SN65LVCP1414RLJR [TI]

14.2Gbps 四通道、双模线性均衡器 | RLJ | 38 | -40 to 85;
SN65LVCP1414RLJR
型号: SN65LVCP1414RLJR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

14.2Gbps 四通道、双模线性均衡器 | RLJ | 38 | -40 to 85

电信 电信集成电路
文件: 总27页 (文件大小:776K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
SN65LVCP1414  
www.ti.com.cn  
ZHCSA35A AUGUST 2012REVISED JANUARY 2014  
14.2Gbps 四通道、双模式线性均衡器  
查询样片: SN65LVCP1414  
1
特性  
说明  
背板和线缆连接串行运行数据速率高达 14.2Gbps  
的四通道、单向、多速率、双模式线性均衡器  
SN65LVCP1414 是一款异步、协议无关、低延迟、四  
通道线性均衡器,此均衡器针对高达 14.2Gbps 的数据  
速率,以及针对背板或有源线缆应用中的损耗补偿进行  
了优化。 SN65LVCP1414 的架构设计用于与一个特定  
用途集成电路 (ASIC) 或者一个现场可编程栅极阵列  
(FPGA)(采用判决反馈均衡器 (DFE) 来实现数字均  
衡)一起运行。 SN65LVCP1414 线性均衡器保持已发  
送信号的波形,以确保最优 DFE 性能。  
线性均衡增加了系统执行判决反馈均衡器 (DFE) 时  
的链路裕量  
针对背板模式或者线缆模式,在具有 1dB 阶跃控制  
7.1GHz 上可实现 17dB 模拟均衡  
输出线性动态范围:1200mV  
带宽:> 20GHz - 典型值  
7.1GHz 上,好于 15dB 的回波损耗  
支持带外 (OOB) 信令  
SN65LVCP1414 在充分发挥 DFE 效率的同时提供了  
一个低功耗解决方案。  
低功耗,2.5V VCC 时,每通道为 80mW(典型  
值)  
SN65LVCP1414 可经由 I2C 或者 GPIO 接口进行配  
置。 SN65LVCP1414 I2C 接口使得用户能够独立地  
控制均衡、路径增益、和针对每个独立通道的输出动态  
范围。 在 GPIO 模式下,通过使用 GPIO 输入引脚,  
可为所有通道设置均衡、路径增益、和输出动态范围。  
38 端子 QFN(四方扁平、无引线)5mm x 7mm  
x 0.75mm0.5mm 端子间距  
100Ω 差分印刷电路板 (PCB) 传输线路的出色阻  
抗匹配  
通用输入输出接口 (GPIO) 或者 I2C 控制  
SN65LVCP1414 输出可由 I2C 单独禁用。  
2.5V 3.3V±5% 单电源  
SN65LVCP1414 在一个 2.5V 或者 3.3V 单电源下运  
行。  
2kV 静电放电 (ESD) 人体模型 (HBM)  
流经阳引脚的数据流简化了路由访问  
小型封装尺寸节省了电路板空间  
低功率  
SN65LVCP1414 采用 38 引脚 5mm x 7mm x 0.75mm  
QFN(四方扁平无引线)无铅 0.5mm 焊球间距封装,  
额定运行温度范围 -40°C 85°C。  
应用范围  
电信和数据通信中的高速连接  
针对 10GbE16GFC10G 同步光网络  
(SONET)SASSATA,通用公共无线接口  
(CPRI),开放基站架构协议  
(OBSAI)Infiniband10GBase-KR,和 XFI/SFI  
的背板和线缆连接  
1
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of  
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
PRODUCTION DATA information is current as of publication date.  
Products conform to specifications per the terms of the Texas  
Instruments standard warranty. Production processing does not  
necessarily include testing of all parameters.  
Copyright © 2012–2014, Texas Instruments Incorporated  
English Data Sheet: SLLSEC5  
SN65LVCP1414  
ZHCSA35A AUGUST 2012REVISED JANUARY 2014  
www.ti.com.cn  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with  
appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more  
susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.  
Backplane Application  
TX  
RX  
RX  
TX  
LVCP1414  
ASP  
Serdes  
ASIC  
ASP  
Serdes  
ASIC  
LVCP1414  
Figure 1. Typical Backplane Application – Trace Mode  
Cable Application  
Active Cable  
TX  
RX  
RX  
TX  
ASP  
ASP  
Serdes  
ASIC  
Serdes  
ASIC  
Figure 2. Typical Cable Application – Cable Mode  
2
Copyright © 2012–2014, Texas Instruments Incorporated  
SN65LVCP1414  
www.ti.com.cn  
ZHCSA35A AUGUST 2012REVISED JANUARY 2014  
Block Diagram (GPIO or I2C Mode)  
A simplified block diagram of the SN65LVCP1414 is shown in Figure 3 for GPIO or I2C input control mode. This  
compact, low power, 14.2Gbps quad-channel dual-mode linear analog equalizer consists of four high-speed data  
paths and an input GPIO pin logic-control block and a two-wire interface with a control-logic block.  
VCC  
GND  
VBB  
VCC  
Input Buffer  
with  
Selectable  
Equalizer  
50 50 ꢀ  
50 ꢀ  
Output  
Driver  
50 ꢀ  
IN[3:0]_P  
IN[3:0]_N  
OUT[3:0]_P  
OUT[3:0]_N  
Band-Gap Voltage  
Reference and Bias  
Current Generation  
Power-On  
Reset  
REXT  
1.2 kꢀ  
VCC  
200 k200 kꢀ  
General Setting  
EQ Control  
Channel Enable  
VOD Swing  
DC Gain  
6 Bit Register  
DRV_PK#/SCL  
DRV_PK#/SCL  
3 Bit Register  
4 Bit Register  
1 Bit Register  
1 Bit Register  
2 Bit Register  
AC Gain  
I2C_EN  
SDA  
I2C_EN  
SDA  
PWD#  
EQ0/ADD0  
EQ0/ADD0  
PWD#  
VOD/CS  
GAIN  
EQ1/ADD1  
EQ1/ADD1  
VOD/CS  
GAIN  
EQ_MODE/ADD2  
EQ_MODE/ADD2  
2-Wire Interface & Control Logic  
200 kꢀ  
200 kꢀ  
200 kꢀ  
Figure 3. Simplified Block Diagram of the SN65LVCP1414  
Copyright © 2012–2014, Texas Instruments Incorporated  
3
 
SN65LVCP1414  
ZHCSA35A AUGUST 2012REVISED JANUARY 2014  
www.ti.com.cn  
Package  
The package pin locations and assignments are shown in Figure 4. The SN65LVCP1414 is packaged in a 5mm  
x 7mm x 0.75mm, 38 pin, 0.5mm pitch lead-free QFN.  
1
2
3
4
5
6
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
IN0_P  
IN0_N  
VCC  
OUT0_P  
OUT0_N  
VCC  
SN65LVCP1414 Pinout  
38 pin QFN (RLJ) Package  
5mm x 7mm with 0.5mm pitch  
IN1_P  
IN1_N  
VCC  
OUT1_P  
OUT1_N  
VCC  
VCC  
It is required for thermal pad to be soldered to ground  
for better thermal performance  
7
8
VCC  
OUT2_P  
OUT2_N  
IN2_P  
IN2_N  
VCC  
9
10  
VCC  
OUT3_P  
11  
12  
IN3_P  
IN3_N  
OUT3_N  
Figure 4. Package Drawing (Top View)  
4
Copyright © 2012–2014, Texas Instruments Incorporated  
 
SN65LVCP1414  
www.ti.com.cn  
ZHCSA35A AUGUST 2012REVISED JANUARY 2014  
Pin Descriptions  
PINS  
DIRECTION TYPE  
SUPPLY  
DESCRIPTION  
NAME  
NO.  
DIFFERENTIAL HIGH-SPEED I/O  
Input, (with 50 Ω  
termination to input  
common mode)  
IN0_P  
IN0_N  
1
2
Differential input, lane 0  
Input, (with 50 Ω  
termination to input  
common mode)  
IN1_P  
IN1_N  
4
5
Differential input, lane 1  
Differential input, lane 2  
Differential input, lane 3  
Input, (with 50 Ω  
termination to input  
common mode)  
IN2_P  
IN2_N  
8
9
Input, (with 50 Ω  
termination to input  
common mode)  
IN3_P  
IN3_N  
11  
12  
OUT0_P  
OUT0_N  
31  
30  
Output  
Output  
Output  
Output  
Differential output, lane 0  
Differential output, lane 1  
Differential output, lane 2  
Differential output, lane 3  
OUT1_P  
OUT1_N  
28  
27  
OUT2_P  
OUT2_N  
24  
23  
OUT3_P  
OUT3_N  
21  
20  
CONTROL SIGNALS  
SDA 14  
I2C mode  
Input Output, Open  
drain  
GPIO mode  
No action needed  
I2C data. Connect a 10kΩ pull-up resistor externally  
I2C mode  
DRV_PK#/SCL 15  
Input. (with 200kΩ  
pull-up)  
GPIO mode  
HIGH: disable Driver peaking  
I2C clock. Connect a 10kΩ pull-up resistor externally  
LOW: enables Driver 6dB AC  
peaking  
Configures the device operation for I2C or GPIO mode:  
HIGH: enables I2C mode  
I2C_EN  
VOD/CS  
16  
17  
Input, (wtih 200kΩ  
pull-down)  
2.5V/3.3V CMOS  
LOW: enables GPIO mode  
I2C mode  
Input, (with 200kΩ  
pull-down)  
2.5V/3.3V CMOS  
GPIO mode  
HIGH: set high VOD range  
LOW: set low VOD range  
HIGH: acts as Chip Select  
LOW: disables I2C interface  
REXT  
18  
33  
Input, Analog  
External Bias Resistor:  
1,200 Ω to GND  
I2C mode  
EQ0/ADD0  
Input, 2.5V/3.3V  
CMOS - 3-state  
GPIO mode  
Working with EQ1 to determine input  
EQ gain.  
ADD0 along with pins ADD1 and ADD2 comprise the three bits of  
I2C slave address.  
ADD2:ADD1:ADD0:XXX  
Copyright © 2012–2014, Texas Instruments Incorporated  
5
 
 
 
 
SN65LVCP1414  
ZHCSA35A AUGUST 2012REVISED JANUARY 2014  
www.ti.com.cn  
Pin Descriptions (continued)  
PINS  
DIRECTION TYPE  
DESCRIPTION  
SUPPLY  
NAME  
NO.  
I2C mode  
EQ1/ADD1  
34  
Input, 2.5V/3.3V  
CMOS - 3-state  
GPIO mode  
Working with EQ0 to determine input  
EQ gain steps of approximately 2dB  
ADD1 along with pins ADD0 and ADD2 comprise the three bits of  
I2C slave address  
ADD2:ADD1:ADD0:XXX  
EQ1  
EQ0  
EQ  
GAIN  
GND  
GND  
GND  
HiZ  
GND  
HiZ  
000  
000  
001  
010  
011  
100  
101  
110  
111  
VCC  
GND  
HiZ  
HiZ  
HiZ  
VCC  
GND  
HiZ  
VCC  
VCC  
VCC  
VCC  
EQ1 and EQ0 works with AC_GAIN and DC_GAIN to determine final EQ gain as this:  
EQ1/  
EQ0  
GAIN  
DC  
GAIN  
(dB)  
EQ GAIN  
(dB)  
000 ~ 111  
000 ~ 111  
000 ~ 111  
LOW  
HiZ  
-6  
-6  
0
1 ~ 9  
7 ~ 17  
1 ~ 9  
HiGH  
I2C mode  
EQ_MODE/  
ADD2  
35  
Input, (with 200kΩ  
pull-down),  
2.5V/3.3V CMOS  
GPIO mode  
HIGH: Trace mode  
LOW: Cable mode  
ADD2 along with pins ADD1 and ADD0 comprise the three bits of  
I2C slave address.  
ADD2:ADD1:ADD0:XXX  
I2C mode  
No action needed  
GAIN  
36  
37  
Input, 2.5V/3.3V  
CMOS - 3-state  
GPIO mode  
Work with EQ1/EQ0 to set total EQ  
Gain. See table above.  
PWD#  
Input, (with 200kΩ  
HIGH: Normal Operation  
LOW: Power downs the device, inputs off and outputs disabled, resets I2C  
pull-up),  
2.5V/3.3V CMOS  
POWER SUPPLY  
VCC  
3, 6, 7,  
10, 13,  
19, 22,  
25, 26,  
29, 32,  
38  
Power  
Power supply 2.5V±5%, 3.3V±5%  
GND Center  
Pad  
Ground  
The ground center pad is the metal contact at the bottom of the package. This pad must be connected to  
the GND plane. At least 15 PCB vias are recommended to minimize inductance and provide a solid  
ground. Refer to the package drawing (RLJ-package) for the via placement.  
6
Copyright © 2012–2014, Texas Instruments Incorporated  
SN65LVCP1414  
www.ti.com.cn  
ZHCSA35A AUGUST 2012REVISED JANUARY 2014  
Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
VALUES  
UNIT  
V
VCC  
Supply voltage range(2)  
–0.3 to 4  
VIN,DIFF  
VIN+, IN–  
VIO  
Differential voltage between INx_P and INx_N  
Voltage at Inx_P and fINx_N  
±2.5  
V
–0.5 V to VCC+0.5  
V
Voltage on control IO pins  
–0.5 V to VCC+0.5  
V
IIN+ IIN–  
IOUT+ IOUT–  
Continuous current at high speed differential data inputs (differential)  
Continuous current at high speed differential data outputs  
Human Body Model(3) (All Pins)  
–25 to 25  
–25 to 25  
2.0  
mA  
mA  
kV  
V
ESD  
Charged-Device Model(4) (All Pins)  
500  
Moisture sensitivity level  
3
Reflow temperature package soldering, 4 sec  
260  
°C  
(1) Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings  
only and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating  
conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) All voltage values, except differential I/O bus voltages, are with respect to network ground terminal.  
(3) Tested in accordance with JEDEC Standard 22, Test Method A114-A.  
(4) Tested in accordance with JEDEC Standard 22, Test Method C101.  
Thermal Information  
SN65LVCP1414  
THERMAL METRIC(1)  
UNITS  
RLJ (38 PINS)  
θJA  
Junction-to-ambient thermal resistance(2)  
Junction-to-case (top) thermal resistance(3)  
Junction-to-board thermal resistance(4)  
Junction-to-top characterization parameter(5)  
Junction-to-board characterization parameter(6)  
Junction-to-case (bottom) thermal resistance(7)  
36.9  
22.3  
10.7  
0.3  
θJCtop  
θJB  
°C/W  
ψJT  
ψJB  
10.6  
1.9  
θJCbot  
(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.  
(2) The junction-to-ambient thermal resistance under natural convection is obtained in a simulation on a JEDEC-standard, high-K board, as  
specified in JESD51-7, in an environment described in JESD51-2a.  
(3) The junction-to-case (top) thermal resistance is obtained by simulating a cold plate test on the package top. No specific JEDEC-  
standard test exists, but a close description can be found in the ANSI SEMI standard G30-88.  
(4) The junction-to-board thermal resistance is obtained by simulating in an environment with a ring cold plate fixture to control the PCB  
temperature, as described in JESD51-8.  
(5) The junction-to-top characterization parameter, ψJT, estimates the junction temperature of a device in a real system and is extracted  
from the simulation data for obtaining θJA, using a procedure described in JESD51-2a (sections 6 and 7).  
(6) The junction-to-board characterization parameter, ψJB, estimates the junction temperature of a device in a real system and is extracted  
from the simulation data for obtaining θJA , using a procedure described in JESD51-2a (sections 6 and 7).  
(7) The junction-to-case (bottom) thermal resistance is obtained by simulating a cold plate test on the exposed (power) pad. No specific  
JEDEC standard test exists, but a close description can be found in the ANSI SEMI standard G30-88.  
Spacer  
Copyright © 2012–2014, Texas Instruments Incorporated  
7
SN65LVCP1414  
ZHCSA35A AUGUST 2012REVISED JANUARY 2014  
www.ti.com.cn  
Recommended Operating Conditions  
MIN  
NOM  
MAX  
UNIT  
Gbps  
V
dR  
Operating data rate  
Supply voltage  
14.2  
2.625  
3.465  
125  
VCC  
VCC  
TC  
2.375  
3.135  
–10  
2.5  
3.3  
Supply voltage  
V
Junction temperature  
Maximum board temperature  
°C  
TB  
85  
°C  
CMOS DC SPECIFICATIONS  
VIH  
High-level input voltage  
0.8×VCC  
VCC×0.4  
–0.5  
V
V
VMID  
Mid-level input voltage  
Low-level input voltage  
Bandgap circuit PSNR  
VCC×0.6  
0.2×VCC  
VIL  
V
PSNR BG  
20  
dB  
Electrical Characteristics (VCC 2.5V ±5%)  
over operating free-air temperature range, all parameters are referenced to package pins (unless otherwise noted)  
PARAMETER  
POWER CONSUMPTION  
TEST CONDITIONS  
MIN TYP(1)  
MAX UNIT  
PDL  
PDH  
Device power dissipation  
Device power dissipation  
VOD = LOW at 2.5V VCC with all 4 channels active  
VOD = HIGH, at 2.5V VCC with all 4 channels active  
317  
485  
475  
675  
mW  
mW  
Device power with all 4 channels  
switched off  
PDOFF  
Refer to I2C section for device configuration. 2.5V VCC  
10  
mW  
(1) All typical values are at 25°C and with 2.5V supply unless otherwise noted.  
Electrical Characteristics (VCC 3.3V ±5%)  
over operating free-air temperature range, all parameters are referenced to package pins (unless otherwise noted)  
PARAMETER  
POWER CONSUMPTION  
TEST CONDITIONS  
MIN TYP(1)  
MAX UNIT  
PDL  
PDH  
Device power dissipation  
Device power dissipation  
VOD = LOW at 3.3V VCC with all 4 channels active  
VOD = HIGH, at 3.3V VCC with all 4 channels active  
450  
697  
625  
925  
mW  
mW  
Device power with all 4 channels  
switched off  
Refer to I2C section for device configuration, 3.3V  
VCC  
PDOFF  
10  
mW  
(1) All typical values are at 25°C and with 2.5V supply unless otherwise noted.  
Electrical Characteristics (VCC 2.5V ±5%, 3.3V ±5%)  
over operating free-air temperature range, all parameters are referenced to package pins (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP(1) MAX  
UNIT  
CMOS DC SPECIFICATIONS  
IIH  
IIL  
High level input current  
Low level input current  
VIN = 0.9 × VCC  
VIN = 0.1 × VCC  
-40  
-40  
17  
17  
40  
40  
µA  
µA  
CML INPUTS (IN[3:0]_P, IN[3:0]_N)  
rIN  
Differential input resistance  
Input linear dynamic range  
Input common mode voltage  
INx_P to INx_N  
Gain = 0.5  
100  
1200  
Ω
mVpp  
V
VIN  
VICM  
Internally biased  
VCC–0.8  
Input differential to common mode  
conversion  
SCD11  
SDD11  
100MHz to 7.1GHz  
100MHz to 7.1GHz  
–20  
–15  
dB  
dB  
Differential input return loss  
(1) All typical values are at 25°C and with 2.5V and 3.3V supply unless otherwise noted.  
8
Copyright © 2012–2014, Texas Instruments Incorporated  
SN65LVCP1414  
www.ti.com.cn  
ZHCSA35A AUGUST 2012REVISED JANUARY 2014  
Electrical Characteristics (VCC 2.5V ±5%, 3.3V ±5%) (continued)  
over operating free-air temperature range, all parameters are referenced to package pins (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP(1) MAX  
UNIT  
CML OUTPUTS (OUT[3:0]_P, OUT[3:0]_N)  
RL = 100 Ω, VOD = HIGH  
1200  
600  
mVpp  
mVpp  
mVpp  
V
VOD  
Output linear dynamic range  
RL = 100 Ω, VOD = LOW  
RL = 100 Ω, 0 V applied at inputs  
See Figure 5  
VOS  
Output offset voltage  
10  
VOCM  
Output common mode voltage  
VCC-0.4  
K28.5 pattern at 14.2Gbps on all 4 channels,  
No interconnect loss, VOD = HIGH  
VCM,RIP  
VOD,RIP  
Common mode output ripple  
Differential path output ripple  
10  
20 mVRMS  
K28.5 pattern at 14.2Gbps on all channels,  
No interconnect loss, VIN = 1200mVpp.  
20  
mVpp  
mV  
Change in steady-state common-  
mode output voltage between logic  
states  
VOC(SS)  
±10  
tR  
Rise time(2)  
Fall time(2)  
Input signal with 30ps rise time, 20% to 80%, See Figure 7  
Input signal with 30ps fall time, 20% to 80%, See Figure 7  
100MHz to 7.1GHz  
31  
32  
–15  
–5  
65  
65  
8
ps  
ps  
dB  
dB  
ps  
ps  
ps  
ps  
tF  
SDD22  
SCC22  
tPLH  
Differential output return loss  
Common-mode output return loss  
Low-to-high propagation delay  
High-to-low propagation delay  
Inter-Pair (lane to lane) output skew(3) All outputs terminated with 100 , See Figure 8  
Part-to-part skew(4)  
100MHz to 7.1GHz  
See Figure 6  
tPHL  
tSK(O)  
tSK(PP)  
All outputs terminated with 100 Ω  
50  
Single ended on-chip termination to VCC, Outputs will be AC  
coupled  
rOT  
Single ended output resistance  
50  
5
Ω
rp - rn  
Drom = 2´  
´100  
rOM  
Output termination mismatch at 1MHz  
Channel-to-channel isolation  
%
rp + rn  
Chiso  
Frequency at 7.1GHz  
35  
15  
45  
400  
500  
dB  
10MHz to 7.1GHz, No other noise source present, VOD = LOW  
10MHz to 7.1GHz, No other noise source present, VOD = HIGH  
µVRMS  
µVRMS  
OUTNOISE Output referred noise(5)  
EQUALIZATION  
EQGain  
At 7.1GHz input signal  
Equalization Gain, EQ = MAX  
17  
dB  
dB  
Input signal with 3.75 pre-cursor and measure it on the output  
signal,  
Vpre  
Output pre-cursor pre-emphasis  
3.75  
Refer Figure 9. Vpre = 20log(V3/V2)  
Input signal with 12dB post-cursor and measure it on the output  
signal,  
Refer Figure 9, Vpst = 20log(V1/V2)  
Vpst  
DJ1  
Output post-cursor pre-emphasis  
12  
dB  
Transmit Side application  
Residual deterministic jitter at 10.3125  
Gbps  
Tx launch Amplitude = 0.6Vpp, EQ=0, ACGain and DCgain =  
Low and VOD = High, Trace Mode Test Channel -> 0”, See  
Figure 11  
0.016  
UIp-p  
Receive Side Application  
Residual deterministic jitter at 10.3125  
Gbps  
Tx launch Amplitude = 0.6Vpp, EQ=7, ACGain and VOD = High  
and DCGain = High, Trace Mode Test Channel -> 12” (9dB loss  
at 5GHz), See Figure 10  
DJ2  
DJ3  
DJ4  
0.11  
0.041  
0.13  
UIp-p  
UIp-p  
UIp-p  
Transmit Side Application  
Residual deterministic jitter at 14.2  
Gbps  
Tx launch Amplitude = 0.6Vpp, EQ=0, ACGain and DCgain =  
Low and VOD = High, Trace Mode Test Channel -> 0”, See  
Figure 11  
Receive Side Application  
Residual deterministic jitter at 14.2  
Gbps  
Tx launch Amplitude = 0.6Vpp, EQ=7, ACGain and VOD = High  
and DCGain = High, Trace Mode Test Channel -> 8” (9dB loss  
at 7GHz), See Figure 10  
(2) Rise and Fall measurements include board and channel effects of the test environment, refer to Figure 10 and Figure 11.  
(3) tSK(O) is the magnitude of the time difference between the channels.  
(4) tSK(PP) is the magnitude of the difference in propagation delay times between any specified terminals of two devices when both devices  
operate with the same supply voltages, at the same temperature, and have identical packages and test circuits.  
(5) All noise sources added.  
Copyright © 2012–2014, Texas Instruments Incorporated  
9
SN65LVCP1414  
ZHCSA35A AUGUST 2012REVISED JANUARY 2014  
www.ti.com.cn  
Parameter Measurement Information  
49.9 W  
OUT+  
V
OCM  
OUT-  
49.9 W  
1pF  
Figure 5. Common Mode Output Voltage Test Circuit  
V
= 0 V  
IN  
ID  
t
t
PHL  
PLH  
V
= 0 V  
OUT  
OD  
Figure 6. Propagation Delay Input to Output  
Figure 7. Output Rise and Fall Times  
OUTx  
t
SK(0)  
OUTy  
Figure 8. Output Inter-Pair Skew  
10  
Copyright © 2012–2014, Texas Instruments Incorporated  
SN65LVCP1414  
www.ti.com.cn  
ZHCSA35A AUGUST 2012REVISED JANUARY 2014  
V
1
V
3
V
2
0V  
V
5
Not drawn to scale  
V
6
V
4
Figure 9. Vpre and Vpost (test pattern is 1111111100000000 (8-1s, 8-0s))  
TEST  
CHANNEL  
CHARACTERIZATION  
BOARD  
SN65LVCP1414  
PATTERN  
RX  
+
OSCILLOSCOPE  
L = 2"  
L = 2"  
OUT  
GENERATOR  
EQ  
Figure 10. Receive Side Performance Test Circuit  
CHARACTERIZATION  
BOARD  
TEST  
CHANNEL  
SN65LVCP1414  
PATTERN  
GENERATOR  
RX  
+
OSCILLOSCOPE  
L = 2"  
L = 2"  
OUT  
EQ  
Figure 11. Transmit Side Performance Test Circuit  
Copyright © 2012–2014, Texas Instruments Incorporated  
11  
 
 
SN65LVCP1414  
ZHCSA35A AUGUST 2012REVISED JANUARY 2014  
www.ti.com.cn  
Equivalent Input and Output Schematic Diagrams  
VCC  
IN+  
RT(SE)  
= 50 W  
Gain  
Stage  
+EQ  
VCC  
RBBDC  
RT(SE)  
= 50 W  
IN-  
LineEndTermination  
VBB  
ESD  
Self-Biasing Network  
Figure 12. Equivalent Input Circuit Design  
VCC  
VCC  
48 kW  
ESD  
IN  
ESD  
48 kW  
Figure 13. 3-Level Input Biasing Network  
12  
Copyright © 2012–2014, Texas Instruments Incorporated  
SN65LVCP1414  
www.ti.com.cn  
ZHCSA35A AUGUST 2012REVISED JANUARY 2014  
Typical Characteristics  
Typical operating condition is at VCC = 2.5V and TA = 25°C, no interconnect line at the output, and with default device settings  
(unless otherwise noted).  
20  
EQ=7, DCGAIN=LOW, ACGAIN=HIGH, VDD=HIGH  
EQ=0, ACGAIN=LOW, DCGAIN=LOW, VDD=LOW  
18  
16  
14  
12  
10  
8
EQ=3, ACGAIN=LOW, DCGAIN=LOW, VDD=LOW  
EQ=7, ACGAIN=LOW, DCGAIN=LOW, VDD=LOW  
EQ=0, ACGAIN=HIGH, DCGAIN=LOW, VDD=LOW  
EQ=3, ACGAIN=HIGH, DCGAIN=LOW, VDD=LOW  
EQ=7, ACGAIN=HIGH, DCGAIN=LOW, VDD=LOW  
6
4
2
0
−2  
−4  
−6  
−8  
0.1  
1
10  
100  
Frequency (GHz)  
G001  
Figure 14. Typical EQ Gain Profile Curve  
0
−5  
0
−10  
−20  
−30  
−40  
−50  
−60  
−70  
−10  
−15  
−20  
−25  
−30  
−35  
−40  
−45  
0
2
4
6
8
10  
12  
14  
0
2
4
6
8
10  
12  
14  
Frequency (GHz)  
Frequency (GHz)  
G002  
G003  
Figure 15. Differential Input Return Loss  
Figure 16. Differential to Common Mode Conversion  
Copyright © 2012–2014, Texas Instruments Incorporated  
13  
SN65LVCP1414  
ZHCSA35A AUGUST 2012REVISED JANUARY 2014  
www.ti.com.cn  
Typical Characteristics (continued)  
Typical operating condition is at VCC = 2.5V and TA = 25°C, no interconnect line at the output, and with default device settings  
(unless otherwise noted).  
0
0
−5  
−5  
−10  
−15  
−20  
−25  
−30  
−35  
−40  
−45  
−10  
−15  
−20  
−25  
−30  
−35  
−40  
0
2
4
6
8
10  
12  
14  
0
2
4
6
8
10  
12  
14  
Frequency (GHz)  
Frequency (GHz)  
G004  
G005  
Figure 17. Differential Output Return Loss  
Figure 18. Common Mode Output Return Loss  
0.25  
0.2  
0.15  
0.1  
0.05  
0
0
−5  
3 meter  
6 meter  
6 meter (See Note A)  
3 meter  
6 meter  
6 meter (See Note A)  
−10  
−15  
−20  
−25  
−30  
−35  
−40  
−45  
0
200 400 600 800 1k 1.2k 1.4k 1.6k 1.8k 2k  
Time (ps)  
0
2
4
6
8
10  
Frequency (GHz)  
G006  
G007  
A. With SN65LVCP1414 -> EQ = 4, VOD = High, ACGain = HiZ,  
A. With SN65LVCP1414 -> EQ = 4, VOD = High, ACGain = HiZ,  
DCGain = Low  
DCGain = Low  
Figure 19. Cable Mode – Symbol Response  
Figure 20. Cable Mode – Frequency Domain  
14  
Copyright © 2012–2014, Texas Instruments Incorporated  
SN65LVCP1414  
www.ti.com.cn  
ZHCSA35A AUGUST 2012REVISED JANUARY 2014  
Typical Characteristics (continued)  
Typical operating condition is at VCC = 2.5V and TA = 25°C, no interconnect line at the output, and with default device settings  
(unless otherwise noted).  
0.35  
0
3 meter  
3 meter  
6 meter  
6 meter (See Note A)  
6 meter  
6 meter (See Note A)  
−5  
0.3  
−10  
−15  
−20  
−25  
−30  
−35  
−40  
−45  
−50  
0.25  
0.2  
0.15  
0.1  
0.05  
0
0
200 400 600 800 1k  
Time (ps)  
1k  
1k  
2k  
2k  
2k  
0
2
4
6
8
10  
Frequency (GHz)  
G008  
G009  
A. With SN65LVCP1414 -> EQ = 7, VOD = High, ACGain = High,  
A. With SN65LVCP1414 -> EQ = 7, VOD = High, ACGain = High,  
DCGain = Low  
DCGain = Low  
Figure 21. Trace Mode – Symbol Response  
Figure 22. Trace Mode - Frequency Domain  
Table 1. Control Settings Descriptions  
EQ GAIN  
(dB)  
MODE  
DCGAIN  
ACGAIN<1:0>  
EQ<2:0>  
000 to 111  
000 to 111  
000 to 111  
000 to 111  
000 to 111  
000 to 111  
000 to 111  
000 to 111  
DC GAIN (dB)  
APPLICATION  
Short Input Trace; Large Input  
Swing  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
11  
1
–6  
–6  
0
1 to 9  
7 to 17  
1 to 9  
Long Input Trace; Large Input  
Swing  
Short Input Trace; Small Input  
Swing  
Short Input Trace; Small Input  
Swing  
11  
0
0
2 to 10  
1 to 9  
Short Input Cable; Large Input  
Swing  
–6  
–6  
0
Long Input Cable; Large Input  
Swing  
11  
1
7 to 17  
1 to 9  
Short Input Cable; Small Input  
Swing  
Short Input Cable; Small Input  
Swing  
11  
0
2 to 10  
Table 2. Control Settings Descriptions  
GAIN  
Low  
DC GAIN  
ACGAIN<1:0>  
0
0
1
00  
11  
01  
HighZ  
High  
Copyright © 2012–2014, Texas Instruments Incorporated  
15  
SN65LVCP1414  
ZHCSA35A AUGUST 2012REVISED JANUARY 2014  
www.ti.com.cn  
Two-Wire Serial Interface and Control Logic  
The SN65LVCP1414 uses a 2-wire serial interface for digital control. The two circuit inputs, SDA and SCL, are  
driven, respectively, by the serial data and serial clock from a microcontroller, for example. The SDA and SCK  
pins require external 10kpull-ups to VCC.  
The 2-wire interface allows write access to the internal memory map to modify control registers and read access  
to read out control and status signals. The SN65LVCP1414 is a slave device only which means that it cannot  
initiate a transmission itself; it always relies on the availability of the SCK signal for the duration of the  
transmission. The master device provides the clock signal as well as the START and STOP commands. The  
protocol for a data transmission is as follows:  
1. START command  
2. 7 bit slave address (0000ADD[2:0]) followed by an eighth bit which is the data direction bit (R/W). A zero  
indicates a WRITE and a 1 indicates a READ. The ADD[2:0] address bits change with the status of the  
ADD2, ADD1, and ADD0 device pins, respectively. If the pins are left floating or pulled down, the 7 bit slave  
address is 0000000.  
3. 8 bit register address  
4. 8 bit register data word  
5. STOP command  
Regarding timing, the SN65LVCP1414 is I2C compatible. The typical timing is shown in Figure 9 and a complete  
data transfer is shown in Figure 10. Parameters for Figure 9 are defined in Table 3.  
Bus Idle: Both SDA and SCL lines remain HIGH  
Start Data Transfer: A change in the state of the SDA line, from HIGH to LOW, while the SCL line is HIGH,  
defines a START condition (S). Each data transfer is initiated with a START condition.  
Stop Data Transfer: A change in the state of the SDA line from LOW to HIGH while the SCL line is HIGH  
defines a STOP condition (P). Each data transfer is terminated with a STOP condition; however, if the master still  
wishes to communicate on the bus, it can generate a repeated START condition and address another slave  
without first generating a STOP condition.  
Data Transfer: The number of data bytes transferred between a START and a STOP condition is not limited and  
is determined by the master device. The receiver acknowledges the transfer of data.  
Acknowledge: Each receiving device, when addressed, is obliged to generate an acknowledge bit. The  
transmitter releases the SDA line and a device that acknowledges must pull down the SDA line during the  
acknowledge clock pulse in such a way that the SDA line is stable LOW during the HIGH period of the  
acknowledge clock pulse. Setup and hold times must be taken into account. When a slave-receiver doesn’t  
acknowledge the slave address, the data line must be left HIGH by the slave. The master can then generate a  
STOP condition to abort the transfer. If the slave-receiver does acknowledge the slave address but some time  
later in the transfer cannot receive any more data bytes, the master must abort the transfer. This is indicated by  
the slave generating the not acknowledge on the first byte to follow. The slave leaves the data line HIGH and the  
master generates the STOP condition.  
Figure 23. Two-Wire Serial Interface Timing Diagram  
16  
Copyright © 2012–2014, Texas Instruments Incorporated  
SN65LVCP1414  
www.ti.com.cn  
SYMBOL  
ZHCSA35A AUGUST 2012REVISED JANUARY 2014  
Table 3. Two-Wire Serial Interface Timing Diagram Definitions  
PARAMETER  
MIN  
MAX UNIT  
fSCL  
SCL clock frequency  
400  
kHz  
μs  
μs  
μs  
μs  
μs  
μs  
ns  
ns  
ns  
μs  
tBUF  
Bus free time between START and STOP conditions  
Hold time after repeated START condition. After this period, the first clock pulse is generated  
Low period of the SCL clock  
1.3  
0.6  
1.3  
0.6  
0.6  
0
tHDSTA  
tLOW  
tHIGH  
tSUSTA  
tHDDAT  
tSUDAT  
tR  
High period of the SCL clock  
Setup time for a repeated START condition  
Data HOLD time  
Data setup time  
100  
Rise time of both SDA and SCL signals  
Fall time of both SDA and SCL signals  
Setup time for STOP condition  
300  
300  
tF  
tSUSTO  
0.6  
Figure 24. Two-Wire Serial Interface Data Transfer  
Copyright © 2012–2014, Texas Instruments Incorporated  
17  
SN65LVCP1414  
ZHCSA35A AUGUST 2012REVISED JANUARY 2014  
www.ti.com.cn  
Register Mapping  
The register mapping for read/write register addresses 0 (0x00) through 22 (0x18) are shown in Table 4. Table 5  
describes the circuit functionality based on the register settings.  
Table 4. SN65LVCP1414 Register Mapping Information  
Register 0x00 (General Device Settings) R/W  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
SW_GPIO  
PWRDOWN  
SYNC_01  
SYNC_ 23  
SYNC_ALL  
EQ_MODE  
RSVD  
Register 0x01 (Channel Enable) R/W  
bit 7 bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
LN_EN_CH3  
LN_EN_CH2  
LN_EN_CH1  
LN_EN_CH0  
Register 0x02 (Channel 0 Control Settings) R/W  
bit 7  
bit 6  
EQ2  
bit 5  
EQ1  
bit 4  
EQ0  
bit 3  
bit 2  
bit 1  
bit 0  
RSVD  
VOD_CTRL  
DC_GAIN  
AC_GAIN1  
AC_GAIN0  
Register 0x03 (Channel 0 Enable Settings) R/W  
bit 7 bit 6 bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
DRV_PEAK  
EQ_EN  
DRV_EN  
Register 0x05 (Channel 1 Control Settings) R/W  
bit 7  
bit 6  
EQ2  
bit 5  
EQ1  
bit 4  
EQ0  
bit 3  
bit 2  
bit 1  
bit 0  
RSVD  
VOD_CTRL  
DC_GAIN  
AC_GAIN1  
AC_GAIN0  
Register 0x06 (Channel 1 Enable Settings) R/W  
bit 7 bit 6 bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
DRV_PEAK  
EQ_EN  
DRV_EN  
Register 0x08 (Channel 2 Control Settings) R/W  
bit 7  
bit 6  
EQ2  
bit 5  
EQ1  
bit 4  
EQ0  
bit 3  
bit 2  
bit 1  
bit 0  
RSVD  
VOD_CTRL  
DC_GAIN  
AC_GAIN1  
AC_GAIN0  
Register 0x09 (Channel 2 Enable Settings) R/W  
bit 7 bit 6 bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
DRV_PEAK  
EQ_EN  
DRV_EN  
Register 0x0B (Channel 3 Control Settings) R/W  
bit 7  
bit 6  
EQ2  
bit 5  
EQ1  
bit 4  
EQ0  
bit 3  
bit 2  
bit 1  
bit 0  
RSVD  
VOD_CTRL  
DC_GAIN  
AC_GAIN1  
AC_GAIN0  
Register 0x0C (Channel 3 Enable Settings) R/W  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
DRV_PEAK  
EQ_EN  
DRV_EN  
Register 0x0F Read Only  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
Register 0x11 R/W  
bit 7  
bit 6  
bit 5  
bit 5  
bit 4  
bit 4  
bit 3  
bit 3  
bit 2  
bit 2  
bit 1  
bit 1  
bit 0  
bit 0  
RSVD  
Register 0x12 R/W  
bit 7  
bit 6  
RSVD  
18  
Copyright © 2012–2014, Texas Instruments Incorporated  
 
SN65LVCP1414  
www.ti.com.cn  
REGISTER  
ZHCSA35A AUGUST 2012REVISED JANUARY 2014  
Table 5. SN65LVCP1414 Register Description  
BIT  
SYMBOL  
FUNCTION  
DEFAULT  
Switching logic is controlled by GPIO or I2C:  
0 = I2C control  
7
SW_GPIO  
1 = GPIO control  
Power down the device:  
0 = Normal operation  
1 = Powerdown  
6
5
4
PWRDOWN  
SYNC_01  
SYNC_23  
All settings from channel 1 will be used for channel 0 and 1:  
0 = Channel 0 tracking channel 1 settings  
1 = No tracking tracking  
All settings from channel 2 will be used for channel 2 and 3:  
0 = Channel 3 tracking channel 2 settings  
1 = No channel tracking  
0x00  
00000000  
All settings from channel 1 will be used on all channels:  
0 = All channels tracking channel 1  
1 = No channel tracking  
3
2
SYNC_ALL  
Overwrites SYNC_01 and SYNC_23  
Set EQ mode:  
0 = Cable mode  
1 = Trace mode  
EQ_MD  
RSVD  
1
0
7
6
5
4
For TI use only  
Channel 3 enable:  
0 = Enable  
1 = Disable  
3
2
1
0
LN_EN_CH3  
LN_EN_CH2  
LN_EN_CH1  
LN_EN_CH0  
Channel 2 enable:  
0 = Enable  
1 = Disable  
0x01  
00000000  
Channel 1 enable:  
0 = Enable  
1 = Disable  
Channel 0 enable:  
0 = Enable  
1 = Disable  
7
6
5
4
RSVD  
EQ2  
EQ1  
EQ0  
Equalizer adjustment setting:  
000 = Minimum equalization setting  
111 = Maximum equalization setting  
Channel [x] VOD control:  
0 = Low VOD range  
1 = High VOD range  
0x02  
0x05  
0x08  
0x0B  
3
2
VOD_CTRL  
00000000  
Channel [x] EQ DC gain:  
0 = Set EQ DC gain to 0.5x  
1 = Set EQ DC gain to 1x  
DC_GAIN_CTRL  
1
0
AC_GAIN_CTRL1  
AC_GAIN_CTRL0  
AC Gain Control:  
00 = Low  
01 = HiZ  
11 = High  
Copyright © 2012–2014, Texas Instruments Incorporated  
19  
SN65LVCP1414  
ZHCSA35A AUGUST 2012REVISED JANUARY 2014  
www.ti.com.cn  
DEFAULT  
Table 5. SN65LVCP1414 Register Description (continued)  
REGISTER  
BIT  
7
SYMBOL  
FUNCTION  
6
5
4
3
0x03  
0x06  
0x09  
0x0C  
Channel [x] driver peaking:  
0 = Disables driver Peaking  
2
1
0
DRV_PEAK  
00000000  
1 = Enables driver 6db AC Peaking  
Channel [x] EQ stage enable:  
0 = Enable  
EQ_EN  
1 = Disable  
Channel [x] driver stage enable:  
0 = Enable  
DRV_EN  
1 = Disable  
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
For TI use only  
For TI use only  
For TI use only  
For TI use only  
For TI use only  
For TI use only  
For TI use only  
For TI use only  
0x0F  
0x11  
0x12  
00110000  
00000000  
00000000  
RSVD  
For TI use only  
RSVD  
For TI use only  
20  
Copyright © 2012–2014, Texas Instruments Incorporated  
SN65LVCP1414  
www.ti.com.cn  
ZHCSA35A AUGUST 2012REVISED JANUARY 2014  
REVISION HISTORY  
Changes from Original (August 2012) to Revision A  
Page  
Changed OUT2_P pin number from 23 to 24 ....................................................................................................................... 5  
Changed OUT2_N pin number from 24 to 23 ...................................................................................................................... 5  
Changed OUT3_P pin number from 20 to 21 ....................................................................................................................... 5  
Changed OUT3_N pin number from 21 to 20 ...................................................................................................................... 5  
Copyright © 2012–2014, Texas Instruments Incorporated  
21  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
SN65LVCP1414RLJR  
SN65LVCP1414RLJT  
ACTIVE  
WQFN  
WQFN  
RLJ  
38  
38  
3000 RoHS & Green  
250 RoHS & Green  
NIPDAU  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
-40 to 85  
-40 to 85  
LVCP  
1414  
ACTIVE  
RLJ  
NIPDAU  
LVCP  
1414  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
13-Dec-2022  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
SN65LVCP1414RLJR  
SN65LVCP1414RLJT  
WQFN  
WQFN  
RLJ  
RLJ  
38  
38  
3000  
250  
330.0  
330.0  
16.4  
16.4  
5.25  
5.25  
7.25  
7.25  
1.45  
1.45  
8.0  
8.0  
16.0  
16.0  
Q1  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
13-Dec-2022  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
SN65LVCP1414RLJR  
SN65LVCP1414RLJT  
WQFN  
WQFN  
RLJ  
RLJ  
38  
38  
3000  
250  
367.0  
367.0  
367.0  
367.0  
38.0  
38.0  
Pack Materials-Page 2  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

SN65LVCP1414RLJT

14.2Gbps 四通道、双模线性均衡器 | RLJ | 38 | -40 to 85
TI

SN65LVCP15

Link Replicator for Fibre Channel, Gigabit Ethernet, and HDTV Data Rates
TI

SN65LVCP15PW

Link Replicator for Fibre Channel, Gigabit Ethernet, and HDTV Data Rates
TI

SN65LVCP15PWR

Link Replicator for Fibre Channel, Gigabit Ethernet, and HDTV Data Rates
TI

SN65LVCP15_14

Link Replicator for Fibre Channel, Gigabit Ethernet, and HDTV Data Rates
TI

SN65LVCP202

Gigabit 2 × 2 CROSSPOINT SWITCH
TI

SN65LVCP202RGE

2-CHANNEL, CROSS POINT SWITCH, PDSO24, PLASTIC, VQFN-24
TI

SN65LVCP202RGER

Gigabit 2 × 2 CROSSPOINT SWITCH
TI

SN65LVCP202RGET

Gigabit 2 × 2 CROSSPOINT SWITCH
TI

SN65LVCP202_14

Gigabit 2 × 2 CROSSPOINT SWITCH
TI

SN65LVCP204

Gigabit 4 × 4 CROSSPOINT SWITCH
TI

SN65LVCP204RGZ

IC 4-CHANNEL, CROSS POINT SWITCH, PDSO48, GREEN, PLASTIC, VQFN-48, Multiplexer or Switch
TI