SN65HVD12P [TI]

3.3V RS 485 TRANSCEIVERS; 3.3V RS-485收发器
SN65HVD12P
型号: SN65HVD12P
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

3.3V RS 485 TRANSCEIVERS
3.3V RS-485收发器

线路驱动器或接收器 驱动程序和接口 接口集成电路 光电二极管 信息通信管理
文件: 总20页 (文件大小:271K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ꢀꢁ ꢂꢃ ꢄꢅ ꢆꢇ ꢈ ꢉꢊ ꢀꢁ ꢂꢃ ꢄꢅ ꢆꢇ ꢈ ꢋ ꢉ ꢊ ꢀꢁꢌ ꢃꢄ ꢅꢆ ꢇꢈ  
ꢀꢁꢂ ꢃ ꢄꢅ  ꢀꢁ ꢂ ꢃꢄ ꢅꢆꢇꢇ ꢋ ꢉꢊ ꢀꢁ ꢌꢃ ꢄꢅ ꢆ ꢇꢇ  
www.ti.com  
ꢀꢁ ꢂꢃ ꢄꢅ ꢆꢇ ꢍ ꢉꢊ ꢀꢁ ꢌꢃ ꢄꢅ ꢆ ꢇꢍ  
SLLS505F − FEBRUARY 2002 − REVISED NOVEMBER 2003  
FEATURES  
DESCRIPTION  
The  
SN65HVD10,  
SN75HVD10,  
SN65HVD11,  
D
D
D
Operates With a 3.3-V Supply  
SN75HVD11, SN65HVD12, and SN75HVD12 combine a  
3-state differential line driver and differential input line  
receiver that operate with a single 3.3-V power supply.  
They are designed for balanced transmission lines and  
meet or exceed ANSI standard TIA/EIA-485-A and ISO  
8482:1993. These differential bus transceivers are  
monolithic integrated circuits designed for bidirectional  
data communication on multipoint bus-transmission lines.  
The drivers and receivers have active-high and active-low  
enables respectively, that can be externally connected  
together to function as direction control. Very low device  
standby supply current can be achieved by disabling the  
driver and the receiver.  
Bus-Pin ESD Protection Exceeds 16 kV HBM  
1/8 Unit-Load Option Available (Up to 256  
Nodes on the Bus)  
D
Optional Driver Output Transition Times for  
Signaling Rates of 1 Mbps, 10 Mbps and  
25 Mbps  
D
D
Meets or Exceeds the Requirements of ANSI  
TIA/EIA-485-A  
Bus-Pin Short Circuit Protection From –7 V to  
12 V  
The driver differential outputs and receiver differential  
inputs connect internally to form a differential input/ output  
(I/O) bus port that is designed to offer minimum loading to  
the bus whenever the driver is disabled or VCC = 0. These  
parts feature wide positive and negative common-mode  
voltage ranges, making them suitable for party-line  
applications.  
D
D
Low-Current Standby Mode . . . 1 µA Typical  
Open-Circuit, Idle-Bus, and Shorted-Bus  
Failsafe Receiver  
D
D
Thermal Shutdown Protection  
Glitch-Free Power-Up and Power-Down  
Protection for Hot-Plugging Applications  
D OR P PACKAGE  
(TOP VIEW)  
D
SN75176 Footprint  
R
RE  
DE  
D
V
B
A
1
2
3
4
8
7
6
5
CC  
APPLICATIONS  
GND  
D
D
D
D
D
D
D
Digital Motor Control  
Utility Meters  
LOGIC DIAGRAM  
Chassis-to-Chassis Interconnects  
Electronic Security Stations  
Industrial Process Control  
Building Automation  
(POSITIVE LOGIC)  
1
R
2
RE  
3
4
DE  
D
Point-of-Sale (POS) Terminals and Networks  
6
7
A
B
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments  
semiconductor products and disclaimers thereto appears at the end of this data sheet.  
The signaling rate of a line is the number of voltage transitions that are made per second expressed in the units bps (bits per second).  
ꢙꢑ ꢚ ꢆꢛ ꢖ ꢔꢘ ꢚꢁ ꢆ ꢕꢔꢕ ꢜꢝ ꢞꢟ ꢠ ꢡꢢ ꢣꢜꢟꢝ ꢜꢤ ꢥꢦ ꢠ ꢠ ꢧꢝꢣ ꢢꢤ ꢟꢞ ꢨꢦꢩ ꢪꢜꢥ ꢢꢣꢜ ꢟꢝ ꢫꢢ ꢣꢧꢏ ꢙꢠ ꢟꢫꢦ ꢥꢣꢤ  
ꢥ ꢟꢝ ꢞꢟꢠ ꢡ ꢣꢟ ꢤ ꢨꢧ ꢥ ꢜ ꢞꢜ ꢥ ꢢ ꢣꢜ ꢟꢝꢤ ꢨ ꢧꢠ ꢣꢬꢧ ꢣꢧ ꢠ ꢡꢤ ꢟꢞ ꢔꢧꢭ ꢢꢤ ꢘꢝꢤ ꢣꢠ ꢦꢡ ꢧꢝꢣ ꢤ ꢤꢣ ꢢꢝꢫ ꢢꢠ ꢫ ꢮ ꢢꢠ ꢠ ꢢ ꢝꢣꢯꢏ  
ꢙꢠ ꢟ ꢫꢦꢥ ꢣ ꢜꢟ ꢝ ꢨꢠ ꢟ ꢥ ꢧ ꢤ ꢤ ꢜꢝ ꢰ ꢫꢟ ꢧ ꢤ ꢝꢟꢣ ꢝꢧ ꢥꢧ ꢤꢤ ꢢꢠ ꢜꢪ ꢯ ꢜꢝꢥ ꢪꢦꢫ ꢧ ꢣꢧ ꢤꢣꢜ ꢝꢰ ꢟꢞ ꢢꢪ ꢪ ꢨꢢ ꢠ ꢢꢡ ꢧꢣꢧ ꢠ ꢤꢏ  
Copyright 2002−2003, Texas Instruments Incorporated  
ꢁꢂ  
ꢁꢂ  
ꢁꢂ  
ꢄꢅ  
ꢄꢅ  
ꢄꢅ  
ꢇ ꢈ ꢉ ꢊꢀꢁꢂ ꢃ ꢄꢅ ꢆꢇ ꢈ ꢋ ꢊ ꢀ ꢁꢌ ꢃ ꢄ ꢅ ꢆꢇ ꢈ  
ꢇꢇ ꢉ  ꢃ ꢄꢅ ꢆꢇꢇ ꢋꢉ ꢊ ꢀ ꢁꢌ ꢃ ꢄꢅ ꢆꢇꢇ  
www.ti.com  
SLLS505F − FEBRUARY 2002 − REVISED NOVEMBER 2003  
These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during  
storage or handling to prevent electrostatic damage to the MOS gates.  
ORDERING INFORMATION  
PACKAGE  
SIGNALING RATE  
UNIT LOADS  
T
A
SOIC MARKING  
(1)  
SOIC  
PDIP  
25 Mbps  
10 Mbps  
1 Mbps  
1/2  
1/8  
1/8  
1/2  
1/8  
1/8  
1/2  
1/8  
SN65HVD10D  
SN65HVD11D  
SN65HVD12D  
SN75HVD10D  
SN75HVD11D  
SN75HVD12D  
SN65HVD10QD  
SN65HVD11QD  
SN65HVD10P  
SN65HVD11P  
SN65HVD12P  
SN75HVD10P  
SN75HVD11P  
SN75HVD12P  
VP10  
VP11  
−40°C to 85°C  
VP12  
VN10  
VN11  
25 Mbps  
10 Mbps  
1 Mbps  
−0°C to 70°C  
VN12  
VP10Q  
VP11Q  
25 Mbps  
10 Mbps  
SN65HVD10QP  
SN65HVD11QP  
−40°C to 125°C  
(1)  
The D package is available taped and reeled. Add an R suffix to the part number (i.e., SN75HVD11DR).  
ABSOLUTE MAXIMUM RATINGS  
over operating free-air temperature range unless otherwise noted  
(1) (2)  
SN65HVD10, SN75HVD10  
SN65HVD11, SN75HVD11  
SN65HVD12, SN75HVD12  
Supply voltage range, V  
Voltage range at A or B  
−0.3 V to 6 V  
−9 V to 14 V  
CC  
Input voltage range at D, DE, R or RE  
Voltage input range, transient pulse, A and B, through 100 (see Figure 11)  
−0.5 V to V + 0.5 V  
CC  
−50 V to 50 V  
A, B and GND  
All pins  
16 kV  
(3)  
Human body model  
4 kV  
Electrostatic discharge  
(4)  
Charged-device model  
All pins Charge  
1 kV  
See Dissipation Rating Table  
170°C  
Continuous total power dissipation  
Junction temperature, T  
J
Storage temperature range, T  
stg  
−65°C to 150°C  
260°C  
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds  
(1)  
Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and  
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not  
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
All voltage values, except differential I/O bus voltages, are with respect to network ground terminal.  
Tested in accordance with JEDEC Standard 22, Test Method A114-A.  
(2)  
(3)  
(4)  
Tested in accordance with JEDEC Standard 22, Test Method C101.  
PACKAGE DISSIPATION RATINGS  
(1)  
DERATING FACTOR  
T
25°C  
T
= 70°C  
T
= 85°C  
T = 125°C  
A
A
A
A
PACKAGE  
POWER RATING  
ABOVE T = 25°C  
POWER RATING POWER RATING POWER RATING  
A
(2)  
D
597 mW  
4.97 mW/°C  
8.26 mW/°C  
10.75 mW/°C  
373 mW  
620 mW  
806 mW  
298 mW  
496 mW  
645 mW  
100 mW  
165 mW  
215 mW  
(3)  
D
990 mW  
P
1290 mW  
(1)  
(2)  
(3)  
This is the inverse of the junction-to-ambient thermal resistance when board-mounted and with no air flow.  
Tested in accordance with the Low-K thermal metric definitions of EIA/JESD51−3.  
Tested in accordance with the High-K thermal metric definitions of EIA/JESD51−7.  
2
ꢀꢁ ꢂꢃ ꢄꢅ ꢆ ꢊ ꢀꢁ ꢂ ꢃ ꢄꢅꢆꢇꢇ ꢋ ꢉꢊ ꢀꢁ ꢌꢃ ꢄꢅ ꢆ ꢇꢇ  
ꢈ ꢋ ꢉ ꢀ ꢁ ꢌꢃ ꢄꢅ ꢆꢇ ꢈ  
www.ti.com  
ꢀꢁꢂ ꢃ ꢄꢅ ꢆꢇ ꢍ ꢉꢊ ꢀꢁꢌ ꢃꢄ ꢅꢆ ꢇ ꢍ  
SLLS505F − FEBRUARY 2002 − REVISED NOVEMBER 2003  
RECOMMENDED OPERATING CONDITIONS  
MIN NOM  
MAX UNIT  
Supply voltage, V  
CC  
3
3.6  
12  
V
V
V
V
V
(1)  
−7  
Voltage at any bus terminal (separately or common mode) V or V  
IC  
I
High-level input voltage, V  
IH  
D, DE, RE  
D, DE, RE  
2
0
V
CC  
0.8  
Low-level input voltage, V  
IL  
Differential input voltage, V (see Figure 7)  
ID  
−12  
−60  
−8  
12  
Driver  
High-level output current, I  
mA  
mA  
OH  
Receiver  
Driver  
60  
8
Low-level output current, I  
OL  
Receiver  
Differential load resistance, R  
54  
60  
50  
L
Differential load capacitance, C  
pF  
L
HVD10  
HVD11  
HVD12  
25  
10  
1
Signaling rate  
Mbps  
(2)  
Junction temperature, T  
145  
°C  
J
(1)  
(2)  
The algebraic convention, in which the least positive (most negative) limit is designated as minimum is used in this data sheet.  
See thermal characteristics table for information regarding this specification.  
DRIVER ELECTRICAL CHARACTERISTICS  
over recommended operating conditions unless otherwise noted  
(1)  
MIN TYP  
PARAMETER  
TEST CONDITIONS  
MAX  
UNIT  
V
IK  
Input clamp voltage  
I = −18 mA  
−1.5  
2
V
I
I
O
= 0  
V
CC  
(2)  
R
= 54 , See Figure 1  
1.5  
1.5  
|V  
|
Differential output voltage  
V
L
OD  
V
test  
= −7 V to 12 V, See Figure 2  
Change in magnitude of differential output  
voltage  
|V  
|
See Figure 1 and Figure 2  
−0.2  
0.2  
2.5  
V
OD  
V
V
Peak-to-peak common-mode output voltage  
Steady-state common-mode output voltage  
400  
mV  
V
OC(PP)  
OC(SS)  
1.4  
See Figure 3  
Change in steady-state common-mode output  
voltage  
V  
OC(SS)  
−0.05  
0.05  
V
I
I
I
High-impedance output current  
See receiver input currents  
OZ  
D
−100  
0
0
100  
250  
Input current  
DE  
µA  
I
Short-circuit output current  
−7 V V 12 V  
−250  
mA  
pF  
OS  
O
C
Differential output capacitance  
V
OD  
= 0.4 sin (4E6πt) + 0.5 V, DE at 0 V  
16  
9
(OD)  
RE at V  
,
CC  
D & DE at  
No load  
Receiver disabled and  
driver enabled  
15.5  
5
mA  
V
CC,  
RE at V  
,
CC  
Receiver disabled and  
driver disabled (standby)  
D at V  
,
CC  
1
9
µA  
I
Supply current  
CC  
DE at 0 V,  
No load  
RE at 0 V,  
D & DE at  
Receiver enabled and  
driver enabled  
15.5  
mA  
V , No load  
CC  
(1)  
(2)  
All typical values are at 25°C and with a 3.3-V supply.  
For T > 85°C, V is 5%.  
A
CC  
3
ꢁꢂ  
ꢁꢂ  
ꢁꢂ  
ꢄꢅ  
ꢄꢅ  
ꢄꢅ  
ꢇ ꢈ ꢉ ꢊꢀꢁꢂ ꢃ ꢄꢅ ꢆꢇ ꢈ ꢋ ꢊ ꢀ ꢁꢌ ꢃ ꢄ ꢅ ꢆꢇ ꢈ  
ꢇꢇ ꢉ  ꢃ ꢄꢅ ꢆꢇꢇ ꢋꢉ ꢊ ꢀ ꢁꢌ ꢃ ꢄꢅ ꢆꢇꢇ  
www.ti.com  
SLLS505F − FEBRUARY 2002 − REVISED NOVEMBER 2003  
DRIVER SWITCHING CHARACTERISTICS  
over recommended operating conditions unless otherwise noted  
(1)  
MIN TYP  
PARAMETER  
TEST CONDITIONS  
MAX  
16  
UNIT  
HVD10  
HVD11  
HVD12  
HVD10  
HVD11  
HVD12  
HVD10  
HVD11  
HVD12  
HVD10  
HVD11  
HVD12  
HVD10  
HVD11  
HVD12  
HVD10  
HVD11  
HVD12  
HVD10  
HVD11  
HVD12  
HVD10  
HVD11  
HVD12  
HVD10  
HVD11  
HVD12  
HVD10  
HVD11  
HVD12  
5
18  
135  
5
8.5  
25  
40  
t
t
t
t
t
t
t
t
t
t
Propagation delay time, low-to-high-level output  
Propagation delay time, high-to-low-level output  
Differential output signal rise time  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
PLH  
PHL  
r
200  
8.5  
25  
300  
16  
18  
135  
3
40  
200  
4.5  
20  
300  
10  
R
= 54 , C = 50 pF,  
L
See Figure 4  
L
10  
100  
3
30  
170  
4.5  
20  
300  
10  
10  
100  
30  
Differential output signal fall time  
f
170  
300  
1.5  
2.5  
7
Pulse skew (|t |)  
− t  
sk(p)  
sk(pp)  
PZH  
PHZ  
PZL  
PLZ  
PHL PLH  
6
(2)  
11  
Part-to-part skew  
100  
31  
Propagation delay time,  
high-impedance-to-high-level output  
55  
300  
25  
R
L
= 110 Ω, RE at 0 V,  
See Figure 5  
Propagation delay time,  
high-level-to-high-impedance output  
55  
300  
26  
Propagation delay time,  
high-impedance-to-low-level output  
55  
300  
26  
R
L
= 110 Ω, RE at 0 V,  
See Figure 6  
Propagation delay time,  
low-level-to-high-impedance output  
75  
400  
R
= 110 Ω, RE at 3 V,  
L
t
t
Propagation delay time, standby-to-high-level output  
Propagation delay time, standby-to-low-level output  
6
6
µs  
µs  
PZH  
See Figure 5  
R
L
= 110 Ω, RE at 3 V,  
PZL  
See Figure 6  
(1)  
(2)  
All typical values are at 25°C and with a 3.3-V supply.  
is the magnitude of the difference in propagation delay times between any specified terminals of two devices when both devices operate  
t
sk(pp)  
with the same supply voltages, at the same temperature, and have identical packages and test circuits.  
4
ꢀꢁ ꢂꢃ ꢄꢅ ꢆ ꢊ ꢀꢁ ꢂ ꢃ ꢄꢅꢆꢇꢇ ꢋ ꢉꢊ ꢀꢁ ꢌꢃ ꢄꢅ ꢆ ꢇꢇ  
ꢈ ꢋ ꢉ ꢀ ꢁ ꢌꢃ ꢄꢅ ꢆꢇ ꢈ  
www.ti.com  
ꢀꢁꢂ ꢃ ꢄꢅ ꢆꢇ ꢍ ꢉꢊ ꢀꢁꢌ ꢃꢄ ꢅꢆ ꢇ ꢍ  
SLLS505F − FEBRUARY 2002 − REVISED NOVEMBER 2003  
RECEIVER ELECTRICAL CHARACTERISTICS  
over recommended operating conditions unless otherwise noted  
(1)  
MIN TYP  
PARAMETER  
TEST CONDITIONS  
MAX  
UNIT  
V
V
Positive-going input threshold voltage  
I
I
= −8 mA  
= 8 mA  
−0.01  
IT+  
O
V
Negative-going input threshold  
voltage  
−0.2  
IT−  
O
V
V
V
V
Hysteresis voltage (V  
IT+  
− V  
)
35  
mV  
V
hys  
IT−  
Enable-input clamp voltage  
High-level output voltage  
Low-level output voltage  
I = −18 mA  
−1.5  
2.4  
IK  
I
V
ID  
V
ID  
V
O
= 200 mV,  
I
I
= −8 mA,  
= 8 mA,  
See Figure 7  
See Figure 7  
V
OH  
OL  
OH  
= −200 mV,  
0.4  
1
V
OL  
I
High-impedance-state output current  
= 0 or V  
CC  
RE at V  
CC  
−1  
µA  
OZ  
V
or V = 12 V  
0.05  
0.06  
0.11  
0.13  
A
B
V
A
or V = 12 V,  
V
V
V
V
= 0 V  
= 0 V  
= 0 V  
= 0 V  
B
CC  
CC  
CC  
CC  
HVD11, HVD12,  
Other input at 0 V  
mA  
mA  
V
A
or V = −7 V  
−0.1  
−0.05  
−0.04  
0.2  
B
V
A
or V = −7 V,  
−0.05  
B
I
I
Bus input current  
V
A
or V = 12 V  
0.5  
0.5  
B
V
A
or V = 12 V,  
0.25  
B
HVD10,  
Other input at 0 V  
V
A
or V = −7 V  
−0.4  
−0.4  
−30  
−30  
−0.2  
−0.15  
B
V
A
or V = −7 V,  
B
I
I
High-level input current, RE  
Low-level input current, RE  
Differential input capacitance  
V
V
V
= 2 V  
0
0
µA  
µA  
pF  
IH  
IH  
= 0.8 V  
IL  
IL  
C
= 0.4 sin (4E6πt) + 0.5 V, DE at 0 V  
15  
4
ID  
ID  
RE at 0 V,  
D & DE at 0 V,  
No load  
Receiver enabled and driver  
disabled  
8
5
mA  
RE at V  
D at V  
DE at 0 V,  
No load  
,
CC  
CC  
Receiver disabled and driver  
disabled (standby)  
,
1
9
µA  
I
Supply current  
CC  
RE at 0 V,  
D & DE at V  
No load  
Receiver enabled and driver  
enabled  
,
15.5  
mA  
CC  
(1)  
All typical values are at 25°C and with a 3.3-V supply.  
5
ꢁꢂ  
ꢁꢂ  
ꢁꢂ  
ꢄꢅ  
ꢄꢅ  
ꢄꢅ  
ꢇ ꢈ ꢉ ꢊꢀꢁꢂ ꢃ ꢄꢅ ꢆꢇ ꢈ ꢋ ꢊ ꢀ ꢁꢌ ꢃ ꢄ ꢅ ꢆꢇ ꢈ  
ꢇꢇ ꢉ  ꢃ ꢄꢅ ꢆꢇꢇ ꢋꢉ ꢊ ꢀ ꢁꢌ ꢃ ꢄꢅ ꢆꢇꢇ  
www.ti.com  
SLLS505F − FEBRUARY 2002 − REVISED NOVEMBER 2003  
RECEIVER SWITCHING CHARACTERISTICS  
over recommended operating conditions unless otherwise noted  
(1)  
PARAMETER  
TEST CONDITIONS  
MIN TYP  
MAX  
25  
UNIT  
t
t
Propagation delay time, low-to-high-level output  
Propagation delay time, high-to-low-level output  
HVD10  
HVD10  
12.5  
20  
20  
PLH  
ns  
ns  
ns  
12.5  
25  
PHL  
HVD11  
HVD12  
t
Propagation delay time, low-to-high-level output  
Propagation delay time, high-to-low-level output  
30  
30  
55  
55  
70  
70  
PLH  
PHL  
V
C
= −1.5 V to 1.5 V,  
= 15 pF, See Figure 8  
ID  
L
HVD11  
HVD12  
t
HVD10  
HVD11  
HVD12  
HVD10  
HVD11  
HVD12  
1.5  
4
t
Pulse skew (|t  
− t  
|)  
ns  
sk(p)  
PHL PLH  
4
8
(2)  
15  
15  
5
t
Part-to-part skew  
ns  
ns  
sk(pp)  
t
t
t
t
t
t
t
t
Output signal rise time  
Output signal fall time  
1
1
2
2
r
C
C
= 15 pF, See Figure 8  
= 15 pF, DE at 3 V,  
L
5
f
(1)  
PZH  
Output enable time to high level  
Output enable time to low level  
Output disable time from high level  
Output disable time from low level  
15  
15  
20  
15  
6
(1)  
PZL  
PHZ  
PLZ  
PZH  
L
ns  
See Figure 9  
(2)  
(2)  
Propagation delay time, standby-to-high-level output  
Propagation delay time, standby-to-low-level output  
C
L
= 15 pF, DE at 0,  
µs  
See Figure 10  
6
PZL  
(1)  
(2)  
All typical values are at 25°C and with a 3.3-V supply.  
is the magnitude of the difference in propagation delay times between any specified terminals of two devices when both devices operate  
t
sk(pp)  
with the same supply voltages, at the same temperature, and have identical packages and test circuits.  
THERMAL CHARACTERISTICS  
over operating free-air temperature range unless otherwise noted  
(1)  
PARAMETER  
TEST CONDITIONS  
(3)  
MIN  
TYP  
121  
93  
MAX UNITS  
High−K board , No airflow  
(4)  
D pkg  
P pkg  
D pkg  
P pkg  
D pkg  
P pkg  
(2)  
θ
JA  
θ
JB  
θ
JC  
Junction−to−ambient thermal resistance  
Junction−to−board thermal resistance  
Junction−to−case thermal resistance  
°C/W  
No airflow  
High−K board  
See Note (4)  
67  
°C/W  
°C/W  
57  
41  
°C/W  
55  
HVD10  
(25 Mbps)  
198  
141  
133  
233  
176  
161  
mW  
mW  
mW  
R = 60, C = 50 pF,  
L
L
HVD11  
(10 Mbps)  
DE at V  
RE at 0 V,  
CC  
P
D
Device power dissipation  
Input to D a 50% duty cycle square  
wave at indicated signaling rate  
HVD12  
(500 kbps)  
High−K board, No airflow  
D pkg  
P pkg  
−40  
−40  
116  
123  
T
Ambient air temperature  
°C  
°C  
A
(4)  
No airflow  
T
JSD  
Thermal shutdown junction temperature  
165  
(1)  
(2)  
See Application Information section for an explanation of these parameters.  
The intent of θ specification is solely for a thermal performance comparison of one package to another in a standardized environment. This  
JA  
methodology is not meant to and will not predict the performance of a package in an application-specific environment.  
JSD51−7, High Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages.  
JESD51−10, Test Boards for Through-Hole Perimeter Leaded Package Thermal Measurements.  
(3)  
(4)  
6
ꢀꢁ ꢂꢃ ꢄꢅ ꢆ ꢊ ꢀꢁ ꢂ ꢃ ꢄꢅꢆꢇꢇ ꢋ ꢉꢊ ꢀꢁ ꢌꢃ ꢄꢅ ꢆ ꢇꢇ  
ꢈ ꢋ ꢉ ꢀ ꢁ ꢌꢃ ꢄꢅ ꢆꢇ ꢈ  
www.ti.com  
ꢀꢁꢂ ꢃ ꢄꢅ ꢆꢇ ꢍ ꢉꢊ ꢀꢁꢌ ꢃꢄ ꢅꢆ ꢇ ꢍ  
SLLS505F − FEBRUARY 2002 − REVISED NOVEMBER 2003  
PARAMETER MEASUREMENT INFORMATION  
375 1%  
V
CC  
V
CC  
I
I
DE  
OA  
I
I
DE  
A
B
A
B
V
OD  
D
54 1%  
0 or 3 V  
V
OD  
60 1%  
0 or 3 V  
+
OB  
−7 V < V  
(test)  
< 12 V  
_
V
I
375 1%  
V
V
OB OA  
Figure 1. Driver V  
and Voltage and Current Definitions  
Test Circuit  
Figure 2. Driver V  
With Common-Mode  
OD  
OD  
Loading Test Circuit  
V
A
B
A
V
CC  
27 1%  
27 1%  
V
B
DE  
A
B
D
V
OC(PP)  
V  
OC(SS)  
Input  
V
OC  
V
C
L
= 50 pF 20%  
OC  
C
Includes Fixture and  
L
Instrumentation Capacitance  
Input: PRR = 500 kHz, 50% Duty Cycle,t <6ns, t <6ns, Z = 50 Ω  
r
f
O
Figure 3. Test Circuit and Definitions for the Driver Common-Mode Output Voltage  
3 V  
V
CC  
1.5 V  
1.5 V  
V
t
I
DE  
C
C
= 50 pF 20%  
L
A
B
V
D
OD  
t
Includes Fixture  
and Instrumentation  
Capacitance  
PLH  
PHL  
L
2 V  
Input  
Generator  
R
L
= 54 Ω  
90%  
90%  
V
I
50 Ω  
0 V  
10%  
0 V  
10%  
1%  
V
OD  
−2 V  
t
r
t
f
Generator: PRR = 500 kHz, 50% Duty Cycle, t <6 ns, t <6 ns, Z = 50 Ω  
r
f
o
Figure 4. Driver Switching Test Circuit and Voltage Waveforms  
3 V  
0 V  
A
S1  
D
V
O
V
1.5 V  
1.5 V  
I
3 V  
B
C
DE  
0.5 V  
R
= 110 Ω  
1%  
= 50 pF 20%  
t
L
L
PZH  
Input  
Generator  
V
OH  
V
I
C
L
Includes Fixture  
and Instrumentation  
Capacitance  
50 Ω  
V
O
2.3 V  
0 V  
t
PHZ  
Generator: PRR = 500 kHz, 50% Duty Cycle, t <6 ns, t <6 ns, Z = 50 Ω  
r
f
o
Figure 5. Driver High-Level Enable and Disable Time Test Circuit and Voltage Waveforms  
7
ꢁꢂ  
ꢁꢂ  
ꢁꢂ  
ꢄꢅ  
ꢄꢅ  
ꢄꢅ  
ꢇ ꢈ ꢉ ꢊꢀꢁꢂ ꢃ ꢄꢅ ꢆꢇ ꢈ ꢋ ꢊ ꢀ ꢁꢌ ꢃ ꢄ ꢅ ꢆꢇ ꢈ  
ꢇꢇ ꢉ  ꢃ ꢄꢅ ꢆꢇꢇ ꢋꢉ ꢊ ꢀ ꢁꢌ ꢃ ꢄꢅ ꢆꢇꢇ  
www.ti.com  
SLLS505F − FEBRUARY 2002 − REVISED NOVEMBER 2003  
3 V  
R
L
= 110 Ω  
1%  
3 V  
A
V
I
1.5 V  
1.5 V  
S1  
D
V
O
3 V  
0 V  
B
t
t
PZL  
PLZ  
DE  
3 V  
C
= 50 pF 20%  
Input  
Generator  
L
V
I
50 Ω  
0.5 V  
C
L
Includes Fixture  
and Instrumentation  
Capacitance  
V
O
2.3 V  
V
OL  
Generator: PRR = 500 kHz, 50% Duty Cycle, t <6 ns, t <6 ns, Z = 50 Ω  
r
f
o
Figure 6. Driver Low-Level Output Enable and Disable Time Test Circuit and Voltage Waveforms  
I
A
A
B
I
O
R
V
A
V
I
ID  
V
B
V
IC  
V
O
V
A
+ V  
2
B
B
Figure 7. Receiver Voltage and Current Definitions  
A
V
O
R
Input  
Generator  
V
I
50 Ω  
B
1.5 V  
0 V  
C
C
= 15 pF 20%  
L
RE  
Includes Fixture  
and Instrumentation  
Capacitance  
L
Generator: PRR = 500 kHz, 50% Duty Cycle, t <6 ns, t <6 ns, Z = 50 Ω  
r
f
o
3 V  
1.5 V  
1.5 V  
V
I
0 V  
t
t
PLH  
PHL  
V
V
OH  
90% 90%  
V
O
1.5 V  
10%  
1.5 V  
10%  
OL  
t
r
t
f
Figure 8. Receiver Switching Test Circuit and Voltage Waveforms  
8
ꢀꢁ ꢂꢃ ꢄꢅ ꢆ ꢊ ꢀꢁ ꢂ ꢃ ꢄꢅꢆꢇꢇ ꢋ ꢉꢊ ꢀꢁ ꢌꢃ ꢄꢅ ꢆ ꢇꢇ  
ꢈ ꢋ ꢉ ꢀ ꢁ ꢌꢃ ꢄꢅ ꢆꢇ ꢈ  
www.ti.com  
ꢀꢁꢂ ꢃ ꢄꢅ ꢆꢇ ꢍ ꢉꢊ ꢀꢁꢌ ꢃꢄ ꢅꢆ ꢇ ꢍ  
SLLS505F − FEBRUARY 2002 − REVISED NOVEMBER 2003  
3 V  
DE  
3 V  
A
B
A
1 k1%  
R
V
O
D
S1  
0 V or 3 V  
C
C
= 15 pF 20%  
L
RE  
B
Includes Fixture  
and Instrumentation  
Capacitance  
L
Input  
Generator  
V
I
50 Ω  
Generator: PRR = 500 kHz, 50% Duty Cycle, t <6 ns, t <6 ns, Z = 50 Ω  
r
f
o
3 V  
V
I
1.5 V  
1.5 V  
PHZ  
0 V  
V
t
t
PZH(1)  
OH  
D at 3 V  
S1 to B  
V
OH  
−0.5 V  
1.5 V  
V
O
0 V  
t
t
PLZ  
PZL(1)  
3 V  
D at 0 V  
S1 to A  
1.5 V  
V
O
V
OL  
+0.5 V  
V
OL  
Figure 9. Receiver Enable and Disable Time Test Circuit and Voltage Waveforms With Drivers Enabled  
9
ꢁꢂ  
ꢁꢂ  
ꢁꢂ  
ꢄꢅ  
ꢄꢅ  
ꢄꢅ  
ꢇ ꢈ ꢉ ꢊꢀꢁꢂ ꢃ ꢄꢅ ꢆꢇ ꢈ ꢋ ꢊ ꢀ ꢁꢌ ꢃ ꢄ ꢅ ꢆꢇ ꢈ  
ꢇꢇ ꢉ  ꢃ ꢄꢅ ꢆꢇꢇ ꢋꢉ ꢊ ꢀ ꢁꢌ ꢃ ꢄꢅ ꢆꢇꢇ  
www.ti.com  
SLLS505F − FEBRUARY 2002 − REVISED NOVEMBER 2003  
3 V  
A
A
1 k1%  
= 15 pF 20%  
0 V or 1.5 V  
R
V
O
S1  
B
B
1.5 V or 0 V  
C
C
L
RE  
Includes Fixture  
and Instrumentation  
Capacitance  
L
Input  
Generator  
V
I
50 Ω  
Generator: PRR = 100 kHz, 50% Duty Cycle, t <6 ns, t <6 ns, Z = 50 Ω  
r
f
o
3 V  
1.5 V  
V
I
0 V  
V
t
PZH(2)  
OH  
A at 1.5 V  
B at 0 V  
S1 to B  
1.5 V  
V
O
GND  
t
PZL(2)  
3 V  
A at 0 V  
B at 1.5 V  
S1 to A  
1.5 V  
V
O
V
OL  
Figure 10. Receiver Enable Time From Standby (Driver Disabled)  
0 V or 3 V  
RE  
A
R
B
100 Ω  
1%  
Pulse Generator,  
D
15 µs Duration,  
1% Duty Cycle  
+
_
t , t 100 ns  
r
f
DE  
3 V or 0 V  
:
NOTE This test is conducted to test survivability only. Data stability at the R output is not specified.  
Figure 11. Test Circuit, Transient Over Voltage Test  
10  
ꢀꢁ ꢂꢃ ꢄꢅ ꢆ ꢊ ꢀꢁ ꢂ ꢃ ꢄꢅꢆꢇꢇ ꢋ ꢉꢊ ꢀꢁ ꢌꢃ ꢄꢅ ꢆ ꢇꢇ  
ꢈ ꢋ ꢉ ꢀ ꢁ ꢌꢃ ꢄꢅ ꢆꢇ ꢈ  
www.ti.com  
ꢀꢁꢂ ꢃ ꢄꢅ ꢆꢇ ꢍ ꢉꢊ ꢀꢁꢌ ꢃꢄ ꢅꢆ ꢇ ꢍ  
SLLS505F − FEBRUARY 2002 − REVISED NOVEMBER 2003  
Function Tables  
DRIVER  
INPUT  
D
ENABLE  
DE  
OUTPUTS  
A
B
H
L
X
H
H
L
H
L
Z
H
L
H
Z
L
Open  
H
RECEIVER  
DIFFERENTIAL INPUTS  
= V − V  
ENABLE  
RE  
OUTPUT  
R
V
ID  
A
B
V
−0.2 V  
ID  
L
L
L
H
L
L
L
?
H
Z
H
H
ID  
−0.2 V < V < −0.01 V  
−0.01 V V  
ID  
X
Open Circuit  
Short Circuit  
H = high level; L = low level; Z = high impedance; X = irrelevant;  
? = indeterminate  
11  
ꢁꢂ  
ꢁꢂ  
ꢁꢂ  
ꢄꢅ  
ꢄꢅ  
ꢄꢅ  
ꢇ ꢈ ꢉ ꢊꢀꢁꢂ ꢃ ꢄꢅ ꢆꢇ ꢈ ꢋ ꢊ ꢀ ꢁꢌ ꢃ ꢄ ꢅ ꢆꢇ ꢈ  
ꢇꢇ ꢉ  ꢃ ꢄꢅ ꢆꢇꢇ ꢋꢉ ꢊ ꢀ ꢁꢌ ꢃ ꢄꢅ ꢆꢇꢇ  
www.ti.com  
SLLS505F − FEBRUARY 2002 − REVISED NOVEMBER 2003  
EQUIVALENT INPUT AND OUTPUT SCHEMATIC DIAGRAMS  
D and RE Inputs  
DE Input  
V
CC  
V
CC  
100 kΩ  
1 kΩ  
1 kΩ  
Input  
Input  
100 kΩ  
9 V  
9 V  
A Input  
B Input  
V
CC  
V
CC  
16 V  
100 kΩ  
16 V  
R1  
R1  
R3  
R2  
R3  
Input  
Input  
100 kΩ  
16 V  
R2  
16 V  
A and B Outputs  
R Output  
V
CC  
V
CC  
16 V  
5 Ω  
Output  
9 V  
Output  
16 V  
R1/R2  
9 kΩ  
36 kΩ  
36 kΩ  
R3  
45 kΩ  
180 kΩ  
180 kΩ  
SN65HVD10  
SN65HVD11  
SN65HVD12  
12  
ꢀꢁ ꢂꢃ ꢄꢅ ꢆ ꢊ ꢀꢁ ꢂ ꢃ ꢄꢅꢆꢇꢇ ꢋ ꢉꢊ ꢀꢁ ꢌꢃ ꢄꢅ ꢆ ꢇꢇ  
ꢈ ꢋ ꢉ ꢀ ꢁ ꢌꢃ ꢄꢅ ꢆꢇ ꢈ  
www.ti.com  
ꢀꢁꢂ ꢃ ꢄꢅ ꢆꢇ ꢍ ꢉꢊ ꢀꢁꢌ ꢃꢄ ꢅꢆ ꢇ ꢍ  
SLLS505F − FEBRUARY 2002 − REVISED NOVEMBER 2003  
TYPICAL CHARACTERISTICS  
HVD11  
RMS SUPPLY CURRENT  
vs  
HVD10 OR HVD12  
RMS SUPPLY CURRENT  
vs  
SIGNALING RATE  
SIGNALING RATE  
70  
70  
T
= 25°C  
R
L
C
L
= 54 Ω  
= 50 pF  
A
T
= 25°C  
R
L
C
L
= 54 Ω  
= 50 pF  
A
V
CC  
= 3.6 V  
RE at V  
DE at V  
CC  
CC  
RE at V  
DE at V  
CC  
CC  
V
CC  
= 3.6 V  
60  
50  
60  
50  
V
CC  
= 3 V  
V
CC  
= 3 V  
V
CC  
= 3.3 V  
V
= 3.3 V  
40  
30  
40  
30  
CC  
0
2.5  
5
7.5  
10  
0
5
10  
15  
20  
25  
30  
35  
40  
Signaling Rate − Mbps  
Signaling Rate − Mbps  
Figure 12  
Figure 13  
HVD12  
HVD10  
RMS SUPPLY CURRENT  
vs  
BUS INPUT CURRENT  
vs  
SIGNALING RATE  
BUS INPUT VOLTAGE  
70  
60  
50  
300  
250  
200  
T
= 25°C  
R
L
C
L
= 54 Ω  
= 50 pF  
A
T
= 25°C  
A
RE at V  
DE at V  
CC  
CC  
DE at 0 V  
V
CC  
= 3.6 V  
V
CC  
= 0 V  
150  
100  
50  
V
CC  
= 3.3 V  
V
CC  
= 3 V  
V
CC  
= 3.3 V  
0
−50  
40  
30  
−100  
−150  
−200  
100  
400  
700  
1000  
76−5 −4−32−1 0 1 2 3 4 5 6 7 8 9 1011 12  
Signaling Rate − kbps  
V − Bus Input Voltage − V  
I
Figure 14  
Figure 15  
13  
ꢁꢂ  
ꢁꢂ  
ꢁꢂ  
ꢄꢅ  
ꢄꢅ  
ꢄꢅ  
ꢇ ꢈ ꢉ ꢊꢀꢁꢂ ꢃ ꢄꢅ ꢆꢇ ꢈ ꢋ ꢊ ꢀ ꢁꢌ ꢃ ꢄ ꢅ ꢆꢇ ꢈ  
ꢇꢇ ꢉ  ꢃ ꢄꢅ ꢆꢇꢇ ꢋꢉ ꢊ ꢀ ꢁꢌ ꢃ ꢄꢅ ꢆꢇꢇ  
www.ti.com  
SLLS505F − FEBRUARY 2002 − REVISED NOVEMBER 2003  
HVD11 OR HVD12  
BUS INPUT CURRENT  
vs  
HIGH-LEVEL OUTPUT CURRENT  
vs  
DRIVER HIGH-LEVEL OUTPUT VOLTAGE  
BUS INPUT VOLTAGE  
150  
100  
50  
90  
T
= 25°C  
A
T
= 25°C  
80  
70  
60  
50  
40  
A
DE at V  
D at V  
CC  
V
CC  
DE at 0 V  
= 3.3 V  
CC  
V
CC  
= 0 V  
30  
20  
0
10  
0
−50  
−100  
−150  
−200  
V
CC  
= 3.3 V  
−10  
−20  
−30  
−40  
−50  
−60  
−4  
−2  
0
2
4
6
−7−6−5−4−3−2−1 0 1 2 3 4 5 6 7 8 9 1011 12  
V
OH  
− Driver High-Level Output Voltage − V  
V − Bus Input Voltage − V  
I
Figure 16  
Figure 17  
DRIVER DIFFERENTIAL OUTPUT  
vs  
LOW-LEVEL OUTPUT CURRENT  
vs  
FREE-AIR TEMPERATURE  
DRIVER LOW-LEVEL OUTPUT VOLTAGE  
200  
180  
160  
140  
120  
100  
2.5  
T
= 25°C  
V
= 3.3 V  
A
CC  
2.4  
2.3  
DE at V  
DE at V  
D at V  
CC  
CC  
CC  
D at 0 V  
= 3.3 V  
V
CC  
2.2  
2.1  
2.0  
1.9  
1.8  
1.7  
1.6  
80  
60  
40  
20  
0
−20  
1.5  
−40  
−15  
T
10  
35  
60  
85  
−4  
−2  
0
2
4
6
8
− Free-Air Temperature − °C  
V
− Driver Low-Level Output Voltage − V  
A
OL  
Figure 19  
Figure 18  
14  
ꢀꢁ ꢂꢃ ꢄꢅ ꢆ ꢊ ꢀꢁ ꢂ ꢃ ꢄꢅꢆꢇꢇ ꢋ ꢉꢊ ꢀꢁ ꢌꢃ ꢄꢅ ꢆ ꢇꢇ  
ꢈ ꢋ ꢉ ꢀ ꢁ ꢌꢃ ꢄꢅ ꢆꢇ ꢈ  
www.ti.com  
ꢀꢁꢂ ꢃ ꢄꢅ ꢆꢇ ꢍ ꢉꢊ ꢀꢁꢌ ꢃꢄ ꢅꢆ ꢇ ꢍ  
SLLS505F − FEBRUARY 2002 − REVISED NOVEMBER 2003  
TYPICAL CHARACTERISTICS  
DRIVER OUTPUT CURRENT  
vs  
SUPPLY VOLTAGE  
−40  
−35  
−30  
−25  
−20  
−15  
−10  
T
= 25°C  
A
DE at V  
D at V  
CC  
R
CC  
= 54 Ω  
L
−5  
0
0
0.50  
1
1.50  
2
2.50  
3
3.50  
V
CC  
− Supply Voltage − V  
Figure 20  
15  
ꢁꢂ  
ꢁꢂ  
ꢁꢂ  
ꢄꢅ  
ꢄꢅ  
ꢄꢅ  
ꢇ ꢈ ꢉ ꢊꢀꢁꢂ ꢃ ꢄꢅ ꢆꢇ ꢈ ꢋ ꢊ ꢀ ꢁꢌ ꢃ ꢄ ꢅ ꢆꢇ ꢈ  
ꢇꢇ ꢉ  ꢃ ꢄꢅ ꢆꢇꢇ ꢋꢉ ꢊ ꢀ ꢁꢌ ꢃ ꢄꢅ ꢆꢇꢇ  
www.ti.com  
SLLS505F − FEBRUARY 2002 − REVISED NOVEMBER 2003  
APPLICATION INFORMATION  
R
T
R
T
Stub  
Device  
HVD10  
HVD11  
HVD12  
Number of Devices on Bus  
64  
256  
256  
:
NOTE The line should be terminated at both ends with its characteristic impedance (R = Z ). Stub lengths off the main line  
T
O
should be kept as short as possible.  
Figure 21. Typical Application Circuit  
Driver Input  
Driver Output  
Receiver Input  
Receiver Output  
Figure 22. HVD12 Input and Output Through 2000 Feet of Cable  
An example application for the HVD12 is illustrated in  
bus is terminated at each end by a 100-resistor,  
matching the cable characteristic impedance. Figure 22  
illustrates operation at a signaling rate of 250 kbps.  
Figure 21. Two HVD12 transceivers are used to  
communicate data through a 2000 foot (600 m) length of  
Commscope 5524 category 5e+ twisted pair cable. The  
16  
ꢀꢁ ꢂꢃ ꢄꢅ ꢆ ꢊ ꢀꢁ ꢂ ꢃ ꢄꢅꢆꢇꢇ ꢋ ꢉꢊ ꢀꢁ ꢌꢃ ꢄꢅ ꢆ ꢇꢇ  
ꢈ ꢋ ꢉ ꢀ ꢁ ꢌꢃ ꢄꢅ ꢆꢇ ꢈ  
www.ti.com  
ꢀꢁꢂ ꢃ ꢄꢅ ꢆꢇ ꢍ ꢉꢊ ꢀꢁꢌ ꢃꢄ ꢅꢆ ꢇ ꢍ  
SLLS505F − FEBRUARY 2002 − REVISED NOVEMBER 2003  
q
(Junction-to-Case Thermal Resistance) is defined  
THERMAL CHARACTERISTICS OF IC  
PACKAGES  
JC  
as difference in junction temperature to case divided by the  
operating power. It is measured by putting the mounted  
package up against a copper block cold plate to force heat  
to flow from die, through the mold compound into the  
copper block.  
q
(Junction-to-Ambient Thermal Resistance) is  
JA  
defined as the difference in junction temperature to  
ambient temperature divided by the operating power.  
θ
is not a constant and is a strong function of:  
the PCB design (50% variation)  
JA  
D
D
D
θ
θ
is a useful thermal characteristic when a heatsink is  
JC  
applied to package. It is not a useful characteristic to  
predict junction temperature because it provides  
pessimistic numbers if the case temperature is measured  
in a nonstandard system and junction temperatures are  
altitude (20% variation)  
device power (5% variation)  
can be used to compare the thermal performance of  
JA  
backed out. It can be used with θ in 1-dimensional  
JB  
packages if the specific test conditions are defined and  
used. Standardized testing includes specification of PCB  
construction, test chamber volume, sensor locations, and  
thermal simulation of a package system.  
q
(Junction-to-Board Thermal Resistance) is defined  
the thermal characteristics of holding fixtures. θ is often  
misused when it is used to calculate junction temperatures  
for other installations.  
JB  
JA  
as the difference in the junction temperature and the PCB  
temperature at the center of the package (closest to the  
die) when the PCB is clamped in a cold-plate structure. θ  
JB  
TI uses two test PCBs as defined by JEDEC  
specifications. The low-k board gives average in-use  
condition thermal performance, and it consists of a single  
copper trace layer 25 mm long and 2-oz thick. The high-k  
board gives best case in-use condition, and it consists of  
two 1-oz buried power planes with a single copper trace  
layer 25 mm long and 2-oz thick. A 4% to 50% difference  
is only defined for the high-k test card.  
θ
provides an overall thermal resistance between the die  
JB  
and the PCB. It includes a bit of the PCB thermal  
resistance (especially for BGA’s with thermal balls) and  
can be used for simple 1-dimensional network analysis of  
package system (see Figure 23).  
in θ can be measured between these two test cards  
JA  
Figure 23. Thermal Resistance  
17  
MECHANICAL DATA  
MPDI001A – JANUARY 1995 – REVISED JUNE 1999  
P (R-PDIP-T8)  
PLASTIC DUAL-IN-LINE  
0.400 (10,60)  
0.355 (9,02)  
8
5
0.260 (6,60)  
0.240 (6,10)  
1
4
0.070 (1,78) MAX  
0.325 (8,26)  
0.300 (7,62)  
0.020 (0,51) MIN  
0.015 (0,38)  
Gage Plane  
0.200 (5,08) MAX  
Seating Plane  
0.010 (0,25) NOM  
0.125 (3,18) MIN  
0.100 (2,54)  
0.021 (0,53)  
0.430 (10,92)  
MAX  
0.010 (0,25)  
M
0.015 (0,38)  
4040082/D 05/98  
NOTES: A. All linear dimensions are in inches (millimeters).  
B. This drawing is subject to change without notice.  
C. Falls within JEDEC MS-001  
For the latest package information, go to http://www.ti.com/sc/docs/package/pkg_info.htm  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,  
enhancements, improvements, and other changes to its products and services at any time and to discontinue  
any product or service without notice. Customers should obtain the latest relevant information before placing  
orders and should verify that such information is current and complete. All products are sold subject to TI’s terms  
and conditions of sale supplied at the time of order acknowledgment.  
TI warrants performance of its hardware products to the specifications applicable at the time of sale in  
accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI  
deems necessary to support this warranty. Except where mandated by government requirements, testing of all  
parameters of each product is not necessarily performed.  
TI assumes no liability for applications assistance or customer product design. Customers are responsible for  
their products and applications using TI components. To minimize the risks associated with customer products  
and applications, customers should provide adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right,  
copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process  
in which TI products or services are used. Information published by TI regarding third-party products or services  
does not constitute a license from TI to use such products or services or a warranty or endorsement thereof.  
Use of such information may require a license from a third party under the patents or other intellectual property  
of the third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of information in TI data books or data sheets is permissible only if reproduction is without  
alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction  
of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for  
such altered documentation.  
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that  
product or service voids all express and any implied warranties for the associated TI product or service and  
is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.  
Following are URLs where you can obtain information on other Texas Instruments products and application  
solutions:  
Products  
Applications  
Audio  
Amplifiers  
amplifier.ti.com  
www.ti.com/audio  
Data Converters  
dataconverter.ti.com  
Automotive  
www.ti.com/automotive  
DSP  
dsp.ti.com  
Broadband  
Digital Control  
Military  
www.ti.com/broadband  
www.ti.com/digitalcontrol  
www.ti.com/military  
Interface  
Logic  
interface.ti.com  
logic.ti.com  
Power Mgmt  
Microcontrollers  
power.ti.com  
Optical Networking  
Security  
www.ti.com/opticalnetwork  
www.ti.com/security  
www.ti.com/telephony  
www.ti.com/video  
microcontroller.ti.com  
Telephony  
Video & Imaging  
Wireless  
www.ti.com/wireless  
Mailing Address:  
Texas Instruments  
Post Office Box 655303 Dallas, Texas 75265  
Copyright 2004, Texas Instruments Incorporated  

相关型号:

UL1042

UL1042 - Uk砤d zr體nowa縪nego mieszacza iloczynowego

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

ZXFV201

QUAD VIDEO AMPLIFIER

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ZETEX

ZXFV201N14

IC-SM-VIDEO AMP

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ZETEX

ZXFV201N14TA

QUAD VIDEO AMPLIFIER

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ZETEX

ZXFV201N14TC

QUAD VIDEO AMPLIFIER

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ZETEX

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

ZXFV302N16

IC-SM-4:1 MUX SWITCH

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

ZXFV4089

VIDEO AMPLIFIER WITH DC RESTORATION

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ZETEX

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ZETEX