SN65HVD76 [TI]

3.3V、全双工 RS-485、12kV IEC ESD、50Mbps 数据速率,带使能功能;
SN65HVD76
型号: SN65HVD76
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

3.3V、全双工 RS-485、12kV IEC ESD、50Mbps 数据速率,带使能功能

文件: 总45页 (文件大小:1472K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
SN65HVD70, SN65HVD71, SN65HVD73  
SN65HVD74, SN65HVD76, SN65HVD77  
SLLSEI9G MAY 2014REVISED OCTOBER 2019  
SN65HVD7x 3.3-V Full-Duplex RS-485 Transceivers with ±12-kV IEC ESD  
These devices each combine a differential driver and  
a differential receiver, which operate from a single  
3.3-V power supply. Each driver and receiver has  
separate input and output pins for full-duplex bus  
communication designs. These devices all feature a  
wide common-mode voltage range which makes the  
devices suitable for multi-point applications over long  
cable runs.  
1 Features  
1
1/8 Unit-load options available  
Up to 256 Nodes on the bus  
Bus I/O Protection  
> ±30-kV HBM protection  
> ±12-kV IEC61000-4-2 Contact discharge  
> ±4-kV IEC61000-4-4 Fast transient burst  
The SN65HVD71, SN65HVD74, and SN65HVD77  
devices are fully enabled with no external enabling  
pins.  
Extended industrial temperature range:  
–40°C to 125°C  
Large receiver hysteresis (70 mV) for noise  
rejection  
The SN65HVD70, SN65HVD73, and SN65HVD76  
devices have active-high driver enables and active-  
low receiver enables. A low, less than 5-µA standby  
current can be achieved by disabling both the driver  
and receiver.  
Low power consumption  
< 1.1-mA Quiescent current during operation  
Low Standby supply current: 10 nA Typical,  
< 5 µA (maximum)  
These devices are characterized from –40°C to  
125°C.  
Glitch-free power-up and power-down protection  
for hot-plugging applications  
Device Information(1)  
5-V Tolerant logic inputs compatible with 3.3-V or  
5-V controllers  
PART NUMBER  
PACKAGE  
BODY SIZE (NOM)  
SN65HVD71  
SN65HVD74  
SN65HVD77  
MSOP (8)  
3.00 mm × 3.00 mm  
Signaling rate options optimized for:  
400 kbps (70, 71), 20 Mbps (73, 74), 50 Mbps  
(76, 77)  
SOIC (8)  
4.90 mm × 3.91 mm  
3.00 mm × 3.00 mm  
8.65 mm × 3.91 mm  
SN65HVD70  
SN65HVD73  
SN65HVD76  
MSOP (10)  
SOIC (14)  
2 Applications  
(1) For all available packages, see the orderable addendum at  
the end of the datasheet.  
E-meters  
Industrial automation  
Building automation  
Security and surveillance  
Encoders and decoders  
Block Diagram  
VCC  
VCC  
A
B
A
B
R
R
R
D
R
RE  
3 Description  
VCC  
DE  
D
These devices extend the RS-485 portfolio with a  
family of full-duplex transceivers with robust 3.3-V  
drivers and receivers and high levels of ESD  
protection. The ESD protection includes > ±30-kV  
HBM and > ±12-kV IEC61000-4-2 contact discharge.  
The large receiver hysteresis of the SN65HVD7x  
devices provides immunity to conducted differential  
noise and the wide operating temperature enables  
reliability in harsh operating environments. The  
SN65HVD7x devices are offered in a standard SOIC  
package as well as in a small-footprint MSOP  
package.  
Z
Y
Z
Y
D
D
GND  
GND  
SN65HVD70,  
SN65HVD73, and  
SN65HVD76  
SN65HVD71,  
SN65HVD74, and  
SN65HVD77  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
 
 
 
 
 
SN65HVD70, SN65HVD71, SN65HVD73  
SN65HVD74, SN65HVD76, SN65HVD77  
SLLSEI9G MAY 2014REVISED OCTOBER 2019  
www.ti.com  
Table of Contents  
9.1 Overview ................................................................. 17  
9.2 Functional Block Diagram ....................................... 17  
9.3 Feature Description................................................. 17  
9.4 Device Functional Modes........................................ 17  
10 Application and Implementation........................ 20  
10.1 Application Information.......................................... 20  
10.2 Typical Application ................................................ 20  
11 Power Supply Recommendations ..................... 26  
12 Layout................................................................... 26  
12.1 Layout Guidelines ................................................. 26  
12.2 Layout Example .................................................... 27  
13 Device and Documentation Support ................. 28  
13.1 Device Support...................................................... 28  
13.2 Related Links ........................................................ 28  
13.3 Receiving Notification of Documentation Updates 28  
13.4 Community Resources.......................................... 28  
13.5 Trademarks........................................................... 28  
13.6 Electrostatic Discharge Caution............................ 28  
13.7 Glossary................................................................ 28  
1
2
3
4
5
6
7
Features.................................................................. 1  
Applications ........................................................... 1  
Description ............................................................. 1  
Revision History..................................................... 2  
Device Comparison Table..................................... 3  
Pin Configuration and Functions......................... 4  
Specifications......................................................... 7  
7.1 Absolute Maximum Ratings ...................................... 7  
7.2 ESD Ratings.............................................................. 7  
7.3 Recommended Operating Conditions....................... 7  
7.4 Thermal Information — D Packages......................... 8  
7.5 Thermal Information — DGS and DGK Packages.... 8  
7.6 Power Dissipation ..................................................... 8  
7.7 Electrical Characteristics........................................... 8  
7.8 Switching Characteristics — 400 kbps...................... 9  
7.9 Switching Characteristics — 20 Mbps .................... 10  
7.10 Switching Characteristics — 50 Mbps .................. 10  
7.11 Typical Characteristics.......................................... 11  
Parameter Measurement Information ................ 13  
Detailed Description ............................................ 17  
8
9
14 Mechanical, Packaging, and Orderable  
Information ........................................................... 29  
4 Revision History  
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.  
Changes from Revision F (April 2019) to Revision G  
Page  
Changed device numbers to the 8-Pin DGK package image ................................................................................................ 4  
Changed device numbers to the 10-Pin DGS package image .............................................................................................. 5  
Changes from Revision E (October 2014) to Revision F  
Page  
Changed the Pin Configuration images.................................................................................................................................. 4  
Changed the Supply Voltage MAX value From: 5.5 V To 5 V in the Absolute Maximum Ratings ....................................... 7  
Moved Storage Temperature From the ESD table to the Absolute Maximum Ratings ......................................................... 7  
Changed the Hadleing Ratings table to ESD Ratings............................................................................................................ 7  
Added Note: to Supply voltage in the Recommended Operating Conditions......................................................................... 7  
Changes from Revision D (August 2014) to Revision E  
Page  
Updated the MSOP–10 logic diagram.................................................................................................................................... 5  
Changes from Revision C (July 2014) to Revision D  
Page  
Updated the Device Comparison Table.................................................................................................................................. 3  
Changes from Revision B (July 2014) to Revision C  
Page  
Updated SN65HVD70 and SN65HVD71 specifications to production values........................................................................ 3  
2
Submit Documentation Feedback  
Copyright © 2014–2019, Texas Instruments Incorporated  
Product Folder Links: SN65HVD70 SN65HVD71 SN65HVD73 SN65HVD74 SN65HVD76 SN65HVD77  
 
SN65HVD70, SN65HVD71, SN65HVD73  
SN65HVD74, SN65HVD76, SN65HVD77  
www.ti.com  
SLLSEI9G MAY 2014REVISED OCTOBER 2019  
Changes from Revision A (June 2014) to Revision B  
Page  
Updated the Device Comparison Table.................................................................................................................................. 3  
SN65HVD74 device status changed from Product Preview to Production Data.................................................................... 3  
Changes from Original (May 2014) to Revision A  
Page  
Changed device status from Product Preview to Production Data for mixed status ............................................................. 1  
5 Device Comparison Table  
PART NUMBER(1)  
SIGNALING RATE  
DUPLEX  
ENABLES  
PACKAGE  
NODES  
SOIC-14  
MSOP-10  
SN65HVD70  
up to 400 kbps  
up to 400 kbps  
up to 20 Mbps  
up to 20 Mbps  
up to 50 Mbps  
up to 50 Mbps  
Full  
DE, RE  
256  
256  
256  
256  
96  
SOIC-8  
MSOP-8  
SN65HVD71  
SN65HVD73  
SN65HVD74  
SN65HVD76  
SN65HVD77  
Full  
Full  
Full  
Full  
Full  
None  
DE, RE  
None  
SOIC-14  
MSOP-10  
SOIC-8  
MSOP-8  
SOIC-14  
MSOP-10  
DE, RE  
None  
SOIC-8  
MSOP-8  
96  
(1) For device status, see the Mechanical, Packaging, and Orderable Information section.  
Copyright © 2014–2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
3
Product Folder Links: SN65HVD70 SN65HVD71 SN65HVD73 SN65HVD74 SN65HVD76 SN65HVD77  
 
SN65HVD70, SN65HVD71, SN65HVD73  
SN65HVD74, SN65HVD76, SN65HVD77  
SLLSEI9G MAY 2014REVISED OCTOBER 2019  
www.ti.com  
6 Pin Configuration and Functions  
SN65HVD71, SN65HVD74, SN65HVD77  
8-Pin SOIC, D Package, and 8-Pin MSOP, DGK Package  
(Top View)  
SN65HVD1471  
8-Pin SOIC, D Package  
8
2
A
B
R
D
7
1
2
3
4
8
7
6
5
A
B
Z
Y
VCC  
R
5
6
D
3
Y
Z
GND  
Not to scale  
Pin Functions — SOIC-8 and MSOP-8  
PIN  
TYPE  
DESCRIPTION  
NAME  
NO.  
1
VCC  
R
Supply  
3-V to 3.6-V supply  
2
Digital output  
Digital input  
Receive data output  
D
3
Driver data input  
GND  
Y
4
Reference potential  
Bus output  
Local device ground  
5
Digital bus output, Y (Complementary to Z)  
Digital bus output, Z (Complementary to Y)  
Digital bus input, B (Complementary to A)  
Digital bus input, A (Complementary to B)  
Z
6
Bus output  
B
7
Bus input  
A
8
Bus input  
4
Submit Documentation Feedback  
Copyright © 2014–2019, Texas Instruments Incorporated  
Product Folder Links: SN65HVD70 SN65HVD71 SN65HVD73 SN65HVD74 SN65HVD76 SN65HVD77  
SN65HVD70, SN65HVD71, SN65HVD73  
SN65HVD74, SN65HVD76, SN65HVD77  
www.ti.com  
SLLSEI9G MAY 2014REVISED OCTOBER 2019  
SN65HVD70, SN65HVD73, SN65HVD76  
10-Pin MSOP, DGS Package  
(Top View)  
SN65HVD1470  
10-Pin MSOP, DGS Package  
3
R
RE  
DE  
D
1
2
3
4
5
10  
9
VCC  
A
6
4
7
2
8
B
9
7
Z
1
8
GND  
6
Y
Not to scale  
Pin Functions — MSOP–10  
PIN  
TYPE  
DESCRIPTION  
NAME  
R
NO.  
1
2
Digital output  
Digital input  
Digital input  
Digital input  
Receive data output  
RE  
DE  
D
Receive enable Low  
3
Driver enable High  
4
Driver data input  
GND  
Y
5
Reference potential  
Bus output  
Bus output  
Bus input  
Local device ground  
6
Digital bus output, Y (Complementary to Z)  
Digital bus output, Z (Complementary to Y)  
Digital bus input, B (Complementary to A)  
Digital bus input, A (Complementary to B)  
3-V to 3.6-V supply  
Z
7
B
8
A
9
Bus input  
VCC  
10  
Supply  
Copyright © 2014–2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
5
Product Folder Links: SN65HVD70 SN65HVD71 SN65HVD73 SN65HVD74 SN65HVD76 SN65HVD77  
SN65HVD70, SN65HVD71, SN65HVD73  
SN65HVD74, SN65HVD76, SN65HVD77  
SLLSEI9G MAY 2014REVISED OCTOBER 2019  
www.ti.com  
SN65HVD70, SN65HVD73, SN65HVD76  
14-Pin SOIC, D Package  
(Top View)  
SN65HVD1470  
14-Pin SOIC, D Package  
NC  
R
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
V
V
A
B
Z
Y
CC  
CC  
RE  
DE  
D
GND  
GND  
8
NC  
Not to scale  
Pin Functions — SOIC-14  
PIN  
TYPE  
DESCRIPTION  
NAME  
NO.  
1
NC  
No connect  
Not connected  
8
R
2
Digital output  
Digital input  
Digital input  
Digital input  
Receive data output  
Receive enable Low  
Driver enable High  
Driver data input  
RE  
DE  
D
3
4
5
6(1)  
7(1)  
9
GND  
Reference potential  
Local device ground  
Y
Z
B
A
Bus output  
Bus output  
Bus input  
Bus input  
Digital bus output, Y (Complementary to Z)  
Digital bus output, Z (Complementary to Y)  
Digital bus input, B (Complementary to A)  
Digital bus input, A (Complementary to B)  
10  
11  
12  
13(2)  
14(2)  
VCC  
Supply  
3-V to 3.6-V supply  
(1) Pin 6 and pin 7 are connected internally.  
(2) Pin 13 and pin 14 are connected internally.  
6
Submit Documentation Feedback  
Copyright © 2014–2019, Texas Instruments Incorporated  
Product Folder Links: SN65HVD70 SN65HVD71 SN65HVD73 SN65HVD74 SN65HVD76 SN65HVD77  
SN65HVD70, SN65HVD71, SN65HVD73  
SN65HVD74, SN65HVD76, SN65HVD77  
www.ti.com  
SLLSEI9G MAY 2014REVISED OCTOBER 2019  
7 Specifications  
7.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
–0.5  
–13  
MAX  
5
UNIT  
V
Supply voltage  
Voltage  
VCC  
Range at any bus pin (A, B, Y, or Z)  
16.5  
5.7  
V
Input voltage  
Range at any logic pin (D, DE, or RE)  
–0.3  
–100  
–24  
V
Voltage input range, transient pulse, any bus pin (A, B, Y, or Z) through 100 Ω  
Receiver output  
100  
24  
V
Output current  
mA  
°C  
°C  
Junction temperature, TJ  
170  
150  
Storage temperature range, Tstg  
–65  
See the Thermal  
Information table  
Continuous total power dissipation  
(1) Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings  
only and functional operation of the device at these or any other conditions beyond those indicated under recommended operating  
conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
7.2 ESD Ratings  
VALUE  
±8000  
±1500  
±300  
UNIT  
V
Human body model (HBM), per JEDEC specification JESD22-A114, all pins  
Charged device model (CDM), per JEDEC specification JESD22-C101, all pins  
Machine model (MM), all pins  
IEC 61000-4-2 ESD (Air-Gap Discharge), bus pins and GND(1)(2)  
IEC 61000-4-2 ESD (Contact Discharge), bus pins and GND  
IEC 61000-4-4 EFT (Fast transient or burst), bus pins and GND  
IEC 60749-26 ESD (Human Body Model), bus pins and GND(2)  
V
V
Electrostatic  
discharge  
V(ESD)  
±12000  
±12000  
±4000  
±30000  
V
V
V
V
(1) By inference from contact-discharge results, see the Application and Implementation section  
(2) Limited by tester capability.  
7.3 Recommended Operating Conditions  
MIN NOM MAX UNIT  
(1)  
VCC  
VI  
Supply voltage  
3
–7  
2
3.3  
3.6  
12  
V
V
(2)  
Input voltage at any bus pin (separately or common mode)  
VIH  
VIL  
VID  
IO  
High-level input voltage (Driver, driver enable, and receiver enable inputs)  
Low-level input voltage (Driver, driver enable, and receiver enable inputs)  
Differential input voltage  
VCC  
0.8  
12  
V
0
V
–12  
–60  
–8  
54  
V
Output current, Driver  
60  
mA  
mA  
Ω
IO  
Output current, Receiver  
8
RL  
CL  
Differential load resistance  
60  
50  
Differential load capacitance  
pF  
kbps  
HVD70, HVD71  
400  
20  
1/tUI  
Signaling rate  
HVD73, HVD74  
HVD76, HVD77  
Mbps  
°C  
50  
(3)  
TA  
TJ  
Operating free-air temperature (See the Application and Implementation for thermal  
–40  
–40  
125  
information)  
Junction Temperature  
150  
°C  
(1) Exposure to conditions beyond the recommended operation maximum for extended periods may affect device reliability.  
(2) The algebraic convention, in which the least positive (most negative) limit is designated as minimum is used in this data sheet.  
(3) Operation is specified for internal (junction) temperatures up to 150°C. Self-heating because of internal power dissipation should be  
considered for each application. Maximum junction temperature is internally limited by the thermal shut-down (TSD) circuit which  
disables the driver outputs when the junction temperature reaches 170°C.  
Copyright © 2014–2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
7
Product Folder Links: SN65HVD70 SN65HVD71 SN65HVD73 SN65HVD74 SN65HVD76 SN65HVD77  
SN65HVD70, SN65HVD71, SN65HVD73  
SN65HVD74, SN65HVD76, SN65HVD77  
SLLSEI9G MAY 2014REVISED OCTOBER 2019  
www.ti.com  
7.4 Thermal Information — D Packages  
THERMAL METRIC  
D
D
Unit  
(8 PINS)  
(14 PINS)  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
110.7  
54.7  
51.3  
9.2  
83.3  
42.9  
37.8  
9.3  
°C/W  
RθJC(top)  
RθJB  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Thermal shut-down junction temperature  
ψJB  
50.7  
37.5  
TJ(TSD)  
170  
°C  
7.5 Thermal Information — DGS and DGK Packages  
THERMAL METRIC  
DGS  
DGK  
Unit  
(10 PINS)  
(8 PINS)  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
165.5  
37.7  
86.4  
1.4  
168.7  
62.2  
89.5  
7.4  
°C/W  
RθJC(top)  
RθJB  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Thermal shut-down junction temperature  
ψJB  
84.8  
87.9  
TJ(TSD)  
170  
°C  
7.6 Power Dissipation  
PARAMETER  
TEST CONDITIONS  
VALUE  
150  
UNITS  
HVD70, HVD71  
HVD73, HVD74  
HVD76, HVD77  
HVD70, HVD71  
HVD73, HVD74  
HVD76, HVD77  
HVD70, HVD71  
HVD73, HVD74  
HVD76, HVD77  
RL = 300 Ω,  
CL = 50 pF (driver)  
Unterminated  
RS-422 load  
RS-485 load  
180  
mW  
Power Dissipation  
220  
driver and receiver enabled,  
VCC = 3.6 V, TJ = 150°C  
50% duty cycle square-wave signal at  
signaling rate:  
190  
RL = 100 Ω,  
CL = 50 pF (driver)  
PD  
220  
mW  
mW  
HVD70 and HVD71 at 400 kbps  
HVD73 and HVD74 at 20 Mbps  
HVD76 and HVD77 at 50 Mbps  
250  
230  
RL = 54 Ω,  
CL = 50 pF (driver)  
255  
285  
7.7 Electrical Characteristics  
over recommended operating range (unless otherwise specified)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
2
MAX UNIT  
RL = 60 Ω, 375 Ω on each  
1.5  
1.5  
2
V
V
V
output to –7 V to 12 V, See Figure 15  
RL = 54 Ω (RS-485), See Figure 16  
RL = 100 Ω (RS-422) TJ 0°C,  
|VOD  
|
Driver differential output voltage magnitude  
2
V
CC 3.2 V, See Figure 16  
Change in magnitude of driver differential output  
voltage  
Δ|VOD  
|
RL = 54 Ω, CL = 50 pF, See Figure 16  
–50  
1
0
VCC / 2  
0
50  
3
mV  
V
VOC(SS) Steady-state common-mode output voltage  
Change in differential driver output common-mode  
voltage  
ΔVOC  
Center of two 27-Ω load resistors, See Figure 16  
–50  
50  
mV  
VOC(PP) Peak-to-peak driver common-mode output voltage  
500  
15  
mV  
pF  
COD  
VIT+  
Differential output capacitance  
Positive-going receiver differential input voltage  
threshold  
(1)  
See  
-70  
–20  
mV  
mV  
mV  
Negative-going receiver differential input voltage  
threshold  
(1)  
VIT–  
Vhys  
–200  
40  
-140 See  
70  
Receiver differential input voltage threshold hysteresis  
(VIT+ – VIT–  
)
(1) Under any specific conditions, VIT+ is assured to be at least Vhys higher than VIT–  
Submit Documentation Feedback  
Product Folder Links: SN65HVD70 SN65HVD71 SN65HVD73 SN65HVD74 SN65HVD76 SN65HVD77  
.
8
Copyright © 2014–2019, Texas Instruments Incorporated  
 
SN65HVD70, SN65HVD71, SN65HVD73  
SN65HVD74, SN65HVD76, SN65HVD77  
www.ti.com  
SLLSEI9G MAY 2014REVISED OCTOBER 2019  
Electrical Characteristics (continued)  
over recommended operating range (unless otherwise specified)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
VOH  
VOL  
Receiver high-level output voltage  
Receiver low-level output voltage  
IOH = –8 mA  
IOL = 8 mA  
2.4 VCC–0.3  
0.2  
V
0.4  
3
V
Driver input, driver enable, and receiver enable input  
current  
II  
–3  
–1  
µA  
Receiver output high-impedance  
current  
HVD70, HVD73,  
HVD76  
IOZ  
IOS  
VO = 0 V or VCC, RE = VCC  
1
µA  
Driver short-circuit output current  
–150  
150  
125  
mA  
VI = 12 V  
VI = –7 V  
VI = 12 V  
VI = –7 V  
75  
–40  
HVD70,  
HVD73  
–100  
–267  
VCC = 0 to ROC (max),  
DE = GND  
II  
Bus input current (disabled driver)  
µA  
240  
333  
HVD76  
–180  
Driver and receiver  
enabled  
DE = VCC, RE = GND,  
No load  
750  
350  
650  
0.1  
1100  
650  
800  
5
µA  
µA  
µA  
µA  
Driver enabled, receiver DE = VCC, RE = VCC  
disabled No load  
,
ICC  
Supply current (quiescent)  
Supply current (dynamic)  
Driver disabled, receiver DE = GND, RE = GND,  
enabled  
No load  
Driver and receiver  
disabled  
DE = GND, D = open,  
RE = VCC, No load  
See the Typical Characteristics section  
Tsd  
Thermal Shut-down junction temperature  
170  
°C  
7.8 Switching Characteristics — 400 kbps  
400-kbps devices (SN65HVD70, SN65HVD71) bit time 2 µs (over recommended operating conditions)  
PARAMETER  
TEST CONDITIONS  
MIN TYP MAX UNIT  
DRIVER  
tr, tf  
Driver differential output rise/fall time  
Driver propagation delay  
100 400 750  
350 550  
40  
ns  
ns  
ns  
ns  
ns  
µs  
tPHL, tPLH  
tSK(P)  
RL = 54 Ω, CL = 50 pF  
See Figure 17  
Driver pulse skew, |tPHL – tPLH  
|
tPHZ, tPLZ  
Driver disable time  
50 200  
300 750  
See Figure 18  
and Figure 19  
HVD70  
Receiver enabled  
Receiver disabled  
tPZH, tPZL  
Driver enable time  
3
8
RECEIVER  
tr, tf  
Receiver output rise/fall time  
13  
25  
ns  
ns  
ns  
ns  
ns  
µs  
tPHL, tPLH  
tSK(P)  
Receiver propagation delay time  
Receiver pulse skew, |tPHL – tPLH  
Receiver disable time  
CL = 15 pF  
See Figure 20  
70 110  
7
|
tPLZ, tPHZ  
45  
60  
tPZL(1)  
tPZH(1)  
tPZL(2)  
tPZH(2)  
,
Driver enabled  
Driver disabled  
See Figure 21  
See Figure 22  
20 115  
HVD70  
3
8
Receiver enable time  
,
Copyright © 2014–2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
9
Product Folder Links: SN65HVD70 SN65HVD71 SN65HVD73 SN65HVD74 SN65HVD76 SN65HVD77  
SN65HVD70, SN65HVD71, SN65HVD73  
SN65HVD74, SN65HVD76, SN65HVD77  
SLLSEI9G MAY 2014REVISED OCTOBER 2019  
www.ti.com  
7.9 Switching Characteristics — 20 Mbps  
20-Mbps devices (SN65HVD73, SN65HVD74) bit time 50 ns (over recommended operating conditions)  
PARAMETER  
TEST CONDITIONS  
MIN TYP MAX UNIT  
DRIVER  
tr, tf  
Driver differential output rise/fall time  
Driver propagation delay  
4
4
7
10  
0
14  
20  
4
ns  
ns  
ns  
ns  
ns  
µs  
tPHL, tPLH  
tSK(P)  
RL = 54 Ω, CL = 50 pF  
See Figure 17  
Driver pulse skew, |tPHL – tPLH  
|
tPHZ, tPLZ  
Driver disable time  
12  
10  
3
25  
20  
8
See Figure 18 and  
Figure 19  
HVD73  
Receiver enabled  
Receiver disabled  
tPZH, tPZL  
Driver enable time  
RECEIVER  
tr, tf  
Receiver output rise/fall time  
5
60  
0
10  
90  
5
ns  
ns  
ns  
ns  
ns  
µs  
tPHL, tPLH  
tSK(P)  
Receiver propagation delay time  
Receiver pulse skew, |tPHL – tPLH  
Receiver disable time  
CL = 15 pF  
See Figure 20  
|
tPLZ, tPHZ  
17  
12  
3
25  
90  
8
HVD73  
Driver enabled  
Driver disabled  
See Figure 21  
See Figure 22  
tpZL(1), tPZH(1)  
tPZL(2), tPZH(2)  
Receiver enable time  
7.10 Switching Characteristics — 50 Mbps  
50-Mbps devices (SN65HVD76, SN65HVD77) bit time 20 ns (over recommended operating conditions)  
PARAMETER  
TEST CONDITIONS  
MIN TYP MAX UNIT  
DRIVER  
tr, tf  
Driver differential output rise/fall time  
Driver propagation delay  
2
3
3
10  
0
6
16  
3.5  
20  
20  
8
ns  
ns  
ns  
ns  
ns  
µs  
tPHL, tPLH  
tSK(P)  
RL = 54 Ω, CL = 50 pF  
See Figure 17  
Driver pulse skew, |tPHL – tPLH  
|
tPHZ, tPLZ  
Driver disable time  
10  
10  
3
See Figure 18 and  
Figure 19  
HVD76  
Receiver enabled  
Receiver disabled  
tPZH, tPZL  
Driver enable time  
RECEIVER  
tr, tf  
Receiver output rise/fall time  
1
3
25  
0
6
40  
2
ns  
ns  
ns  
ns  
ns  
µs  
tPHL, tPLH  
tSK(P)  
Receiver propagation delay time  
Receiver pulse skew, |tPHL – tPLH  
Receiver disable time  
CL = 15 pF  
See Figure 20  
|
tPLZ, tPHZ  
8
15  
90  
8
HVD76  
Driver enabled  
Driver disabled  
See Figure 21  
See Figure 22  
8
tpZL(1), tPZH(1)  
tPZL(2), tPZH(2)  
Receiver enable time  
3
10  
Submit Documentation Feedback  
Copyright © 2014–2019, Texas Instruments Incorporated  
Product Folder Links: SN65HVD70 SN65HVD71 SN65HVD73 SN65HVD74 SN65HVD76 SN65HVD77  
SN65HVD70, SN65HVD71, SN65HVD73  
SN65HVD74, SN65HVD76, SN65HVD77  
www.ti.com  
SLLSEI9G MAY 2014REVISED OCTOBER 2019  
7.11 Typical Characteristics  
3.6  
3.3  
3
3.5  
3
VOH  
VOL  
100 W Load Line  
60 W Load Line  
2.7  
2.4  
2.1  
1.8  
1.5  
1.2  
0.9  
0.6  
0.3  
0
2.5  
2
1.5  
1
0.5  
0
0
10  
20  
30  
Driver Output Current (mA)  
40  
50  
60  
70  
80  
90 100  
0
10  
20  
30  
Driver Output Current (mA)  
40  
50  
60  
70  
80  
90 100  
D001  
D002  
Figure 1. Driver Output Voltage vs Driver Output Current  
Figure 2. Driver Differential-Output Voltage vs Driver Output  
Current  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
2.2  
2.15  
2.1  
2.05  
2
1.95  
1.9  
0
-7  
-5  
-3  
-1  
Driver Common-Mode Voltage (V)  
1
3
5
7
9
11  
0
0.5  
1
1.5  
Supply Voltage (V)  
2
2.5  
3
3.5  
D003  
D004  
Figure 3. Driver Differential-Output Voltage vs Driver  
Common-Mode Voltage  
Figure 4. Driver Output Current vs Supply Voltage  
360  
355  
350  
345  
340  
335  
330  
325  
320  
315  
360  
355  
350  
345  
340  
335  
330  
325  
320  
315  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
Temperature (èC)  
Temperature (èC)  
D009  
D010  
Figure 5. SN65HVD70, SN65HVD71 Driver Rise and Fall Time  
vs Temperature  
Figure 6. SN65HVD70, SN65HVD71 Driver Propagation Delay  
vs Temperature  
Copyright © 2014–2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
11  
Product Folder Links: SN65HVD70 SN65HVD71 SN65HVD73 SN65HVD74 SN65HVD76 SN65HVD77  
SN65HVD70, SN65HVD71, SN65HVD73  
SN65HVD74, SN65HVD76, SN65HVD77  
SLLSEI9G MAY 2014REVISED OCTOBER 2019  
www.ti.com  
Typical Characteristics (continued)  
10  
9
8
7
6
5
4
3
2
1
0
14  
12  
10  
8
6
4
2
0
-40  
-20  
0
20  
40  
60  
80  
100  
120  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
Temperature (èC)  
Temperature (èC)  
D005  
D006  
Figure 7. SN65HVD73, SN65HVD74 Driver Rise and Fall Time  
vs Temperature  
Figure 8. SN65HVD73, SN65HVD74 Driver Propagation Delay  
vs Temperature  
4
3.5  
3
12  
10  
8
2.5  
2
6
1.5  
1
4
2
0.5  
0
0
-40  
-20  
0
20  
40  
60  
80  
100  
120  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
Temperature (èC)  
Temperature (èC)  
D011  
D012  
Figure 9. SN65HVD76, SN65HVD77 Driver Rise and Fall Time  
vs Temperature  
Figure 10. SN65HVD76, SN65HVD77 Driver Propagation  
Delay vs Temperature  
80  
42  
41.8  
41.6  
41.4  
41.2  
41  
70  
60  
50  
40  
30  
20  
10  
0
0
0.05  
0.1  
0.15  
Signaling Rate (Mbps)  
0.2  
0.25  
0.3  
0.35  
0.4  
0
2
4
6
8
Signaling Rate (Mbps)  
10  
12  
14  
16  
18  
20  
D013  
D007  
VCC = 3.3 V  
TA = 25°C  
Figure 11. SN65HVD70, SN65HVD71 Supply Current vs  
Signal Rate  
Figure 12. SN65HVD73, SN65HVD74 Supply Current vs  
Signal Rate  
12  
Submit Documentation Feedback  
Copyright © 2014–2019, Texas Instruments Incorporated  
Product Folder Links: SN65HVD70 SN65HVD71 SN65HVD73 SN65HVD74 SN65HVD76 SN65HVD77  
SN65HVD70, SN65HVD71, SN65HVD73  
SN65HVD74, SN65HVD76, SN65HVD77  
www.ti.com  
SLLSEI9G MAY 2014REVISED OCTOBER 2019  
Typical Characteristics (continued)  
80  
70  
60  
50  
40  
30  
20  
10  
0
4
3.5  
3
2.5  
2
1.5  
1
VCM = 12 V  
VCM = 0 V  
VCM = -7 V  
0.5  
0
0
5
10  
15  
20  
25  
30  
Signaling Rate (Mbps)  
35  
40  
45  
50  
-150  
-130  
-110 -90  
Differential Input Voltage (mV)  
-70  
-50  
D014  
D008  
VCC = 3.3 V  
TA = 25°C  
Figure 13. SN65HVD76, SN65HVD77 Supply Current vs  
Signal Rate  
Figure 14. Receiver Output vs Input  
8 Parameter Measurement Information  
The input generator rate is 100 kbps with 50% duty cycle, than 6-ns rise and fall times, and 50-Ω output  
impedance.  
375 W ±1%  
VCC  
DE  
Y
Z
D
VOD  
0 V or 3 V  
60 W ±1%  
+
_
–7 V < V(test) < 12 V  
375 W ±1%  
S0301-01  
Figure 15. Measurement of Driver Differential Output Voltage With Common-Mode Load  
V(Y)  
Y
Z
RL / 2  
RL / 2  
Y
Z
V(Z)  
D
VOD  
0 V or 3 V  
VOC(PP)  
DVOC(SS)  
VOC  
CL  
VOC  
S0302-01  
Figure 16. Measurement of Driver Differential and Common-Mode Output With RS-485 Load  
Copyright © 2014–2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
13  
Product Folder Links: SN65HVD70 SN65HVD71 SN65HVD73 SN65HVD74 SN65HVD76 SN65HVD77  
SN65HVD70, SN65HVD71, SN65HVD73  
SN65HVD74, SN65HVD76, SN65HVD77  
SLLSEI9G MAY 2014REVISED OCTOBER 2019  
www.ti.com  
Parameter Measurement Information (continued)  
50%  
50%  
Y
Z
»
»
W
W
Figure 17. Measurement of Driver Differential Output Rise and Fall Times and Propagation Delays  
3 V  
Y
Z
S1  
VO  
D
VI  
50%  
50%  
3 V  
0 V  
DE  
RL = 110 W  
± 1%  
CL = 50 pF ±20%  
tPZH  
VOH  
90%  
Input  
Generator  
CL Includes Fixture  
50 W  
VI  
and Instrumentation  
Capacitance  
VO  
50%  
» 0 V  
tPHZ  
S0304-01  
D at 3 V to test non-inverting output, D at 0 V to test inverting output.  
Figure 18. Measurement of Driver Enable and Disable Times with Active-High Output and Pulldown Load  
3 V  
RL = 110 W  
±1%  
» 3 V  
Y
Z
VI  
50%  
50%  
S1  
D
VO  
3 V  
0 V  
tPZL  
tPLZ  
DE  
CL = 50 pF ±20%  
» 3 V  
Input  
Generator  
VI  
50 W  
CL Includes Fixture  
VO  
50%  
and Instrumentation  
Capacitance  
10%  
VOL  
S0305-01  
D at 0 V to test non-inverting output, D at 3 V to test inverting output.  
Figure 19. Measurement of Driver Enable and Disable Times with Active-Low Output and Pullup Load  
3 V  
A
VI  
50%  
50%  
VO  
R
Input  
Generator  
50 W  
0 V  
VI  
B
tPLH  
tPHL  
1.5 V  
0 V  
CL = 15 pF ±20%  
VOH  
RE  
90% 90%  
VO  
50%  
10%  
50%  
10%  
VOL  
CL Includes Fixture  
tr  
tf  
and Instrumentation  
Capacitance  
S0306-01  
Figure 20. Measurement of Receiver Output Rise and Fall Times and Propagation Delays  
14  
Submit Documentation Feedback  
Copyright © 2014–2019, Texas Instruments Incorporated  
Product Folder Links: SN65HVD70 SN65HVD71 SN65HVD73 SN65HVD74 SN65HVD76 SN65HVD77  
SN65HVD70, SN65HVD71, SN65HVD73  
SN65HVD74, SN65HVD76, SN65HVD77  
www.ti.com  
SLLSEI9G MAY 2014REVISED OCTOBER 2019  
Parameter Measurement Information (continued)  
3 V  
DE  
VCC  
Y
Z
A
B
VO  
1 kW ± 1%  
CL = 15 pF ±20%  
R
D
0 V or 3 V  
S1  
RE  
CL Includes Fixture  
and Instrumentation  
Capacitance  
Input  
Generator  
50 W  
VI  
3 V  
VI  
50%  
50%  
0 V  
tPZH(1)  
tPHZ  
VOH  
D at 3 V  
S1 to GND  
90%  
VO  
50%  
» 0 V  
tPZL(1)  
tPLZ  
VCC  
D at 0 V  
S1 to VCC  
VO  
50%  
10%  
VOL  
S0307-01  
Figure 21. Measurement of Receiver Enable and Disable Times With Driver Enabled  
Copyright © 2014–2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
15  
Product Folder Links: SN65HVD70 SN65HVD71 SN65HVD73 SN65HVD74 SN65HVD76 SN65HVD77  
SN65HVD70, SN65HVD71, SN65HVD73  
SN65HVD74, SN65HVD76, SN65HVD77  
SLLSEI9G MAY 2014REVISED OCTOBER 2019  
www.ti.com  
Parameter Measurement Information (continued)  
VCC  
A
B
VO  
0 V or 1.5 V  
1.5 V or 0 V  
1 kW ± 1%  
CL = 15 pF ±20%  
R
S1  
RE  
CL Includes Fixture  
and Instrumentation  
Capacitance  
Input  
Generator  
50 W  
VI  
3 V  
VI  
50%  
0 V  
tPZH(2)  
VOH  
A at 1.5 V  
B at 0 V  
S1 to GND  
VO  
50%  
GND  
VCC  
tPZL(2)  
A at 0 V  
B at 1.5 V  
S1 to VCC  
VO  
50%  
VOL  
S0308-01  
Figure 22. Measurement of Receiver Enable Times With Driver Disabled  
16  
Submit Documentation Feedback  
Copyright © 2014–2019, Texas Instruments Incorporated  
Product Folder Links: SN65HVD70 SN65HVD71 SN65HVD73 SN65HVD74 SN65HVD76 SN65HVD77  
SN65HVD70, SN65HVD71, SN65HVD73  
SN65HVD74, SN65HVD76, SN65HVD77  
www.ti.com  
SLLSEI9G MAY 2014REVISED OCTOBER 2019  
9 Detailed Description  
9.1 Overview  
The SN65HVD70, SN65HVD71, SN65HVD73, SN65HVD74, SN65HVD76, and SN65HVD77 devices are low-  
power, full-duplex RS-485 transceivers available in three speed grades suitable for data transmission up to 400  
kbps, 20 Mbps, and 50 Mbps.  
The SN65HVD71, SN65HVD74, and SN65HVD77 are fully enabled with no external enabling pins. The  
SN65HVD70, SN65HVD73, and SN65HVD76 have active-high driver enables and active-low receiver enables. A  
standby current of less than 5 µA can be achieved by disabling both driver and receiver.  
9.2 Functional Block Diagram  
VCC  
VCC  
A
B
A
B
R
R
R
D
R
RE  
VCC  
DE  
D
Z
Y
Z
Y
D
D
GND  
GND  
Figure 23. Block Diagram  
SN65HVD70, SN65HVD73, and SN65HVD76  
Figure 24. Block Diagram  
SN65HVD71, SN65HVD74, and SN65HVD77  
9.3 Feature Description  
Internal ESD protection circuits protect the transceiver against Electrostatic Discharges (ESD) according to  
IEC61000-4-2 of up to ±12 kV, and against electrical fast transients (EFT) according to IEC61000-4-4 of up to ±4  
kV.  
The SN65HVD7x full-duplex family provides internal biasing of the receiver input thresholds in combination with  
large input-threshold hysteresis. At a positive input threshold of VIT+ = –20 mV and an input hysteresis of Vhys  
=
40 mV, the receiver output remains logic high under a bus-idle or bus-short condition even in the presence of  
120 mVPP differential noise without the need for external failsafe biasing resistors.  
Device operation is specified over a wide temperature range from –40°C to 125°C.  
9.4 Device Functional Modes  
For the SN65HVD70, SN65HVD73, and SN65HVD76, when the driver enable pin, DE, is logic high, the  
differential outputs Y and Z follow the logic states at data input D. A logic high at D causes Y to turn high and Z  
to turn low. In this case the differential output voltage defined as VOD = V(Y) – V(Z) is positive. When D is low, the  
output states reverse, Z turns high, Y becomes low, and VOD is negative.  
When DE is low, both outputs turn high-impedance. In this condition the logic state at D is irrelevant. The DE pin  
has an internal pulldown resistor to ground, thus when left open the driver is disabled (high-impedance) by  
default. The D pin has an internal pullup resistor to VCC, thus, when left open while the driver is enabled, output Y  
turns high and Z turns low.  
Table 1. Driver Function Table SN65HVD70, SN65HVD73, SN65HVD76  
INPUT  
ENABLE  
OUTPUTS  
FUNCTION  
D
DE  
Y
Z
L
H
H
H
L
Actively drives the bus high  
Actively drives the bus low  
Driver disabled  
L
X
H
L
H
Z
Z
L
Z
Z
H
X
OPEN  
H
Driver disabled by default  
Actively drives the bus high by default  
OPEN  
Copyright © 2014–2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
17  
Product Folder Links: SN65HVD70 SN65HVD71 SN65HVD73 SN65HVD74 SN65HVD76 SN65HVD77  
SN65HVD70, SN65HVD71, SN65HVD73  
SN65HVD74, SN65HVD76, SN65HVD77  
SLLSEI9G MAY 2014REVISED OCTOBER 2019  
www.ti.com  
When the receiver enable pin, RE, is logic low, the receiver is enabled. When the differential input voltage  
defined as VID = V(A) – V(B) is positive and higher than the positive input threshold, VIT+, the receiver output, R,  
turns high. When VID is negative and less than the negative and lower than the negative input threshold, VIT–, the  
receiver output, R, turns low. If VID is between VIT+ and VIT– the output is indeterminate.  
When RE is logic high or left open, the receiver output is high-impedance and the magnitude and polarity of VID  
are irrelevant. Internal biasing of the receiver inputs causes the output to go failsafe-high when the transceiver is  
disconnected from the bus (open-circuit), the bus lines are shorted (short-circuit), or the bus is not actively driven  
(idle bus).  
Table 2. Receiver Function Table SN65HVD70, SN65HVD73, SN65HVD76  
DIFFERENTIAL INPUT  
VID = V(A) – V(B)  
VIT+ < VID  
ENABLE  
OUTPUT FUNCTION  
R
RE  
L
H
?
Receives valid bus High  
VIT– < VID < VIT+  
VID < VIT–  
L
Indeterminate bus state  
Receives valid bus Low  
Receiver disabled  
L
L
X
H
Z
Z
H
H
H
X
OPEN  
Receiver disabled by default  
Fail-safe high output  
Fail-safe high output  
Fail-safe high output  
Open-circuit bus  
Short-circuit bus  
Idle (terminated) bus  
L
L
L
For the SN65HVD71, HVD74, and HVD77, the driver and receiver are fully enabled, thus the differential outputs  
Y and Z follow the logic states at data input D at all times. A logic high at D causes Y to turn high and Z to turn  
low. In this case the differential output voltage defined as VOD = V(Y) – V(Z) is positive. When D is low, the output  
states reverse, Z turns high, Y becomes low, and VOD is negative. The D pin has an internal pullup resistor to  
VCC, thus, when left open while the driver is enabled, output Y turns high and Z turns low.  
Table 3. Driver Function Table SN65HVD71, SN65HVD74, SN65HVD77  
INPUT  
OUTPUTS  
FUNCTION  
D
H
Y
H
L
Z
L
Actively drives the bus High  
L
H
L
Actively drives the bus Low  
OPEN  
H
Actively drives the bus High by default  
When the differential input voltage defined as VID = V(A) – V(B) is positive and higher than the positive input  
threshold, VIT+, the receiver output, R, turns high. When VID is negative and less than the negative input  
threshold, VIT–, the receiver output, R, turns low. If VID is between VIT+ and VIT– the output is indeterminate.  
Internal biasing of the receiver inputs causes the output to go failsafe-high when the transceiver is disconnected  
from the bus (open-circuit), the bus lines are shorted (short-circuit), or the bus is not actively driven (idle bus).  
Table 4. Receiver Function Table SN65HVD71, SN65HVD74, SN65HVD77  
DIFFERENTIAL INPUT  
VID = V(A) – V(B)  
VIT+ < VID  
OUTPUT  
FUNCTION  
R
H
?
Receives valid bus High  
Indeterminate bus state  
Receives valid bus Low  
Fail-safe high output  
Fail-safe high output  
Fail-safe high output  
VIT– < VID < VIT+  
VID < VIT–  
L
Open-circuit bus  
Short-circuit bus  
Idle (terminated) bus  
H
H
H
18  
Submit Documentation Feedback  
Copyright © 2014–2019, Texas Instruments Incorporated  
Product Folder Links: SN65HVD70 SN65HVD71 SN65HVD73 SN65HVD74 SN65HVD76 SN65HVD77  
SN65HVD70, SN65HVD71, SN65HVD73  
SN65HVD74, SN65HVD76, SN65HVD77  
www.ti.com  
SLLSEI9G MAY 2014REVISED OCTOBER 2019  
9.4.1 Equivalent Circuits  
V
V
CC  
CC  
1 M  
1.5 kꢀ  
1.5 k  
D, RE  
DE  
1 Mꢀ  
9 V  
9 V  
Figure 25. D and RE Inputs  
Figure 26. DE Input  
V
CC  
V
CC  
R2  
R2  
R1  
R1  
R
A
B
R
9 V  
16 V  
R3  
R3  
Figure 27. R Output  
Figure 28. Receiver Inputs  
V
CC  
Y
Z
16 V  
Figure 29. Driver Outputs  
Copyright © 2014–2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
19  
Product Folder Links: SN65HVD70 SN65HVD71 SN65HVD73 SN65HVD74 SN65HVD76 SN65HVD77  
SN65HVD70, SN65HVD71, SN65HVD73  
SN65HVD74, SN65HVD76, SN65HVD77  
SLLSEI9G MAY 2014REVISED OCTOBER 2019  
www.ti.com  
10 Application and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
10.1 Application Information  
The SN65HVD7x family consists of full-duplex RS-485 transceivers commonly used for asynchronous data  
transmissions. Full-duplex implementation requires two signal pairs (four wires), and allows each node to  
transmit data on one pair while simultaneously receiving data on the other pair.  
To eliminate line reflections, each cable end is terminated with a termination resistor, R(T), whose value matches  
the characteristic impedance, Z0, of the cable. This method, known as parallel termination, allows for higher data  
rates over longer cable length.  
Y
Z
A
B
R
(T)  
R
D
R
R
R
(T)  
DE  
RE  
Master  
R
Slave  
D
RE  
D
DE  
D
B
A
Z
Y
R
R
(T)  
(T)  
A
B
Z
Y
R
Slave  
D
R RE DE D  
Figure 30. Typical RS-485 Network With SN65HVD7x Full-Duplex Transceivers  
10.2 Typical Application  
A full-duplex RS-485 network consists of multiple transceivers connecting in parallel to two bus cables. On one  
signal pair, a master driver transmits data to multiple slave receivers. The master driver and slave receivers may  
remain fully enabled at all times. On the other signal pair, multiple slave drivers transmit data to the master  
receiver. To avoid bus contention, the slave drivers must be intermittently enabled and disabled such that only  
one driver is enabled at any time, as in half-duplex communication. The master receiver may remain fully  
enabled at all times.  
Because the driver may not be disabled, only one driver should be connected to the bus when using the  
SN65HVD71, SN65HVD74, or SN65HVD77 device.  
Master Enable Control  
Slave Enable Control  
VCC  
VCC  
R
A
B
R
A
B
R
R
RE  
RE  
DE  
D
DE  
D
VCC  
Z
Y
Z
Y
D
D
GND  
GND  
Figure 31. Full-Duplex Transceiver Configurations  
20  
Submit Documentation Feedback  
Copyright © 2014–2019, Texas Instruments Incorporated  
Product Folder Links: SN65HVD70 SN65HVD71 SN65HVD73 SN65HVD74 SN65HVD76 SN65HVD77  
SN65HVD70, SN65HVD71, SN65HVD73  
SN65HVD74, SN65HVD76, SN65HVD77  
www.ti.com  
SLLSEI9G MAY 2014REVISED OCTOBER 2019  
Typical Application (continued)  
10.2.1 Design Parameters  
RS-485 is a robust electrical standard suitable for long-distance networking that may be used in a wide range of  
applications with varying requirements, such as distance, data rate, and number of nodes.  
10.2.1.1 Data Rate and Bus Length  
There is an inverse relationship between data rate and cable length, which means the higher the data rate, the  
short the cable length; and conversely, the lower the data rate, the longer the cable length. While most RS-485  
systems use data rates between 10 kbps and 100 kbps, some applications require data rates up to 250 kbps at  
distances of 4000 ft and longer. Longer distances are possible by allowing for small signal jitter of up to 5 or  
10%.  
10000  
5%, 10%, and 20% Jitter  
1000  
Conservative  
Characteristics  
100  
10  
100  
1k  
10k  
100 k  
1M  
10M  
100 M  
Data Rate (bps)  
Figure 32. Cable Length vs Data Rate Characteristic  
10.2.1.2 Stub Length  
When connecting a node to the bus, the distance between the transceiver inputs and the cable trunk, known as  
the stub, should be as short as possible. Stubs present a non-terminated piece of bus line which can introduce  
reflections as the length of the stub increases. As a general guideline, the electrical length, or round-trip delay, of  
a stub should be less than one-tenth of the rise time of the driver, thus giving a maximum physical stub length as  
shown in Equation 1.  
L(STUB) 0.1 × tr × v × c  
where  
tr is the 10/90 rise time of the driver  
v is the signal velocity of the cable or trace as a factor of c  
c is the speed of light (3 × 108 m/s)  
(1)  
Per Equation 1, Table 5 lists the maximum cable-stub lengths for the minimum-driver output rise-times of the  
SN65HVD7x full-duplex family of transceivers for a signal velocity of 78%.  
Table 5. Maximum Stub Length  
DEVICE  
MINIMUM DRIVER OUTPUT  
RISE TIME (ns)  
MAXIMUM STUB LENGTH  
(m)  
2.34  
2.34  
0.1  
(ft)  
7.7  
SN65HVD70  
SN65HVD71  
SN65HVD73  
SN65HVD74  
SN65HVD76  
SN65HVD77  
100  
100  
4
7.7  
0.3  
4
0.1  
0.3  
2
0.05  
0.05  
0.15  
0.15  
2
Copyright © 2014–2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
21  
Product Folder Links: SN65HVD70 SN65HVD71 SN65HVD73 SN65HVD74 SN65HVD76 SN65HVD77  
 
 
SN65HVD70, SN65HVD71, SN65HVD73  
SN65HVD74, SN65HVD76, SN65HVD77  
SLLSEI9G MAY 2014REVISED OCTOBER 2019  
www.ti.com  
10.2.1.3 Bus Loading  
The RS-485 standard specifies that a compliant driver must be able to driver 32 unit loads (UL), where 1 unit  
load represents a load impedance of approximately 12 k. Because the SN65HVD7x family consists of 1/8 UL  
transceivers, connecting up to 256 receivers to the bus is possible.  
10.2.1.4 Receiver Failsafe  
The differential receivers of the SN65HVD7x family are failsafe to invalid bus states caused by the following:  
Open bus conditions, such as a disconnected connector  
Shorted bus conditions, such as cable damage shorting the twisted-pair together  
Idle bus conditions that occur when no driver on the bus is actively driving  
In any of these cases, the differential receiver will output a failsafe logic high state so that the output of the  
receiver is not indeterminate.  
Receiver failsafe is accomplished by offsetting the receiver thresholds such that the input indeterminate range  
does not include zero volts differential. In order to comply with the RS-422 and RS-485 standards, the receiver  
output must output a high when the differential input VID is more positive than 200 mV, and must output a Low  
when VID is more negative than –200 mV. The receiver parameters which determine the failsafe performance are  
VIT+, VIT–, and Vhys (the separation between VIT+ and VIT–). As shown in the Electrical Characteristics table,  
differential signals more negative than –200 mV will always cause a low receiver output, and differential signals  
more positive than 200 mV will always cause a high receiver output.  
When the differential input signal is close to zero, it is still above the VIT+ threshold, and the receiver output will  
be High. Only when the differential input is more than Vhys below VIT+ will the receiver output transition to a Low  
state. Therefore, the noise immunity of the receiver inputs during a bus fault conditions includes the receiver  
hysteresis value, Vhys, as well as the value of VIT+  
.
R
Vhysmin  
40 mV  
V
ID  
(mV)  
œ60  
œ20  
0
60  
Vnmax = 120 mVpp  
Figure 33. SN65HVD7x Noise Immunity Under Bus Fault Conditions  
10.2.1.5 Transient Protection  
The bus pins of the SN65HVD7x full-duplex transceiver family include on-chip ESD protection against ±30-kV  
HBM and ±12-kV IEC 61000-4-2 contact discharge. The International Electrotechnical Commission (IEC) ESD  
test is far more severe than the HBM ESD test. The 50% higher charge capacitance, C(S), and 78% lower  
discharge resistance, R(D), of the IEC model produce significantly higher discharge currents than the HBM model.  
As stated in the IEC 61000-4-2 standard, contact discharge is the preferred transient protection test method.  
Although IEC air-gap testing is less repeatable than contact testing, air discharge protection levels are inferred  
from contact discharge test results.  
22  
Submit Documentation Feedback  
Copyright © 2014–2019, Texas Instruments Incorporated  
Product Folder Links: SN65HVD70 SN65HVD71 SN65HVD73 SN65HVD74 SN65HVD76 SN65HVD77  
SN65HVD70, SN65HVD71, SN65HVD73  
SN65HVD74, SN65HVD76, SN65HVD77  
www.ti.com  
SLLSEI9G MAY 2014REVISED OCTOBER 2019  
R(C)  
R(D)  
40  
35  
30  
25  
20  
15  
10  
5
50 M  
(1 M)  
330 Ω  
10-kV IEC  
(1.5 kΩ)  
Device  
Under  
Test  
High-Voltage  
Pulse  
Generator  
150 pF  
(100 pF)  
C(S)  
10-kV HBM  
0
0
50  
100  
150  
200  
250  
300  
Time (ns)  
Figure 34. HBM and IEC ESD Models and Currents in Comparison (HBM Values in Parenthesis)  
The on-chip implementation of IEC ESD protection significantly increases the robustness of equipment. Common  
discharge events occur because of human contact with connectors and cables. Designers may choose to  
implement protection against longer duration transients, typically referred to as surge transients.  
EFTs are generally caused by relay-contact bounce or the interruption of inductive loads. Surge transients often  
result from lightning strikes (direct strike or an indirect strike which induce voltages and currents), or the  
switching of power systems, including load changes and short circuit switching. These transients are often  
encountered in industrial environments, such as factory automation and power-grid systems.  
Figure 35 compares the pulse-power of the EFT and surge transients with the power caused by an IEC ESD  
transient. The left hand diagram shows the relative pulse-power for a 0.5kV surge transient and 4-kV EFT  
transient, both of which dwarf the 10-kV ESD transient visible in the lower-left corner. 500-V surge transients are  
representative of events that may occur in factory environments in industrial and process automations.  
The right hand diagram shows the pulse-power of a 6-kV surge transient, relative to the same 0.5-kV surge  
transient. 6-kV surge transients are most likely to occur in power generation and power-grid systems.  
3.0  
2.8  
2.6  
2.4  
2.2  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
6-kV Surge  
22  
20  
18  
16  
14  
12  
10  
8
0.5-kV Surge  
4-kV EFT  
6
4
2
0.5-kV Surge  
10-kV ESD  
0
0
5
10 15 20 25 30 35 40  
0
5
10 15 20 25 30 35 40  
Time (µs)  
Time (µs)  
Figure 35. Power Comparison of ESD, EFT, and Surge Transients  
In the case of surge transients, high-energy content is characterized by long pulse duration and slow decaying  
pulse power. The electrical energy of a transient that is dumped into the internal protection cells of a transceiver  
is converted into thermal energy, which heats and destroys the protection cells, thus destroying the transceiver.  
Figure 36 shows the large differences in transient energies for single ESD, EFT, surge transients, and an EFT  
pulse train that is commonly applied during compliance testing.  
Copyright © 2014–2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
23  
Product Folder Links: SN65HVD70 SN65HVD71 SN65HVD73 SN65HVD74 SN65HVD76 SN65HVD77  
 
SN65HVD70, SN65HVD71, SN65HVD73  
SN65HVD74, SN65HVD76, SN65HVD77  
SLLSEI9G MAY 2014REVISED OCTOBER 2019  
www.ti.com  
1000  
100  
10  
Surge  
1
EFT Pulse Train  
0.1  
0.01  
10-3  
10-4  
10-5  
10-6  
EFT  
ESD  
0.5  
1
2
4
6
8 10  
15  
Peak Pulse Voltage (kV)  
Figure 36. Comparison of Transient Energies  
10.2.2 Detailed Design Procedure  
In order to protect bus nodes against high-energy transients, the implementation of external transient protection  
devices is therefore necessary. Figure 37 shows a protection circuit against 16-kV ESD, 4-kV EFT, and 1-kV  
surge transients.  
3.3 V  
100 nF  
R1  
TVS  
V
CC  
A
10 k10 kꢀ  
R
RxD  
B
RE  
DIR  
R2  
MCU/  
UART  
SN65HVD7x  
R1  
DE  
D
DIR  
TxD  
TVS  
Z
Y
GND  
10 kꢀ  
R2  
Figure 37. Transient Protection Against ESD, EFT, and Surge transients  
24  
Submit Documentation Feedback  
Copyright © 2014–2019, Texas Instruments Incorporated  
Product Folder Links: SN65HVD70 SN65HVD71 SN65HVD73 SN65HVD74 SN65HVD76 SN65HVD77  
 
SN65HVD70, SN65HVD71, SN65HVD73  
SN65HVD74, SN65HVD76, SN65HVD77  
www.ti.com  
SLLSEI9G MAY 2014REVISED OCTOBER 2019  
Table 6. Bill of Materials  
DEVICE  
FUNCTION  
ORDER NUMBER  
MANUFACTURER  
XCVR  
3.3-V, full-duplex RS-485  
transceiver  
SN65HVD7xD  
TI  
R1  
10-Ω, pulse-proof thick-film CRCW0603010RJNEAHP  
resistor  
Vishay  
Bourns  
R2  
TVS  
Bidirectional 400-W  
transient suppressor  
CDSOT23-SM712  
10.2.3 Application Curves  
D
D
VOD  
VOD  
R
R
RL = 60 Ω  
RL = 60 Ω  
Figure 38. SN65HVD70 and SN65HVD71, 500 kbps  
Figure 39. SN65HVD73 and SN65HVD74, 20 Mbps  
D
VOD  
R
RL = 60 Ω  
Figure 40. SN65HVD76 and SN65HVD77, 50 Mbps  
Copyright © 2014–2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
25  
Product Folder Links: SN65HVD70 SN65HVD71 SN65HVD73 SN65HVD74 SN65HVD76 SN65HVD77  
SN65HVD70, SN65HVD71, SN65HVD73  
SN65HVD74, SN65HVD76, SN65HVD77  
SLLSEI9G MAY 2014REVISED OCTOBER 2019  
www.ti.com  
11 Power Supply Recommendations  
To ensure reliable operation at all data rates and supply voltages, each supply should be buffered with a 100-nF  
ceramic capacitor located as close to the supply pins as possible. The TPS76333 is a linear voltage regulator  
suitable for the 3.3-V supply.  
12 Layout  
12.1 Layout Guidelines  
On-chip IEC-ESD protection is good for laboratory and portable equipment but never sufficient for EFT and surge  
transients occurring in industrial environments. Therefore robust and reliable bus node design requires the use of  
external transient protection devices.  
Because ESD and EFT transients have a wide frequency bandwidth from approximately 3-MHz to 3-GHz, high-  
frequency layout techniques must be applied during PCB design.  
For successful PCB design, begin with the design of the protection circuit (see Figure 41).  
1. Place the protection circuitry close to the bus connector to prevent noise transients from penetrating your  
board.  
2. Use VCC and ground planes to provide low-inductance. Note that high-frequency currents follow the path of  
least inductance and not the path of least impedance.  
3. Design the protection components into the direction of the signal path. Do not force the transient currents to  
divert from the signal path to reach the protection device.  
4. Apply 100-nF to 220-nF bypass capacitors as close as possible to the VCC-pins of transceiver, UART,  
controller ICs on the board (see Figure 41).  
5. Use at least two vias for VCC and ground connections of bypass capacitors and protection devices to  
minimize effective via-inductance (see Figure 41).  
6. Use 1-kΩ to 10-kΩ pullup and pulldown resistors for enable lines to limit noise currents in theses lines during  
transient events (see Figure 41).  
7. Insert pulse-proof resistors into the A and B bus lines if the TVS clamping voltage is higher than the specified  
maximum voltage of the transceiver bus pins. These resistors limit the residual clamping current into the  
transceiver and prevent it from latching up (see Figure 41).  
8. While pure TVS protection is sufficient for surge transients up to 1 kV, higher transients require metal-oxide  
varistors (MOVs) which reduce the transients to a few hundred volts of clamping voltage, and transient  
blocking units (TBUs) that limit transient current to less than 1 mA.  
26  
Submit Documentation Feedback  
Copyright © 2014–2019, Texas Instruments Incorporated  
Product Folder Links: SN65HVD70 SN65HVD71 SN65HVD73 SN65HVD74 SN65HVD76 SN65HVD77  
SN65HVD70, SN65HVD71, SN65HVD73  
SN65HVD74, SN65HVD76, SN65HVD77  
www.ti.com  
SLLSEI9G MAY 2014REVISED OCTOBER 2019  
12.2 Layout Example  
GND  
5
C
4
V
or GND  
CC  
7
6
R
1
R
7
TVS  
R
MCU  
5
R
7
SN65HVD7x  
R
6
R
7
1
R
TVS  
R
5
V
or GND  
CC  
GND  
GND  
Figure 41. SN65HVD7x Layout Example  
Copyright © 2014–2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
27  
Product Folder Links: SN65HVD70 SN65HVD71 SN65HVD73 SN65HVD74 SN65HVD76 SN65HVD77  
SN65HVD70, SN65HVD71, SN65HVD73  
SN65HVD74, SN65HVD76, SN65HVD77  
SLLSEI9G MAY 2014REVISED OCTOBER 2019  
www.ti.com  
13 Device and Documentation Support  
13.1 Device Support  
13.1.1 Third-Party Products Disclaimer  
TI'S PUBLICATION OF INFORMATION REGARDING THIRD-PARTY PRODUCTS OR SERVICES DOES NOT  
CONSTITUTE AN ENDORSEMENT REGARDING THE SUITABILITY OF SUCH PRODUCTS OR SERVICES  
OR A WARRANTY, REPRESENTATION OR ENDORSEMENT OF SUCH PRODUCTS OR SERVICES, EITHER  
ALONE OR IN COMBINATION WITH ANY TI PRODUCT OR SERVICE.  
13.2 Related Links  
The table below lists quick access links. Categories include technical documents, support and community  
resources, tools and software, and quick access to sample or buy.  
Table 7. Related Links  
TECHNICAL  
DOCUMENTS  
TOOLS &  
SOFTWARE  
SUPPORT &  
COMMUNITY  
PARTS  
PRODUCT FOLDER  
SAMPLE & BUY  
SN65HVD70  
SN65HVD71  
SN65HVD73  
SN65HVD74  
SN65HVD76  
SN65HVD77  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
13.3 Receiving Notification of Documentation Updates  
To receive notification of documentation updates, navigate to the device product folder on ti.com. In the upper  
right corner, click on Alert me to register and receive a weekly digest of any product information that has  
changed. For change details, review the revision history included in any revised document.  
13.4 Community Resources  
TI E2E™ support forums are an engineer's go-to source for fast, verified answers and design help — straight  
from the experts. Search existing answers or ask your own question to get the quick design help you need.  
Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do  
not necessarily reflect TI's views; see TI's Terms of Use.  
13.5 Trademarks  
E2E is a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
13.6 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with  
appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more  
susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.  
13.7 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
28  
Submit Documentation Feedback  
Copyright © 2014–2019, Texas Instruments Incorporated  
Product Folder Links: SN65HVD70 SN65HVD71 SN65HVD73 SN65HVD74 SN65HVD76 SN65HVD77  
SN65HVD70, SN65HVD71, SN65HVD73  
SN65HVD74, SN65HVD76, SN65HVD77  
www.ti.com  
SLLSEI9G MAY 2014REVISED OCTOBER 2019  
14 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical packaging and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2014–2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
29  
Product Folder Links: SN65HVD70 SN65HVD71 SN65HVD73 SN65HVD74 SN65HVD76 SN65HVD77  
PACKAGE OPTION ADDENDUM  
www.ti.com  
25-Oct-2022  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
SN65HVD70D  
SN65HVD70DGS  
SN65HVD70DGSR  
SN65HVD70DR  
SN65HVD71D  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
SOIC  
VSSOP  
VSSOP  
SOIC  
D
DGS  
DGS  
D
14  
10  
10  
14  
8
50  
80  
RoHS & Green  
RoHS & Green  
NIPDAU  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-1-260C-UNLIM  
Level-2-260C-1 YEAR  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-2-260C-1 YEAR  
Level-1-260C-UNLIM  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
HVD70  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
NIPDAUAG  
NIPDAUAG  
NIPDAU  
VD70  
2500 RoHS & Green  
2500 RoHS & Green  
VD70  
HVD70  
HVD71  
VD71  
SOIC  
D
75  
80  
RoHS & Green  
RoHS & Green  
NIPDAU  
SN65HVD71DGK  
SN65HVD71DGKR  
SN65HVD71DR  
SN65HVD73D  
VSSOP  
VSSOP  
SOIC  
DGK  
DGK  
D
8
NIPDAUAG  
NIPDAUAG  
NIPDAU  
8
2500 RoHS & Green  
2500 RoHS & Green  
VD71  
8
HVD71  
HVD73  
VD73  
SOIC  
D
14  
10  
10  
14  
8
50  
80  
RoHS & Green  
RoHS & Green  
NIPDAU  
SN65HVD73DGS  
SN65HVD73DGSR  
SN65HVD73DR  
SN65HVD74D  
VSSOP  
VSSOP  
SOIC  
DGS  
DGS  
D
NIPDAUAG  
NIPDAUAG  
NIPDAU  
2500 RoHS & Green  
2500 RoHS & Green  
VD73  
HVD73  
HVD74  
VD74  
SOIC  
D
75  
80  
RoHS & Green  
RoHS & Green  
NIPDAU  
SN65HVD74DGK  
SN65HVD74DGKR  
SN65HVD74DR  
SN65HVD76D  
VSSOP  
VSSOP  
SOIC  
DGK  
DGK  
D
8
NIPDAUAG  
NIPDAUAG | SN  
NIPDAU  
8
2500 RoHS & Green  
2500 RoHS & Green  
VD74  
8
HVD74  
HVD76  
VD76  
SOIC  
D
14  
10  
10  
14  
50  
80  
RoHS & Green  
RoHS & Green  
NIPDAU  
SN65HVD76DGS  
SN65HVD76DGSR  
SN65HVD76DR  
VSSOP  
VSSOP  
SOIC  
DGS  
DGS  
D
NIPDAUAG  
NIPDAUAG  
NIPDAU  
2500 RoHS & Green  
2500 RoHS & Green  
VD76  
HVD76  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
25-Oct-2022  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
SN65HVD77D  
SN65HVD77DGK  
SN65HVD77DGKR  
SN65HVD77DR  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
SOIC  
VSSOP  
VSSOP  
SOIC  
D
8
8
8
8
75  
80  
RoHS & Green  
RoHS & Green  
NIPDAU  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
HVD77  
Samples  
Samples  
Samples  
Samples  
DGK  
DGK  
D
NIPDAUAG  
NIPDAUAG  
NIPDAU  
VD77  
VD77  
HVD77  
2500 RoHS & Green  
2500 RoHS & Green  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
Addendum-Page 2  
PACKAGE OPTION ADDENDUM  
www.ti.com  
25-Oct-2022  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 3  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
17-Mar-2023  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
SN65HVD70DGSR  
SN65HVD70DR  
VSSOP  
SOIC  
DGS  
D
10  
14  
8
2500  
2500  
2500  
2500  
2500  
2500  
2500  
2500  
2500  
2500  
2500  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
12.4  
16.4  
12.4  
12.5  
12.4  
12.4  
12.5  
12.4  
16.4  
12.4  
12.5  
5.3  
6.5  
5.3  
6.4  
5.3  
5.3  
6.4  
5.3  
6.5  
5.3  
6.4  
3.4  
9.0  
3.4  
5.2  
3.4  
3.4  
5.2  
3.4  
9.0  
3.4  
5.2  
1.4  
2.1  
1.4  
2.1  
1.4  
1.4  
2.1  
1.4  
2.1  
1.4  
2.1  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
12.0  
16.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
16.0  
12.0  
12.0  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
SN65HVD71DGKR  
SN65HVD71DR  
VSSOP  
SOIC  
DGK  
D
8
SN65HVD73DGSR  
SN65HVD74DGKR  
SN65HVD74DR  
VSSOP  
VSSOP  
SOIC  
DGS  
DGK  
D
10  
8
8
SN65HVD76DGSR  
SN65HVD76DR  
VSSOP  
SOIC  
DGS  
D
10  
14  
8
SN65HVD77DGKR  
SN65HVD77DR  
VSSOP  
SOIC  
DGK  
D
8
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
17-Mar-2023  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
SN65HVD70DGSR  
SN65HVD70DR  
VSSOP  
SOIC  
DGS  
D
10  
14  
8
2500  
2500  
2500  
2500  
2500  
2500  
2500  
2500  
2500  
2500  
2500  
364.0  
340.5  
364.0  
340.5  
364.0  
364.0  
340.5  
366.0  
340.5  
364.0  
340.5  
364.0  
336.1  
364.0  
336.1  
364.0  
364.0  
336.1  
364.0  
336.1  
364.0  
336.1  
27.0  
32.0  
27.0  
25.0  
27.0  
27.0  
25.0  
50.0  
32.0  
27.0  
25.0  
SN65HVD71DGKR  
SN65HVD71DR  
VSSOP  
SOIC  
DGK  
D
8
SN65HVD73DGSR  
SN65HVD74DGKR  
SN65HVD74DR  
VSSOP  
VSSOP  
SOIC  
DGS  
DGK  
D
10  
8
8
SN65HVD76DGSR  
SN65HVD76DR  
VSSOP  
SOIC  
DGS  
D
10  
14  
8
SN65HVD77DGKR  
SN65HVD77DR  
VSSOP  
SOIC  
DGK  
D
8
Pack Materials-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
17-Mar-2023  
TUBE  
T - Tube  
height  
L - Tube length  
W - Tube  
width  
B - Alignment groove width  
*All dimensions are nominal  
Device  
Package Name Package Type  
Pins  
SPQ  
L (mm)  
W (mm)  
T (µm)  
B (mm)  
SN65HVD70D  
SN65HVD70DGS  
SN65HVD71D  
D
DGS  
D
SOIC  
VSSOP  
SOIC  
14  
10  
8
50  
80  
75  
80  
50  
80  
75  
80  
50  
80  
75  
80  
507  
330  
507  
330  
507  
330  
507  
330  
507  
330  
507  
330  
7.85  
6.55  
8
3750  
500  
2.24  
2.88  
4.32  
2.88  
2.24  
2.88  
4.32  
2.88  
2.24  
2.88  
4.32  
2.88  
3940  
500  
SN65HVD71DGK  
SN65HVD73D  
DGK  
D
VSSOP  
SOIC  
8
6.55  
7.85  
6.55  
8
14  
10  
8
3750  
500  
SN65HVD73DGS  
SN65HVD74D  
DGS  
D
VSSOP  
SOIC  
3940  
500  
SN65HVD74DGK  
SN65HVD76D  
DGK  
D
VSSOP  
SOIC  
8
6.55  
7.85  
6.55  
8
14  
10  
8
3750  
500  
SN65HVD76DGS  
SN65HVD77D  
DGS  
D
VSSOP  
SOIC  
3940  
500  
SN65HVD77DGK  
DGK  
VSSOP  
8
6.55  
Pack Materials-Page 3  
PACKAGE OUTLINE  
DGS0010A  
VSSOP - 1.1 mm max height  
S
C
A
L
E
3
.
2
0
0
SMALL OUTLINE PACKAGE  
C
SEATING PLANE  
0.1 C  
5.05  
4.75  
TYP  
PIN 1 ID  
AREA  
A
8X 0.5  
10  
1
3.1  
2.9  
NOTE 3  
2X  
2
5
6
0.27  
0.17  
10X  
3.1  
2.9  
1.1 MAX  
0.1  
C A  
B
B
NOTE 4  
0.23  
0.13  
TYP  
SEE DETAIL A  
0.25  
GAGE PLANE  
0.15  
0.05  
0.7  
0.4  
0 - 8  
DETAIL A  
TYPICAL  
4221984/A 05/2015  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.15 mm per side.  
4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.  
5. Reference JEDEC registration MO-187, variation BA.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DGS0010A  
VSSOP - 1.1 mm max height  
SMALL OUTLINE PACKAGE  
10X (1.45)  
(R0.05)  
TYP  
SYMM  
10X (0.3)  
1
5
10  
SYMM  
6
8X (0.5)  
(4.4)  
LAND PATTERN EXAMPLE  
SCALE:10X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
0.05 MAX  
ALL AROUND  
0.05 MIN  
ALL AROUND  
SOLDER MASK  
DEFINED  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
NOT TO SCALE  
4221984/A 05/2015  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DGS0010A  
VSSOP - 1.1 mm max height  
SMALL OUTLINE PACKAGE  
10X (1.45)  
SYMM  
(R0.05) TYP  
10X (0.3)  
8X (0.5)  
1
5
10  
SYMM  
6
(4.4)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE:10X  
4221984/A 05/2015  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
PACKAGE OUTLINE  
D0008A  
SOIC - 1.75 mm max height  
SCALE 2.800  
SMALL OUTLINE INTEGRATED CIRCUIT  
C
SEATING PLANE  
.228-.244 TYP  
[5.80-6.19]  
.004 [0.1] C  
A
PIN 1 ID AREA  
6X .050  
[1.27]  
8
1
2X  
.189-.197  
[4.81-5.00]  
NOTE 3  
.150  
[3.81]  
4X (0 -15 )  
4
5
8X .012-.020  
[0.31-0.51]  
B
.150-.157  
[3.81-3.98]  
NOTE 4  
.069 MAX  
[1.75]  
.010 [0.25]  
C A B  
.005-.010 TYP  
[0.13-0.25]  
4X (0 -15 )  
SEE DETAIL A  
.010  
[0.25]  
.004-.010  
[0.11-0.25]  
0 - 8  
.016-.050  
[0.41-1.27]  
DETAIL A  
TYPICAL  
(.041)  
[1.04]  
4214825/C 02/2019  
NOTES:  
1. Linear dimensions are in inches [millimeters]. Dimensions in parenthesis are for reference only. Controlling dimensions are in inches.  
Dimensioning and tolerancing per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed .006 [0.15] per side.  
4. This dimension does not include interlead flash.  
5. Reference JEDEC registration MS-012, variation AA.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
D0008A  
SOIC - 1.75 mm max height  
SMALL OUTLINE INTEGRATED CIRCUIT  
8X (.061 )  
[1.55]  
SYMM  
SEE  
DETAILS  
1
8
8X (.024)  
[0.6]  
SYMM  
(R.002 ) TYP  
[0.05]  
5
4
6X (.050 )  
[1.27]  
(.213)  
[5.4]  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:8X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
EXPOSED  
METAL  
EXPOSED  
METAL  
.0028 MAX  
[0.07]  
.0028 MIN  
[0.07]  
ALL AROUND  
ALL AROUND  
SOLDER MASK  
DEFINED  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
4214825/C 02/2019  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
D0008A  
SOIC - 1.75 mm max height  
SMALL OUTLINE INTEGRATED CIRCUIT  
8X (.061 )  
[1.55]  
SYMM  
1
8
8X (.024)  
[0.6]  
SYMM  
(R.002 ) TYP  
[0.05]  
5
4
6X (.050 )  
[1.27]  
(.213)  
[5.4]  
SOLDER PASTE EXAMPLE  
BASED ON .005 INCH [0.125 MM] THICK STENCIL  
SCALE:8X  
4214825/C 02/2019  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
IMPORTANT NOTICE AND DISCLAIMER  
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE  
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”  
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY  
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD  
PARTY INTELLECTUAL PROPERTY RIGHTS.  
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate  
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable  
standards, and any other safety, security, regulatory or other requirements.  
These resources are subject to change without notice. TI grants you permission to use these resources only for development of an  
application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license  
is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you  
will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these  
resources.  
TI’s products are provided subject to TI’s Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with  
such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for  
TI products.  
TI objects to and rejects any additional or different terms you may have proposed. IMPORTANT NOTICE  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023, Texas Instruments Incorporated  

相关型号:

SN65HVD76D

3.3V、全双工 RS-485、12kV IEC ESD、50Mbps 数据速率,带使能功能 | D | 14 | -40 to 125
TI

SN65HVD76DGS

3.3V、全双工 RS-485、12kV IEC ESD、50Mbps 数据速率,带使能功能 | DGS | 10 | -40 to 125
TI

SN65HVD76DGSR

3.3V、全双工 RS-485、12kV IEC ESD、50Mbps 数据速率,带使能功能 | DGS | 10 | -40 to 125
TI

SN65HVD76DR

3.3V、全双工 RS-485、12kV IEC ESD、50Mbps 数据速率,带使能功能 | D | 14 | -40 to 125
TI

SN65HVD77

3.3V、全双工 RS-485、12kV IEC ESD、50Mbps 数据速率,无使能功能
TI

SN65HVD77D

3.3V、全双工 RS-485、12kV IEC ESD、50Mbps 数据速率,无使能功能 | D | 8 | -40 to 125
TI

SN65HVD77DGK

3.3V、全双工 RS-485、12kV IEC ESD、50Mbps 数据速率,无使能功能 | DGK | 8 | -40 to 125
TI

SN65HVD77DGKR

3.3V、全双工 RS-485、12kV IEC ESD、50Mbps 数据速率,无使能功能 | DGK | 8 | -40 to 125
TI

SN65HVD77DR

3.3V、全双工 RS-485、12kV IEC ESD、50Mbps 数据速率,无使能功能 | D | 8 | -40 to 125
TI

SN65HVD78

3.3V-Supply RS-485 with IEC ESD Protection
TI

SN65HVD78D

3.3V-Supply RS-485 with IEC ESD Protection
TI

SN65HVD78DGK

3.3V-Supply RS-485 with IEC ESD Protection
TI