SN65HVD3088EDGKR [TI]

LOW-POWER RS-485 TRANSCEIVER; 低功耗RS - 485收发器
SN65HVD3088EDGKR
型号: SN65HVD3088EDGKR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

LOW-POWER RS-485 TRANSCEIVER
低功耗RS - 485收发器

线路驱动器或接收器 驱动程序和接口 接口集成电路 光电二极管
文件: 总23页 (文件大小:525K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ꢀꢁꢂ ꢃ ꢄꢅ ꢆꢇ ꢈ ꢉ ꢊꢋ ꢌ ꢀꢁ ꢍꢃ ꢄꢅ ꢆꢇ ꢈꢉ ꢊꢋ  
ꢀꢁꢂ ꢃ ꢄꢅ ꢆꢇ ꢈ ꢉ ꢃꢋ ꢌ ꢀꢁ ꢂꢃ ꢄꢅ ꢆꢇ ꢈꢉ ꢉꢋ  
www.ti.com  
DGK  
D
P
SLLS562D − MARCH 2003 − REVISED SEPTEMBER 2005  
ꢖꢙ ꢚꢛ ꢜꢚ ꢝꢜ ꢞ ꢛ ꢟ ꢀ ꢠꢚ ꢜ ꢜ ꢡ ꢀꢏ ꢒꢢ ꢉ ꢒ ꢚꢣꢤꢚ ꢥꢞ  
FEATURES  
DESCRIPTION  
These devices are half-duplex transceivers designed for  
RS-485 data bus networks. Powered by a 5-V supply, they  
are fully compliant with TIA/EIA-485A standard. With  
controlled transition times, these devices are suitable for  
transmitting data over long twisted-pair cables.  
SN65HVD3082E and SN75HVD3082E devices are  
optimized for signaling rates up to 200 kbps.  
SN65HVD3085E is suitable for data transmission up to 1  
Mbps, whereas SN65HVD3088E is suitable for  
applications requiring signaling rates up to 20 Mbps.  
These devices are designed to operate with very low  
supply current, typically 0.3 mA, exclusive of the load.  
When in the inactive shutdown mode, the supply current  
drops to a few nanoamps, making these devices ideal for  
power-sensitive applications.  
D
Available in Small MSOP-8 Package  
D
Meets or Exceeds the Requirements of the  
TIA/EIA−485A Standard  
D
Low Quiescent Power  
− 0.3 mA Active Mode  
− 1 nA Shutdown Mode  
D
D
D
D
1/8 Unit Load—Up to 256 Nodes on a Bus  
Bus-Pin ESD Protection Up to 15 kV  
Industry-Standard SN75176 Footprint  
Failsafe Receiver  
(Bus Open, Bus Shorted, Bus Idle)  
D
Glitch−Free Power−Up/Down Bus Inputs and  
Outputs  
The wide common-mode range and high ESD protection  
levels of these devices make them suitable for demanding  
applications such as energy meter networks, electrical  
inverters, status/command signals across telecom racks,  
cabled chassis interconnects, and industrial automation  
networks where noise tolerance is essential. These  
devices match the industry-standard footprint of SN75176.  
Power-on reset circuits keep the outputs in a high-  
impedance state until the supply voltage has stabilized. A  
thermal shutdown function protects the device from  
damage due to system fault conditions. The  
SN75HVD3082E is characterized for operation from 0°C  
to 70°C and SN65HVD308xE are characterized for  
operation from −40°C to 85°C air temperature.  
APPLICATIONS  
D
D
D
D
D
D
D
Energy Meter Networks  
Motor Control  
Power Inverters  
Industrial Automation  
Building Automation Networks  
Battery-Powered Applications  
Telecommunications Equipment  
ORDERING INFORMATION  
PACKAGE TYPE  
SIGNALING RATE  
T
A
(1)  
D
(2)  
DGK  
(Mbps)  
P
SN75HVD3082EP  
Marked as 75HVD3082  
SN75HVD3082ED  
Marked as VN3082  
SN75HVD3082EDGK  
Marked as NWM  
0°C to 70°C  
0.2  
SN65HVD3082EP  
Marked as 65HVD3082  
SN65HVD3082ED  
Marked as VP3082  
SN65HVD3082EDGK  
Marked as NWN  
0.2  
1
SN65HVD3085ED  
Marked as VP3085  
SN65HVD3085EDGK  
Marked as NWK  
−40°C to 85°C  
SN65HVD3088ED  
Marked as VP3088  
SN65HVD3088EDGK  
Marked as NWH  
20  
(1)  
(2)  
The D package is available taped and reeled. Add an R suffix to the device type (i.e., SN65HVD3082EDR).  
The DGK package is available taped and reeled. Add an R suffix to the device type (i.e., SN65HVD3082EDGKR).  
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments  
semiconductor products and disclaimers thereto appears at the end of this data sheet.  
ꢒꢓ ꢏ ꢆꢦ ꢗ ꢕꢘ ꢏꢁ ꢆ ꢖꢕꢖ ꢛꢟ ꢧꢨ ꢩ ꢠꢚ ꢪꢛꢨꢟ ꢛꢫ ꢣꢬ ꢩ ꢩ ꢞꢟꢪ ꢚꢫ ꢨꢧ ꢭꢬꢝ ꢜꢛꢣ ꢚꢪꢛ ꢨꢟ ꢮꢚ ꢪꢞꢯ ꢒꢩ ꢨꢮꢬ ꢣꢪꢫ  
ꢣ ꢨꢟ ꢧꢨꢩ ꢠ ꢪꢨ ꢫ ꢭꢞ ꢣ ꢛ ꢧꢛ ꢣ ꢚ ꢪꢛ ꢨꢟꢫ ꢭ ꢞꢩ ꢪꢰꢞ ꢪꢞ ꢩ ꢠꢫ ꢨꢧ ꢕꢞꢱ ꢚꢫ ꢘꢟꢫ ꢪꢩ ꢬꢠ ꢞꢟꢪ ꢫ ꢫꢪ ꢚꢟꢮ ꢚꢩ ꢮ ꢲ ꢚꢩ ꢩ ꢚ ꢟꢪꢳꢯ  
ꢒꢩ ꢨ ꢮꢬꢣ ꢪ ꢛꢨ ꢟ ꢭꢩ ꢨ ꢣ ꢞ ꢫ ꢫ ꢛꢟ ꢥ ꢮꢨ ꢞ ꢫ ꢟꢨꢪ ꢟꢞ ꢣꢞ ꢫꢫ ꢚꢩ ꢛꢜ ꢳ ꢛꢟꢣ ꢜꢬꢮ ꢞ ꢪꢞ ꢫꢪꢛ ꢟꢥ ꢨꢧ ꢚꢜ ꢜ ꢭꢚ ꢩ ꢚꢠ ꢞꢪꢞ ꢩ ꢫꢯ  
Copyright 2004 − 2005, Texas Instruments Incorporated  
ꢀ ꢁꢂꢃ ꢄꢅ ꢆꢇ ꢈ ꢉꢊꢋ ꢌ ꢀ ꢁꢍ ꢃ ꢄꢅ ꢆꢇ ꢈ ꢉꢊ ꢋ  
ꢈꢉ  
www.ti.com  
SLLS562D − MARCH 2003 − REVISED SEPTEMBER 2005  
These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during  
storage or handling to prevent electrostatic damage to the MOS gates.  
ABSOLUTE MAXIMUM RATINGS  
(1) (2)  
over operating free-air temperature range unless otherwise noted  
UNITS  
Supply voltage range, V  
Voltage range at A or B  
−0.5 V to 7 V  
−9 V to 14 V  
CC  
Voltage range at any logic pin  
Receiver output current  
−0.3 V to V  
+ 0.3 V  
CC  
−24 mA to 24 mA  
Voltage input range, transient pulse, A and B, through 100 (see Figure 13)  
Junction temperature, T  
−50 V to 50 V  
170°C  
J
Continuous total power dissipation  
Refer to Package Dissipation Table  
(1)  
Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings only, and  
functionaloperation of the device at these or any other conditions beyond those indicated under recommendedoperating conditions is not implied.  
Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2)  
All voltage values, except differential I/O bus voltages, are with respect to network ground terminal.  
PACKAGE DISSIPATION RATINGS  
(3)  
DERATING FACTOR  
T
<25°C  
T
= 70°C  
T = 85°C  
A
POWER RATING  
A
A
PACKAGE  
JEDEC BOARD MODEL  
POWER RATING  
ABOVE T = 25°C  
POWER RATING  
A
(1)  
Low k  
507 mW  
4.82 mW/°C  
7.85 mW/°C  
6.53 mW/°C  
3.76 mW/°C  
5.55 mW/°C  
289 mW  
217 mW  
D
P
(2)  
High k  
824 mW  
471 mW  
353 mW  
(1)  
Low k  
686 mW  
392 mW  
294 mW  
(1)  
Low k  
394 mW  
255 mW  
169 mW  
DGK  
(2)  
High k  
583 mW  
333 mW  
250 mW  
(1)  
(2)  
(3)  
In accordance with the low-k thermal metric definitions of EIA/JESD51-3  
In accordance with the high-k thermal metric definitions of EIA/JESDS1-7  
This is the inverse of the junction-to-ambient thermal resistance when board-mounted and with no air flow.  
2
ꢀꢁ ꢂꢃ ꢄꢅ ꢆꢇ ꢈ ꢉ ꢊꢋ ꢌ ꢀꢁꢍ ꢃ ꢄ ꢅꢆ ꢇꢈ ꢉꢊ ꢋ  
ꢀꢁꢂ ꢃ ꢄꢅ ꢆꢇ ꢈ ꢉ ꢃꢋ ꢌ ꢀꢁ ꢂꢃ ꢄꢅ ꢆꢇ ꢈꢉ ꢉꢋ  
www.ti.com  
SLLS562D − MARCH 2003 − REVISED SEPTEMBER 2005  
RECOMMENDED OPERATING CONDITIONS(1)  
MIN  
4.5  
−7  
2
TYP  
MAX  
5.5  
UNIT  
Supply voltage, V  
CC  
V
V
V
V
V
Input voltage at any bus terminal (separately or common mode), V  
12  
I
High-level input voltage (D, DE, or RE inputs), V  
IH  
V
CC  
0.8  
Low-level input voltage (D, DE, or RE inputs), V  
IL  
0
Differential input voltage, V  
ID  
−12  
−60  
−8  
54  
12  
60  
8
Driver  
Output current, I  
mA  
O
Receiver  
Differential load resistance, R  
60  
L
SN65HVD3082E, SN75HVD3082E  
SN65HVD3085E  
0.2  
1
Signaling rate, 1/t  
UI  
Mbps  
SN65HVD3088E  
20  
85  
70  
SN65HVD3082E, SN65HVD3085E, SN65HVD3088E  
SN75HVD3082E  
−40  
0
Operating free−air temperature, T  
°C  
°C  
A
(2)  
Junction temperature, T  
−40  
130  
J
(1)  
(2)  
The algebraic convention, in which the least positive (most negative) limit is designated as minimum, is used in this data sheet.  
See thermal characteristics table for information on maintenance of this specification for the DGK package.  
SUPPLY CURRENT  
over recommended operating conditions unless otherwise noted  
(1)  
MIN TYP  
PARAMETER  
TEST CONDITIONS  
or open, DE at V , RE at 0 V, No load  
MAX  
900  
600  
600  
2
UNIT  
µA  
Driver and receiver enabled  
D at V  
D at V  
D at V  
D at V  
425  
330  
CC  
CC  
CC  
CC  
CC  
Driver enabled, receiver disabled  
Receiver enabled, driver disabled  
Driver and receiver disabled  
or open, DE at V , RE at V  
No load  
µA  
CC CC,  
I
CC  
or open, DE at 0 V, RE at 0 V, No load  
300  
µA  
or open, DE at 0 V, RE at V  
0.001  
µA  
CC  
(1)  
All typical values are at 25°C and with a 5-V supply.  
ELECTROSTATIC DISCHARGE PROTECTION  
(1)  
PARAMETER  
TEST CONDITIONS  
MIN TYP  
MAX  
UNIT  
kV  
Human body model  
Human body model  
Bus terminals and GND  
15  
4
(2)  
All pins  
All pins  
kV  
(3)  
Charged-device-model  
1
kV  
(1)  
(2)  
(3)  
All typical values at 25°C  
Tested in accordance with JEDEC Standard 22, Test Method A114-A.  
Tested in accordance with JEDEC Standard 22, Test Method C101.  
3
ꢀ ꢁꢂꢃ ꢄꢅ ꢆꢇ ꢈ ꢉꢊꢋ ꢌ ꢀ ꢁꢍ ꢃ ꢄꢅ ꢆꢇ ꢈ ꢉꢊ ꢋ  
ꢃꢄ  
ꢃꢋ  
www.ti.com  
SLLS562D − MARCH 2003 − REVISED SEPTEMBER 2005  
DRIVER ELECTRICAL CHARACTERISTICS  
over recommended operating conditions unless otherwise noted  
(1)  
MIN TYP  
PARAMETER  
TEST CONDITIONS  
= 0, No load  
MAX  
UNIT  
I
3
1.5  
2
4.3  
2.3  
O
R
= 54 , See Figure 1  
= 100 Ω  
L
V  
OD  
Differential output voltage  
V
V
R
L
V
= −7 V to 12 V, See Figure 2  
1.5  
−0.2  
1
TEST  
∆V   
OD  
Change in magnitude of differential output voltage  
Steady-state common-mode output voltage  
See Figure 1 and Figure 2  
0
2.6  
0
0.2  
3
V
OC(SS)  
V  
See Figure 3  
V
Change in steady-state common-mode output voltage  
−0.1  
0.1  
OC(SS)  
V
See Figure 3  
500  
mV  
OC(PP)  
I
I
I
High-impedance output current  
Input current  
See receiver input currents  
D, DE  
OZ  
µA  
−100  
−250  
100  
250  
I
Short-circuit output current  
−7 V V 12 V, See Figure 7  
mA  
OS  
O
(1)  
All typical values are at 25°C and with a 5V-supply.  
DRIVER SWITCHING CHARACTERISTICS  
over recommended operating conditions unless otherwise noted  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
700  
150  
12  
MAX  
1300  
500  
20  
UNIT  
HVD3082E  
HVD3085E  
HVD3088E  
HVD3082E  
HVD3085E  
HVD3088E  
HVD3082E  
HVD3085E  
HVD3088E  
HVD3082E  
HVD3085E  
HVD3088E  
HVD3082E  
HVD3085E  
HVD3088E  
HVD3082E  
HVD3085E  
HVD3088E  
R
C
= 54 ,  
= 50 pF,  
See Figure 4  
L
L
t
t
Propagation delay time, low-to-high-level output  
Propagation delay time, high-to-low-level output  
PLH  
PHL  
ns  
500  
900  
200  
7
1500  
300  
15  
R
L
C
L
= 54 ,  
= 50 pF,  
See Figure 4  
t
r
t
f
Differential output signal rise time  
Differential output signal fall time  
ns  
ns  
ns  
20  
200  
50  
R
L
C
L
= 54 ,  
= 50 pF,  
See Figure 4  
5
t
Pulse skew ( |t | )  
- t  
sk(p)  
PHL PLH  
1.4  
5
2500 7000  
1000 2500  
R
L
= 110 ,  
RE at 0 V,  
See Figure 5  
and Figure 6  
Propagation delay time, high-impedance-to-high-level output  
Propagation delay time, high-impedance-to-low−level output  
t
t
PZH  
PZL  
13  
80  
60  
12  
30  
200  
100  
30  
R
L
= 110 ,  
RE at 0 V,  
See Figure 5  
and Figure 6  
Propagation delay time, high-level-to-high-impedance output  
Propagation delay time, low-level-to-high-impedance output  
t
t
PHZ  
PLZ  
ns  
ns  
3500 7000  
2500 4500  
1600 2600  
R
at V  
= 110 , RE  
L
Propagation delay time, shutdown-to-high-level output  
t
t
PZH(SHDN)  
,
CC  
PZL(SHDN) Propagation delay time, shutdown-to-low-level output  
See Figure 5  
4
ꢀꢁ ꢂꢃ ꢄꢅ ꢆꢇ ꢈ ꢉ ꢊꢋ ꢌ ꢀꢁꢍ ꢃ ꢄ ꢅꢆ ꢇꢈ ꢉꢊ ꢋ  
ꢀꢁꢂ ꢃ ꢄꢅ ꢆꢇ ꢈ ꢉ ꢃꢋ ꢌ ꢀꢁ ꢂꢃ ꢄꢅ ꢆꢇ ꢈꢉ ꢉꢋ  
www.ti.com  
SLLS562D − MARCH 2003 − REVISED SEPTEMBER 2005  
RECEIVER ELECTRICAL CHARACTERISTICS  
over recommended operating conditions unless otherwise noted  
(1)  
MIN TYP  
PARAMETER  
TEST CONDITIONS  
MAX  
UNIT  
mV  
mV  
mV  
V
V
IT+  
V
IT−  
V
hys  
V
OH  
V
OL  
Positive-going input threshold voltage  
Negative-going input threshold voltage  
I
I
= −8 mA  
= 8 mA  
−85  
−10  
O
−200  
4
115  
30  
O
Hysteresis voltage (V  
IT+  
− V )  
IT−  
High-level output voltage  
Low-level output voltage  
V
V
V
V
V
V
V
V
V
= 200 mV, I  
OH  
= −8 mA, See Figure 8  
= 8 mA, See Figure 8  
4.6  
ID  
ID  
O
= −200 mV, I  
OH  
0.15  
0.4  
1
V
I
High-impedance-state output current  
= 0 to V , RE= V  
CC CC  
−1  
µA  
OZ  
= 12 V, V  
= 12 V, V  
= −7 V, V  
= −7 V, V  
= 2 V  
= 5 V  
= 0  
0.04  
0.1  
IH  
IH  
IH  
IH  
IH  
IL  
CC  
CC  
CC  
CC  
0.06 0.125  
I
I
Bus input current  
mA  
= 5 V  
= 0  
−0.1  
−0.05  
−60  
−0.04  
−0.03  
−30  
−30  
7
I
I
High-level input current (RE)  
Low-level input current (RE)  
Differential input capacitance  
µA  
µA  
pF  
IH  
= 0.8 V  
−60  
IL  
C
diff  
V = 0.4 sin (4Et) + 0.5 V, DE at 0 V  
I
(1)  
All typical values are at 25°C and with a 5-V supply.  
RECEIVER SWITCHING CHARACTERISTICS  
over recommended operating conditions unless otherwise noted  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
200  
100  
200  
100  
30  
UNIT  
HVD3082E  
HVD3085E  
75  
79  
4
t
t
t
Propagation delay time, low-to-high-level output  
Propagation delay time, high-to-low-level output  
ns  
ns  
ns  
PLH  
PHL  
sk(p)  
HVD3088E  
HVD3082E  
C
L
= 15 pF,  
See Figure 9  
HVD3085E  
HVD3088E  
HVD3082E  
HVD3085E  
Pulse skew ( |t | )  
− t  
PHL PLH  
HVD3088E  
10  
3
t
t
Output signal rise time  
Output signal fall time  
1.5  
1.8  
ns  
ns  
r
V
C
= −1.5 V to 1.5 V,  
= 15 pF, See Figure 9  
ID  
3
L
L
f
HVD3082E  
HVD3085E  
5
50  
30  
50  
30  
t
t
t
t
Output enable time to high level  
Output enable time to low level  
Output enable time from high level  
Output enable time from low level  
ns  
ns  
ns  
ns  
PZH  
PZL  
PHZ  
PLZ  
HVD3088E  
HVD3082E  
HVD3085E  
10  
C
= 15 pF,  
HVD3088E  
DE at 3 V,  
See Figure 10  
and Figure 11  
HVD3082E  
HVD3085E  
5
8
50  
30  
50  
HVD3088E  
HVD3082E  
HVD3085E  
HVD3088E  
30  
3500  
3500  
t
t
Propagation delay time, shutdown-to-high-level output  
Propagation delay time, shutdown-to-low-level output  
1600  
1700  
ns  
ns  
PZH(SHDN)  
C = 15 pF, DE at 0 V,  
L
See Figure 12  
PZL(SHDN)  
5
ꢀ ꢁꢂꢃ ꢄꢅ ꢆꢇ ꢈ ꢉꢊꢋ ꢌ ꢀ ꢁꢍ ꢃ ꢄꢅ ꢆꢇ ꢈ ꢉꢊ ꢋ  
ꢃꢄ  
ꢈꢉ  
ꢃꢋ  
ꢉꢉ  
www.ti.com  
SLLS562D − MARCH 2003 − REVISED SEPTEMBER 2005  
PARAMETER MEASUREMENT INFORMATION  
NOTE:Test load capacitance includes probe and jig capacitance (unless otherwise specified). Signal generator characteristics: rise and  
fall time < 6 ns, pulse rate 100 kHz, 50% duty cycle. Z = 50 (unless otherwise specified).  
O
I
A
B
OA  
OB  
27 Ω  
27 Ω  
I
I
V
OD  
50 pF  
0 V or 3 V  
D
I
V
OC  
Figure 1. Driver Test Circuit, V  
and V  
Without Common-Mode Loading  
OC  
OD  
375 Ω  
I
I
OA  
V
= −7 V to 12 V  
TEST  
V
OD  
60 Ω  
375 Ω  
0 V or 3 V  
OB  
V
TEST  
Figure 2. Driver Test Circuit, V  
With Common-Mode Loading  
OD  
27 Ω  
A
V
A
3.25 V  
1.75 V  
D
27 Ω  
V
B
Signal  
Generator  
B
50 Ω  
V
V
OC  
V  
OC(PP)  
OC(SS)  
50 pF  
V
OC  
Figure 3. Driver V  
Test Circuit and Waveforms  
OC  
3 V  
0 V  
INPUT  
t
1.5 V  
1.5 V  
V
OD  
R
L
= 54 Ω  
t
PLH  
PHL  
C
L
= 50 pF  
V
OD(H)  
OD(L)  
Signal  
Generator  
90%  
10%  
50 Ω  
0 V  
OUTPUT  
V
t
r
t
f
Figure 4. Driver Switching Test Circuit and Waveforms  
6
ꢀꢁ ꢂꢃ ꢄꢅ ꢆꢇ ꢈ ꢉ ꢊꢋ ꢌ ꢀꢁꢍ ꢃ ꢄ ꢅꢆ ꢇꢈ ꢉꢊ ꢋ  
ꢀꢁꢂ ꢃ ꢄꢅ ꢆꢇ ꢈ ꢉ ꢃꢋ ꢌ ꢀꢁ ꢂꢃ ꢄꢅ ꢆꢇ ꢈꢉ ꢉꢋ  
www.ti.com  
SLLS562D − MARCH 2003 − REVISED SEPTEMBER 2005  
A
B
S1  
3 V  
Output  
R
D
0 V or 3 V  
1.5 V 1.5 V  
DE  
3 V if Testing A Output  
0 V if Testing B Output  
0 V  
0.5 V  
C
= 50 pF  
t
L
PZH  
= 110 Ω  
L
DE  
V
OH  
Output  
Signal  
Generator  
2.5 V  
50 Ω  
V
Off  
0
t
PHZ  
Figure 5. Driver Enable/Disable Test Circuit and Waveforms, High Output  
5 V  
R
L
= 110 Ω  
A
B
S1  
3 V  
D
Output  
0 V or 3 V  
1.5 V 1.5 V  
DE  
t
0 V if Testing A Output  
3 V if Testing B Output  
0 V  
5 V  
C
L
= 50 pF  
PZL  
t
DE  
PLZ  
Output  
Signal  
Generator  
2.5 V  
V
OL  
50 Ω  
0.5 V  
Figure 6. Driver Enable/Disable Test Circuit and Waveforms, Low Output  
I
OS  
I
O
V
O
V
ID  
Voltage  
Source  
V
O
Figure 7. Driver Short-Circuit Test  
Figure 8. Receiver Parameter Definitions  
Signal  
Generator  
50 Ω  
Input B  
V
ID  
1.5 V  
0 V  
A
B
50%  
I
O
Input A  
t
R
t
PHL  
PLH  
V
C
= 15 pF  
O
V
OH  
Signal  
Generator  
L
90%  
50 Ω  
Output  
1.5 V  
10%  
V
OL  
t
r
t
f
Figure 9. Receiver Switching Test Circuit and Waveforms  
7
ꢀ ꢁꢂꢃ ꢄꢅ ꢆꢇ ꢈ ꢉꢊꢋ ꢌ ꢀ ꢁꢍ ꢃ ꢄꢅ ꢆꢇ ꢈ ꢉꢊ ꢋ  
ꢃꢄ  
ꢈꢉ  
ꢃꢋ  
ꢉꢉ  
www.ti.com  
SLLS562D − MARCH 2003 − REVISED SEPTEMBER 2005  
D
V
V
CC  
DE  
CC  
A
54 Ω  
B
3 V  
0 V  
1 kΩ  
R
RE  
1.5 V  
0 V  
C
L
= 15 pF  
RE  
t
t
PHZ  
PZH  
Signal  
Generator  
V
OH  
−0.5 V  
50 Ω  
V
OH  
1.5 V  
R
GND  
Figure 10. Receiver Enable/Disable Test Circuit and Waveforms, Data Output High  
D
0 V  
DE  
V
CC  
A
54 Ω  
B
3 V  
0 V  
1 kΩ  
R
RE  
1.5 V  
PZL  
5 V  
C
L
= 15 pF  
RE  
t
t
PLZ  
Signal  
Generator  
V
CC  
50 Ω  
1.5 V  
R
V
OL  
+0.5 V  
V
OL  
Figure 11. Receiver Enable/Disable Test Circuit and Waveforms, Data Output Low  
V
CC  
Switch Down for V  
= 1.5 V,  
(A)  
= −1.5 V  
Switch Up for V  
(A)  
A
B
1.5 V or  
−1.5 V  
R
3 V  
1 kΩ  
1.5 V  
RE  
C
L
= 15 pF  
0 V  
RE  
t
t
PZH(SHDN)  
PZL(SHDN)  
Signal  
Generator  
50 Ω  
5 V  
R
V
V
OH  
1.5 V  
OL  
0 V  
Figure 12. Receiver Enable From Shutdown Test Circuit and Waveforms  
8
ꢀꢁ ꢂꢃ ꢄꢅ ꢆꢇ ꢈ ꢉ ꢊꢋ ꢌ ꢀꢁꢍ ꢃ ꢄ ꢅꢆ ꢇꢈ ꢉꢊ ꢋ  
ꢀꢁꢂ ꢃ ꢄꢅ ꢆꢇ ꢈ ꢉ ꢃꢋ ꢌ ꢀꢁ ꢂꢃ ꢄꢅ ꢆꢇ ꢈꢉ ꢉꢋ  
www.ti.com  
SLLS562D − MARCH 2003 − REVISED SEPTEMBER 2005  
V
TEST  
100 Ω  
0 V  
Pulse Generator,  
15 µs Duration,  
1% Duty Cycle  
1.5 ms  
15 µs  
−V  
TEST  
Figure 13. Test Circuit and Waveforms, Transient Over-Voltage Test  
DEVICE INFORMATION  
PIN ASSIGNMENTS  
LOGIC DIAGRAM (POSITIVE LOGIC)  
D, P OR DGK PACKAGE  
(TOP VIEW)  
4
D
R
RE  
DE  
D
V
B
A
1
2
3
4
8
7
6
5
3
CC  
DE  
RE  
2
6
A
1
GND  
R
7
B
FUNCTION TABLE  
DRIVER  
RECEIVER  
OUTPUTS  
INPUT  
D
ENABLE  
DE  
DIFFERENTIAL INPUTS  
= V – V  
ENABLE  
RE  
OUTPUT  
R
V
ID  
A
H
L
B
L
A
B
H
L
H
H
V
−0.2 V  
L
L
?
ID  
−0.2 V < V < −0.01 V  
H
Z
L
L
ID  
X
L
Z
H
Z
−0.01 V V  
L
H
H
Z
H
H
Z
ID  
Open  
X
H
X
Open  
Z
Open circuit  
Short circuit  
X
L
L
Open  
:
NOTE H= high level; L = low level; Z = high impedance; X = irrelevant; ? = indeterminate  
9
ꢀ ꢁꢂꢃ ꢄꢅ ꢆꢇ ꢈ ꢉꢊꢋ ꢌ ꢀ ꢁꢍ ꢃ ꢄꢅ ꢆꢇ ꢈ ꢉꢊ ꢋ  
ꢃꢄ  
ꢈꢉ  
ꢃꢋ  
ꢉꢉ  
www.ti.com  
SLLS562D − MARCH 2003 − REVISED SEPTEMBER 2005  
EQUIVALENT INPUT AND OUTPUT SCHEMATIC DIAGRAMS  
D and RE Input  
DE Input  
V
CC  
V
CC  
50 kΩ  
500 ꢀ  
500 ꢀ  
Input  
Input  
50 kΩ  
9 V  
9 V  
A Input  
B Input  
V
CC  
V
CC  
16 V  
16 V  
180 kΩ  
36 kΩ  
36 kΩ  
180 k Ω  
Input  
Input  
36 kΩ  
16 V  
16 V  
36 kΩ  
A and B Outputs  
R Outputs  
V
CC  
V
CC  
16 V  
5 Ω  
Output  
Output  
16 V  
9 V  
10  
ꢀꢁ ꢂꢃ ꢄꢅ ꢆꢇ ꢈ ꢉ ꢊꢋ ꢌ ꢀꢁꢍ ꢃ ꢄ ꢅꢆ ꢇꢈ ꢉꢊ ꢋ  
ꢀꢁꢂ ꢃ ꢄꢅ ꢆꢇ ꢈ ꢉ ꢃꢋ ꢌ ꢀꢁ ꢂꢃ ꢄꢅ ꢆꢇ ꢈꢉ ꢉꢋ  
www.ti.com  
SLLS562D − MARCH 2003 − REVISED SEPTEMBER 2005  
DGK Package  
THERMAL CHARACTERISTICS  
PARAMETER  
TEST CONDITIONS  
Low-k board, no air flow  
MIN  
TYP  
266  
MAX  
UNIT  
(2)  
(1)  
Θ
JA  
Junction-to-ambient thermal resistance  
°C/W  
(3)  
High-k board, no air flow  
180  
108  
66  
(3)  
Θ
Θ
Junction-to-board thermal resistance  
Junction-to-case thermal resistance  
High-k board, no air flow  
JB  
°C/W  
JC  
R
= 54 , Input to D is a 200 kbps  
L
50% duty cycle square wave  
P
P
P
Average power dissipation  
Average power dissipation  
HVD3082E  
HVD3085E  
HVD3088E  
203  
205  
276  
mW  
(AVG)  
(AVG)  
(AVG)  
V
at 5.5 V, T = 130°C  
cc  
J
R
= 54 , Input to D is a 1 Mbps  
L
50% duty cycle square wave  
mW  
mW  
V
cc  
at 5.5 V, T = 130°C  
J
R
= 54 , Input to D is a 20 Mbps  
L
Average power dissipation  
Ambient air temperature  
50% duty cycle square wave  
at 5.5 V, T = 130°C  
V
cc  
J
High k board model  
Low k board model  
−40  
−40  
93  
75  
T
A
°C  
°C  
T
SD  
Thermal shut-down junction temperature  
165  
(1)  
(2)  
(3)  
See TI application note literature number SZZA003, Package Thermal Characterization Methodologies, for an explanation of this parameter.  
JESD51-3 Low Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages  
JESD51-7 High Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages  
11  
ꢀ ꢁꢂꢃ ꢄꢅ ꢆꢇ ꢈ ꢉꢊꢋ ꢌ ꢀ ꢁꢍ ꢃ ꢄꢅ ꢆꢇ ꢈ ꢉꢊ ꢋ  
ꢃꢄ  
ꢈꢉ  
ꢃꢋ  
ꢉꢉ  
www.ti.com  
SLLS562D − MARCH 2003 − REVISED SEPTEMBER 2005  
TYPICAL CHARACTERISTICS  
SN65HVD3082E  
RMS SUPPLY CURRENT  
BUS INPUT CURRENT  
vs  
BUS INPUT VOLTAGE  
vs  
SIGNALING RATE  
80  
60  
10  
No Load,  
= 5 V  
T
A
V
CC  
= 25°C  
50% Square wave input  
40  
20  
0
Driver and Receiver  
V
CC  
= 0 V  
1
V
CC  
= 5 V  
−20  
Receiver Only  
−40  
−60  
0.1  
−8 −6 −4 −2  
0
2
4
6
8
10 12  
1
10  
100  
V − Bus Input Voltage − V  
I
Signaling Rate − kbps  
Figure 14  
Figure 15  
SN65HVD3085E  
RMS SUPPLY CURRENT  
vs  
SN65HVD3088E  
RMS SUPPLY CURRENT  
vs  
SIGNALING RATE  
SIGNALING RATE  
100  
10  
100  
10  
1
No Load,  
= 5 V  
No Load,  
= 5 V  
V
CC  
= 25°C  
V
CC  
= 25°C  
T
A
T
A
50% Square wave input  
50% Square wave input  
Driver and Receiver  
Driver and Receiver  
1
Receiver Only  
Receiver Only  
0.1  
0.1  
0.001  
10  
100  
1000  
1
0.010  
0.100  
1
10  
100  
Signaling Rate − kbps  
Signaling Rate − Mbps  
Figure 17  
Figure 16  
12  
ꢀꢁ ꢂꢃ ꢄꢅ ꢆꢇ ꢈ ꢉ ꢊꢋ ꢌ ꢀꢁꢍ ꢃ ꢄ ꢅꢆ ꢇꢈ ꢉꢊ ꢋ  
ꢀꢁꢂ ꢃ ꢄꢅ ꢆꢇ ꢈ ꢉ ꢃꢋ ꢌ ꢀꢁ ꢂꢃ ꢄꢅ ꢆꢇ ꢈꢉ ꢉꢋ  
www.ti.com  
SLLS562D − MARCH 2003 − REVISED SEPTEMBER 2005  
TYPICAL CHARACTERISTICS  
DRIVER DIFFERENTIAL OUTPUT VOLTAGE  
RECEIVER OUTPUT VOLTAGE  
vs  
vs  
DIFFERENTIAL OUTPUT CURRENT  
DIFFERENTIAL INPUT VOLTAGE  
5
5
T
V
= 25°C  
T
V
V
= 25°C  
A
A
4.5  
4.5  
= 5 V  
= 5 V  
= 0.75 V  
CC  
CC  
R
L
= 120Ω  
IC  
4
4
3.5  
3.5  
3
3
R
L
= 60Ω  
2.5  
2.5  
2
2
1.5  
1.5  
1
1
0.5  
0.5  
0
0
−200180160 −140120100 −80 −60 −40 −20  
0
0
10  
20  
30  
40  
50  
V
ID  
− Differential Input Voltage − V  
I
O
− Differential Output Current − mA  
Figure 18  
Figure 19  
13  
ꢀ ꢁꢂꢃ ꢄꢅ ꢆꢇ ꢈ ꢉꢊꢋ ꢌ ꢀ ꢁꢍ ꢃ ꢄꢅ ꢆꢇ ꢈ ꢉꢊ ꢋ  
ꢃꢄ  
ꢈꢉ  
ꢃꢋ  
ꢉꢉ  
www.ti.com  
SLLS562D − MARCH 2003 − REVISED SEPTEMBER 2005  
APPLICATION INFORMATION  
R
T
R
T
:
NOTE The line should be terminated at both ends with its characteristic impedance (R = Z ).  
T
O
Stub lengths off the main line should be kept as short as possible.  
Figure 20. Typical Application Circuit  
POWER USAGE IN AN RS-485 TRANSCEIVER  
Power consumption is a concern in many applications. Power supply current is delivered to the bus load as well as to the  
transceiver circuitry. For a typical RS-485 bus configuration, the load that an active driver must drive consists of all of the  
receiving nodes, plus the termination resistors at each end of the bus.  
The load presented by the receiving nodes depends on the input impedance of the receiver. The TIA/EIA-485-A standard  
defines a unit load as allowing up to 1 mA. With up to 32 unit loads allowed on the bus, the total current supplied to all  
receivers can be as high as 32 mA. The HVD308xE is rated as a 1/8 unit load device. As shown in Figure 14, the bus input  
current is less than 1/8 mA, allowing up to 256 nodes on a single bus.  
The current in the termination resistors depends on the differential bus voltage. The standard requires active drivers to  
produce at least 1.5 V of differential signal. For a bus terminated with one standard 120-resistor at each end, this sums  
to 25 mA differential output current whenever the bus is active. Typically the HVD308xE can drive more than 25 mA to a  
60 load, resulting in a differential output voltage higher than the minimum required by the standard. (See Figure 16.)  
Overall, the total load current can be 60 mA to a loaded RS-485 bus. This is in addition to the current required by the  
transceiver itself; the HVD308xE circuitry requires only about 0.4 mA with both driver and receiver enabled, and only  
0.3 mA with either the driver enabled or with the receiver enabled. In low-power shutdown mode, neither the driver nor  
receiver is active, and the supply current is very low.  
Supply current increases with signaling rate primarily due to the totum pole outputs of the driver (see Figure 15). When  
these outputs change state, there is a moment when both the high-side and low-side output transistors are conducting and  
this creates a short spike in the supply current. As the frequency of state changes increases, more power is used.  
LOW-POWER SHUTDOWN MODE  
When both the driver and receiver are disabled (DE low and RE high) the device is in shutdown mode. If the enable inputs  
are in this state for less than 60 ns, the device does not enter shutdown mode. This guards against inadvertently entering  
shutdown mode during driver/receiver enabling. Only when the enable inputs are held in this state for 300 ns or more, the  
device is assured to be in shutdown mode. In this low-power shutdown mode, most internal circuitry is powered down, and  
the supply current is typically 1 nA. When either the driver or the receiver is re-enabled, the internal circuitry becomes active.  
If only the driver is re-enabled (DE transitions to high) the driver outputs are driven according to the D input after the enable  
times given by tPZH(SHDN) and tPZL(SHDN) in the driver switching characteristics. If the D input is open when the driver is  
enabled, the driver outputs defaults to A high and B low, in accordance with the driver failsafe feature.  
If only the receiver is re-enabled (RE transitions to low) the receiver output is driven according to the state of the bus inputs  
(A and B) after the enable times given by tPZH(SHDN) and tPZL(SHDN) in the receiver switching characteristics. If there is no  
valid state on the bus the receiver responds as described in the failsafe operation section.  
If both the receiver and driver are re-enabled simultaneously, the receiver output is driven according to the state of the bus  
inputs (A and B) and the driver output is driven according to the D input. Note that the state of the active driver affects the  
inputs to the receiver. Therefore, the receiver outputs are valid as soon as the driver outputs are valid.  
14  
ꢀꢁ ꢂꢃ ꢄꢅ ꢆꢇ ꢈ ꢉ ꢊꢋ ꢌ ꢀꢁꢍ ꢃ ꢄ ꢅꢆ ꢇꢈ ꢉꢊ ꢋ  
ꢀꢁꢂ ꢃ ꢄꢅ ꢆꢇ ꢈ ꢉ ꢃꢋ ꢌ ꢀꢁ ꢂꢃ ꢄꢅ ꢆꢇ ꢈꢉ ꢉꢋ  
www.ti.com  
SLLS562D − MARCH 2003 − REVISED SEPTEMBER 2005  
THERMAL CHARACTERISTICS OF IC PACKAGES  
Θ
JA (Junction-to-Ambient Thermal Resistance) is defined as the difference in junction temperature to ambient temperature  
divided by the operating power  
Θ
D
D
D
Θ
JA is NOT a constant and is a strong function of  
the PCB design (50% variation)  
altitude (20% variation)  
device power (5% variation)  
JA can be used to compare the thermal performance of packages if the specific test conditions are defined and used.  
Standardized testing includes specification of PCB construction, test chamber volume, sensor locations, and the thermal  
characteristics of holding fixtures.  
installations.  
is often misused when it is used to calculate junction temperatures for other  
Θ
JA  
TI uses two test PCBs as defined by JEDEC specifications. The low-k board gives average in-use condition thermal  
performance and consists of a single trace layer 25 mm long and 2-oz thick copper. The high-k board gives best case in−use  
condition and consists of two 1-oz buried power planes with a single trace layer 25 mm long with 2-oz thick copper. A 4%  
to 50% difference in ΘJA can be measured between these two test cards  
ΘJC (Junction-to-Case Thermal Resistance) is defined as difference in junction temperature to case divided by the  
operating power. It is measured by putting the mounted package up against a copper block cold plate to force heat to flow  
from die, through the mold compound into the copper block.  
Θ
JC is a useful thermal characteristic when a heatsink is applied to package. It is NOT a useful characteristic to predict  
junction temperature as it provides pessimistic numbers if the case temperature is measured in a non-standard system and  
junction temperatures are backed out. It can be used with ΘJB in 1-dimensional thermal simulation of a package system.  
ΘJB (Junction-to-Board Thermal Resistance) is defined to be the difference in the junction temperature and the PCB  
temperature at the center of the package (closest to the die) when the PCB is clamped in a cold−plate structure. ΘJB is  
only defined for the high-k test card.  
Θ
JB provides an overall thermal resistance between the die and the PCB. It includes a bit of the PCB thermal resistance  
(especially for BGA’s with thermal balls) and can be used for simple 1-dimensional network analysis of package system  
(see Figure 21).  
Ambient Node  
Calculated  
CA  
Surface Node  
Calculated/Measured  
JC  
Junction  
Calculated/Measured  
JB  
PC Board  
Figure 21. Thermal Resistance  
15  
PACKAGE OPTION ADDENDUM  
www.ti.com  
8-Jan-2007  
PACKAGING INFORMATION  
Orderable Device  
SN65HVD3082ED  
Status (1)  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
Package Package  
Pins Package Eco Plan (2) Lead/Ball Finish MSL Peak Temp (3)  
Qty  
Type  
Drawing  
SOIC  
D
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
75 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
SN65HVD3082EDG4  
SN65HVD3082EDGK  
SN65HVD3082EDGKR  
SN65HVD3082EDR  
SN65HVD3082EDRG4  
SN65HVD3082EP  
SOIC  
MSOP  
MSOP  
SOIC  
SOIC  
PDIP  
D
DGK  
DGK  
D
75 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
80 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
D
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
P
50  
Pb-Free  
(RoHS)  
CU NIPDAU N / A for Pkg Type  
SN65HVD3082EPE4  
SN65HVD3085ED  
PDIP  
P
50  
Pb-Free  
(RoHS)  
CU NIPDAU N / A for Pkg Type  
SOIC  
SOIC  
MSOP  
MSOP  
MSOP  
MSOP  
SOIC  
SOIC  
SOIC  
SOIC  
MSOP  
MSOP  
MSOP  
MSOP  
SOIC  
SOIC  
SOIC  
D
75 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
SN65HVD3085EDG4  
SN65HVD3085EDGK  
SN65HVD3085EDGKG4  
SN65HVD3085EDGKR  
SN65HVD3085EDGKRG4  
SN65HVD3085EDR  
SN65HVD3085EDRG4  
SN65HVD3088ED  
D
75 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
DGK  
DGK  
DGK  
DGK  
D
80 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
80 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
D
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
D
75 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
SN65HVD3088EDG4  
SN65HVD3088EDGK  
SN65HVD3088EDGKG4  
SN65HVD3088EDGKR  
SN65HVD3088EDGKRG4  
SN65HVD3088EDR  
SN65HVD3088EDRG4  
SN75HVD3082ED  
D
75 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
DGK  
DGK  
DGK  
DGK  
D
80 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
80 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
D
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
D
75 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
8-Jan-2007  
Orderable Device  
SN75HVD3082EDG4  
SN75HVD3082EDGK  
SN75HVD3082EDGKG4  
SN75HVD3082EDGKR  
SN75HVD3082EDGKRG4  
SN75HVD3082EDR  
Status (1)  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
Package Package  
Pins Package Eco Plan (2) Lead/Ball Finish MSL Peak Temp (3)  
Qty  
Type  
Drawing  
SOIC  
D
8
8
8
8
8
8
8
8
8
8
8
75 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
MSOP  
MSOP  
MSOP  
MSOP  
SOIC  
DGK  
DGK  
DGK  
DGK  
D
80 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
80 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
SN75HVD3082EDRG4  
SN75HVD3082EP  
SOIC  
D
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
PDIP  
P
50  
Pb-Free  
(RoHS)  
CU NIPDAU N / A for Pkg Type  
SN75HVD3082EPE4  
SNHVD3082EDGKG4  
SNHVD3082EDGKRG4  
PDIP  
P
50  
Pb-Free  
(RoHS)  
CU NIPDAU N / A for Pkg Type  
MSOP  
MSOP  
DGK  
DGK  
80 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in  
a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2)  
Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check  
http://www.ti.com/productcontent for the latest availability information and additional product content details.  
TBD: The Pb-Free/Green conversion plan has not been defined.  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements  
for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered  
at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.  
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and  
package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS  
compatible) as defined above.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame  
retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)  
(3)  
MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder  
temperature.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is  
provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the  
accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take  
reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on  
incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited  
information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI  
to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
12-Feb-2008  
TAPE AND REEL BOX INFORMATION  
Device  
Package Pins  
Site  
Reel  
Reel  
A0 (mm)  
B0 (mm)  
K0 (mm)  
P1  
W
Pin1  
Diameter Width  
(mm) (mm) Quadrant  
(mm)  
330  
330  
330  
330  
330  
330  
330  
330  
(mm)  
12  
SN65HVD3082EDGKR  
SN65HVD3082EDR  
SN65HVD3085EDGKR  
SN65HVD3085EDR  
SN65HVD3088EDGKR  
SN65HVD3088EDR  
SN75HVD3082EDGKR  
SN75HVD3082EDR  
DGK  
D
8
8
8
8
8
8
8
8
SITE 60  
SITE 27  
SITE 60  
SITE 27  
SITE 60  
SITE 27  
SITE 60  
SITE 27  
5.3  
6.4  
5.3  
6.4  
5.3  
6.4  
5.3  
6.4  
3.4  
5.2  
3.4  
5.2  
3.4  
5.2  
3.4  
5.2  
1.4  
2.1  
1.4  
2.1  
1.4  
2.1  
1.4  
2.1  
8
8
8
8
8
8
8
8
12  
12  
12  
12  
12  
12  
12  
12  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
12  
DGK  
D
12  
12  
DGK  
D
12  
12  
DGK  
D
12  
12  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
12-Feb-2008  
Device  
Package  
Pins  
Site  
Length (mm) Width (mm) Height (mm)  
SN65HVD3082EDGKR  
SN65HVD3082EDR  
SN65HVD3085EDGKR  
SN65HVD3085EDR  
SN65HVD3088EDGKR  
SN65HVD3088EDR  
SN75HVD3082EDGKR  
SN75HVD3082EDR  
DGK  
D
8
8
8
8
8
8
8
8
SITE 60  
SITE 27  
SITE 60  
SITE 27  
SITE 60  
SITE 27  
SITE 60  
SITE 27  
346.0  
342.9  
346.0  
342.9  
346.0  
342.9  
346.0  
342.9  
346.0  
338.1  
346.0  
338.1  
346.0  
338.1  
346.0  
338.1  
29.0  
20.64  
29.0  
DGK  
D
20.64  
29.0  
DGK  
D
20.64  
29.0  
DGK  
D
20.64  
Pack Materials-Page 2  
MECHANICAL DATA  
MPDI001A – JANUARY 1995 – REVISED JUNE 1999  
P (R-PDIP-T8)  
PLASTIC DUAL-IN-LINE  
0.400 (10,60)  
0.355 (9,02)  
8
5
0.260 (6,60)  
0.240 (6,10)  
1
4
0.070 (1,78) MAX  
0.325 (8,26)  
0.300 (7,62)  
0.020 (0,51) MIN  
0.015 (0,38)  
Gage Plane  
0.200 (5,08) MAX  
Seating Plane  
0.010 (0,25) NOM  
0.125 (3,18) MIN  
0.100 (2,54)  
0.021 (0,53)  
0.430 (10,92)  
MAX  
0.010 (0,25)  
M
0.015 (0,38)  
4040082/D 05/98  
NOTES: A. All linear dimensions are in inches (millimeters).  
B. This drawing is subject to change without notice.  
C. Falls within JEDEC MS-001  
For the latest package information, go to http://www.ti.com/sc/docs/package/pkg_info.htm  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements,  
and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should  
obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are  
sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.  
TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard  
warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where  
mandated by government requirements, testing of all parameters of each product is not necessarily performed.  
TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and  
applications using TI components. To minimize the risks associated with customer products and applications, customers should provide  
adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right,  
or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information  
published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a  
warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual  
property of the third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied  
by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive  
business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional  
restrictions.  
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all  
express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not  
responsible or liable for any such statements.  
TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably  
be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing  
such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and  
acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products  
and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be  
provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in  
such safety-critical applications.  
TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are  
specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military  
specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at  
the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.  
TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are  
designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated  
products in automotive applications, TI will not be responsible for any failure to meet such requirements.  
Following are URLs where you can obtain information on other Texas Instruments products and application solutions:  
Products  
Applications  
Audio  
Automotive  
Broadband  
Digital Control  
Medical  
Amplifiers  
Data Converters  
DSP  
Clocks and Timers  
Interface  
amplifier.ti.com  
dataconverter.ti.com  
dsp.ti.com  
www.ti.com/clocks  
interface.ti.com  
logic.ti.com  
www.ti.com/audio  
www.ti.com/automotive  
www.ti.com/broadband  
www.ti.com/digitalcontrol  
www.ti.com/medical  
www.ti.com/military  
Logic  
Military  
Power Mgmt  
Microcontrollers  
RFID  
power.ti.com  
microcontroller.ti.com  
www.ti-rfid.com  
Optical Networking  
Security  
Telephony  
Video & Imaging  
Wireless  
www.ti.com/opticalnetwork  
www.ti.com/security  
www.ti.com/telephony  
www.ti.com/video  
RF/IF and ZigBee® Solutions www.ti.com/lprf  
www.ti.com/wireless  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2008, Texas Instruments Incorporated  

相关型号:

SN65HVD3088EDGKRG4

LOW-POWER RS-485 TRANSCEIVER
TI

SN65HVD3088EDR

LOW-POWER RS-485 TRANSCEIVER
TI

SN65HVD3088EDRG4

LOW-POWER RS-485 TRANSCEIVER
TI

SN65HVD30D

3.3V FULL-DUPLEX RS-485 DRIVERS AND RECEIVERS
TI

SN65HVD30DG4

3.3V FULL-DUPLEX RS-485 DRIVERS AND RECEIVERS
TI

SN65HVD30DR

3.3V FULL-DUPLEX RS-485 DRIVERS AND RECEIVERS
TI

SN65HVD30DRG4

3.3V FULL-DUPLEX RS-485 DRIVERS AND RECEIVERS
TI

SN65HVD30MDREP

3.3-V FULL-DUPLEX RS-485 DRIVERS AND RECEIVERS
TI

SN65HVD30MDREPG4

3.3-V FULL-DUPLEX RS-485 DRIVERS AND RECEIVERS
TI

SN65HVD30_07

3.3V FULL-DUPLEX RS-485 DRIVERS AND RECEIVERS
TI

SN65HVD30_08

3.3 V FULL-DUPLEX RS-485 DRIVERS AND RECEIVERS
TI

SN65HVD31

3.3V FULL-DUPLEX RS-485 DRIVERS AND RECEIVERS
TI