SN65HVD33MDREPG4 [TI]

3.3-V FULL-DUPLEX RS-485 DRIVERS AND RECEIVERS; 3.3 -V全双工RS - 485驱动器和接收
SN65HVD33MDREPG4
型号: SN65HVD33MDREPG4
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

3.3-V FULL-DUPLEX RS-485 DRIVERS AND RECEIVERS
3.3 -V全双工RS - 485驱动器和接收

驱动器
文件: 总25页 (文件大小:853K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
SN65HVD30-EP, SN65HVD31-EP, SN65HVD32-EP  
SN65HVD33-EP, SN65HVD34-EP, SN65HVD35-EP  
www.ti.com  
SGLS367D SEPTEMBER 2006REVISED MARCH 2012  
3.3-V FULL-DUPLEX RS-485 DRIVERS AND RECEIVERS  
Check for Samples: SN65HVD30-EP, SN65HVD31-EP, SN65HVD32-EP, SN65HVD33-EP, SN65HVD34-EP, SN65HVD35-EP  
1
FEATURES  
APPLICATIONS  
1/8 Unit-Load Option Available (up to 256  
Nodes on the Bus)  
Utility Meters  
DTE/DCE Interfaces  
Bus-Pin ESD Protection Exceeds 15-kV HBM  
Industrial, Process, and Building Automation  
Point-of-Sale (POS) Terminals and Networks  
Optional Driver Output Transition Times for  
Signaling Rates (1) of 1 Mbps, 5 Mbps, and  
25 Mbps  
SUPPORTS DEFENSE, AEROSPACE,  
AND MEDICAL APPLICATIONS  
Low-Current Standby Mode: <1 μA  
Glitch-Free Power-Up and Power-Down  
Protection for Hot-Plugging Applications  
Controlled Baseline  
One Assembly/Test Site  
One Fabrication Site  
5-V-Tolerant Inputs  
Bus Idle, Open, and Short-Circuit Fail Safe  
Driver Current Limiting and Thermal Shutdown  
Available in Military (–55°C/125°C)  
Temperature Range  
Meet or Exceed the Requirements of ANSI  
TIA/EIA-485-A and RS-422 Compatible  
Extended Product Life Cycle  
Extended Product-Change Notification  
Product Traceability  
(1) The signaling rate of a line is the number of voltage  
transitions that are made per second expressed in the units  
bps (bits per second).  
DESCRIPTION  
The SN65HVD3x devices are 3-state differential line drivers and differential-input line receivers that operate with  
3.3-V power supply.  
Each driver and receiver has separate input and output pins for full-duplex bus communication designs. They are  
designed for balanced transmission lines and interoperation with ANSI TIA/EIA-485A, TIA/EIA-422-B, ITU-T v.11,  
and ISO 8482:1993 standard-compliant devices.  
The SN65HVD30, SN65HVD31, and SN65HVD32 are fully enabled with no external enabling pins.  
The SN65HVD33, SN65HVD34, and SN65HVD35 have active-high driver enables and active-low receiver  
enables. A low (less than 1 μA) standby current can be achieved by disabling both the driver and receiver.  
All devices are characterized for operation from –55°C to 125°C.  
IMPROVED REPLACEMENT FOR:  
Part Number  
Replace With  
xxx3491  
xxx3490  
SN65HVD33:  
SN65HVD30:  
Better ESD protection (15 kV vs 2 kV or not specified), higher signaling rate (25 Mbps vs 20 Mbps),  
fractional unit load (64 nodes vs 32)  
MAX3491E  
MAX3490E  
SN65HVD33:  
SN65HVD30:  
Higher signaling rate (25 Mbps vs 12 Mbps), fractional unit load (64 nodes vs 32)  
Higher signaling rate (25 Mbps vs 16 Mbps), lower standby current (1 μA vs 10 μA)  
Higher signaling rate (5 Mbps vs 500 kbps), lower standby current (1 μA vs 10 μA)  
Higher signaling rate (1 Mbps vs 250 kbps), lower standby current (1 μA vs 10 μA)  
MAX3076E  
MAX3077E  
SN65HVD33:  
SN65HVD30:  
MAX3073E  
MAX3074E  
SN65HVD34:  
SN65HVD31:  
MAX3070E  
MAX3071E  
SN65HVD35:  
SN65HVD32:  
1
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of  
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
PRODUCTION DATA information is current as of publication date.  
Products conform to specifications per the terms of the Texas  
Instruments standard warranty. Production processing does not  
necessarily include testing of all parameters.  
Copyright © 2006–2012, Texas Instruments Incorporated  
SN65HVD30-EP, SN65HVD31-EP, SN65HVD32-EP  
SN65HVD33-EP, SN65HVD34-EP, SN65HVD35-EP  
SGLS367D SEPTEMBER 2006REVISED MARCH 2012  
www.ti.com  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with  
appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more  
susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.  
xxx  
SN65HVD30, SN65HVD31, SN65HVD32  
SN65HVD33, SN65HVD34, SN65HVD35  
D PACKAGE  
(TOP VIEW)  
D PACKAGE  
(TOP VIEW)  
VCC  
R
1
2
3
4
8
7
6
5
A
B
Z
Y
NC  
R
VCC  
VCC  
A
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
D
RE  
GND  
DE  
B
D
Z
GND  
GND  
Y
8
7
2
A
8
NC  
R
B
NC - No internal connection  
5
6
3
Y
Z
D
2
Submit Documentation Feedback  
Copyright © 2006–2012, Texas Instruments Incorporated  
Product Folder Link(s): SN65HVD30-EP SN65HVD31-EP SN65HVD32-EP SN65HVD33-EP SN65HVD34-EP  
SN65HVD35-EP  
SN65HVD30-EP, SN65HVD31-EP, SN65HVD32-EP  
SN65HVD33-EP, SN65HVD34-EP, SN65HVD35-EP  
www.ti.com  
SGLS367D SEPTEMBER 2006REVISED MARCH 2012  
AVAILABLE OPTIONS(1)  
BASE  
PART NUMBER  
SIGNALING  
RATE  
RECEIVER  
EQUALIZATION  
UNIT LOADS  
ENABLES  
SOIC MARKING  
SN65HVD30MDREP  
SN65HVD31MDREP(2)  
SN65HVD32MDREP(2)  
SN65HVD33MDREP  
SN65HVD34MDREP(2)  
SN65HVD35MDREP(2)  
25 Mbps  
5 Mbps  
1 Mbps  
25 Mbps  
5 Mbps  
1 Mbps  
1/2  
1/8  
1/8  
1/2  
1/8  
1/8  
No  
No  
No  
No  
No  
No  
No  
No  
HVD30EP  
PREVIEW  
PREVIEW  
HVD33EP  
PREVIEW  
PREVIEW  
No  
Yes  
Yes  
Yes  
(1) For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI  
Web site at www.ti.com.  
(2) Product Preview  
Absolute Maximum Ratings(1) (2)  
over operating free-air temperature range (unless otherwise noted)  
UNIT  
VCC  
Supply voltage range  
–0.3 V to 6 V  
–9 V to 14 V  
–50 V to 50 V  
–0.5 V to 7 V  
Internally limited(4)  
11 mA  
V(A), V(B), V(Y), V(Z)  
Voltage range at any bus terminal (A, B, Y, Z)  
Voltage input, transient pulse through 100 (see Figure 12) (A, B, Y, Z)(3)  
Input voltage range (D, DE, RE)  
V(TRANS)  
VI  
PD(cont)  
IO  
Continuous total power dissipation  
Output current (receiver output only, R)  
Junction temperature  
TJ  
165°C  
TSTG  
Storage temperature range  
–65°C to 150°C  
(1) Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings  
only, and functional operation of the device at these or any other conditions beyond those indicated under recommended operating  
conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) All voltage values, except differential I/O bus voltages, are with respect to network ground terminal.  
(3) This tests survivability only and the output state of the receiver is not specified.  
(4) The thermal shutdown protection circuit internally limits the continuous total power dissipation. Thermal shutdown typically occurs when  
the junction temperature reaches 165°C.  
Copyright © 2006–2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
3
Product Folder Link(s): SN65HVD30-EP SN65HVD31-EP SN65HVD32-EP SN65HVD33-EP SN65HVD34-EP  
SN65HVD35-EP  
SN65HVD30-EP, SN65HVD31-EP, SN65HVD32-EP  
SN65HVD33-EP, SN65HVD34-EP, SN65HVD35-EP  
SGLS367D SEPTEMBER 2006REVISED MARCH 2012  
www.ti.com  
Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN NOM  
MAX UNIT  
VCC  
Supply voltage  
3
7(1)  
3.6  
12  
25  
5
V
V
VI or VIC  
Voltage at any bus terminal (separately or common mode)  
'HVD30, 'HVD33  
1/tUI  
Signaling rate  
'HVD31, 'HVD34  
'HVD32, 'HVD35  
Mbps  
1
RL  
Differential load resistance  
High-level input voltage  
Low-level input voltage  
Differential input voltage  
54  
2
60  
V
V
V
VIH  
VIL  
VID  
D, DE, RE  
D, DE, RE  
VCC  
0.8  
12  
0
–12  
–60  
–8  
Driver  
IOH  
High-level output current  
mA  
Receiver  
Driver  
60  
8
125(2)  
IOL  
TA  
Low-level output current  
mA  
°C  
Receiver  
Ambient still-air temperature  
–55  
(1) The algebraic convention, in which the least positive (most negative) limit is designated as minimum, is used in this data sheet.  
(2) Long-term high-temperature storage and/or extended use at maximum recommended operating conditions may result in a reduction of  
overall device life. See http://www.ti.com/ep_quality for additional information on enhanced plastic packaging.  
Electrostatic Discharge Protection  
PARAMETER  
TEST CONDITIONS  
Bus terminals and GND  
TYP(1)  
±16  
±4  
UNIT  
Human-Body Model  
Human-Body Model(2)  
Charged-Device Model(3)  
All pins  
All pins  
kV  
±1  
(1) All typical values at 25°C with 3.3-V supply  
(2) Tested in accordance with JEDEC Standard 22, Test Method A114-A  
(3) Tested in accordance with JEDEC Standard 22, Test Method C101  
4
Submit Documentation Feedback  
Copyright © 2006–2012, Texas Instruments Incorporated  
Product Folder Link(s): SN65HVD30-EP SN65HVD31-EP SN65HVD32-EP SN65HVD33-EP SN65HVD34-EP  
SN65HVD35-EP  
SN65HVD30-EP, SN65HVD31-EP, SN65HVD32-EP  
SN65HVD33-EP, SN65HVD34-EP, SN65HVD35-EP  
www.ti.com  
SGLS367D SEPTEMBER 2006REVISED MARCH 2012  
Driver Electrical Characteristics  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN TYP(1)  
MAX  
UNIT  
VI(K)  
Input clamp voltage  
II = –18 mA  
IO = 0  
–1.5  
V
VCC  
0.1  
+
2.3  
RL = 54 , See Figure 1 (RS-485)  
RL = 100 , See Figure 1 (RS-422)  
Vtest = –7 V to 12 V, See Figure 2  
1.5  
2
2
|VOD(SS)  
|
Steady-state differential output voltage  
V
2.3  
1.5  
Change in magnitude of steady-state  
differential output voltage between  
states  
Δ|VOD(SS)  
|
RL = 54 , See Figure 1 and Figure 2  
–0.2  
0.2  
V
V
Differential output voltage overshoot  
and undershoot  
RL = 54 , CL = 50 pF, See Figure 5 and  
Figure 3  
VOD(RING)  
10%(2)  
'HVD30, 'HVD33  
0.5  
Peak-to-peak  
common-mode  
output voltage  
VOC(PP)  
See Figure 4  
V
'HVD31, 'HVD32,  
'HVD34, 'HVD35  
0.25  
Steady-state common-mode output  
voltage  
VOC(SS)  
See Figure 4  
See Figure 4  
1.6  
2.3  
0.05  
90  
V
V
Change in steady-state common-mode  
output voltage  
ΔVOC(SS)  
–0.05  
VCC = 0 V, VZ or VY = 12 V,  
Other input at 0 V  
'HVD30, 'HVD31,  
'HVD32  
VCC = 0 V, VZ or VY = –7 V,  
Other input at 0 V  
–10  
–10  
0
High-impedance  
state output  
IZ(Z) or  
IY(Z)  
μA  
VCC = 3 V or 0 V, DE = 0 V,  
VZ or VY = 12 V  
current  
90  
'HVD33, 'HVD34,  
'HVD35  
Other input  
at 0 V  
VCC = 3 V or 0 V, DE = 0 V,  
VZ or VY = –7 V  
VZ or VY = –7 V  
VZ or VY = 12 V  
IZ(S) or  
IY(S)  
Other input  
at 0 V  
Short-circuit output current  
±250  
16  
mA  
II  
Input current  
D, DE  
100  
μA  
C(OD)  
Differential output capacitance  
VOD = 0.4 sin (4E6πt) + 0.5 V, DE at 0 V  
pF  
(1) All typical values at 25°C with 3.3-V supply  
(2) 10% of the peak-to-peak differential output voltage swing, per TIA/EIA-485  
Copyright © 2006–2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
5
Product Folder Link(s): SN65HVD30-EP SN65HVD31-EP SN65HVD32-EP SN65HVD33-EP SN65HVD34-EP  
SN65HVD35-EP  
SN65HVD30-EP, SN65HVD31-EP, SN65HVD32-EP  
SN65HVD33-EP, SN65HVD34-EP, SN65HVD35-EP  
SGLS367D SEPTEMBER 2006REVISED MARCH 2012  
www.ti.com  
Driver Switching Characteristics  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN TYP(1) MAX UNIT  
'HVD30, 'HVD33  
4
25  
10  
38  
23  
65  
Propagation delay time,  
low- to high-level output  
tPLH  
tPHL  
tr  
'HVD31, 'HVD34  
'HVD32, 'HVD35  
'HVD30, 'HVD33  
'HVD31, 'HVD34  
'HVD32, 'HVD35  
'HVD30, 'HVD33  
'HVD31, 'HVD34  
'HVD32, 'HVD35  
'HVD30, 'HVD33  
'HVD31, 'HVD34  
'HVD32, 'HVD35  
'HVD30, 'HVD33  
'HVD31, 'HVD34  
'HVD32, 'HVD35  
'HVD33  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
120  
4
175 305  
9
23  
65  
Propagation delay time,  
high- to low-level output  
25  
38  
120  
2.5  
20  
175 305  
5
18  
60  
Differential output signal  
rise time  
RL = 54 , CL = 50 pF,  
See Figure 5  
37  
120  
2.5  
20  
185 300  
5
18  
60  
Differential output signal  
fall time  
tf  
35  
120  
180 300  
0.6  
tsk(p)  
tPZH1  
tPHZ  
tPZL1  
tPLZ  
tPZH2  
tPZL2  
Pulse skew (|tPHL – tPLH|)  
2.0  
5.1  
45  
Propagation delay time, high-  
impedance to high-level output  
'HVD34  
235  
490  
25  
RL = 110 , RE at 0 V,  
D = 3 V and S1 = Y, or  
D = 0 V and S1 = Z,  
See Figure 6  
'HVD35  
'HVD33  
Propagation delay time, high-  
level to high-impedance output  
'HVD34  
65  
'HVD35  
165  
35  
'HVD33  
Propagation delay time, high-  
impedance to low-level output  
'HVD34  
190  
490  
30  
RL = 110 , RE at 0 V,  
D = 3 V and S1 = Z, or  
D = 0 V and S1 = Y,  
See Figure 7  
'HVD35  
'HVD33  
Propagation delay time, low-  
level to high-impedance output  
'HVD34  
120  
290  
4000  
'HVD35  
'HVD30  
RL = 110 , RE at 3 V,  
D = 3 V and S1 = Y, or  
D = 0 V and S1 = Z,  
See Figure 6  
Propagation delay time, standby  
to high-level output  
'HVD33  
'HVD30  
'HVD33  
5000  
4000  
5000  
RL = 110 , RE at 3 V,  
D = 3 V and S1 = Z, or  
D = 0 V and S1 = Y,  
See Figure 7  
Propagation delay time, standby  
to low-level output  
(1) All typical values at 25°C with 3.3-V supply  
6
Submit Documentation Feedback  
Copyright © 2006–2012, Texas Instruments Incorporated  
Product Folder Link(s): SN65HVD30-EP SN65HVD31-EP SN65HVD32-EP SN65HVD33-EP SN65HVD34-EP  
SN65HVD35-EP  
SN65HVD30-EP, SN65HVD31-EP, SN65HVD32-EP  
SN65HVD33-EP, SN65HVD34-EP, SN65HVD35-EP  
www.ti.com  
SGLS367D SEPTEMBER 2006REVISED MARCH 2012  
Receiver Electrical Characteristics  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN TYP(1)  
MAX  
UNIT  
Positive-going differential input threshold  
voltage  
VIT+  
IO = –8 mA  
IO = 8 mA  
–0.02  
V
Negative-going  
differential input  
threshold voltage  
'HVD30  
'HVD33  
–0.15  
VIT–  
V
-0.2  
Vhys  
VIK  
Hysteresis voltage (VIT+ – VIT–  
Enable-input clamp voltage  
)
50  
mV  
V
II = –18 mA  
–1.5  
2.4  
VID = 200 mV, IO = –8 mA, See Figure 8  
VID = –200 mV, IO = 8 mA, See Figure 8  
VO = 0 or VCC, RE at VCC  
VA or VB = 12 V  
VO  
Output voltage  
V
0.4  
1
IO(Z)  
High-impedance-state output current  
–1  
μA  
0.05  
0.06  
0.1  
0.1  
VA or VB = 12 V, VCC = 0 V  
VA or VB = –7 V  
'HVD31, 'HVD32,  
'HVD34, 'HVD35  
Other input  
at 0 V  
–0.10 –0.04  
–0.10 –0.03  
0.20  
VA or VB = –7 V, VCC = 0 V  
VA or VB = 12 V  
IA or  
IB  
Bus input current  
Input current, RE  
mA  
0.35  
0.4  
VA or VB = 12 V, VCC = 0 V  
VA or VB = –7 V  
0.24  
Other input  
at 0 V  
'HVD30, 'HVD33  
–0.35 –0.18  
–0.25 –0.13  
–60  
VA or VB = –7 V, VCC = 0 V  
VIH = 0.8 V or 2 V  
IIH  
μA  
CID  
Differential input capacitance  
VID = 0.4 sin (4E6πt) + 0.5 V, DE at 0 V  
15  
pF  
Supply Current  
'HVD30  
2.1  
6.4  
1.8  
D at 0 V or VCC and no load  
'HVD31, 'HVD32  
'HVD33  
mA  
RE at 0 V, D at 0 V or VCC, DE at 0 V,  
No load (receiver enabled and driver  
disabled)  
'HVD34, 'HVD35  
2.2  
RE at VCC, D at VCC, DE at 0 V,  
No load (receiver disabled and driver  
disabled)  
'HVD33, 'HVD34,  
'HVD35  
0.022  
1.5  
μA  
ICC  
Supply current  
'HVD33  
RE at 0 V, D at 0 V or VCC, DE at VCC  
No load (receiver enabled and driver  
enabled)  
,
2.1  
6.5  
1.8  
6.2  
'HVD34, 'HVD35  
'HVD33  
mA  
RE at VCC, D at 0 V or VCC, DE at VCC  
No load (receiver disabled and driver  
enabled)  
'HVD34, 'HVD35  
(1) All typical values at 25°C with 3.3-V supply  
Receiver Switching Characteristics  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN TYP(1)  
MAX UNIT  
'HVD30, 'HVD33  
26  
47  
29  
49  
60  
ns  
70  
Propagation delay time,  
low- to high-level output  
tPLH  
tPHL  
tsk(p)  
'HVD31, 'HVD32, 'HVD34, 'HVD35  
'HVD30, 'HVD33  
60  
ns  
70  
Propagation delay time,  
high- to low-level output  
'HVD31, 'HVD32, 'HVD34, 'HVD35  
'HVD30, 'HVD33  
VID = –1.5 V to 1.5 V,  
CL = 15 pF, See Figure 9  
12  
ns  
10  
Pulse skew (|tPHL – tPLH|)  
'HVD31, 'HVD34, 'HVD32, 'HVD35  
'HVD30  
10  
ns  
18  
tr  
tf  
Output signal rise time  
Output signal fall time  
'HVD33  
12.5  
ns  
(1) All typical values 25°C with 3.3-V supply  
Copyright © 2006–2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
7
Product Folder Link(s): SN65HVD30-EP SN65HVD31-EP SN65HVD32-EP SN65HVD33-EP SN65HVD34-EP  
SN65HVD35-EP  
SN65HVD30-EP, SN65HVD31-EP, SN65HVD32-EP  
SN65HVD33-EP, SN65HVD34-EP, SN65HVD35-EP  
SGLS367D SEPTEMBER 2006REVISED MARCH 2012  
www.ti.com  
Receiver Switching Characteristics (continued)  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
DE at 3 V  
MIN TYP(1)  
MAX UNIT  
tPHZ  
Output disable time from high level  
Output enable time to high level  
20  
20  
ns  
ns  
tPZH1  
CL = 15 pF,  
See Figure 10  
'HVD30  
4000  
5000  
20  
Propagation delay time,  
standby to high-level output  
tPZH2  
DE at 0 V  
DE at 3 V  
DE at 0 V  
ns  
'HVD33  
tPLZ  
Output disable time from low level  
Output enable time to low level  
ns  
ns  
tPZL1  
20  
CL = 15 pF,  
See Figure 11  
'HVD30  
'HVD33  
4000  
5000  
Propagation delay time,  
standby to low-level output  
tPZL2  
ns  
Receiver Equalization Characteristics  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
DEVICE  
'HVD33(2)  
MIN  
TYP(1)  
PREVIEW  
PREVIEW  
PREVIEW  
PREVIEW  
PREVIEW  
PREVIEW  
PREVIEW  
PREVIEW  
PREVIEW  
PREVIEW  
MAX UNIT  
100 m  
25 Mbps  
150 m  
200 m  
200 m  
250 m  
300 m  
500 m  
'HVD33(2)  
'HVD33(2)  
'HVD33(2)  
'HVD33(2)  
'HVD33(2)  
'HVD34(2)  
'HVD33(2)  
'HVD34(2)  
Pseudo-random NRZ code  
with a bit pattern length of  
216 – 1, Belden 3105A cable  
10 Mbps  
Peak-to-peak  
eye-pattern jitter  
tj(pp)  
ns  
5 Mbps  
3 Mbps  
1 Mbps  
500 m  
1000 m 'HVD34(2)  
(1) All typical values are at VCC = 5 V and temperature = 25°C.  
(2) The SN65HVD33 and the SN65HVD34 do not have receiver equalization, but are specified for comparison.  
Device Power Dissipation – PD  
DEVICE  
'HVD30 (25 Mbps)  
'HVD31 (5 Mbps)  
'HVD32 (1 Mbps)  
'HVD33 (25 Mbps)  
'HVD34 (5 Mbps)  
'HVD35 (1 Mbps)  
TEST CONDITIONS  
MIN MAX UNIT  
197  
RL = 60 , CL = 50 pF,  
213 mW  
193  
Input to D a 50% duty cycle square wave at indicated signaling rate, TA = 85°C  
197  
RL = 60 , CL = 50 pF, DE at VCC, RE at 0 V,  
Input to D a 50% duty cycle square wave at indicated signaling rate, TA = 85°C  
193 mW  
248  
8
Submit Documentation Feedback  
Copyright © 2006–2012, Texas Instruments Incorporated  
Product Folder Link(s): SN65HVD30-EP SN65HVD31-EP SN65HVD32-EP SN65HVD33-EP SN65HVD34-EP  
SN65HVD35-EP  
SN65HVD30-EP, SN65HVD31-EP, SN65HVD32-EP  
SN65HVD33-EP, SN65HVD34-EP, SN65HVD35-EP  
www.ti.com  
SGLS367D SEPTEMBER 2006REVISED MARCH 2012  
PARAMETER MEASUREMENT INFORMATION  
V
CC  
I
DE  
Y
Z
I
I
Y
Z
V
OD  
RL  
0 or 3 V  
I
V
I
V
Z
V
Y
Figure 1. Driver VOD Test Circuit and Voltage and Current Definitions  
375 ±1%  
V
CC  
DE  
Y
Z
D
V
OD  
60 ±1%  
0 or 3 V  
+
_
−7 V < V  
< 12 V  
(test)  
375 ±1%  
Figure 2. Driver VOD With Common-Mode Loading Test Circuit  
V
OD(SS)  
V
OD(RING)  
0 V Differential  
V
OD(RING)  
–V  
OD(SS)  
Figure 3. VOD(RING) Waveform and Definitions  
VOD(RING) is measured at four points on the output waveform, corresponding to overshoot and undershoot from  
the VOD(H) and VOD(L) steady state values.  
V
Y
Y
V
CC  
27 Ω ± 1%  
27 Ω ± 1%  
V
DE  
Z
Z
Y
Z
D
V
OC(PP)  
∆V  
Input  
OC(SS)  
V
OC  
V
C
L
= 50 pF ±20%  
OC  
Input: PRR = 500 kHz, 50% Duty Cycle, tr < 6 ns, tf < 6 ns, ZO = 50 Ω  
Figure 4. Test Circuit and Definitions for Driver Common-Mode Output Voltage  
Copyright © 2006–2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
9
Product Folder Link(s): SN65HVD30-EP SN65HVD31-EP SN65HVD32-EP SN65HVD33-EP SN65HVD34-EP  
SN65HVD35-EP  
SN65HVD30-EP, SN65HVD31-EP, SN65HVD32-EP  
SN65HVD33-EP, SN65HVD34-EP, SN65HVD35-EP  
SGLS367D SEPTEMBER 2006REVISED MARCH 2012  
www.ti.com  
PARAMETER MEASUREMENT INFORMATION (continued)  
Y
Z
»
»
W
W
A. Generator: PRR = 500 kHz, 50% Duty Cycle, tr < 6 ns, tf < 6 ns, ZO = 50 Ω  
Figure 5. Driver Switching Test Circuit and Voltage Waveforms  
3 V  
D
S1  
Y
3 V  
0 V  
1.5 V  
Z
1.5 V  
Y
Z
VI  
S1  
D
0 V  
VO  
0.5 V  
tPZH(1 & 2)  
VOH  
DE  
RL = 110 W  
1ꢀ  
VO  
2.3 V  
CL = 50 pF  
20ꢀ  
~ 0 V  
Input  
Generator  
VI 50 W  
tPHZ  
A. Generator: PRR = 500 kHz, 50% Duty Cycle, tr < 6 ns, tf < 6 ns, ZO = 50 Ω  
B. CL Includes Fixture and Instrumentation Capacitance  
Figure 6. Driver High-Level Output Enable and Disable Time Test Circuit and Voltage Waveforms  
VCC  
D
3 V  
0 V  
S1  
Z
Y
R
= 110 Ω  
3 V  
L
± 1%  
Y
V
I
1.5 V  
1.5 V  
S1  
D
V
O
0 V  
Z
t
t
PZL(1&2)  
PLZ  
DE  
50 Ω  
VCC  
C
= 50 pF ±20%  
Input  
L
V
I
0.5 V  
Generator  
C
L
Includes Fixture  
and Instrumentation  
Capacitance  
V
O
2.3 V  
V
OL  
A. Generator: PRR = 500 kHz, 50% Duty Cycle, tr < 6 ns, tf < 6 ns, ZO = 50 Ω  
Figure 7. Driver Low-Level Output Enable and Disable Time Test Circuit and Voltage Waveforms  
I
A
A
I
O
R
V
A
V
I
ID  
B
V
B
V
IC  
V
O
B
V
A
+ V  
B
RE  
2
I
I
V
I
Figure 8. Receiver Voltage and Current Definitions  
10  
Submit Documentation Feedback  
Copyright © 2006–2012, Texas Instruments Incorporated  
Product Folder Link(s): SN65HVD30-EP SN65HVD31-EP SN65HVD32-EP SN65HVD33-EP SN65HVD34-EP  
SN65HVD35-EP  
SN65HVD30-EP, SN65HVD31-EP, SN65HVD32-EP  
SN65HVD33-EP, SN65HVD34-EP, SN65HVD35-EP  
www.ti.com  
SGLS367D SEPTEMBER 2006REVISED MARCH 2012  
PARAMETER MEASUREMENT INFORMATION (continued)  
3 V  
0 V  
A
B
1.5 V  
1.5 V  
V
I
V
O
R
Input  
Generator  
V
I
50 Ω  
t
t
PHL  
PLH  
1.5 V  
0 V  
C
L
= 15 pF  
V
OH  
OL  
90% 90%  
±20%  
RE  
V
O
1.5 V  
10%  
1.5 V  
10%  
V
t
t
f
r
A. CL Includes Fixture and Instrumentation Capacitance  
B. Generator: PRR = 500 kHz, 50% Duty Cycle, tr < 6 ns, tf < 6 ns, ZO = 50 Ω  
Figure 9. Receiver Switching Test Circuit and Voltage Waveforms  
V
CC  
A
3 V  
1.5 V  
0 V  
V
A
B
S1  
1 kW ±1ꢀ  
V
R
O
V
1.5V  
1.5V  
I
B
C
= 15 pF  
L
±±0ꢀ  
0V  
V
RE  
t
t
PHZ  
PZH(1 & ±)  
Input  
Generator  
OH  
50 W  
I
1.5 V  
0.5V  
~0 V  
V
O
A. Generator: PRR = 500 kHz, 50% Duty Cycle, tr < 6 ns, tf < 6 ns, ZO = 50 Ω  
Figure 10. Receiver High-Level Enable and Disable Time Test Circuit and Voltage Waveforms  
V
CC  
A
3 V  
0 V  
1.5 V  
V
A
S1  
1 k W ±1ꢀ  
V
R
O
V
1.5V  
1.5V  
I
B
C
= 15 pF  
L
±±0ꢀ  
B
0V  
V
RE  
t
PZL(1 & ±)  
t
PLZ  
Input  
Generator  
CC  
50 W  
I
1.5 V  
V
0.5 V  
O
V
OL  
A. Generator: PRR = 500 kHz, 50% Duty Cycle, tr < 6 ns, tf < 6 ns, ZO = 50 Ω  
Figure 11. Receiver Enable Time From Standby (Driver Disabled)  
Copyright © 2006–2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
11  
Product Folder Link(s): SN65HVD30-EP SN65HVD31-EP SN65HVD32-EP SN65HVD33-EP SN65HVD34-EP  
SN65HVD35-EP  
SN65HVD30-EP, SN65HVD31-EP, SN65HVD32-EP  
SN65HVD33-EP, SN65HVD34-EP, SN65HVD35-EP  
SGLS367D SEPTEMBER 2006REVISED MARCH 2012  
www.ti.com  
PARAMETER MEASUREMENT INFORMATION (continued)  
0 V or 3 V  
DE  
A
B
Y
D
R
Z
100 W  
1ꢀ  
100 W  
1ꢀ  
RE  
Pulse Generator  
15 ms duration  
1ꢀ Duty Cycle  
tr, tf £ 100 ns  
0 V or 3 V  
+
-
+
-
Figure 12. Test Circuit, Transient Over Voltage Test  
12  
Submit Documentation Feedback  
Copyright © 2006–2012, Texas Instruments Incorporated  
Product Folder Link(s): SN65HVD30-EP SN65HVD31-EP SN65HVD32-EP SN65HVD33-EP SN65HVD34-EP  
SN65HVD35-EP  
SN65HVD30-EP, SN65HVD31-EP, SN65HVD32-EP  
SN65HVD33-EP, SN65HVD34-EP, SN65HVD35-EP  
www.ti.com  
SGLS367D SEPTEMBER 2006REVISED MARCH 2012  
DEVICE INFORMATION  
Low-Power Standby Mode  
When both the driver and receiver are disabled (DE low and RE high), the device is in standby mode. If the  
enable inputs are in this state for less than 60 ns, the device does not enter standby mode. This guards against  
inadvertently entering standby mode during driver/receiver enabling. Only when the enable inputs are held in this  
state for 300 ns or more, the device is assured to be in standby mode. In this low-power standby mode, most  
internal circuitry is powered down, and the supply current is typically less than 1 nA. When either the driver or the  
receiver is re-enabled, the internal circuitry becomes active.  
12  
A
2
R
11  
B
3
RE  
Low-Power  
Standby  
4
DE  
9
Y
5
D
10  
Z
Figure 13. Low-Power Standby Logic Diagram  
If only the driver is re-enabled (DE transitions to high), the driver outputs are driven according to the D input after  
the enable times given by tPZH2 and tPZL2 in the driver switching characteristics. If the D input is open when the  
driver is enabled, the driver outputs defaults to A high and B low, in accordance with the driver fail-safe feature.  
If only the receiver is re-enabled (RE transitions to low), the receiver output is driven according to the state of the  
bus inputs (A and B) after the enable times given by tPZH2 and tPZL2 in the receiver switching characteristics. If  
there is no valid state on the bus, the receiver responds as described in the fail-safe operation section.  
If both the receiver and driver are re-enabled simultaneously, the receiver output is driven according to the state  
of the bus inputs (A and B) and the driver output is driven according to the D input. Note that the state of the  
active driver affects the inputs to the receiver. Therefore, the receiver outputs are valid as soon as the driver  
outputs are valid.  
Copyright © 2006–2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
13  
Product Folder Link(s): SN65HVD30-EP SN65HVD31-EP SN65HVD32-EP SN65HVD33-EP SN65HVD34-EP  
SN65HVD35-EP  
SN65HVD30-EP, SN65HVD31-EP, SN65HVD32-EP  
SN65HVD33-EP, SN65HVD34-EP, SN65HVD35-EP  
SGLS367D SEPTEMBER 2006REVISED MARCH 2012  
www.ti.com  
FUNCTION TABLES  
Table 1. SN65HVD33, SN65HVD34, SN65HVD35  
DRIVER(1)  
INPUTS  
OUTPUTS  
D
H
DE  
H
Y
H
L
Z
L
L
H
H
Z
H
X
L or open  
H
Z
L
Open  
(1) H = high level, L = low level, Z = high impedance, X = irrelevant  
Table 2. SN65HVD33, SN65HVD34, SN65HVD35  
RECEIVER(1)  
DIFFERENTIAL INPUTS  
VID = V(A) – V(B)  
ENABLE  
RE  
OUTPUT  
R
VID ≤ −0.2 V  
0.2 V < VID < 0.02 V  
0.02 V VID  
X
L
L
?
L
L
H
Z
H
H
H
H or open  
Open circuit  
L
L
L
Idle circuit  
Short circuit, V(A) = V(B)  
(1) H = high level, L = low level, Z = high impedance, X = irrelevant,  
? = indeterminate  
Table 3. SN65HVD30, SN65HVD31, SN65HVD32  
DRIVER(1)  
OUTPUTS  
INPUT  
D
Y
H
L
Z
L
H
L
H
H
Open  
L
(1) H = high level, L = low level  
Table 4. SN65HVD30, SN65HVD31, SN65HVD32  
RECEIVER(1)  
DIFFERENTIAL INPUTS  
VID = V(A) – V(B)  
OUTPUT  
R
V
ID ≤ −0.15 V  
L
?
0.15 V < VID < 0.02 V  
0.02 V VID  
H
H
H
H
Open circuit  
Idle circuit  
Short circuit, V(A) = V(B)  
(1) H = high level, L = low level, ? = indeterminate  
14  
Submit Documentation Feedback  
Copyright © 2006–2012, Texas Instruments Incorporated  
Product Folder Link(s): SN65HVD30-EP SN65HVD31-EP SN65HVD32-EP SN65HVD33-EP SN65HVD34-EP  
SN65HVD35-EP  
SN65HVD30-EP, SN65HVD31-EP, SN65HVD32-EP  
SN65HVD33-EP, SN65HVD34-EP, SN65HVD35-EP  
www.ti.com  
SGLS367D SEPTEMBER 2006REVISED MARCH 2012  
EQUIVALENT INPUT AND OUTPUT SCHEMATIC DIAGRAMS  
RE Input  
D and DE Input  
VCC  
VCC  
130 kW  
470 W  
470 W  
Input  
Input  
9 V  
9 V  
125 kW  
A Input  
B Input  
R1  
VCC  
VCC  
R1  
22 V  
R3  
22 V  
R3  
Input  
Input  
R2  
22 V  
R2  
22 V  
R Output  
Y and Z Outputs  
VCC  
VCC  
16 V  
5 W  
Output  
9 V  
Output  
16 V  
R1/R2  
9 kΩ  
R3  
SN65HVD30, SN65HVD33  
SN65HVD31, SN65HVD32, SN65HVD34, SN65HVD35  
45 kΩ  
180 kΩ  
36 kΩ  
Copyright © 2006–2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
15  
Product Folder Link(s): SN65HVD30-EP SN65HVD31-EP SN65HVD32-EP SN65HVD33-EP SN65HVD34-EP  
SN65HVD35-EP  
SN65HVD30-EP, SN65HVD31-EP, SN65HVD32-EP  
SN65HVD33-EP, SN65HVD34-EP, SN65HVD35-EP  
SGLS367D SEPTEMBER 2006REVISED MARCH 2012  
www.ti.com  
TYPICAL CHARACTERISTICS  
'HVD30, 'HVD33  
RMS SUPPLY CURRENT  
vs  
'HVD31, 'HVD34  
RMS SUPPLY CURRENT  
vs  
SIGNALING RATE  
SIGNALING RATE  
55  
50  
45  
40  
35  
30  
60  
55  
50  
45  
40  
35  
30  
TA = 25°C RL = 54 W  
TA = 25°C RL = 54 W  
RE = VCC CL = 50 pF  
DE = VCC  
RE = VCC CL = 50 pF  
DE = VCC  
VCC = 3.3 V  
VCC = 3.3 V  
0
5
10  
15  
20  
25  
0
1
2
3
4
5
Signaling Rate - Mbps  
Signaling Rate - Mbps  
Figure 14.  
Figure 15.  
'HVD32, 'HVD35  
RMS SUPPLY CURRENT  
vs  
SIGNALING RATE  
60  
55  
50  
45  
40  
35  
TA = 25°C RL = 54 W  
RE = VCC CL = 50 pF  
DE = VCC  
VCC = 3.3 V  
30  
0
0.2  
0.4  
0.6  
0.8  
1
Signaling Rate - Mbps  
Figure 16.  
16  
Submit Documentation Feedback  
Copyright © 2006–2012, Texas Instruments Incorporated  
Product Folder Link(s): SN65HVD30-EP SN65HVD31-EP SN65HVD32-EP SN65HVD33-EP SN65HVD34-EP  
SN65HVD35-EP  
SN65HVD30-EP, SN65HVD31-EP, SN65HVD32-EP  
SN65HVD33-EP, SN65HVD34-EP, SN65HVD35-EP  
www.ti.com  
SGLS367D SEPTEMBER 2006REVISED MARCH 2012  
TYPICAL CHARACTERISTICS (continued)  
'HVD30, 'HVD33  
BUS INPUT CURRENT  
vs  
'HVD31, 'HVD32, 'HVD34, 'HVD35  
BUS INPUT CURRENT  
vs  
INPUT VOLTAGE  
INPUT VOLTAGE  
250  
200  
150  
100  
50  
60  
40  
20  
0
TA = 25°C  
TA = 25°C  
RE = 0 V  
DE = 0 V  
RE = 0 V  
DE = 0 V  
VCC = 3.3 V  
VCC = 3.3 V  
0
–50  
–100  
–150  
–200  
-20  
-40  
-60  
–7  
–4  
–1  
2
5
8
11  
14  
-7  
-4  
-1  
2
5
8
11  
14  
VI - Bus Input Voltage - V  
VI - Bus Input Voltage - V  
Figure 17.  
Figure 18.  
DRIVER LOW-LEVEL OUTPUT CURRENT  
DRIVER HIGH-LEVEL OUTPUT CURRENT  
vs  
vs  
LOW-LEVEL OUTPUT VOLTAGE  
HIGH-LEVEL OUTPUT VOLTAGE  
0.01  
–0.01  
–0.03  
–0.05  
–0.07  
–0.09  
–0.11  
–0.13  
0.14  
0.12  
0.1  
VCC = 3.3 V  
DE = VCC  
D = 0 V  
VCC = 3.3 V  
DE = VCC  
D = 0 V  
0.08  
0.06  
0.04  
0.02  
0
–0.02  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
VOL - Low-Level Output Voltage - V  
VOH - High-Level Output Voltage - V  
Figure 19.  
Figure 20.  
Copyright © 2006–2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
17  
Product Folder Link(s): SN65HVD30-EP SN65HVD31-EP SN65HVD32-EP SN65HVD33-EP SN65HVD34-EP  
SN65HVD35-EP  
SN65HVD30-EP, SN65HVD31-EP, SN65HVD32-EP  
SN65HVD33-EP, SN65HVD34-EP, SN65HVD35-EP  
SGLS367D SEPTEMBER 2006REVISED MARCH 2012  
www.ti.com  
TYPICAL CHARACTERISTICS (continued)  
DRIVER DIFFERENTIAL OUTPUT VOLTAGE  
DRIVER OUTPUT CURRENT  
vs  
vs  
FREE-AIR TEMPERATURE  
SUPPLY VOLTAGE  
2.2  
2.1  
2.0  
1.9  
1.8  
40  
35  
30  
25  
20  
15  
10  
5
VCC = 3.3 V  
DE = VCC  
D = VCC  
TA = 25°C  
RL = 54 W  
D = VCC  
DE = VCC  
0
0
0.5  
1
1.5  
2
2.5  
3
3.5  
–40  
–15  
10  
35  
60  
85  
TA - Free-Air Temperature - °C  
VCC Supply Voltage - V  
Figure 21.  
Figure 22.  
18  
Submit Documentation Feedback  
Copyright © 2006–2012, Texas Instruments Incorporated  
Product Folder Link(s): SN65HVD30-EP SN65HVD31-EP SN65HVD32-EP SN65HVD33-EP SN65HVD34-EP  
SN65HVD35-EP  
PACKAGE OPTION ADDENDUM  
www.ti.com  
22-Sep-2008  
PACKAGING INFORMATION  
Orderable Device  
SN65HVD30MDREP  
SN65HVD30MDREPG4  
SN65HVD33MDREP  
SN65HVD33MDREPG4  
V62/06634-01XE  
Status (1)  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
Package Package  
Pins Package Eco Plan (2) Lead/Ball Finish MSL Peak Temp (3)  
Qty  
Type  
Drawing  
SOIC  
D
8
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
D
D
D
D
D
8
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
14  
14  
8
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
V62/06634-04YE  
14  
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in  
a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2)  
Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check  
http://www.ti.com/productcontent for the latest availability information and additional product content details.  
TBD: The Pb-Free/Green conversion plan has not been defined.  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements  
for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered  
at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.  
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and  
package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS  
compatible) as defined above.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame  
retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)  
(3)  
MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder  
temperature.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is  
provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the  
accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take  
reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on  
incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited  
information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI  
to Customer on an annual basis.  
OTHER QUALIFIED VERSIONS OF SN65HVD30-EP, SN65HVD33-EP :  
Catalog: SN65HVD30, SN65HVD33  
NOTE: Qualified Version Definitions:  
Catalog - TI's standard catalog product  
Addendum-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
14-Jul-2012  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
SN65HVD30MDREP  
SN65HVD33MDREP  
SOIC  
SOIC  
D
D
8
2500  
2500  
330.0  
330.0  
12.4  
16.4  
6.4  
6.5  
5.2  
9.0  
2.1  
2.1  
8.0  
8.0  
12.0  
16.0  
Q1  
Q1  
14  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
14-Jul-2012  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
SN65HVD30MDREP  
SN65HVD33MDREP  
SOIC  
SOIC  
D
D
8
2500  
2500  
367.0  
333.2  
367.0  
345.9  
35.0  
28.6  
14  
Pack Materials-Page 2  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other  
changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest  
issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and  
complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale  
supplied at the time of order acknowledgment.  
TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms  
and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary  
to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily  
performed.  
TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and  
applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide  
adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or  
other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information  
published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or  
endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the  
third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration  
and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered  
documentation. Information of third parties may be subject to additional restrictions.  
Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service  
voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice.  
TI is not responsible or liable for any such statements.  
Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements  
concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support  
that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which  
anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause  
harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use  
of any TI components in safety-critical applications.  
In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to  
help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and  
requirements. Nonetheless, such components are subject to these terms.  
No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties  
have executed a special agreement specifically governing such use.  
Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in  
military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components  
which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and  
regulatory requirements in connection with such use.  
TI has specifically designated certain components which meet ISO/TS16949 requirements, mainly for automotive use. Components which  
have not been so designated are neither designed nor intended for automotive use; and TI will not be responsible for any failure of such  
components to meet such requirements.  
Products  
Applications  
Audio  
www.ti.com/audio  
amplifier.ti.com  
dataconverter.ti.com  
www.dlp.com  
Automotive and Transportation www.ti.com/automotive  
Communications and Telecom www.ti.com/communications  
Amplifiers  
Data Converters  
DLP® Products  
DSP  
Computers and Peripherals  
Consumer Electronics  
Energy and Lighting  
Industrial  
www.ti.com/computers  
www.ti.com/consumer-apps  
www.ti.com/energy  
dsp.ti.com  
Clocks and Timers  
Interface  
www.ti.com/clocks  
interface.ti.com  
logic.ti.com  
www.ti.com/industrial  
www.ti.com/medical  
Medical  
Logic  
Security  
www.ti.com/security  
Power Mgmt  
Microcontrollers  
RFID  
power.ti.com  
Space, Avionics and Defense  
Video and Imaging  
www.ti.com/space-avionics-defense  
www.ti.com/video  
microcontroller.ti.com  
www.ti-rfid.com  
www.ti.com/omap  
OMAP Applications Processors  
Wireless Connectivity  
TI E2E Community  
e2e.ti.com  
www.ti.com/wirelessconnectivity  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2012, Texas Instruments Incorporated  

相关型号:

SN65HVD33RHLR

带使能信号的 3V 全双工 RS-485 驱动器和接收器 | RHL | 20 | -40 to 85
TI

SN65HVD33RHLT

暂无描述
TI

SN65HVD34

3.3V FULL-DUPLEX RS-485 DRIVERS AND RECEIVERS
TI

SN65HVD34D

3.3V FULL-DUPLEX RS-485 DRIVERS AND RECEIVERS
TI

SN65HVD34DG4

3.3V FULL-DUPLEX RS-485 DRIVERS AND RECEIVERS
TI

SN65HVD34DR

3.3V FULL-DUPLEX RS-485 DRIVERS AND RECEIVERS
TI

SN65HVD34DRG4

3.3V FULL-DUPLEX RS-485 DRIVERS AND RECEIVERS
TI

SN65HVD34MDREP

LINE TRANSCEIVER, PDSO14, PLASTIC, MS-012AB, SOIC-14
TI

SN65HVD35

3.3V FULL-DUPLEX RS-485 DRIVERS AND RECEIVERS
TI

SN65HVD35D

3.3V FULL-DUPLEX RS-485 DRIVERS AND RECEIVERS
TI

SN65HVD35DG4

3.3V FULL-DUPLEX RS-485 DRIVERS AND RECEIVERS
TI

SN65HVD35DR

3.3V FULL-DUPLEX RS-485 DRIVERS AND RECEIVERS
TI