SN65HVD3082E_17 [TI]

Low-Power RS-485 Transceivers, Available in a Small MSOP-8 Package;
SN65HVD3082E_17
型号: SN65HVD3082E_17
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

Low-Power RS-485 Transceivers, Available in a Small MSOP-8 Package

文件: 总26页 (文件大小:892K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
SN65HVD3082E, SN75HVD3082E  
SN65HVD3085E, SH65HVD3088E  
DGK  
D
P
www.ti.com  
SLLS562G AUGUST 2009REVISED MAY 2009  
Low-Power RS-485 Transceivers, Available in a Small MSOP-8  
Package  
1
FEATURES  
DESCRIPTION  
Available in a Small MSOP-8 Package  
These devices are half-duplex transceivers designed  
for RS–485 data bus networks. Powered by a 5–V  
supply, they are fully compliant with TIA/EIA-485A  
standard. With controlled transition times, these  
devices are suitable for transmitting data over long  
Meets or Exceeds the Requirements of the  
TIA/EIA485A Standard  
Low Quiescent Power  
0.3 mA Active Mode  
1 nA Shutdown Mode  
twisted-pair  
cables.  
SN65HVD3082E  
and  
SN75HVD3082E devices are optimized for signaling  
rates up to 200 kbps. SN65HVD3085E is suitable for  
1/8 Unit Load—Up to 256 Nodes on a Bus  
Bus-Pin ESD Protection Up to 15 kV  
Industry-Standard SN75176 Footprint  
data transmission up to  
1
Mbps, whereas  
SN65HVD3088E is suitable for applications requiring  
signaling rates up to 20 Mbps. These devices are  
designed to operate with very low supply current,  
typically 0.3 mA, exclusive of the load. When in the  
inactive shutdown mode, the supply current drops to  
a few nanoamps, making these devices ideal for  
power-sensitive applications.  
Failsafe Receiver (Bus Open, Bus Shorted,  
Bus Idle)  
Glitch–Free Power–Up/Down Bus Inputs and  
Outputs  
APPLICATIONS  
The wide common-mode range and high ESD  
protection levels of these devices make them suitable  
for demanding applications such as energy meter  
networks, electrical inverters, status/command signals  
across telecom racks, cabled chassis interconnects,  
and industrial automation networks where noise  
tolerance is essential. These devices match the  
industry-standard footprint of SN75176. Power-on  
reset circuits keep the outputs in a high impedance  
state until the supply voltage has stabilized. A thermal  
shutdown function protects the device from damage  
due to system fault conditions. The SN75HVD3082E  
is characterized for operation from 0°C to 70°C and  
SN65HVD308xE are characterized for operation from  
–40°C to 85°C air temperature.  
Energy Meter Networks  
Motor Control  
Power Inverters  
Industrial Automation  
Building Automation Networks  
Battery-Powered Applications  
Telecommunications Equipment  
ORDERING INFORMATION:  
PACKAGE TYPE  
TA  
SIGNALING RATE (Mbps)  
P
D(1)  
DGK(2)  
SN75HVD3082EP  
Marked as 75HVD3082  
SN75HVD3082ED  
Marked as VN3082  
SN75HVD3082EDGK  
Marked as NWM  
0°C to 70°C  
0.2  
0.2  
1
SN65HVD3082EP  
Marked as 65HVD3082  
SN65HVD3082ED  
Marked as VP3082  
SN65HVD3082EDGK  
Marked as NWN  
SN65HVD3085ED  
Marked as VP3085  
SN65HVD3085EDGK  
Marked as NWK  
–40°C to 85°C  
SN65HVD3088ED  
Marked as VP3088  
SN65HVD3088EDGK  
Marked as NWH  
20  
(1) The D package is available taped and reeled. Add an R suffix to the device type (i.e., SN65HVD3082EDR).  
(2) The DGK package is available taped and reeled. Add an R suffix to the device type (i.e., SN65HVD3082EDGKR).  
1
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of  
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
PRODUCTION DATA information is current as of publication date.  
Copyright © 2009, Texas Instruments Incorporated  
Products conform to specifications per the terms of the Texas  
Instruments standard warranty. Production processing does not  
necessarily include testing of all parameters.  
SN65HVD3082E, SN75HVD3082E  
SN65HVD3085E, SH65HVD3088E  
SLLS562G AUGUST 2009REVISED MAY 2009  
www.ti.com  
These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam  
during storage or handling to prevent electrostatic damage to the MOS gates.  
ABSOLUTE MAXIMUM RATINGS  
over operating free-air temperature range unless otherwise noted(1)  
(2)  
UNIT  
Supply voltage range, VCC  
–0.5 V to 7 V  
–9 V to 14 V  
Voltage range at A or B  
Voltage range at any logic pin  
–0.3 V to VCC + 0.3 V  
–24 mA to 24 mA  
–50 to 50 V  
Receiver output current  
Voltage input, transient pulse, A and B, through 100 . See Figure 13  
Junction Temperature, TJ  
170°C  
Continuous total power dissipation  
See the Package Dissipation Table  
(1) Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings  
only, and functional operation of the device at these or any other conditions beyond those indicated under recommended operating  
conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) All voltage values, except differential I/O bus voltages, are with respect to network ground terminal.  
PACKAGE DISSIPATION RATINGS  
(1)  
JEDEC BOARD  
MODEL  
TA < 25°C  
POWER RATING  
DERATING FACTOR  
ABOVE TA = 25°C  
TA = 70°C  
TA = 85°C  
PACKAGE  
POWER RATING  
POWER RATING  
Low k(2)  
High k(3)  
Low k(2)  
Low k(2)  
High k(3)  
507 mW  
824 mW  
686 mW  
394 mW  
583 mW  
4.82 mW/°C  
7.85 mW/°C  
6.53 mW/°C  
3.76 mW/°C  
5.55 mW/°C  
289 mW  
471 mW  
392 mW  
255 mW  
333 mW  
217 mW  
353 mW  
294 mW  
169 mW  
250 mW  
D
P
DGK  
(1) This is the inverse of the junction-to-ambient thermal resistance when board-mounted and with no air flow.  
(2) In accordance with the low-k thermal metric definitions of EIA/JESD51-3  
(3) In accordance with the high-k thermal metric definitions of EIA/JESD51-7  
2
Submit Documentation Feedback  
Copyright © 2009, Texas Instruments Incorporated  
Product Folder Link(s): SN65HVD3082E SN75HVD3082E SN65HVD3085E SH65HVD3088E  
SN65HVD3082E, SN75HVD3082E  
SN65HVD3085E, SH65HVD3088E  
www.ti.com  
SLLS562G AUGUST 2009REVISED MAY 2009  
RECOMMENDED OPERATING CONDITIONS(1)  
over operating free-air temperature range unless otherwise noted  
MIN  
4.5  
–7  
NOM  
MAX  
5.5  
12  
UNIT  
Supply voltage, VCC  
V
Voltage at any bus terminal (separately or common mode) , VI  
High-level input voltage (D, DE, or RE inputs), VIH  
Low-level input voltage (D, DE, or RE inputs), VIL  
Differential input voltage, VID  
2
VCC  
0.8  
12  
V
V
V
0
–12  
–60  
–8  
Driver  
Output current, IO  
60  
mA  
Receiver  
8
Differential load resistance, RL  
54  
60  
SN65HVD3082E, SN75HVD3082E  
0.2  
1
Signaling rate, 1/tUI  
SN65HVD3085E  
Mbps  
SN65HVD3088E  
20  
85  
70  
130  
SN65HVD3082E, SN65HVD3085E, SN65HVD3088E  
SN75HVD3082E  
–40  
0
Operating free–air temperature, TA  
°C  
°C  
(2)  
Junction temperature, TJ  
–40  
(1) The algebraic convention, in which the least positive (most negative) limit is designated as minimum is used in this data sheet.  
(2) See thermal characteristics table for information on maintenance of this specification for the DGK package.  
SUPPLY CURRENT  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP(1)  
MAX  
UNIT  
D at VCC or open, DE at VCC  
RE at 0 V, No load  
,
Driver and receiver enabled  
425  
900  
µA  
D at VCC or open, DE at VCC  
RE at VCC, No load  
,
Driver enabled, receiver disabled  
Receiver enabled, driver disabled  
Driver and receiver disabled  
330  
300  
600  
600  
2
µA  
µA  
µA  
ICC  
D at VCC or open, DE at 0 V,  
RE at 0 V, No load  
D at VCC or open, DE at 0 V,  
RE at VCC  
0.001  
(1) All typical values are at 25°C and with a 5–V supply.  
ELECTROSTATIC DISCHARGE PROTECTION  
PARAMETER  
TEST CONDITIONS  
Bus terminals and GND  
MIN TYP(1)  
MAX  
UNIT  
kV  
Human body model  
Human body model(2)  
±15  
±4  
All pins  
kV  
Charged-device-model(3)  
Electrical Fast Transient/Burst(4)  
All pins  
±1  
kV  
A, B, and GND  
±4  
kV  
(1) All typical values at 25°C.  
(2) Tested in accordance with JEDEC Standard 22, Test Method A114–A and IEC 60749–26.  
(3) Tested in accordance with JEDEC Standard 22, Test Method C101.  
(4) Tested in accordance with IEC 61000–4–4.  
Copyright © 2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
3
Product Folder Link(s): SN65HVD3082E SN75HVD3082E SN65HVD3085E SH65HVD3088E  
SN65HVD3082E, SN75HVD3082E  
SN65HVD3085E, SH65HVD3088E  
SLLS562G AUGUST 2009REVISED MAY 2009  
www.ti.com  
DRIVER ELECTRICAL CHARACTERISTICS  
over recommended operating conditions unless otherwise noted  
PARAMETER  
TEST CONDITIONS  
MIN  
3
TYP(1)  
4.3  
MAX UNIT  
IO = 0, No Load  
RL = 54 , See Figure 1  
RL = 100 Ω  
1.5  
2
2.3  
|VOD  
|
Differential output voltage  
V
VTEST = –7 V to 12 V, See Figure 2  
1.5  
Change in magnitude of differential  
output voltage  
Δ|VOD  
|
See Figure 1 and Figure 2  
See Figure 3  
–0.2  
1
0
2.6  
0
0.2  
3
V
V
Steady-state common-mode output  
voltage  
VOC(SS)  
ΔVOC(SS)  
VOC(PP)  
Change in steady-state common-mode  
output voltage  
–0.1  
0.1  
Peak-to-peak common-mode output  
voltage  
See Figure 3  
500  
mV  
IOZ  
II  
High-impedance output current  
Input current  
See receiver input currents  
D, DE  
–100  
–250  
100  
250  
µA  
IOS  
Short-circuit output current  
7 V VO 12 V, See Figure 7  
mA  
(1) All typical values are at 25°C and with a 5–V supply.  
DRIVER SWITCHING CHARACTERISTICS  
over recommended operating conditions unless otherwise noted  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
700  
150  
12  
MAX  
UNIT  
Propagation delay time, low-to-high-level  
HVD3082E  
HVD3085E  
HVD3088E  
HVD3082E  
HVD3085E  
HVD3088E  
HVD3082E  
HVD3085E  
HVD3088E  
HVD3082E  
HVD3085E  
HVD3088E  
HVD3082E  
HVD3085E  
HVD3088E  
HVD3082E  
HVD3085E  
HVD3088E  
1300  
500  
20  
tPLH  
tPHL  
output  
RL = 54 , CL = 50 pF,  
See Figure 4  
ns  
Propagation delay time, high-to-low-level  
output  
500  
900  
200  
7
1500  
300  
15  
tr  
tf  
Differential output signal rise time  
Differential output signal fall time  
RL = 54 , CL = 50 pF,  
See Figure 4  
ns  
ns  
ns  
ns  
ns  
20  
200  
50  
RL = 54 , CL = 50 pF,  
See Figure 4  
tsk(p)  
Pulse skew (|tPHL – tPLH|)  
5
1.4  
2
Propagation delay time, high-impedance-to-  
high-level output  
Propagation delay time, high-impedance-to-  
low-level output  
2500  
1000  
13  
7000  
2500  
30  
RL = 110 , RE at 0 V,  
See Figure 5 and  
Figure 6  
tPZH  
tPZL  
Propagation delay time, high-level-to-high-  
impedance output  
Propagation delay time, low-level-to-high-  
impedance output  
80  
200  
100  
30  
RL = 110 , RE at 0 V,  
See Figure 5 and  
Figure 6  
tPHZ  
tPLZ  
60  
12  
Propagation delay time, shutdown-to-high-  
tPZH(SHDN) level output  
tPZL(SHDN) Propagation delay time, shutdown-to-low-  
level output  
3500  
2500  
1600  
7000  
4500  
2600  
RL = 110 , RE at VCC,  
See Figure 5  
4
Submit Documentation Feedback  
Copyright © 2009, Texas Instruments Incorporated  
Product Folder Link(s): SN65HVD3082E SN75HVD3082E SN65HVD3085E SH65HVD3088E  
SN65HVD3082E, SN75HVD3082E  
SN65HVD3085E, SH65HVD3088E  
www.ti.com  
SLLS562G AUGUST 2009REVISED MAY 2009  
RECEIVER ELECTRICAL CHARACTERISTICS  
over recommended operating conditions unless otherwise noted  
PARAMETER  
TEST CONDITIONS  
MIN TYP(1) MAX UNIT  
Positive-going differential input threshold  
voltage  
VIT+  
VIT-  
IO = –8 mA  
IO = 8 mA  
–85  
–10  
mV  
mV  
Negative-going differential input threshold  
voltage  
–200  
–115  
Vhys  
VOH  
VOL  
IOZ  
Hysteresis voltage (VIT+ - VIT-  
High-level output voltage  
Low-level output voltage  
)
30  
4.6  
mV  
V
VID = 200 mV, IOH = –8 mA, See Figure 8  
VID = –200 mV, IO = 8 mA, See Figure 8  
VO = 0 or VCC, RE = VCC  
VIH = 12 V, VCC = 5 V  
4
0.15  
0.4  
1
V
High-impedance-state output current  
–1  
μA  
0.04  
0.1  
VIH = 12 V, VCC = 0 V  
0.06 0.125  
II  
Bus input current  
mA  
VIH = –7 V, VCC = 5 V  
–0.1  
–0.05  
–60  
–0.04  
–0.03  
–30  
–30  
7
VIH = –7 V, VCC = 0 V  
IIH  
High-level input current, (RE)  
Low-level Input current, (RE)  
Differential input capacitance  
VIH = 2 V  
μA  
μA  
pF  
IIL  
VIL = 0.8 V  
–60  
Cdiff  
VI = 0.4 sin (4E6πt) + 0.5 V, DE at 0 V  
(1) All typical values are at 25°C and with a 5-V supply.  
RECEIVER SWITCHING CHARACTERISTICS  
over recommended operating conditions unless otherwise noted  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
200  
100  
200  
100  
30  
UNIT  
HVD3082E  
HVD3085E  
75  
79  
4
Propagation delay time, low-to-high-  
level output  
tPLH  
tPHL  
tsk(p)  
ns  
ns  
ns  
HVD3086E  
HVD3082E  
HVD3085E  
Propagation delay time, high-to-low-  
level output  
CL = 15 pF, See  
Figure 9  
HVD3088E  
HVD3082E  
HVD3085E  
Pulse skew (|tPHL – tPLH|)  
HVD3088E  
10  
3
tr  
tf  
Output signal rise time  
Output signal fall time  
1.5  
1.8  
ns  
ns  
VID = –1.5 V to 1.5 V,  
CL = 15 pF, See Figure 9  
3
HVD3082E  
HVD3085E  
HVD3088E  
5
10  
5
50  
30  
tPZH  
tPZL  
tPHZ  
tPLZ  
Output enable time to high level  
Output enable time to low level  
Output enable time from high level  
Output disable time from low level  
ns  
ns  
ns  
ns  
HVD3082E  
HVD3085E  
50  
CL = 15 pF,  
DE at 3 V  
See Figure 10 and  
Figure 11  
HVD3088E  
30  
HVD3082E  
HVD3085E  
50  
HVD3088E  
30  
HVD3082E  
HVD3085E  
8
50  
HVD3088E  
30  
Propagation delay time, shutdown-to-  
high-level output  
tPZH(SHDN)  
tPZL(SHDN)  
1600  
1700  
3500  
ns  
ns  
CL = 15 pF, DE at 0 V,  
See Figure 12  
Propagation delay time, shutdown-to-low-  
level output  
3500  
Copyright © 2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
5
Product Folder Link(s): SN65HVD3082E SN75HVD3082E SN65HVD3085E SH65HVD3088E  
 
SN65HVD3082E, SN75HVD3082E  
SN65HVD3085E, SH65HVD3088E  
SLLS562G AUGUST 2009REVISED MAY 2009  
www.ti.com  
PARAMETER MEASUREMENT INFORMATION  
NOTE: Test load capacitance includes probe and jig capacitance (unless otherwise specified). Signal generator  
characteristics: rise and fall time < 6 ns, pulse rate 100 kHz, 50% duty cycle. ZO = 50 Ω (unless otherwise  
specified).  
I
OA  
A
27 W  
27 W  
I
I
V
OD  
50 pF  
0 V or 3 V  
B
I
OB  
V
OC  
Figure 1. Driver Test Circuit, VOD and VOC Without Common-Mode Loading  
375 W  
I
OA  
V
= -7 V to 12 V  
TEST  
V
60 W  
375 W  
OD  
0 V or 3 V  
I
OB  
V
TEST  
Figure 2. Driver Test Circuit, VOD With Common-Mode Loading  
27 W  
A
V
A
-3.25 V  
-1.75 V  
V
27 W  
B
Signal  
Generator  
B
50 W  
V
V
DV  
OC  
OC(PP)  
OC(SS)  
50 pF  
V
OC  
Figure 3. Driver VOC Test Circuit and Waveforms  
3 V  
1.5 V  
1.5 V  
Input  
0 V  
V
R
= 50 W  
t
t
PHL  
V
L
PLH  
OD  
C
= 50 pF  
Signal  
Generator  
OD(H)  
L
90%  
10%  
50 W  
0 V  
Output  
V
OD(L)  
t
t
f
r
Figure 4. Driver Switching Test Circuit and Waveforms  
6
Submit Documentation Feedback  
Copyright © 2009, Texas Instruments Incorporated  
Product Folder Link(s): SN65HVD3082E SN75HVD3082E SN65HVD3085E SH65HVD3088E  
SN65HVD3082E, SN75HVD3082E  
SN65HVD3085E, SH65HVD3088E  
www.ti.com  
SLLS562G AUGUST 2009REVISED MAY 2009  
PARAMETER MEASUREMENT INFORMATION (continued)  
A
B
S1  
Output  
3 V  
D
0 V or 3 V  
3 V if Testing A Output  
0 V if Testing B Output  
1.5 V  
1.5 V  
DE  
0 V  
V
0.5 V  
t
R
L
= 110 W  
C
= 50 pF  
PZH  
L
DE  
OH  
2.5 V  
Signal  
Generator  
Output  
V
0
50 W  
Off  
t
PHZ  
Figure 5. Driver Enable/Disable Test Circuit and Waveforms, High Output  
5 V  
R
= 110 W  
L
A
B
S1  
C
3 V  
D
Output  
0 V or 3 V  
0 V if Testing A Output  
3 V if Testing B Output  
1.5 V  
1.5 V  
PLZ  
DE  
0 V  
5 V  
V
t
PZL  
= 50 pF  
L
t
DE  
Output  
Signal  
Generator  
2.5 V  
50 W  
OL  
0.5 V  
Figure 6. Driver Enable/Disable Test Circuit and Waveforms, Low Output  
I
OS  
I
O
V
ID  
V
O
V
O
Voltage  
Source  
Figure 8. Receiver Switching Test Circuit and  
Waveforms  
Figure 7. Driver Short-Circuit  
Signal  
Generator  
50 W  
Input B  
V
ID  
1.5 V  
0 V  
50%  
I
A
B
O
Input A  
R
t
t
PHL  
PLH  
V
O
V
Signal  
Generator  
OH  
OL  
C
= 15 pF  
90%  
50 W  
L
Output  
10%  
V
t
t
f
r
Figure 9. Receiver Switching Test Circuit and Waveforms  
Copyright © 2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
7
Product Folder Link(s): SN65HVD3082E SN75HVD3082E SN65HVD3085E SH65HVD3088E  
SN65HVD3082E, SN75HVD3082E  
SN65HVD3085E, SH65HVD3088E  
SLLS562G AUGUST 2009REVISED MAY 2009  
www.ti.com  
PARAMETER MEASUREMENT INFORMATION (continued)  
D
V
V
CC  
CC  
DE  
A
54 W  
B
3 V  
1 kW  
RE  
R
1.5 V  
0 V  
0 V  
RE  
C
= 15 pF  
L
t
t
PZH  
PHZ  
V
Signal  
Generator  
OH  
50 W  
V
-0.5 V  
OH  
1.5 V  
R
GND  
Figure 10. Receiver Enable/Disable Test Circuit and Waveforms, Data Output High  
D
0 V  
DE  
V
CC  
A
54 W  
B
3 V  
0 V  
1 kW  
RE  
R
1.5 V  
PZL  
5 V  
C
= 15 pF  
RE  
L
t
t
PLZ  
Signal  
Generator  
V
CC  
50 W  
R
1.5 V  
V
+0.5 V  
OH  
V
OL  
Figure 11. Receiver Enable/Disable Test Circuit and Waveforms, Data Output Low  
V
CC  
Switch Down for V = 1.5 V  
(A)  
Switch Up for V = -1.5 V  
(A)  
A
B
1.5 V or  
-1.5 V  
R
3 V  
0 V  
RE  
1 kW  
1.5 V  
C
= 15 pF  
L
RE  
t
t
PZH(SHDN)  
PZL(SHDN)  
Signal  
Generator  
50 W  
5 V  
V
OH  
R
1.5 V  
V
OL  
0 V  
Figure 12. Receiver Enable From Shutdown Test Circuit and Waveforms  
8
Submit Documentation Feedback  
Copyright © 2009, Texas Instruments Incorporated  
Product Folder Link(s): SN65HVD3082E SN75HVD3082E SN65HVD3085E SH65HVD3088E  
SN65HVD3082E, SN75HVD3082E  
SN65HVD3085E, SH65HVD3088E  
www.ti.com  
SLLS562G AUGUST 2009REVISED MAY 2009  
PARAMETER MEASUREMENT INFORMATION (continued)  
V
TEST  
100 W  
0 V  
15 ms  
Pulse Generator,  
15 ms Duration,  
1% Duty Cycle  
15 ms  
-V  
TEST  
Figure 13. Test Circuit and Waveforms, Transient Overvoltage Test  
DEVICE INFORMATION  
PIN ASSIGNMENT  
LOGIC DIAGRAM (POSITIVE LOGIC)  
D, P OR DGK PACKAGE  
(TOP VIEW)  
4
V
D
R
1
8
7
6
5
CC  
B
3
2
2
3
4
RE  
DE  
D
DE  
RE  
A
GND  
6
7
A
B
1
R
FUNCTION TABLE  
DRIVER  
RECEIVER  
ENABLE  
OUTPUTS  
INPUT  
D
INPUT  
DE  
DIFFERENTIAL INPUTS  
VID = VA - VB  
OUTPUT  
RE  
R
A
H
L
B
L
H
L
H
H
VID –0.2 V  
L
L
?
H
Z
L
–0.2 V < VID < –0.01 V  
L
X
L
Z
H
Z
–0.01 V VID  
X
L
H
Z
H
H
H
Z
Open  
X
H
H
Open  
Z
Open circuit  
Short circuit  
IDLE Bus  
X
L
L
L
Open  
Receiver Failsafe  
The differential receiver is “failsafe” to invalid bus states caused by:  
open bus conditions such as a disconnected connector,  
shorted bus conditions such as cable damage shorting the twisted-pair together, or  
idle bus conditions that occur when no driver on the bus is actively driving  
In any of these cases, the differential receiver outputs a failsafe logic High state, so that the output of the  
receiver is not indeterminate.  
Copyright © 2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
9
Product Folder Link(s): SN65HVD3082E SN75HVD3082E SN65HVD3085E SH65HVD3088E  
 
 
SN65HVD3082E, SN75HVD3082E  
SN65HVD3085E, SH65HVD3088E  
SLLS562G AUGUST 2009REVISED MAY 2009  
www.ti.com  
Receiver failsafe is accomplished by offsetting the receiver thresholds so that the “input indeterminate” range  
does not include zero volts differential. To comply with the RS-422 and RS-485 standards, the receiver output  
must output a High when the differential input VID is more positive than +200 mV, and must output a Low when  
the VID is more negative than -200 mV. The receiver parameters which determine the failsafe performance are  
VIT+ and VIT-and VHYS. As seen in the RECEIVER ELECTRICAL CHARACTERISTICS table, differential signals  
more negative than -200 mV will always cause a Low receiver output. Similarly, differential signals more positive  
than +200 mV will always cause a High receiver output.  
When the differential input signal is close to zero, it will still be above the VIT+ threshold, and the receiver output  
is High. Only when the differential input is more negative than VIT-will the receiver output transition to a Low state.  
So, the noise immunity of the receiver inputs during a bus fault condition includes the receiver hysteresis value  
VHYS (the separation between VIT+ and VIT-) as well as the value of VIT+  
.
EQUIVALENT INPUT AND OUTPUT SCHEMATIC DIAGRAMS  
D and RE Input  
DE Input  
V
V
CC  
CC  
50 kW  
500 W  
500 W  
Input  
Input  
50 kW  
9 V  
9 V  
A Input  
B Input  
V
V
CC  
CC  
36 kW  
36 kW  
16 V  
16 V  
180 kW  
180 kW  
Input  
Input  
36 kW  
16 V  
36 kW  
16 V  
A and B Output  
R Output  
V
CC  
V
CC  
16 V  
5 W  
Output  
Output  
16 V  
9 V  
10  
Submit Documentation Feedback  
Copyright © 2009, Texas Instruments Incorporated  
Product Folder Link(s): SN65HVD3082E SN75HVD3082E SN65HVD3085E SH65HVD3088E  
SN65HVD3082E, SN75HVD3082E  
SN65HVD3085E, SH65HVD3088E  
www.ti.com  
SLLS562G AUGUST 2009REVISED MAY 2009  
PACKAGE THERMAL INFORMATION  
PARAMETER  
TEST CONDITIONS  
PACKAGE  
MIN  
TYP  
266  
210  
155  
180  
130  
70  
MAX  
UNIT  
MOSP (DGK)  
Low-k board, no air flow  
SOIC (D)  
°C/W  
PDIP (P)  
Junction-to-ambient  
thermal resistance  
θJA  
MOSP (DGK)  
SOIC (D)  
High-k board, no air flow  
Low-k board, no air flow  
°C/W  
°C/W  
°C/W  
PDIP (P)  
MOSP (DGK)  
SOIC (D)  
110  
55  
Junction-to-board  
thermal resistance  
θJB  
PDIP (P)  
40  
MOSP (DGK)  
SOIC (D)  
66  
Junction-to-case  
thermal resistance  
θJC  
80  
PDIP (P)  
80  
Input to D is a 50% duty  
cycle square wave at max  
rec'd signal rate  
RL = 54 Ω VCC = 5.5 V, TJ =  
130°C  
ALL HVD3082E  
ALL HVD3085E  
203  
205  
Average power  
dissipation  
P(AVG)  
mW  
°C  
ALL HVD3088E  
ALL  
276  
Thermal shut-down  
junction temperature  
TSD  
165  
TYPICAL CHARACTERISTICS  
SN65HVD3082E  
RMS SUPPLY CURRENT  
vs  
BUS INPUT CURRENT  
vs  
BUS INPUT VOLTAGE  
SIGNALING RATE  
80  
60  
10  
No Load,  
= 5 V,  
V
CC  
= 25oC  
T
A
50% Square Wave Input  
40  
20  
0
Driver and Receiver  
V
= 0 V  
CC  
1
V
= 5 V  
CC  
-20  
Receiver Only  
-40  
-60  
0.1  
-8  
-6 -4 -2  
0
2
4
6
8
10 12  
1
10  
100  
Signal Rate - kbps  
V - Bus Input Voltage - V  
I
Figure 14.  
Figure 15.  
Copyright © 2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
11  
Product Folder Link(s): SN65HVD3082E SN75HVD3082E SN65HVD3085E SH65HVD3088E  
 
SN65HVD3082E, SN75HVD3082E  
SN65HVD3085E, SH65HVD3088E  
SLLS562G AUGUST 2009REVISED MAY 2009  
www.ti.com  
TYPICAL CHARACTERISTICS (continued)  
SN65HVD3085E  
RMS SUPPLY CURRENT  
vs  
SN65HVD3088E  
RMS SUPPLY CURRENT  
vs  
SIGNALING RATE  
SIGNAL RATE  
100  
100  
No Load,  
= 5 V,  
No Load,  
= 5 V,  
V
CC  
= 25oC  
V
CC  
= 25oC  
T
A
50% Square Wave Input  
T
A
50% Square Wave Input  
10  
10  
Driver and Receiver  
Driver and Receiver  
1
1
Receiver Only  
Receiver Only  
0.1  
0.1  
1
10  
100  
1000  
Signal Rate - kbps  
Figure 16.  
Figure 17.  
DRIVER DIFFERENTIAL OUTPUT VOLTAGE  
RECEIVER OUTPUT VOLTAGE  
vs  
vs  
DRIVER OUTPUT CURRENT  
DIFFERENTIAL INPUT VOLTAGE  
5
5
= 25oC  
= 5 V  
T
= 25oC  
T
A
A
4.5  
4.5  
V
V
= 5 V  
V
CC  
= 0.75 V  
CC  
R
= 120W  
L
IC  
4
4
3.5  
3.5  
3
3
R
= 60W  
L
2.5  
2.5  
2
2
1.5  
1.5  
1
1
0.5  
0.5  
0
0
0
10  
20  
30  
40  
50  
-200 -180 -160 -140 -120 -100 -80 -60 -40 -20  
0
I
- Differential Output Current - mA  
V
- Differential Input Voltage - V  
ID  
O
Figure 18.  
Figure 19.  
12  
Submit Documentation Feedback  
Copyright © 2009, Texas Instruments Incorporated  
Product Folder Link(s): SN65HVD3082E SN75HVD3082E SN65HVD3085E SH65HVD3088E  
 
SN65HVD3082E, SN75HVD3082E  
SN65HVD3085E, SH65HVD3088E  
www.ti.com  
SLLS562G AUGUST 2009REVISED MAY 2009  
TYPICAL CHARACTERISTICS (continued)  
SN65HVD3088E  
DRIVER RISE/FALL TIME  
vs  
TEMPERATURE  
10  
9
V
= 4.5 V  
CC  
8
7
6
5
V
= 5 V  
CC  
V
= 5.5 V  
CC  
-40  
-20  
0
20  
40  
60  
80  
T
- Temperature - oC  
A
Figure 20.  
APPLICATION INFORMATION  
R
T
R
T
Note: The line should be terminated at both ends with its characteristic impedance (RT = ZO).  
Note: Stub lengths off the main line should be kept as short as possible.  
Figure 21. Typical Application Circuit  
Copyright © 2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
13  
Product Folder Link(s): SN65HVD3082E SN75HVD3082E SN65HVD3085E SH65HVD3088E  
 
SN65HVD3082E, SN75HVD3082E  
SN65HVD3085E, SH65HVD3088E  
SLLS562G AUGUST 2009REVISED MAY 2009  
www.ti.com  
POWER USAGE IN AN RS-485 TRANSCEIVER  
Power consumption is a concern in many applications. Power supply current is delivered to the bus load as well  
as to the transceiver circuitry. For a typical RS–485 bus configuration, the load that an active driver must drive  
consists of all of the receiving nodes, plus the termination resistors at each end of the bus.  
The load presented by the receiving nodes depends on the input impedance of the receiver. The TIA/EIA-485-A  
standard defines a unit load as allowing up to 1 mA. With up to 32 unit loads allowed on the bus, the total current  
supplied to all receivers can be as high as 32 mA. The HVD308xE is rated as a 1/8 unit load device. As shown  
in , the bus input current is less than 1/8 mA, allowing up to 256 nodes on a single bus.  
The current in the termination resistors depends on the differential bus voltage. The standard requires active  
drivers to produce at least 1.5 V of differential signal. For a bus terminated with one standard 120-Ω resistor at  
each end, this sums to 25 mA differential output current whenever the bus is active. Typically the HVD308xE can  
drive more than 25 mA to a 60 Ω load, resulting in a differential output voltage higher than the minimum required  
by the standard. (See Figure 16.)  
Overall, the total load current can be 60 mA to a loaded RS-485 bus. This is in addition to the current required by  
the transceiver itself; the HVD308xE circuitry requires only about 0.4 mA with both driver and receiver enabled,  
and only 0.3 mA with either the driver enabled or with the receiver enabled. In low-power shutdown mode,  
neither the driver nor receiver is active, and the supply current is low.  
Supply current increases with signaling rate primarily due to the totum pole outputs of the driver (see Figure 15).  
When these outputs change state, there is a moment when both the high-side and low-side output transistors are  
conducting and this creates a short spike in the supply current. As the frequency of state changes increases,  
more power is used.  
LOW-POWER SHUTDOWN MODE  
When both the driver and receiver are disabled (DE low and RE high) the device is in shutdown mode. If the  
enable inputs are in this state for less than 60 ns, the device does not enter shutdown mode. This guards against  
inadvertently entering shutdown mode during driver/receiver enabling. Only when the enable inputs are held in  
this state for 300 ns or more, the device is assured to be in shutdown mode. In this low-power shutdown mode,  
most internal circuitry is powered down, and the supply current is typically 1 nA. When either the driver or the  
receiver is re-enabled, the internal circuitry becomes active.  
If only the driver is re-enabled (DE transitions to high) the driver outputs are driven according to the D input after  
the enable times given by tPZH(SHDN) and tPZL(SHDN) in the driver switching characteristics. If the D input is open  
when the driver is enabled, the driver outputs defaults to A high and B low, in accordance with the driver failsafe  
feature.  
If only the receiver is re-enabled (RE transitions to low) the receiver output is driven according to the state of the  
bus inputs (A and B) after the enable times given by tPZH(SHDN) and tPZL(SHDN) in the receiver switching  
characteristics. If there is no valid state on the bus the receiver responds as described in the failsafe operation  
section.  
If both the receiver and driver are re-enabled simultaneously, the receiver output is driven according to the state  
of the bus inputs (A and B) and the driver output is driven according to the D input. Note that the state of the  
active driver affects the inputs to the receiver. Therefore, the receiver outputs are valid as soon as the driver  
outputs are valid.  
14  
Submit Documentation Feedback  
Copyright © 2009, Texas Instruments Incorporated  
Product Folder Link(s): SN65HVD3082E SN75HVD3082E SN65HVD3085E SH65HVD3088E  
SN65HVD3082E, SN75HVD3082E  
SN65HVD3085E, SH65HVD3088E  
www.ti.com  
SLLS562G AUGUST 2009REVISED MAY 2009  
THERMAL CHARACTERISTICS OF IC PACKAGES  
θJA (Junction-to-Ambient Thermal Resistance) is defined as the difference in junction temperature to ambient  
temperature divided by the operating power.  
θJA is NOT a constant and is a strong function of:  
the PCB design (50% variation)  
altitude (20% variation)  
device power (5% variation)  
θJA can be used to compare the thermal performance of packages if the specific test conditions are defined and  
used. Standardized testing includes specification of PCB construction, test chamber volume, sensor locations,  
and the thermal characteristics of holding fixtures. θJA is often misused when it is used to calculate junction  
temperatures for other installations.  
TI uses two test PCBs as defined by JEDEC specifications. The low-k board gives average in-use condition  
thermal performance and consists of a single trace layer 25 mm long and 2-oz thick copper. The high-k board  
gives best case in–use condition and consists of two 1–oz buried power planes with a single trace layer 25 mm  
long with 2-oz thick copper. A 4% to 50% difference in θJA can be measured between these two test cards.  
θJC (Junction-to-Case Thermal Resistance) is defined as difference in junction temperature to case divided by the  
operating power. It is measured by putting the mounted package up against a copper block cold plate to force  
heat to flow from die, through the mold compound into the copper block.  
θJC is a useful thermal characteristic when a heatsink is applied to package. It is NOT a useful characteristic to  
predict junction temperature as it provides pessimistic numbers if the case temperature is measured in a non-  
standard system and junction temperatures are backed out. It can be used with θJB in 1-dimensional thermal  
simulation of a package system.  
θJB (Junction-to-Board Thermal Resistance) is defined to be the difference in the junction temperature and the  
PCB temperature at the center of the package (closest to the die) when the PCB is clamped in a coldplate  
structure. θJB is only defined for the high-k test card.  
θJB provides an overall thermal resistance between the die and the PCB. It includes a bit of the PCB thermal  
resistance (especially for BGA’s with thermal balls) and can be used for simple 1-dimensional network analysis of  
package system (see Figure 22).  
Ambient Node  
q
Calculated  
CA  
Surface Node  
Calculated/Measured  
q
JC  
Junction  
Calculated/Measured  
q
JB  
PC Board  
Figure 22. Thermal Resistance  
Copyright © 2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
15  
Product Folder Link(s): SN65HVD3082E SN75HVD3082E SN65HVD3085E SH65HVD3088E  
 
SN65HVD3082E, SN75HVD3082E  
SN65HVD3085E, SH65HVD3088E  
SLLS562G AUGUST 2009REVISED MAY 2009  
www.ti.com  
REVISION HISTORY  
Changes from Revision F (March 2009) to Revision G  
Page  
Added IDLE Bus to the Function Table ................................................................................................................................ 9  
Added Receiver Failsafe section .......................................................................................................................................... 9  
Added Graph - DRIVER RISE/FALL TIME vs TEMPERATURE ........................................................................................ 13  
16  
Submit Documentation Feedback  
Copyright © 2009, Texas Instruments Incorporated  
Product Folder Link(s): SN65HVD3082E SN75HVD3082E SN65HVD3085E SH65HVD3088E  
PACKAGE OPTION ADDENDUM  
www.ti.com  
16-Aug-2012  
PACKAGING INFORMATION  
Status (1)  
Eco Plan (2)  
MSL Peak Temp (3)  
Samples  
Orderable Device  
Package Type Package  
Drawing  
Pins  
Package Qty  
Lead/  
Ball Finish  
(Requires Login)  
SN65HVD3082ED  
SN65HVD3082EDG4  
SN65HVD3082EDGK  
SN65HVD3082EDGKR  
SN65HVD3082EDR  
SN65HVD3082EDRG4  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
SOIC  
SOIC  
D
D
8
8
8
8
8
8
75  
75  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU Level-1-260C-UNLIM  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU Level-1-260C-UNLIM  
CU NIPDAU Level-1-260C-UNLIM  
CU NIPDAU Level-1-260C-UNLIM  
CU NIPDAU Level-1-260C-UNLIM  
CU NIPDAU Level-1-260C-UNLIM  
VSSOP  
VSSOP  
SOIC  
DGK  
DGK  
D
80  
Green (RoHS  
& no Sb/Br)  
2500  
2500  
2500  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
SOIC  
D
Green (RoHS  
& no Sb/Br)  
SN65HVD3082EP  
SN65HVD3082EPE4  
SN65HVD3085ED  
ACTIVE  
ACTIVE  
ACTIVE  
PDIP  
PDIP  
SOIC  
P
P
D
8
8
8
50  
50  
75  
Pb-Free (RoHS)  
Pb-Free (RoHS)  
CU NIPDAU N / A for Pkg Type  
CU NIPDAU N / A for Pkg Type  
CU NIPDAU Level-1-260C-UNLIM  
Green (RoHS  
& no Sb/Br)  
SN65HVD3085EDG4  
SN65HVD3085EDGK  
SN65HVD3085EDGKG4  
SN65HVD3085EDGKR  
SN65HVD3085EDGKRG4  
SN65HVD3085EDR  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
SOIC  
VSSOP  
VSSOP  
VSSOP  
VSSOP  
SOIC  
D
DGK  
DGK  
DGK  
DGK  
D
8
8
8
8
8
8
8
8
8
75  
80  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU Level-1-260C-UNLIM  
CU NIPDAU Level-1-260C-UNLIM  
CU NIPDAU Level-1-260C-UNLIM  
CU NIPDAU Level-1-260C-UNLIM  
CU NIPDAU Level-1-260C-UNLIM  
CU NIPDAU Level-1-260C-UNLIM  
CU NIPDAU Level-1-260C-UNLIM  
CU NIPDAU Level-1-260C-UNLIM  
CU NIPDAU Level-1-260C-UNLIM  
Green (RoHS  
& no Sb/Br)  
80  
Green (RoHS  
& no Sb/Br)  
2500  
2500  
2500  
2500  
75  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
SN65HVD3085EDRG4  
SN65HVD3088ED  
SOIC  
D
Green (RoHS  
& no Sb/Br)  
SOIC  
D
Green (RoHS  
& no Sb/Br)  
SN65HVD3088EDG4  
SOIC  
D
75  
Green (RoHS  
& no Sb/Br)  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
16-Aug-2012  
Status (1)  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
Eco Plan (2)  
MSL Peak Temp (3)  
Samples  
Orderable Device  
Package Type Package  
Drawing  
Pins  
Package Qty  
Lead/  
Ball Finish  
(Requires Login)  
SN65HVD3088EDGK  
SN65HVD3088EDGKG4  
SN65HVD3088EDGKR  
SN65HVD3088EDGKRG4  
SN65HVD3088EDR  
VSSOP  
VSSOP  
VSSOP  
VSSOP  
SOIC  
DGK  
DGK  
DGK  
DGK  
D
8
8
8
8
8
8
8
8
8
8
8
8
8
8
80  
80  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU Level-1-260C-UNLIM  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU Level-1-260C-UNLIM  
CU NIPDAU Level-1-260C-UNLIM  
CU NIPDAU Level-1-260C-UNLIM  
CU NIPDAU Level-1-260C-UNLIM  
CU NIPDAU Level-1-260C-UNLIM  
CU NIPDAU Level-1-260C-UNLIM  
CU NIPDAU Level-1-260C-UNLIM  
CU NIPDAU Level-1-260C-UNLIM  
CU NIPDAU Level-1-260C-UNLIM  
CU NIPDAU Level-1-260C-UNLIM  
CU NIPDAU Level-1-260C-UNLIM  
CU NIPDAU Level-1-260C-UNLIM  
CU NIPDAU Level-1-260C-UNLIM  
2500  
2500  
2500  
2500  
75  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
SN65HVD3088EDRG4  
SN75HVD3082ED  
SOIC  
D
Green (RoHS  
& no Sb/Br)  
SOIC  
D
Green (RoHS  
& no Sb/Br)  
SN75HVD3082EDG4  
SN75HVD3082EDGK  
SN75HVD3082EDGKG4  
SN75HVD3082EDGKR  
SN75HVD3082EDGKRG4  
SN75HVD3082EDR  
SOIC  
D
75  
Green (RoHS  
& no Sb/Br)  
VSSOP  
VSSOP  
VSSOP  
VSSOP  
SOIC  
DGK  
DGK  
DGK  
DGK  
D
80  
Green (RoHS  
& no Sb/Br)  
80  
Green (RoHS  
& no Sb/Br)  
2500  
2500  
2500  
2500  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
SN75HVD3082EDRG4  
SOIC  
D
Green (RoHS  
& no Sb/Br)  
SN75HVD3082EP  
SN75HVD3082EPE4  
SNHVD3082EDGKG4  
ACTIVE  
ACTIVE  
ACTIVE  
PDIP  
PDIP  
P
P
8
8
8
50  
50  
80  
Pb-Free (RoHS)  
Pb-Free (RoHS)  
CU NIPDAU N / A for Pkg Type  
CU NIPDAU N / A for Pkg Type  
CU NIPDAU Level-1-260C-UNLIM  
VSSOP  
DGK  
Green (RoHS  
& no Sb/Br)  
SNHVD3082EDGKRG4  
ACTIVE  
VSSOP  
DGK  
8
2500  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU Level-1-260C-UNLIM  
(1) The marketing status values are defined as follows:  
Addendum-Page 2  
PACKAGE OPTION ADDENDUM  
www.ti.com  
16-Aug-2012  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability  
information and additional product content details.  
TBD: The Pb-Free/Green conversion plan has not been defined.  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that  
lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.  
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between  
the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight  
in homogeneous material)  
(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 3  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
16-Aug-2012  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
SN65HVD3082EDGKR VSSOP  
SN65HVD3082EDR SOIC  
SN65HVD3085EDGKR VSSOP  
SN65HVD3085EDR SOIC  
SN65HVD3088EDGKR VSSOP  
SN65HVD3088EDR SOIC  
SN75HVD3082EDGKR VSSOP  
SN75HVD3082EDR SOIC  
DGK  
D
8
8
8
8
8
8
8
8
2500  
2500  
2500  
2500  
2500  
2500  
2500  
2500  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
5.3  
6.4  
5.3  
6.4  
5.3  
6.4  
5.3  
6.4  
3.4  
5.2  
3.4  
5.2  
3.4  
5.2  
3.4  
5.2  
1.4  
2.1  
1.4  
2.1  
1.4  
2.1  
1.4  
2.1  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
DGK  
D
DGK  
D
DGK  
D
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
16-Aug-2012  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
SN65HVD3082EDGKR  
SN65HVD3082EDR  
SN65HVD3085EDGKR  
SN65HVD3085EDR  
SN65HVD3088EDGKR  
SN65HVD3088EDR  
SN75HVD3082EDGKR  
SN75HVD3082EDR  
VSSOP  
SOIC  
DGK  
D
8
8
8
8
8
8
8
8
2500  
2500  
2500  
2500  
2500  
2500  
2500  
2500  
367.0  
340.5  
367.0  
340.5  
367.0  
340.5  
367.0  
340.5  
367.0  
338.1  
367.0  
338.1  
367.0  
338.1  
367.0  
338.1  
35.0  
20.6  
35.0  
20.6  
35.0  
20.6  
35.0  
20.6  
VSSOP  
SOIC  
DGK  
D
VSSOP  
SOIC  
DGK  
D
VSSOP  
SOIC  
DGK  
D
Pack Materials-Page 2  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other  
changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest  
issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and  
complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale  
supplied at the time of order acknowledgment.  
TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms  
and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary  
to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily  
performed.  
TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and  
applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide  
adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or  
other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information  
published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or  
endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the  
third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration  
and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered  
documentation. Information of third parties may be subject to additional restrictions.  
Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service  
voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice.  
TI is not responsible or liable for any such statements.  
Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements  
concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support  
that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which  
anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause  
harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use  
of any TI components in safety-critical applications.  
In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to  
help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and  
requirements. Nonetheless, such components are subject to these terms.  
No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties  
have executed a special agreement specifically governing such use.  
Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in  
military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components  
which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and  
regulatory requirements in connection with such use.  
TI has specifically designated certain components which meet ISO/TS16949 requirements, mainly for automotive use. Components which  
have not been so designated are neither designed nor intended for automotive use; and TI will not be responsible for any failure of such  
components to meet such requirements.  
Products  
Applications  
Audio  
www.ti.com/audio  
amplifier.ti.com  
dataconverter.ti.com  
www.dlp.com  
Automotive and Transportation www.ti.com/automotive  
Communications and Telecom www.ti.com/communications  
Amplifiers  
Data Converters  
DLP® Products  
DSP  
Computers and Peripherals  
Consumer Electronics  
Energy and Lighting  
Industrial  
www.ti.com/computers  
www.ti.com/consumer-apps  
www.ti.com/energy  
dsp.ti.com  
Clocks and Timers  
Interface  
www.ti.com/clocks  
interface.ti.com  
logic.ti.com  
www.ti.com/industrial  
www.ti.com/medical  
Medical  
Logic  
Security  
www.ti.com/security  
Power Mgmt  
Microcontrollers  
RFID  
power.ti.com  
Space, Avionics and Defense  
Video and Imaging  
www.ti.com/space-avionics-defense  
www.ti.com/video  
microcontroller.ti.com  
www.ti-rfid.com  
www.ti.com/omap  
OMAP Applications Processors  
Wireless Connectivity  
TI E2E Community  
e2e.ti.com  
www.ti.com/wirelessconnectivity  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2012, Texas Instruments Incorporated  

相关型号:

SN65HVD3083E

LOW-POWER RS-485 FULL-DUPLEX DRIVERS/RECEIVERS
TI

SN65HVD3083EDGS

LOW-POWER RS-485 FULL-DUPLEX DRIVERS/RECEIVERS
TI

SN65HVD3083EDGSG4

LOW-POWER RS-485 FULL-DUPLEX DRIVERS/RECEIVERS
TI

SN65HVD3083EDGSR

LOW-POWER RS-485 FULL-DUPLEX DRIVERS/RECEIVERS
TI

SN65HVD3083EDGSRG4

LOW-POWER RS-485 FULL-DUPLEX DRIVERS/RECEIVERS
TI

SN65HVD3085E

LOW POWER RS 485 TRANSCEIVER
TI

SN65HVD3085ED

LOW POWER RS 485 TRANSCEIVER
TI

SN65HVD3085EDG4

LOW-POWER RS-485 TRANSCEIVER
TI

SN65HVD3085EDGK

LOW POWER RS 485 TRANSCEIVER
TI

SN65HVD3085EDGKG4

LOW-POWER RS-485 TRANSCEIVER
TI

SN65HVD3085EDGKR

LOW-POWER RS-485 TRANSCEIVER
TI

SN65HVD3085EDGKRG4

LOW-POWER RS-485 TRANSCEIVER
TI