORCH========  
<i2c_write addr="0x2D" count="1" radix="16">3A 00</i2c_write>  
<sleep ms="10" />  
======ADDR 3B======= ======CHB_VER_FRONT_PORCH========  
<i2c_write addr="0x2D" count="1" radix="16">3B 00</i2c_write>  
<sleep ms="10" />  
======ADDR 3C======= ======CHA/CHB TEST PATTERN(bit4 CHA, bit0 CHB)========  
<i2c_write addr="0x2D" count="1" radix="16">3C 00</i2c_write>  
Copyright © 2016–2018, Texas Instruments Incorporated  
57  
SN65DSI85-Q1  
ZHCSFS6B JULY 2016REVISED JUNE 2018  
www.ti.com.cn  
<sleep ms="10" />  
=======ADDR 0D======= ======PLL_EN(bit 0) - Enable LAST after addr 0A and 0B configured======  
<i2c_write addr="0x2D" count="1" radix="16">0D 01</i2c_write>  
<sleep ms="10" />  
=====SOFTRESET=======  
<i2c_write addr="0x2D" count="1" radix="16">09 00</i2c_write>  
<sleep ms="10" />  
======write======  
<i2c_write addr="0x2D" count="196" radix="16">00</i2c_write>  
<sleep ms="10" />  
======Read======  
<i2c_read addr="0x2D" count="256" radix="16">00</i2c_read>  
<sleep ms="10" />  
</aardvark  
9.2.1.3 Application Curve  
SINGLE Channel DSI to DUAL Channel LVDS  
1440 × 1200  
Figure 68. Channel A LVDS Data Output 0 Eye Diagram  
58  
Copyright © 2016–2018, Texas Instruments Incorporated  
SN65DSI85-Q1  
www.ti.com.cn  
ZHCSFS6B JULY 2016REVISED JUNE 2018  
9.2.2 Typical WQXGA 24-bpp Application  
Figure 69 shows a typical application using the SN65DSI85-Q1 configured for a dual-channel DSI receiver to  
interface a dual-channel DSI application processor to an LVDS Dual-Link 24 bit-per-pixel panel supporting 2560  
× 1600 WQXGA resolutions at 60 frames per second.  
A_Y0N  
SN65DSI85-Q1  
100 Ω  
A_Y0P  
DA[3:0]P  
Application  
Processor  
A_Y1N  
DA[3:0]N  
100 Ω  
To odd pixel  
row and column  
drivers  
DACP  
DACN  
A_YNP  
A_Y2N  
A_Y2P  
100 Ω  
100 Ω  
100 Ω  
100 Ω  
100 Ω  
100 Ω  
100 Ω  
100 Ω  
DB[3:0]P  
DB[3:0]N  
A_CLKN  
A_CLKP  
A_Y3N  
DBCP  
DBCN  
A_Y3P  
B_Y0N  
B_Y0P  
B_Y1N  
B_Y1P  
SCL  
SDA  
IRQ  
EN  
To even pixel  
row and column  
drivers  
B_Y2N  
B_Y2P  
ADDR  
REFCLK  
GND  
B_CLKN  
B_CLKP  
B_Y3N  
1.8 V  
VCC  
B_Y3P  
C1  
Copyright © 2016, Texas Instruments Incorporated  
Figure 69. Typical WQXGA 24-bpp Panel Application  
9.2.2.1 Design Requirements  
Table 57 lists the design parameters for SN65DSI85-Q1.  
Table 57. Design Parameters  
DESIGN PARAMETER  
VCC  
EXAMPLE VALUE  
1.8 V (±5%)  
PANEL INFORMATION  
LVDS Output Clock Frequency  
Resolution  
154 MHz  
2560 x 1600  
Color Bit Depth (6 bpc or 8 bpc)  
Number of LVDS Lanes  
DSI INFORMATION  
Number of DSI Lanes  
DSI Input Clock Frequency  
8-bit  
2 × [4 Data lanes + 1 Clock lane]  
2 × [4 Data Lanes + 1 Clock Lane]  
500 MHz  
Copyright © 2016–2018, Texas Instruments Incorporated  
59  
 
 
SN65DSI85-Q1  
ZHCSFS6B JULY 2016REVISED JUNE 2018  
www.ti.com.cn  
10 Power Supply Recommendations  
10.1 VCC Power Supply  
Each VCC power supply pin must have a 100-nF capacitor to ground connected as close as possible to the  
SN65DSI85-Q1 device. TI recommends to have one bulk capacitor (1 μF to 10 μF) on the supply. TI also  
recommends to have the pins connected to a solid power plane.  
10.2 VCORE Power Supply  
This pin must have a 100-nF capacitor to ground connected as close as possible to the SN65DSI85-Q1 device.  
TI recommends to have one bulk capacitor (1 μF to 10 μF) on the supply. TI also recommends to have the pins  
connected to a solid power plane.  
11 Layout  
11.1 Layout Guidelines  
11.1.1 Package Specific  
For the PAP package, to minimize the power supply noise floor, provide good decoupling near the SN65DSI85-  
Q1 device power pins. The use of four ceramic capacitors (2 × 0.1 μF and 2 × 0.01 μF) provides good  
performance. At the least, TI recommends to install one 0.1-μF and one 0.01-μF capacitor near the SN65DSI85-  
Q1 device. To avoid large current loops and trace inductance, the trace length between decoupling capacitor and  
device power inputs pins must be minimized. Placing the capacitor underneath the SN65DSI85-Q1 device on the  
bottom of the PCB is often a good choice.  
11.1.2 Differential pairs  
Differential pairs must be routed with controlled 100-Ω differential impedance (±20%) or 50-Ω single-ended  
impedance (±15%).  
Keep away from other high speed signals.  
Keep lengths to within 5 mils of each other.  
Length matching must be near the location of mismatch.  
Each pair must be separated at least by 3 times the signal trace width.  
The use of bends in differential traces must be kept to a minimum. When bends are used, the number of left  
and right bends must be as equal as possible and the angle of the bend must be 135 degrees. This  
arrangement minimizes any length mismatch caused by the bends and therefore minimizes the impact that  
bends have on EMI.  
Route all differential pairs on the same of layer.  
The number of vias must be kept to a minimum. TI recommends to keep the via count to 2 or less.  
Keep traces on layers adjacent to ground plane.  
Do NOT route differential pairs over any plane split.  
Adding test points causes impedance discontinuity and therefore negatively impacts signal performance. If  
test points are used, they must be placed in series and symmetrically. They must not be placed in a manner  
that causes a stub on the differential pair.  
11.1.3 Ground  
TI recommends that only one board ground plane be used in the design which provides the best image plane for  
signal traces running above the plane. The thermal pad of the SN65DSI85-Q1 must be connected to this plane  
with vias.  
60  
Copyright © 2016–2018, Texas Instruments Incorporated  
SN65DSI85-Q1  
www.ti.com.cn  
ZHCSFS6B JULY 2016REVISED JUNE 2018  
11.2 Layout Example  
Place V decoupling capacitors  
CC  
as close to V as possible  
CC  
V
1.8 V  
V
1.8 V  
CC  
CC  
1 µF  
B_Y3P  
B_Y3N  
DA3N  
DA3P  
DA2N  
DA2P  
GND  
B_CLKP  
B_CLKN  
GND  
GND  
V
1.8 V  
1.8 V  
CC  
B_Y2P  
B_Y2N  
DACN  
DACP  
GND  
V
V
CC  
B_Y1P  
B_Y1N  
B_Y0P  
B_Y0N  
DA1N  
DA1P  
DA0N  
DA0P  
1.8 V  
V
1.8 V  
CC  
CC  
GND  
4.7 kΩ  
10 kΩ  
V
1.8 V  
CC  
1
SDA  
SCL  
4.7 kΩ  
4.7 kΩ  
V
V
1.8 V  
CC  
CC  
1.8 V  
Differential pairs must be routed with controlled  
100-differential impedance  
Figure 70. SN65DSI85-Q1 Layout Example  
版权 © 2016–2018, Texas Instruments Incorporated  
61  
SN65DSI85-Q1  
ZHCSFS6B JULY 2016REVISED JUNE 2018  
www.ti.com.cn  
12 器件和文档支持  
12.1 文档支持  
12.1.1 相关文档  
请参阅如下相关文档:  
SN65DSI8x 视频配置指南和配置工具用户手册(文献编号:SLLA332)  
SN65DSI83SN65DSI84 SN65DSI85 硬件实现指南(文献编号:SLLA340)  
12.2 接收文档更新通知  
要接收文档更新通知,请导航至 TI.com.cn 上的器件产品文件夹。单击右上角的通知我 进行注册,即可每周接收产  
品信息更改摘要。有关更改的详细信息,请查阅已修订文档中包含的修订历史记录。  
12.3 社区资源  
下列链接提供到 TI 社区资源的连接。链接的内容由各个分销商按照原样提供。这些内容并不构成 TI 技术规范,  
并且不一定反映 TI 的观点;请参阅 TI 《使用条款》。  
TI E2E™ 在线社区 TI 的工程师对工程师 (E2E) 社区。此社区的创建目的在于促进工程师之间的协作。在  
e2e.ti.com 中,您可以咨询问题、分享知识、拓展思路并与同行工程师一道帮助解决问题。  
设计支持  
TI 参考设计支持 可帮助您快速查找有帮助的 E2E 论坛、设计支持工具以及技术支持的联系信息。  
12.4 商标  
PowerPAD, E2E are trademarks of Texas Instruments.  
MIPI is a registered trademark of Arasan Chip Systems, Inc..  
All other trademarks are the property of their respective owners.  
12.5 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
12.6 术语表  
SLYZ022 TI 术语表。  
这份术语表列出并解释术语、缩写和定义。  
13 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,且  
不会对此文档进行修订。如需获取此产品说明书的浏览器版本,请查阅左侧的导航栏。  
62  
版权 © 2016–2018, Texas Instruments Incorporated  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
SN65DSI85TPAPRQ1  
ACTIVE  
HTQFP  
PAP  
64  
1000 RoHS & Green  
NIPDAU  
Level-3-260C-168 HR  
-40 to 105  
DSI85TQ1  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
16-May-2021  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
SN65DSI85TPAPRQ1  
HTQFP  
PAP  
64  
1000  
330.0  
24.4  
13.0  
13.0  
1.5  
16.0  
24.0  
Q2  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
16-May-2021  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
HTQFP PAP 64  
SPQ  
Length (mm) Width (mm) Height (mm)  
367.0 367.0 55.0  
SN65DSI85TPAPRQ1  
1000  
Pack Materials-Page 2  
GENERIC PACKAGE VIEW  
PAP 64  
10 x 10, 0.5 mm pitch  
HTQFP - 1.2 mm max height  
QUAD FLATPACK  
This image is a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4226442/A  
www.ti.com  
PACKAGE OUTLINE  
TM  
PAP0064Q  
PowerPAD TQFP - 1.2 mm max height  
SCALE 1.300  
PLASTIC QUAD FLATPACK  
10.2  
9.8  
B
NOTE 3  
64  
49  
PIN 1 ID  
1
48  
10.2  
9.8  
12.2  
TYP  
11.8  
NOTE 3  
16  
33  
17  
32  
A
0.27  
64X  
60X 0.5  
0.17  
0.08  
C A B  
4X 7.5  
C
SEATING PLANE  
1.2 MAX  
(0.127)  
TYP  
SEE DETAIL A  
17  
32  
0.25  
GAGE PLANE  
(1)  
4X 0.4 MAX  
NOTE 4  
33  
16  
4X 0.31 MAX  
NOTE 4  
0.15  
0.05  
0.08 C  
0 -7  
0.75  
0.45  
3.30  
2.62  
DETAIL A  
65  
A
17  
4X (0.18)  
NOTE 4  
TYPICAL  
4X (0.18)  
NOTE 4  
1
48  
49  
64  
4223672/A 04/2017  
PowerPAD is a trademark of Texas Instruments.  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs.  
4. Strap features may not be present.  
5. Reference JEDEC registration MS-026.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
TM  
PAP0064Q  
PowerPAD TQFP - 1.2 mm max height  
PLASTIC QUAD FLATPACK  
(
8)  
NOTE 8  
(
3.3)  
SYMM  
SOLDER MASK  
49  
64  
DEFINED PAD  
64X (1.5)  
(R0.05)  
TYP  
1
48  
64X (0.3)  
65  
(11.4)  
SYMM  
(1.3 TYP)  
60X (0.5)  
33  
16  
(
0.2) TYP  
VIA  
METAL COVERED  
BY SOLDER MASK  
17  
32  
SEE DETAILS  
(1.3 TYP)  
(11.4)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:6X  
0.05 MAX  
ALL AROUND  
0.05 MIN  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL  
EXPOSED METAL  
EXPOSED METAL  
METAL UNDER  
SOLDER MASK  
SOLDER MASK  
OPENING  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
4223672/A 04/2017  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
8. This package is designed to be soldered to a thermal pad on the board. See technical brief, Powerpad thermally enhanced package,  
Texas Instruments Literature No. SLMA002 (www.ti.com/lit/slma002) and SLMA004 (www.ti.com/lit/slma004).  
9. Vias are optional depending on application, refer to device data sheet. It is recommended that vias under paste be filled,  
plugged or tented.  
10. Size of metal pad may vary due to creepage requirement.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
TM  
PAP0064Q  
PowerPAD TQFP - 1.2 mm max height  
PLASTIC QUAD FLATPACK  
(
3.3)  
BASED ON  
0.125 THICK STENCIL  
SYMM  
SEE TABLE FOR  
DIFFERENT OPENINGS  
FOR OTHER STENCIL  
THICKNESSES  
64  
49  
64X (1.5)  
1
48  
64X (0.3)  
(R0.05) TYP  
SYMM  
65  
(11.4)  
60X (0.5)  
33  
16  
METAL COVERED  
BY SOLDER MASK  
17  
32  
(11.4)  
SOLDER PASTE EXAMPLE  
EXPOSED PAD  
100% PRINTED SOLDER COVERAGE BY AREA  
SCALE:6X  
STENCIL  
THICKNESS  
SOLDER STENCIL  
OPENING  
0.1  
3.69 X 3.69  
3.3 X 3.3 (SHOWN)  
3.01 X 3.01  
0.125  
0.15  
0.175  
2.79 X 2.79  
4223672/A 04/2017  
NOTES: (continued)  
11. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
12. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI 提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,不保证没  
有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。这些资源如有变更,恕不另行通知。TI 授权您仅可  
将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。您无权使用任何其他 TI 知识产权或任何第三方知  
识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款 (https:www.ti.com.cn/zh-cn/legal/termsofsale.html) ti.com.cn 上其他适用条款/TI 产品随附的其他适用条款  
的约束。TI 提供这些资源并不会扩展或以其他方式更改 TI 针对 TI 产品发布的适用的担保或担保免责声明。IMPORTANT NOTICE  
邮寄地址:上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码:200122  
Copyright © 2021 德州仪器半导体技术(上海)有限公司  

相关型号:

SN65DSI85ZQE

MIPI DSI BRIDGE TO FLATLINK LVDS Dual Channel DSI to Dual-Link LVDS Bridge
TI

SN65DSI85ZQER

MIPI DSI BRIDGE TO FLATLINK LVDS Dual Channel DSI to Dual-Link LVDS Bridge
TI

SN65DSI85ZQET

IC SPECIALTY TELECOM CIRCUIT, Telecom IC:Other
TI

SN65DSI85ZXHR

双通道 MIPI® DSI 转双链路 FlatLink™ LVDS 桥接器 | ZXH | 64 | -40 to 85
TI

SN65DSI86

Embedded DisplayPort (eDP) 1.4 Compliant Supporting 1, 2, or 4 Lanes at 1.62Gbps (RBR)
TI

SN65DSI86-Q1

汽车类 MIPI® DSI 桥接转 eDP
TI

SN65DSI86IPAPQ1

汽车类 MIPI® DSI 桥接转 eDP | PAP | 64 | -40 to 85
TI

SN65DSI86IPAPRQ1

汽车类 MIPI® DSI 桥接转 eDP | PAP | 64 | -40 to 85
TI

SN65DSI86ZQER

Embedded DisplayPort (eDP) 1.4 Compliant Supporting 1, 2, or 4 Lanes at 1.62Gbps (RBR)
TI

SN65DSI86ZXHR

双通道 MIPI® DSI 转嵌入式 DisplayPort™ (eDP) 桥接器 | ZXH | 64 | -40 to 85
TI

SN65DSI96

Embedded DisplayPort (eDP) 1.4 Compliant Supporting 1, 2, or 4 Lanes at 1.62Gbps (RBR)
TI

SN65DSI96ZQER

Embedded DisplayPort (eDP) 1.4 Compliant Supporting 1, 2, or 4 Lanes at 1.62Gbps (RBR)
TI