SN65LVDS051PWG4 [TI]

HIGH-SPEED DIFFERENTIAL LINE DRIVERS AND RECEIVERS; 高速差分线路驱动器和接收
SN65LVDS051PWG4
型号: SN65LVDS051PWG4
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

HIGH-SPEED DIFFERENTIAL LINE DRIVERS AND RECEIVERS
高速差分线路驱动器和接收

驱动器
文件: 总24页 (文件大小:532K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
SN65LVDS179, SN65LVDS180  
SN65LVDS050, SN65LVDS051  
www.ti.com  
SLLS301MAPRIL 1998REVISED JANUARY 2007  
HIGH-SPEED DIFFERENTIAL LINE DRIVERS AND RECEIVERS  
FEATURES  
SN65LVDS179D (Marked as DL179 or LVD179)  
SN65LVDS179DGK (Marked as S79)  
(TOP VIEW)  
Meets or Exceeds the Requirements of ANSI  
TIA/EIA-644-1995 Standard  
5
6
8
7
3
2
Y
Z
D
VCC  
R
D
A
B
Z
Y
1
2
3
4
8
7
6
5
Signaling Rates up to 400 Mbps  
Bus-Terminal ESD Exceeds 12 kV  
Operates From a Single 3.3-V Supply  
A
B
R
GND  
Low-Voltage Differential Signaling With  
Typical Output Voltages of 350 mV and a  
100-Load  
SN65LVDS180D (Marked as LVDS180)  
SN65LVDS180PW (Marked as LVDS180)  
(TOP VIEW)  
Propagation Delay Times  
9
Driver: 1.7 ns Typ  
NC  
R
RE  
VCC  
VCC  
A
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
5
Y
Z
D
10  
Receiver: 3.7 ns Typ  
4
3
DE  
RE  
Power Dissipation at 200 MHz  
DE  
D
B
Z
12  
11  
Driver: 25 mW Typical  
A
B
2
R
GND  
GND  
Y
Receiver: 60 mW Typical  
NC  
8
LVTTL Input Levels Are 5-V Tolerant  
Receiver Maintains High Input Impedance  
With VCC < 1.5 V  
SN65LVDS050D (Marked as LVDS050)  
SN65LVDS050PW (Marked as LVDS050)  
(TOP VIEW)  
14  
13  
15  
1Y  
1Z  
Receiver Has Open-Circuit Fail Safe  
1D  
12  
9
1B  
1A  
1R  
VCC  
1D  
1Y  
1Z  
DE  
2Z  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
DE  
2D  
10  
11  
DESCRIPTION  
2Y  
2Z  
The  
SN65LVDS179,  
SN65LVDS180,  
SN65LVDS050, and SN65LVDS051 are differential  
line drivers and receivers that use low-voltage  
differential signaling (LVDS) to achieve signaling  
rates as high as 400 Mbps. The TIA/EIA-644  
standard compliant electrical interface provides a  
minimum differential output voltage magnitude of 247  
mV into a 100-load and receipt of 50-mV signals  
with up to 1 V of ground potential difference between  
a transmitter and receiver.  
RE  
2R  
2
1
3
1A  
1B  
1R  
2A  
4
5
RE  
2R  
6
7
2B  
GND  
10 2Y  
2D  
2A  
2B  
9
SN65LVDS051D (Marked as LVDS051)  
SN65LVDS051PW (Marked as LVDS051)  
(TOP VIEW)  
14  
13  
15  
1Y  
1Z  
The intended application of this device and signaling  
technique is for point-to-point baseband data  
transmission over controlled impedance media of  
approximately 100-characteristic impedance. The  
transmission media may be printed-circuit board  
traces, backplanes, or cables. (Note: The ultimate  
rate and distance of data transfer depends on the  
attenuation characteristics of the media, the noise  
coupling to the environment, and other application  
specific characteristics).  
1D  
1B  
1A  
1R  
VCC  
1D  
1Y  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
4
3
1DE  
1R  
2
1
1A  
1B  
1DE  
2R  
1Z  
2DE  
10  
11  
9
2Y  
2Z  
2D  
2A  
11 2Z  
12  
5
10  
9
2B  
GND  
2Y  
2D  
2DE  
2R  
6
7
2A  
2B  
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas  
Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
PRODUCTION DATA information is current as of publication date.  
Copyright © 1998–2007, Texas Instruments Incorporated  
Products conform to specifications per the terms of the Texas  
Instruments standard warranty. Production processing does not  
necessarily include testing of all parameters.  
SN65LVDS179, SN65LVDS180  
SN65LVDS050, SN65LVDS051  
www.ti.com  
SLLS301MAPRIL 1998REVISED JANUARY 2007  
These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam  
during storage or handling to prevent electrostatic damage to the MOS gates.  
DESCRIPTION (CONTINUED)  
These devices offer various driver, receiver, and enabling combinations in industry-standard footprints. Because  
these devices are intended for use in simplex or distributed simplex bus structures, the driver enable function  
does not put the differential outputs into a high-impedance state but rather disconnects the input and reduces  
the quiescent power used by the device. (For these functions with a high-impedance driver output, see the  
SN65LVDM series of devices.) All devices are characterized for operation from -40°C to 85°C.  
AVAILABLE OPTIONS(1)  
PACKAGE  
SMALL OUTLINE  
(D)  
SMALL OUTLINE  
(DGK)  
SMALL OUTLINE  
(PW)  
SN65LVDS050D  
SN65LVDS051D  
SN65LVDS179D  
SN65LVDS180D  
SN65LVDS050PW  
SN65LVDS051PW  
SN65LVDS179DGK  
SN65LVDS180PW  
(1) For the most current package and ordering information, see the Package Option Addendum at the end  
of this document, or see the TI Web site at www.ti.com.  
FUNCTION TABLES  
SN65LVDS179 RECEIVER  
INPUTS  
OUTPUT(1)  
VID = VA - VB  
R
H
?
VID50 mV  
50 mV < VID < 50 mV  
VID-50 mV  
L
Open  
H
(1) H = high level, L = low level, ? = indeterminate  
SN65LVDS179 DRIVER(1)  
INPUT  
OUTPUTS  
D
L
Y
L
Z
H
L
H
H
L
Open  
H
(1) H = high level, L = low level  
2
Submit Documentation Feedback  
SN65LVDS179, SN65LVDS180  
SN65LVDS050, SN65LVDS051  
www.ti.com  
SLLS301MAPRIL 1998REVISED JANUARY 2007  
SN65LVDS180, SN65LVDS050, and  
SN65LVDS051 RECEIVER(1)  
INPUTS  
OUTPUT  
VID = VA - VB  
ID50 mV  
50 mV < VID < 50 mV  
RE  
L
R
H
?
V
L
V
ID-50 mV  
Open  
X
L
L
L
H
Z
H
(1) H = high level, L = low level, Z = high impedance, X = don't care,  
? = indeterminate  
SN65LVDS180, SN65LVDS050, and  
SN65LVDS051 DRIVER(1)  
INPUTS  
OUTPUTS  
D
L
DE  
H
Y
L
Z
H
H
H
H
L
Open  
X
H
L
H
L
Off  
Off  
(1) H = high level, L = low level, Z = high impedance, X = don't care,  
Off = no output  
EQUIVALENT INPUT AND OUTPUT SCHEMATIC DIAGRAMS  
V
CC  
V
CC  
V
CC  
300 k  
50 Ω  
5 Ω  
50 Ω  
10 kΩ  
Y or Z  
Output  
D or  
RE  
Input  
DE  
Input  
7 V  
7 V  
7 V  
300 kΩ  
V
CC  
V
CC  
300 kΩ  
300 kΩ  
5 Ω  
R Output  
A Input  
B Input  
7 V  
7 V  
7 V  
3
Submit Documentation Feedback  
SN65LVDS179, SN65LVDS180  
SN65LVDS050, SN65LVDS051  
www.ti.com  
SLLS301MAPRIL 1998REVISED JANUARY 2007  
ABSOLUTE MAXIMUM RATINGS(1)  
over operating free-air temperature range (unless otherwise noted)  
UNIT  
(2)  
VCC (see  
)
Supply voltage range  
Voltage range:  
–0.5 V to 4 V  
–0.5 V to 6 V  
D, R, DE, RE  
Y, Z, A, and B  
–0.5 V to 4 V  
|VOD  
|
Differential output voltage:  
Electrostatic discharge:  
1 V  
(3)  
Y, Z, A, B , and GND (see  
All  
)
CLass 3, A:12 kV, B:600 V  
Class 3, A:7 kV, B:500 V  
See Dissipation Rating Table  
–65°C to 150°C  
250°C  
Continuous power dissipation  
Storage temperature range  
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds  
(1) Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings  
only, and functional operation of the device at these or any other conditions beyond those indicated under recommended operating  
conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) All voltage values, except differential I/O bus voltages are with respect to network ground terminal.  
(3) Tested in accordance with MIL-STD-883C Method 3015.7.  
DISSIPATION RATING TABLE  
TA25°C  
POWER RATING  
DERATING FACTOR  
ABOVE TA = 25°C(1)  
TA = 85°C  
POWER RATING  
PACKAGE  
PW(14)  
PW(16)  
D(8)  
736 mW  
839 mW  
635 mW  
987 mW  
1110 mW  
424 mW  
5.9 mW/°C  
6.7 mW/°C  
5.1 mW/°C  
7.9 mW/°C  
8.9 mW/°C  
3.4 mW/°C  
383 mW  
437 mW  
330 mW/°C  
513 mW/°C  
577 mW/°C  
220 mW  
D(14)  
D(16)  
DGK  
(1) This is the inverse of the junction-to-ambient thermal resistance when board-mounted and with no airflow.  
RECOMMENDED OPERATING CONDITIONS  
MIN  
3
NOM  
3.3  
MAX  
UNIT  
V
VCC  
VIH  
VIL  
Supply voltage  
3.6  
High-level input voltage  
2
V
Low-level input voltage  
0.8  
0.6  
520  
2.4  
V
|VID  
|
Magnitude of differential input voltage  
Magnitude of differential output voltage with disabled driver  
Driver output voltage  
0.1  
0
V
|VOD(dis)|  
VOY or VOZ  
mV  
V
ŤVIDŤ  
2
ŤVIDŤ  
VIC  
Common-mode input voltage (see Figure 5)  
Operating free-air temperature  
2.4 *  
V
2
VCC-0.8  
85  
TA  
–40  
°C  
4
Submit Documentation Feedback  
SN65LVDS179, SN65LVDS180  
SN65LVDS050, SN65LVDS051  
www.ti.com  
SLLS301MAPRIL 1998REVISED JANUARY 2007  
DEVICE ELECTRICAL CHARACTERISTICS  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
SN65LVDS179 No receiver load, driver RL = 100 Ω  
Driver and receiver enabled, no receiver load, driver RL = 100 Ω  
TEST CONDITIONS  
MIN TYP(1)  
MAX UNIT  
9
9
12  
12  
7
mA  
Driver enabled, receiver disabled, RL = 100 Ω  
Driver disabled, receiver enabled, no load  
Disabled  
5
SN65LVDS180  
mA  
1.5  
0.5  
12  
10  
3
2
1
Supply  
current  
ICC  
Drivers and receivers enabled, no receiver loads, driver RL = 100 Ω  
Drivers enabled, receivers disabled, RL = 100 Ω  
Drivers disabled, receivers enabled, no loads  
Disabled  
20  
16  
6
SN65LVDS050  
SN65LVDS051  
mA  
mA  
0.5  
12  
3
1
Drivers enabled, No receiver loads, driver RL = 100 Ω  
Drivers disabled, no loads  
20  
6
(1) All typical values are at 25°C and with a 3.3-V supply.  
DRIVER ELECTRICAL CHARACTERISTICS  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
|VOD  
|
Differential output voltage magnitude  
247  
340  
454  
RL = 100 , See  
Figure 3 and Figure 2  
mV  
50  
Change in differential output voltage magnitude between logic  
states  
|VOD  
|
-50  
1.125  
–50  
VOC(SS)  
VOC(SS)  
VOC(PP)  
Steady-state common-mode output voltage  
1.2 1.375  
V
Change in steady-state common-mode output voltage between  
logic states  
See Figure 3  
50  
mV  
mV  
Peak-to-peak common-mode output voltage  
50  
–0.5  
2
150  
–20  
20  
DE  
IIH  
High-level input current  
D
VIH = 5 V  
µA  
µA  
DE  
–0.5  
2
–10  
10  
IIL  
Low-level input current  
D
VIL = 0.8 V  
VOY or VOZ = 0 V  
VOD = 0 V  
3
10  
IOS  
Short-circuit output current  
mA  
3
10  
DE = OV  
VOY = VOZ = OV  
IO(OFF)  
Off-state output current  
Input capacitance  
–1  
1
µA  
pF  
DE = VCC  
VOY = VOZ = OV,  
VCC < 1.5 V  
CIN  
3
5
Submit Documentation Feedback  
SN65LVDS179, SN65LVDS180  
SN65LVDS050, SN65LVDS051  
www.ti.com  
SLLS301MAPRIL 1998REVISED JANUARY 2007  
RECEIVER ELECTRICAL CHARACTERISTICS  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN TYP(1)  
MAX UNIT  
VIT+  
VIT-  
Positive-going differential input voltage threshold  
Negative-going differential input voltage threshold  
50  
See Figure 5 and Table 1  
mV  
–50  
2.4  
2.8  
IOH = -8 mA  
IOH = -4 mA  
IOL = 8 mA  
VI = 0  
VOH  
VOL  
II  
High-level output voltage  
Low-level output voltage  
Input current (A or B inputs)  
V
0.4  
V
–2  
–11  
–3  
–20  
µA  
VI = 2.4 V  
VCC = 0  
–1.2  
II(OFF)  
IIH  
Power-off input current (A or B inputs)  
High-level input current (enables)  
Low-level input current (enables)  
High-impedance output current  
Input capacitance  
±20  
±10  
±10  
±10  
µA  
µA  
µA  
µA  
pF  
VIH = 5 V  
IIL  
VIL = 0.8 V  
VO = 0 or 5 V  
IOZ  
CI  
5
(1) All typical values are at 25°C and with a 3.3-V supply.  
DRIVER SWITCHING CHARACTERISTICS  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN TYP(1)  
MAX UNIT  
tPLH  
tPHL  
tr  
Propagation delay time, low-to-high-level output  
Propagation delay time, high-to-low-level output  
Differential output signal rise time  
Differential output signal fall time  
Pulse skew (|tpHL - tpLH|)(2)  
1.7  
1.7  
0.8  
0.8  
300  
150  
4.3  
3.1  
2.7  
2.7  
1
ns  
ns  
ns  
ns  
ps  
ps  
ns  
ns  
RL = 100 ,  
CL = 10 pF,  
See Figure 2  
tf  
1
tsk(p)  
tsk(o)  
ten  
Channel-to-channel output skew(3)  
Enable time  
10  
10  
See Figure 4  
tdis  
Disable time  
(1) All typical values are at 25°C and with a 3.3-V supply.  
(2) tsk(p) is the magnitude of the time difference between the high-to-low and low-to-high propagation delay times at an output.  
(3) tsk(o) is the magnitude of the time difference between the outputs of a single device with all of their inputs connected together.  
RECEIVER SWITCHING CHARACTERISTICS  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN TYP(1)  
MAX UNIT  
tPLH  
tPHL  
tsk(p)  
tr  
Propagation delay time, low-to-high-level output  
Propagation delay time, high-to-low-level output  
Pulse skew (|tpHL - tpLH|)(2)  
3.7  
3.7  
0.3  
0.7  
0.9  
2.5  
2.5  
7
4.5  
4.5  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
CL = 10 pF,  
See Figure 6  
Output signal rise time  
1.5  
1.5  
tf  
Output signal fall time  
tPZH  
tPZL  
tPHZ  
tPLZ  
Propagation delay time, high-impedance-to-high-level output  
Propagation delay time, high-impedance-to-low-level output  
Propagation delay time, high-level-to-high-impedance output  
Propagation delay time, low-level-to-high-impedance output  
See Figure 7  
4
(1) All typical values are at 25°C and with a 3.3-V supply.  
(2) tsk(p) is the magnitude of the time difference between the high-to-low and low-to-high propagation delay times at an output.  
6
Submit Documentation Feedback  
SN65LVDS179, SN65LVDS180  
SN65LVDS050, SN65LVDS051  
www.ti.com  
SLLS301MAPRIL 1998REVISED JANUARY 2007  
PARAMETER MEASUREMENT INFORMATION  
DRIVER  
I
OY  
Driver Enable  
Y
Z
I
I
A
V
OD  
V
) V  
OY  
OZ  
I
OZ  
V
OY  
2
V
I
V
OC  
V
OZ  
Figure 1. Driver Voltage and Current Definitions  
Driver Enable  
Y
Z
100  
±1%  
V
OD  
Input  
C
L
= 10 pF  
(2 Places)  
2 V  
Input  
1.4 V  
0.8 V  
t
PHL  
t
PLH  
100%  
80%  
V
OD(H)  
Output  
0 V  
V
OD(L)  
20%  
0%  
t
f
t
r
A. All input pulses are supplied by a generator having the following characteristics: tr or tf 1 ns, pulse repetition rate  
(PRR) = 50 Mpps, pulse width = 10 ± 0.2 ns. CL includes instrumentation and fixture capacitance within 0,06 mm of  
the D.U.T.  
Figure 2. Test Circuit, Timing, and Voltage Definitions for the Differential Output Signal  
7
Submit Documentation Feedback  
SN65LVDS179, SN65LVDS180  
SN65LVDS050, SN65LVDS051  
www.ti.com  
SLLS301MAPRIL 1998REVISED JANUARY 2007  
PARAMETER MEASUREMENT INFORMATION (continued)  
Driver Enable  
Input  
49.9 , ±1% (2 Places)  
3 V  
0 V  
Y
Z
V
OC  
V
OC(PP)  
C
= 10 pF  
L
V
OC(SS)  
(2 Places)  
V
OC  
A. All input pulses are supplied by a generator having the following characteristics: tr or tf 1 ns, pulse repetition rate  
(PRR) = 50 Mpps, pulse width = 10 ± 0.2 ns. CL includes instrumentation and fixture capacitance within 0,06 mm of  
the D.U.T. The measurement of VOC(PP) is made on test equipment with a –3-dB bandwidth of at least 300 MHz.  
Figure 3. Test Circuit and Definitions for the Driver Common-Mode Output Voltage  
49.9 , ±1% (2 Places)  
Y
0.8 V or 2 V  
Z
1.2 V  
DE  
C
= 10 pF  
L
V
OY  
V
OZ  
(2 Places)  
2 V  
1.4 V  
0.8 V  
DE  
~1.4 V  
1.25 V  
1.2 V  
V
V
or V  
D at 2 V and input to DE  
D at 0.8 V and input to DE  
OY  
OZ  
t
t
en  
t
t
dis  
1.2 V  
1.15 V  
~1 V  
or V  
OZ  
OY  
en  
dis  
A. All input pulses are supplied by a generator having the following characteristics: tr or tf 1 ns, pulse repetition rate  
(PRR) = 0.5 Mpps, pulse width = 500 ± 10 ns. CL includes instrumentation and fixture capacitance within 0,06 mm of  
the D.U.T.  
Figure 4. Enable and Disable Time Circuit and Definitions  
8
Submit Documentation Feedback  
SN65LVDS179, SN65LVDS180  
SN65LVDS050, SN65LVDS051  
www.ti.com  
SLLS301MAPRIL 1998REVISED JANUARY 2007  
PARAMETER MEASUREMENT INFORMATION (continued)  
RECEIVER  
A
V
) V  
R
IA  
IB  
V
ID  
2
V
IA  
B
V
O
V
IC  
V
IB  
Figure 5. Receiver Voltage Definitions  
Table 1. Receiver Minimum and Maximum Input Threshold Test Voltages  
APPLIED VOLTAGES  
(V)  
RESULTING DIFFERENTIAL  
INPUT VOLTAGE (mV)  
RESULTING COMMON-  
MODE INPUT VOLTAGE (V)  
VIA  
1.25  
1.15  
2.4  
2.3  
0.1  
0
VIB  
1.15  
1.25  
2.3  
2.4  
0
VID  
100  
VIC  
1.2  
–100  
100  
1.2  
2.35  
2.35  
0.05  
0.05  
1.2  
–100  
100  
0.1  
0.9  
1.5  
1.8  
2.4  
0
–100  
600  
1.5  
0.9  
2.4  
1.8  
0.6  
0
–600  
600  
1.2  
2.1  
–600  
600  
2.1  
0.3  
0.6  
–600  
0.3  
9
Submit Documentation Feedback  
SN65LVDS179, SN65LVDS180  
SN65LVDS050, SN65LVDS051  
www.ti.com  
SLLS301MAPRIL 1998REVISED JANUARY 2007  
V
ID  
V
IA  
C
L
V
O
10 pF  
V
IB  
V
V
1.4 V  
1 V  
IA  
IB  
0.4 V  
0 V  
V
ID  
–0.4 V  
t
t
PHL  
PLH  
V
V
O
OH  
2.4 V  
0.4 V  
1.4 V  
V
OL  
t
f
t
r
A. All input pulses are supplied by a generator having the following characteristics: tr or tf 1 ns, pulse repetition rate  
(PRR) = 50 Mpps, pulse width = 10 ± 0.2 ns. CL includes instrumentation and fixture capacitance within 0,06 m of the  
D.U.T.  
Figure 6. Timing Test Circuit and Waveforms  
10  
Submit Documentation Feedback  
SN65LVDS179, SN65LVDS180  
SN65LVDS050, SN65LVDS051  
www.ti.com  
SLLS301MAPRIL 1998REVISED JANUARY 2007  
B
A
1.2 V  
RE  
500  
C
10 pF  
+
L
V
O
V
TEST  
Inputs  
A. All input pulses are supplied by a generator having the following characteristics: tr or tf 1 ns, pulse repetition rate  
(PRR) = 0.5 Mpps, pulse width = 500 ± 10 ns. CL includes instrumentation and fixture capacitance within 0,06 m of  
the D.U.T.  
2.5 V  
V
TEST  
A
1 V  
2 V  
RE  
1.4 V  
0.8 V  
t
PZL  
t
t
PZL  
PLZ  
2.5 V  
1.4 V  
R
V
OL  
+0.5 V  
V
OL  
0 V  
V
TEST  
A
1.4 V  
2 V  
RE  
1.4 V  
0.8 V  
t
PZH  
t
t
PZH  
PHZ  
V
OH  
V
OH  
–0.5 V  
R
1.4 V  
0 V  
Figure 7. Enable/Disable Time Test Circuit and Waveforms  
11  
Submit Documentation Feedback  
SN65LVDS179, SN65LVDS180  
SN65LVDS050, SN65LVDS051  
www.ti.com  
SLLS301MAPRIL 1998REVISED JANUARY 2007  
TYPICAL CHARACTERISTICS  
DISABLED DRIVER OUTPUT CURRENT  
vs  
OUTPUT VOLTAGE  
40  
V
= 3.3 V  
= 25°C  
CC  
Other output at 0 V  
Other output at 1.2 V  
T
A
30  
20  
DE = 0 V  
10  
V
OZ  
= V  
OY  
0
−10  
−20  
−30  
Other output at 2.4 V  
0
0.5  
1
1.5  
2
2.5  
3
V
− Output Voltage − V  
O
Figure 8.  
DRIVER  
DRIVER  
LOW-LEVEL OUTPUT VOLTAGE  
vs  
HIGH-LEVEL OUTPUT VOLTAGE  
vs  
LOW-LEVEL OUTPUT CURRENT  
HIGH-LEVEL OUTPUT CURRENT  
3.5  
3
4
3
V
T
A
= 3.3 V  
= 25°C  
CC  
V
T
A
= 3.3 V  
= 25°C  
CC  
2.5  
2
2
1
1.5  
1
0.5  
0
0
−1  
−4  
−3  
−2  
0
0
2
4
6
I
− High-Level Output Current − mA  
I
− Low-Level Output Current − mA  
OH  
OL  
Figure 9.  
Figure 10.  
12  
Submit Documentation Feedback  
SN65LVDS179, SN65LVDS180  
SN65LVDS050, SN65LVDS051  
www.ti.com  
SLLS301MAPRIL 1998REVISED JANUARY 2007  
TYPICAL CHARACTERISTICS (continued)  
RECEIVER  
LOW-LEVEL OUTPUT VOLTAGE  
vs  
RECEIVER  
HIGH-LEVEL OUTPUT VOLTAGE  
vs  
LOW-LEVEL OUTPUT CURRENT  
HIGH-LEVEL OUTPUT CURRENT  
5
4
V
T
A
= 3.3 V  
= 25°C  
CC  
V
T
A
= 3.3 V  
= 25°C  
CC  
4
3
2
1
0
3
2
1
0
0
10  
60  
−80  
−60  
− High-Level Output Current − mA  
0
20  
30  
40  
50  
−40  
−20  
I
− Low-Level Output Current − mA  
I
OH  
OL  
Figure 11.  
Figure 12.  
DRIVER  
DRIVER  
HIGH-TO-LOW LEVEL PROPAGATION DELAY TIME  
LOW-TO-HIGH LEVEL PROPAGATION DELAY TIME  
vs  
vs  
FREE-AIR TEMPERATURE  
FREE-AIR TEMPERATURE  
2.5  
2.5  
2
2
V
CC  
= 3.3 V  
V
CC  
= 3.3 V  
V
CC  
= 3 V  
V
CC  
= 3 V  
V
= 3.6 V  
30  
V
= 3.6 V  
30  
CC  
CC  
1.5  
−50  
1.5  
−50  
−30 −10  
10  
50  
90  
−30 −10  
10  
50  
90  
70  
70  
T
A
− Free-Air Temperature − °C  
T
A
− Free-Air Temperature − °C  
Figure 13.  
Figure 14.  
13  
Submit Documentation Feedback  
 
SN65LVDS179, SN65LVDS180  
SN65LVDS050, SN65LVDS051  
www.ti.com  
SLLS301MAPRIL 1998REVISED JANUARY 2007  
TYPICAL CHARACTERISTICS (continued)  
RECEIVER  
HIGH-TO-LOW LEVEL PROPAGATION DELAY TIME  
vs  
FREE-AIR TEMPERATURE  
4.5  
V
CC  
= 3.3 V  
4
V
CC  
= 3 V  
3.5  
V
CC  
= 3.6 V  
3
2.5  
−50  
−30 −10  
10  
50  
90  
30  
70  
T
A
− Free−Air Temperature − °C  
Figure 15.  
RECEIVER  
LOW-TO-HIGH LEVEL PROPAGATION DELAY TIME  
vs  
FREE-AIR TEMPERATURE  
4.5  
V
CC  
= 3 V  
4
V
CC  
= 3.3 V  
3.5  
V
CC  
= 3.6 V  
3
2.5  
−50  
−30 −10  
10  
50  
90  
30  
70  
T
A
− Free-Air Temperature − °C  
Figure 16.  
14  
Submit Documentation Feedback  
SN65LVDS179, SN65LVDS180  
SN65LVDS050, SN65LVDS051  
www.ti.com  
SLLS301MAPRIL 1998REVISED JANUARY 2007  
APPLICATION INFORMATION  
The devices are generally used as building blocks for high-speed point-to-point data transmission. Ground  
differences are less than 1 V with a low common-mode output and balanced interface for low noise emissions.  
Devices can interoperate with RS-422, PECL, and IEEE-P1596. Drivers/receivers maintain ECL speeds without  
the power and dual supply requirements.  
1000  
30% Jitter  
100  
5% Jitter  
10  
1
24 AWG UTP 96 (PVC Dielectric)  
0.1  
100k  
1M  
10M  
100M  
Data Rate – Hz  
Figure 17. Data Transmission Distance Versus Rate  
15  
Submit Documentation Feedback  
SN65LVDS179, SN65LVDS180  
SN65LVDS050, SN65LVDS051  
www.ti.com  
SLLS301MAPRIL 1998REVISED JANUARY 2007  
APPLICATION INFORMATION (continued)  
FAIL SAFE  
One of the most common problems with differential signaling applications is how the system responds when no  
differential voltage is present on the signal pair. The LVDS receiver is like most differential line receivers, in that  
its output logic state can be indeterminate when the differential input voltage is between -100 mV and 100 mV  
and within its recommended input common-mode voltage range. TI's LVDS receiver is different in how it handles  
the open-input circuit situation, however.  
Open-circuit means that there is little or no input current to the receiver from the data line itself. This could be  
when the driver is in a high-impedance state or the cable is disconnected. When this occurs, the LVDS receiver  
pulls each line of the signal pair to near VCC through 300-kresistors as shown in Figure 11. The fail-safe  
feature uses an AND gate with input voltage thresholds at about 2.3 V to detect this condition and force the  
output to a high-level regardless of the differential input voltage.  
V
CC  
300 kΩ  
300 kΩ  
A
R
t
100 Typ  
Y
B
V
IT  
2.3 V  
Figure 18. Open-Circuit Fail Safe of the LVDS Receiver  
It is only under these conditions that the output of the receiver will be valid with less than a 100-mV differential  
input voltage magnitude. The presence of the termination resistor, Rt, does not affect the fail-safe function as  
long as it is connected as shown in the figure. Other termination circuits may allow a dc current to ground that  
could defeat the pullup currents from the receiver and the fail-safe feature.  
16  
Submit Documentation Feedback  
PACKAGE OPTION ADDENDUM  
www.ti.com  
16-Jan-2007  
PACKAGING INFORMATION  
Orderable Device  
SN65LVDS050D  
Status (1)  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
Package Package  
Pins Package Eco Plan (2) Lead/Ball Finish MSL Peak Temp (3)  
Qty  
Type  
Drawing  
SOIC  
D
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
8
40 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
SN65LVDS050DG4  
SN65LVDS050DR  
SN65LVDS050DRG4  
SN65LVDS050PW  
SN65LVDS050PWG4  
SN65LVDS050PWR  
SN65LVDS050PWRG4  
SN65LVDS051D  
SOIC  
SOIC  
D
D
40 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
SOIC  
D
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
SOIC  
PW  
PW  
PW  
PW  
D
90 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
90 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
2000 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
2000 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
40 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
SN65LVDS051DG4  
SN65LVDS051DR  
SN65LVDS051DRG4  
SN65LVDS051PW  
SN65LVDS051PWG4  
SN65LVDS051PWR  
SN65LVDS051PWRG4  
SN65LVDS179D  
SOIC  
D
40 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
SOIC  
D
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
SOIC  
D
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
SOIC  
PW  
PW  
PW  
PW  
D
90 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
90 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
2000 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
2000 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
75 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
SN65LVDS179DG4  
SN65LVDS179DGK  
SN65LVDS179DGKG4  
SN65LVDS179DGKR  
SN65LVDS179DGKRG4  
SN65LVDS179DR  
SN65LVDS179DRG4  
SN65LVDS180D  
SOIC  
D
8
75 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
MSOP  
MSOP  
MSOP  
MSOP  
SOIC  
DGK  
DGK  
DGK  
DGK  
D
8
80 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
8
80 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
8
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
8
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
8
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
SOIC  
D
8
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
SOIC  
D
14  
50 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
16-Jan-2007  
Orderable Device  
SN65LVDS180DG4  
SN65LVDS180DR  
Status (1)  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
Package Package  
Pins Package Eco Plan (2) Lead/Ball Finish MSL Peak Temp (3)  
Qty  
Type  
Drawing  
SOIC  
D
14  
14  
14  
14  
14  
14  
14  
50 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
SOIC  
SOIC  
D
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
SN65LVDS180DRG4  
SN65LVDS180PW  
SN65LVDS180PWG4  
SN65LVDS180PWR  
SN65LVDS180PWRG4  
D
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
PW  
PW  
PW  
PW  
90 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
90 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
2000 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
2000 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in  
a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2)  
Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check  
http://www.ti.com/productcontent for the latest availability information and additional product content details.  
TBD: The Pb-Free/Green conversion plan has not been defined.  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements  
for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered  
at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.  
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and  
package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS  
compatible) as defined above.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame  
retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)  
(3)  
MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder  
temperature.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is  
provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the  
accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take  
reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on  
incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited  
information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI  
to Customer on an annual basis.  
Addendum-Page 2  
MECHANICAL DATA  
MTSS001C – JANUARY 1995 – REVISED FEBRUARY 1999  
PW (R-PDSO-G**)  
PLASTIC SMALL-OUTLINE PACKAGE  
14 PINS SHOWN  
0,30  
0,19  
M
0,10  
0,65  
14  
8
0,15 NOM  
4,50  
4,30  
6,60  
6,20  
Gage Plane  
0,25  
1
7
0°8°  
A
0,75  
0,50  
Seating Plane  
0,10  
0,15  
0,05  
1,20 MAX  
PINS **  
8
14  
16  
20  
24  
28  
DIM  
3,10  
2,90  
5,10  
4,90  
5,10  
4,90  
6,60  
6,40  
7,90  
9,80  
9,60  
A MAX  
A MIN  
7,70  
4040064/F 01/97  
NOTES: A. All linear dimensions are in millimeters.  
B. This drawing is subject to change without notice.  
C. Body dimensions do not include mold flash or protrusion not to exceed 0,15.  
D. Falls within JEDEC MO-153  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,  
enhancements, improvements, and other changes to its products and services at any time and to  
discontinue any product or service without notice. Customers should obtain the latest relevant information  
before placing orders and should verify that such information is current and complete. All products are sold  
subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.  
TI warrants performance of its hardware products to the specifications applicable at the time of sale in  
accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent  
TI deems necessary to support this warranty. Except where mandated by government requirements, testing  
of all parameters of each product is not necessarily performed.  
TI assumes no liability for applications assistance or customer product design. Customers are responsible  
for their products and applications using TI components. To minimize the risks associated with customer  
products and applications, customers should provide adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent  
right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine,  
or process in which TI products or services are used. Information published by TI regarding third-party  
products or services does not constitute a license from TI to use such products or services or a warranty or  
endorsement thereof. Use of such information may require a license from a third party under the patents or  
other intellectual property of the third party, or a license from TI under the patents or other intellectual  
property of TI.  
Reproduction of information in TI data books or data sheets is permissible only if reproduction is without  
alteration and is accompanied by all associated warranties, conditions, limitations, and notices.  
Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not  
responsible or liable for such altered documentation.  
Resale of TI products or services with statements different from or beyond the parameters stated by TI for  
that product or service voids all express and any implied warranties for the associated TI product or service  
and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.  
Following are URLs where you can obtain information on other Texas Instruments products and application  
solutions:  
Products  
Amplifiers  
Data Converters  
DSP  
Interface  
Applications  
Audio  
Automotive  
Broadband  
Digital Control  
Military  
amplifier.ti.com  
dataconverter.ti.com  
dsp.ti.com  
interface.ti.com  
logic.ti.com  
www.ti.com/audio  
www.ti.com/automotive  
www.ti.com/broadband  
www.ti.com/digitalcontrol  
www.ti.com/military  
Logic  
Power Mgmt  
Microcontrollers  
Low Power Wireless  
power.ti.com  
microcontroller.ti.com  
www.ti.com/lpw  
Optical Networking  
Security  
Telephony  
Video & Imaging  
Wireless  
www.ti.com/opticalnetwork  
www.ti.com/security  
www.ti.com/telephony  
www.ti.com/video  
www.ti.com/wireless  
Mailing Address:  
Texas Instruments  
Post Office Box 655303 Dallas, Texas 75265  
Copyright © 2007, Texas Instruments Incorporated  

相关型号:

SN65LVDS051PWR

HIGH-SPEED DIFFERENTIAL LINE DRIVERS AND RECEIVERS
TI

SN65LVDS051PWRG4

HIGH-SPEED DIFFERENTIAL LINE DRIVERS AND RECEIVERS
TI

SN65LVDS051PWRG4Q1

汽车类高速差动线路收发器 | PW | 16 | -40 to 85
TI

SN65LVDS051PWRQ1

汽车类高速差动线路收发器 | PW | 16 | -40 to 85
TI

SN65LVDS1

HIGH-SPEED DIFFERENTIAL LINE DRIVER
TI

SN65LVDS100

DIFFERENTIAL TRANSLATOR/REPEATER
TI

SN65LVDS100D

DIFFERENTIAL TRANSLATOR/REPEATER
TI

SN65LVDS100DG4

DIFFERENTIAL TRANSLATOR/REPEATER
TI

SN65LVDS100DGK

DIFFERENTIAL TRANSLATOR/REPEATER
TI

SN65LVDS100DGKG4

DIFFERENTIAL TRANSLATOR/REPEATER
TI

SN65LVDS100DGKR

DIFFERENTIAL TRANSLATOR/REPEATER
TI

SN65LVDS100DGKRG4

DIFFERENTIAL TRANSLATOR/REPEATER
TI