SN65HVD1781A-Q1 [TI]

具有故障保护功能和 3.3V 至 5V 工作电压的汽车类 RS-485 收发器;
SN65HVD1781A-Q1
型号: SN65HVD1781A-Q1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有故障保护功能和 3.3V 至 5V 工作电压的汽车类 RS-485 收发器

文件: 总26页 (文件大小:1493K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
SN65HVD1781A-Q1  
ZHCSG90A MAY 2017 REVISED FEBRUARY 2022  
SN65HVD1781A-Q1 故障保RS-485 收发器(3.3V 5V 工作电压)  
1 特性  
3 说明  
• 符合汽车应用要求  
• 具有符AEC-Q100 标准的下列特性  
该器件被设计成在遇到过压故障例如电源直接短路、  
误接线故障、连接器故障、电缆挤压以及工具误用时  
免受损坏。它还具有高级的人体放电模型保护规格在  
静电放(ESD) 事件发生时依然可保持稳定。  
– 器件温度等1:  
-40°C 125°C 环境工作温度范围  
– 器HBM ESD 分类等H2  
– 器CDM ESG 分类等C3B  
提供功能安全  
SN65HVD1781A-Q1 将一个差动驱动器和一个差动接  
收器组合在一起这两个器件由单个电源供电。驱动器  
差动输出和接收器差动输入在内部进行连接形成适用  
于半双工双线总线通信的总线端口。此端口特有一  
个宽共模电压范围因此适合于长线缆运行上的多点应  
用。该器件的温度范围是 -40°C 125°C 。  
SN65HVD1781A-Q1 器件与业界通用的 SN75176 收  
发器引脚兼容因此该器件适合大多数系统用于进行升  
级。  
有助于进行功能安全系统设计的文档  
• 总线引脚故障保护> ±70V  
3.3V 5V 的工作电源电压范围  
• 总线引脚上±16kV HBM 保护  
• 减少高320 个节点的单位负载  
• 针对开路、短路和空闲总线情况的失效防护接收器  
• 低功耗  
该器件采用 5V 电源时完全符合 ANSI TIA/EIA 485-  
A并且可以使用 3.3V 电源运行同时降低驱动器输  
出电压以适用于低功耗应用。对于需要在扩展共模电  
压范围内运行的应用参阅 SN65HVD1785  
(SLLS872) 数据表。  
– 低待机电源电流1μA最大值)  
– 运行期ICC 4mA 静态电流  
• 与业界通用SN75176 引脚兼容  
• 信号传输速率高1Mbps  
2 应用  
器件信息  
封装(1)  
信息娱乐系统仪表组  
HMI 显示屏  
媒体接口  
封装尺寸标称值)  
器件型号  
SN65HVD1781A-Q1 SOIC  
4.90mm x 3.91mm  
音响主机  
(1) 如需了解所有可用封装请参阅数据表末尾的可订购产品附  
录。  
VFAULT up to 70 V  
Copyright © 2016, Texas Instruments Incorporated  
简化版原理图  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SLLSF08  
 
 
 
 
SN65HVD1781A-Q1  
ZHCSG90A MAY 2017 REVISED FEBRUARY 2022  
www.ti.com.cn  
Table of Contents  
8.2 Functional Block Diagram.........................................13  
8.3 Feature Description...................................................13  
8.4 Device Functional Modes..........................................14  
9 Application and Implementation..................................15  
9.1 Application Information............................................. 15  
9.2 Typical Application.................................................... 15  
10 Power Supply Recommendations..............................19  
11 Layout...........................................................................20  
11.1 Layout Guidelines................................................... 20  
11.2 Layout Example...................................................... 20  
12 Device and Documentation Support..........................21  
12.1 Device Support....................................................... 21  
12.2 Documentation Support.......................................... 21  
12.3 Receiving Notification of Documentation Updates..21  
12.4 Community Resources............................................21  
12.5 Trademarks.............................................................21  
13 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Pin Configuration and Functions...................................3  
6 Specifications.................................................................. 4  
6.1 Absolute Maximum Ratings........................................ 4  
6.2 ESD RatingsAEC.................................................... 4  
6.3 ESD RatingsIEC......................................................4  
6.4 Recommended Operating Conditions.........................4  
6.5 Thermal Information....................................................5  
6.6 Electrical Characteristics.............................................6  
6.7 Power Dissipation Ratings..........................................7  
6.8 Switching Characteristics............................................7  
6.9 Typical Characteristics................................................8  
7 Parameter Measurement Information............................9  
8 Detailed Description......................................................13  
8.1 Overview...................................................................13  
Information.................................................................... 21  
4 Revision History  
以前版本的页码可能与当前版本的页码不同  
Changes from Revision * (May 2017) to Revision A (February 2022)  
Page  
• 添加了特性“提供功能安全”.............................................................................................................................1  
Copyright © 2022 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: SN65HVD1781A-Q1  
 
SN65HVD1781A-Q1  
ZHCSG90A MAY 2017 REVISED FEBRUARY 2022  
www.ti.com.cn  
5 Pin Configuration and Functions  
R
RE  
DE  
D
1
2
3
4
8
7
6
5
V
CC  
B
A
GND  
5-1. D (SOIC) Package, 8-Pin, Top View  
5-1. Pin Functions  
PIN  
TYPE  
DESCRIPTION  
NAME  
NO.  
6
A
Bus I/O  
Bus I/O  
Driver output or receiver input (complementary to B)  
Driver output or receiver input (complementary to A)  
B
7
D
4
Digital input Driver data input  
DE  
3
Digital input Driver enable, active high  
Reference  
GND  
5
Local device ground  
potential  
R
1
2
8
Digital output Receive data output  
RE  
VCC  
Digital input Receiver enable, active low  
Supply  
3.15-V-to-5.5-V supply  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: SN65HVD1781A-Q1  
 
SN65HVD1781A-Q1  
ZHCSG90A MAY 2017 REVISED FEBRUARY 2022  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
See Note (1)  
.
MIN  
0.5  
70  
0.3  
70  
24  
MAX  
UNIT  
V
VCC Supply voltage  
Voltage range at bus pins  
Input voltage range at any logic pin  
7
70  
A, B pins  
V
VCC + 0.3  
70  
V
V
Transient overvoltage pulse through 100 per TIA-485  
Receiver output current  
24  
mA  
Continuous total power dissipation  
Junction temperature  
See 6.7  
TJ  
170  
150  
°C  
°C  
Tstg Storage temperature  
40  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating  
Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
6.2 ESD RatingsAEC  
VALUE  
±16000  
±4000  
±1500  
UNIT  
Bus terminals and GND  
All pins  
Human-body model (HBM), per AEC Q100-002(1)  
Charged-device model (CDM), per AEC Q100-011  
Electrostatic  
discharge  
V(ESD)  
V
(1) AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.  
6.3 ESD RatingsIEC  
VALUE  
UNIT  
Electrostatic  
discharge  
V(ESD)  
Human body model (HBM), per IEC 60749-26  
Bus terminals and GND  
±16000  
V
6.4 Recommended Operating Conditions  
MIN  
3.15  
7  
2
NOM  
MAX  
5.5  
12  
UNIT  
VCC  
VI  
Supply voltage  
5
V
V
Input voltage at any bus terminal (separately or common mode)(1)  
High-level input voltage (driver, driver enable, and receiver enable inputs)  
Low-level input voltage (driver, driver enable, and receiver enable inputs)  
Differential input voltage  
VIH  
VIL  
VID  
VCC  
0.8  
12  
V
0
V
V
12  
60  
8  
54  
Output current, driver  
60  
mA  
mA  
IO  
Output current, receiver  
8
RL  
Differential load resistance  
60  
50  
pF  
CL  
Differential load capacitance  
1/tUI  
Signaling rate  
1
105  
125  
150  
Mbps  
5-V supply  
40  
40  
40  
Operating free-air temperature (See the 节  
6.5 table)  
TA  
TJ  
°C  
°C  
3.3-V supply  
Junction Temperature  
(1) By convention, the least positive (most negative) limit is designated as minimum in this data sheet.  
Copyright © 2022 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: SN65HVD1781A-Q1  
 
 
 
 
 
 
 
 
SN65HVD1781A-Q1  
ZHCSG90A MAY 2017 REVISED FEBRUARY 2022  
www.ti.com.cn  
6.5 Thermal Information  
SN65HVD1781A-Q1  
THERMAL METRIC(1)  
D (SOIC)  
8 PINS  
97.7  
UNIT  
JEDEC high-K model  
JEDEC low-K model  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJA  
Junction-to-ambient thermal resistance  
242  
RθJC(top) Junction-to-case (top) thermal resistance  
39.6  
RθJB  
ψJT  
Junction-to-board thermal resistance  
39.2  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
3.8  
38.5  
ψJB  
RθJC(bot) Junction-to-case (bottom) thermal resistance  
N/A  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: SN65HVD1781A-Q1  
 
 
 
SN65HVD1781A-Q1  
ZHCSG90A MAY 2017 REVISED FEBRUARY 2022  
www.ti.com.cn  
6.6 Electrical Characteristics  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
TA < 85°C  
1.5  
RL = 60 Ω, 4.75 V VCC 375 Ω  
on each output to 7 V to 12 V, See 图  
7-1  
TA < 125°C  
1.4  
TA < 85°C  
1.7  
1.5  
2
RL = 54 Ω,  
4.75 V VCC 5.25 V  
TA < 125°C  
|VOD  
|
Driver differential output voltage magnitude  
V
RL = 54 Ω,  
3.15 V VCC 3.45 V  
0.8  
1
TA < 85°C  
2.2  
2
2.5  
RL = 100 Ω,  
4.75 V VCC 5.25 V  
TA < 125°C  
Change in magnitude of driver differential  
output voltage  
0
VCC/2  
0
50  
3
mV  
V
Δ|VOD  
|
RL = 54 Ω  
50  
1
VOC(SS)  
Steady-state common-mode output voltage  
Change in differential driver output common-  
mode voltage  
50  
mV  
ΔVOC  
50  
Peak-to-peak driver common-mode output  
voltage  
Center of two 27-Ωload resistors,  
See 7-2  
VOC(PP)  
COD  
500  
23  
mV  
pF  
Differential output capacitance  
Positive-going receiver differential input voltage  
threshold  
VIT+  
mV  
100  
35  
Negative-going receiver differential input  
voltage threshold  
VIT–  
mV  
mV  
180  
30  
150  
Receiver differential input voltage threshold  
hysteresis  
(VIT+ VIT–  
VHYS  
50  
(1)  
)
VCC  
VOH  
Receiver high-level output voltage  
Receiver low-level output voltage  
2.4  
V
V
IOH = 8 mA  
0.3  
TA < 85°C  
0.2  
0.4  
0.5  
VOL  
IOL = 8 mA  
TA < 125°C  
Driver input, driver enable, and receiver enable  
input current  
II(LOGIC)  
50  
50  
μA  
IOZ  
IOS  
Receiver output high-impedance current  
Driver short-circuit output current  
VO = 0 V or VCC, RE at VCC  
1
200  
100  
1  
μA  
mA  
200  
VI = 12 V  
75  
VCC = 3.15 to 5.5 V or  
VCC = 0 V, DE at 0 V  
II(BUS)  
Bus input current (disabled driver)  
μA  
VI = 7 V  
60  
40  
DE = VCC, RE = GND,  
no load  
Driver and receiver enabled  
4
3
2
6
5
4
Driver enabled, receiver  
disabled  
DE = VCC, RE = VCC  
no load  
,
mA  
Driver disabled, receiver  
enabled  
DE = GND, RE = GND,  
no load  
ICC  
Supply current (quiescent)  
DE = GND, D = open,  
RE = VCC, no load, TA  
85°C  
<
0.15  
1
Driver and receiver disabled,  
standby mode  
μA  
DE = GND, D = open,  
RE = VCC, no load, TA  
125°C  
<
12  
Supply current (dynamic)  
See the 6.9 section  
(1) Ensured by design. Not production tested.  
Copyright © 2022 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: SN65HVD1781A-Q1  
 
 
 
SN65HVD1781A-Q1  
ZHCSG90A MAY 2017 REVISED FEBRUARY 2022  
www.ti.com.cn  
6.7 Power Dissipation Ratings  
PARAMETER  
TEST CONDITIONS  
VALUE  
UNIT  
VCC = 3.6 V, TJ = 150°C, RL = 300 ,  
CL = 50 pF (driver), CL = 15 pF (receiver)  
3.3-V supply, unterminated(1)  
75  
VCC = 3.6 V, TJ = 150°C, RL = 100 ,  
CL = 50 pF (driver), CL = 15 pF (receiver)  
3.3-V supply, RS-422 load(1)  
95  
VCC = 3.6 V, TJ = 150°C, RL = 54 ,  
CL = 50 pF (driver), CL = 15 pF (receiver)  
3.3-V supply, RS-485 load(1)  
115  
290  
320  
PD  
Power dissipation  
mW  
VCC = 5.5 V, TJ = 150°C, RL = 300 ,  
CL = 50 pF (driver), CL = 15 pF (receiver)  
5-V supply, unterminated(1)  
VCC = 5.5 V, TJ = 150°C, RL = 100 ,  
CL = 50 pF (driver), CL = 15 pF (receiver)  
5-V supply, RS-422 load(1)  
VCC = 5.5 V, TJ = 150°C, RL = 54 ,  
CL = 50 pF (driver), CL = 15 pF (receiver)  
5-V supply, RS-485 load(1)  
400  
170  
TSD Thermal-shutdown junction temperature  
°C  
(1) Driver and receiver enabled, 50% duty cycle square-wave signal at signaling rate: 1 Mbps.  
6.8 Switching Characteristics  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
DRIVER  
tr, tf  
Driver differential output rise/fall time  
Driver propagation delay  
50  
300  
200  
ns  
ns  
RL = 54 , CL = 50 pF, See 7-3  
RL = 54 , CL = 50 pF, See 7-3  
tPHL, tPLH  
Driver differential output pulse skew,  
tSK(P)  
25  
ns  
RL = 54 , CL = 50 pF, See 7-3  
|tPHL tPLH  
|
3
300  
10  
tPHZ, tPLZ  
Driver disable time  
See 7-4 and 7-5  
μs  
ns  
Receiver enabled  
tPZH, tPZL  
Driver enable time  
See 7-4 and 7-5  
Receiver disabled  
μs  
RECEIVER  
CL = 15 pF,  
See 7-6  
4
15  
tr, tf  
Receiver output rise/fall time (1)  
ns  
ns  
ns  
CL = 15 pF,  
See 7-6  
tPHL, tPLH  
Receiver propagation delay time  
Receiver output pulse skew,  
100  
6
200  
20  
CL = 15 pF,  
See 7-6  
tSK(P)  
|tPHL tPLH  
|
15  
80  
3
100  
300  
9
tPLZ, tPHZ  
Receiver disable time (1)  
ns  
ns  
Driver enabled, See 7-7  
Driver enabled, See 7-7  
Driver disabled, See 7-8  
tPZL(1), tPZH(1)  
tPZL(2), tPZH(2)  
Receiver enable time  
μs  
(1) Specified by design. Not production tested.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: SN65HVD1781A-Q1  
 
 
 
 
 
SN65HVD1781A-Q1  
ZHCSG90A MAY 2017 REVISED FEBRUARY 2022  
www.ti.com.cn  
6.9 Typical Characteristics  
10  
80  
70  
60  
50  
40  
30  
20  
T
A
= 25°C  
RE at V  
DE at V  
CC  
0
−10  
−20  
−30  
V
CC  
= 5 V  
CC  
R
C
= 54 W  
= 50 pF  
L
L
V
CC  
= 3.3 V  
T
= 25°C  
A
DE at V  
CC  
D at V  
−40  
−50  
CC  
R
= 54 W  
L
0
1
2
3
4
5
6
0
100 200 300 400 500 600 700 800 900 1000  
Signaling Rate − kbps  
V
− Supply Voltage − V  
CC  
G002  
G001  
6-2. RMS Supply Current vs Signaling Rate  
6-1. Driver Output Current vs Supply Voltage  
4.4  
35  
4.0  
30  
V
= 5.5 V  
CC  
3.6  
3.2  
2.8  
2.4  
2.0  
1.6  
1.2  
0.8  
0.4  
0.0  
VCC = 3.3 V  
25  
20  
Load = 300 W  
Load = 100 W  
Load = 60 W  
15  
VCC = 5 V  
10  
V
CC  
= 3.3 V  
5
0
V
CC  
= 3.15 V  
0
5
10 15 20 25 30 35 40 45 50  
− Differential Load Current − mA  
-50  
0
50  
100  
150  
I
(diff)  
G003  
Temperature - (°C)  
6-3. Differential Output Voltage vs Differential  
6-4. Rise and Fall Time  
Load Current  
2.5  
R
C
= 50 W,  
V
= 5.5 V  
L
L
CC  
2.3  
2.1  
1.9  
= 50 pF  
V
= 5 V  
CC  
1.7  
1.5  
1.3  
1.1  
0.9  
V
= 4.5 V  
CC  
V
= 4 V  
CC  
V
= 3.6 V  
CC  
V
= 3.3 V  
CC  
V
= 3 V  
CC  
0.7  
0.5  
Transition Time − ns  
6-5. Differential Output Amplitude and Transition Time vs Supply Voltage  
Copyright © 2022 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: SN65HVD1781A-Q1  
 
 
SN65HVD1781A-Q1  
ZHCSG90A MAY 2017 REVISED FEBRUARY 2022  
www.ti.com.cn  
7 Parameter Measurement Information  
Input generator rate is 100 kbps, 50% duty cycle, rise and fall times less than 6 ns, output impedance 50 .  
375 W ±1%  
VCC  
DE  
A
B
D
VOD  
0 V or 3 V  
60 W ±1%  
+
_
–7 V < V(test) < 12 V  
375 W ±1%  
Copyright © 2016, Texas Instruments Incorporated  
7-1. Measurement of Driver Differential Output Voltage With Common-Mode Load  
VCC  
VA  
A
B
27 W ±1%  
DE  
A
B
VB  
D
Input  
VOC(PP)  
VOC  
DVOC(SS)  
CL = 50 pF ±20%  
27 W ±1%  
VOC  
CL Includes Fixture and  
Instrumentation Capacitance  
Copyright © 2016, Texas Instruments Incorporated  
7-2. Measurement of Driver Differential and Common-Mode Output With RS-485 Load  
3 V  
VCC  
VI  
50%  
50%  
DE  
CL = 50 pF ±20%  
A
B
D
tPLH  
tPHL  
VOD  
CL Includes Fixture  
» 2 V  
and Instrumentation  
Capacitance  
Input  
Generator  
RL = 54 W  
±1%  
90%  
90%  
VI  
VOD  
50 W  
0 V  
10%  
0 V  
10%  
» –2 V  
tr  
tf  
Copyright © 2016, Texas Instruments Incorporated  
7-3. Measurement of Driver Differential Output Rise and Fall Times and Propagation Delays  
3 V  
A
S1  
VO  
D
VI  
50%  
50%  
3 V  
B
0 V  
DE  
0.5 V  
RL = 110 W  
± 1%  
CL = 50 pF ±20%  
tPZH  
VOH  
90%  
Input  
Generator  
CL Includes Fixture  
50 W  
VI  
and Instrumentation  
Capacitance  
VO  
50%  
» 0 V  
tPHZ  
Copyright © 2016, Texas Instruments Incorporated  
D at 3 V to test non-inverting output, D at 0 V to test inverting output.  
7-4. Measurement of Driver Enable and Disable Times With Active High Output and Pulldown Load  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: SN65HVD1781A-Q1  
 
 
 
 
 
SN65HVD1781A-Q1  
ZHCSG90A MAY 2017 REVISED FEBRUARY 2022  
www.ti.com.cn  
3 V  
RL = 110 W  
±1%  
» 3 V  
A
VI  
50%  
50%  
S1  
D
VO  
3 V  
0 V  
B
tPZL  
tPLZ  
DE  
CL = 50 pF ±20%  
» 3 V  
Input  
Generator  
VI  
50 W  
CL Includes Fixture  
VO  
50%  
and Instrumentation  
Capacitance  
10%  
VOL  
Copyright © 2016, Texas Instruments Incorporated  
D at 0 V to test non-inverting output, D at 3 V to test inverting output.  
7-5. Measurement of Driver Enable and Disable Times With Active-Low Output and Pullup Load  
A
VO  
R
Input  
Generator  
50 W  
VI  
B
1.5 V  
0 V  
CL = 15 pF ±20%  
RE  
CL Includes Fixture  
and Instrumentation  
Capacitance  
3 V  
VI  
50%  
50%  
0 V  
tPLH  
tPHL  
VOH  
90% 90%  
VO  
50%  
10%  
50%  
10%  
VOL  
tr  
tf  
Copyright © 2016, Texas Instruments Incorporated  
7-6. Measurement of Receiver Output Rise and Fall Times and Propagation Delays  
Copyright © 2022 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: SN65HVD1781A-Q1  
 
 
SN65HVD1781A-Q1  
ZHCSG90A MAY 2017 REVISED FEBRUARY 2022  
www.ti.com.cn  
3 V  
DE  
VCC  
A
B
VO  
1 kW ± 1%  
R
D
0 V or 3 V  
S1  
CL = 15 pF ±20%  
RE  
CL Includes Fixture  
and Instrumentation  
Capacitance  
Input  
Generator  
50 W  
VI  
3 V  
VI  
50%  
50%  
0 V  
tPZH(1)  
tPHZ  
VOH  
D at 3 V  
S1 to GND  
90%  
VO  
50%  
» 0 V  
tPZL(1)  
tPLZ  
VCC  
D at 0 V  
S1 to VCC  
VO  
50%  
10%  
VOL  
Copyright © 2016, Texas Instruments Incorporated  
7-7. Measurement of Receiver Enable and Disable Times With Driver Enabled  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: SN65HVD1781A-Q1  
 
SN65HVD1781A-Q1  
ZHCSG90A MAY 2017 REVISED FEBRUARY 2022  
www.ti.com.cn  
VCC  
A
VO  
0 V or 1.5 V  
1 kW ± 1%  
CL = 15 pF ±20%  
R
S1  
B
1.5 V or 0 V  
RE  
CL Includes Fixture  
and Instrumentation  
Capacitance  
Input  
Generator  
50 W  
VI  
3 V  
VI  
50%  
0 V  
tPZH(2)  
VOH  
A at 1.5 V  
B at 0 V  
S1 to GND  
VO  
50%  
GND  
VCC  
tPZL(2)  
A at 0 V  
B at 1.5 V  
S1 to VCC  
VO  
50%  
VOL  
Copyright © 2016, Texas Instruments Incorporated  
7-8. Measurement of Receiver Enable Times With Driver Disabled  
Copyright © 2022 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: SN65HVD1781A-Q1  
 
SN65HVD1781A-Q1  
ZHCSG90A MAY 2017 REVISED FEBRUARY 2022  
www.ti.com.cn  
8 Detailed Description  
8.1 Overview  
The SN65HVD1781A-Q1 is a half-duplex RS-485 transceiver that operates at data rates up to 1 Mbps.  
The device features a wide common-mode operating range and bus-pin fault protection up to ±70 V. The device  
has an active-high driver enable and active-low receiver enable. A standby current of less than 1 µA can be  
achieved by disabling both driver and receiver.  
8.2 Functional Block Diagram  
VCC  
R
RE  
A
B
DE  
D
GND  
Copyright © 2016, Texas Instruments Incorporated  
8.3 Feature Description  
Internal ESD protection circuits protect the transceiver bus terminals against ±16-kV Human Body Model (HBM)  
electrostatic discharges.  
Device operation is specified over a wide temperature range from 40°C to 125°C.  
8.3.1 Receiver Failsafe  
The SN65HVD1781A-Q1 half-duplex transceiver provides internal biasing of the receiver input thresholds in  
combination with large input-threshold hysteresis. At a positive input threshold of VIT+ = 35 mV and an input  
hysteresis of VHYS = 30 mV, the receiver output remains logic high under bus-idle, bus-short, or open bus  
conditions in the presence of up to 130-mVPP differential noise without the need for external failsafe biasing  
resistors.  
8.3.2 Hot-Plugging  
The SN65HVD1781A-Q1 is designed to operate in hot swap or hot-pluggable applications. Key features for hot-  
pluggable applications are power-up and power-down glitch free operation, default disabled input and output  
pins, and receiver failsafe.  
As shown in the 8.2, an internal power-on reset circuit keeps the driver outputs in a high impedance state until  
the supply voltage has reached a level at which the device will reliably operate. This circuit ensures that no  
problems occur on the bus pin outputs as the power supply turns on or off.  
As shown in 8.4, the driver and receiver enable inputs (DE and RE) are disabled by default. This default  
ensures that the device neither drives the bus nor reports data on the R pin until the associated controller  
actively drivers the enable pins.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: SN65HVD1781A-Q1  
 
 
 
 
SN65HVD1781A-Q1  
ZHCSG90A MAY 2017 REVISED FEBRUARY 2022  
www.ti.com.cn  
8.4 Device Functional Modes  
When the driver enable pin, DE, is logic high, the differential outputs A and B follow the logic states at data input  
D. A logic high at D causes A to turn high and B to turn low. In this case the differential output voltage defined as  
VOD = VA VB is positive. When D is low, the output states reverse, B turns high, A becomes low, and VOD is  
negative.  
When DE is low, both outputs turn high-impedance. In this condition the logic state at D is irrelevant. The DE pin  
has an internal pull-down resistor to ground, thus when left open the driver is disabled (high-impedance) by  
default. The D pin has an internal pull-up resistor to VCC, thus, when left open while the driver is enabled, output  
A turns high and B turns low.  
8-1. Driver Function Table  
INPUT  
ENABLE  
OUTPUTS  
DRIVER STATE  
D
DE  
A
B
L
H
H
H
L
Actively drive bus High  
L
X
H
L
H
Z
Z
L
Actively drive bus Low  
Driver disabled  
Z
Z
H
X
OPEN  
H
Driver disabled by default  
Actively drive bus High by default  
OPEN  
When the receiver enable pin, RE, is logic low, the receiver is enabled. When the differential input voltage  
defined as VID = VA VB is positive and higher than the positive input threshold, VIT+, the receiver output, R,  
turns high. When VID is negative and lower than the negative input threshold, VIT, the receiver output, R, turns  
low. If VID is between VIT+ and VITthe output is indeterminate.  
When RE is logic high or left open, the receiver output is high-impedance and the magnitude and polarity of VID  
are irrelevant. Internal biasing of the receiver inputs causes the output to go failsafe-high when the transceiver is  
disconnected from the bus (open-circuit), the bus lines are shorted (short-circuit), or the bus is not actively driven  
(idle bus).  
8-2. Receiver Function Table  
DIFFERENTIAL INPUT  
VID = VA VB  
VID > VIT+  
ENABLE OUTPUT  
RECEIVER STATE  
RE  
R
H
?
L
Receive valid bus High  
VIT< VID < VIT+  
VID < VIT–  
L
Indeterminate bus state  
Receive valid bus Low  
Receiver disabled  
L
L
X
H
Z
Z
H
H
H
X
OPEN  
Receiver disabled by default  
Fail-safe high output  
Fail-safe high output  
Fail-safe high output  
Open-circuit bus  
Short-circuit bus  
Idle (terminated) bus  
L
L
L
Copyright © 2022 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: SN65HVD1781A-Q1  
 
 
SN65HVD1781A-Q1  
ZHCSG90A MAY 2017 REVISED FEBRUARY 2022  
www.ti.com.cn  
9 Application and Implementation  
备注  
Information in the following applications sections is not part of the TI component specification, and TI  
does not warrant its accuracy or completeness. TIs customers are responsible for determining  
suitability of components for their purposes. Customers should validate and test their design  
implementation to confirm system functionality.  
9.1 Application Information  
The SN65HVD1781A-Q1 is a half-duplex RS-485 transceiver commonly used for asynchronous data  
transmissions. The driver and receiver enable pins allow for the configuration of different operating modes.  
R
R
R
R
R
R
RE  
A
B
RE  
A
B
RE  
A
B
DE  
D
DE  
D
DE  
D
D
D
D
Copyright © 2016, Texas Instruments Incorporated  
9-1. Half-Duplex Transceiver Configurations  
Using independent enable lines provides the most flexible control as it allows for the driver and the receiver to be  
turned on and off individually. While this configuration requires two control lines, it allows for selective listening  
into the bus traffic, whether the driver is transmitting data or not.  
Combining the enable signals simplifies the interface to the controller by forming a single direction-control signal.  
In this configuration, the transceiver operates as a driver when the direction-control line is high, and as a receiver  
when the direction-control line is low.  
Additionally, only one line is required when connecting the receiver-enable input to ground and controlling only  
the driver-enable input. In this configuration, a node not only receives the data from the bus, but also the data it  
sends and can verify that the correct data have been transmitted.  
9.2 Typical Application  
An RS-485 bus consists of multiple transceivers connecting in parallel to a bus cable. To eliminate line  
reflections, each cable end is terminated with a termination resistor, RT, whose value matches the characteristic  
impedance, Z0, of the cable. This method, known as parallel termination, allows for higher data rates over longer  
cable length.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: SN65HVD1781A-Q1  
 
 
 
SN65HVD1781A-Q1  
ZHCSG90A MAY 2017 REVISED FEBRUARY 2022  
www.ti.com.cn  
R
R
R
R
A
B
A
B
RE  
RE  
RT  
RT  
DE  
D
DE  
D
D
D
A
B
A
B
R
R
R
R
D
D
D
D
RE DE  
RE DE  
Copyright © 2016, Texas Instruments Incorporated  
9-2. Typical RS-485 Network With Half-Duplex Transceivers  
9.2.1 Design Requirements  
RS-485 is a robust electrical standard suitable for long-distance networking that may be used in a wide range of  
applications with varying requirements, such as distance, data rate, and number of nodes.  
9.2.1.1 Data Rate and Bus Length  
There is an inverse relationship between data rate and bus length, meaning the higher the data rate, the shorter  
the cable length; and conversely, the lower the data rate, the longer the cable may be without introducing data  
errors. While most RS-485 systems use data rates between 10 kbps and 100 kbps, some applications require  
data rates up to 250 kbps at distances of 4000 feet and longer. Longer distances are possible by allowing for  
small signal jitter of up to 5 or 10%.  
10000  
5%, 10%, and 20% Jitter  
1000  
Conservative  
Characteristics  
100  
10  
100  
1k  
10k  
100 k  
1M  
10M  
100 M  
Data Rate (bps)  
9-3. Cable Length vs Data Rate Characteristic  
9.2.1.2 Bus Loading  
The RS-485 standard specifies that a compliant driver must be able to driver 32 unit loads (UL), where 1 unit  
load represents a load impedance of approximately 12 k. Because the SN65HVD1781A-Q1 consists of 1/10  
UL transceivers, it is possible to connect up to 320 receivers to the bus.  
9.2.2 Detailed Design Procedure  
Although the SN65HVD1781A-Q1 is internally protected against human-body-model ESD strikes up to ±16 kV,  
additional protection against higher-energy transients can be provided at the application level by implementing  
external protection devices.  
9-4 shows a protection circuit intended to withstand ±8-kV IEC ESD (per IEC 61000-4-2) as well as ±4-kV  
EFT (per IEC 61000-4-4).  
Copyright © 2022 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: SN65HVD1781A-Q1  
SN65HVD1781A-Q1  
ZHCSG90A MAY 2017 REVISED FEBRUARY 2022  
www.ti.com.cn  
3.3 V  
100 nF  
100 nF  
VCC  
10 k  
R1  
R
RxD  
TVS  
RE  
DE  
D
A
B
MCU/  
UART  
DIR  
TxD  
R2  
GND  
10 kꢀ  
Copyright © 2016, Texas Instruments Incorporated  
9-4. RS-485 Transceiver with External Transient Protection  
9-1. Bill of Materials  
DEVICE  
FUNCTION  
ORDER NUMBER  
MANUFACTURER  
XCVR  
RS-485 Transceiver  
SN65HVD1781A-Q1  
TI  
10-Ω, Pulse-Proof Thick-Film  
R1, R2  
TVS  
CRCW0603010RJNEAHP  
SMBJ43CA  
Vishay  
Resistor  
Bidirectional 600-W Transient  
Suppressor  
Littelfuse  
9.2.2.1 Stub Length  
When connecting a node to the bus, the distance between the transceiver inputs and the cable trunk, known as  
the stub, should be as short as possible. Stubs present a non-terminated piece of bus line which can introduce  
reflections as the length of the stub increases. As a general guideline, the electrical length, or round-trip delay, of  
a stub should be less than one-tenth of the rise time of the driver, thus giving a maximum physical stub length as  
shown in 方程1.  
Lstub 0.1 × tr × v × c  
(1)  
where  
tr is the 10/90 rise time of the driver  
c is the speed of light (3 × 108 m/s)  
v is the signal velocity of the cable or trace as a factor of c  
9.2.2.2 Receiver Failsafe  
The differential receivers of the SN65HVD1781A-Q1 has receiver input thresholds that are offset so that receiver  
output state is known for the following three fault conditions:  
Open bus conditions, such as a disconnected connector  
Shorted bus conditions, such as cable damage shorting the twisted-pair together  
Idle bus conditions that occur when no driver on the bus is actively driving  
In any of these cases, the differential receiver will output a failsafe logic High state so that the output of the  
receiver is not indeterminate.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: SN65HVD1781A-Q1  
 
 
SN65HVD1781A-Q1  
ZHCSG90A MAY 2017 REVISED FEBRUARY 2022  
www.ti.com.cn  
Receiver failsafe is accomplished by offsetting the receiver thresholds such that the input indeterminate range  
does not include zero volts differential. In order to comply with the RS-422 and RS-485 standards, the receiver  
output must output a High when the differential input VID is more positive than 200 mV, and must output a Low  
when VID is more negative than 200 mV. The receiver parameters which determine the failsafe performance  
are VIT(+), VIT(), and VHYS (the separation between VIT(+) and VIT()). As shown in the 6.6 table, differential  
signals more negative than 200mV will always cause a Low receiver output, and differential signals more  
positive than 200 mV will always cause a High receiver output.  
When the differential input signal is close to zero, it is still above the maximum VIT(+) threshold of 35 mV, and  
the receiver output will be High. Only when the differential input is more than VHYS below VIT(+) will the receiver  
output transition to a Low state. Therefore, the noise immunity of the receiver inputs during a bus fault condition  
includes the receiver hysteresis value, VHYS, as well as the value of VIT(+)  
.
R
Vhys (min)  
30 mV  
VID (mV)  
-65  
-35  
0
+65  
Vn max = 130 mVpp  
9-5. Noise Immunity Under Bus Fault Conditions  
9.2.3 Application Curve  
SN65HVD1781-Q1 D Input  
Differential Output  
R Output  
1-Mbps Operation  
9-6. SN65HVD1781A-Q1 PRBS Data Pattern  
Copyright © 2022 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: SN65HVD1781A-Q1  
SN65HVD1781A-Q1  
ZHCSG90A MAY 2017 REVISED FEBRUARY 2022  
www.ti.com.cn  
10 Power Supply Recommendations  
To ensure reliable operation at all data rates and supply voltages, each supply should be buffered with a 100-nF  
ceramic capacitor located as close to the supply pins as possible. The TPS7A6150-Q1 is a linear voltage  
regulator suitable for the 5-V supply.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: SN65HVD1781A-Q1  
 
SN65HVD1781A-Q1  
ZHCSG90A MAY 2017 REVISED FEBRUARY 2022  
www.ti.com.cn  
11 Layout  
11.1 Layout Guidelines  
On-chip IEC-ESD protection is good for laboratory and portable equipment but often insufficient for EFT and  
surge transients occurring in industrial environments. Therefore robust and reliable bus node design requires the  
use of external transient protection devices.  
Because ESD and EFT transients have a wide frequency bandwidth from approximately 3 MHz to 3 GHz, high-  
frequency layout techniques must be applied during PCB design.  
1. Place the protection circuitry close to the bus connector to prevent noise transients from entering the board.  
2. Use VCC and ground planes to provide low-inductance. High-frequency currents follow the path of least  
inductance and not the path of least impedance.  
3. Design the protection components into the direction of the signal path. Do not force the transient currents to  
divert from the signal path to reach the protection device.  
4. Apply 100-nF to 220-nF bypass capacitors as close as possible to the VCC pins of the transceiver, UART, or  
controller ICs on the board.  
5. Use at least two vias for VCC and ground connections of bypass capacitors and protection devices to  
minimize effective via inductance.  
6. Use 1-kΩto 10-kΩpullup and pulldown resistors for enable lines to limit noise currents in these lines during  
transient events.  
7. While pure TVS protection is sufficient for surge transients up to 1 kV, higher transients require metal-oxide  
varistors (MOVs) which reduce the transients to a few hundred volts of clamping voltage, and transient  
blocking units (TBUs) that limit transient current to less than 1 mA.  
11.2 Layout Example  
5
Via to ground  
Via to VCC  
4
C
R
6
R
R
1
R
MCU  
5
TVS  
6
SN65HVD1781  
5
11-1. Half-Duplex Layout Example  
Copyright © 2022 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: SN65HVD1781A-Q1  
 
 
 
SN65HVD1781A-Q1  
ZHCSG90A MAY 2017 REVISED FEBRUARY 2022  
www.ti.com.cn  
12 Device and Documentation Support  
12.1 Device Support  
12.2 Documentation Support  
12.2.1 Related Documentation  
For related documentation see the following:  
RS-485 Half-Duplex Evaluation Module  
SN65HVD17xx Fault-Protected RS-485 Transceivers With Extended Common-Mode Range  
TPS7A6xxx-Q1 300-mA 40-V Low-Dropout Regulator With 25-µA Quiescent Current  
12.3 Receiving Notification of Documentation Updates  
To receive notification of documentation updates, navigate to the device product folder on ti.com. In the upper  
right corner, click on Alert me to register and receive a weekly digest of any product information that has  
changed. For change details, review the revision history included in any revised document.  
12.4 Community Resources  
12.5 Trademarks  
所有商标均为其各自所有者的财产。  
13 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: SN65HVD1781A-Q1  
 
 
 
 
 
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
3-Jan-2022  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
SN65HVD1781AQDRQ1  
ACTIVE  
SOIC  
D
8
2500 RoHS & Green  
NIPDAU  
Level-1-260C-UNLIM  
-40 to 125  
1781AQ  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OUTLINE  
D0008A  
SOIC - 1.75 mm max height  
SCALE 2.800  
SMALL OUTLINE INTEGRATED CIRCUIT  
C
SEATING PLANE  
.228-.244 TYP  
[5.80-6.19]  
.004 [0.1] C  
A
PIN 1 ID AREA  
6X .050  
[1.27]  
8
1
2X  
.189-.197  
[4.81-5.00]  
NOTE 3  
.150  
[3.81]  
4X (0 -15 )  
4
5
8X .012-.020  
[0.31-0.51]  
B
.150-.157  
[3.81-3.98]  
NOTE 4  
.069 MAX  
[1.75]  
.010 [0.25]  
C A B  
.005-.010 TYP  
[0.13-0.25]  
4X (0 -15 )  
SEE DETAIL A  
.010  
[0.25]  
.004-.010  
[0.11-0.25]  
0 - 8  
.016-.050  
[0.41-1.27]  
DETAIL A  
TYPICAL  
(.041)  
[1.04]  
4214825/C 02/2019  
NOTES:  
1. Linear dimensions are in inches [millimeters]. Dimensions in parenthesis are for reference only. Controlling dimensions are in inches.  
Dimensioning and tolerancing per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed .006 [0.15] per side.  
4. This dimension does not include interlead flash.  
5. Reference JEDEC registration MS-012, variation AA.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
D0008A  
SOIC - 1.75 mm max height  
SMALL OUTLINE INTEGRATED CIRCUIT  
8X (.061 )  
[1.55]  
SYMM  
SEE  
DETAILS  
1
8
8X (.024)  
[0.6]  
SYMM  
(R.002 ) TYP  
[0.05]  
5
4
6X (.050 )  
[1.27]  
(.213)  
[5.4]  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:8X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
EXPOSED  
METAL  
EXPOSED  
METAL  
.0028 MAX  
[0.07]  
.0028 MIN  
[0.07]  
ALL AROUND  
ALL AROUND  
SOLDER MASK  
DEFINED  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
4214825/C 02/2019  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
D0008A  
SOIC - 1.75 mm max height  
SMALL OUTLINE INTEGRATED CIRCUIT  
8X (.061 )  
[1.55]  
SYMM  
1
8
8X (.024)  
[0.6]  
SYMM  
(R.002 ) TYP  
[0.05]  
5
4
6X (.050 )  
[1.27]  
(.213)  
[5.4]  
SOLDER PASTE EXAMPLE  
BASED ON .005 INCH [0.125 MM] THICK STENCIL  
SCALE:8X  
4214825/C 02/2019  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

UL1042

UL1042 - Uk砤d zr體nowa縪nego mieszacza iloczynowego

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

ZXFV201

QUAD VIDEO AMPLIFIER

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ZETEX

ZXFV201N14

IC-SM-VIDEO AMP

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ZETEX

ZXFV201N14TA

QUAD VIDEO AMPLIFIER

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ZETEX

ZXFV201N14TC

QUAD VIDEO AMPLIFIER

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ZETEX

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

ZXFV302N16

IC-SM-4:1 MUX SWITCH

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

ZXFV4089

VIDEO AMPLIFIER WITH DC RESTORATION

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ZETEX

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ZETEX