SN65HVD64RGTR [TI]

具有宽工作温度范围的 AISG® 3.0 开关键控同轴调制解调器收发器 | RGT | 16 | -40 to 120;
SN65HVD64RGTR
型号: SN65HVD64RGTR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有宽工作温度范围的 AISG® 3.0 开关键控同轴调制解调器收发器 | RGT | 16 | -40 to 120

开关 调制解调器
文件: 总28页 (文件大小:23571K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ZHCSL88 OCTOBER 2020  
SN65HVD64  
SN65HVD64 AISG® 开关键控同轴调制解调器收发器  
1 特性  
3 说明  
3V 5.5V 电源范围  
SN65HVD64 收发器对逻辑基带接口和适用于长同  
轴介质的频率之间的信号进行调制和解调以便无线设  
备之间进行有线数据传输。  
1.6V 5.5V 独立逻辑电源  
15dBm +5dBm 宽输入动态范围  
接收器  
SN65HVD64 器件是一款集成 AISG 收发器旨在满足  
“天线接口标准组织 v2.0 v3.0 规范”的要求。  
可在 0dBm 6dBm 范围内调节  
驱动器为同轴电缆提供的功率  
支持 AISG® V2.0 V3.0  
低功耗待机模式  
SN65HVD64 接收器集成了一个有源带通滤波器这样  
即使存在寄生频率组件仍然能够解调信号。该滤波器的  
中心频率为 2.176MHz。  
针对 RS-485 总线仲裁的  
方向控制输出  
发送器支持在 +0dBm 6dBm 的范围内调节为 50Ω  
同轴电缆提供的输出功率。SN65HVD64 发送器符合  
AISG 标准针对发射频谱的要求。  
支持高达 115kbps 的信号传输速率  
集成有源带通滤波器的中心频率  
2.176MHz  
该器件提供的方向控制输出使得对 RS-485 接口的总线  
仲裁更加便捷。该器件为晶振集成了一个振荡器输入,  
并且接受到振荡器的标准时钟输入。  
支持 -40°C 120°C 环境温度  
3mm × 3mm 16 引脚 VQFN 封装  
器件信息  
封装(1)  
2 应用  
封装尺寸标称值)  
器件型号  
SN65HVD64  
AISG - 针对天线线路器件的接口  
VQFN (16)  
3.00mm × 3.00mm  
塔顶放大器 (TMA)  
(1) 如需了解所有可用封装请参阅数据表末尾的可订购产品附  
录。  
VCC  
普通调制解调器 (Modem) 接口  
VL  
3
13  
1
SYNCOUT  
9
RES  
FILTER  
14  
XTAL1  
XTAL  
Buffer  
OOK  
MOD  
OUTPUT  
STAGE  
12  
TXOUT  
PREAMP  
15  
2
XTAL2  
TXIN  
2.176–MHz  
7
6
DIRSET1  
DIRSET2  
Control  
Logic  
FILTER  
5
DIR  
OOK  
DEMOD  
11  
Buffer  
RXIN  
2.176–MHz  
4
RXOUT  
Buffer  
COMP  
RECEIVER  
THRESHOLD  
10  
8
16  
GND  
BIAS  
GND  
方框图  
本文档旨在为方便起见提供有关 TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SLLSFI7  
 
 
 
SN65HVD64  
ZHCSL88 OCTOBER 2020  
www.ti.com.cn  
Table of Contents  
8.3 Feature Description...................................................14  
8.4 Device Functional Modes..........................................15  
9 Application and Implementation..................................17  
9.1 Application Information............................................. 17  
9.2 Typical Application.................................................... 18  
10 Power Supply Recommendations..............................20  
11 Layout...........................................................................21  
11.1 Layout Guidelines................................................... 21  
11.2 Layout Example...................................................... 21  
12 Device and Documentation Support..........................22  
12.1 Documentation Support.......................................... 22  
12.2 Receiving Notification of Documentation Updates..22  
12.3 Support Resources................................................. 22  
12.4 Trademarks.............................................................22  
12.5 Electrostatic Discharge Caution..............................22  
12.6 Glossary..................................................................22  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Pin Configuration and Functions...................................3  
6 Specifications.................................................................. 4  
6.1 Absolute Maximum Ratings........................................ 4  
6.2 ESD Ratings............................................................... 4  
6.3 Recommended Operating Conditions.........................4  
6.4 Thermal Information....................................................5  
6.5 Electrical Characteristics.............................................6  
6.6 Switching Characteristics............................................7  
6.7 Typical Characteristics................................................8  
7 Parameter Measurement Information.......................... 11  
8 Detailed Description......................................................14  
8.1 Overview...................................................................14  
8.2 Functional Block Diagram.........................................14  
4 Revision History  
DATE  
REVISION  
NOTES  
October 2020  
*
Initial release.  
Copyright © 2021 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: SN65HVD64  
 
SN65HVD64  
ZHCSL88 OCTOBER 2020  
www.ti.com.cn  
5 Pin Configuration and Functions  
VCC  
13  
8
7
GND  
XTAL1 14  
DIRSET1  
Exposed  
Pad  
XTAL2  
GND  
15  
16  
6
5
DIRSET2  
DIR  
5-1. RGT Package, 16-Pin VQFN, Top View  
5-1. Pin Functions  
PIN  
NO.  
DESCRIPTION  
NAME  
TYPE  
BIAS  
DIR  
10  
5
O
O
Bias voltage output for setting driver output power by external resistors  
Direction control output signal for bus arbitration  
DIRSET1  
DIRSET2  
7
DIRSET1 and DIRSET2: Bits to set the duration of DIR  
DIRSET[2:1]: [L:L] = 9.6 kbps; [L:H] = 38.4 kbps; [H:L] = 115 kbps; [H:H] = standby mode  
6
8
GND  
Ground  
16  
9
RES  
P
I
Input voltage to adjust driver output power that is set by external resistors from BIAS pin to GND  
Modulated input signal to the receiver  
RXIN  
RXOUT  
SYNCOUT  
TXIN  
11  
4
O
O
I
Digital data bit stream from receiver  
1
Open-drain output to synchronize other devices to the 4x-carrier oscillator at XTAL1 and XTAL2  
Digital data bit stream to driver  
2
TXOUT  
VCC  
12  
13  
3
O
P
P
I/O  
Modulated output signal from the driver  
Analog supply voltage for the device  
VL  
Logic supply voltage for the device  
XTAL1  
XTAL2  
EP  
14  
15  
I/O pins of the crystal oscillator. Connect a 4 × fC crystal between these pins or connect XTAL1 to an  
8.704-MHz clock and connect XTAL2 to GND.  
Exposed pad. Connection to ground plane is recommended for best thermal conduction.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: SN65HVD64  
 
SN65HVD64  
ZHCSL88 OCTOBER 2020  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
See (1)  
MIN  
0.5  
0.5  
0.3  
20  
MAX  
UNIT  
V
Supply voltage, VCC and VL  
Voltage at coax pins  
6
6
VVL + 0.3  
20  
V
Voltage at logic pins  
V
Logic output current  
mA  
TXOUT output current  
SYNCOUT output current  
Junction temperature, TJ  
Continuous total power dissipation  
Internally limited  
Internally limited  
170  
See the Thermal Information  
150  
°C  
°C  
°C  
(2)  
Storage temperature, Tstg  
65  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating  
Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) Applicable before the device is installed in the final product.  
6.2 ESD Ratings  
VALUE  
UNIT  
V(ESD)  
Electrostatic discharge  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
±2000  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
MIN  
3
NOM  
MAX  
5.5  
UNIT  
V
VCC  
VL  
Analog supply voltage  
Logic supply voltage  
1.6  
5.5  
V
VI(pp)  
Input signal amplitude at RXIN  
1.12  
Vpp  
TXIN, DIRSET1, DIRSET2  
XTAL1, XTAL2  
70%VL  
VL  
VIH  
VIL  
High-level input voltage  
Low-level input voltage  
V
V
70%VCC  
VCC  
TXIN, DIRSET1, DIRSET2  
XTAL1, XTAL2  
0
0
30%VL  
30%VCC  
115  
1/tUI  
Data signaling rate  
Oscillator frequency  
9.6  
kbps  
MHz  
FOSC  
8.704  
50  
30 ppm  
30 ppm  
Load impedance between TXOUT to RXIN  
Load impedance between RXIN and GND at fC (channel)  
Bias resistor between BIAS and RES  
Bias resistor between RES and GND  
Pullup resistor between SYNCOUT and VCC  
Voltage at RES pin  
Ω
Ω
ZLOAD  
50  
R1  
4.1  
10  
kΩ  
kΩ  
kΩ  
V
R2  
RSYNC  
VRES  
CC  
1
0.7  
1.5  
Coupling capacitance between RXIN and coax (channel)  
Capacitance between BIAS and GND  
Operating free-air temperature  
220  
1
nF  
µF  
°C  
°C  
CBIAS  
TA  
120  
125  
40  
40  
TJ  
Junction temperature  
Copyright © 2021 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: SN65HVD64  
 
 
 
 
 
 
 
SN65HVD64  
ZHCSL88 OCTOBER 2020  
www.ti.com.cn  
6.4 Thermal Information  
VQFN  
THERMAL METRIC(1)  
UNIT  
RGT 16 Pins  
49.4  
RθJA  
RθJCtop  
RθJB  
ψJT  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
64.2  
Junction-to-board thermal resistance  
22.9  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
1.7  
22.9  
ψJB  
RθJCbot  
25  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: SN65HVD64  
 
 
SN65HVD64  
ZHCSL88 OCTOBER 2020  
www.ti.com.cn  
6.5 Electrical Characteristics  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
POWER SUPPLY  
TXIN = L (active)  
28  
25  
33  
31  
DIRSET1 = L  
DIRSET2 = H  
TXIN = H (quiescent)  
ICC  
Supply current  
mA  
TXIN = 115 kbps,  
50% duty cycle  
27  
12  
33  
DIRSET1 = H, DIRSET2 = H (standby)  
TXIN = H, RXIN = DC input  
VTXIN = VL  
17  
50  
IVL  
Logic supply current  
µA  
dB  
°C  
°C  
°C  
PSRR  
Receiver power supply rejection ratio  
Thermal shutdown rising  
45  
143  
123  
18  
60  
156  
136  
20  
TSD_RISE  
TSD_FALL  
TSD_HYS  
LOGIC PINS  
170  
147  
23  
Thermal shutdown falling  
Thermal shutdown hysteresis  
High-level logic output voltage  
(RXOUT, DIR)  
IOH = 4 mA for VL > 2.4 V,  
IOH = 2 mA for VL < 2.4 V  
VOH  
90%VVL  
V
V
Low-level logic output voltage  
(RXOUT, DIR)  
IOL = 4 mA for VL > 2.4 V,  
IOL = 2 mA for VL < 2.4 V  
VOL  
10%VVL  
COAX DRIVER  
Peak-to-peak output voltage at device pin  
VRES = 1.5 V (Maximum setting)  
VRES = 0.7 V (Minimum setting)  
2.24  
5
2.5  
TXOUT  
VO(PP)  
VPP  
1.17  
1.3  
(see 7-1)  
VRES = 1.5 V  
VRES = 0.7 V  
At TXOUT  
6
Peak-to-peak voltage at coax out  
(see 7-1)  
VO(PP)  
dBm  
0.3  
1
0.6  
mVpp  
dBm  
VO(OFF)  
Off-state output voltage  
Output emissions  
At coax out  
60  
Coupled to coaxial cable with characteristic  
impedance of 50 Ω, as shown in 6-1 (1) (2)  
N/A  
fO  
Output frequency  
2.176  
MHz  
ppm  
Output frequency variation  
100  
450  
f  
100  
At 100 kHz  
At 10 MHz  
0.03  
3.5  
ZO  
Output impedance  
TXOUT is also protected by a thermal shutdown  
circuit during short-circuit faults  
| IOS  
|
Short-circuit output current  
300  
mA  
COAX RECEIVER  
79  
18  
11  
112  
15  
21  
158  
mVPP  
dBm  
kΩ  
VIT  
Input threshold  
fIN = 2.176 MHz  
f = fO  
12  
ZIN  
Input impedance  
RECEIVER FILTER  
fPB  
Passband  
VRXIN = 1.12VP_P  
1.1  
1.1  
4.17  
4.17  
MHz  
MHz  
2.176-MHz carrier amplitude of 112.4 mVPP  
frequency band of spurious components with 800  
mVPP allowed.  
,
fREJ  
Receiver rejection range  
Receiver noise filter time (slow bit rate)  
Receiver noise filter time (fast bit rate)  
DIRSET for 9.6 kbps  
DIRSET for > 9.6 kbps  
4
2
µs  
µs  
tnoise filter  
XTAL AND SYNC  
II  
Input leakage current  
Output low voltage  
XTAL1, XTAL2, 0V < VIN < VCC  
15  
µA  
V
15  
VOL  
0.4  
SYNCOUT, with 1-kΩ resistor from SYNCOUT to VCC  
(1) Specified by design with a recommended 470-pF capacitor between RXIN and GND. Measurements above 150 MHz are determined  
by setup.  
(2) Conforms to AISG spectrum emissions mask, 3GPP TS 25.461, see 7-3.  
Copyright © 2021 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: SN65HVD64  
 
 
 
SN65HVD64  
ZHCSL88 OCTOBER 2020  
www.ti.com.cn  
6.6 Switching Characteristics  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
5
UNIT  
µs  
tpAQ, tpQA  
tr, tf  
Coax driver propagation delay  
Coax receiver output rise/fall time  
Receiver propagation delay  
See 7-1  
20  
ns  
CL = 15 pF, RL = 1 k; see 7-1  
See 7-2  
tPHL, tPLH  
5.5  
11  
µs  
VRXIN(ON) = 630 mVpp, VRXIN(OFF) < 5 mVpp,  
50% duty cycle  
40%  
40%  
60%  
60%  
Coax receiver output duty cycle  
Direction control active duration  
VRXIN(ON) = 200 mVpp, VRXIN(OFF) < 5 mVpp,  
50% duty cycle  
DIRSET2 = GND or OPEN, DIRSET1 = GND  
or OPEN  
1667  
tDIR  
µs  
ns  
DIRSET2 = GND, DIRSET1 = VL  
DIRSET2 = VL, DIRSET1 = VL  
417  
137  
Direction control skew  
(DIR to RXOUT)  
tDIRSKEW  
270  
tdis  
ten  
Standby disable delay  
Standby enable delay  
300 mVPP at 2.176 MHz on RXIN  
300 mVPP at 2.176 MHz on RXIN  
2
2
ms  
ms  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: SN65HVD64  
 
SN65HVD64  
ZHCSL88 OCTOBER 2020  
www.ti.com.cn  
6.7 Typical Characteristics  
10  
0
-50  
-60  
AISG Mask  
AISG Mask  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-70  
-80  
-90  
-100  
-110  
-120  
30M  
130M  
230M  
Frequency (Hz)  
330M  
0
10M  
20M  
30M  
Frequency (Hz)  
D003  
D002  
50% Duty Cycle  
CF = 470 pF  
50% Duty Cycle  
CF = 470 pF  
6-2. High-Frequency Emissions Spectrum With  
6-1. Low-Frequency Emissions Spectrum With  
9.6-kbps Signaling Rate  
9.6-kbps Signaling Rate  
10  
-50  
AISG Mask  
AISG Mask  
0
-60  
-70  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-80  
-90  
-100  
-110  
-120  
30M  
130M  
230M  
Frequency (Hz)  
330M  
0
10M  
20M  
30M  
Frequency (Hz)  
D005  
D004  
50% Duty Cycle  
CF = 470 pF  
50% Duty Cycle  
CF = 470 pF  
6-4. High-Frequency Emissions Spectrum With  
6-3. Low-Frequency Emissions Spectrum With  
38.4-kbps Signaling Rate  
38.4-kbps Signaling Rate  
10  
-50  
AISG Mask  
AISG Mask  
0
-60  
-70  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-80  
-90  
-100  
-110  
-120  
0
10M  
20M  
30M  
30M  
130M  
230M  
Frequency (Hz)  
330M  
Frequency (Hz)  
D006  
D007  
50% Duty Cycle  
CF = 470 pF  
50% Duty Cycle  
CF = 470 pF  
6-5. Low-Frequency Emissions Spectrum With  
6-6. High-Frequency Emissions Spectrum With  
115.2-kbps Signaling Rate  
115.2-kbps Signaling Rate  
Copyright © 2021 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: SN65HVD64  
 
 
SN65HVD64  
ZHCSL88 OCTOBER 2020  
www.ti.com.cn  
40  
35  
30  
25  
20  
15  
10  
5
6
5
4
3
2
1
0
-1  
-2  
0
0.1M  
1M  
10M  
100M  
0.7  
0.9  
1.1  
VRES Voltage (V)  
1.3  
1.5  
Frequency (Hz)  
D008  
D009  
6-7. Transmitter Output Impedance  
6-8. Transmit Power Adjustment  
27  
13  
12.9  
12.8  
12.7  
12.6  
12.5  
12.4  
12.3  
12.2  
12.1  
12  
26.5  
26  
25.5  
25  
24.5  
24  
3
3.5  
4 4.5  
Supply Voltage (V)  
5
5.5  
3
3.5  
4 4.5  
Supply Voltage (V)  
5
5.5  
D011  
D011  
TXIN = VL  
TXIN = VL  
6-9. Supply Current vs Supply Voltage While  
6-10. Supply Current vs Supply Voltage in  
Transmitting  
Standby Mode  
13.2  
13.1  
13  
7
6
5
4
3
2
1
0
12.9  
12.8  
12.7  
12.6  
12.5  
12.4  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (èC)  
3
3.5  
4 4.5  
Supply Voltage (V)  
5
5.5  
D012  
D013  
6-11. Supply Current vs Temperature in Standby  
6-12. Transmitter Output Power vs Supply  
Mode  
Voltage  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: SN65HVD64  
SN65HVD64  
ZHCSL88 OCTOBER 2020  
www.ti.com.cn  
7
6
5
4
3
2
1
0
30000  
25000  
20000  
15000  
10000  
5000  
0
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (èC)  
100  
1k  
10k 100k  
Frequency (Hz)  
1M  
5M  
D014  
D015  
6-13. Transmitter Output Power vs Temperature  
6-14. Receiver Input Impedance vs Frequency  
0.18  
360  
RTXOUT = Stable Low  
RTXOUT = Stable High  
0.17  
0.16  
0.15  
0.14  
0.13  
0.12  
0.11  
0.1  
355  
350  
345  
340  
0.09  
0.08  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (èC)  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (èC)  
D016  
D017  
6-15. Receiver Input Threshold vs Temperature  
6-16. DIR Output Delay vs Temperature  
60  
60  
50  
40  
30  
20  
10  
0
56  
52  
48  
44  
40  
-10  
-7  
-4  
Receiver Input (dBm)  
-1  
2
5
-10  
-7  
-4  
Receiver Input (dBm)  
-1  
2
5
D018  
D019  
6-17. Receiver Duty Cycle With 9.6 kbps  
6-18. Receiver Duty Cycle With 115.2 kbps  
Signaling Rate  
Signaling Rate  
Copyright © 2021 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: SN65HVD64  
SN65HVD64  
ZHCSL88 OCTOBER 2020  
www.ti.com.cn  
7 Parameter Measurement Information  
Signal generator rate is 115 kbps, 50% duty cycle. Rise and fall times are less than 6 ns, and nominal output  
levels are 0 V and 3 V. Coupling capacitor, CC, is 220 nF.  
Driver Amplitude Adjust  
RAMP  
RES  
XTAL2  
TXOUT  
2.176MH_z  
Crystal  
XTAL2  
50 Ω  
TXIN  
Signal  
Generator  
Coax Out  
Cc  
50 Ω  
RXIN  
V
L
0.5 V  
L
TXIN  
t
t
pAQ  
pQA  
VPP  
0.5 VPP  
TXOUT  
7-1. Measurement of Modem Driver Output Voltage With 50-Ω Loads  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: SN65HVD64  
 
 
SN65HVD64  
ZHCSL88 OCTOBER 2020  
www.ti.com.cn  
TXOUT  
50 Ω  
Coax In  
2.176MH_z  
Generator  
Received  
Data Out  
Cc  
RXIN  
Direction  
Control  
VPP  
0.5 V  
L
RXIN  
V
L
0.5 V  
L
RXOUT  
t
t
PHL  
PLH  
V
L
L
0.5 V  
DIR  
t
DIRSKEW  
7-2. Measurement of Modem Receiver Propagation Delays  
Copyright © 2021 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: SN65HVD64  
 
SN65HVD64  
ZHCSL88 OCTOBER 2020  
www.ti.com.cn  
7-3. AISG Emissions Template  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: SN65HVD64  
 
SN65HVD64  
ZHCSL88 OCTOBER 2020  
www.ti.com.cn  
8 Detailed Description  
8.1 Overview  
The SN65HVD64 transceiver modulates and demodulates signals between the logic (baseband) and a  
frequency suitable for long coaxial media. The SN65HVD64 device is an integrated AISG transceiver designed  
to meet the requirements of the Antenna Interface Standards Group v2.0 and v3.0 specification. The  
SN65HVD64 receiver integrates an active bandpass filter to enable demodulation of signals even in the  
presence of spurious frequency components. The filter has a 2.176-MHz center frequency. The transmitter  
supports adjustable output power levels from 0 dBm to 6 dBm delivered to the 50-Ω coax cable. The  
SN65HVD64 transmitter is compliant with the spectrum emission requirement provided by the AISG standard. A  
direction control output facilitates bus arbitration for an RS-485 interface. This device integrates an oscillator  
input for a crystal, and also accepts standard clock inputs to the oscillator.  
8.2 Functional Block Diagram  
VL  
3
VCC  
13  
1
9
SYNCOUT  
RES  
FILTER  
14  
15  
2
XTAL1  
XTAL2  
XTAL  
Buffer  
OOK  
MOD  
OUTPUT  
STAGE  
12  
TXOUT  
PREAMP  
2.176–MHz  
TXIN  
7
6
DIRSET1  
DIRSET2  
Control  
Logic  
FILTER  
5
DIR  
OOK  
DEMOD  
11  
Buffer  
RXIN  
2.176–MHz  
4
RXOUT  
Buffer  
COMP  
RECEIVER  
THRESHOLD  
10  
8
16  
GND  
BIAS  
GND  
8.3 Feature Description  
8.3.1 Coaxial Interface  
The SN65HVD64 transceiver enables the transfer of data between radio equipment by modulating baseband  
data to a carrier frequency of 2.176 MHz (per the AISG standard). The transmitter output amplitude can be  
configured from 0 dBm to 6 dBm in order to communicate over a variety of different links, and the output  
emissions spectrum is designed to be compliant to AISG limits. The receiver features an active bandpass filter  
circuit that helps to separate the carrier frequency data from other spurious frequency components.  
8.3.2 Reference Input  
The 2.176-MHz modulation frequency is derived from an input reference that is nominally 8.704 MHz. The input  
reference can come either from a crystal or from an oscillator circuit with a tolerance of up to 30 ppm.  
8.3.3 RS-485 Direction Control  
To facilitate bus arbitration of an RS-485 interface, the SN65HVD64 provides a direction control output that can  
be used to control the enable/disable controls of an RS-485 transceiver. The direction control output  
automatically toggles based on activity present on the coaxial input interface, and has an adjustable time  
constant (controlled by the DIRSET1 and DIRSET2 pins) in order to accommodate various signaling rates.  
Copyright © 2021 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: SN65HVD64  
 
 
 
 
SN65HVD64  
ZHCSL88 OCTOBER 2020  
www.ti.com.cn  
8.4 Device Functional Modes  
If DIRSET1 and DIRSET2 are in a logic high state, the device will be in standby mode. While in standby mode,  
the receiver functions normally, detecting carrier frequency activity on the RXIN pin and setting the RXOUT  
state. The transmitter circuits are not active in standby mode, thus the TXOUT pin is idle regardless of the logic  
state of TXIN. The supply current in standby mode is significantly reduced, allowing power savings when the  
node is not transmitting.  
When not in standby mode, the default power-on state is idle. When in idle mode, RXOUT is high, and TXOUT is  
quiet. The device transitions to receive mode when a valid modulated signal is detected on the RXIN line or the  
device transitions to transmit mode when TXIN goes low. The device stays in either receive or transmit mode  
until DIR time-out (nominal 16 bit times) after the last activity on RXOUT or TXIN.  
When in receive mode:  
RXOUT responds to all valid modulated signals on RXIN, whether from the local transmitter, a remote  
transmitter, or long noise burst.  
TXOUT responds to TXIN, generating 2.176-MHz signals on TXOUT when TXIN is low, and TXOUT is quiet  
when TXIN is high. (In normal operation, TXIN is expected to remain high when the device is in receive  
mode.)  
The device stays in receive mode until 16 bit times after the last rising edge on RXOUT, caused by valid  
modulated signal on the RXIN line.  
When in transmit mode:  
RXOUT stays high, regardless of the input signal on RXIN.  
TXOUT responds to TXIN, generating 2.176-MHz signals on TXOUT when TXIN is low, and TXOUT is quiet  
when TXIN is high.  
The device stays in transmit mode until 16 bit times after TXIN goes high.  
8-1 shows the driver functions. 8-2 shows the receiver functions. 8-1 shows the transitions between  
each state.  
8-1. Driver Function Table  
TXIN(1)  
[DIRSET1, DIRSET2]  
[L,L], [L,H] or [H,L]  
[H,H]  
TXOUT  
COMMENT  
Driver not active  
H
L
< 1 mVPP at 2.176 MHz  
VOPP at 2.176 MHz  
< 1 mVPP at 2.176 MHz  
Driver active  
X
Standby mode  
(1) H = High, L = Low, X = Indeterminate  
8-2. Receiver and DIR Function Table  
RXIN(1)  
RXOUT  
DIR  
COMMENT (see 8-1)  
IDLE mode (not transmitting or receiving)  
< VIT at 2.176 MHz for longer than DIR time-out  
RECEIVE mode (not already transmitting)  
< VIT at 2.176 MHz for less than tDIR time-out  
> VIT at 2.176 MHz for longer than tnoise filter  
TRANSMIT mode (not already receiving)  
X
H
L
No outgoing or incoming signal  
H
L
H
H
Incoming 1 bit, DIR stays HIGH for DIR time-out  
Incoming 0 bit, DIR output is HIGH  
H
L
Outgoing message, DIR stays LOW for DIR time-out  
(1) H = High, L = Low, X = Indeterminate  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: SN65HVD64  
 
 
 
 
 
SN65HVD64  
ZHCSL88 OCTOBER 2020  
www.ti.com.cn  
Receive 0  
Transmit 0  
RXIN 9  
RXOUT = L  
DIR = H  
TXOUT=Active  
DIR = L  
TXIN ;  
IDLE  
RXOUT = H  
TXOUT=Idle  
TXIN 9  
TXIN ;  
RXIN 9  
RXIN ;  
DIR = L  
Transmit 1  
Receive 1  
DIR Timeout  
DIR Timeout  
TXOUT=Idle  
DIR = L  
RXOUT = H  
DIR = H  
8-1. State Transition Diagram  
Copyright © 2021 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: SN65HVD64  
 
SN65HVD64  
ZHCSL88 OCTOBER 2020  
www.ti.com.cn  
9 Application and Implementation  
Note  
Information in the following applications sections is not part of the TI component specification, and TI  
does not warrant its accuracy or completeness. TIs customers are responsible for determining  
suitability of components for their purposes. Customers should validate and test their design  
implementation to confirm system functionality.  
9.1 Application Information  
9.1.1 Driver Amplitude Adjust  
The SN65HVD64 device can provide up to 2.5 V of peak-to-peak output signal at the TXOUT pin to compensate  
for potential loss within the external filter, cable, connections, and termination. External resistors are used to set  
the amplitude of the modulated driver output signal. Resistors connected across RES and BIAS set the output  
amplitude. The maximum peak-to-peak voltage at TXOUT is 2.5 V, corresponding to 6 dBm on the coaxial cable.  
The TXOUT voltage level can be adjusted by choice of resistors to set the voltage at the RES pin according to 方  
程式 1:  
VTXOUT (VPP) = (2.5 VPP × VRES (V)) / 1.5 V VRES (V) = 1.5 V × R2 / (R1 + R2) VTXOUT (VPP) = 2.5 VPP  
× R2 / (R1 + R2)  
(1)  
The voltage at the RES pin should be from 0.7 V to 1.5 V. Connect RES directly to the BIAS (R1 = 0 Ω) for  
maximum output level of 2.5 VPP. This gives a minimum voltage level at TXOUT of 1.2 VPP, corresponding to  
about 0 dBm at the coaxial cable. A 1-μF capacitor should be connected between the BIAS pin and GND. To  
obtain a nominal power level of 3 dBm at the feeder cable as the AISG standard requires, use R1 = 4.1 kΩ and  
R2 = 10 kΩ that provide 1.78 VPP at TXOUT.  
9.1.2 Direction Control  
In many applications the mast-top modem that receives data from the base distributes the received data through  
an RS-485 network to several mast-top devices. When the mast-top modem receives the first logic 0 bit (active  
modulated signal) it takes control of the mast-top RS-485 network by asserting the direction control signal. The  
duration of the direction control assertion should be optimized to pass a complete message of length B bits at  
the known signaling rate (1/tBIT) before relinquishing control of the mast-top RS-485 network. For example, if the  
messages are 10 bits in length (B=10) and the signaling rate is 9600 bits per second (tBIT = 0.104 ms) then a  
positive pulse of duration 1.7 ms is sufficient (with margin to allow for network propagation delays) to enable the  
mast-top RS-485 drivers to distribute each received message. 9-1 shows the assertion of direction control.  
Coax In  
Data Out  
Direction  
9-1. Assertion of Direction Control  
9.1.3 Direction Control Time Constant  
The time constant for the direction control function can be set by the control mode pins, DIRSET1 and DIRSET2.  
These pins should be set to correspond to the desired data rate. With no external connections to the control  
mode pins, the internal time constant is set to the maximum value, corresponding to the minimum data rate.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: SN65HVD64  
 
 
 
 
SN65HVD64  
ZHCSL88 OCTOBER 2020  
www.ti.com.cn  
9.1.4 Conversion Between dBm and Peak-to-Peak Voltage  
dBm = 20 × LOG10 [Volts-pp / SQRT(0.008 × Zo)] = 20 × LOG10 [VPP / 0.63] for Zo = 50 Ω  
VPP = SQRT(0.008 × Zo) × 10(dBm/20) = 0.63 × 10(dBm/20) for Zo = 50 Ω  
(2)  
(3)  
9-1 shows conversions between dBm and peak-to-peak voltage with a 50-Ω load, for various levels of  
interest including reference levels from the 3GPP TS 25.461 Technical Specification.  
9-1. Conversions Between dBM and Peak-to-Peak Voltage  
SIGNAL ON COAX  
dBm  
VPP  
1.12  
0.89  
0.71  
0.16  
0.11  
0.08  
0.006  
Maximum Driver ON Signal  
Nominal Driver ON Signal  
Minimum Driver ON Signal  
AISG Maximum Receiver Threshold  
Nominal Receiver Threshold  
Minimum Receiver Threshold  
Maximum Driver OFF Signal  
5
3
1
12  
15  
18  
40  
9.2 Typical Application  
The AISG On-Off Keying (OOK) interface allows for command, control, and diagnostic information to be  
communicated between a base station and the corresponding tower-mounted antennae. 9-2 shows a typical  
application.  
RF+  
Modulated Signals +  
Power (On Coax)  
(Twisted Pair)  
RS-485  
Signals  
Power  
RF  
Signals  
Diagnostics  
and Control  
9-2. Typical AISG Application  
9.2.1 Design Requirements  
An AISG transceiver is used to convert between digital logic-level signals and RF signals. The AISG standard  
requires an RF carrier frequency of 2.176 MHz with 100-ppm accuracy. The output signal of the driver, when  
active, should be from 1 dBm to 5 dBm. The receiver must be designed such that the input threshold is from –  
18 dBm to 12 dBm.  
9.2.2 Detailed Design Procedure  
To ensure accuracy of the carrier frequency, an input reference frequency equal to four times the carrier (that is,  
8.704 MHz) should be connected to the XTAL1 or XTAL2 inputs. This signal can come from a crystal (connected  
between XTAL1 and XTAL2) or from a PLL/clock generator circuit (connected to XTAL1 with XTAL2 grounded).  
The frequency accuracy must be within 100 ppm.  
Copyright © 2021 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: SN65HVD64  
 
 
 
SN65HVD64  
ZHCSL88 OCTOBER 2020  
www.ti.com.cn  
The driver output power level of the SN65HVD64 device can be adjusted through use of the RES pin. To align  
with AISG requirements, a nominal power level of 3 dBm should be configured by connecting a 4.1-kresistor  
between RES and BIAS and a 10-kresistor between RES and GND. 9-3 shows an example schematic.  
8.704 MHz  
VCC  
39 pF  
39 pF  
0.1 F  
VL  
220 nF  
470 pF  
49.9 Ω  
SYNCOUT  
TXIN  
TXOUT  
RXIN  
BIAS  
VL  
RXOUT  
RES  
4.1 kΩ  
0.1 F  
10 kΩ  
9-3. SN65HVD64 Schematic  
9.2.3 Application Curve  
9-4 shows the application curve for the SN65HVD64 device.  
9-4. SN65HVD64 Application Curve  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: SN65HVD64  
 
 
SN65HVD64  
ZHCSL88 OCTOBER 2020  
www.ti.com.cn  
10 Power Supply Recommendations  
The SN65HVD64 device has two power supply pins: VCC, which provides power to the analog circuitry, and VL,  
which is a logic supply. VCC should be operated from 3 V to 5.5 V, while VL can range from 1.6 V to 5.5 V to  
interface to different logic levels. Power supply decoupling capacitances of at least 0.1 µF should be placed as  
close as possible to each power supply pin.  
Copyright © 2021 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: SN65HVD64  
 
SN65HVD64  
ZHCSL88 OCTOBER 2020  
www.ti.com.cn  
11 Layout  
11.1 Layout Guidelines  
Best practices for high-speed PCB design should be observed because the coax interface to the SN65HVD64  
device operates at RF. The RF signaling traces should have a controlled characteristic impedance that is well-  
matched to the coaxial line. A continuous reference plane should be used to avoid impedance discontinuities.  
Power and ground distribution should be done through planes rather than traces to decrease series resistance  
and increase the effective decoupling capacitance on the power rails.  
11.2 Layout Example  
11-1. SN65HVD64 Layout  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: SN65HVD64  
 
 
 
SN65HVD64  
ZHCSL88 OCTOBER 2020  
www.ti.com.cn  
12 Device and Documentation Support  
TI offers an extensive line of development tools. Tools and software to evaluate the performance of the device,  
generate code, and develop solutions are listed below.  
12.1 Documentation Support  
12.1.1 Related Documentation  
12.2 Receiving Notification of Documentation Updates  
To receive notification of documentation updates, navigate to the device product folder on ti.com. Click on  
Subscribe to updates to register and receive a weekly digest of any product information that has changed. For  
change details, review the revision history included in any revised document.  
12.3 Support Resources  
TI E2Esupport forums are an engineer's go-to source for fast, verified answers and design help straight  
from the experts. Search existing answers or ask your own question to get the quick design help you need.  
Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do  
not necessarily reflect TI's views; see TI's Terms of Use.  
12.4 Trademarks  
TI E2Eis a trademark of Texas Instruments.  
AISG® is a registered trademark of Antenna Interface Standards Group, Ltd.  
所有商标均为其各自所有者的财产。  
12.5 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
12.6 Glossary  
TI Glossary  
This glossary lists and explains terms, acronyms, and definitions.  
Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2021 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: SN65HVD64  
 
 
 
 
 
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
24-Apr-2021  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
SN65HVD64RGTR  
ACTIVE  
VQFN  
RGT  
16  
3000 RoHS & Green  
NIPDAU  
Level-2-260C-1 YEAR  
-40 to 120  
HVD64  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OUTLINE  
RGT0016A  
VQFN - 1 mm max height  
S
C
A
L
E
3
.
6
0
0
PLASTIC QUAD FLATPACK - NO LEAD  
3.1  
2.9  
B
A
PIN 1 INDEX AREA  
3.1  
2.9  
C
1 MAX  
SEATING PLANE  
0.08  
0.05  
0.00  
1.45 0.1  
(0.2) TYP  
5
8
EXPOSED  
THERMAL PAD  
12X 0.5  
4
9
4X  
SYMM  
17  
1.5  
1
12  
0.30  
16X  
0.18  
13  
16  
0.1  
C A B  
PIN 1 ID  
(OPTIONAL)  
SYMM  
0.05  
0.5  
0.3  
16X  
4219032/A 02/2017  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
4. Reference JEDEC registration MO-220  
www.ti.com  
EXAMPLE BOARD LAYOUT  
RGT0016A  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(
1.45)  
SYMM  
16  
13  
16X (0.6)  
1
12  
16X (0.24)  
SYMM  
17  
(2.8)  
(0.475)  
TYP  
12X (0.5)  
9
4
(
0.2) TYP  
VIA  
5
8
(R0.05)  
ALL PAD CORNERS  
(0.475) TYP  
(2.8)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:20X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL  
EXPOSED METAL  
EXPOSED METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
SOLDER MASK  
DEFINED  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4219032/A 02/2017  
NOTES: (continued)  
5. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
6. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
RGT0016A  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(
1.34)  
13  
16  
16X (0.6)  
1
12  
16X (0.24)  
17  
SYMM  
(2.8)  
12X (0.5)  
9
4
METAL  
ALL AROUND  
5
8
SYMM  
(2.8)  
(R0.05) TYP  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD 17:  
86% PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE  
SCALE:25X  
4219032/A 02/2017  
NOTES: (continued)  
7. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI 提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,不保证没  
有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。这些资源如有变更,恕不另行通知。TI 授权您仅可  
将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。您无权使用任何其他 TI 知识产权或任何第三方知  
识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款 (https:www.ti.com.cn/zh-cn/legal/termsofsale.html) ti.com.cn 上其他适用条款/TI 产品随附的其他适用条款  
的约束。TI 提供这些资源并不会扩展或以其他方式更改 TI 针对 TI 产品发布的适用的担保或担保免责声明。IMPORTANT NOTICE  
邮寄地址:上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码:200122  
Copyright © 2021 德州仪器半导体技术(上海)有限公司  

相关型号:

SN65HVD70

3.3V、全双工 RS-485、12kV IEC ESD、400kbps 数据速率,带使能功能
TI

SN65HVD70D

3.3V、全双工 RS-485、12kV IEC ESD、400kbps 数据速率,带使能功能 | D | 14 | -40 to 125
TI

SN65HVD70DGS

3.3V、全双工 RS-485、12kV IEC ESD、400kbps 数据速率,带使能功能 | DGS | 10 | -40 to 125
TI

SN65HVD70DGSR

3.3V、全双工 RS-485、12kV IEC ESD、400kbps 数据速率,带使能功能 | DGS | 10 | -40 to 125
TI

SN65HVD70DR

3.3V、全双工 RS-485、12kV IEC ESD、400kbps 数据速率,带使能功能 | D | 14 | -40 to 125
TI

SN65HVD71

3.3V、全双工 RS-485、12kV IEC ESD、400kbps 数据速率,无使能功能
TI

SN65HVD71D

3.3V、全双工 RS-485、12kV IEC ESD、400kbps 数据速率,无使能功能 | D | 8 | -40 to 125
TI

SN65HVD71DGK

3.3V、全双工 RS-485、12kV IEC ESD、400kbps 数据速率,无使能功能 | DGK | 8 | -40 to 125
TI

SN65HVD71DGKR

3.3V、全双工 RS-485、12kV IEC ESD、400kbps 数据速率,无使能功能 | DGK | 8 | -40 to 125
TI

SN65HVD71DR

3.3V、全双工 RS-485、12kV IEC ESD、400kbps 数据速率,无使能功能 | D | 8 | -40 to 125
TI

SN65HVD72

3.3V-Supply RS-485 with IEC ESD Protection
TI

SN65HVD72D

3.3V-Supply RS-485 with IEC ESD Protection
TI