SN65LVDS122_14 [TI]

1.5-Gbps 2 ´ 2 LVDS CROSSPOINT SWITCH;
SN65LVDS122_14
型号: SN65LVDS122_14
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

1.5-Gbps 2 ´ 2 LVDS CROSSPOINT SWITCH

文件: 总18页 (文件大小:534K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
SN65LVDS122  
SN65LVDT122  
www.ti.com  
SLLS525BMAY 2002REVISED JUNE 2004  
1.5-Gbps 2 × 2 LVDS CROSSPOINT SWITCH  
FEATURES  
DESCRIPTION  
Designed for Signaling Rates (1) Up To  
1.5 Gbps  
The SN65LVDS122 and SN65LVDT122 are  
crosspoint switches that use low voltage differential  
signaling (LVDS) to achieve signaling rates as high  
as 1.5 Gbps. They are pin-compatible speed up-  
grades to the SN65LVDS22 and SN65LVDM22. The  
internal signal paths maintain differential signaling for  
high speeds and low signal skews. These devices  
have a 0-V to 4-V common-mode input range that  
accepts LVDS, LVPECL, or CML inputs. Two logic  
pins (S0 and S1) set the internal configuration be-  
tween the differential inputs and outputs. This allows  
the flexibility to perform the following configurations:  
2 x 2 crosspoint switch, 2:1 input multiplexer, 1:2  
splitter or dual repeater/translator within a single  
device. Additionally, SN65LVDT122 incorporates a  
110-termination resistor for those applications  
where board space is a premium. Although these  
devices are designed for 1.5 Gbps, some applications  
at a 2-Gbps data rate can be supported depending on  
loading and signal quality.  
Total Jitter < 65 ps  
Pin-Compatible With SN65LVDS22 and  
SN65LVDM22  
25 mV of Receiver Input Threshold Hysteresis  
Over 0-V to 4-V Common-Mode Range  
Inputs Electrically Compatible With CML,  
LVPECL and LVDS Signal Levels  
Propagation Delay Times, 900 ps Maximum  
LVDT Integrates 110-Terminating Resistor  
Offered in SOIC and TSSOP  
APPLICATIONS  
10-G (OC-192) Optical Modules  
622-MHz Central Office Clock Distribution  
Wireless Basestations  
Low Jitter Clock Repeater/Multiplexer  
Protection Switching for Serial Backplanes  
The intended application of this device is ideal for  
loopback switching for diagnostic routines, fanout  
buffering of clock/data distribution provide protection  
in fault-tolerant systems, clock multiplexing in optical  
modules, and for overall signal boosting over  
extended distances.  
(1) The signlaing rate of a line is the number of voltage  
transitions that are made per second expressed in the units  
bps (bits per second).  
The SN65LVDS122 and SN65LVDT122 are  
characterized for operation from –40°C to 85°C.  
EYE PATTERNS OF OUTPUTS  
OPERATING SIMULTANEOUSLY  
FUNCTIONAL DIAGRAM  
1DE  
1A  
1Y  
1.5 Gbps  
− 1 PRBS  
110  
23  
V
1Z  
2
OUTPUT 1  
1B  
S0  
= 3.3 V  
CC  
V
ID  
= 200 mV, V = 1.2 V  
IC  
MUX  
S1  
2A  
Vertical Scale=200 mV/div  
2Y  
2Z  
110 Ω  
OUTPUT 2  
2B  
2DE  
Integrated Termination on SN65LVDT122 Only  
Horizontal Scale= 200 ps/div  
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas  
Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
PRODUCTION DATA information is current as of publication date.  
Copyright © 2002–2004, Texas Instruments Incorporated  
Products conform to specifications per the terms of the Texas  
Instruments standard warranty. Production processing does not  
necessarily include testing of all parameters.  
SN65LVDS122  
SN65LVDT122  
www.ti.com  
SLLS525BMAY 2002REVISED JUNE 2004  
These devices have limited built-in ESD protection. The leads should be shorted together or the device  
placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.  
ORDERING INFORMATION  
PACKAGE  
SOIC  
TERMINATION RESISTOR  
PART NUMBER(1)  
SN65LVDS122D  
SN65LVDT122D  
SN65LVDS122PW  
SN65LVDT122PW  
SYMBOLIZATION  
LVDS122  
No  
Yes  
No  
SOIC  
LVDT122  
TSSOP  
TSSOP  
LVDS122  
Yes  
LVDT122  
(1) Add the suffix R for taped and reeled carrier  
ABSOLUTE MAXIMUM RATINGS  
over operating free-air temperature range unless otherwise noted(1)  
SN65LVDS122, SN65LVDT122  
–0.5 V to 4 V  
–0.7 V to 4.3 V  
1 V  
VCC  
Supply voltage range(2)  
Voltage range  
(A, B)  
|VA-VB| (LVDT only)  
(DE, S0, S1)  
(Y, Z)  
–0.5 V to 4 V  
–0.5 V to 4 V  
±4 kV  
A, B, Y, Z, and GND  
Human Body Model(3)  
ESD  
All pins  
All pins  
±2 kV  
Charged-Device Model(4)  
±1500 V  
Continuous power dissipation  
Storage temperature range  
See Dissipation Rating Table  
–65°C to 150°C  
260°C  
Tstg  
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds  
(1) Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings  
only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating  
conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) All voltage values, except differential I/O bus voltages, are with respect to network ground terminal.  
(3) Tested in accordance with JEDEC Standard 22, Test Method A114-A.7.  
(4) Tested in accordance with JEDEC Standard 22, Test Method C101.  
RECOMMENDED OPERATING CONDITIONS  
MIN NOM  
MAX  
3.6  
4
UNIT  
VCC Supply voltage  
3
2
3.3  
V
V
V
VIH  
VIL  
High-level input voltage  
S0, S1, 1DE, 2DE  
S0, S1, 1DE, 2DE  
LVDS  
Low-level input voltage  
0
0.8  
1
0.1  
0.1  
0
|VID  
|
Magnitude of differential input voltage  
V
LVDT  
0.8  
4
Input voltage (any combination of common-mode or input signals)  
Operating free-air temperature  
V
TA  
–40  
85  
°C  
PACKAGE DISSIPATION RATINGS  
T
A 25°C  
DERATING FACTOR(1)  
ABOVE TA = 25°C  
TA = 85°C  
POWER RATING  
PACKAGE  
POWER RATING  
PW  
D
712 mW  
6.2 mW/°C  
8.7 mW/°C  
340 mW  
1002 mW  
480 mW  
(1) This is the inverse of the junction-to-ambient thermal resistance when board-mounted and with no air flow.  
2
SN65LVDS122  
SN65LVDT122  
www.ti.com  
SLLS525BMAY 2002REVISED JUNE 2004  
INPUT ELECTRICAL CHARACTERISTICS  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
See Figure 1 and Table 1  
MIN TYP(1) MAX UNIT  
VIT+  
VIT-  
Positive-going differential input voltage threshold  
Negative-going differential input voltage threshold  
100  
mV  
mV  
mV  
See Figure 1 and Table 1  
–100(2)  
VID(HYS) Differential input voltage hysteresis (VIT+– VIT-  
)
25  
DE  
–10  
0
0
20  
0
IIH  
High-level input current  
Low-level input current  
Supply current  
VIH = 2  
µA  
µA  
mA  
µA  
µA  
S0, S1  
DE  
–10  
IIL  
VIL = 0.8 V  
S0, S1  
20  
RL = 100 Ω  
80 100  
ICC  
Disabled  
35  
45  
20  
33  
40  
66  
VI = 0 V or 2.4 V, Other input at 1.2 V  
VI = 4 V, Other input at 1.2 V  
VI = 0 V or 2.4 V, Other input open  
VI = 4 V, Other input open  
–20  
0
Input current (A or B inputs 'LVDS)  
Input current (A or B inputs 'LVDT)  
II  
–40  
0
VCC = 1.5 V, VI = 0 V or 2.4 V,  
Other input at 1.2 V  
–20  
0
20  
33  
40  
Input current (A or B inputs 'LVDS)  
Input current (A or B inputs 'LVDT)  
µA  
VCC = 1.5 V, VI = 2.4 V or 4 V,  
Other input at 1.2 V  
II(OFF)  
VCC = 1.5 V, VI = 0 V or 2.4 V,  
Other input open  
–40  
µA  
µA  
VCC = 1.5 V, VI = 2.4 V or 4 V,  
Other input open  
0
–6  
90  
66  
6
IIO  
Input offset current (| IIA– IIB |) 'LVDS  
Termination resistance ('LVDT)  
VIA = VIB, 0 VIA 4 V  
VID = 300 mV and 500 mV,  
VIC = 0 V to 2.4 V  
110 132  
110 132  
RT  
VID = 300 mV and 500 mV,  
VCC = 1.5 V, VIC = 0 V to 2.4 V  
Termination resistance ('LVDT with power-off)  
90  
VI = 0.4 sin (4E6πt) + 0.5 V  
3
3
Differential input capacitance ('LVDT with  
power-off)  
CI  
pF  
Powered down (VCC = 1.5 V)  
(1) All typical values are at 25°C and with a 3.3-V supply.  
(2) The algebraic convention in which the least positive (most negative) limit is designated as minimum is used in this data sheet.  
OUTPUT ELECTRICAL CHARACTERISTICS  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
See Figure 2  
MIN TYP(1)  
MAX UNIT  
|VOD  
|
Differential output voltage magnitude  
247  
310  
454  
mV  
50  
Change in differential output voltage magnitude between logic  
states  
|VOD  
|
–50  
VOC(SS)  
Steady-state common-mode output voltage  
1.125  
–50  
1.375  
50  
V
Change in steady-state common-mode output voltage between  
logic states  
VOC(SS)  
See Figure 3  
mV  
VOC(PP)  
IOS  
Peak-to-peak common-mode output voltage  
Short-circuit output current  
50  
150  
24  
12  
1
mV  
mA  
mA  
VO(Y) or VO(Z) = 0 V  
VOD = 0 V  
–24  
–12  
–1  
IOS(D)  
Differential short-circuit output current  
VOD = 600 mV  
IOZ  
Co  
High-impedance output current  
Differential output capacitance  
µA  
pF  
VO = 0 V or VCC  
VI = 0.4 sin (4E6πt) + 0.5 V  
–1  
1
3
(1) All typical values are at 25°C and with a 3.3-V supply.  
3
SN65LVDS122  
SN65LVDT122  
www.ti.com  
SLLS525BMAY 2002REVISED JUNE 2004  
TIMING CHARACTERISTICS  
PARAMETER  
Input to select setup time  
TEST CONDITIONS  
MIN NOM MAX UNIT  
tSET  
0
0.5  
1
ns  
ns  
ns  
tHOLD  
tSWITCH  
Input to select hold time  
Select to switch output  
2
2.6  
SWITCHING CHARACTERISTICS  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN NOM(1) MAX UNIT  
tPLH  
tPHL  
tr  
Propagation delay time, low-to-high-level output  
Propagation delay time, high-to-low-level output  
Differential output signal rise time (20% - 80%)  
Differential output signal fall time (20% - 80%)  
Pulse skew (|tPHL - tPLH|)(2)  
400  
400  
650  
650  
900  
900  
280  
280  
50  
100  
2.2  
17  
65  
50  
8
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ns  
ns  
ns  
ns  
ps  
See Figure 4  
tf  
tsk(p)  
10  
tsk(pp) Part-to-part skew(3)  
tjit(per) Period jitter, rms (1 standard deviation)(4)  
VID = 0.2 V  
750 MHz clock input(5)  
1
10  
33  
17  
6
Cycle-to-cycle jitter (peak)(4)  
Peak-to-peak jitter(4)  
750 MHz clock input  
(6)  
tjit(cc)  
tjit(pp)  
1.5 Gbps 223–1 PRBS input(7)  
1.5 Gbps 27–1 PRBS input(8)  
See Figure 5  
tjit(det) Deterministic jitter, peak-to-peak(4)  
tPHZ  
tPLZ  
tPZH  
tPZL  
tsk(o)  
Propagation delay time, high-level-to-high-impedance output  
Propagation delay time, low-level-to-high-impedance output  
Propagation delay time, high-impedance-to-high-level output  
Propagation delay time, high-impedance-to-low-level output  
Output skew(9)  
See Figure 5  
6
8
See Figure 5  
4
6
See Figure 5  
4
6
15  
40  
(1) All typical values are at 25°C and with a 3.3-V supply.  
(2) tsk(p) is the magnitude of the time difference between the tPLH and tPHL of any output of a single device.  
(3) tsk(pp) is the magnitude of the difference in propagation delay times between any specified terminals of two devices when both devices  
operate with the same supply voltages, at the same temperature, and have identical packages and test circuits.  
(4) Jitter is specified by design and characterization. Stimulus jitter has been subtracted.  
(5) Input voltage = VID = 200 mV, 50% duty cycle at 750 MHz, tr = tf = 50 ps (20% to 80%), measured over 1000 samples.  
(6) Input voltage = VID = 200 mV, 50% duty cycle at 750 MHz, tr = tf = 50 ps (20% to 80%).  
(7) Input voltage = VID = 200 mV, 223–1 PRBS pattern at 1.5 Gbps, tr = tf = 50 ps (20% to 80%), measured over 200 k samples.  
(8) Input voltage = VID = 200 mV, 27–1 PRBS pattern at 1.5 Gbps, tr = tf = 50 ps (20% to 80%).  
(9) Output skew is the magnitude of the time delay difference between the outputs of a single device with all inputs tied together.  
4
SN65LVDS122  
SN65LVDT122  
www.ti.com  
SLLS525BMAY 2002REVISED JUNE 2004  
PIN ASSIGNMENT  
D OR PW PACKAGE  
(TOP VIEW)  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
1B  
1A  
S0  
1DE  
S1  
2A  
V
V
1Y  
1Z  
2DE  
2Z  
CC  
CC  
2B  
GND  
2Y  
GND  
Circuit Function Table  
INPUTS(1)  
OUTPUTS(1)  
LOGIC DIAGRAM  
1VID  
2VID  
X
S1  
X
L
S0  
X
L
1DE  
2DE  
L
1VOD  
Z
2VOD  
Z
X
L
H
H
H
H
L
> 100 mV  
X
L
H
L
Z
< -100 mV  
< -100 mV  
> 100 mV  
> 100 mV  
< -100 mV  
> 100 mV  
< -100 mV  
< -100 mV  
< -100 mV  
> 100 mV  
> 100 mV  
X
X
L
L
L
Z
1DE  
1A / 1B  
1Y / 1Z  
X
L
L
H
H
H
H
L
L
L
X
L
L
H
Z
H
H
L
2A / 2B  
2Y / 2Z  
2DE  
X
L
L
X
L
L
L
Z
X
H
H
H
H
H
H
H
H
L
L
H
H
H
H
H
H
L
H
L
Z
X
L
L
Z
< -100 mV  
> 100 mV  
< -100 mV  
> 100 mV  
> 100 mV  
< -100 mV  
> 100 mV  
< -100 mV  
< -100 mV  
> 100 mV  
> 100 mV  
< -100 mV  
> 100 mV  
< -100 mV  
< -100 mV  
> 100 mV  
< -100 mV  
> 100 mV  
X
L
H
H
H
H
H
H
L
L
L
1DE  
1A / 1B  
2A / 2B  
1Y / 1Z  
L
L
H
L
L
H
H
Z
2Y / 2Z  
2DE  
L
H
H
L
L
X
L
L
Z
X
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
L
H
L
Z
1DE  
X
L
L
Z
1Y / 1Z  
1A / 1B  
2A / 2B  
X
L
H
H
H
H
L
L
L
X
L
H
Z
H
H
L
2Y / 2Z  
2DE  
X
L
X
L
L
Z
X
H
H
H
H
H
H
H
H
H
H
H
H
H
H
L
H
L
Z
X
L
Z
1DE  
< -100 mV  
< -100 mV  
> 100 mV  
> 100 mV  
> 100 mV  
< -100 mV  
H
H
H
H
H
H
L
L
1A / 1B  
2A / 2B  
1Y / 1Z  
H
L
L
H
H
H
L
2Y / 2Z  
2DE  
H
Z
X
L
Z
(1) H = high level, L = low level, Z = high impedance, X = don't care  
5
SN65LVDS122  
SN65LVDT122  
www.ti.com  
SLLS525BMAY 2002REVISED JUNE 2004  
PARAMETER MEASUREMENT INFORMATION  
I
IA  
A
B
Y
Z
V
OD  
V
ID  
V
IA  
V
OY  
V
IC  
(V +V )/2  
IA IB  
(V +V )/2  
OY OZ  
I
IB  
V
IB  
V
OZ  
Figure 1. Voltage and Current Definitions  
3.74 k  
Y
V
OD  
100 Ω  
0 V V  
2.4 V  
test  
+
Z
_
3.74 kΩ  
Figure 2. Differential Output Voltage (VOD) Test Circuit  
A
1.4 V  
1 V  
49.9 ±1%  
A
B
Y
B
V
ID  
V
V
OC(SS)  
OC(PP)  
V
OC  
Z
1 pF  
V
49.9 ±1%  
OC  
NOTE: All input pulses are supplied by a generator having the following characteristics: tr or tf 0.25 ns, pulse repetition rate  
(PRR) = 0.5 Mpps, pulse width = 500 ±10 ns; RL = 100 ; CL includes instrumentation and fixture capacitance within  
0,06 mm of the D.U.T.; the measurement of VOC(PP) is made on test equipment with a –3-dB bandwidth of at least  
300 MHz.  
Figure 3. Test Circuit and Definitions for the Driver Common-Mode Output Voltage  
V
1.4 V  
1 V  
IA  
IB  
A
B
Y
Z
V
100  
1 pF  
V
OD  
V
ID  
V
IA  
0.4 V  
0 V  
-0.4 V  
V
ID  
V
IB  
t
t
PLH  
PHL  
80%  
0 V  
V
OD  
20%  
t
f
t
r
NOTE: All input pulses are supplied by a generator having the following characteristics: tr or tf 0.25 ns, pulse repetition rate  
(PRR) = 0.5 Mpps, pulse width = 500 ±10 ns. CL includes instrumentation and fixture capacitance within 0,06 mm of  
the D.U.T.  
Figure 4. Timing Test Circuit and Waveforms  
6
SN65LVDS122  
SN65LVDT122  
www.ti.com  
SLLS525BMAY 2002REVISED JUNE 2004  
PARAMETER MEASUREMENT INFORMATION (continued)  
3 V  
1.5 V  
49.9 ±1%  
Y
DE  
A
1 V or 1.4 V  
1 pF  
0 V  
1.4 V  
1.25 V  
1.2 V  
1.2 V  
49.9 ±1%  
V
or V  
OY  
OZ  
OZ  
B
Z
DE  
1.2 V  
t
t
PHZ  
PZH  
1.2 V  
1.15 V  
1 V  
V
or V  
OY  
t
t
PLZ  
PZL  
NOTE: All input pulses are supplied by a generator having the following characteristics: tr or tf1 ns, pulse repetition rate  
(PRR) = 0.5 Mpps, pulse width = 500 ±10 ns. CL includes instrumentation and fixture capacitance within 0,06 mm of  
the D.U.T.  
Figure 5. Enable and Disable Time Circuit and Definitions  
A
B
C
INPUT 1  
INPUT 2  
D
SEL 0/1  
t
t
(HOLD)  
(SET)  
A
B
C
D
OUTPUT1  
t
(SWITCH)  
Figure 6. Example Switch, Setup, and Hold Times  
7
SN65LVDS122  
SN65LVDT122  
www.ti.com  
SLLS525BMAY 2002REVISED JUNE 2004  
PARAMETER MEASUREMENT INFORMATION (continued)  
t(SET) and t(HOLD) times specify that data must be in a stable state before and after multiplex control switches.  
Table 1. Receiver Input Voltage Threshold Test  
APPLIED  
VOLTAGES  
RESULTING DIFFERENTIAL  
INPUT VOLTAGE  
RESULTING COMMON-  
MODE INPUT VOLTAGE  
OUTPUT(1)  
VIA  
VIB  
VID  
VIC  
1.25 V  
1.15 V  
4.0 V  
3.9 V  
0.1 V  
0.0 V  
1.7 V  
0.7 V  
4.0 V  
3.0 V  
1.0 V  
0.0 V  
1.15 V  
1.25 V  
3.9 V  
4. 0 V  
0.0 V  
0.1 V  
0.7 V  
1.7 V  
3.0 V  
4.0 V  
0.0 V  
1.0 V  
100 mV  
1.2 V  
1.2 V  
3.95 V  
3.95 V  
0.05 V  
0.05 V  
1.2 V  
1.2 V  
3.5 V  
3.5 V  
0.5 V  
0.5 V  
H
L
–100 mV  
100 mV  
H
L
–100 mV  
100 mV  
H
L
–100 mV  
1000 mV  
–1000 mV  
1000 mV  
–1000 mV  
1000 mV  
–1000 mV  
H
L
H
L
H
L
(1) H = high level, L = low level  
8
SN65LVDS122  
SN65LVDT122  
www.ti.com  
SLLS525BMAY 2002REVISED JUNE 2004  
EQUIVALENT INPUT AND OUTPUT SCHEMATIC DIAGRAMS  
INPUT LVDS122  
V
CC  
V
CC  
A
B
7 V  
7 V  
V
CC  
V
CC  
300 k  
S0, S1  
400 Ω  
DE1, DE2  
400 Ω  
300 kΩ  
7 V  
7 V  
OUTPUT LVDS122  
V
CC  
V
CC  
V
CC  
Y
Z
7 V  
7 V  
9
SN65LVDS122  
SN65LVDT122  
www.ti.com  
SLLS525BMAY 2002REVISED JUNE 2004  
TYPICAL CHARACTERISTICS  
DIFFERENTIAL OUTPUT  
VOLTAGE  
DIFFERENTIAL PROPAGATION  
DIFFERENTIAL PROPAGATION  
DELAY  
DELAY  
vs  
vs  
vs  
FREQUENCY  
COMMON-MODE INPUT VOLTAGE  
TEMPERATURE  
350  
1000  
800  
700  
V
= 3.3 V  
CC  
= 25°C  
T
A
300  
250  
t
900  
V
= 200 mV  
PHL  
ID  
f = 150 MHz  
600  
500  
400  
300  
200  
100  
0
t
PLH  
800  
700  
200  
150  
t
PHL  
V
T
V
= 3.3 V  
CC  
= 25°C  
100  
50  
A
t
PLH  
= 1.2 V  
= 200 mV  
V
= 3.3 V  
CC  
IC  
600  
500  
V
V
= 200 mV  
ID  
ID  
Input = Clock  
f = 150 MHz  
0
0
1
2
3
4
5
1600  
800  
−40 −20  
0
20 40  
60  
80 100  
0
500  
1000  
1500  
2000  
V
− Common-Mode Input Voltage − V  
IC  
f − Frequency − MHz  
T
A
− Free Air Temperature − °C  
Figure 7.  
Figure 8.  
Figure 9.  
PEAK-TO-PEAK JITTER  
PEAK-TO-PEAK JITTER  
PEAK-TO-PEAK JITTER  
vs  
vs  
vs  
FREQUENCY  
DATA RATE  
FREQUENCY  
30  
60  
30  
V
T
= 3.3 V  
V
T
= 3.3 V  
= 25°C  
V
T
V
= 3.3 V  
= 25°C  
= 400 mV  
Input = Clock  
CC  
CC  
CC  
= 25°C  
A
A
A
25  
20  
50  
40  
25  
20  
V
= 400 mV  
V
= 1.2 V  
IC  
IC  
IC  
23  
Input = PRBS 2 −1  
Input = Clock  
V
= 0.5 V  
ID  
V
= 0.5 V  
V
= 0.8 V  
ID  
ID  
15  
30  
15  
V
= 0.8 V  
ID  
V
= 0.3 V  
ID  
V
= 0.5 V  
ID  
V
= 0.8 V  
ID  
10  
5
20  
10  
0
10  
5
V
= 0.3 V  
1200  
ID  
V
= 0.3 V  
200  
ID  
0
0
0
400  
600  
800  
0
400  
800  
0
200  
400  
600  
800  
f − Frequency − MHz  
Data Rate − Mbps  
f − Frequency − MHz  
Figure 10.  
Figure 11.  
Figure 12.  
PEAK-TO-PEAK JITTER  
PEAK-TO-PEAK JITTER  
PEAK-TO-PEAK JITTER  
vs  
vs  
vs  
DATA RATE  
FREQUENCY  
DATA RATE  
60  
30  
60  
V
T
= 3.3 V  
= 25°C  
V
= 3.3 V  
= 25°C  
= 2.8 V  
CC  
CC  
V
= 0.3 V  
ID  
T
A
A
50  
40  
25  
20  
50  
40  
V
= 1.2 V  
Input = PRBS 2 −1  
V
IC  
IC  
23  
V
= 0.8 V  
Input = Clock  
ID  
V
= 0.3 V  
ID  
V
= 0.8 V  
V
= 0.8 V  
ID  
ID  
30  
15  
30  
V
= 0.5 V  
ID  
V
= 0.5 V  
ID  
20  
10  
0
10  
5
20  
10  
0
V
T
A
= 3.3 V  
CC  
= 25°C  
V
= 0.3 V  
V
= 2.8 V  
ID  
IC  
Input = PRBS 2 −1  
V
= 0.5 V  
600  
23  
ID  
0
0
400  
800  
1200  
1600  
0
200  
400  
0
400  
800  
1200  
1600  
Data Rate − Mbps  
f − Frequency − MHz  
Data Rate − Mbps  
Figure 13.  
Figure 14.  
Figure 15.  
10  
SN65LVDS122  
SN65LVDT122  
www.ti.com  
SLLS525BMAY 2002REVISED JUNE 2004  
TYPICAL CHARACTERISTICS (continued)  
PEAK-TO-PEAK JITTER  
vs  
PEAK-TO-PEAK JITTER  
vs  
TEMPERATURE  
DATA RATE  
50  
100  
90  
V
T
= 3.3 V  
V
T
= 3.3 V  
CC  
= 25°C  
CC  
= 25°C  
A
A
V
= 1.2 V  
40  
V
V
= 1.2 V  
IC  
|V |= 200 m V  
IC  
80  
70  
= 200 mV  
ID  
ID  
23  
Input = PRBS 2 −1  
23  
Input = 1.5 Gpbs, PRBS 2 −1  
30  
20  
60  
50  
40  
30  
20  
10  
0
10  
0
0
500 1000 1500 2000 2500 3000 3500  
−40 −20  
0
20  
40  
60  
80  
100  
Data Rate − Mbps  
T
A
− Free Air Temperature − °C  
Figure 16.  
Figure 17.  
LVDS122  
LVDS122  
622 Mbps, 223– 1 PRBS  
1.5 Gbps, 223– 1 PRBS  
V
T
A
= 3.3 V  
V
= 3.3 V  
CC  
= 25°C  
CC  
T = 25°C  
A
V
= 200 mV  
V
= 200 mV  
ID  
ID  
Horizontal Scale= 200 ps/div  
LVPECL-to-LVDS  
Horizontal Scale= 100 ps/div  
LVPECL-to-LVDS  
Figure 18.  
Figure 19.  
11  
SN65LVDS122  
SN65LVDT122  
www.ti.com  
SLLS525BMAY 2002REVISED JUNE 2004  
TYPICAL CHARACTERISTICS (continued)  
LVDS122  
LVDS122  
622 Mbps, 223– 1 PRBS  
1.5 Gbps, 223– 1 PRBS  
V
T
A
= 3.3 V  
V
= 3.3 V  
CC  
= 25°C  
CC  
T = 25°C  
A
V
= 200 mV  
V
= 200 mV  
ID  
ID  
Horizontal Scale= 200 ps/div  
LVDS-to-LVDS  
Horizontal Scale= 100 ps/div  
LVDS-to-LVDS  
Figure 20.  
Figure 21.  
Power Supply 1  
+
3.3 V  
+
Power Supply 2  
1.22 V  
J3  
DUT  
GND  
J2  
EVM  
GND  
J1  
VCC  
J4  
J5  
J6  
J7  
100  
50 Ω  
50 Ω  
DUT  
Matched  
Cables  
Matched  
Cables  
Pattern  
Generator  
SMA to SMA  
SMA to SMA  
EVM  
Oscilloscope  
Figure 22. Jitter Setup Connections for SN65LVDS122  
12  
SN65LVDS122  
SN65LVDT122  
www.ti.com  
SLLS525BMAY 2002REVISED JUNE 2004  
APPLICATION INFORMATION  
TYPICAL APPLICATION CIRCUITS (ECL, PECL, LVDS, etc.)  
50 Ω  
3.3 V or 5 V  
3.3 V  
SN65LVDS122  
A
B
ECL  
50 Ω  
50 Ω  
50 Ω  
V
TT  
= V −2 V  
CC  
V
TT  
Figure 23. Low-Voltage Positive Emitter-Coupled Logic (LVPECL)  
3.3 V  
50 Ω  
50 Ω  
50 Ω  
3.3 V  
3.3 V  
SN65LVDS122  
A
B
CML  
50 Ω  
3.3 V  
Figure 24. Current-Mode Logic (CML)  
3.3 V  
SN65LVDS122  
3.3 V  
50 Ω  
A
ECL  
B
50 Ω  
1.1 kΩ  
1.5 kΩ  
V
TT  
= V −2 V  
CC  
V
TT  
V
CC  
Figure 25. Single-Ended (LVPECL)  
50 Ω  
3.3 V or 5 V  
LVDS  
3.3 V  
SN65LVDS122  
A
B
100 Ω  
50 Ω  
Figure 26. Low-Voltage Differential Signaling (LVDS)  
13  
PACKAGE OPTION ADDENDUM  
www.ti.com  
16-Aug-2005  
PACKAGING INFORMATION  
Orderable Device  
SN65LVDS122D  
Status (1)  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
Package Package  
Pins Package Eco Plan (2) Lead/Ball Finish MSL Peak Temp (3)  
Qty  
Type  
Drawing  
SOIC  
D
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
40 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
SN65LVDS122DR  
SN65LVDS122DRG4  
SN65LVDS122PW  
SN65LVDS122PWR  
SN65LVDS122PWRG4  
SN65LVDT122D  
SOIC  
SOIC  
D
D
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
TSSOP  
TSSOP  
TSSOP  
SOIC  
PW  
PW  
PW  
D
90 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
2000 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
2000 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
40 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
SN65LVDT122DR  
SN65LVDT122DRG4  
SN65LVDT122PW  
SN65LVDT122PWG4  
SN65LVDT122PWR  
SN65LVDT122PWRG4  
SOIC  
D
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
SOIC  
D
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
PW  
PW  
PW  
PW  
90 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
90 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
2000 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
2000 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in  
a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2)  
Eco Plan  
-
The planned eco-friendly classification: Pb-Free (RoHS) or Green (RoHS  
&
no Sb/Br)  
-
please check  
http://www.ti.com/productcontent for the latest availability information and additional product content details.  
TBD: The Pb-Free/Green conversion plan has not been defined.  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements  
for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered  
at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame  
retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)  
(3)  
MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder  
temperature.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is  
provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the  
accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take  
reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on  
incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited  
information may not be available for release.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
16-Aug-2005  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI  
to Customer on an annual basis.  
Addendum-Page 2  
MECHANICAL DATA  
MTSS001C – JANUARY 1995 – REVISED FEBRUARY 1999  
PW (R-PDSO-G**)  
PLASTIC SMALL-OUTLINE PACKAGE  
14 PINS SHOWN  
0,30  
0,19  
M
0,10  
0,65  
14  
8
0,15 NOM  
4,50  
4,30  
6,60  
6,20  
Gage Plane  
0,25  
1
7
0°8°  
A
0,75  
0,50  
Seating Plane  
0,10  
0,15  
0,05  
1,20 MAX  
PINS **  
8
14  
16  
20  
24  
28  
DIM  
3,10  
2,90  
5,10  
4,90  
5,10  
4,90  
6,60  
6,40  
7,90  
9,80  
9,60  
A MAX  
A MIN  
7,70  
4040064/F 01/97  
NOTES: A. All linear dimensions are in millimeters.  
B. This drawing is subject to change without notice.  
C. Body dimensions do not include mold flash or protrusion not to exceed 0,15.  
D. Falls within JEDEC MO-153  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,  
enhancements, improvements, and other changes to its products and services at any time and to discontinue  
any product or service without notice. Customers should obtain the latest relevant information before placing  
orders and should verify that such information is current and complete. All products are sold subject to TI’s terms  
and conditions of sale supplied at the time of order acknowledgment.  
TI warrants performance of its hardware products to the specifications applicable at the time of sale in  
accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI  
deems necessary to support this warranty. Except where mandated by government requirements, testing of all  
parameters of each product is not necessarily performed.  
TI assumes no liability for applications assistance or customer product design. Customers are responsible for  
their products and applications using TI components. To minimize the risks associated with customer products  
and applications, customers should provide adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right,  
copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process  
in which TI products or services are used. Information published by TI regarding third-party products or services  
does not constitute a license from TI to use such products or services or a warranty or endorsement thereof.  
Use of such information may require a license from a third party under the patents or other intellectual property  
of the third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of information in TI data books or data sheets is permissible only if reproduction is without  
alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction  
of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for  
such altered documentation.  
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that  
product or service voids all express and any implied warranties for the associated TI product or service and  
is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.  
Following are URLs where you can obtain information on other Texas Instruments products and application  
solutions:  
Products  
Applications  
Audio  
Amplifiers  
amplifier.ti.com  
www.ti.com/audio  
Data Converters  
dataconverter.ti.com  
Automotive  
www.ti.com/automotive  
DSP  
dsp.ti.com  
Broadband  
Digital Control  
Military  
www.ti.com/broadband  
www.ti.com/digitalcontrol  
www.ti.com/military  
Interface  
Logic  
interface.ti.com  
logic.ti.com  
Power Mgmt  
Microcontrollers  
power.ti.com  
Optical Networking  
Security  
www.ti.com/opticalnetwork  
www.ti.com/security  
www.ti.com/telephony  
www.ti.com/video  
microcontroller.ti.com  
Telephony  
Video & Imaging  
Wireless  
www.ti.com/wireless  
Mailing Address:  
Texas Instruments  
Post Office Box 655303 Dallas, Texas 75265  
Copyright 2005, Texas Instruments Incorporated  

相关型号:

UL1042

UL1042 - Uk砤d zr體nowa縪nego mieszacza iloczynowego

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
ETC

ZXFV201

QUAD VIDEO AMPLIFIER

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
ZETEX

ZXFV201N14

IC-SM-VIDEO AMP

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
ZETEX

ZXFV201N14TA

QUAD VIDEO AMPLIFIER

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
ZETEX

ZXFV201N14TC

QUAD VIDEO AMPLIFIER

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
ZETEX

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
ETC

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
ETC

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
ETC

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
ETC

ZXFV302N16

IC-SM-4:1 MUX SWITCH

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
ETC