SN65LVDS108DBTG4 [TI]

1:8 LVDS 时钟扇出缓冲器 | DBT | 38 | -40 to 85;
SN65LVDS108DBTG4
型号: SN65LVDS108DBTG4
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

1:8 LVDS 时钟扇出缓冲器 | DBT | 38 | -40 to 85

时钟 驱动 光电二极管 接口集成电路 驱动器
文件: 总16页 (文件大小:224K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
SN65LVDS108  
8-PORT LVDS REPEATER  
SLLS399A – NOVEMBER 1999 – REVISED MARCH 2000  
DBT PACKAGE  
(TOP VIEW)  
One Line Receiver and Eight Line Drivers  
Configured as an 8-Port LVDS Repeater  
Line Receiver and Line Drivers Meet or  
Exceed the Requirements of ANSI  
EIA/TIA-644 Standard  
GND  
ANC  
AY  
AZ  
BY  
BZ  
CY  
CZ  
DY  
DZ  
EY  
EZ  
FY  
FZ  
1
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
V
2
CC  
GND  
NC  
3
Designed for Signaling Rates up to  
622 Mbps  
4
ENM  
ENA  
ENB  
ENC  
END  
A
5
Enabling Logic Allows Individual Control of  
Each Driver Output, Plus all Outputs  
6
7
8
Low-Voltage Differential Signaling With  
Typical Output Voltage of 350 mV and a  
100Load  
9
10  
11  
12  
13  
14  
15  
16  
B
Electrically Compatible With LVDS, PECL,  
LVPECL, LVTTL, LVCMOS, GTL, BTL, CTT,  
SSTL, or HSTL Outputs With External  
Termination Networks  
ENE  
ENF  
ENG  
ENH  
NC  
GY  
GZ  
HY  
HZ  
NC  
NC  
Propagation Delay Times < 4.7 ns  
Output Skew Less Than 300 ps and  
Part-to-Part Skew Less Than 1.5 ns  
GND 17  
18  
GND 19  
V
CC  
Total Power Dissipation at 200 MHz  
Typically Less Than 330 mW With 8  
Channels Enabled  
Driver Outputs or Receiver Input Equals  
High Impedance When Disabled or With  
V
< 1.5 V  
CC  
Bus-Pin ESD Protection Exceeds 12 kV  
Packaged in Thin Shrink Small-Outline  
Package With 20-mil Terminal Pitch  
description  
The SN65LVDS108 is configured as one differential line receiver connected to eight differential line drivers.  
Individual output enables are provided for each output and an additional enable is provided for all outputs.  
The line receivers and line drivers implement the electrical characteristics of low-voltage differential signaling  
(LVDS). LVDS, as specified in EIA/TIA-644, is a data signaling technique that offers low power, low noise  
emission, high noise immunity, and high switching speeds. It can be used to transmit data at speeds up to at  
least 622 Mbps and over relatively long distances. (Note: The ultimate rate and distance of data transfer is  
dependent upon the attenuation characteristics of the media, the noise coupling to the environment, and other  
system characteristics.)  
The intended application of this device, and the LVDS signaling technique, is for point-to-point or  
point-to-multipoint (distributed simplex) baseband data transmission on controlled impedance media of  
approximately 100 . The transmission media may be printed-circuit board traces, backplanes, or cables. The  
large number of drivers integrated into the same silicon substrate, along with the low pulse skew of balanced  
signaling, provides extremely precise timing alignment of the signals being repeated from the inputs. This is  
particularly advantageous for implementing system clock or data distribution trees.  
The SN65LVDS108 is characterized for operation from –40°C to 85°C.  
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of  
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
Copyright 2000, Texas Instruments Incorporated  
PRODUCTION DATA information is current as of publication date.  
Products conform to specifications per the terms of Texas Instruments  
standard warranty. Production processing does not necessarily include  
testing of all parameters.  
1
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
SN65LVDS108  
8-PORT LVDS REPEATER  
SLLS399A – NOVEMBER 1999 – REVISED MARCH 2000  
logic diagram (positive logic)  
AY  
AZ  
ENA  
ENM  
BY  
BZ  
ENB  
CY  
CZ  
ENC  
END  
DY  
DZ  
A
B
EY  
EZ  
ENE  
FY  
FZ  
ENF  
ENG  
ENH  
GY  
GZ  
HY  
HZ  
selection guide to LVDS splitter  
The SN65LVDS108 is one member of a family of LVDS splitters and repeaters. A brief overview of the family  
is provided in the following table.  
LVDS SPLITTER AND REPEATER FAMILY  
NUMBER  
OF INPUTS  
NUMBER OF  
OUTPUTS  
DEVICE  
PACKAGE  
COMMENTS  
SN65LVDS104  
SN65LVDS105  
SN65LVDS108  
SN65LVDS109  
SN65LVDS116  
SN65LVDS117  
1 LVDS  
1 LVTTL  
1 LVDS  
2 LVDS  
1 LVDS  
2 LVDS  
4 LVDS  
4 LVDS  
8 LVDS  
8 LVDS  
16 LVDS  
16 LVDS  
16-pin D  
4-Port LVDS Repeater  
16-pin D  
4-Port TTL-to-LVDS Repeater  
8-Port LVDS Repeater  
38-pin DBT  
38-pin DBT  
64-pin DGG  
64-pin DGG  
Dual 4-Port LVDS Repeater  
16-Port LVDS Repeater  
Dual 8-Port LVDS Repeater  
2
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
SN65LVDS108  
8-PORT LVDS REPEATER  
SLLS399A – NOVEMBER 1999 – REVISED MARCH 2000  
FUNCTION TABLE  
INPUTS  
OUTPUTS  
V
= V – V  
A
ENM ENx  
xY  
Z
xZ  
Z
ID  
B
X
X
L
X
H
H
H
X
L
Z
Z
V
100 mV  
H
H
H
H
?
L
ID  
–100 mV < V < 100 mV  
?
ID  
–100 mV  
V
L
H
ID  
H = high level, L = low level, Z = high impedance, X = don’t care,  
? = indeterminate  
equivalent input and output schematic diagrams  
V
CC  
V
CC  
V
CC  
300 k  
(ENM Only)  
300 kΩ  
300 kΩ  
50 Ω  
Enable  
Inputs  
10 kΩ  
5 Ω  
Y or Z  
Output  
7 V  
A Input  
B Input  
7 V  
300 kΩ  
7 V  
7 V  
(ENx Only)  
absolute maximum ratings over operating free-air temperature (unless otherwise noted)  
Supply voltage range, V  
(see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.5 V to 4 V  
CC  
Input voltage range, Enable inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.5 V to 6 V  
A, B, Y or Z . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.5 V to 4 V  
Electrostatic discharge, Y, Z, and GND (see Note 2) . . . . . . . . . . . . . . . . . . . . . . . . . Class 3, A:12 kV, B: 500 V  
All pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Class 3, A: 4 kV, B: 400 V  
Continuous power dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Dissipation Rating Table  
Storage temperature range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65°C to 150°C  
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260°C  
Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and  
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not  
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
NOTES: 1. All voltage values, except differential I/O bus voltages, are with respect to network ground terminal.  
2. Tested in accordance with MIL-STD-883C Method 3015.7.  
DISSIPATION RATING TABLE  
T
25°C  
DERATING FACTOR  
T = 85°C  
A
POWER RATING  
A
PACKAGE  
POWER RATING  
ABOVE T = 25°C  
A
DBT  
1277 mW  
10.2 mW/°C  
644 mW  
This is the inverse of the junction-to-ambient thermal resistance when board-mounted (low-k)  
with no air flow.  
3
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
SN65LVDS108  
8-PORT LVDS REPEATER  
SLLS399A – NOVEMBER 1999 – REVISED MARCH 2000  
recommended operating conditions  
MIN NOM  
MAX  
UNIT  
Supply voltage, V  
CC  
3
2
3.3  
3.6  
V
V
V
V
High-level input voltage, V  
IH  
Low-level input voltage, V  
IL  
Magnitude of differential input voltage, V  
0.8  
3.6  
0.1  
ID  
V
V
ID  
V
ID  
2.4 –  
Common-mode input voltage, V  
IC  
2
2
V
CC  
– 0.8  
V
Operating free-air temperature, T  
–40  
85  
°C  
A
electrical characteristics over recommended operating conditions (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN TYP  
MAX  
UNIT  
V
V
Positive-going differential input voltage threshold  
Negative-going differential input voltage threshold  
Differential output voltage magnitude  
100  
ITH+  
See Figure 1 and Table 1  
mV  
–100  
ITH–  
V
247  
340  
454  
50  
OD  
R = 100 ,  
See Figure 1 and Figure 2  
V = ±100 mV,  
ID  
L
mV  
V
Change in differential output voltage magnitude  
between logic states  
V  
–50  
OD  
V
Steady-state common-mode output voltage  
1.125  
–50  
1.375  
50  
OC(SS)  
Change in steady-state common-mode output  
voltage between logic states  
V  
See Figure 3  
OC(SS)  
mV  
V
Peak-to-peak common-mode output voltage  
50  
62  
8
150  
85  
OC(PP)  
Enabled,  
Disabled  
R = 100 Ω  
L
I
Supply current  
mA  
CC  
12  
V = 0 V  
–2  
–20  
I
I
I
Input current (A or B inputs)  
µA  
V = 2.4 V  
I
–1.2  
I
I
I
Power-off input current (A or B inputs)  
High-level input current (enables)  
Low-level input current (enables)  
V
V
V
V
V
V
V
= 1.5 V,  
V = 2.4 V  
20  
±20  
±10  
±24  
±12  
±1  
µA  
µA  
µA  
I(OFF)  
CC  
I
= 2 V  
IH  
IH  
= 0.8 V  
IL  
IL  
or V  
OZ  
= 0 V  
= 0 V  
OY  
OD  
I
Short-circuit output current  
mA  
OS  
I
I
High-impedance output current  
Power-off output current  
= 0 V or V  
CC  
µA  
µA  
OZ  
O
= 1.5 V,  
V = 3.6 V  
O
±1  
O(OFF)  
CC  
C
Input capacitance (A or B inputs)  
V = 0.4 sin (4E6πt) + 0.5 V  
I
5
IN  
pF  
V = 0.4 sin (4E6πt) + 0.5 V,  
Disabled  
I
C
Output capacitance (Y or Z outputs)  
9.4  
O
All typical values are at 25°C and with a 3.3 V supply.  
4
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
SN65LVDS108  
8-PORT LVDS REPEATER  
SLLS399A – NOVEMBER 1999 – REVISED MARCH 2000  
switching characteristics over recommended operating conditions (unless otherwise noted)  
PARAMETER  
Propagation delay time, low-to-high-level output  
Propagation delay time, high-to-low-level output  
Differential output signal rise time  
TEST CONDITIONS  
MIN TYP  
MAX  
4.5  
4.5  
1.2  
1.2  
500  
300  
1.5  
15  
UNIT  
t
t
t
t
t
t
t
t
t
t
t
1.6  
1.6  
0.3  
0.3  
2.8  
2.8  
0.8  
0.8  
150  
PLH  
PHL  
r
ns  
R
C
= 100 ,  
= 10 pF,  
L
L
ns  
Differential output signal fall time  
f
See Figure 4  
- t |)  
PHL PLH  
Pulse skew (|t  
sk(p)  
sk(o)  
sk(pp)  
PZH  
PZL  
PHZ  
PLZ  
ps  
ns  
§
Output skew  
Part-to-part skew  
#
Propagation delay time, high-impedance-to-high-level output  
Propagation delay time, high-impedance-to-low-level output  
Propagation delay time, high-level-to-high-impedance output  
Propagation delay time, low-level-to-high-impedance output  
5.7  
7.7  
3.2  
3.2  
15  
ns  
ns  
See Figure 5  
15  
15  
All typical values are at 25°C and with a 3.3 V supply.  
§
#
t
t
t
is the magnitude of the time difference between the t  
is the magnitude of the time difference between the t  
is the magnitude of the time difference in propagation delay times between any specified terminals of two devices when both devices  
and t of any output of a single device.  
PHL  
sk(p)  
sk(o)  
sk(pp)  
PLH  
PLH  
or t  
measured at any two outputs.  
PHL  
operate with the same supply voltages, at the same temperature, and have identical packages and test circuits.  
PARAMETER MEASUREMENT INFORMATION  
I
I
IA  
OY  
A
B
Y
Z
V
V
OD  
V
ID  
I
IB  
I
OZ  
V
OY  
V
OC  
V
IA  
(V  
OY  
+ V )/2  
OZ  
OZ  
V
IB  
Figure 1. Voltage and Current Definitions  
5
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
SN65LVDS108  
8-PORT LVDS REPEATER  
SLLS399A – NOVEMBER 1999 – REVISED MARCH 2000  
PARAMETER MEASUREMENT INFORMATION  
Table 1. Receiver Minimum and Maximum Input Threshold Test Voltages  
APPLIED VOLTAGES  
RESULTING DIFFERENTIAL  
INPUT VOLTAGE  
RESULTING COMMON-  
MODE INPUT VOLTAGE  
V
IA  
V
IB  
V
ID  
V
IC  
1.25 V  
1.15 V  
2.4 V  
2.3 V  
0.1 V  
0 V  
1.15 V  
1.25 V  
2.3 V  
2.4 V  
0 V  
100 mV  
-100 mV  
100 mV  
-100 mV  
100 mV  
-100 mV  
600 mV  
-600 mV  
600 mV  
-600 mV  
600 mV  
-600 mV  
1.2 V  
1.2 V  
2.35 V  
2.35 V  
0.05 V  
0.05 V  
1.2 V  
1.2 V  
2.1 V  
2.1 V  
0.3 V  
0.3 V  
0.1 V  
0.9 V  
1.5 V  
1.8 V  
2.4 V  
0 V  
1.5 V  
0.9 V  
2.4 V  
1.8 V  
0.6 V  
0 V  
0.6 V  
3.75 kΩ  
Y
Z
V
OD  
Input  
100 Ω  
3.75 kΩ  
0 V V  
2.4 V  
±
TEST  
Figure 2. VOD Test Circuit  
49.9 ± 1% (2 Places)  
V
I
I
1.4 V  
1 V  
Y
V
Input  
Z
V
OC(PP)  
50 pF  
V
V
OC  
OC(SS)  
V
O
NOTE A: All input pulses are supplied by a generator having the following characteristics: t or t 1 ns, pulse repetition rate (PRR) = 0.5 Mpps,  
r
f
pulsewidth=500±10ns.C includesinstrumentationandfixturecapacitancewithin0,06mmoftheD.U.T.ThemeasurementofV  
is made on test equipment with a –3 dB bandwidth of at least 300 MHz.  
L
OC(PP)  
Figure 3. Test Circuit and Definitions for the Driver Common-Mode Output Voltage  
6
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
SN65LVDS108  
8-PORT LVDS REPEATER  
SLLS399A – NOVEMBER 1999 – REVISED MARCH 2000  
PARAMETER MEASUREMENT INFORMATION  
1.4 V  
1.2 V  
V
IB  
Input  
1 V  
V
t
IA  
PLH  
t
PHL  
Y
Z
A
B
Input  
100%  
80%  
V
OD  
100 ± 1 %  
Output  
V
OD(H)  
C
= 10 pF  
L
0 V  
(2 Places)  
V
OD(L)  
20%  
0%  
t
t
r
f
NOTE A: All input pulses are supplied by a generator having the following characteristics: t or t 1 ns, pulse repetition rate (PRR) = 50 Mpps,  
r
f
pulsewidth = 10 ±0.2 ns . C includes instrumentation and fixture capacitance within 0,06 mm of the D.U.T.  
L
Figure 4. Test Circuit, Timing, and Voltage Definitions for the Differential Output Signal  
49.9 ± 1% (2 Places)  
Y
1 V or 1.4 V  
Z
1.4 V or 1 V  
1.2 V  
C
= 10 pF  
L
V
OY  
V
OZ  
(2 Places)  
ENM  
ENx  
Inputs  
2 V  
1.4 V  
Input  
0.8 V  
t
t
t
PZH  
PHZ  
PLZ  
V
OY  
or  
100%, 1.4 V  
50%  
V
OZ  
0%, 1.2 V  
t
PZL  
100%, 1.2 V  
50%  
0%, 1 V  
V
OZ  
or  
V
OY  
NOTE A: All input pulses are supplied by a generator having the following characteristics: t or t 1 ns, pulse repetition rate (PRR) = 0.5 Mpps,  
r
f
pulsewidth = 500 ±10 ns . C includes instrumentation and fixture capacitance within 0,06 mm of the D.U.T.  
L
Figure 5. Enable and Disable Time Circuit and Definitions  
7
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
SN65LVDS108  
8-PORT LVDS REPEATER  
SLLS399A – NOVEMBER 1999 – REVISED MARCH 2000  
TYPICAL CHARACTERISTICS  
SUPPLY CURRENT  
vs  
LOW-TO-HIGH PROPAGATION DELAY TIME  
vs  
SWITCHING FREQUENCY  
FREE-AIR TEMPERATURE  
140  
120  
100  
80  
3.8  
3.7  
3.6  
3.5  
3.4  
3.3  
3.2  
3.1  
V
CC  
= 3.6 V  
V
CC  
= 3 V  
V
CC  
= 3.3 V  
V
CC  
= 3.3 V  
60  
V
CC  
= 3 V  
V
CC  
= 3.6 V  
40  
20  
All Outputs Loaded  
and Enabled  
0
0
50  
100  
150  
200  
250  
300  
350  
–50  
–25  
0
25  
50  
75  
100  
f – Frequency – MHz  
T
A
– Free–Air Temperature – °C  
Figure 6  
Figure 7  
HIGH-TO-LOW PROPAGATION DELAY TIME  
vs  
FREE-AIR TEMPERATURE  
3.7  
3.6  
3.5  
3.4  
3.3  
3.2  
3.1  
3.0  
2.9  
V
CC  
= 3.3 V  
V
CC  
= 3.6 V  
V
CC  
= 3 V  
–50  
–25  
0
25  
50  
75  
100  
T
A
– Free–Air Temperature – °C  
Figure 8  
8
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
SN65LVDS108  
8-PORT LVDS REPEATER  
SLLS399A – NOVEMBER 1999 – REVISED MARCH 2000  
TYPICAL CHARACTERISTICS  
Figure 9. Typical Differential Eye Pattern at 400 Mbps  
9
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
SN65LVDS108  
8-PORT LVDS REPEATER  
SLLS399A – NOVEMBER 1999 – REVISED MARCH 2000  
APPLICATION INFORMATION  
The SN65LVDS108 device solves several problems common to the distribution of timing critical clock and data  
signals. These problems include:  
Excessive skew between the signal paths  
Noise pickup over long signaling paths  
High power consumption  
Control of which signal paths are enabled or disabled  
Elimination of radiation from unterminated lines  
Buffering and splitting the signal on the same silicon die minimizes corruption of the timing relation between the  
copies of the signal. Buffering and splitting the signal in separate devices will introduce considerably higher  
levels of uncontrolled timing skew between the signals. Higher speed operation and more timing tolerance for  
other components of the system is enabled by the tighter system timing budgets provided by the single die  
implementations of the SN65LVDS108.  
The use of LVDS signaling technology for both the inputs and the outputs provides superior common-mode and  
noise tolerance compared to single-ended I/O technologies. This is particularly important because the signals  
that are being distributed must be transmitted over longer distances, and at higher rates, than can be  
accommodated with single-ended I/Os. In addition, LVDS consumes considerably less power than other  
high-performance differential signaling schemes.  
The enable inputs provided for each output may be used to turn on or off any of the paths. This function is  
required to prevent radiation of signals from the unterminated signal lines on open connectors when boards or  
devices are being swapped in the end equipment. The individual channel enables are also required if redundant  
paths are being utilized for reliability reasons.  
The following diagram shows how an input signal is being identically repeated out two of the available outputs.  
A third output is shown in the disabled state.  
DESTINATION  
EQUIPMENT/  
BOARD #1  
DESTINATION  
EQUIPMENT/  
BOARD #2  
SOURCE  
EQUIPMENT/  
BOARD  
Output Pair Disabled  
DESTINATION  
EQUIPMENT/  
BOARD #n  
Figure 10. LVDS Repeating Splitter Application Example Showing Individual Path Control  
10  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
SN65LVDS108  
8-PORT LVDS REPEATER  
SLLS399A – NOVEMBER 1999 – REVISED MARCH 2000  
APPLICATION INFORMATION  
A LVDS receiver can be used to receive various other types of logic signals. Figure 12 through Figure 20 show the  
termination circuits for SSTL, HSTL, GTL, BTL, LVPECL, PECL, CMOS, and TTL.  
V
DD  
50 Ω  
25 Ω  
A
B
50  
1/2 V  
DD  
LVDS Receiver  
0.1 µF  
Figure 11. Stub-Series Terminated (SSTL) or High-Speed Transceiver Logic (HSTL)  
V
DD  
50 Ω  
A
B
50 Ω  
1.35 V < V < 1.65 V  
TT  
LVDS Receiver  
0.1 µF  
Figure 12. Center-Tap Termination (CTT)  
1.14 V < V < 1.26 V  
TT  
V
DD  
1 kΩ  
50 Ω  
50 Ω  
A
B
2 kΩ  
0.1 µF  
LVDS Receiver  
Figure 13. Gunning Transceiver Logic (GTL)  
11  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
SN65LVDS108  
8-PORT LVDS REPEATER  
SLLS399A – NOVEMBER 1999 – REVISED MARCH 2000  
APPLICATION INFORMATION  
Z
0
Z
0
A
B
1.47 V < V < 1.62 V  
TT  
LVDS Receiver  
0.1 µF  
Figure 14. Backplane Transceiver Logic (BTL)  
3.3 V  
3.3 V  
ECL  
120 Ω  
33 Ω  
120 Ω  
50 Ω  
50 Ω  
A
33 Ω  
B
51 Ω  
51 Ω  
LVDS Receiver  
Figure 15. Low-Voltage Positive Emitter-Coupled Logic (LVPECL)  
12  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
SN65LVDS108  
8-PORT LVDS REPEATER  
SLLS399A – NOVEMBER 1999 – REVISED MARCH 2000  
APPLICATION INFORMATION  
5 V  
5 V  
82 Ω  
82 Ω  
50 Ω  
50 Ω  
ECL  
100 Ω  
A
100 Ω  
B
33 Ω  
33 Ω  
LVDS Receiver  
Figure 16. Positive Emitter-Coupled Logic (PECL)  
3.3 V  
3.3 V  
7.5 kΩ  
A
B
7.5 kΩ  
0.1 µF  
LVDS Receiver  
Figure 17. 3.3-V CMOS  
13  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
SN65LVDS108  
8-PORT LVDS REPEATER  
SLLS399A – NOVEMBER 1999 – REVISED MARCH 2000  
APPLICATION INFORMATION  
5 V  
5 V  
10 kΩ  
560 Ω  
A
B
560 Ω  
3.32 kΩ  
0.1 µF  
LVDS Receiver  
Figure 18. 5-V CMOS  
5 V  
5 V  
10 kΩ  
470 Ω  
A
B
3.3 V  
4.02 kΩ  
0.1 µF  
LVDS Receiver  
Figure 19. TTL  
14  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
SN65LVDS108  
8-PORT LVDS REPEATER  
SLLS399A – NOVEMBER 1999 – REVISED MARCH 2000  
MECHANICAL DATA  
DBT (R-PDSO-G**)  
PLASTIC SMALL-OUTLINE PACKAGE  
30 PINS SHOWN  
0,27  
0,17  
M
0,50  
30  
0,08  
16  
0,15 NOM  
4,50  
4,30  
6,60  
6,20  
Gage Plane  
0,25  
1
15  
0°8°  
0,75  
0,50  
A
Seating Plane  
0,10  
0,15  
0,05  
1,20 MAX  
PINS **  
28  
30  
38  
44  
50  
DIM  
7,90  
7,70  
7,90  
7,70  
9,80  
9,60  
11,10  
10,90  
12,60  
12,40  
A MAX  
A MIN  
4073252/D 09/97  
NOTES: A. All linear dimensions are in millimeters.  
B. This drawing is subject to change without notice.  
C. Body dimensions do not include mold flash or protrusion.  
D. Falls within JEDEC MO-153  
15  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
IMPORTANT NOTICE  
Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue  
any product or service without notice, and advise customers to obtain the latest version of relevant information  
to verify, before placing orders, that information being relied on is current and complete. All products are sold  
subject to the terms and conditions of sale supplied at the time of order acknowledgment, including those  
pertaining to warranty, patent infringement, and limitation of liability.  
TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in  
accordance with TI’s standard warranty. Testing and other quality control techniques are utilized to the extent  
TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily  
performed, except those mandated by government requirements.  
Customers are responsible for their applications using TI components.  
In order to minimize risks associated with the customer’s applications, adequate design and operating  
safeguards must be provided by the customer to minimize inherent or procedural hazards.  
TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent  
that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other  
intellectual property right of TI covering or relating to any combination, machine, or process in which such  
semiconductor products or services might be or are used. TI’s publication of information regarding any third  
party’s products or services does not constitute TI’s approval, warranty or endorsement thereof.  
Copyright 2000, Texas Instruments Incorporated  

相关型号:

SN65LVDS108DBTR

1:8 LVDS 时钟扇出缓冲器 | DBT | 38 | -40 to 85
TI

SN65LVDS109

DUAL 4-PORT AND DUAL 8-PORT LVDS REPEATERS
TI

SN65LVDS109DBT

DUAL 4-PORT AND DUAL 8-PORT LVDS REPEATERS
TI

SN65LVDS109DBTR

Dual 4-Port LVDS Repeater 38-TSSOP -40 to 85
TI

SN65LVDS116

16-PORT LVDS REPEATER
TI

SN65LVDS116DGG

16-PORT LVDS REPEATER
TI

SN65LVDS116DGGG4

16-PORT LVDS REPEATER
TI

SN65LVDS116DGGR

16-PORT LVDS REPEATER
TI

SN65LVDS116DGGRG4

16-PORT LVDS REPEATER
TI

SN65LVDS117

4-PORT LVDS AND 4-PORT TTL-TO-LVDS REPEATERS
TI

SN65LVDS117DGG

DUAL 4-PORT AND DUAL 8-PORT LVDS REPEATERS
TI

SN65LVDS117DGGG4

双路 8 端口 LVDS 中继器 | DGG | 64 | -40 to 85
TI