SN65HVD50D [TI]

HIGH OUTPUT FULL-DUPLEX RS-485 DRIVERS AND RECEIVERS; 高输出全双工RS - 485驱动器和接收
SN65HVD50D
型号: SN65HVD50D
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

HIGH OUTPUT FULL-DUPLEX RS-485 DRIVERS AND RECEIVERS
高输出全双工RS - 485驱动器和接收

驱动器 接口集成电路 光电二极管 输出元件 PC
文件: 总23页 (文件大小:1502K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
SN65HVD50-SN65HVD55  
SN65HVD56-SN65HVD59  
www.ti.com  
SLLS666SEPTEMBER 2005  
HIGH OUTPUT FULL-DUPLEX RS-485 DRIVERS AND RECEIVERS  
The SN65HVD50, SN65HVD51, SN65HVD52,  
SN65HVD56 and SN65HVD57 are fully enabled with  
no external enabling pins. The SN65HVD56 and  
FEATURES  
1/8 Unit-Load Option Available (Up to 256  
Nodes on the Bus)  
SN65HVD57  
implement  
receiver  
equalization  
Bus-Pin ESD Protection Exceeds 15 kV HBM  
technology for improved performance in long distance  
applications.  
Optional Driver Output Transition Times for  
Signaling Rates (1) of 1 Mbps, 5 Mbps and 25  
Mbps  
The SN65HVD53, SN65HVD54, SN65HVD55,  
SN65HVD58, and SN65HVD59 have active-high  
driver enables and active-low receiver enables. A  
very low, less than 1 uA, standby current can be  
achieved by disabling both the driver and receiver.  
The SN65HVD58 and SN65HVD59 implement  
receiver equalization technology for improved  
performance in long distance applications.  
Low-Current Standby Mode < 1 µA  
Glitch-Free Power-Up and Power-Down Bus  
I/Os  
Bus Idle, Open, and Short Circuit Failsafe  
Meets or exceeds the requirements of ANSI  
TIA/EIA-485-A and RS-422 Compatible  
All devices are characterized for operation from -40°  
C to +85°.  
3.3-V Devices available, SN65HVD30-39  
100  
APPLICATIONS  
SN65HVD50  
SN65HVD56  
Utility Meters  
Chassis-to-Chassis Interconnects  
DTE/DCE Interfaces  
Industrial, Process, and Building Automation  
Point-of-Sale (POS) Terminals and Networks  
SN65HVD53  
SN65HVD58  
10  
SN65HVD57  
SN65HVD51  
SN65HVD59  
SN65HVD54  
1
DESCRIPTION  
SN65HVD52  
SN65HVD55  
The SN65HVD5X devices are 3-state differential line  
drivers and differential-input line receivers that  
operate with a 5-V power supply. Each driver and  
receiver has separate input and output pins for  
full-duplex bus communication designs. They are  
designed for balanced transmission lines and  
0.1  
10  
100  
Cable Length (meters)  
1000  
interoperation  
TIA/EIA-422-B, ITU-T v.11 and ISO 8482:1993  
standard-compliant devices.  
with  
ANSI  
TIA/EIA-485A,  
The SN65HVD56 and SN65HVD58 implement  
receiver equalization technology for improved jitter  
performance on differential bus applications with data  
rates up to 20 Mbps at cable lengths up to 160  
meters.  
The SN65HVD57 and SN65HVD59 implement  
receiver equalization technology for improved jitter  
performance on differential bus applications with data  
rates in the range of 1 to 5 Mbps at cable lengths up  
to 1000 meters.  
(1) The signaling rate of a line is the number of voltage  
transitions that are made per second expressed in the units  
bps (bits per second).  
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas  
Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
UNLESS OTHERWISE NOTED this document contains  
Copyright © 2005, Texas Instruments Incorporated  
PRODUCTION DATA information current as of publication date.  
Products conform to specifications per the terms of Texas  
Instruments standard warranty. Production processing does not  
necessarily include testing of all parameters.  
SN65HVD50-SN65HVD55  
SN65HVD56-SN65HVD59  
www.ti.com  
SLLS666SEPTEMBER 2005  
These devices have limited built-in ESD protection. The leads should be shorted together or the device  
placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.  
SN65HVD50, SN65HVD51, SN65HVD52, SN65HVD56,  
SN65HVD57  
SN65HVD53, SN65HVD54, SN65HVD55, SN65HVD58,  
SN65HVD59  
D PACKAGE (TOP VIEW)  
NC  
R
V
V
A
B
Z
Y
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
CC  
CC  
V
1
2
3
4
8
7
6
5
A
B
Z
Y
CC  
R
RE  
D
DE  
GND  
D
GND  
GND  
8
8
NC  
2
A
R
7
NC - No internal connection  
B
5
3
Y
D
6
Z
AVAILABLE OPTIONS  
SIGNALING  
RATE  
RECEIVER  
EQUALIZATION  
BASE  
PART NUMBER  
UNIT LOADS  
ENABLES  
SOIC MARKING  
25 Mbps  
5 Mbps  
1 Mbps  
25 Mbps  
5 Mbps  
1 Mbps  
25 Mbps  
5 Mbps  
25 Mbps  
5 Mbps  
1/2  
1/8  
1/8  
1/2  
1/8  
1/8  
1/2  
1/8  
1/2  
1/8  
No  
No  
No  
No  
SN65HVD50  
SN65HVD51  
SN65HVD52  
SN65HVD53  
SN65HVD54  
SN65HVD55  
SN65HVD56  
SN65HVD57  
SN65HVD58  
SN65HVD59  
PREVIEW  
PREVIEW  
PREVIEW  
65HVD53  
65HVD54  
65HVD55  
PREVIEW  
PREVIEW  
PREVIEW  
PREVIEW  
No  
No  
No  
Yes  
Yes  
Yes  
No  
No  
No  
Yes  
Yes  
Yes  
Yes  
No  
Yes  
Yes  
2
SN65HVD50-SN65HVD55  
SN65HVD56-SN65HVD59  
www.ti.com  
SLLS666SEPTEMBER 2005  
ABSOLUTE MAXIMUM RATINGS  
over operating free-air temperature range (unless otherwise noted)(1)(2)  
UNIT  
VCC  
Supply voltage range  
–0.3 V to 6 V  
–9 V to 14 V  
–50 to 50 V  
-0.5 V to 7 V  
Internally limited  
11 mA  
Voltage range at any bus terminal (A, B, Y, Z)  
Voltage input, transient pulse through 100 . See Figure 12 (A, B, Y, Z)(3)  
Voltage input range (D, DE, RE)  
VI  
IO  
Continuous total power dissipation  
Output current (receiver output only, R)  
(1) Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings  
only, and functional operation of the device at these or any other conditions beyond those indicated under recommended operating  
conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) All voltage values, except differential I/O bus voltages, are with respect to network ground terminal.  
(3) This tests survivability only and the output state of the receiver is not specified.  
RECOMMENDED OPERATING CONDITIONS  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
MIN NOM  
4.5  
–7(1)  
MAX UNIT  
VCC  
Supply voltage  
Voltage at any bus terminal (separately or common mode)  
5.5  
V
VI or  
VIC  
12  
1/tUI  
SN65HVD50, SN65HVD53, SN65HVD56, SN65HVD58  
25  
5
Signaling rate  
SN65HVD51, SN65HVD54, SN65HVD57, SN65HVD59  
SN65HVD52, SN65HVD55  
Mbps  
1
RL  
Differential load resistance  
High-level input voltage  
Low-level input voltage  
Differential input voltage  
54  
2
60  
VIH  
VIL  
VID  
D, DE, RE  
D, DE, RE  
VCC  
0.8  
12  
0
V
-12  
-60  
–8  
Driver  
IOH  
High-level output current  
mA  
Receiver  
Driver  
60  
8
IOL  
Low-level output current  
Junction temperature  
mA  
Receiver  
(2)  
TJ  
–40  
150  
°C  
(1) The algebraic convention, in which the least positive (most negative) limit is designated as minimum is used in this data sheet.  
(2) See thermal characteristics table for information regarding this specification.  
ELECTROSTATIC DISCHARGE PROTECTION  
PARAMETER  
TEST CONDITIONS  
Bus terminals and GND  
All pins  
MIN  
TYP(1)  
±16  
±4  
MAX  
UNIT  
Human body model  
Human body model(2)  
kV  
Charged-device-model(3)  
All pins  
±1  
(1) All typical values at 25°C and with a 5-V supply.  
(2) Tested in accordance with JEDEC Standard 22, Test Method A114-A.  
(3) Tested in accordance with JEDEC Standard 22, Test Method C101.  
3
SN65HVD50-SN65HVD55  
SN65HVD56-SN65HVD59  
www.ti.com  
SLLS666SEPTEMBER 2005  
DRIVER ELECTRICAL CHARACTERISTICS  
over recommended operating conditions unless otherwise noted  
PARAMETER  
TEST CONDITIONS  
MIN TYP(1)  
MAX UNIT  
VI(K)  
Input clamp voltage  
II = –18 mA  
–1.5  
4
IO = 0  
VCC  
RL = 54 , See Figure 1 (RS-485)  
RL = 100 , See Figure 1 (RS-422)  
Vtest = –7 V to 12 V, See Figure 2  
RL = 54 , See Figure 1 and  
1.7  
2.4  
1.6  
2.6  
3.2  
|VOD(SS)  
|
Steady-state differential output voltage  
Change in magnitude of steady-state  
|VOD(SS)  
|
–0.2  
0.2  
differential output voltage between states Figure 2  
RL = 54 , CL = 50 pF, See  
Figure 5  
See Figure 3 for definition  
Differential Output Voltage overshoot  
and undershoot  
VOD(RING)  
0.05 |VOD(SS)  
|
V
HVD50, HVD53,  
HVD56, HVD58  
0.5  
Peak-to-peak  
VOC(PP)  
common-mode  
output voltage  
HVD51, HVD54,  
HVD57, HVD59  
See Figure 4  
0.4  
0.4  
HVD52, HVD55  
Steady-state common-mode  
output voltage  
VOC(SS)  
2.2  
3.3  
0.1  
90  
See Figure 4  
Change in steady-state common-mode  
output voltage  
VOC(SS)  
–0.1  
VCC = 0 V, VZ or VY = 12 V,  
Other input at 0 V  
VCC = 0 V, VZ or VY = –7 V,  
Other input at 0 V  
–10  
High-impedance state  
output current  
HVD53, HVD54,  
HVD55, HVD58,  
HVD59  
VCC = 5 V or 0 V,  
DE = 0 V  
VZ or VY = 12 V  
IZ(Z) or IY(Z)  
µA  
90  
Other input  
at 0 V  
VCC = 5 V or 0 V,  
DE = 0 V  
–10  
VZ or VY = –7 V  
VZ or VY = –7 V  
VZ or VY = 12 V  
–250  
–250  
0
250  
250  
100  
Other input  
at 0 V  
IZ(S) or IY(S) Short Circuit output Current  
mA  
II  
Input current  
D, DE  
µA  
pF  
VOD = 0.4 sin (4E6πt) + 0.5 V,  
DE at 0 V  
C(OD)  
Differential output capacitance  
16  
(1) All typical values are at 25°C and with a 5-V supply.  
4
SN65HVD50-SN65HVD55  
SN65HVD56-SN65HVD59  
www.ti.com  
SLLS666SEPTEMBER 2005  
DRIVER SWITCHING CHARACTERISTICS  
over recommended operating conditions unless otherwise noted  
PARAMETER  
TEST CONDITIONS  
MIN  
4
TYP(1)  
8
MAX UNIT  
HVD50, HVD53, HVD56, HVD58  
Propagation delay time,  
12  
tPLH  
tPHL  
tr  
HVD51, HVD54, HVD57, HVD59  
HVD52, HVD55  
20  
90  
4
29  
46  
230  
12  
46  
230  
12  
60  
300  
11  
60  
300  
2
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
low-to-high-level output  
143  
8
HVD50, HVD53, HVD56, HVD58  
HVD51, HVD54, HVD57, HVD59  
HVD52, HVD55  
Propagation delay time,  
high-to-low-level output  
20  
90  
3
30  
143  
6
HVD50, HVD53, HVD56, HVD58  
HVD51, HVD54, HVD57, HVD59  
HVD52, HVD55  
Differential output signal  
rise time  
25  
130  
3
34  
197  
6
RL = 54 , CL = 50 pF,  
See Figure 5  
HVD50, HVD53, HVD56, HVD58  
HVD51, HVD54, HVD57, HVD59  
HVD52, HVD55  
Differential output signal fall  
time  
tf  
25  
130  
33  
192  
HVD50, HVD53, HVD56, HVD58  
HVD51, HVD54, HVD57, HVD59  
HVD52, HVD55  
tsk(p)  
tsk(pp)  
tPZH1  
tPHZ  
tPZL1  
tPLZ  
tPZH2  
tPZL2  
Pulse skew (|tPHL - tPLH|)  
Part-to-part skew  
2
8
HVD50, HVD53, HVD56, HVD58  
HVD51, HVD54, HVD57, HVD59  
HVD52, HVD55  
1
4
(2)  
22  
HVD53, HVD58  
30  
180  
380  
16  
Propagation delay time,  
high-impedance-to-high-  
level output  
HVD54, HVD59  
RL = 110 , RE at 0 V,  
See Figure 6  
D = 3 V and S1 = Y,  
D = 0 V and S1 = Z  
HVD55  
HVD53, HVD58  
Propagation delay time,  
high-level-to-high-  
HVD54, HVD59  
40  
impedance output  
HVD55  
110  
23  
HVD53, HVD58  
Propagation delay time,  
high-impedance-to-low-level HVD54, HVD59  
200  
420  
19  
RL = 110 , RE at 0 V,  
See Figure 7  
D = 3 V and S1 = Z,  
D = 0 V and S1 = Y  
output  
HVD55  
HVD53, HVD58  
Propagation delay time,  
low-level-to-high-impedance HVD54, HVD59  
70  
output  
HVD55  
160  
RL = 110 , RE at 3 V,  
See Figure 6  
D = 3 V and S1 = Y,  
D = 0 V and S1 = Z  
Propagation delay time, standby-to-high-level output  
Propagation delay time, standby-to-low-level output  
3300  
3300  
RL = 110 , RE at 3 V,  
See Figure 7  
D = 3 V and S1 = Z,  
D = 0 V and S1 = Y  
(1) All typical values are at 25°C and with a 5-V supply.  
(2) tsk(pp) is the magnitude of the difference in propagation delay times between any specified terminals of two devices when both devices  
operate with the same supply voltages, at the same temperature, and have identical packages and test circuits.  
5
SN65HVD50-SN65HVD55  
SN65HVD56-SN65HVD59  
www.ti.com  
SLLS666SEPTEMBER 2005  
RECEIVER ELECTRICAL CHARACTERISTICS  
over recommended operating conditions unless otherwise noted  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP(1)  
MAX  
UNIT  
Positive-going differential input  
threshold voltage  
VIT+  
VIT-  
IO = –8 mA  
IO = 8 mA  
–0.02  
V
Negative-going differential input  
threshold voltage  
–0.20  
Vhys  
VIK  
Hysteresis voltage (VIT+ - VIT-  
)
50  
mV  
V
Enable-input clamp voltage  
II = –18 mA  
–1.5  
4.0  
VID = 200 mV, IO = –8 mA, See Figure 8  
VID = –200 mV, IO = 8 mA, See Figure 8  
VO  
Output voltage  
V
0.3  
1
High-impedance-state output  
current  
IO(Z)  
VO = 0 or VCCRE at VCC  
–1  
µA  
VA or VB = 12 V  
0.19  
0.24  
0.3  
0.4  
HVD50,  
HVD53,  
HVD56,  
HVD58  
VA or VB = 12 V, VCC = 0 V  
VA or VB = -7 V  
Other input  
at 0 V  
mA  
mA  
–0.35  
–0.25  
–0.19  
–0.14  
0.05  
VA or VB = -7 V, VCC = 0 V  
VA or VB = 12 V  
IA or IB  
Bus input current  
HVD51,  
0.10  
0.10  
HVD52,  
HVD54,  
HVD55,  
HVD57,  
HVD59  
VA or VB = 12 V, VCC = 0 V  
VA or VB = -7 V  
0.06  
Other input  
at 0 V  
–0.10  
–0.10  
–0.05  
VA or VB = -7 V, VCC = 0 V  
–0.03  
16  
VIH = 2 V  
–60  
–60  
µA  
µA  
pF  
IIH  
Input current, RE  
VIL = 0.8 V  
CID  
Differential input capacitance  
VID = 0.4 sin (4E6πt) + 0.5 V, DE at 0 V  
HVD50,  
HVD51,  
HVD52  
8.0  
D at 0 V or VCC and No Load  
HVD56,  
HVD57  
9.5  
2.3  
2.9  
mA  
HVD53  
HVD54,  
HVD55  
RE at 0 V, D at 0 V or VCC, DE at 0 V,  
No load (Receiver enabled and  
driver disabled)  
HVD58,  
HVD59  
4.5  
HVD53,  
HVD54,  
HVD55,  
RE at VCC, D at VCC, DE at 0 V,  
No load (Receiver disabled and  
driver disabled)  
0.08  
1
µA  
ICC  
Supply current  
HVD58,  
HVD59  
HVD53  
2.7  
8.0  
HVD54,  
HVD55  
RE at 0 V, D at 0 V or VCC, DE at VCC  
No load (Receiver enabled and  
driver enabled)  
,
HVD58  
HVD59  
HVD53  
4.3  
9.7  
2.3  
mA  
HVD54,  
HVD55  
RE at VCC, D at 0 V or VCC, DE at VCC  
No load (Receiver disabled and  
driver enabled)  
7.7  
HVD58  
HVD59  
3.2  
8.5  
(1) All typical values are at 25°C and with a 5-V supply.  
6
SN65HVD50-SN65HVD55  
SN65HVD56-SN65HVD59  
www.ti.com  
SLLS666SEPTEMBER 2005  
RECEIVER SWITCHING CHARACTERISTICS  
over recommended operating conditions unless otherwise noted  
PARAMETER  
TEST CONDITIONS  
MIN TYP(1)  
MAX UNIT  
HVD50, HVD53, HVD56, HVD58  
Propagation delay time,  
low-to-high-level output  
24  
40  
tPLH  
tPHL  
tsk(p)  
HVD51, HVD52, HVD54, HVD55,  
HVD57, HVD59  
43  
26  
47  
55  
35  
60  
HVD50, HVD53, HVD56, HVD58  
Propagation delay time,  
high-to-low-level output  
HVD51, HVD52, HVD54, HVD55,  
HVD57, HVD59  
VID = -1.5 V to 1.5 V,  
CL = 15 pF,  
See Figure 9  
HVD50, HVD53, HVD56, HVD57,  
HVD58, HVD59  
5
7
Pulse skew (|tPHL - tPLH|)  
Part-to-part skew  
HVD51, HVD54, HVD52, HVD55  
HVD50, HVD53, HVD56, HVD58  
HVD51, HVD54, HVD57, HVD59  
HVD52, HVD55  
5
6
(2)  
tsk(pp)  
ns  
6
tr  
Output signal rise time  
2.3  
2.4  
4
4
tf  
Output signal fall time  
tPHZ  
tPZH1  
Output disable time from high level  
Output enable time to high level  
17  
10  
DE at 3 V, CL = 15 pF  
See Figure 10  
DE at 0 V, CL = 15 pF  
See Figure 10  
tPZH2  
Propagation delay time, standby-to-high-level output  
3300  
tPLZ  
Output disable time from low level  
Output enable time to low level  
13  
10  
DE at 3 V, CL = 15 pF  
See Figure 11  
tPZL1  
DE at 0 V, CL = 15 pF  
See Figure 11  
tPZL2  
Propagation delay time, standby-to-low-level output  
3300  
(1) All typical values are at 25°C and with a 5-V supply  
(2) .tsk(pp) is the magnitude of the difference in propagation delay times between any specified terminals of two devices when both devices  
operate with the same supply voltages, at the same temperature, and have identical packages and test circuits.  
7
SN65HVD50-SN65HVD55  
SN65HVD56-SN65HVD59  
www.ti.com  
SLLS666SEPTEMBER 2005  
RECEIVER EQUALIZATION CHARACTERISTICS  
over recommended operating conditions unless otherwise noted(1)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP(2)  
MAX  
UNIT  
ns  
0 m  
HVD56, HVD58  
HVD53  
PREVIEW  
PREVIEW  
PREVIEW  
PREVIEW  
PREVIEW  
PREVIEW  
PREVIEW  
PREVIEW  
PREVIEW  
PREVIEW  
PREVIEW  
PREVIEW  
PREVIEW  
PREVIEW  
PREVIEW  
PREVIEW  
PREVIEW  
PREVIEW  
PREVIEW  
PREVIEW  
PREVIEW  
100 m  
HVD56, HVD58  
HVD53  
25 Mbps  
150 m  
200 m  
200 m  
250 m  
300 m  
500 m  
HVD56, HVD58  
HVD53  
HVD56, HVD58  
HVD53  
HVD56, HVD58  
HVD53  
Pseudo-random NRZ  
code with a bit pattern  
length o 216-1, Belden  
3105A cable  
Peak-to-peak  
tj(pp) eye-pattern  
jitter  
10 Mbps  
HVD56, HVD58  
HVD53  
HVD56, HVD58  
HVD54  
5 Mbps  
3 Mbps  
1 Mbps  
HVD57, HVD59  
HVD53  
HVD54  
500 m  
HVD56, HVD58  
HVD57, HVD59  
HVD54  
1000 m  
HVD57, HVD59  
(1) The HVD53 and HVD54 do not have receiver equalization but are specified for comparison.  
(2) All typical values are at VCC = 5 V, and temperature = 25°C.  
8
SN65HVD50-SN65HVD55  
SN65HVD56-SN65HVD59  
www.ti.com  
SLLS666SEPTEMBER 2005  
THERMAL CHARACTERISTICS  
over operating free-air temperature range unless otherwise noted(1)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP MAX UNIT  
Low-K board(3), No airflow  
HVD50, HVD51, HVD52, HVD56, HVD57  
HVD53, HVD54, HVD55, HVD58, HVD59  
HVD50, HVD51, HVD52, HVD56, HVD57  
HVD53, HVD54, HVD55, HVD58, HVD59  
HVD50, HVD51, HVD52, HVD56, HVD57  
HVD53, HVD54, HVD55, HVD58, HVD59  
HVD50, HVD51, HVD52, HVD56, HVD57  
HVD53, HVD54, HVD55, HVD58, HVD59  
HVD50, HVD56 (25Mbps)  
230.8  
162.6  
135.1  
Junction–to–ambient  
thermal resistance(2)  
θJA  
High-K board(4), No airflow  
Junction–to–ambient  
thermal resistance(2)  
92.1  
°C/W  
44.4  
Junction–to–board  
thermal resistance  
θJB  
High-K board  
No board  
61.1  
43.5  
58.6  
420  
404  
383  
Junction–to–case  
thermal resistance  
θJC  
RL= 60, CL = 50 pF,  
Input to D a 50% duty cycle  
square wave at indicated  
signaling rate  
HVD51, HVD57 (10Mbps)  
HVD52 (1Mbps)  
Device power  
dissipation  
PD  
mW  
RL= 60, CL = 50 pF,  
DE at VCCRE at 0 V,  
Input to D a 50% duty cycle  
square wave at indicated  
signaling rate  
HVD53, HVD58 (25Mbps)  
420  
404  
383  
HVD54, HVD59 (10Mbps)  
HVD55 (1Mbps)  
Low-K board, No airflow  
HVD50, HVD56  
–40  
–40  
–40  
–40  
–40  
55  
84  
85  
85  
85  
HVD51, HVD52, HVD57  
Ambient air  
temperature  
TA  
HVD53, HVD54, HVD55, HVD58, HVD59  
HVD50, HVD51, HVD52, HVD56, HVD57  
HVD53, HVD54, HVD55, HVD58, HVD59  
°C  
High-K board, No airflow  
TJSD Thermal shutdown junction temperature  
165  
(1) See Application Information section for an explanation of these parameters.  
(2) The intent of θJA specification is solely for a thermal performance comparison of one package to another in a standardized environment.  
This methodology is not meant to and will not predict the performance of a package in an application-specific environment.  
(3) In accordance with the Low-K thermal metric definitions of EIA/JESD51-3.  
(4) In accordance with the High-K thermal metric definitions of EIA/JESD51-7.  
PARAMETER MEASUREMENT INFORMATION  
V
CC  
375 ±1%  
V
CC  
I
Y
DE  
I
I
DE  
Y
Y
D
V
OD  
R
0 or 3 V  
L
V
OD  
60 ±1%  
0 or 3 V  
+
Z
I
Z
7 V < V  
< 12 V  
(test)  
Z
_
V
I
375 ±1%  
V
Z
V
Y
Figure 1. Driver VOD Test Circuit: Voltage and Current  
Definitions  
Figure 2. Driver VOD With Common-Mode Loading Test  
Circuit  
9
SN65HVD50-SN65HVD55  
SN65HVD56-SN65HVD59  
www.ti.com  
SLLS666SEPTEMBER 2005  
PARAMETER MEASUREMENT INFORMATION (continued)  
VOD(RING) is measured at four points on the output waveform, corresponding to overshoot and undershoot from  
theVOD(H) and VOD(L) steady state values.  
V
OD(SS)  
V
OD(RING)  
0 V Differential  
V
OD(RING)  
-V  
OD(SS)  
Figure 3. VOD(RING) Waveform and Definitions  
V
Y
Y
V
CC  
27 ± 1%  
V
Z
DE  
Z
Y
D
V
OC(PP)  
V  
Input  
OC(SS)  
27 ± 1%  
V
OC  
Z
V
OC  
C
L
= 50 pF ±20%  
C
L
Includes Fixture and  
Instrumentation Capacitance  
Input: PRR = 500 kHz, 50% Duty Cycle,t <6ns, t <6ns, Z = 50  
r f O  
Figure 4. Test Circuit and Definitions for the Driver Common-Mode Output Voltage  
Y
»
W
Z
W
»
W
Figure 5. Driver Switching Test Circuit and Voltage Waveforms  
10  
SN65HVD50-SN65HVD55  
SN65HVD56-SN65HVD59  
www.ti.com  
SLLS666SEPTEMBER 2005  
PARAMETER MEASUREMENT INFORMATION (continued)  
3 V  
D
S1  
Y
3 V  
0 V  
1.5 V  
Z
1.5 V  
Y
V
I
S1  
D
0 V  
V
0.5 V  
O
t
Z
PZH(1 & 2)  
V
OH  
DE  
R
= 110 W  
L
V
2.3 V  
O
C = 50 pF  
L
±1%  
~ 0 V  
Input  
Generator  
V
I
50 W  
±20%  
t
PHZ  
Generator: PRR = 500kHz, 50% Duty Cycle, t <6 ns, t < 6ns, Z = 50 W  
0
r
f
C
Includes Fixture and Instrumentation Capacitance  
L
Figure 6. Driver High-Level Output Enable and Disable Time Test Circuit and Voltage Waveforms  
V
CC  
D
S1  
Z
3 V  
0 V  
R
L
= 110  
3 V  
Y
± 1%  
Y
V
I
1.5 V  
1.5 V  
S1  
D
V
O
0 V  
Z
t
t
PZL(1&2)  
PLZ  
DE  
V
CC  
C
L
= 50 pF ±20%  
Input  
V
I
50  
0.5 V  
Generator  
C
L
Includes Fixture  
V
O
2.3 V  
and Instrumentation  
Capacitance  
V
OL  
Generator: PRR = 500 kHz, 50% Duty Cycle, t <6 ns, t <6 ns, Z = 50  
r f o  
Figure 7. Driver Low-Level Output Enable and Disable Time Test Circuit and Voltage Waveforms  
I
A
A
I
O
R
V
ID  
V
B
A
V + V  
A
V
IC  
V
O
B
V
I
RE  
B
B
2
I
V
I
I
Figure 8. Receiver Voltage and Current Definitions  
11  
SN65HVD50-SN65HVD55  
SN65HVD56-SN65HVD59  
www.ti.com  
SLLS666SEPTEMBER 2005  
PARAMETER MEASUREMENT INFORMATION (continued)  
A
3 V  
R
1. 5  
V
1. 5 V  
Input  
V
V
I
I
50 W  
Generator  
0 V  
B
C = 15 pF  
L
1.5 V  
V
O
t
t
PLH  
PHL  
±20%  
RE  
0 V  
V
OH  
90 %  
90 %  
1.5 V  
10%  
1.5 V  
10%  
V
O
Generator : PRR = 500 kHz , 50%  
C
Includes Fixture  
L
V
t
t
Duty Cycle , t <6 ns , t < 6ns ,  
Z = 50 W  
OL  
r
f
and Instrumentation  
Capacitance  
Figure 9. Receiver Switching Test Circuit and Voltage Waveforms  
VCC  
A
3 V  
1.5 V  
0 V  
V
A
S1  
V
1 kW ±1%  
R
O
V
1.5 V  
1.5 V  
I
B
C
= 15 pF  
B
0 V  
L
t
±20%  
PZH(1 & 2)  
PHZ  
VOH  
0.5 V  
~0 V  
Input  
Generator  
50 W  
I
1.5 V  
V
C
Includes Fixture and  
O
L
Instrumentation Capacitance  
Generator: P = 500 kHz, 50%, Duty Cycle, t < 6 ns, t < 6 ns, Z = 50 W  
f
RR  
r
0
Figure 10. Receiver High-Level Enable and Disable Time Test Circuit and Voltage Waveforms  
V
CC  
A
3 V  
0 V  
A
S1  
1 kW ±1%  
V
O
R
V
1.5 V  
1.5 V  
I
B
1.5 V  
C
= 15 pF  
B
0 V  
L
RE  
t
±20%  
PZL(1 & 2)  
t
PLZ  
V
Input  
Generator  
CC  
V
I
50 W  
1.5 V  
V
0.5 V  
O
C
Includes Fixture  
L
V
and Instrumentation  
Capacitance  
OL  
Generator: P = 500 kHz, 50%, Duty Cycle, t < 6 ns, t < 6 ns, Z = 50 W  
f
RR  
r
0
Figure 11. Receiver Low-Level Enable and Disable Time Test Circuit and Voltage Waveforms  
12  
SN65HVD50-SN65HVD55  
SN65HVD56-SN65HVD59  
www.ti.com  
SLLS666SEPTEMBER 2005  
PARAMETER MEASUREMENT INFORMATION (continued)  
0 V or 3 V  
A
DE  
Y
D
R
B
Z
100 W  
±1%  
100 W  
±1%  
RE  
Pulse Generator  
15 ms duration  
1% Duty Cycle  
t , t £ 100 ns  
0 V or 3 V  
+
+
-
-
r
f
Figure 12. Test Circuit, Transient Overvoltage Test  
DEVICE INFORMATION  
LOW-POWER SHUTDOWN MODE  
When both the driver and receiver are disabled (DE low and RE high) the device is in shutdown mode. If the  
enable inputs are in this state for less than 60 ns, the device does not enter shutdown mode. This guards against  
inadvertently entering shutdown mode during driver/receiver enabling. Only when the enable inputs are held in  
this state for 300 ns or more, the device is assured to be in shutdown mode. In this low-power shutdown mode,  
most internal circuitry is powered down, and the supply current is typically less than 1 nA. When either the driver  
or the receiver is re-enabled, the internal circuitry becomes active.  
12  
A
2
R
11  
B
3
RE  
Low-Power  
Shutdown  
4
DE  
9
Y
5
D
10  
Z
Figure 13. Low-Power Shutdown Logic Diagram  
If only the driver is re-enabled (DE transitions to high) the driver outputs are driven according to the D input after  
the enable times given by tPZH2 and tPZL2 in the driver switching characteristics. If the D input is open when the  
driver is enabled, the driver outputs defaults to A high and B low, in accordance with the driver failsafe feature.  
If only the receiver is re-enabled (RE transitions to low) the receiver output is driven according to the state of the  
bus inputs (A and B) after the enable times given by tPZH2 and tPZL2 in the receiver switching characteristics. If  
there is no valid state on the bus the receiver responds as described in the failsafe operation section.  
If both the receiver and driver are re-enabled simultaneously, the receiver output is driven according to the state  
of the bus inputs (A and B) and the driver output is driven according to the D input. Note that the state of the  
active driver affects the inputs to the receiver. Therefore, the receiver outputs are valid as soon as the driver  
outputs are valid.  
13  
SN65HVD50-SN65HVD55  
SN65HVD56-SN65HVD59  
www.ti.com  
SLLS666SEPTEMBER 2005  
DEVICE INFORMATION (continued)  
FUNCTION TABLES  
SN65HVD53, SN65HVD54, SN65HVD55, SN65HVD58,  
SN65HVD59 DRIVER  
INPUTS  
OUTPUTS  
D
H
DE  
Y
H
L
Z
L
H
L
H
L or open  
H
H
Z
H
X
Z
L
Open  
SN65HVD53, SN65HVD54, SN65HVD55, SN65HVD58,  
SN65HVD59 RECEIVER  
DIFFERENTIAL INPUTS  
VID = VA - VB  
ENABLE  
RE  
OUTPUT  
R
V
ID –0.2 V  
L
L
?
–0.2 V < VID < –0.02 V  
–0.02 V VID  
X
L
L
H
Z
H
H
H
H or open  
Open Circuit  
Idle circuit  
L
L
L
Short Circuit, VA = VB  
SN65HVD50, SN65HVD51, SN65HVD52, SN65HVD56,  
SN65HVD57 DRIVER  
OUTPUTS  
INPUT  
D
Y
Z
H
L
H
L
L
L
H
H
Open  
SN65HVD50, SN65HVD51, SN65HVD52, SN65HVD56,  
SN65HVD57 RECEIVER  
DIFFERENTIAL INPUTS  
VID = VA - VB  
OUTPUT  
R
V
ID –0.2 V  
L
?
–0.2 V < VID < –0.02 V  
–0.02 V VID  
H
H
H
H
Open Circuit  
Idle circuit  
Short Circuit, VA = VB  
14  
SN65HVD50-SN65HVD55  
SN65HVD56-SN65HVD59  
www.ti.com  
SLLS666SEPTEMBER 2005  
EQUIVALENT INPUT AND OUTPUT SCHEMATIC DIAGRAMS  
RE Input  
D and DE Input  
VCC  
VCC  
130 kW  
470 W  
470 W  
Input  
Input  
9 V  
9 V  
125 kW  
A Input  
B Input  
VCC  
VCC  
R1  
R1  
22 V  
R3  
22 V  
R3  
Input  
Input  
R2  
22 V  
R2  
22 V  
R Output  
Y and Z Outputs  
VCC  
VCC  
16 V  
5 W  
Output  
Output  
16 V  
9 V  
R1/R2  
R3  
SN65HVD50, SN65HVD53, SN65HVD56, SN65HVD58  
9 kΩ  
45 kΩ  
180 kΩ  
SN65HVD51, SN65HVD52, SN65HVD54, SN65HVD55 SN65HVD57, 36 kΩ  
SN65HVD58, SN65HVD59  
15  
SN65HVD50-SN65HVD55  
SN65HVD56-SN65HVD59  
www.ti.com  
SLLS666SEPTEMBER 2005  
TYPICAL CHARACTERISTICS  
HVD50, HVD53  
HVD51, HVD54  
RMS Supply Current  
vs  
RMS Supply Current  
vs  
Signaling Rate  
Signaling Rate  
70  
65  
60  
55  
50  
45  
40  
70  
T
A
=25°C  
R
= 54 W  
L
T
=25°C  
R
= 54 W  
L
A
RE = V  
C = 50 pF  
L
R
= V  
C = 50 pF  
L
CC  
E
CC  
DE = V  
DE = V  
CC  
CC  
65  
60  
55  
50  
45  
40  
V
= 5.0 VDC  
CC  
V
= 5.0 VDC  
CC  
0
1
2
3
4
5
0
5
10  
15  
20  
25  
Signaling Rate (Mbps)  
Signaling Rate (Mbps)  
Figure 14.  
Figure 15.  
HVD52, HVD55  
RMS Supply Current  
vs  
Signaling Rate  
75  
T
A
=25°C  
R
= 54 W  
L
RE = V  
C = 50 pF  
L
CC  
DE = V  
70  
65  
60  
55  
50  
45  
40  
CC  
V
= 5.0 VDC  
CC  
0
0.2  
0.4  
0.6  
0.8  
1
Signaling Rate (Mbps)  
Figure 16.  
16  
SN65HVD50-SN65HVD55  
SN65HVD56-SN65HVD59  
www.ti.com  
SLLS666SEPTEMBER 2005  
TYPICAL CHARACTERISTICS (continued)  
HVD50, HVD53  
Bus Input Current  
vs  
HVD51, HVD52, HVD54, HVD55  
Bus Input Current  
vs  
Input Voltage  
Input Voltage  
60  
40  
20  
0
250  
T
A
= 25°C  
T
A
= 25°C  
RE = 0 V  
RE = 0 V  
DE = 0 V  
200  
150  
100  
50  
DE = 0 V  
0
V
= 5 V  
V
= 5 V  
-50  
CC  
CC  
-20  
-40  
-60  
-100  
-150  
-200  
-250  
-7  
-4  
-1  
2
5
8
11  
14  
-7  
-4  
-1  
2
5
8
11  
14  
V - Bus Input Voltage - V  
I
V - Bus Input Voltage - V  
I
Figure 17.  
Figure 18.  
Driver Low-Level Output Current  
vs  
Driver High-Level Output Current  
vs  
Low-Level Output Voltage  
High-Level Output Voltage  
0.12  
0.01  
-0.01  
-0.03  
-0.05  
-0.07  
-0.09  
-0.11  
-0.13  
VCC = 5 V  
DE = V  
CC  
VCC = 5 V  
DE = V  
CC  
D = 0 V  
0.1  
D = 0 V  
0.08  
0.06  
0.04  
0.02  
0
-0.02  
0
1
2
3
4
5
0
1
2
3
4
5
V - High-Level Output Voltage - V  
OH  
V
- Low-Level Output Voltage - V  
OL  
Figure 19.  
Figure 20.  
17  
SN65HVD50-SN65HVD55  
SN65HVD56-SN65HVD59  
www.ti.com  
SLLS666SEPTEMBER 2005  
TYPICAL CHARACTERISTICS (continued)  
Driver Differential Output Voltage  
Driver Output Current  
vs  
vs  
Free-Air Temperature  
Supply Voltage  
2.9  
60  
50  
40  
30  
20  
10  
0
T
A
= 25°C  
R
= 54 W  
VCC = 5 V  
L
DE at V  
2.8  
D = V  
CC  
CC  
D at V  
DE = V  
CC  
CC  
2.7  
2.6  
2.5  
2.4  
V
= 5 V  
CC  
0
1
2
3
4
5
6
-40  
-15  
10  
35  
60  
85  
T
A
- Free-Air Temperature - °C  
V
CC  
- Supply Voltage - V)  
Figure 21.  
Figure 22.  
18  
SN65HVD50-SN65HVD55  
SN65HVD56-SN65HVD59  
www.ti.com  
SLLS666SEPTEMBER 2005  
APPLICATION INFORMATION  
THERMAL CHARACTERISTICS OF IC PACKAGES  
θJA (Junction-to-Ambient Thermal Resistance) is defined as the difference in junction temperature to ambient  
temperature divided by the operating power.  
θJA is not a constant and is a strong function of:  
the PCB design (50% variation)  
altitude (20% variation)  
device power (5% variation)  
θJA can be used to compare the thermal performance of packages if the specific test conditions are defined and  
used. Standardized testing includes specification of PCB construction, test chamber volume, sensor locations,  
and the thermal characteristics of holding fixtures. θJA is often misused when it is used to calculate junction  
temperatures for other installations.  
TI uses two test PCBs as defined by JEDEC specifications. The low-k board gives average in-use condition  
thermal performance, and it consists of a single copper trace layer 25 mm long and 2-oz thick. The high-k board  
gives best case in-use condition, and it consists of two 1-oz buried power planes with a single copper trace layer  
25 mm long and 2-oz thick. A 4% to 50% difference in θJA can be measured between these two test cards  
θJC (Junction-to-Case Thermal Resistance) is defined as difference in junction temperature to case divided by  
the operating power. It is measured by putting the mounted package up against a copper block cold plate to  
force heat to flow from die, through the mold compound into the copper block.  
θJC is a useful thermal characteristic when a heatsink applied to package. It is not a useful characteristic to  
predict junction temperature because it provides pessimistic numbers if the case temperature is measured in a  
nonstandard system and junction temperatures are backed out. It can be used with θJB in 1-dimensional thermal  
simulation of a package system.  
θJB (Junction-to-Board Thermal Resistance) is defined as the difference in the junction temperature and the  
PCB temperature at the center of the package (closest to the die) when the PCB is clamped in a cold-plate  
structure. θJB is only defined for the high-k test card.  
θJB provides an overall thermal resistance between the die and the PCB. It includes a bit of the PCB thermal  
resistance (especially for BGA’s with thermal balls) and can be used for simple 1-dimensional network analysis of  
package system, see Figure 23.  
Figure 23. Thermal Resistance  
19  
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
26-Sep-2005  
PACKAGING INFORMATION  
Orderable Device  
Status (1)  
Package Package  
Pins Package Eco Plan (2) Lead/Ball Finish MSL Peak Temp (3)  
Qty  
Type  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
Drawing  
SN65HVD53D  
SN65HVD53DR  
SN65HVD54D  
SN65HVD54DR  
SN65HVD55D  
SN65HVD55DR  
PREVIEW  
PREVIEW  
PREVIEW  
PREVIEW  
PREVIEW  
PREVIEW  
D
D
D
D
D
D
14  
14  
14  
14  
14  
14  
50  
2500  
50  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
2500  
50  
2500  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in  
a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2)  
Eco Plan  
-
The planned eco-friendly classification: Pb-Free (RoHS) or Green (RoHS  
&
no Sb/Br)  
-
please check  
http://www.ti.com/productcontent for the latest availability information and additional product content details.  
TBD: The Pb-Free/Green conversion plan has not been defined.  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements  
for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered  
at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame  
retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)  
(3)  
MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder  
temperature.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is  
provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the  
accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take  
reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on  
incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited  
information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI  
to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
17-Nov-2005  
PACKAGING INFORMATION  
Orderable Device  
SN65HVD53D  
Status (1)  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
Package Package  
Pins Package Eco Plan (2) Lead/Ball Finish MSL Peak Temp (3)  
Qty  
Type  
Drawing  
SOIC  
D
14  
14  
14  
14  
14  
14  
14  
14  
14  
14  
14  
14  
50 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
SN65HVD53DG4  
SN65HVD53DR  
SN65HVD53DRG4  
SN65HVD54D  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
D
D
D
D
D
D
D
D
D
D
D
50 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
50 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
SN65HVD54DG4  
SN65HVD54DR  
SN65HVD54DRG4  
SN65HVD55D  
50 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
50 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
SN65HVD55DG4  
SN65HVD55DR  
SN65HVD55DRG4  
50 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in  
a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2)  
Eco Plan  
-
The planned eco-friendly classification: Pb-Free (RoHS) or Green (RoHS  
&
no Sb/Br)  
-
please check  
http://www.ti.com/productcontent for the latest availability information and additional product content details.  
TBD: The Pb-Free/Green conversion plan has not been defined.  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements  
for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered  
at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame  
retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)  
(3)  
MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder  
temperature.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is  
provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the  
accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take  
reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on  
incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited  
information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI  
to Customer on an annual basis.  
Addendum-Page 1  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,  
enhancements, improvements, and other changes to its products and services at any time and to discontinue  
any product or service without notice. Customers should obtain the latest relevant information before placing  
orders and should verify that such information is current and complete. All products are sold subject to TI’s terms  
and conditions of sale supplied at the time of order acknowledgment.  
TI warrants performance of its hardware products to the specifications applicable at the time of sale in  
accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI  
deems necessary to support this warranty. Except where mandated by government requirements, testing of all  
parameters of each product is not necessarily performed.  
TI assumes no liability for applications assistance or customer product design. Customers are responsible for  
their products and applications using TI components. To minimize the risks associated with customer products  
and applications, customers should provide adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right,  
copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process  
in which TI products or services are used. Information published by TI regarding third-party products or services  
does not constitute a license from TI to use such products or services or a warranty or endorsement thereof.  
Use of such information may require a license from a third party under the patents or other intellectual property  
of the third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of information in TI data books or data sheets is permissible only if reproduction is without  
alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction  
of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for  
such altered documentation.  
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that  
product or service voids all express and any implied warranties for the associated TI product or service and  
is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.  
Following are URLs where you can obtain information on other Texas Instruments products and application  
solutions:  
Products  
Applications  
Audio  
Amplifiers  
amplifier.ti.com  
www.ti.com/audio  
Data Converters  
dataconverter.ti.com  
Automotive  
www.ti.com/automotive  
DSP  
dsp.ti.com  
Broadband  
Digital Control  
Military  
www.ti.com/broadband  
www.ti.com/digitalcontrol  
www.ti.com/military  
Interface  
Logic  
interface.ti.com  
logic.ti.com  
Power Mgmt  
Microcontrollers  
power.ti.com  
Optical Networking  
Security  
www.ti.com/opticalnetwork  
www.ti.com/security  
www.ti.com/telephony  
www.ti.com/video  
microcontroller.ti.com  
Telephony  
Video & Imaging  
Wireless  
www.ti.com/wireless  
Mailing Address:  
Texas Instruments  
Post Office Box 655303 Dallas, Texas 75265  
Copyright 2005, Texas Instruments Incorporated  

相关型号:

SN65HVD50DG4

HIGH OUTPUT FULL-DUPLEX RS-485 DRIVERS AND RECEIVERS
TI

SN65HVD50DR

HIGH OUTPUT FULL-DUPLEX RS-485 DRIVERS AND RECEIVERS
TI

SN65HVD50DRG4

HIGH OUTPUT FULL-DUPLEX RS-485 DRIVERS AND RECEIVERS
TI

SN65HVD51

HIGH OUTPUT FULL-DUPLEX RS-485 DRIVERS AND RECEIVERS
TI

SN65HVD51D

HIGH OUTPUT FULL-DUPLEX RS-485 DRIVERS AND RECEIVERS
TI

SN65HVD51DG4

HIGH OUTPUT FULL-DUPLEX RS-485 DRIVERS AND RECEIVERS
TI

SN65HVD51DR

HIGH OUTPUT FULL-DUPLEX RS-485 DRIVERS AND RECEIVERS
TI

SN65HVD51DRG4

HIGH OUTPUT FULL-DUPLEX RS-485 DRIVERS AND RECEIVERS
TI

SN65HVD52

HIGH OUTPUT FULL-DUPLEX RS-485 DRIVERS AND RECEIVERS
TI

SN65HVD52D

HIGH OUTPUT FULL-DUPLEX RS-485 DRIVERS AND RECEIVERS
TI

SN65HVD52DG4

HIGH OUTPUT FULL-DUPLEX RS-485 DRIVERS AND RECEIVERS
TI

SN65HVD52DR

HIGH OUTPUT FULL-DUPLEX RS-485 DRIVERS AND RECEIVERS
TI