SN65HVD63RGTR [TI]

AISG® 3.0 开关键控同轴调制解调器收发器 | RGT | 16 | -40 to 105;
SN65HVD63RGTR
型号: SN65HVD63RGTR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

AISG® 3.0 开关键控同轴调制解调器收发器 | RGT | 16 | -40 to 105

开关 驱动 接口集成电路 驱动器 调制解调器
文件: 总26页 (文件大小:23201K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Sample &  
Buy  
Support &  
Community  
Product  
Folder  
Tools &  
Software  
Technical  
Documents  
SN65HVD63  
ZHCSE43 JULY 2015  
SN65HVD63 AISG® 开关键控同轴调制解调器收发器  
1 特性  
3 说明  
1
3V 5.5V 电源范围  
SN65HVD63 收发器对逻辑(基带)接口和适用于长  
同轴介质的频率之间的信号进行调制和解调,以便无线  
设备之间进行有线数据传输。  
1.6V 5.5V 独立逻辑电源  
–15dBm +5dBm 接收器  
宽输入动态范围  
SN65HVD63 器件是一款集成 AISG 收发器,旨在满  
足即将推行的天线接口标准组织 v3.0 规范的要求。  
可在 0dBm 6dBm 范围内调节  
驱动器为同轴电缆提供的功率  
AISG® 符合 V2.0 的输出辐射配置文件  
SN65HVD63 接收器集成了一个有源带通滤波器,这  
样即使存在寄生频率组件仍然能够解调信号。 该滤波  
器的中心频率为 2.176MHz。  
同时符合即将推行的 AISG V3.0 规范  
低功耗待机模式  
针对 RS-485 总线仲裁的  
方向控制输出  
发送器支持在 +0dBm 6dBm 的范围内调节为 50Ω  
同轴电缆提供的输出功率。 SN65HVD63 发送器符合  
AISG 标准针对发射频谱的要求。  
支持最高达 115kbps 的信号传输速率  
集成有源带通滤波器的中心频率  
2.176MHz  
该器件提供的方向控制输出使得对 RS-485 接口的总线  
仲裁更加便捷。 该器件为晶振集成了一个振荡器输  
入,并且接受到振荡器的标准时钟输入。  
16 引脚 3mm × 3mm 超薄型四方扁平无引线  
(VQFN) 封装  
器件信息(1)  
2 应用  
AISG - 针对天线线路器件的接口  
器件型号  
封装  
VQFN (16)  
封装尺寸(标称值)  
SN65HVD63  
3.00mm x 3.00mm  
塔顶放大器 (TMA)  
普通调制解调器 (Modem) 接口  
(1) 要了解所有可用封装,请见数据表末尾的可订购产品附录。  
框图  
VL  
3
VCC  
13  
1
SYNCOUT  
9
RES  
FILTER  
14  
XTAL1  
XTAL  
Buffer  
OOK  
MOD  
OUTPUT  
STAGE  
12  
TXOUT  
PREAMP  
15  
XTAL2  
2.176–MHz  
2
TXIN  
7
DIRSET1  
6
Control  
Logic  
DIRSET2  
FILTER  
5
DIR  
OOK  
DEMOD  
11  
Buffer  
RXIN  
2.176–MHz  
4
RXOUT  
Buffer  
COMP  
RECEIVER  
THRESHOLD  
10  
8
16  
GND  
BIAS  
GND  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SLLSEO3  
 
 
 
SN65HVD63  
ZHCSE43 JULY 2015  
www.ti.com.cn  
目录  
9.2 Functional Block Diagram ....................................... 12  
9.3 Feature Description................................................. 12  
9.4 Device Functional Modes........................................ 13  
10 Application and Implementation........................ 15  
10.1 Application Information.......................................... 15  
10.2 Typical Application ............................................... 16  
11 Power Supply Recommendations ..................... 18  
12 Layout................................................................... 18  
12.1 Layout Guidelines ................................................. 18  
12.2 Layout Example .................................................... 18  
13 器件和文档支持 ..................................................... 19  
13.1 相关文档ꢀ ........................................................... 19  
13.2 社区资源................................................................ 19  
13.3 ....................................................................... 19  
13.4 静电放电警告......................................................... 19  
13.5 Glossary................................................................ 19  
14 机械、封装和可订购信息....................................... 19  
1
2
3
4
5
6
7
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Device Comparison Table..................................... 3  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
7.1 Absolute Maximum Ratings ..................................... 4  
7.2 ESD Ratings.............................................................. 4  
7.3 Recommended Operating Conditions....................... 4  
7.4 Thermal Information.................................................. 4  
7.5 Electrical Characteristics........................................... 6  
7.6 Switching Characteristics.......................................... 7  
7.7 Typical Characteristics.............................................. 8  
Parameter Measurement Information ................ 11  
Detailed Description ............................................ 12  
9.1 Overview ................................................................. 12  
8
9
4 修订历史记录  
日期  
修订版本  
注释  
2015 7 月  
*
首次发布。  
2
Copyright © 2015, Texas Instruments Incorporated  
 
SN65HVD63  
www.ti.com.cn  
ZHCSE43 JULY 2015  
5 Device Comparison Table  
SPURIOUS FREQUENCY  
RANGE  
PART NUMBER  
STANDARD SUPPORTED  
MAXIMUM LEVEL  
1.1 MHz  
4.17 MHz  
1.35 MHz  
3.5 MHz  
2 dBm (793 mVPP  
)
)
SN65HVD62  
AISG 2.0  
2 dBm (793 mVPP  
–13 dBm (142 mVPP  
)
)
SN65HVD63  
AISG 3.0  
–13 dBm (142 mVPP  
6 Pin Configuration and Functions  
RGT Package  
16-Pin VQFN With Exposed Thermal Pad  
Top View  
VCC  
13  
8
7
GND  
XTAL1 14  
DIRSET1  
Exposed  
Pad  
XTAL2  
GND  
15  
16  
6
5
DIRSET2  
DIR  
Pin Functions  
PIN  
NO.  
DESCRIPTION  
NAME  
BIAS  
TYPE  
O
10  
5
Bias voltage output for setting driver output power by external resistors  
Direction control output signal for bus arbitration  
DIR  
O
DIRSET1  
DIRSET2  
7
DIRSET1 and DIRSET2: Bits to set the duration of DIR  
DIRSET[2:1]: [L:L] = 9.6 kbps; [L:H] = 38.4 kbps; [H:L] = 115 kbps; [H:H] = standby mode  
6
8
GND  
Ground  
16  
9
RES  
P
I
Input voltage to adjust driver output power that is set by external resistors from BIAS pin to GND  
Modulated input signal to the receiver  
RXIN  
RXOUT  
SYNCOUT  
TXIN  
11  
4
O
O
I
Digital data bit stream from receiver  
1
Open-drain output to synchronize other devices to the 4x-carrier oscillator at XTAL1 and XTAL2  
Digital data bit stream to driver  
2
TXOUT  
VCC  
12  
13  
3
O
P
P
I/O  
Modulated output signal from the driver  
Analog supply voltage for the device  
VL  
Logic supply voltage for the device  
XTAL1  
XTAL2  
EP  
14  
15  
I/O pins of the crystal oscillator. Connect a 4 × fC crystal between these pins or connect XTAL1 to an 8.704-MHz clock and  
connect XTAL2 to GND.  
Exposed pad. Connection to ground plane is recommended for best thermal conduction.  
Copyright © 2015, Texas Instruments Incorporated  
3
SN65HVD63  
ZHCSE43 JULY 2015  
www.ti.com.cn  
7 Specifications  
7.1 Absolute Maximum Ratings(1)  
MIN  
–0.5  
–0.5  
–0.3  
–20  
MAX  
UNIT  
V
Supply voltage, VCC and VL  
Voltage at coax pins  
6
6
VVL + 0.3  
20  
V
Voltage at logic pins  
V
Logic output current  
mA  
TXOUT output current  
SYNCOUT output current  
Junction temperature, TJ  
Continuous total power dissipation  
Internally limited  
Internally limited  
170  
See the Thermal Information  
–65 150  
°C  
°C  
°C  
(2)  
Storage temperature, Tstg  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating  
Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) Applicable before the device is installed in the final product.  
7.2 ESD Ratings  
VALUE  
UNIT  
V(ESD)  
Electrostatic discharge  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
±2000  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
7.3 Recommended Operating Conditions  
MIN  
3
NOM  
MAX  
5.5  
UNIT  
V
VCC  
VL  
Analog supply voltage  
Logic supply voltage  
1.6  
5.5  
V
VI(pp)  
Input signal amplitude at RXIN  
1.12  
Vpp  
TXIN, DIRSET1, DIRSET2  
XTAL1, XTAL2  
70%VL  
VL  
VIH  
VIL  
High-level input voltage  
Low-level input voltage  
V
V
70%VCC  
VCC  
TXIN, DIRSET1, DIRSET2  
XTAL1, XTAL2  
0
0
30%VL  
30%VCC  
115  
1/tUI  
Data signaling rate  
Oscillator frequency  
9.6  
kbps  
MHz  
Ω
FOSC  
–30 ppm  
8.704  
50  
30 ppm  
Load impedance between TXOUT to RXIN  
Load impedance between RXIN and GND at fC (channel)  
Bias resistor between BIAS and RES  
Bias resistor between RES and GND  
Pullup resistor between SYNCOUT and VCC  
Voltage at RES pin  
ZLOAD  
50  
Ω
R1  
4.1  
10  
kΩ  
kΩ  
kΩ  
V
R2  
RSYNC  
VRES  
CC  
1
0.7  
1.5  
Coupling capacitance between RXIN and coax (channel)  
Capacitance between BIAS and GND  
Operating free-air temperature  
220  
1
nF  
µF  
°C  
°C  
CBIAS  
TA  
–40  
–40  
105  
125  
TJ  
Junction temperature  
7.4 Thermal Information  
VQFN  
THERMAL METRIC(1)  
UNIT  
°C/W  
RGT16 Pins  
RθJA  
Junction-to-ambient thermal resistance  
49.4  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report, SPRA953.  
4
版权 © 2015, Texas Instruments Incorporated  
 
SN65HVD63  
www.ti.com.cn  
ZHCSE43 JULY 2015  
Thermal Information (接下页)  
VQFN  
RGT16 Pins  
64.2  
THERMAL METRIC(1)  
UNIT  
RθJCtop  
RθJB  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
22.9  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
1.7  
ψJB  
22.9  
RθJCbot  
25  
版权 © 2015, Texas Instruments Incorporated  
5
SN65HVD63  
ZHCSE43 JULY 2015  
www.ti.com.cn  
7.5 Electrical Characteristics  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
POWER SUPPLY  
TXIN = L (active)  
28  
25  
33  
31  
DIRSET1 = L  
DIRSET2 = H  
TXIN = H (quiescent)  
ICC  
Supply current  
mA  
TXIN = 115 kbps,  
50% duty cycle  
27  
12  
33  
DIRSET1 = H, DIRSET2 = H (standby)  
TXIN = H, RXIN = DC input  
VTXIN = VL  
17  
50  
IVL  
Logic supply current  
µA  
dB  
PSRR  
Receiver power supply rejection ratio  
45  
60  
LOGIC PINS  
High-level logic output voltage  
(RXOUT, DIR)  
IOH = –4 mA for VL > 2.4 V,  
IOH = –2 mA for VL < 2.4 V  
VOH  
VOL  
90%VVL  
V
V
Low-level logic output voltage  
(RXOUT, DIR)  
IOL = 4 mA for VL > 2.4 V,  
IOL = 2 mA for VL < 2.4 V  
10%VV  
L
COAX DRIVER  
VRES = 1.5 V (Maximum setting)  
VRES = 0.7 V (Minimum setting)  
VRES = 1.5 V  
2.24  
5
2.5  
1.17  
6
Peak-to-peak output voltage at device pin  
TXOUT (see 19)  
VO(PP)  
VO(PP)  
VO(OFF)  
VPP  
1.3  
Peak-to-peak voltage at coax out  
(see 19)  
dBm  
VRES = 0.7 V  
–0.6  
0.3  
1
At TXOUT  
mVpp  
dBm  
Off-state output voltage  
Output emissions  
At coax out  
–60  
Coupled to coaxial cable with characteristic  
N/A  
impedance of 50 Ω, as shown in 1(1)(2)  
fO  
Output frequency  
2.176  
MHz  
ppm  
f  
Output frequency variation  
–100  
100  
450  
At 100 kHz  
At 10 MHz  
0.03  
3.5  
ZO  
Output impedance  
TXOUT is also protected by a thermal shutdown  
circuit during short-circuit faults  
| IOS  
|
Short-circuit output current  
300  
mA  
COAX RECEIVER  
79  
–18  
11  
112  
–15  
21  
158  
–12  
mVPP  
dBm  
kΩ  
VIT  
ZIN  
Input threshold  
Input impedance  
fIN = 2.176 MHz  
f = fO  
RECEIVER FILTER  
fPB  
Passband  
VRXIN = 1.12VP_P  
1.1  
1.1  
4.17  
4.17  
MHz  
MHz  
2.176-MHz carrier amplitude of 112.4 mVPP, frequency  
band of spurious components with 800 mVPP allowed.  
fREJ  
Receiver rejection range  
Receiver noise filter time (slow bit rate)  
Receiver noise filter time (fast bit rate)  
DIRSET for 9.6 kbps  
DIRSET for > 9.6 kbps  
4
2
µs  
µs  
tnoise filter  
XTAL AND SYNC  
II  
Input leakage current  
Output low voltage  
XTAL1, XTAL2, 0V < VIN < VCC  
–15  
15  
µA  
V
VOL  
SYNCOUT, with 1-kΩ resistor from SYNCOUT to VCC  
0.4  
(1) Specified by design with a recommended 470-pF capacitor between RXIN and GND. Measurements above 150 MHz are determined by  
setup.  
(2) Conforms to AISG spectrum emissions mask, 3GPP TS 25.461, see 21.  
6
版权 © 2015, Texas Instruments Incorporated  
SN65HVD63  
www.ti.com.cn  
ZHCSE43 JULY 2015  
7.6 Switching Characteristics  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
5
UNIT  
µs  
tpAQ, tpQA  
tr, tf  
Coax driver propagation delay  
Coax receiver output rise/fall time  
Receiver propagation delay  
See 19  
CL = 15 pF, RL = 1 k; see 19  
See 20  
20  
ns  
tPHL, tPLH  
5.5  
11  
µs  
VRXIN(ON) = 630 mVpp, VRXIN(OFF) < 5 mVpp,  
50% duty cycle  
40%  
40%  
60%  
60%  
Coax receiver output duty cycle  
Direction control active duration  
VRXIN(ON) = 200 mVpp, VRXIN(OFF) < 5 mVpp,  
50% duty cycle  
DIRSET2 = GND or OPEN, DIRSET1 = GND  
or OPEN  
1667  
tDIR  
µs  
ns  
DIRSET2 = GND, DIRSET1 = VL  
DIRSET2 = VL, DIRSET1 = VL  
417  
137  
Direction control skew  
(DIR to RXOUT)  
tDIRSKEW  
270  
tdis  
ten  
Standby disable delay  
Standby enable delay  
300 mVPP at 2.176 MHz on RXIN  
300 mVPP at 2.176 MHz on RXIN  
2
2
ms  
ms  
版权 © 2015, Texas Instruments Incorporated  
7
SN65HVD63  
ZHCSE43 JULY 2015  
www.ti.com.cn  
7.7 Typical Characteristics  
-50  
-60  
10  
0
AISG Mask  
AISG Mask  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-70  
-80  
-90  
-100  
-110  
-120  
30M  
130M  
230M  
Frequency (Hz)  
330M  
0
10M  
20M  
30M  
Frequency (Hz)  
D003  
D002  
50% Duty Cycle  
CF = 470 pF  
50% Duty Cycle  
CF = 470 pF  
2. High-Frequency Emissions Spectrum  
1. Low-Frequency Emissions Spectrum  
With 9.6-kbps Signaling Rate  
With 9.6-kbps Signaling Rate  
-50  
-60  
10  
0
AISG Mask  
AISG Mask  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-70  
-80  
-90  
-100  
-110  
-120  
30M  
130M  
230M  
Frequency (Hz)  
330M  
0
10M  
20M  
30M  
Frequency (Hz)  
D005  
D004  
50% Duty Cycle  
CF = 470 pF  
50% Duty Cycle  
CF = 470 pF  
4. High-Frequency Emissions Spectrum  
3. Low-Frequency Emissions Spectrum  
With 38.4-kbps Signaling Rate  
With 38.4-kbps Signaling Rate  
10  
0
-50  
-60  
AISG Mask  
AISG Mask  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-70  
-80  
-90  
-100  
-110  
-120  
0
10M  
20M  
30M  
30M  
130M  
230M  
330M  
Frequency (Hz)  
Frequency (Hz)  
D006  
D007  
50% Duty Cycle  
CF = 470 pF  
50% Duty Cycle  
CF = 470 pF  
5. Low-Frequency Emissions Spectrum  
6. High-Frequency Emissions Spectrum  
With 115.2-kbps Signaling Rate  
With 115.2-kbps Signaling Rate  
8
版权 © 2015, Texas Instruments Incorporated  
SN65HVD63  
www.ti.com.cn  
ZHCSE43 JULY 2015  
Typical Characteristics (接下页)  
40  
35  
30  
25  
20  
15  
10  
5
6
5
4
3
2
1
0
-1  
-2  
0
0.1M  
1M  
10M  
100M  
0.7  
0.9  
1.1  
1.3  
1.5  
Frequency (Hz)  
VRES Voltage (V)  
D008  
D009  
7. Transmitter Output Impedance  
8. Transmit Power Adjustment  
27  
13  
12.9  
12.8  
12.7  
12.6  
12.5  
12.4  
12.3  
12.2  
12.1  
12  
26.5  
26  
25.5  
25  
24.5  
24  
3
3.5  
4
4.5  
5
5.5  
3
3.5  
4
4.5  
5
5.5  
Supply Voltage (V)  
Supply Voltage (V)  
D011  
D011  
TXIN = VL  
TXIN = VL  
9. Supply Current vs Supply Voltage  
10. Supply Current vs Supply Voltage  
While Transmitting  
in Standby Mode  
13.2  
13.1  
13  
7
6
5
4
3
2
1
12.9  
12.8  
12.7  
12.6  
12.5  
12.4  
0
3
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
3.5  
4
4.5  
5
5.5  
Temperature (qC)  
Supply Voltage (V)  
D012  
D013  
11. Supply Current vs Temperature  
12. Transmitter Output Power  
in Standby Mode  
vs Supply Voltage  
版权 © 2015, Texas Instruments Incorporated  
9
SN65HVD63  
ZHCSE43 JULY 2015  
www.ti.com.cn  
Typical Characteristics (接下页)  
30000  
25000  
20000  
15000  
10000  
5000  
0
7
6
5
4
3
2
1
0
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
100  
1k  
10k  
100k  
1M  
5M  
Temperature (qC)  
Frequency (Hz)  
D014  
D015  
13. Transmitter Output Power vs Temperature  
14. Receiver Input Impedance vs Frequency  
360  
355  
350  
345  
340  
0.18  
0.17  
0.16  
0.15  
0.14  
0.13  
0.12  
0.11  
0.1  
RTXOUT = Stable Low  
RTXOUT = Stable High  
0.09  
0.08  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (qC)  
Temperature (qC)  
D016  
D017  
15. Receiver Input Threshold vs Temperature  
16. DIR Output Delay vs Temperature  
60  
56  
52  
48  
44  
40  
60  
50  
40  
30  
20  
10  
0
-10  
-7  
-4  
-1  
2
5
-10  
-7  
-4  
-1  
2
5
Receiver Input (dBm)  
Receiver Input (dBm)  
D018  
D019  
17. Receiver Duty Cycle  
18. Receiver Duty Cycle  
With 9.6 kbps Signaling Rate  
With 115.2 kbps Signaling Rate  
10  
版权 © 2015, Texas Instruments Incorporated  
SN65HVD63  
www.ti.com.cn  
ZHCSE43 JULY 2015  
8 Parameter Measurement Information  
Signal generator rate is 115 kbps, 50% duty cycle. Rise and fall times are less than 6 ns, and nominal output  
levels are 0 V and 3 V. Coupling capacitor, CC, is 220 nF.  
Driver Amplitude Adjust  
RAMP  
TXOUT  
RES  
50 Ω  
XTAL2  
XTAL2  
TXOUT  
2.176MH_z  
Crystal  
Coax In  
2.176MH_z  
Generator  
Received  
Data Out  
Cc  
50 Ω  
TXIN  
RXIN  
Signal  
Generator  
Coax Out  
Direction  
Control  
Cc  
50 Ω  
RXIN  
VPP  
0.5 V  
L
RXIN  
V
L
0.5 V  
L
TXIN  
t
t
pAQ  
V
L
pQA  
0.5 V  
L
RXOUT  
t
t
PHL  
PLH  
VPP  
V
0.5 VPP  
L
L
TXOUT  
0.5 V  
DIR  
t
DIRSKEW  
19. Measurement of Modem Driver  
Output Voltage With 50-Ω Loads  
20. Measurement of Modem Receiver  
Propagation Delays  
21. AISG Emissions Template  
版权 © 2015, Texas Instruments Incorporated  
11  
SN65HVD63  
ZHCSE43 JULY 2015  
www.ti.com.cn  
9 Detailed Description  
9.1 Overview  
The SN65HVD63 transceiver modulates and demodulates signals between the logic (baseband) and a frequency  
suitable for long coaxial media. The SN65HVD63 device is an integrated AISG transceiver designed to meet the  
requirements of the upcoming Antenna Interface Standards Group v3.0 specification. The SN65HVD63 receiver  
integrates an active bandpass filter to enable demodulation of signals even in the presence of spurious frequency  
components. The filter has a 2.176-MHz center frequency. The transmitter supports adjustable output power  
levels from 0 dBm to 6 dBm delivered to the 50-Ω coax cable. The SN65HVD63 transmitter is compliant with the  
spectrum emission requirement provided by the AISG standard. A direction control output facilitates bus  
arbitration for an RS-485 interface. This device integrates an oscillator input for a crystal, and also accepts  
standard clock inputs to the oscillator.  
9.2 Functional Block Diagram  
VL  
3
VCC  
13  
1
9
SYNCOUT  
RES  
FILTER  
14  
15  
2
XTAL1  
XTAL2  
XTAL  
Buffer  
OOK  
MOD  
OUTPUT  
STAGE  
12  
TXOUT  
PREAMP  
2.176–MHz  
TXIN  
7
6
DIRSET1  
DIRSET2  
Control  
Logic  
FILTER  
5
DIR  
OOK  
DEMOD  
11  
Buffer  
RXIN  
2.176–MHz  
4
RXOUT  
Buffer  
COMP  
RECEIVER  
THRESHOLD  
10  
8
16  
GND  
BIAS  
GND  
9.3 Feature Description  
9.3.1 Coaxial Interface  
The SN65HVD63 transceiver enables the transfer of data between radio equipment by modulating baseband  
data to a carrier frequency of 2.176 MHz (per the AISG standard). The transmitter output amplitude can be  
configured from 0 dBm to 6 dBm in order to communicate over a variety of different links, and the output  
emissions spectrum is designed to be compliant to AISG limits. The receiver features an active bandpass filter  
circuit that helps to separate the carrier frequency data from other spurious frequency components.  
9.3.2 Reference Input  
The 2.176-MHz modulation frequency is derived from an input reference that is nominally 8.704 MHz. The input  
reference can come either from a crystal or from an oscillator circuit with a tolerance of up to 30 ppm.  
9.3.3 RS-485 Direction Control  
To facilitate bus arbitration of an RS-485 interface, the SN65HVD63 provides a direction control output that can  
be used to control the enable/disable controls of an RS-485 transceiver. The direction control output  
automatically toggles based on activity present on the coaxial input interface, and has an adjustable time  
constant (controlled by the DIRSET1 and DIRSET2 pins) in order to accommodate various signaling rates.  
12  
版权 © 2015, Texas Instruments Incorporated  
SN65HVD63  
www.ti.com.cn  
ZHCSE43 JULY 2015  
9.4 Device Functional Modes  
If DIRSET1 and DIRSET2 are in a logic high state, the device will be in standby mode. While in standby mode,  
the receiver functions normally, detecting carrier frequency activity on the RXIN pin and setting the RXOUT state.  
The transmitter circuits are not active in standby mode, thus the TXOUT pin is idle regardless of the logic state of  
TXIN. The supply current in standby mode is significantly reduced, allowing power savings when the node is not  
transmitting.  
When not in standby mode, the default power-on state is idle. When in idle mode, RXOUT is high, and TXOUT is  
quiet. The device transitions to receive mode when a valid modulated signal is detected on the RXIN line or the  
device transitions to transmit mode when TXIN goes low. The device stays in either receive or transmit mode  
until DIR time-out (nominal 16 bit times) after the last activity on RXOUT or TXIN.  
When in receive mode:  
RXOUT responds to all valid modulated signals on RXIN, whether from the local transmitter, a remote  
transmitter, or long noise burst.  
TXOUT responds to TXIN, generating 2.176-MHz signals on TXOUT when TXIN is low, and TXOUT is quiet  
when TXIN is high. (In normal operation, TXIN is expected to remain high when the device is in receive  
mode.)  
The device stays in receive mode until 16 bit times after the last rising edge on RXOUT, caused by valid  
modulated signal on the RXIN line.  
When in transmit mode:  
RXOUT stays high, regardless of the input signal on RXIN.  
TXOUT responds to TXIN, generating 2.176-MHz signals on TXOUT when TXIN is low, and TXOUT is quiet  
when TXIN is high.  
The device stays in transmit mode until 16 bit times after TXIN goes high.  
1 shows the driver functions. 2 shows the receiver functions. 22 shows the transitions between each  
state.  
1. Driver Function Table  
TXIN(1)  
[DIRSET1, DIRSET2]  
[L,L], [L,H] or [H,L]  
[H,H]  
TXOUT  
COMMENT  
Driver not active  
H
L
< 1 mVPP at 2.176 MHz  
VOPP at 2.176 MHz  
< 1 mVPP at 2.176 MHz  
Driver active  
X
Standby mode  
(1) H = High, L = Low, X = Indeterminate  
2. Receiver and DIR Function Table  
RXIN(1)  
RXOUT  
DIR  
COMMENT (see 22)  
IDLE mode (not transmitting or receiving)  
< VIT at 2.176 MHz for longer than DIR time-out  
RECEIVE mode (not already transmitting)  
< VIT at 2.176 MHz for less than tDIR time-out  
> VIT at 2.176 MHz for longer than tnoise filter  
TRANSMIT mode (not already receiving)  
X
H
L
No outgoing or incoming signal  
H
L
H
H
Incoming 1 bit, DIR stays HIGH for DIR time-out  
Incoming 0 bit, DIR output is HIGH  
H
L
Outgoing message, DIR stays LOW for DIR time-out  
(1) H = High, L = Low, X = Indeterminate  
版权 © 2015, Texas Instruments Incorporated  
13  
 
 
SN65HVD63  
ZHCSE43 JULY 2015  
www.ti.com.cn  
Receive 0  
Transmit 0  
RXIN 9  
RXOUT = L  
DIR = H  
TXOUT=Active  
DIR = L  
TXIN ;  
IDLE  
RXOUT = H  
TXOUT=Idle  
TXIN 9  
TXIN ;  
RXIN 9  
RXIN ;  
DIR = L  
Transmit 1  
Receive 1  
DIR Timeout  
DIR Timeout  
TXOUT=Idle  
DIR = L  
RXOUT = H  
DIR = H  
22. State Transition Diagram  
14  
版权 © 2015, Texas Instruments Incorporated  
SN65HVD63  
www.ti.com.cn  
ZHCSE43 JULY 2015  
10 Application and Implementation  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
10.1 Application Information  
10.1.1 Driver Amplitude Adjust  
The SN65HVD63 device can provide up to 2.5 V of peak-to-peak output signal at the TXOUT pin to compensate  
for potential loss within the external filter, cable, connections, and termination. External resistors are used to set  
the amplitude of the modulated driver output signal. Resistors connected across RES and BIAS set the output  
amplitude. The maximum peak-to-peak voltage at TXOUT is 2.5 V, corresponding to 6 dBm on the coaxial cable.  
The TXOUT voltage level can be adjusted by choice of resistors to set the voltage at the RES pin. according to  
the following equation:  
VTXOUT (VPP) = (2.5 VPP × VRES (V)) / 1.5 V VRES (V) = 1.5 V × R2 / (R1 + R2) VTXOUT (VPP) = 2.5 VPP × R2 / (R1 + R2)  
(1)  
The voltage at the RES pin should be from 0.7 V to 1.5 V. Connect RES directly to the BIAS (R1 = 0 Ω) for  
maximum output level of 2.5 VPP. This gives a minimum voltage level at TXOUT of 1.2 VPP, corresponding to  
about 0 dBm at the coaxial cable. A 1-μF capacitor should be connected between the BIAS pin and GND. To  
obtain a nominal power level of 3 dBm at the feeder cable as the AISG standard requires, use R1 = 4.1 kΩ and  
R2 = 10 kΩ that provide 1.78 VPP at TXOUT.  
10.1.2 Direction Control  
In many applications the mast-top modem that receives data from the base distributes the received data through  
an RS-485 network to several mast-top devices. When the mast-top modem receives the first logic 0 bit (active  
modulated signal) it takes control of the mast-top RS-485 network by asserting the direction control signal. The  
duration of the direction control assertion should be optimized to pass a complete message of length B bits at the  
known signaling rate (1/tBIT) before relinquishing control of the mast-top RS-485 network. For example, if the  
messages are 10 bits in length (B=10) and the signaling rate is 9600 bits per second (tBIT = 0.104 ms) then a  
positive pulse of duration 1.7 ms is sufficient (with margin to allow for network propagation delays) to enable the  
mast-top RS-485 drivers to distribute each received message. 23 shows the assertion of direction control.  
Coax In  
Data Out  
Direction  
23. Assertion of Direction Control  
10.1.3 Direction Control Time Constant  
The time constant for the direction control function can be set by the control mode pins, DIRSET1 and DIRSET2.  
These pins should be set to correspond to the desired data rate. With no external connections to the control  
mode pins, the internal time constant is set to the maximum value, corresponding to the minimum data rate.  
版权 © 2015, Texas Instruments Incorporated  
15  
 
SN65HVD63  
ZHCSE43 JULY 2015  
www.ti.com.cn  
Application Information (接下页)  
10.1.4 Conversion Between dBm and Peak-to-Peak Voltage  
dBm = 20 × LOG10 [Volts-pp / SQRT(0.008 × Zo)] = 20 × LOG10 [VPP / 0.63] for Zo = 50 Ω  
VPP = SQRT(0.008 × Zo) × 10(dBm/20) = 0.63 × 10(dBm/20) for Zo = 50 Ω  
(2)  
(3)  
3 shows conversions between dBm and peak-to-peak voltage with a 50-Ω load, for various levels of interest  
including reference levels from the 3GPP TS 25.461 Technical Specification.  
3. Conversions Between dBM and Peak-to-Peak Voltage  
SIGNAL ON COAX  
dBm  
5
VPP  
1.12  
0.89  
0.71  
0.16  
0.11  
0.08  
0.006  
Maximum Driver ON Signal  
Nominal Driver ON Signal  
Minimum Driver ON Signal  
AISG Maximum Receiver Threshold  
Nominal Receiver Threshold  
Minimum Receiver Threshold  
Maximum Driver OFF Signal  
3
1
–12  
–15  
–18  
–40  
10.2 Typical Application  
The AISG On-Off Keying (OOK) interface allows for command, control, and diagnostic information to be  
communicated between a base station and the corresponding tower-mounted antennae. 24 shows a typical  
application.  
RF+  
RS-485  
Signals  
Modulated Signals +  
Power (On Coax)  
(Twisted Pair)  
Power  
RF  
Signals  
Diagnostics  
and Control  
24. Typical AISG Application  
10.2.1 Design Requirements  
An AISG transceiver is used to convert between digital logic-level signals and RF signals. The AISG standard  
requires an RF carrier frequency of 2.176 MHz with 100-ppm accuracy. The output signal of the driver, when  
active, should be from 1 dBm to 5 dBm. The receiver must be designed such that the input threshold is from –18  
dBm to –12 dBm.  
10.2.2 Detailed Design Procedure  
To ensure accuracy of the carrier frequency, an input reference frequency equal to four times the carrier (that is,  
8.704 MHz) should be connected to the XTAL1 or XTAL2 inputs. This signal can come from a crystal (connected  
between XTAL1 and XTAL2) or from a PLL/clock generator circuit (connected to XTAL1 with XTAL2 grounded).  
The frequency accuracy must be within 100 ppm.  
16  
版权 © 2015, Texas Instruments Incorporated  
 
 
SN65HVD63  
www.ti.com.cn  
ZHCSE43 JULY 2015  
Typical Application (接下页)  
The driver output power level of the SN65HVD63 device can be adjusted through use of the RES pin. To align  
with AISG requirements, a nominal power level of 3 dBm should be configured by connecting a 4.1-kresistor  
between RES and BIAS and a 10-kresistor between RES and GND. 25 shows an example schematic.  
8.704 MHz  
VCC  
39 pF  
39 pF  
0.1 F  
VL  
220 nF  
470 pF  
49.9 Ÿꢀ  
SYNCOUT  
TXIN  
TXOUT  
RXIN  
BIAS  
VL  
RXOUT  
RES  
4.1 NŸꢀ  
0.1 F  
10 NŸꢀ  
25. SN65HVD63 Schematic  
10.2.3 Application Curve  
26 shows the application curve for the SN65HVD63 device.  
26. SN65HVD63 Application Curve  
版权 © 2015, Texas Instruments Incorporated  
17  
 
 
SN65HVD63  
ZHCSE43 JULY 2015  
www.ti.com.cn  
11 Power Supply Recommendations  
The SN65HVD63 device has two power supply pins: VCC, which provides power to the analog circuitry, and VL,  
which is a logic supply. VCC should be operated from 3 V to 5.5 V, while VL can range from 1.6 V to 5.5 V to  
interface to different logic levels. Power supply decoupling capacitances of at least 0.1 µF should be placed as  
close as possible to each power supply pin.  
12 Layout  
12.1 Layout Guidelines  
Best practices for high-speed PCB design should be observed because the coax interface to the SN65HVD63  
device operates at RF. The RF signaling traces should have a controlled characteristic impedance that is well-  
matched to the coaxial line. A continuous reference plane should be used to avoid impedance discontinuities.  
Power and ground distribution should be done through planes rather than traces to decrease series resistance  
and increase the effective decoupling capacitance on the power rails.  
12.2 Layout Example  
27. SN65HVD63 Layout  
18  
版权 © 2015, Texas Instruments Incorporated  
SN65HVD63  
www.ti.com.cn  
ZHCSE43 JULY 2015  
13 器件和文档支持  
13.1 相关文档ꢀ  
《天线线路器件的控制接口》,天线接口标准标准组织,标准编号 AISG v2.0  
13.2 社区资源  
The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective  
contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of  
Use.  
TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration  
among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help  
solve problems with fellow engineers.  
Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and  
contact information for technical support.  
13.3 商标  
E2E is a trademark of Texas Instruments.  
AISG is a registered trademark of Antenna Interface Standards Group, Ltd.  
All other trademarks are the property of their respective owners.  
13.4 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
13.5 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
14 机械、封装和可订购信息  
以下页中包括机械、封装和可订购信息。 这些信息是针对指定器件可提供的最新数据。 这些数据会在无通知且不  
对本文档进行修订的情况下发生改变。 欲获得该数据表的浏览器版本,请查阅左侧的导航栏。  
版权 © 2015, Texas Instruments Incorporated  
19  
PACKAGE OPTION ADDENDUM  
www.ti.com  
14-Aug-2021  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
SN65HVD63RGTR  
SN65HVD63RGTT  
ACTIVE  
ACTIVE  
VQFN  
VQFN  
RGT  
RGT  
16  
16  
3000 RoHS & Green  
250 RoHS & Green  
NIPDAU  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-40 to 105  
-40 to 105  
HVD63  
HVD63  
NIPDAU  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
14-Aug-2021  
Addendum-Page 2  
PACKAGE OUTLINE  
RGT0016A  
VQFN - 1 mm max height  
S
C
A
L
E
3
.
6
0
0
PLASTIC QUAD FLATPACK - NO LEAD  
3.1  
2.9  
B
A
PIN 1 INDEX AREA  
3.1  
2.9  
C
1 MAX  
SEATING PLANE  
0.08  
0.05  
0.00  
1.45 0.1  
(0.2) TYP  
5
8
EXPOSED  
THERMAL PAD  
12X 0.5  
4
9
4X  
SYMM  
17  
1.5  
1
12  
0.30  
16X  
0.18  
13  
16  
0.1  
C A B  
PIN 1 ID  
(OPTIONAL)  
SYMM  
0.05  
0.5  
0.3  
16X  
4219032/A 02/2017  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
4. Reference JEDEC registration MO-220  
www.ti.com  
EXAMPLE BOARD LAYOUT  
RGT0016A  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(
1.45)  
SYMM  
16  
13  
16X (0.6)  
1
12  
16X (0.24)  
SYMM  
17  
(2.8)  
(0.475)  
TYP  
12X (0.5)  
9
4
(
0.2) TYP  
VIA  
5
8
(R0.05)  
ALL PAD CORNERS  
(0.475) TYP  
(2.8)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:20X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL  
EXPOSED METAL  
EXPOSED METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
SOLDER MASK  
DEFINED  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4219032/A 02/2017  
NOTES: (continued)  
5. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
6. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
RGT0016A  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(
1.34)  
13  
16  
16X (0.6)  
1
12  
16X (0.24)  
17  
SYMM  
(2.8)  
12X (0.5)  
9
4
METAL  
ALL AROUND  
5
8
SYMM  
(2.8)  
(R0.05) TYP  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD 17:  
86% PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE  
SCALE:25X  
4219032/A 02/2017  
NOTES: (continued)  
7. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI 提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,不保证没  
有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。这些资源如有变更,恕不另行通知。TI 授权您仅可  
将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。您无权使用任何其他 TI 知识产权或任何第三方知  
识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款 (https:www.ti.com.cn/zh-cn/legal/termsofsale.html) ti.com.cn 上其他适用条款/TI 产品随附的其他适用条款  
的约束。TI 提供这些资源并不会扩展或以其他方式更改 TI 针对 TI 产品发布的适用的担保或担保免责声明。IMPORTANT NOTICE  
邮寄地址:上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码:200122  
Copyright © 2021 德州仪器半导体技术(上海)有限公司  

相关型号:

UL1042

UL1042 - Uk砤d zr體nowa縪nego mieszacza iloczynowego

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

ZXFV201

QUAD VIDEO AMPLIFIER

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ZETEX

ZXFV201N14

IC-SM-VIDEO AMP

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ZETEX

ZXFV201N14TA

QUAD VIDEO AMPLIFIER

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ZETEX

ZXFV201N14TC

QUAD VIDEO AMPLIFIER

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ZETEX

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

ZXFV302N16

IC-SM-4:1 MUX SWITCH

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

ZXFV4089

VIDEO AMPLIFIER WITH DC RESTORATION

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ZETEX

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ZETEX