SN65HVD10-EP_14 [TI]

3.3 V RS-485 TRANSCEIVERS;
SN65HVD10-EP_14
型号: SN65HVD10-EP_14
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

3.3 V RS-485 TRANSCEIVERS

文件: 总25页 (文件大小:528K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
SN65HVD10, SN65HVD10Q, SN75HVD10  
SN65HVD11, SN65HVD11Q, SN75HVD11  
SN65HVD12, SN75HVD12  
www.ti.com  
SLLS505IFEBRUARY 2002REVISED JULY 2006  
3.3-V RS-485 TRANSCEIVERS  
FEATURES  
DESCRIPTION  
Operates With a 3.3-V Supply  
The SN65HVD10, SN75HVD10, SN65HVD11,  
SN75HVD11, SN65HVD12, and SN75HVD12  
Bus-Pin ESD Protection Exceeds 16 kV HBM  
combine  
a 3-state differential line driver and  
1/8 Unit-Load Option Available (Up to 256  
Nodes on the Bus)  
differential input line receiver that operate with a  
single 3.3-V power supply. They are designed for  
balanced transmission lines and meet or exceed  
ANSI standard TIA/EIA-485-A and ISO 8482:1993.  
These differential bus transceivers are monolithic  
integrated circuits designed for bidirectional data  
communication on multipoint bus-transmission lines.  
The drivers and receivers have active-high and  
active-low enables respectively, that can be  
externally connected together to function as direction  
control. Very low device standby supply current can  
be achieved by disabling the driver and the receiver.  
Optional Driver Output Transition Times for  
Signaling Rates (1) of 1 Mbps, 10 Mbps, and  
32 Mbps  
Meets or Exceeds the Requirements of ANSI  
TIA/EIA-485-A  
Bus-Pin Short Circuit Protection From -7 V to  
12 V  
Low-Current Standby Mode . . . 1 µA Typical  
Open-Circuit, Idle-Bus, and Shorted-Bus  
Failsafe Receiver  
The driver differential outputs and receiver  
differential inputs connect internally to form  
a
Thermal Shutdown Protection  
differential input/ output (I/O) bus port that is  
designed to offer minimum loading to the bus  
whenever the driver is disabled or VCC = 0. These  
Glitch-Free Power-Up and Power-Down  
Protection for Hot-Plugging Applications  
SN75176 Footprint  
parts feature wide positive and  
negative  
common-mode voltage ranges, making them suitable  
for party-line applications.  
APPLICATIONS  
Digital Motor Control  
Utility Meters  
Chassis-to-Chassis Interconnects  
Electronic Security Stations  
Industrial Process Control  
Building Automation  
D OR P PACKAGE  
(TOP VIEW)  
R
RE  
DE  
D
V
B
A
1
2
3
4
8
7
6
5
CC  
GND  
Point-of-Sale (POS) Terminals and Networks  
1
2
R
RE  
3
4
DE  
D
6
A
(1) The signaling rate of a line is the number of voltage  
transitions that are made per second expressed in the units  
bps (bits per second).  
7
B
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas  
Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
PRODUCTION DATA information is current as of publication date.  
Copyright © 2002–2006, Texas Instruments Incorporated  
Products conform to specifications per the terms of the Texas  
Instruments standard warranty. Production processing does not  
necessarily include testing of all parameters.  
SN65HVD10, SN65HVD10Q, SN75HVD10  
SN65HVD11, SN65HVD11Q, SN75HVD11  
SN65HVD12, SN75HVD12  
www.ti.com  
SLLS505IFEBRUARY 2002REVISED JULY 2006  
These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam  
during storage or handling to prevent electrostatic damage to the MOS gates.  
ORDERING INFORMATION  
PACKAGE  
SIGNALING  
RATE  
UNIT LOADS  
TA  
SOIC MARKING  
SOIC(1)  
PDIP  
32 Mbps  
10 Mbps  
1 Mbps  
1/2  
1/8  
1/8  
1/2  
1/8  
1/8  
1/2  
1/8  
SN65HVD10D  
SN65HVD11D  
SN65HVD12D  
SN75HVD10D  
SN75HVD11D  
SN75HVD12D  
SN65HVD10QD  
SN65HVD11QD  
SN65HVD10P  
SN65HVD11P  
SN65HVD12P  
SN75HVD10P  
SN75HVD11P  
SN75HVD12P  
SN65HVD10QP  
SN65HVD11QP  
VP10  
VP11  
-40°C to 85°C  
VP12  
32 Mbps  
10 Mbps  
1 Mbps  
VN10  
VN11  
VN12  
VP10Q  
VP11Q  
-0°C to 70°C  
32 Mbps  
10 Mbps  
-40°C to 125°C  
(1) The D package is available taped and reeled. Add an R suffix to the part number (i.e., SN75HVD11DR).  
ABSOLUTE MAXIMUM RATINGS  
over operating free-air temperature range unless otherwise noted  
(1)(2)  
SN65HVD10, SN75HVD10,  
SN65HVD11, SN75HVD11,  
SN65HVD12, SN75HVD12  
UNIT  
-0.3 V to 6 V  
-9 V to 14 V  
-0.5 V to VCC + 0.5 V  
-50 V to 50 V  
-11 mA to 11 mA  
16 kV  
VCC Supply voltage range  
Voltage range at A or B  
Input voltage range at D, DE, R or RE  
Voltage input range, transient pulse, A and B, through 100 , see Figure 11  
IO  
Receiver output current  
A, B, and GND  
All pins  
Human body model(3)  
Electrostatic discharge  
4 kV  
Charged-device model(4) All pins charge  
1 kV  
Continuous total power dissipation  
Junction temperature  
See Dissipation Rating Table  
170°  
TJ  
(1) Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings  
only, and functional operation of the device at these or any other conditions beyond those indicated under recommended operating  
conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) All voltage values, except differential I/O bus voltages, are with respect to network ground terminal.  
(3) Tested in accordance with JEDEC Standard 22, Test Method A114-A.  
(4) Tested in accordance with JEDEC Standard 22, Test Method C101.  
PACKAGE DISSIPATION RATINGS  
PACKAGE  
TA 25°C  
DERATING FACTOR(1)  
TA = 70°C  
TA = 85°C  
TA = 125°C  
POWER RATING  
ABOVE TA = 25°C  
POWER RATING  
POWER RATING  
POWER RATING  
D(2)  
D(3)  
P
597 mW  
4.97 mW/°C  
8.26 mW/°C  
10.75 mW/°C  
373 mW  
620 mW  
806 mW  
298 mW  
496 mW  
645 mW  
100 mW  
165 mW  
215 mW  
990 mW  
1290 mW  
(1) This is the inverse of the junction-to-ambient thermal resistance when board-mounted and with no air flow.  
(2) Tested in accordance with the Low-K thermal metric definitions of EIA/JESD51-3.  
(3) Tested in accordance with the High-K thermal metric definitions of EIA/JESD51-7.  
2
Submit Documentation Feedback  
SN65HVD10, SN65HVD10Q, SN75HVD10  
SN65HVD11, SN65HVD11Q, SN75HVD11  
SN65HVD12, SN75HVD12  
www.ti.com  
SLLS505IFEBRUARY 2002REVISED JULY 2006  
RECOMMENDED OPERATING CONDITIONS  
over operating free-air temperature range unless otherwise noted  
MIN  
3
-7(1)  
NOM  
MAX  
3.6  
12  
UNIT  
VCC  
Supply voltage  
VI or VIC Voltage at any bus terminal (separately or common mode)  
VIH  
VIL  
VID  
High-level input voltage  
Low-level input voltage  
Differential input voltage  
D, DE, RE  
D, DE, RE  
Figure 7  
Driver  
2
VCC  
0.8  
12  
V
0
-12  
-60  
-8  
IOH  
High-level output current  
Low-level output current  
mA  
mA  
Receiver  
Driver  
60  
8
IOL  
Receiver  
RL  
CL  
Differential load resistance  
Differential load capacitance  
54  
60  
50  
pF  
HVD10  
HVD11  
HVD12  
32  
10  
Signaling rate  
Mbps  
1
(2)  
TJ  
Junction temperature  
145  
°C  
(1) The algebraic convention, in which the least positive (most negative) limit is designated as minimum is used in this data sheet.  
(2) See thermal characteristics table for information regarding this specification.  
DRIVER ELECTRICAL CHARACTERISTICS  
over recommended operating conditions unless otherwise noted  
PARAMETER  
Input clamp voltage  
TEST CONDITIONS  
MIN TYP(1) MAX UNIT  
VIK  
II = -18 mA  
IO = 0  
-1.5  
2
V
VCC  
|VOD  
|
Differential output voltage(2)  
RL = 54 , See Figure 1  
1.5  
1.5  
V
Vtest = -7 V to 12 V, See Figure 2  
Change in magnitude of differential output  
voltage  
|VOD  
|
See Figure 1 and Figure 2  
-0.2  
0.2  
V
VOC(PP)  
VOC(SS)  
Peak-to-peak common-mode output voltage  
Steady-state common-mode output voltage  
400  
mV  
V
1.4  
2.5  
See Figure 3  
Change in steady-state common-mode output  
voltage  
VOC(SS)  
-0.05  
0.05  
V
IOZ  
High-impedance output current  
See receiver input currents  
D
-100  
0
0
100  
250  
II  
Input current  
DE  
µA  
IOS  
Short-circuit output current  
-7 V VO 12 V  
-250  
mA  
pF  
C(OD)  
Differential output capacitance  
VOD = 0.4 sin (4E6πt) + 0.5 V, DE at 0 V  
16  
9
RE at VCC  
,
Receiver disabled and  
driver enabled  
D & DE at VCC,  
No load  
15.5  
5
mA  
RE at VCC  
,
D at VCC  
,
Receiver disabled and  
driver disabled (standby)  
ICC  
Supply current  
1
9
µA  
DE at 0 V,  
No load  
RE at 0 V,  
D & DE at VCC  
No load  
Receiver enabled and  
driver enabled  
,
15.5  
mA  
(1) All typical values are at 25°C and with a 3.3-V supply.  
(2) For TA > 85°C, VCC is ±5%.  
3
Submit Documentation Feedback  
SN65HVD10, SN65HVD10Q, SN75HVD10  
SN65HVD11, SN65HVD11Q, SN75HVD11  
SN65HVD12, SN75HVD12  
www.ti.com  
SLLS505IFEBRUARY 2002REVISED JULY 2006  
DRIVER SWITCHING CHARACTERISTICS  
over recommended operating conditions unless otherwise noted  
PARAMETER  
TEST CONDITIONS  
MIN TYP(1)  
MAX UNIT  
HVD10  
5
18  
135  
5
8.5  
25  
16  
tPLH  
tPHL  
tr  
Propagation delay time, low-to-high-level output  
Propagation delay time, high-to-low-level output  
Differential output signal rise time  
Differential output signal fall time  
Pulse skew (|tPHL - tPLH|)  
HVD11  
HVD12  
HVD10  
HVD11  
HVD12  
HVD10  
HVD11  
HVD12  
HVD10  
HVD11  
HVD12  
HVD10  
HVD11  
HVD12  
HVD10  
HVD11  
HVD12  
HVD10  
HVD11  
HVD12  
HVD10  
HVD11  
HVD12  
HVD10  
HVD11  
HVD12  
HVD10  
HVD11  
HVD12  
40  
300  
16  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
200  
8.5  
25  
18  
135  
3
40  
200  
4.5  
20  
300  
10  
RL = 54 , CL = 50 pF,  
See Figure 4  
10  
100  
3
30  
170  
4.5  
20  
300  
10  
tf  
10  
100  
30  
170  
300  
1.5  
2.5  
7
tsk(p)  
tsk(pp)  
tPZH  
tPHZ  
tPZL  
tPLZ  
6
(2)  
Part-to-part skew  
11  
100  
31  
Propagation delay time,  
high-impedance-to-high-level output  
55  
300  
25  
RL = 110 , RE at 0 V,  
See Figure 5  
Propagation delay time,  
high-level-to-high-impedance output  
55  
300  
26  
Propagation delay time,  
high-impedance-to-low-level output  
55  
300  
26  
RL = 110 , RE at 0 V,  
See Figure 6  
Propagation delay time,  
low-level-to-high-impedance output  
75  
400  
RL = 110 , RE at 3 V,  
See Figure 5  
tPZH  
tPZL  
Propagation delay time, standby-to-high-level output  
Propagation delay time, standby-to-low-level output  
6
6
µs  
µs  
RL = 110 , RE at 3 V,  
See Figure 6  
(1) All typical values are at 25°C and with a 3.3-V supply.  
(2) tsk(pp) is the magnitude of the difference in propagation delay times between any specified terminals of two devices when both devices  
operate with the same supply voltages, at the same temperature, and have identical packages and test circuits.  
4
Submit Documentation Feedback  
SN65HVD10, SN65HVD10Q, SN75HVD10  
SN65HVD11, SN65HVD11Q, SN75HVD11  
SN65HVD12, SN75HVD12  
www.ti.com  
SLLS505IFEBRUARY 2002REVISED JULY 2006  
RECEIVER ELECTRICAL CHARACTERISTICS  
over recommended operating conditions unless otherwise noted  
PARAMETER  
TEST CONDITIONS  
MIN TYP(1)  
MAX UNIT  
Positive-going input threshold  
voltage  
VIT+  
VIT-  
IO = -8 mA  
IO = 8 mA  
-0.01  
V
Negative-going input threshold  
voltage  
-0.2  
Vhys  
VIK  
Hysteresis voltage (VIT+ - VIT-  
Enable-input clamp voltage  
High-level output voltage  
Low-level output voltage  
)
35  
mV  
V
II = -18 mA  
-1.5  
2.4  
VOH  
VOL  
IOZ  
VID = 200 mV,  
VID = -200 mV,  
IOH = -8 mA,  
IOL = 8 mA,  
RE at VCC  
See Figure 7  
See Figure 7  
V
0.4  
1
V
High-impedance-state output current VO = 0 or VCC  
VA or VB = 12 V  
-1  
µA  
0.05  
0.06  
0.11  
0.13  
VA or VB = 12 V, VCC = 0 V  
VA or VB = -7 V  
HVD11, HVD12,  
Other input at 0 V  
mA  
mA  
-0.1  
-0.05  
-0.04  
0.2  
VA or VB = -7 V,  
VA or VB = 12 V  
VCC = 0 V  
-0.05  
II  
Bus input current  
0.5  
0.5  
VA or VB = 12 V, VCC = 0 V  
VA or VB = -7 V  
0.25  
-0.2  
HVD10,  
Other input at 0 V  
-0.4  
-0.4  
-30  
-30  
VA or VB = -7 V,  
VIH = 2 V  
VCC = 0 V  
-0.15  
IIH  
High-level input current, RE  
Low-level input current, RE  
Differential input capacitance  
0
0
µA  
µA  
pF  
IIL  
VIL = 0.8 V  
CID  
VID = 0.4 sin (4E6πt) + 0.5 V, DE at 0 V  
15  
4
RE at 0 V,  
D & DE at 0 V,  
No load  
Receiver enabled and driver  
disabled  
8
5
mA  
RE at VCC  
,
D at VCC  
,
Receiver disabled and driver  
disabled (standby)  
ICC  
Supply current  
1
9
µA  
DE at 0 V,  
No load  
RE at 0 V,  
D & DE at VCC  
No load  
Receiver enabled and driver  
enabled  
,
15.5  
mA  
(1) All typical values are at 25°C and with a 3.3-V supply.  
5
Submit Documentation Feedback  
SN65HVD10, SN65HVD10Q, SN75HVD10  
SN65HVD11, SN65HVD11Q, SN75HVD11  
SN65HVD12, SN75HVD12  
www.ti.com  
SLLS505IFEBRUARY 2002REVISED JULY 2006  
RECEIVER SWITCHING CHARACTERISTICS  
over recommended operating conditions unless otherwise noted  
PARAMETER  
TEST CONDITIONS  
MIN TYP(1)  
MAX UNIT  
tPLH  
tPHL  
Propagation delay time, low-to-high-level output HVD10  
Propagation delay time, high-to-low-level output HVD10  
12.5  
12.5  
20  
20  
25  
ns  
25  
HVD11  
Propagation delay time, low-to-high-level output  
HVD12  
tPLH  
tPHL  
30  
30  
55  
55  
70  
70  
ns  
ns  
VID = -1.5 V to 1.5 V,  
CL = 15 pF,  
See Figure 8  
HVD11  
Propagation delay time, high-to-low-level output  
HVD12  
HVD10  
1.5  
4
tsk(p)  
Pulse skew (|tPHL - tPLH|)  
Part-to-part skew  
HVD11  
HVD12  
HVD10  
HVD11  
HVD12  
ns  
4
8
(2)  
tsk(pp)  
15  
15  
5
ns  
ns  
tr  
tf  
Output signal rise time  
1
1
2
2
CL = 15 pF,  
See Figure 8  
Output signal fall time  
5
(1)  
tPZH  
tPZL  
tPHZ  
tPLZ  
tPZH  
tPZL  
Output enable time to high level  
Output enable time to low level  
Output disable time from high level  
Output disable time from low level  
15  
15  
20  
15  
6
(1)  
CL = 15 pF, DE at 3 V,  
See Figure 9  
ns  
µs  
(2)  
(2)  
Propagation delay time, standby-to-high-level output  
Propagation delay time, standby-to-low-level output  
CL = 15 pF, DE at 0,  
See Figure 10  
6
(1) All typical values are at 25°C and with a 3.3-V supply  
(2) tsk(pp) is the magnitude of the difference in propagation delay times between any specified terminals of two devices when both devices  
operate with the same supply voltages, at the same temperature, and have identical packages and test circuits.  
THERMAL CHARACTERISTICS  
over operating free-air temperature range unless otherwise noted  
(1)  
PARAMETER  
TEST CONDITIONS  
High–K board(3), No airflow  
No airflow(4)  
MIN  
TYP  
121  
93  
MAX  
UNIT  
D pkg  
P pkg  
D pkg  
P pkg  
D pkg  
P pkg  
Junction–to–ambient thermal  
resistance(2)  
θJA  
θJB  
θJC  
High–K board  
67  
Junction–to–board thermal  
resistance  
°C/W  
(4)  
See  
57  
41  
Junction–to–case thermal  
resistance  
55  
HVD10  
(32 Mbps)  
198  
250  
176  
161  
RL= 60 , CL = 50 pF,  
DE at VCC, RE at 0 V,  
Input to D a 50% duty cycle square  
wave at indicated signaling rate  
HVD11  
(10 Mbps)  
141  
133  
PD  
Device power dissipation  
Ambient air temperature  
mW  
HVD12  
(500 kbps)  
High–K board, No airflow  
No airflow(4)  
D pkg  
P pkg  
-40  
-40  
116  
123  
TA  
°C  
TJSD Thermal shutdown junction temperature  
165  
(1) See Application Information section for an explanation of these parameters.  
(2) The intent of θJA specification is solely for a thermal performance comparison of one package to another in a standardized environment.  
This methodology is not meant to and will not predict the performance of a package in an application-specific environment.  
(3) JSD51–7, High Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages.  
(4) JESD51–10, Test Boards for Through-Hole Perimeter Leaded Package Thermal Measurements.  
6
Submit Documentation Feedback  
SN65HVD10, SN65HVD10Q, SN75HVD10  
SN65HVD11, SN65HVD11Q, SN75HVD11  
SN65HVD12, SN75HVD12  
www.ti.com  
SLLS505IFEBRUARY 2002REVISED JULY 2006  
PARAMETER MEASUREMENT INFORMATION  
V
CC  
375 ±1%  
V
CC  
I
I
DE  
OA  
I
I
DE  
A
B
A
B
D
V
OD  
54 ±1%  
0 or 3 V  
V
OD  
60 ±1%  
0 or 3 V  
+
_
−7 V < V  
< 12 V  
OB  
(test)  
V
I
375 ±1%  
V
OB  
V
OA  
Figure 1. Driver VOD Test Circuit and Voltage and  
Current Definitions  
Figure 2. Driver VOD With Common-Mode Loading Test  
Circuit  
V
A
B
A
V
CC  
27 Ω ± 1%  
27 Ω ± 1%  
V
B
DE  
A
B
D
V
OC(PP)  
V  
OC(SS)  
Input  
V
OC  
V
C
L
= 50 pF ±20%  
OC  
C
L
Includes Fixture and  
Instrumentation Capacitance  
Input: PRR = 500 kHz, 50% Duty Cycle,t <6ns, t <6ns, Z = 50 Ω  
r
f
O
Figure 3. Test Circuit and Definitions for the Driver Common-Mode Output Voltage  
3 V  
V
CC  
1.5 V  
1.5 V  
V
I
DE  
C
C
= 50 pF ±20%  
L
A
B
V
OD  
D
t
t
PHL  
Includes Fixture  
and Instrumentation  
Capacitance  
PLH  
L
2 V  
Input  
Generator  
R
± 1%  
= 54 Ω  
90%  
90%  
L
V
I
50 Ω  
0 V  
10%  
0 V  
10%  
V
OD  
–2 V  
t
r
t
f
Generator: PRR = 500 kHz, 50% Duty Cycle, t <6 ns, t <6 ns, Z = 50 Ω  
r
f
o
Figure 4. Driver Switching Test Circuit and Voltage Waveforms  
3 V  
0 V  
A
S1  
D
V
O
V
1.5 V  
1.5 V  
I
3 V  
B
DE  
0.5 V  
R = 110 Ω  
L
C = 50 pF ±20%  
L
t
PZH  
Input  
Generator  
± 1%  
V
OH  
V
I
C Includes Fixture  
L
and Instrumentation  
Capacitance  
50 Ω  
V
O
2.3 V  
0 V  
t
PHZ  
Generator: PRR = 500 kHz, 50% Duty Cycle, t <6 ns, t <6 ns, Z = 50 Ω  
r
f
o
Figure 5. Driver High-Level Enable and Disable Time Test Circuit and Voltage Waveforms  
7
Submit Documentation Feedback  
SN65HVD10, SN65HVD10Q, SN75HVD10  
SN65HVD11, SN65HVD11Q, SN75HVD11  
SN65HVD12, SN75HVD12  
www.ti.com  
SLLS505IFEBRUARY 2002REVISED JULY 2006  
PARAMETER MEASUREMENT INFORMATION (continued)  
3 V  
R
± 1%  
= 110 Ω  
L
3 V  
A
V
I
1.5 V  
1.5 V  
S1  
D
V
O
3 V  
0 V  
B
C
t
t
PLZ  
PZL  
DE  
50 Ω  
3 V  
= 50 pF ±20%  
Input  
Generator  
L
V
I
0.5 V  
C
Includes Fixture  
L
V
O
2.3 V  
and Instrumentation  
Capacitance  
V
OL  
Generator: PRR = 500 kHz, 50% Duty Cycle, t <6 ns, t <6 ns, Z = 50 Ω  
r
f
o
Figure 6. Driver Low-Level Output Enable and Disable Time Test Circuit and Voltage Waveforms  
I
A
A
B
I
O
R
V
A
V
I
ID  
V
B
V
IC  
V
O
B
V
A
+ V  
2
B
Figure 7. Receiver Voltage and Current Definitions  
A
V
O
R
Input  
Generator  
V
I
50  
B
1.5 V  
0 V  
C = 15 pF ±20%  
L
RE  
C Includes Fixture  
L
and Instrumentation  
Capacitance  
Generator: PRR = 500 kHz, 50% Duty Cycle, t <6 ns, t <6 ns, Z = 50 Ω  
r
f
o
3 V  
1.5 V  
1.5 V  
V
I
0 V  
t
t
PHL  
PLH  
V
V
OH  
90% 90%  
V
O
1.5 V  
10%  
1.5 V  
10%  
OL  
t
r
t
f
Figure 8. Receiver Switching Test Circuit and Voltage Waveforms  
8
Submit Documentation Feedback  
SN65HVD10, SN65HVD10Q, SN75HVD10  
SN65HVD11, SN65HVD11Q, SN75HVD11  
SN65HVD12, SN75HVD12  
www.ti.com  
SLLS505IFEBRUARY 2002REVISED JULY 2006  
PARAMETER MEASUREMENT INFORMATION (continued)  
3 V  
DE  
3 V  
A
B
A
1 k± 1%  
= 15 pF ±20%  
R
V
O
D
S1  
B
0 V or 3 V  
C
C
L
RE  
Includes Fixture  
and Instrumentation  
Capacitance  
L
Input  
Generator  
V
I
50 Ω  
Generator: PRR = 500 kHz, 50% Duty Cycle, t <6 ns, t <6 ns, Z = 50 Ω  
r
f
o
3 V  
V
I
1.5 V  
1.5 V  
PHZ  
0 V  
V
t
t
PZH(1)  
OH  
D at 3 V  
S1 to B  
V
OH  
–0.5 V  
1.5 V  
V
O
0 V  
t
t
PLZ  
PZL(1)  
3 V  
D at 0 V  
S1 to A  
1.5 V  
V
O
V
OL  
+0.5 V  
V
OL  
Figure 9. Receiver Enable and Disable Time Test Circuit and Voltage Waveforms With Drivers Enabled  
9
Submit Documentation Feedback  
SN65HVD10, SN65HVD10Q, SN75HVD10  
SN65HVD11, SN65HVD11Q, SN75HVD11  
SN65HVD12, SN75HVD12  
www.ti.com  
SLLS505IFEBRUARY 2002REVISED JULY 2006  
PARAMETER MEASUREMENT INFORMATION (continued)  
3 V  
A
B
A
1 k± 1%  
= 15 pF ±20%  
0 V or 1.5 V  
1.5 V or 0 V  
R
V
O
S1  
B
C
C
L
RE  
Includes Fixture  
and Instrumentation  
Capacitance  
L
Input  
Generator  
V
I
50 Ω  
Generator: PRR = 100 kHz, 50% Duty Cycle, t <6 ns, t <6 ns, Z = 50 Ω  
r
f
o
3 V  
1.5 V  
V
I
0 V  
V
t
PZH(2)  
OH  
A at 1.5 V  
B at 0 V  
S1 to B  
1.5 V  
V
O
GND  
t
PZL(2)  
3 V  
A at 0 V  
B at 1.5 V  
S1 to A  
1.5 V  
V
O
V
OL  
Figure 10. Receiver Enable Time From Standby (Driver Disabled)  
0 V or 3 V  
RE  
A
R
B
100  
± 1%  
Pulse Generator,  
15 µs Duration,  
1% Duty Cycle  
D
+
_
t , t 100 ns  
r
f
DE  
3 V or 0 V  
:
NOTE This test is conducted to test survivability only. Data stability at the R output is not specified.  
Figure 11. Test Circuit, Transient Over Voltage Test  
10  
Submit Documentation Feedback  
SN65HVD10, SN65HVD10Q, SN75HVD10  
SN65HVD11, SN65HVD11Q, SN75HVD11  
SN65HVD12, SN75HVD12  
www.ti.com  
SLLS505IFEBRUARY 2002REVISED JULY 2006  
PARAMETER MEASUREMENT INFORMATION (continued)  
FUNCTION TABLES  
DRIVER(1)  
OUTPUTS  
INPUT  
D
ENABLE  
A
B
DE  
H
L
H
H
L
L
H
Z
L
H
X
L
Z
H
Open  
H
(1) H = high level  
L = low level  
Z = high impedance  
X = irrelevant  
? = indeterminate  
RECEIVER(1)  
DIFFERENTIAL INPUTS  
VID = VA - VB  
ENABLE  
RE  
OUTPUT  
R
V
ID –0.2 V  
L
L
L
H
L
L
L
?
–0.2 V < VID < –0.01 V  
–0.01 V VID  
X
H
Z
H
H
Open Circuit  
Short circuit  
(1) H = high level  
L = low level  
Z = high impedance  
X = irrelevant  
? = indeterminate  
11  
Submit Documentation Feedback  
SN65HVD10, SN65HVD10Q, SN75HVD10  
SN65HVD11, SN65HVD11Q, SN75HVD11  
SN65HVD12, SN75HVD12  
www.ti.com  
SLLS505IFEBRUARY 2002REVISED JULY 2006  
EQUIVALENT INPUT AND OUTPUT SCHEMATIC DIAGRAMS  
D and RE Inputs  
DE Input  
V
CC  
V
CC  
100 k  
1 kΩ  
1 kΩ  
Input  
Input  
100 kΩ  
9 V  
9 V  
A Input  
B Input  
V
CC  
V
CC  
16 V  
16 V  
R3  
R1  
R1  
R3  
R2  
Input  
Input  
R2  
16 V  
16 V  
A and B Outputs  
R Output  
V
CC  
V
CC  
16 V  
5 Ω  
Output  
9 V  
Output  
16 V  
R1/R2  
9 kΩ  
R3  
45 kΩ  
180 kΩ  
180 kΩ  
SN65HVD10  
SN65HVD11  
SN65HVD12  
36 kΩ  
36 kΩ  
12  
Submit Documentation Feedback  
SN65HVD10, SN65HVD10Q, SN75HVD10  
SN65HVD11, SN65HVD11Q, SN75HVD11  
SN65HVD12, SN75HVD12  
www.ti.com  
SLLS505IFEBRUARY 2002REVISED JULY 2006  
TYPICAL CHARACTERISTICS  
HVD10  
RMS SUPPLY CURRENT  
vs  
HVD11  
RMS SUPPLY CURRENT  
vs  
SIGNALING RATE  
SIGNALING RATE  
70  
70  
60  
50  
40  
T
A
= 25°C  
R = 54 Ω  
L
T
= 25°C  
R = 54 Ω  
L
A
V
CC  
= 3.6 V  
RE at V  
DE at V  
C = 50 pF  
L
CC  
CC  
RE at V  
DE at V  
C
L
= 50 pF  
CC  
CC  
V
CC  
= 3.6 V  
60  
50  
V
= 3 V  
CC  
V
CC  
= 3 V  
V
CC  
= 3.3 V  
V
= 3.3 V  
40  
30  
CC  
30  
0
0
2.5  
5
7.5  
10  
5
10  
15  
20  
25  
30  
35  
40  
Signaling Rate − Mbps  
Signaling Rate − Mbps  
Figure 12.  
Figure 13.  
HVD12  
HVD10  
RMS SUPPLY CURRENT  
vs  
BUS INPUT CURRENT  
vs  
SIGNALING RATE  
BUS INPUT VOLTAGE  
70  
300  
250  
200  
150  
100  
50  
T = 25°C  
R = 54 Ω  
L
C = 50 pF  
L
A
T = 25°C  
A
RE at V  
DE at V  
CC  
CC  
DE at 0 V  
V
CC  
= 3.6 V  
60  
50  
V
CC  
= 0 V  
V
CC  
= 3.3 V  
V
CC  
= 3 V  
V
CC  
= 3.3 V  
0
−50  
40  
30  
−100  
−150  
−200  
100  
400  
700  
1000  
76−5 −4−32−1 0 1 2 3 4 5 6 7 8 9 1011 12  
Signaling Rate − kbps  
V − Bus Input Voltage − V  
I
Figure 14.  
Figure 15.  
13  
Submit Documentation Feedback  
SN65HVD10, SN65HVD10Q, SN75HVD10  
SN65HVD11, SN65HVD11Q, SN75HVD11  
SN65HVD12, SN75HVD12  
www.ti.com  
SLLS505IFEBRUARY 2002REVISED JULY 2006  
TYPICAL CHARACTERISTICS (continued)  
HVD11 OR HVD12  
BUS INPUT CURRENT  
vs  
HIGH-LEVEL OUTPUT CURRENT  
vs  
BUS INPUT VOLTAGE  
DRIVER HIGH-LEVEL OUTPUT VOLTAGE  
150  
100  
50  
90  
80  
70  
60  
50  
40  
30  
20  
T
= 25°C  
T
= 25°C  
A
A
DE at 0 V  
DE at V  
D at V  
V
CC  
CC  
= 3.3 V  
CC  
V
CC  
= 0 V  
0
10  
0
−50  
−100  
−150  
−200  
V
CC  
= 3.3 V  
−10  
−20  
−30  
−40  
−50  
−60  
−7−6−5−4−3−2−1 0 1 2 3 4 5 6 7 8 9 1011 12  
−4  
−2  
0
2
4
6
V
OH  
− Driver High-Level Output Voltage − V  
V − Bus Input Voltage − V  
I
Figure 16.  
Figure 17.  
LOW-LEVEL OUTPUT CURRENT  
vs  
DRIVER LOW-LEVEL OUTPUT VOLTAGE  
DRIVER DIFFERENTIAL OUTPUT  
vs  
FREE-AIR TEMPERATURE  
200  
2.5  
T = 25°C  
DE at V  
CC  
D at 0 V  
V
= 3.3 V  
A
CC  
180  
160  
140  
120  
100  
2.4  
2.3  
DE at V  
D at V  
CC  
CC  
V
CC  
= 3.3 V  
2.2  
2.1  
2.0  
1.9  
1.8  
1.7  
1.6  
1.5  
80  
60  
40  
20  
0
−20  
−40  
−15  
10  
35  
60  
85  
−4  
−2  
0
2
4
6
8
T − Free-Air Temperature − °C  
A
V
OL  
− Driver Low-Level Output Voltage − V  
Figure 18.  
Figure 19.  
14  
Submit Documentation Feedback  
SN65HVD10, SN65HVD10Q, SN75HVD10  
SN65HVD11, SN65HVD11Q, SN75HVD11  
SN65HVD12, SN75HVD12  
www.ti.com  
SLLS505IFEBRUARY 2002REVISED JULY 2006  
TYPICAL CHARACTERISTICS (continued)  
DRIVER OUTPUT CURRENT  
vs  
ENABLE TIME  
vs  
SUPPLY VOLTAGE  
COMMON-MODE VOLTAGE (SEE Figure 22)  
600  
500  
400  
−40  
−35  
−30  
−25  
−20  
−15  
−10  
−5  
T
= 25°C  
A
DE at V  
D at V  
R
CC  
CC  
= 54 Ω  
L
HVD12  
HVD11  
300  
200  
HVD10  
100  
0
0
0
-7  
-2  
3
8
13  
0.50  
1
1.50  
2
2.50  
3
3.50  
V
CC  
− Supply Voltage − V  
V
− Common-Mode Voltage − V  
(TEST)  
Figure 20.  
Figure 21.  
375 W ± 1%  
Y
-7 V < V(TEST) < 12 V  
D
60 W  
± 1%  
VOD  
0 or 3 V  
Z
DE  
375 W ± 1%  
Input  
V
Generator  
50 W  
50%  
tpZH(diff)  
VOD (high)  
1.5 V  
0 V  
tpZL(diff)  
-1.5 V  
VOD (low)  
Figure 22. Driver Enable Time From DE to VOD  
The time tpZL(x) is the measure from DE to VOD(x). VOD is valid when it is greater than 1.5 V.  
15  
Submit Documentation Feedback  
 
SN65HVD10, SN65HVD10Q, SN75HVD10  
SN65HVD11, SN65HVD11Q, SN75HVD11  
SN65HVD12, SN75HVD12  
www.ti.com  
SLLS505IFEBRUARY 2002REVISED JULY 2006  
APPLICATION INFORMATION  
R
T
R
T
Stub  
Device  
HVD10  
HVD11  
HVD12  
Number of Devices on Bus  
64  
256  
256  
:
NOTE The line should be terminated at both ends with its characteristic impedance (R = Z ). Stub lengths off the main line  
T
O
should be kept as short as possible.  
Figure 23. Typical Application Circuit  
Driver Input  
Driver Output  
Receiver Input  
Receiver Output  
Figure 24. HVD12 Input and Output Through 2000 Feet of Cable  
length of Commscope 5524 category 5e+ twisted  
An example application for the HVD12 is illustrated  
in Figure 23. Two HVD12 transceivers are used to  
communicate data through a 2000 foot (600 m)  
pair cable. The bus is terminated at each end by a  
100-resistor, matching the cable characteristic  
impedance. Figure 24 illustrates operation at a  
signaling rate of 250 kbps.  
16  
Submit Documentation Feedback  
 
 
SN65HVD10, SN65HVD10Q, SN75HVD10  
SN65HVD11, SN65HVD11Q, SN75HVD11  
SN65HVD12, SN75HVD12  
www.ti.com  
SLLS505IFEBRUARY 2002REVISED JULY 2006  
THERMAL CHARACTERISTICS OF IC  
PACKAGES  
θJC (Junction-to-Case Thermal Resistance) is  
defined as difference in junction temperature to case  
divided by the operating power. It is measured by  
putting the mounted package up against a copper  
block cold plate to force heat to flow from die,  
through the mold compound into the copper block.  
θJA (Junction-to-Ambient Thermal Resistance) is  
defined as the difference in junction temperature to  
ambient temperature divided by the operating power.  
θJA is not a constant and is a strong function of:  
θJC is a useful thermal characteristic when a heatsink  
is applied to package. It is not a useful characteristic  
to predict junction temperature because it provides  
pessimistic numbers if the case temperature is  
measured in a nonstandard system and junction  
temperatures are backed out. It can be used with θJB  
in 1-dimensional thermal simulation of a package  
system.  
the PCB design (50% variation)  
altitude (20% variation)  
device power (5% variation)  
θJA can be used to compare the thermal performance  
of packages if the specific test conditions are defined  
and used. Standardized testing includes specification  
of PCB construction, test chamber volume, sensor  
locations, and the thermal characteristics of holding  
fixtures. θJA is often misused when it is used to  
calculate junction temperatures for other installations.  
θJB (Junction-to-Board Thermal Resistance) is  
defined as the difference in the junction temperature  
and the PCB temperature at the center of the  
package (closest to the die) when the PCB is  
clamped in a cold-plate structure. θJB is only defined  
for the high-k test card.  
TI uses two test PCBs as defined by JEDEC  
specifications. The low-k board gives average in-use  
condition thermal performance, and it consists of a  
single copper trace layer 25 mm long and 2-oz thick.  
The high-k board gives best case in-use condition,  
and it consists of two 1-oz buried power planes with  
a single copper trace layer 25 mm long and 2-oz  
thick. A 4% to 50% difference in θJA can be  
measured between these two test cards.  
θJB provides an overall thermal resistance between  
the die and the PCB. It includes a bit of the PCB  
thermal resistance (especially for BGA’s with thermal  
balls) and can be used for simple 1-dimensional  
network analysis of package system, see Figure 25.  
Figure 25. Thermal Resistance  
17  
Submit Documentation Feedback  
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
23-Jul-2007  
PACKAGING INFORMATION  
Orderable Device  
SN65HVD10D  
Status (1)  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
Package Package  
Pins Package Eco Plan (2) Lead/Ball Finish MSL Peak Temp (3)  
Qty  
Type  
Drawing  
SOIC  
D
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
75 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
SN65HVD10DG4  
SN65HVD10DR  
SN65HVD10DRG4  
SN65HVD10P  
SOIC  
SOIC  
SOIC  
PDIP  
PDIP  
SOIC  
SOIC  
SOIC  
SOIC  
PDIP  
PDIP  
SOIC  
SOIC  
SOIC  
SOIC  
PDIP  
PDIP  
SOIC  
SOIC  
SOIC  
D
D
D
P
P
D
D
D
D
P
P
D
D
D
D
P
P
D
D
D
75 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
50  
Pb-Free  
(RoHS)  
CU NIPDAU N / A for Pkg Type  
SN65HVD10PE4  
SN65HVD10QD  
SN65HVD10QDG4  
SN65HVD10QDR  
SN65HVD10QDRG4  
SN65HVD10QP  
SN65HVD10QPE4  
SN65HVD11D  
50  
Pb-Free  
(RoHS)  
CU NIPDAU N / A for Pkg Type  
75 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
75 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
50  
Pb-Free  
(RoHS)  
CU NIPDAU N / A for Pkg Type  
50  
Pb-Free  
(RoHS)  
CU NIPDAU N / A for Pkg Type  
75 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
SN65HVD11DG4  
SN65HVD11DR  
SN65HVD11DRG4  
SN65HVD11P  
75 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
50  
Pb-Free  
(RoHS)  
CU NIPDAU N / A for Pkg Type  
SN65HVD11PE4  
SN65HVD11QD  
SN65HVD11QDG4  
SN65HVD11QDR  
50  
Pb-Free  
(RoHS)  
CU NIPDAU N / A for Pkg Type  
75 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
75 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
SN65HVD11QDRG4  
SN65HVD11QP  
ACTIVE  
ACTIVE  
SOIC  
PDIP  
D
P
8
8
TBD  
Call TI  
Call TI  
50  
50  
Pb-Free  
(RoHS)  
CU NIPDAU N / A for Pkg Type  
SN65HVD11QPE4  
SN65HVD12D  
ACTIVE  
ACTIVE  
PDIP  
SOIC  
P
D
8
8
Pb-Free  
(RoHS)  
CU NIPDAU N / A for Pkg Type  
75 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
23-Jul-2007  
Orderable Device  
SN65HVD12DG4  
SN65HVD12DR  
SN65HVD12DRG4  
SN65HVD12P  
Status (1)  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
Package Package  
Pins Package Eco Plan (2) Lead/Ball Finish MSL Peak Temp (3)  
Qty  
Type  
Drawing  
SOIC  
D
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
75 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
SOIC  
SOIC  
PDIP  
PDIP  
SOIC  
SOIC  
SOIC  
SOIC  
PDIP  
PDIP  
SOIC  
SOIC  
SOIC  
SOIC  
PDIP  
PDIP  
SOIC  
SOIC  
SOIC  
SOIC  
PDIP  
PDIP  
D
D
P
P
D
D
D
D
P
P
D
D
D
D
P
P
D
D
D
D
P
P
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
50  
Pb-Free  
(RoHS)  
CU NIPDAU N / A for Pkg Type  
SN65HVD12PE4  
SN75HVD10D  
50  
Pb-Free  
(RoHS)  
CU NIPDAU N / A for Pkg Type  
75 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
SN75HVD10DG4  
SN75HVD10DR  
SN75HVD10DRG4  
SN75HVD10P  
75 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
50  
Pb-Free  
(RoHS)  
CU NIPDAU N / A for Pkg Type  
SN75HVD10PE4  
SN75HVD11D  
50  
Pb-Free  
(RoHS)  
CU NIPDAU N / A for Pkg Type  
75 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
SN75HVD11DG4  
SN75HVD11DR  
SN75HVD11DRG4  
SN75HVD11P  
75 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
50  
Pb-Free  
(RoHS)  
CU NIPDAU N / A for Pkg Type  
SN75HVD11PE4  
SN75HVD12D  
50  
Pb-Free  
(RoHS)  
CU NIPDAU N / A for Pkg Type  
75 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
SN75HVD12DG4  
SN75HVD12DR  
SN75HVD12DRG4  
SN75HVD12P  
75 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
50  
Pb-Free  
(RoHS)  
CU NIPDAU N / A for Pkg Type  
SN75HVD12PE4  
50  
Pb-Free  
(RoHS)  
CU NIPDAU N / A for Pkg Type  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in  
a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
Addendum-Page 2  
PACKAGE OPTION ADDENDUM  
www.ti.com  
23-Jul-2007  
OBSOLETE: TI has discontinued the production of the device.  
(2)  
Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check  
http://www.ti.com/productcontent for the latest availability information and additional product content details.  
TBD: The Pb-Free/Green conversion plan has not been defined.  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements  
for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered  
at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.  
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and  
package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS  
compatible) as defined above.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame  
retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)  
(3)  
MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder  
temperature.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is  
provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the  
accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take  
reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on  
incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited  
information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI  
to Customer on an annual basis.  
Addendum-Page 3  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
19-Mar-2008  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0 (mm)  
B0 (mm)  
K0 (mm)  
P1  
W
Pin1  
Diameter Width  
(mm) W1 (mm)  
(mm) (mm) Quadrant  
SN65HVD10DR  
SN65HVD10QDR  
SN65HVD11DR  
SN65HVD11QDR  
SN65HVD12DR  
SN75HVD10DR  
SN75HVD11DR  
SN75HVD12DR  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
D
D
D
D
D
D
D
D
8
8
8
8
8
8
8
8
2500  
2500  
2500  
2500  
2500  
2500  
2500  
2500  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
6.4  
6.4  
6.4  
6.4  
6.4  
6.4  
6.4  
6.4  
5.2  
5.2  
5.2  
5.2  
5.2  
5.2  
5.2  
5.2  
2.1  
2.1  
2.1  
2.1  
2.1  
2.1  
2.1  
2.1  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
19-Mar-2008  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
SN65HVD10DR  
SN65HVD10QDR  
SN65HVD11DR  
SN65HVD11QDR  
SN65HVD12DR  
SN75HVD10DR  
SN75HVD11DR  
SN75HVD12DR  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
D
D
D
D
D
D
D
D
8
8
8
8
8
8
8
8
2500  
2500  
2500  
2500  
2500  
2500  
2500  
2500  
340.5  
340.5  
340.5  
340.5  
340.5  
340.5  
340.5  
340.5  
338.1  
338.1  
338.1  
338.1  
338.1  
338.1  
338.1  
338.1  
20.6  
20.6  
20.6  
20.6  
20.6  
20.6  
20.6  
20.6  
Pack Materials-Page 2  
MECHANICAL DATA  
MPDI001A – JANUARY 1995 – REVISED JUNE 1999  
P (R-PDIP-T8)  
PLASTIC DUAL-IN-LINE  
0.400 (10,60)  
0.355 (9,02)  
8
5
0.260 (6,60)  
0.240 (6,10)  
1
4
0.070 (1,78) MAX  
0.325 (8,26)  
0.300 (7,62)  
0.020 (0,51) MIN  
0.015 (0,38)  
Gage Plane  
0.200 (5,08) MAX  
Seating Plane  
0.010 (0,25) NOM  
0.125 (3,18) MIN  
0.100 (2,54)  
0.021 (0,53)  
0.430 (10,92)  
MAX  
0.010 (0,25)  
M
0.015 (0,38)  
4040082/D 05/98  
NOTES: A. All linear dimensions are in inches (millimeters).  
B. This drawing is subject to change without notice.  
C. Falls within JEDEC MS-001  
For the latest package information, go to http://www.ti.com/sc/docs/package/pkg_info.htm  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements,  
and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should  
obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are  
sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.  
TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard  
warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where  
mandated by government requirements, testing of all parameters of each product is not necessarily performed.  
TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and  
applications using TI components. To minimize the risks associated with customer products and applications, customers should provide  
adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right,  
or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information  
published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a  
warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual  
property of the third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied  
by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive  
business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional  
restrictions.  
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all  
express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not  
responsible or liable for any such statements.  
TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably  
be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing  
such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and  
acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products  
and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be  
provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in  
such safety-critical applications.  
TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are  
specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military  
specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at  
the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.  
TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are  
designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated  
products in automotive applications, TI will not be responsible for any failure to meet such requirements.  
Following are URLs where you can obtain information on other Texas Instruments products and application solutions:  
Products  
Applications  
Audio  
Automotive  
Broadband  
Digital Control  
Medical  
Amplifiers  
Data Converters  
DSP  
Clocks and Timers  
Interface  
amplifier.ti.com  
dataconverter.ti.com  
dsp.ti.com  
www.ti.com/clocks  
interface.ti.com  
logic.ti.com  
www.ti.com/audio  
www.ti.com/automotive  
www.ti.com/broadband  
www.ti.com/digitalcontrol  
www.ti.com/medical  
www.ti.com/military  
Logic  
Military  
Power Mgmt  
Microcontrollers  
RFID  
power.ti.com  
microcontroller.ti.com  
www.ti-rfid.com  
Optical Networking  
Security  
Telephony  
Video & Imaging  
Wireless  
www.ti.com/opticalnetwork  
www.ti.com/security  
www.ti.com/telephony  
www.ti.com/video  
RF/IF and ZigBee® Solutions www.ti.com/lprf  
www.ti.com/wireless  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2008, Texas Instruments Incorporated  

相关型号:

SN65HVD100

IO-LINK PHY for Device Nodes
TI

SN65HVD101

IO-LINK PHY for Device Nodes
TI

SN65HVD101RGBR

用于器件节点的 IO-Link PHY | RGB | 20 | -40 to 105
TI

SN65HVD101RGBT

用于器件节点的 IO-Link PHY | RGB | 20 | -40 to 105
TI

SN65HVD101RTJ

IO-LINK PHY for Device Nodes
TI

SN65HVD102

Check for Samples: SN65HVD101, SN65HVD102
TI

SN65HVD102RGBR

用于器件节点的 IO-Link PHY | RGB | 20 | -40 to 105
TI

SN65HVD102RGBT

用于器件节点的 IO-Link PHY | RGB | 20 | -40 to 105
TI

SN65HVD1040

LOW-POWER CAN TRANSCEIVER WITH BUS WAKE-UP
TI

SN65HVD1040-HT

LOW-POWER CAN TRANSCEIVER WITH BUS WAKE-UP
TI

SN65HVD1040-Q1

EMC OPTIMIZED CAN TRANSCEIVER
TI

SN65HVD1040A-Q1

EMC-OPTIMIZED HIGH SPEED CAN TRANSCEIVER
TI