SN65LVDS104PW [TI]

4-PORT LVDS AND 4-PORT TTL-TO-LVDS REPEATERS; 4端口LVDS和4端口TTL - TO- LVDS转发器
SN65LVDS104PW
型号: SN65LVDS104PW
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

4-PORT LVDS AND 4-PORT TTL-TO-LVDS REPEATERS
4端口LVDS和4端口TTL - TO- LVDS转发器

线路驱动器或接收器 驱动程序和接口 接口集成电路 中继器 光电二极管 PC
文件: 总20页 (文件大小:279K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
SN65LVDS104, SN65LVDS105  
4-PORT LVDS AND 4-PORT TTL-TO-LVDS REPEATERS  
SLLS396B– SEPTEMBER 1999 – REVISED DECEMBER 1999  
Receiver and Drivers Meet or Exceed the  
Requirements of ANSI EIA/TIA-644  
Standard  
SN65LVDS104  
D OR PW PACKAGE  
(TOP VIEW)  
SN65LVDS105  
D OR PW PACKAGE  
(TOP VIEW)  
– SN65LVDS105 Receives Low-Voltage TTL  
(LVTTL) Levels  
– SN65LVDS104 Receives Differential Input  
Levels, ±100 mV  
EN1  
EN2  
EN3  
1Y  
1Z  
2Y  
2Z  
3Y  
3Z  
EN1  
EN2  
EN3  
1Y  
1Z  
2Y  
2Z  
3Y  
3Z  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
V
V
CC  
CC  
Designed for Signaling Rates up to  
630 Mbps  
GND  
A
GND  
A
Operates From a Single 3.3-V Supply  
B
10 4Y  
4Z  
NC  
EN4  
10 4Y  
4Z  
EN4  
9
9
Low-Voltage Differential Signaling With  
Typical Output Voltage of 350 mV and a  
100-Load  
Propagation Delay Time  
logic diagram (positive logic)  
– SN65LVDS105 . . . 2.2 ns (Typ)  
– SN65LVDS104 . . . 3.1 ns (Typ)  
’LVDS104  
1Y  
Electrically Compatible With LVDS, PECL,  
LVPECL, LVTTL, LVCMOS, GTL, BTL, CTT,  
SSTL, or HSTL Outputs With External  
Networks  
1Z  
EN1  
EN2  
2Y  
2Z  
EN3  
Driver Outputs Are High Impedance When  
3Y  
3Z  
Disabled or With V  
<1.5 V  
CC  
A
B
Bus-Pin ESD Protection Exceeds 16 kV  
SOIC and TSSOP Packaging  
4Y  
4Z  
EN4  
description  
’LVDS105  
The SN65LVDS104 and SN65LVDS105 are a  
differential line receiver and a LVTTL input  
(respectively) connected to four differential line  
drivers that implement the electrical characteris-  
tics of low-voltage differential signaling (LVDS).  
LVDS, as specified in EIA/TIA-644 is a data  
signaling technique that offers low-power, low-  
noise coupling, and switching speeds to transmit  
data at speeds up to 655 Mbps at relatively long  
distances. (Note: The ultimate rate and distance  
of data transfer is dependent upon the attenuation  
characteristics of the media, the noise coupling to  
the environment, and other system characteris-  
tics.)  
1Y  
1Z  
EN1  
EN2  
2Y  
2Z  
EN3  
A
3Y  
3Z  
4Y  
4Z  
EN4  
The intended application of this device and signaling technique is for point-to-point baseband data transmission  
over controlled impedance media of approximately 100 . The transmission media may be printed-circuit board  
traces, backplanes, or cables. Having the drivers integrated into the same substrate, along with the low pulse  
skew of balanced signaling, allows extremely precise timing alignment of the signals repeated from the input.  
This is particularly advantageous in distribution or expansion of signals such as clock or serial data stream.  
The SN65LVDS104 and SN65LVDS105 are characterized for operation from –40°C to 85°C.  
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of  
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
Copyright 1999, Texas Instruments Incorporated  
PRODUCTION DATA information is current as of publication date.  
Products conform to specifications per the terms of Texas Instruments  
standard warranty. Production processing does not necessarily include  
testing of all parameters.  
1
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
SN65LVDS104, SN65LVDS105  
4-PORT LVDS AND 4-PORT TTL-TO-LVDS REPEATERS  
SLLS396B– SEPTEMBER 1999 – REVISED DECEMBER 1999  
description (continued)  
The SN65LVDS104 and SN65LVDS105 are members of a family of LVDS repeaters. A brief overview of the  
family is provided in the table below.  
Selection Guide to LVDS Repeaters  
DEVICE  
NO. INPUTS  
2 LVDS  
NO. OUTPUTS  
2 LVDS  
PACKAGE  
16-pin D  
COMMENT  
Dual multiplexed LVDS repeater  
4-Port LVDS repeater  
SN65LVDS22  
SN65LVDS104  
SN65LVDS105  
SN65LVDS108  
SN65LVDS109  
SN65LVDS116  
SN65LVDS117  
1 LVDS  
4 LVDS  
16-pin D  
1 LVTTL  
1 LVDS  
4 LVDS  
16-pin D  
4-Port TTL-to-LVDS repeater  
8-Port LVDS repeater  
8 LVDS  
38-pin DBT  
38-pin DBT  
64-pin DGG  
64-pin DGG  
2 LVDS  
8 LVDS  
Dual 4-port LVDS repeater  
16-Port LVDS repeater  
1 LVDS  
16 LVDS  
16 LVDS  
2 LVDS  
Dual 8-port LVDS repeater  
Function Tables  
SN65LVDS104  
SN65LVDS105  
INPUT  
= V - V  
OUTPUT  
INPUT  
#EN  
OUTPUT  
V
#EN  
X
#Y  
Z
#Z  
Z
A
L
#Y  
#Z  
H
L
ID  
A
B
X
H
H
H
L
L
H
L
X
L
Z
Z
H
V
100 mV  
H
H
?
L
Open  
X
H
Z
ID  
–100 mV < V < 100 mV  
H
?
Z
Z
ID  
–100 mV  
V
ID  
H
L
H
X
X
Z
H = high level, L = low level, Z = high impedance, ? = indeterminate, X = don’t care  
equivalent input and output schematic diagrams  
V
CC  
V
CC  
V
CC  
300 k  
300 kΩ  
EN and  
A (’LVDS105)  
Input  
50 Ω  
10 kΩ  
5 Ω  
Y or Z  
Output  
A
Input  
B
Input  
7 V  
7 V  
300 kΩ  
7 V  
7 V  
2
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
SN65LVDS104, SN65LVDS105  
4-PORT LVDS AND 4-PORT TTL-TO-LVDS REPEATERS  
SLLS396B– SEPTEMBER 1999 – REVISED DECEMBER 1999  
absolute maximum ratings over operating free-air temperature (unless otherwise noted)  
Supply voltage range, V (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.5 to 4 V  
CC  
Voltage range,  
Enable inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.5 to 6 V  
A, B, Y or Z . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.5 to 4 V  
Electrostatic discharge (see Note 2); Y, Z, and GND . . . . . . . . . . . . . . . . . . . . . . . . Class 3, A:16 kV, B: 600 V  
All pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Class 3, A:7 kV, B: 500 V  
Continuous power dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Dissipation Rating Table  
Storage temperature range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65°C to 150°C  
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260°C  
Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and  
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not  
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
NOTES: 1. All voltage values, except differential I/O bus voltages, are with respect to network ground terminal.  
2. Tested in accordance with MIL-STD-883C Method 3015.7  
DISSIPATION RATING TABLE  
T
25°C  
OPERATING FACTOR‡  
T = 85°C  
A
POWER RATING  
A
PACKAGE  
POWER RATING  
ABOVE T = 25°C  
A
D
950 mW  
7.6 mW/°C  
6.2 mW/°C  
494 mW  
PW  
774 mW  
402 mW  
This is the inverse of the junction-to-ambient thermal resistance when board-mounted (low-k)  
and with no air flow.  
recommended operating conditions  
MIN NOM  
MAX  
UNIT  
Supply voltage, V  
CC  
3
2
3.3  
3.6  
V
V
V
V
High-level input voltage, V  
IH  
Low-level input voltage, V  
IL  
Magnitude of differential input voltage, V  
0.8  
3.6  
0.1  
ID  
ID  
V
V
V
ID  
2
2.4 –  
Common-mode input voltage, V  
IC  
2
V
CC  
–0.8  
V
Operating free-air temperature, T  
–40  
85  
°C  
A
3
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
SN65LVDS104, SN65LVDS105  
4-PORT LVDS AND 4-PORT TTL-TO-LVDS REPEATERS  
SLLS396B– SEPTEMBER 1999 – REVISED DECEMBER 1999  
SN65LVDS104 electrical characteristics over recommended operating conditions (unless  
otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN TYP  
MAX  
UNIT  
V
V
Positive-going differential input voltage threshold  
Negative-going differential input voltage threshold  
Differential output voltage magnitude  
100  
ITH+  
See Figure 1 and Table 1  
mV  
–100  
ITH–  
V
247  
340  
454  
50  
OD  
R = 100,  
L
V
= ± 100 mV,  
mV  
Change in differential output voltage magnitude between  
logic states  
ID  
V  
–50  
OD  
See Figure 1 and Figure 2  
V
Steady-state common-mode output voltage  
1.125  
–50  
1.375  
50  
V
OC(SS)  
Change in steady-state common-mode output voltage  
between logic states  
V  
mV  
See Figure 3  
OC(SS)  
OC(PP)  
V
Peak-to-peak common-mode output voltage  
25  
23  
3
150  
35  
mV  
mA  
mA  
Enabled, R = 100Ω  
L
I
Supply current  
CC  
Disabled  
8
V = 0 V  
–2  
–11  
–3  
–20  
I
I
I
Input current (A or B inputs)  
µA  
V = 2.4 V  
I
–1.2  
I
I
I
Power-off Input current  
V
V
V
V
V
V
V
= 1.5 V,  
V = 2.4 V  
20  
20  
µA  
µA  
µA  
mA  
mA  
µA  
µA  
pF  
I(OFF)  
CC  
I
High-level input current (enables)  
Low-level input current (enables)  
= 2 V  
IH  
IH  
= 0.8 V  
10  
IL  
IL  
or V  
OZ  
= 0 V  
= 0 V  
±10  
±10  
±1  
OY  
OD  
I
Short-circuit output current  
OS  
I
I
High-impedance output current  
Power-off output current  
= 0 V or 2.4 V  
OZ  
O
= 1.5 V,  
V = 2.4 V  
O
±1  
O(OFF)  
CC  
C
Input capacitance (A or B inputs)  
V = 0.4 sin (4E6πt) + 0.5 V  
I
3
IN  
V = 0.4 sin (4E6πt) + 0.5 V,  
Disabled  
I
C
Output capacitance (Y or Z outputs)  
9.4  
pF  
O
All typical values are at 25°C and with a 3.3 V supply.  
SN65LVDS104 switching characteristics over recommended operating conditions (unless  
otherwise noted)  
PARAMETER  
Propagation delay time, low-to-high-level output  
Propagation delay time, high-to-low-level output  
Differential output signal rise time  
TEST CONDITIONS  
MIN TYP  
MAX  
4.2  
4.2  
1.2  
1.2  
500  
100  
1.5  
15  
UNIT  
ns  
t
t
t
t
t
t
t
t
t
t
t
2.4  
2.2  
0.3  
0.3  
3.2  
3.1  
0.8  
0.8  
150  
20  
PLH  
PHL  
r
ns  
R
C
= 100,  
= 10 pF,  
L
L
ns  
Differential output signal fall time  
ns  
f
See Figure 4  
Pulse skew (|t  
– t  
|)  
ps  
sk(p)  
sk(o)  
sk(pp)  
PZH  
PZL  
PHZ  
PLZ  
PHL PLH  
Channel-to-channel output skew  
ps  
§
Part-to-part skew  
ns  
Propagation delay time, high-impedance-to-high-level output  
Propagation delay time, high-impedance-to-low-level output  
Propagation delay time, high-level-to-high-impedance output  
Propagation delay time, low-level-to-high-impedance output  
7.2  
8.4  
3.6  
6
ns  
15  
ns  
See Figure 5  
15  
ns  
15  
ns  
All typical values are at 25°C and with a 3.3 V supply.  
§
t
t
is the magnitude of the time difference between the t  
PLH  
sk(pp)  
or t  
of all drivers of a single device with all of their inputs connected together.  
sk(o)  
PHL  
is the magnitude of the difference in propagation delay times between any specified terminals of two devices when both devices operate  
with the same supply voltages, at the same temperature, and have identical packages and test circuits.  
4
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
SN65LVDS104, SN65LVDS105  
4-PORT LVDS AND 4-PORT TTL-TO-LVDS REPEATERS  
SLLS396B– SEPTEMBER 1999 – REVISED DECEMBER 1999  
SN65LVDS105 electrical characteristics over recommended operating conditions (unless  
otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN TYP  
MAX  
UNIT  
V
Differential output voltage magnitude  
247  
340  
454  
OD  
R = 100,  
L
V
= ± 100 mV,  
mV  
Change in differential output voltage magnitude between  
logic states  
ID  
V  
–50  
50  
1.375  
50  
OD  
See Figure 6 and Figure 7  
V
Steady-state common-mode output voltage  
1.125  
–50  
V
OC(SS)  
Change in steady-state common-mode output voltage be-  
tween logic states  
V  
mV  
See Figure 8  
OC(SS)  
OC(PP)  
V
Peak-to-peak common-mode output voltage  
25  
23  
150  
35  
mV  
mA  
mA  
µA  
µA  
mA  
mA  
µA  
µA  
pF  
Enabled, R = 100Ω  
L
I
Supply current  
CC  
Disabled  
0.7  
6.4  
20  
I
I
High-level input current  
Low-level input current  
V
V
V
V
V
V
= 2 V  
IH  
IH  
= 0.8 V  
10  
IL  
IL  
or V  
OZ  
= 0 V  
= 0 V  
±10  
±10  
±1  
OY  
OD  
I
Short-circuit output current  
OS  
I
I
High-impedance output current  
Power-off output current  
Input capacitance  
= 0 V or 2.4 V  
OZ  
O
= 1.5 V,  
V = 2.4 V  
O
0.3  
5
±1  
O(OFF)  
CC  
C
V = 0.4 sin (4E6πt) + 0.5 V  
I
IN  
V = 0.4 sin (4E6πt) + 0.5 V,  
Disabled  
I
C
Output capacitance (Y or Z outputs)  
9.4  
pF  
O
All typical values are at 25°C and with a 3.3 V supply.  
SN65LVDS105 switching characteristics over recommended operating conditions (unless  
otherwise noted)  
PARAMETER  
Propagation delay time, low-to-high-level output  
Propagation delay time, high-to-low-level output  
Differential output signal rise time  
TEST CONDITIONS  
MIN TYP  
MAX  
3
UNIT  
ns  
t
t
t
t
t
t
t
t
t
t
t
1.7  
1.4  
0.3  
0.3  
2.2  
2.3  
0.8  
0.8  
150  
20  
PLH  
PHL  
r
3.5  
1.2  
1.2  
500  
100  
1.5  
15  
ns  
R
C
= 100,  
= 10 pF,  
L
L
ns  
Differential output signal fall time  
ns  
f
See Figure 9  
Pulse skew (|t  
– t  
|)  
ps  
sk(p)  
sk(o)  
sk(pp)  
PZH  
PZL  
PHZ  
PLZ  
PHL PLH  
Channel-to-channel output skew  
ps  
§
Part-to-part skew  
ns  
Propagation delay time, high-impedance-to-high-level output  
Propagation delay time, high-impedance-to-low-level output  
Propagation delay time, high-level-to-high-impedance output  
Propagation delay time, low-level-to-high-impedance output  
7.2  
8.4  
3.6  
6
ns  
15  
ns  
See Figure 10  
15  
ns  
15  
ns  
All typical values are at 25°C and with a 3.3 V supply.  
§
t
t
is the magnitude of the time difference between the t  
PLH  
sk(pp)  
or t  
of all drivers of a single device with all of their inputs connected together.  
sk(o)  
PHL  
is the magnitude of the difference in propagation delay times between any specified terminals of two devices when both devices operate  
with the same supply voltages, at the same temperature, and have identical packages and test circuits.  
5
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
SN65LVDS104, SN65LVDS105  
4-PORT LVDS AND 4-PORT TTL-TO-LVDS REPEATERS  
SLLS396B– SEPTEMBER 1999 – REVISED DECEMBER 1999  
PARAMETER MEASUREMENT INFORMATION  
I
I
I
OY  
A
Y
Z
V
V
OD  
ID  
V
V
OY  
OZ  
I
I
OZ  
IB  
V
OY  
2
V
IA  
B
V
OC  
V
V
IB  
OZ  
Figure 1. ’LVDS104 Voltage and Current Definitions  
Table 1. SN65LVDS104 Minimum and Maximum Input Threshold Test Voltages  
RESULTING  
DIFFERENTIAL  
INPUT VOLTAGE  
RESULTING  
COMMON-MODE  
INPUT VOLTAGE  
APPLIED  
VOLTAGES  
V
IA  
V
IB  
V
ID  
V
IC  
1.25 V  
1.15 V  
2.4 V  
2.3 V  
0.1 V  
0 V  
1.15 V  
1.25 V  
2.3 V  
2.4 V  
0 V  
100 mV  
–100 mV  
100 mV  
–100 mV  
100 mV  
–100 mV  
600 mV  
–600 mV  
600 mV  
–600 mV  
600 mV  
–600 mV  
1.2 V  
1.2 V  
2.35 V  
2.35 V  
0.05 V  
0.05 V  
1.2 V  
1.2 V  
2.1 V  
2.1 V  
0.3 V  
0.3 V  
0.1 V  
0.9 V  
1.5 V  
1.8 V  
2.4 V  
0 V  
1.5 V  
0.9 V  
2.4 V  
1.8 V  
0.6 V  
0 V  
0.6 V  
3.75 kΩ  
Y
Z
V
OD  
Input  
100 Ω  
3.75 kΩ  
0 V V  
TEST  
2.4 V  
±
Figure 2. ’LVDS104 VOD Test Circuit  
6
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
SN65LVDS104, SN65LVDS105  
4-PORT LVDS AND 4-PORT TTL-TO-LVDS REPEATERS  
SLLS396B– SEPTEMBER 1999 – REVISED DECEMBER 1999  
PARAMETER MEASUREMENT INFORMATION  
49.9 ± 1% (2 Places)  
V
I
I
1.4 V  
1 V  
Y
Z
V
Input  
V
OC(PP)  
V
V
OC  
OC(SS)  
C
= 10 pF  
L
(2 Places)  
V
O
NOTE: All input pulses are supplied by a generator having the following characteristics: t or t 1 ns, pulse repetition rate (PRR) = 0.5 Mpps,  
r
f
pulsewidth = 500 ± 10 ns . C includes instrumentation and fixture capacitance within 0,06 m of the D.U.T. The measurement of V  
is made on test equipment with a –3 dB bandwidth of at least 300 MHz.  
L
OC(PP)  
Figure 3. ’LVDS104 Test Circuit and Definitions for the Driver Common-Mode Output Voltage  
1.4 V  
1.2 V  
V
IB  
Input  
1 V  
V
t
IA  
PLH  
t
PHL  
Y
Z
A
B
Input  
100%  
80%  
V
OD  
100 ± 1 %  
Output  
V
OD(H)  
C
= 10 pF  
L
0 V  
(2 Places)  
V
OD(L)  
20%  
0%  
t
t
r
f
NOTE: All input pulses are supplied by a generator having the following characteristics: t or t 1 ns, pulse repetition rate (PRR) = 50 Mpps,  
r
f
pulsewidth = 10 ± 0.2 ns . C includes instrumentation and fixture capacitance within 0,06 m of the D.U.T.  
L
Figure 4. ’LVDS104 Test Circuit, Timing, and Voltage Definitions for the Differential output Signal  
7
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
SN65LVDS104, SN65LVDS105  
4-PORT LVDS AND 4-PORT TTL-TO-LVDS REPEATERS  
SLLS396B– SEPTEMBER 1999 – REVISED DECEMBER 1999  
PARAMETER MEASUREMENT INFORMATION  
49.9 ± 1% (2 Places)  
Y
Z
1 V or 1.4 V  
1.2 V  
EN  
1.2 V  
C
= 10 pF  
V
OY  
V
OZ  
L
(2 Places)  
(see Note B)  
3 V  
1.5 V  
EN  
0 V  
t
t
t
PZH  
PHZ  
PLZ  
V
OY  
or  
1.4 V  
1.25 V  
V
OZ  
1.2 V  
t
PZL  
1.2 V  
1.15 V  
1 V  
V
OZ  
or  
V
OY  
NOTE: All input pulses are supplied by a generator having the following characteristics: t or t 1 ns, pulse repetition rate (PRR) = 0.5 Mpps,  
r
f
pulsewidth = 500 ± 10 ns . C includes instrumentation and fixture capacitance within 0,06 m of the D.U.T.  
L
Figure 5. ’LVDS104 Enable and Disable Time Circuit and Definitions  
I
OY  
Y
Z
I
I
A
V
OD  
V
V
OY  
OZ  
I
OZ  
V
OY  
2
V
OC  
V
IA  
V
OZ  
Figure 6. ’LVDS105 Voltage and Current Definitions  
3.75 kΩ  
Y
V
OD  
Input  
100 Ω  
3.75 kΩ  
Z
0 V V  
2.4 V  
±
TEST  
Figure 7. ’LVDS105 VOD Test Circuit  
8
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
SN65LVDS104, SN65LVDS105  
4-PORT LVDS AND 4-PORT TTL-TO-LVDS REPEATERS  
SLLS396B– SEPTEMBER 1999 – REVISED DECEMBER 1999  
PARAMETER MEASUREMENT INFORMATION  
49.9 ± 1% (2 Places)  
3 V  
0 V  
Y
Z
A
O
Input  
V
OC(PP)  
V
V
OC  
OC(SS)  
C
= 10 pF  
L
(2 Places)  
V
NOTE: All input pulses are supplied by a generator having the following characteristics: t or t 1 ns, pulse repetition rate (PRR) = 0.5 Mpps,  
r
f
pulsewidth = 500 ± 10 ns . C includes instrumentation and fixture capacitance within 0,06 m of the D.U.T. The measurement of V  
is made on test equipment with a –3 dB bandwidth of at least 300 MHz.  
L
OC(PP)  
Figure 8. ’LVDS105 Test Circuit and Definitions for the Driver Common-Mode Output Voltage  
3 V  
Input  
1.5 V  
0 V  
V
t
IA  
PLH  
t
PHL  
Y
Z
Input  
100%  
80%  
V
OD  
100 ± 1 %  
Output  
V
OD(H)  
C
= 10 pF  
L
0 V  
(2 Places)  
V
OD(L)  
20%  
0%  
t
t
r
f
NOTE: All input pulses are supplied by a generator having the following characteristics: t or t 1 ns, pulse repetition rate (PRR) = 50 Mpps,  
r
f
pulsewidth = 10 ± 0.2 ns . C includes instrumentation and fixture capacitance within 0,06 m of the D.U.T.  
L
Figure 9. ’LVDS105 Test Circuit, Timing, and Voltage Definitions for the Differential output Signal  
9
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
SN65LVDS104, SN65LVDS105  
4-PORT LVDS AND 4-PORT TTL-TO-LVDS REPEATERS  
SLLS396B– SEPTEMBER 1999 – REVISED DECEMBER 1999  
PARAMETER MEASUREMENT INFORMATION  
49.9 ± 1% (2 Places)  
Y
Z
0.8 V or 2 V  
EN  
1.2 V  
C
= 10 pF  
V
OY  
V
OZ  
L
(2 Places)  
(see Note B)  
3 V  
1.5 V  
EN  
0 V  
t
t
t
PZH  
PHZ  
PLZ  
V
OY  
or  
1.4 V  
1.25 V  
V
OZ  
1.2 V  
t
PZL  
1.2 V  
1.15 V  
1 V  
V
OZ  
or  
V
OY  
NOTE: All input pulses are supplied by a generator having the following characteristics: t or t 1 ns, pulse repetition rate (PRR) = 0.5 Mpps,  
r
f
pulsewidth = 500 ± 10 ns . C includes instrumentation and fixture capacitance within 0,06 m of the D.U.T.  
L
Figure 10. ’LVDS105 Enable and Disable Time Circuit and Definitions  
10  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
SN65LVDS104, SN65LVDS105  
4-PORT LVDS AND 4-PORT TTL-TO-LVDS REPEATERS  
SLLS396B– SEPTEMBER 1999 – REVISED DECEMBER 1999  
TYPICAL CHARACTERISTIC  
SN65LVDS104  
SUPPLY CURRENT  
vs  
SN65LVDS105  
SUPPLY CURRENT  
vs  
SWITCHING FREQUENCY  
SWITCHING FREQUENCY  
60  
55  
50  
45  
40  
35  
30  
25  
50  
45  
40  
35  
30  
25  
20  
V
CC  
= 3.6 V  
V
CC  
= 3.6 V  
V
= 3 V  
CC  
V
= 3 V  
CC  
V
CC  
= 3.3 V  
V
CC  
= 3.3 V  
All Outputs Loaded  
and Enabled  
All Outputs Loaded  
and Enabled  
50  
100  
150  
200  
250  
300  
350  
50  
100  
150  
200  
250  
300  
350  
f – Frequency – MHz  
f – Frequency – MHz  
Figure 11  
Figure 12  
DRIVER  
DRIVER  
HIGH-LEVEL OUTPUT VOLTAGE  
vs  
LOW-LEVEL OUTPUT VOLTAGE  
vs  
HIGH-LEVEL OUTPUT CURRENT  
LOW-LEVEL OUTPUT CURRENT  
4
3.5  
3
V
T
A
= 3.3 V  
= 25°C  
CC  
V
T
A
= 3.3 V  
= 25°C  
CC  
3
2.5  
2
2
1
1.5  
1
0.5  
0
0
0
2
4
6
–1  
–4  
–3  
–2  
0
I
– Low-Level Output Current – mA  
I
– High-Level Output Current – mA  
OL  
OH  
Figure 13  
Figure 14  
11  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
SN65LVDS104, SN65LVDS105  
4-PORT LVDS AND 4-PORT TTL-TO-LVDS REPEATERS  
SLLS396B– SEPTEMBER 1999 – REVISED DECEMBER 1999  
TYPICAL CHARACTERISTIC  
SN65LVDS104  
SN65LVDS104  
LOW-TO-HIGH PROPAGATION DELAY TIME  
HIGH-TO-LOW PROPAGATION DELAY TIME  
vs  
vs  
FREE-AIR TEMPERATURE  
FREE-AIR TEMPERATURE  
3.6  
3.5  
3.4  
3.3  
3.2  
3.1  
3.0  
2.9  
2.8  
3.6  
3.5  
3.4  
3.3  
3.2  
3.1  
3.0  
2.9  
2.8  
V
= 3.3 V  
CC  
V
CC  
= 3 V  
V
= 3.3 V  
CC  
V
CC  
= 3 V  
V
= 3.6 V  
V
CC  
= 3.6 V  
CC  
–50  
–25  
0
25  
50  
75  
100  
–50  
–25  
0
25  
50  
75  
100  
T
A
– Free–Air Temperature – °C  
T
A
– Free–Air Temperature – °C  
Figure 15  
Figure 16  
SN65LVDS105  
SN65LVDS105  
LOW-TO-HIGH PROPAGATION DELAY TIME  
HIGH-TO-LOW PROPAGATION DELAY TIME  
vs  
vs  
FREE-AIR TEMPERATURE  
FREE-AIR TEMPERATURE  
2.7  
2.7  
2.6  
2.5  
2.4  
2.3  
2.2  
2.1  
2
2.6  
2.5  
2.4  
2.3  
2.2  
2.1  
2
V
CC  
= 3 V  
V
= 3 V  
CC  
V
CC  
= 3.3 V  
V
= 3.3 V  
CC  
V
CC  
= 3.6 V  
V
= 3.6 V  
25  
CC  
–50  
–25  
0
50  
75  
100  
–50  
–25  
0
25  
50  
75  
100  
T
A
– Free–Air Temperature – °C  
T
A
– Free–Air Temperature – °C  
Figure 17  
Figure 18  
12  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
SN65LVDS104, SN65LVDS105  
4-PORT LVDS AND 4-PORT TTL-TO-LVDS REPEATERS  
SLLS396B– SEPTEMBER 1999 – REVISED DECEMBER 1999  
APPLICATION INFORMATION  
A LVDS receiver can be used to receive various other types of logic signals. Figure 19 through Figure 28 show  
the termination circuits for SSTL, HSTL, GTL, BTL, LVPECL, PECL, CMOS, and TTL.  
V
DD  
50 Ω  
25 Ω  
A
B
50  
1/2 V  
DD  
LVDS Receiver  
0.1 µF  
Figure 19. Stub-Series Terminated (SSTL) or High-Speed Transceiver Logic (HSTL)  
V
DD  
50 Ω  
A
B
50 Ω  
1.35 V < V < 1.65 V  
TT  
LVDS Receiver  
0.1 µF  
Figure 20. Center-Tap Termination (CTT)  
1.14 V < V < 1.26 V  
TT  
V
DD  
1 kΩ  
50 Ω  
50 Ω  
A
B
2 kΩ  
0.1 µF  
LVDS Receiver  
Figure 21. Gunning Transceiver Logic (GTL)  
13  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
SN65LVDS104, SN65LVDS105  
4-PORT LVDS AND 4-PORT TTL-TO-LVDS REPEATERS  
SLLS396B– SEPTEMBER 1999 – REVISED DECEMBER 1999  
APPLICATION INFORMATION  
Z
0
Z
0
A
B
1.47 V < V < 1.62 V  
TT  
LVDS Receiver  
0.1 µF  
Figure 22. Backplane Transceiver Logic (BTL)  
3.3 V  
3.3 V  
ECL  
120 Ω  
33 Ω  
120 Ω  
50 Ω  
50 Ω  
33 Ω  
A
B
51 Ω  
51 Ω  
LVDS Receiver  
Figure 23. Low-Voltage Positive Emitter-Coupled Logic (LVPECL)  
14  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
SN65LVDS104, SN65LVDS105  
4-PORT LVDS AND 4-PORT TTL-TO-LVDS REPEATERS  
SLLS396B– SEPTEMBER 1999 – REVISED DECEMBER 1999  
APPLICATION INFORMATION  
5 V  
5 V  
82 Ω  
82 Ω  
50 Ω  
50 Ω  
ECL  
100 Ω  
100 Ω  
A
B
33 Ω  
33 Ω  
LVDS Receiver  
Figure 24. Postive Emitter-Coupled Logic (PECL)  
3.3 V  
3.3 V  
7.5 kΩ  
A
B
7.5 kΩ  
0.1 µF  
LVDS Receiver  
Figure 25. 3.3-V CMOS  
15  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
SN65LVDS104, SN65LVDS105  
4-PORT LVDS AND 4-PORT TTL-TO-LVDS REPEATERS  
SLLS396B– SEPTEMBER 1999 – REVISED DECEMBER 1999  
APPLICATION INFORMATION  
5 V  
5 V  
10 kΩ  
560 Ω  
A
B
560 Ω  
3.32 kΩ  
0.1 µF  
LVDS Receiver  
LVDS Receiver  
LVDS Receiver  
Figure 26. 5-V CMOS  
5 V  
5 V  
10 kΩ  
470 Ω  
A
B
3.3 V  
4.02 kΩ  
0.1 µF  
Figure 27. 5-V TTL  
3.3 V  
3.3 V  
4.02 kΩ  
560 Ω  
A
B
3.01 kΩ  
0.1 µF  
Figure 28. LVTTL  
16  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
SN65LVDS104, SN65LVDS105  
4-PORT LVDS AND 4-PORT TTL-TO-LVDS REPEATERS  
SLLS396B– SEPTEMBER 1999 – REVISED DECEMBER 1999  
APPLICATION INFORMATION  
fail safe  
One of the most common problems with differential signaling applications is how the system responds when  
no differential voltage is present on the signal pair. The LVDS receiver is like most differential line receivers, in  
that its output logic state can be indeterminate when the differential input voltage is between –100 mV and 100  
mV and within its recommended input common-mode voltage range. TI’s LVDS receiver is different in how it  
handles the open-input circuit situation, however.  
Open-circuit means that there is little or no input current to the receiver from the data line itself. This could be  
when the driver is in a high-impedance state or the cable is disconnected. When this occurs, the LVDS receiver  
will pull each line of the signal pair to near V  
through 300-kresistors as shown in Figure 10. The fail-safe  
CC  
feature uses an AND gate with input voltage thresholds at about 2.3 V to detect this condition and force the  
output to a high-level regardless of the differential input voltage.  
V
CC  
300 kΩ  
300 kΩ  
A
Rt = 100 (Typ)  
Y
B
V
IT  
2.3 V  
Figure 29. Open-Circuit Fail Safe of the LVDS Receiver  
It is only under these conditions that the output of the receiver will be valid with less than a 100 mV differential  
input voltage magnitude. The presence of the termination resistor, Rt, does not affect the fail-safe function as  
long as it is connected as shown in the figure. Other termination circuits may allow a dc current to ground that  
could defeat the pullup currents from the receiver and the fail-safe feature.  
17  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
SN65LVDS104, SN65LVDS105  
4-PORT LVDS AND 4-PORT TTL-TO-LVDS REPEATERS  
SLLS396B– SEPTEMBER 1999 – REVISED DECEMBER 1999  
MECHANICAL INFORMATION  
D (R-PDSO-G**)  
PLASTIC SMALL-OUTLINE PACKAGE  
14 PINS SHOWN  
0.050 (1,27)  
0.020 (0,51)  
0.010 (0,25)  
M
0.014 (0,35)  
14  
8
0.008 (0,20) NOM  
0.244 (6,20)  
0.228 (5,80)  
0.157 (4,00)  
0.150 (3,81)  
Gage Plane  
0.010 (0,25)  
1
7
0°8°  
0.044 (1,12)  
A
0.016 (0,40)  
Seating Plane  
0.004 (0,10)  
0.010 (0,25)  
0.004 (0,10)  
0.069 (1,75) MAX  
PINS **  
8
14  
16  
DIM  
0.197  
(5,00)  
0.344  
(8,75)  
0.394  
(10,00)  
A MAX  
0.189  
(4,80)  
0.337  
(8,55)  
0.386  
(9,80)  
A MIN  
4040047/D 10/96  
NOTES: A. All linear dimensions are in inches (millimeters).  
B. This drawing is subject to change without notice.  
C. Body dimensions do not include mold flash or protrusion, not to exceed 0.006 (0,15).  
D. Falls within JEDEC MS-012  
18  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
SN65LVDS104, SN65LVDS105  
4-PORT LVDS AND 4-PORT TTL-TO-LVDS REPEATERS  
SLLS396B– SEPTEMBER 1999 – REVISED DECEMBER 1999  
MECHANICAL INFORMATION  
PW (R-PDSO-G**)  
PLASTIC SMALL-OUTLINE PACKAGE  
14 PINS SHOWN  
0,30  
M
0,10  
0,65  
0,19  
14  
8
0,15 NOM  
4,50  
4,30  
6,60  
6,20  
Gage Plane  
0,25  
1
7
0°8°  
A
0,75  
0,50  
Seating Plane  
0,10  
0,15  
0,05  
1,20 MAX  
PINS **  
8
14  
16  
20  
24  
28  
DIM  
3,10  
2,90  
5,10  
4,90  
5,10  
4,90  
6,60  
6,40  
7,90  
7,70  
9,80  
9,60  
A MAX  
A MIN  
4040064/F 01/97  
NOTES: A. All linear dimensions are in millimeters.  
B. This drawing is subject to change without notice.  
C. Body dimensions do not include mold flash or protrusion not to exceed 0,15.  
D. Falls within JEDEC MO-153  
19  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
IMPORTANT NOTICE  
Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue  
any product or service without notice, and advise customers to obtain the latest version of relevant information  
to verify, before placing orders, that information being relied on is current and complete. All products are sold  
subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those  
pertaining to warranty, patent infringement, and limitation of liability.  
TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in  
accordance with TI’s standard warranty. Testing and other quality control techniques are utilized to the extent  
TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily  
performed, except those mandated by government requirements.  
CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF  
DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE (“CRITICAL  
APPLICATIONS”). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR  
WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER  
CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO  
BE FULLY AT THE CUSTOMER’S RISK.  
In order to minimize risks associated with the customer’s applications, adequate design and operating  
safeguards must be provided by the customer to minimize inherent or procedural hazards.  
TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent  
that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other  
intellectual property right of TI covering or relating to any combination, machine, or process in which such  
semiconductor products or services might be or are used. TI’s publication of information regarding any third  
party’s products or services does not constitute TI’s approval, warranty or endorsement thereof.  
Copyright 1999, Texas Instruments Incorporated  

相关型号:

SN65LVDS104PWG4

4-PORT LVDS AND 4-PORT TTL-TO-LVDS REPEATERS
TI

SN65LVDS104PWLE

LINE TRANSCEIVER, PDSO16, PLASTIC, TSSOP-16
TI

SN65LVDS104PWR

4-PORT LVDS AND 4-PORT TTL-TO-LVDS REPEATERS
TI

SN65LVDS104PWRG4

4-PORT LVDS AND 4-PORT TTL-TO-LVDS REPEATERS
TI

SN65LVDS104_07

4-PORT LVDS AND 4-PORT TTL-TO-LVDS REPEATERS
TI

SN65LVDS104_08

4-PORT LVDS AND 4-PORT TTL-TO-LVDS REPEATERS
TI

SN65LVDS105

4-PORT LVDS AND 4-PORT TTL-TO-LVDS REPEATERS
TI

SN65LVDS1050

HIGH-SPEED DIFFERENTIAL LINE DRIVERS AND RECEIVERS
TI

SN65LVDS1050PW

HIGH-SPEED DIFFERENTIAL LINE DRIVERS AND RECEIVERS
TI

SN65LVDS1050PWG4

双路 LVDS 收发器 | PW | 16 | -40 to 85
TI

SN65LVDS1050PWR

Dual LVDS Transceiver 16-TSSOP -40 to 85
TI

SN65LVDS1050PWRG4

DUAL LINE TRANSCEIVER, PDSO16, GREEN, PLASTIC, TSSOP-16
TI