SN65LVDS250 [TI]

LVDS 4x4 CROSSPOINT SWITCH; LVDS 4×4交叉点开关
SN65LVDS250
型号: SN65LVDS250
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

LVDS 4x4 CROSSPOINT SWITCH
LVDS 4×4交叉点开关

开关
文件: 总16页 (文件大小:356K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
SN65LVDS250  
SN65LVDT250  
www.ti.com  
SLLS594BMARCH 2004REVISED OCTOBER 2004  
LVDS 4x4 CROSSPOINT SWITCH  
FEATURES  
SN65LVDS250DBT ( Marked as LVDS250)  
SN65LVDT250DBT ( Marked as LVDT250)  
(TOP VIEW)  
Greater Than 2.0 Gbps Operation  
Nonblocking Architecture Allows Each  
Output to be Connected to Any Input  
S10  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
1
VCC  
GND  
1Y  
S11  
1A  
2
Pk-Pk Jitter:  
3
– 60 ps Typical at 2.0 Gbps  
– 110 ps Typical at 2.5 Gbps  
1B  
4
1Z  
S20  
S21  
2A  
5
1DE  
2Y  
2Z  
2DE  
GND  
VCC  
GND  
3Y  
6
Compatible With ANSI TIA/EIA-644-A LVDS  
Standard  
7
2B  
8
GND  
VCC  
GND  
3A  
9
Available Packaging 38-Pin TSSOP  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
25 mV of Input Voltage Threshold Hysteresis  
Propagation Delay Times: 800 ps Typical  
3B  
3Z  
3DE  
4Y  
Inputs Electrically Compatible With LVPECL,  
CML and LVDS Signal Levels  
S30  
S31  
4A  
4B  
S40  
S41  
Operates From a Single 3.3-V Supply  
Low Power: 110 mA Typical  
4Z  
4DE  
GND  
VCC  
Integrated 110-Line Termination Resistors  
Available With SN65LVDT250  
APPLICATIONS  
EYE PATTERN  
Clock Buffering/Clock Muxing  
Wireless Base Stations  
High-Speed Network Routing  
Telecom/Datacom  
DESCRIPTION  
The SN65LVDS250 and SN65LVDT250 are 4x4  
nonblocking crosspoint switches in a flow-through  
pin-out allowing for ease in PCB layout. Low-voltage  
differential signaling (LVDS) is used to achieve a  
high-speed data throughput while using low power.  
Each of the output drivers includes a 4:1 multiplexer  
to allow any input to be routed to any output. Internal  
signal paths are fully differential to achieve the high  
signaling speeds while maintaining low signal skews.  
The SN65LVDT250 incorporates 110-termination  
resistors for those applications where board space is  
a premium.  
76 − ps/div  
V
= 1.2 V  
IC  
|V | = 200 mV  
ID  
2 Gbps  
23  
Input = PRBS 2 −1  
= 3.3 V  
V
CC  
The SN65LVDS250 and SN65LVDT250 are  
characterized for operation from -40°C to 85°C.  
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas  
Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
PRODUCTION DATA information is current as of publication date.  
Copyright © 2004, Texas Instruments Incorporated  
Products conform to specifications per the terms of the Texas  
Instruments standard warranty. Production processing does not  
necessarily include testing of all parameters.  
SN65LVDS250  
SN65LVDT250  
www.ti.com  
SLLS594BMARCH 2004REVISED OCTOBER 2004  
These devices have limited built-in ESD protection. The leads should be shorted together or the device  
placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.  
LOGIC DIAGRAM  
8
S10 - S41  
1DE  
1A  
1B  
1Y  
1Z  
2DE  
2A  
2B  
2Y  
2Z  
4X4  
MUX  
3DE  
3A  
3B  
3Y  
3Z  
4DE  
4Y  
4A  
4B  
4Z  
Integrated Termination on LVDT Only  
2
SN65LVDS250  
SN65LVDT250  
www.ti.com  
SLLS594BMARCH 2004REVISED OCTOBER 2004  
EQUIVALENT INPUT AND OUTPUT SCHEMATIC DIAGRAMS  
INPUT LVDS250  
V
CC  
V
CC  
A
B
7 V  
7 V  
V
CC  
V
CC  
300 k  
S10, S41  
400 Ω  
400 Ω  
DE  
300 kΩ  
7 V  
7 V  
OUTPUT LVDS250  
V
CC  
V
CC  
V
CC  
Y
Z
7 V  
7 V  
3
SN65LVDS250  
SN65LVDT250  
www.ti.com  
SLLS594BMARCH 2004REVISED OCTOBER 2004  
Table 1. CROSSPOINT LOGIC TABLES  
OUTPUT CHANNEL 1  
OUTPUT CHANNEL 2  
OUTPUT CHANNEL 3  
CONTROL INPUT  
PINS  
OUTPUT CHANNEL 4  
CONTROL  
PINS  
INPUT  
SELECTED  
CONTROL  
PINS  
INPUT  
SELECTED  
CONTROL  
PINS  
INPUT  
SELECTED  
SELECTED  
3Y/3Z  
S10  
S11  
0
1Y/1Z  
1A/1B  
2A/2B  
3A/3B  
4A/4B  
S20  
S21  
0
2Y/2Z  
1A/1B  
2A/2B  
3A/3B  
4A/4B  
S30  
0
S31  
0
S40  
S41  
0
4Y/4Z  
1A/1B  
2A/2B  
3A/3B  
4A/4B  
0
0
1
1
0
0
1
1
1A/1B  
0
0
1
1
1
1
0
1
2A/2B  
1
0
0
1
0
3A/3B  
0
1
1
1
1
4A/4B  
1
PACKAGE DISSIPATION RATINGS  
CIRCUIT BOARD  
TA25°C  
POWER RATING  
DERATING FACTOR(1)  
ABOVE TA = 25°C  
TA = 85°C  
POWER RATING  
PACKAGE  
MODEL  
TSSOP (DBT)  
TSSOP (DBT)  
Low-K(2)  
High-K(3)  
1038 mW  
9.0 mW/°C  
496 mW  
1772 mW  
15.4 mW/°C  
847 mW  
(1) This is the inverse of the junction-to-ambient thermal resistance when board-mounded and with no air flow.  
(2) In accordance with the Low-K thermal metric definitions of EIA/JESD51-6  
(3) In accordance with the High-K thermal metric definitions of EIA/JESD51-6  
THERMAL CHARACTERISTICS  
PARAMETER  
TEST CONDITIONS  
VALUE  
40.3  
8.5  
UNITS  
ΘJB  
ΘJC  
Junction-to-board thermal resistance  
Junction-to-case thermal resistance  
°C/W  
VCC = 3.3 V, TA = 25°C, 1 GHz  
VCC = 3.6 V, TA = 85°C, 1 GHz  
356  
mW  
mW  
PD  
Device power dissipation  
522  
ABSOLUTE MAXIMUM RATINGS  
over operating free-air temperature range unless otherwise noted(1)  
UNITS  
-0.5 V to 4 V  
-0.5 V to 4 V  
-0.5 V to 4 V  
1 V  
Supply voltage range, VCC  
S, DE  
A, B  
Voltage range(2)  
|VA - VB| (LVDT only)  
Y, Z  
-0.5 V to 4 V  
±3 kV  
Human body model(3)  
Charged-device model(4)  
All pins  
All pins  
Electrostatic discharge  
±500 V  
Continuous power dissipation  
See Dissipation Rating Table  
(1) Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings  
only, and functional operation of the device at these or any other conditions beyond those indicated under recommended operating  
conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) All voltage values, except differential I/O bus voltages, are with respect to network ground terminal.  
(3) Tested in accordance with JEDEC Standard 22, Test Method A114-A.  
(4) Tested in accordance with JEDEC Standard 22, Test Method C101.  
4
SN65LVDS250  
SN65LVDT250  
www.ti.com  
SLLS594BMARCH 2004REVISED OCTOBER 2004  
RECOMMENDED OPERATING CONDITIONS  
MIN NOM MAX UNIT  
VCC  
VIH  
VIL  
Supply voltage  
3
2
3.3  
3.6  
VCC  
0.8  
1
V
V
High-level input voltage  
Low-level input voltage  
S10-S41, 1DE-4DE  
S10-S41, 1DE-4DE  
LVDS  
0
V
0.1  
0.1  
0
V
|VID  
|
Magnitude of differential input voltage  
LVDT  
0.8  
3.3  
140  
85  
V
Input voltage (any combination of common-mode or input signals)  
Junction temperature  
V
TJ  
°C  
°C  
(1)  
TA  
Operating free-air temperature  
-40  
(1) Maximum free-air temperature operation is allowed as long as the device maximum junction temperature is not exceeded.  
TIMING SPECIFICATIONS  
PARAMETER  
MIN NOM  
MAX UNIT  
tSET  
Input to select setup time  
Input to select hold time  
0.6  
0.2  
1.2  
ns  
ns  
tHOLD  
See Figure 7  
tSWITCH Select to switch output  
1.6 ns  
INPUT ELECTRICAL CHARACTERISTICS  
over recommended operating conditions unless otherwise noted(1)  
PARAMETER  
TEST CONDITIONS  
See Figure 1  
MIN TYP(1)  
MAX UNIT  
VIT+  
Positive-going differential input voltage threshold  
100  
mV  
mV  
mV  
VIT-  
Negative-going differential input voltage threshold See Figure 1  
Differential input voltage hysteresis  
1DE-4DE  
-100  
VID(HYS)  
25  
-10  
IIH  
High-level input current  
VIH = 2 V  
µA  
S10-S41  
1DE-4DE  
S10-S41  
20  
-10  
-20  
IIL  
II  
Low-level input current  
VIL = 0.8 V  
µA  
µA  
20  
20  
VI = 0 V or 3.3 V, second input at 1.2 V  
(other input open for LVDT)  
Input current (A or B inputs)  
VCC1.5 V, VI = 0 V or 3.3 V, second  
II(OFF)  
IIO  
Input current (A or B inputs)  
input at 1.2 V(other input open for  
LVDT)  
-20  
-6  
20  
µA  
µA  
Input offset current (|IIA - IIB|) (LVDS)  
Termination resistance (LVDT)  
VIA = VIB, 0 VIA3.3 V  
6
VID = 300 mV, VIC = 0 V to 3.3 V  
90  
110  
110  
2.5  
132  
RT  
CI  
VID = 300 mV, VIC = 0 V to 3.3 V,  
VCC = 1.5 V  
Termination resistance (LVDT with power-off)  
Differential input capacitance  
90  
132  
pF  
(1) All typical values are at 25°C and with a 3.3 V supply.  
5
SN65LVDS250  
SN65LVDT250  
www.ti.com  
SLLS594BMARCH 2004REVISED OCTOBER 2004  
OUTPUT ELECTRICAL CHARACTERISTICS  
over recommended operating conditions unless otherwise noted  
PARAMETER  
TEST CONDITIONS  
MIN  
247  
TYP  
MAX UNIT  
|VOD  
|
Differential output voltage magnitude  
350  
454  
50  
mV  
mV  
V
See Figure 2  
VID = ±100 mV  
|VOD  
|
Change in differential output voltage magnitude between logic states  
Steady-state common-mode output voltage  
-50  
VOC(SS)  
1.125  
1.375  
Change in steady-state common-mode output voltage between logic  
states  
VOC(SS)  
See Figure 3  
-50  
50  
mV  
VOC(PP)  
ICC  
Peak-to-peak common-mode output voltage  
Supply current  
50  
150  
145  
27  
mV  
mA  
mA  
mA  
µA  
RL=100 Ω  
110  
IOS  
Short-circuit output current  
VOY or VOZ = 0 V  
VOD = 0 V  
-27  
-12  
IOSD  
IOZ  
Differential short circuit output current  
High-impedance output current  
Differential output capacitance  
12  
VO = 0 V or VCC  
±1  
CO  
2
pF  
SWITCHING CHARACTERISTICS  
over recommended operating conditions unless otherwise noted  
PARAMETER  
TEST CONDITIONS  
MIN TYP MAX  
UNIT  
tPLH  
tPHL  
tr  
Propagation delay time, low-to-high-level output  
Propagation delay time, high-to-low-level output  
Differential output signal rise time (20%-80%)  
Differential output signal fall time (20%-80%)  
Pulse skew (|tPHL - tPLH|)(1)  
Channel-to-channel output skew(2)  
Part-to-part skew(3)  
Period jitter, rms (1 standard deviation)(4)  
Cycle-to-cycle jitter (peak)(5)  
Peak-to-peak jitteR(6)  
700  
700  
800 1200  
800 1200  
See Figure 4  
ps  
200  
200  
0
245  
245  
50  
tf  
tsk(p)  
tsk(o)  
tsk(pp)  
tjit(per)  
tjit(cc)  
tjit(pp)  
tjit(det)  
tPHZ  
tPLZ  
tPZH  
tPZL  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
175  
300  
3
See Figure 6  
See Figure 6  
See Figure 6  
See Figure 6  
1
8
17  
60  
48  
110  
65  
Deterministic jitter, peak-to-peak(7)  
Propagation delay, high-level-to-high-impedance output  
Propagation delay, low-level-to-high-impedance output  
Propagation delay, high-impedance -to-high-level output  
Propagation delay, high-impedance-to-low-level output  
6
6
See Figure 5  
ns  
300  
300  
(1) tsk(p) is the magnitude of the time difference between the tPLH and tPHL of any output of a single device.  
(2) tsk(o) is the maximum delay time difference between drivers over temperature, VCC, and process.  
(3) tsk(pp) is the magnitude of the difference in propagation delay times between any specified terminals of two devices when both devices  
operate with the same supply voltages, at the same temperature, and have identical packages and test circuits.  
(4) Input voltage = VID = 200 mV, 50% duty cycle at 1.0 GHz, tr = tf= 50 ps (20% to 80%), measured over 1000 samples.  
(5) Input voltage = VID = 200 mV, 50% duty cycle at 1.0 GHz, tr = tf= 50 ps (20% to 80%).  
(6) Input voltage = VID = 200 mV, 223-1 PRBS pattern at 2.0 Gbps, tr = tf = 50 ps (20% to 80%), measured over 200k samples.  
(7) Input voltage = VID = 200 mV, 27-1 PRBS pattern at 2.0 Gbps, tr= tf = 50 ps (20% to 80%).  
6
SN65LVDS250  
SN65LVDT250  
www.ti.com  
SLLS594BMARCH 2004REVISED OCTOBER 2004  
PARAMETER MEASUREMENT INFORMATION  
I
IA  
A
B
Y
Z
V
ID  
V
OD  
V
IA  
V
OY  
V
IC  
V
OC  
V
+V  
V +V  
OY  
2
IA IB  
OZ  
V
IB  
V
OZ  
I
IB  
2
Figure 1. Voltage and Current Definitions  
3.75 k  
Y
+
0 V V  
2.4 V  
V
OD  
100 Ω  
(test)  
_
Z
3.75 kΩ  
Figure 2. Differential Output Voltage (VOD) Test Circuit  
A
1.4 V  
1 V  
49.9 ±1%  
A
B
Y
B
V
ID  
V
V
OC(SS)  
OC(PP)  
V
OC  
Z
1 pF  
V
49.9 ±1%  
OC  
A. All input pulses are supplied by a generator having the following characteristics: tr or tf1 ns, pulse-repetition rate  
(PRR) = 0.5 Mpps, pulse width = 500 ±10 ns; RL = 100; CL includes instrumentation and fixture capacitance within  
0,06 mm of the DUT; the measurement of VOC(PP) is made on test equipment with a -3 dB bandwidth of at least 300  
MHz.  
Figure 3. Test Circuit and Definitions fot the Driver Common-Mode Output Voltage  
V
1.4 V  
1 V  
A
B
IA  
IB  
Y
1 pF  
V
OY  
V
OD  
V
ID  
100  
V
V
IA  
Z
V
IB  
V
OZ  
0.4 V  
0 V  
V
ID  
-0.4 V  
t
t
PLH  
PHL  
0 V  
80%  
Differential  
V
OY  
- V  
OZ  
20%  
t
f
t
r
A. All input pulses are supplied by a generator having the following characteristics: tr or tf0.25 ns, pulse-repetition rate  
(PRR) = 0.5 Mpps, pulse width = 500 ± 10 ns . CL includes instrumentation and fixture capacitance within 0,06 mm of  
the DUT.  
Figure 4. Timing Test Circuit and Waveforms  
7
SN65LVDS250  
SN65LVDT250  
www.ti.com  
SLLS594BMARCH 2004REVISED OCTOBER 2004  
PARAMETER MEASUREMENT INFORMATION (continued)  
49.9 ±1%  
Y
1 V or 1.4 V  
1 pF  
V
OY  
49.9 ±1%  
1.2 V  
DE  
Z
1.2 V  
V
OZ  
3 V  
DE  
1.5 V  
0 V  
1.4 V  
V
or V  
1.25 V  
1.2 V  
OY  
OZ  
OY  
t
t
PZH  
PHZ  
1.2 V  
1.15 V  
1 V  
V
or V  
OZ  
t
t
PZL  
PLZ  
A. All input pulses are supplied by a generator having the following characteristics: tr or tf1 ns, pulse-repetition rate  
(PRR) = 0.5 Mpps, pulse width = 500 ± 10 ns. CL includes instrumentation and fixture capacitance within 0,06 mm of  
the DUT.  
Figure 5. Enable and Disable Time Circuit and Definitions  
V
A
0 V  
Clock Input  
0 V  
Ideal Output  
V
B
V
Y
- V  
Z
1/fo  
1/fo  
Period Jitter  
Cycle-to-Cycle Jitter  
Actual Output  
0 V  
Actual Output  
V
0 V  
- V  
V
Y
- V  
Z
Y
Z
t
t
t
c(n)  
c(n)  
c(n +1)  
t
= | t  
- t  
|
t
= | t  
- 1/fo |  
jit(cc)  
c(n) c(n + 1)  
jit(pp)  
c(n)  
Peak-to-Peak Jitter  
V
A
V
Y
PRBS Input  
0 V  
0 V  
PRBS Output  
V
B
V
Z
t
jit(pp)  
A. All input pulses are supplied by an Agilent 81250 Stimulus System.  
B. The measurement is made on a TEK TDS6604 running TDSJIT3 application software.  
Figure 6. Driver Jitter Measurement Waveforms  
8
SN65LVDS250  
SN65LVDT250  
www.ti.com  
SLLS594BMARCH 2004REVISED OCTOBER 2004  
PARAMETER MEASUREMENT INFORMATION (continued)  
A/B  
A/B  
S
t
t
HOLD  
SET  
OUT  
DE  
Y/Z  
Y/Z  
t
SWITCH  
A/B  
A/B  
S
t
t
HOLD  
SET  
Y/Z  
Y/Z  
OUT  
t
SWITCH  
DE  
A. tSET and tHOLD times specify that data must be in a stable state before and after mux control switches.  
Figure 7. Input to Select for Both Rising and Falling Edge Setup and Hold Times  
9
SN65LVDS250  
SN65LVDT250  
www.ti.com  
SLLS594BMARCH 2004REVISED OCTOBER 2004  
TYPICAL CHARACTERISTICS  
SUPPLY CURRENT  
vs  
PROPAGATION DELAY TIME  
vs  
FREE-AIR TEMPERATURE  
PROPAGATION DELAY TIME  
vs  
COMMON-MODE INPUT VOLTAGE  
FREQUENCY  
118  
1000  
1000  
940  
880  
820  
760  
700  
V
T
V
= 3.3 V,  
= 25°C,  
= 1.2 V,  
V
T
= 3.3 V,  
CC  
CC  
= 25°C,  
V
V
= 3.3 V,  
CC  
= 1.2 V,  
A
A
IC  
|V | = 200 mV,  
ID  
f = 1 MHz  
IC  
|V | = 200 mV,  
ID  
f = 1 MHz  
|V | = 200 mV  
ID  
113  
900  
800  
700  
600  
t
PHL  
108  
103  
98  
t
PLH  
t
PHL  
t
PLH  
3
0
200  
400  
600  
800  
1000 1200  
0
0.5  
1
1.5  
2
2.5  
3.5  
−45 −25  
−5  
15  
35  
55  
75  
95  
2200  
1100  
f − Frequency − MHz  
V
− Common-Mode Input Voltage − V  
T
A
− Free-Air Temperature − °C  
ic  
Figure 8.  
Figure 9.  
Figure 10.  
PEAK-TO-PEAK JITTER  
PEAK-TO-PEAK JITTER  
PEAK-TO-PEAK JITTER  
vs  
vs  
vs  
FREQUENCY  
DATA RATE  
FREQUENCY  
30  
25  
20  
15  
10  
5
140  
120  
100  
80  
30  
25  
20  
15  
10  
5
V
T
V
= 3.3 V,  
= 25°C,  
= 400 mV,  
V
T
V
= 3.3 V,  
CC  
CC  
V
= 3.3 V,  
CC  
T = 25°C,  
A
= 25°C  
A
A
= 400 mV,  
IC  
IC  
V
= 1.2 V,  
IC  
23  
Input = PRBS 2 −1  
Input = Clock  
Input = Clock  
V
= 800 mV  
ID  
V
= 400 mV  
ID  
V
= 800 mV  
ID  
V
= 800 mV  
ID  
V
= 200 mV  
ID  
V
= 400 mV  
60  
ID  
V
= 400 mV  
ID  
40  
V
= 200 mV  
V
= 200 mV  
ID  
ID  
20  
0
0
0
0
220  
440  
660  
880  
1100  
0
220  
440  
660  
880  
1100  
0
440  
880  
1320  
1760  
f − Frequency − MHz  
f − Frequency − MHz  
Data Rate − Mbps  
Figure 11.  
Figure 12.  
Figure 13.  
PEAK-TO-PEAK JITTER  
PEAK-TO-PEAK JITTER  
PEAK-TO-PEAK JITTER  
vs  
vs  
vs  
DATA RATE  
FREQUENCY  
DATA RATE  
140  
120  
100  
80  
30  
25  
20  
15  
10  
5
140  
120  
100  
80  
V
T
V
= 3.3 V,  
= 25°C,  
= 1.2 V,  
V
= 3.3 V,  
CC  
CC  
V
= 3.3 V,  
CC  
= 25°C,  
T
= 25°C,  
= 2.9 V,  
A
A
T
A
V
IC  
Input = PRBS 2 −1  
IC  
V
= 2.9 V,  
IC  
Input = Clock  
23  
23  
Input = PRBS 2 −1  
V
= 400 mV  
ID  
V
= 200 mV  
ID  
V
= 800 mV  
V
= 800 mV  
ID  
ID  
V
= 400 mV  
ID  
60  
60  
V
= 800 mV  
ID  
V
= 200 mV  
ID  
40  
40  
V
= 200 mV  
ID  
20  
0
20  
V
= 400 mV  
880  
ID  
0
0
0
440  
880  
1320  
1760  
2200  
0
440  
1320  
1760 2200  
0
220  
440  
660  
880  
Data Rate − Mbps  
f − Frequency − MHz  
Data Rate − Mbps  
Figure 14.  
Figure 15.  
Figure 16.  
10  
SN65LVDS250  
SN65LVDT250  
www.ti.com  
SLLS594BMARCH 2004REVISED OCTOBER 2004  
TYPICAL CHARACTERISTICS (continued)  
PEAK-TO-PEAK JITTER  
vs  
FREE-AIR TEMPERATURE  
PEAK-TO-PEAK JITTER  
vs  
DATA RATE  
90  
120  
100  
80  
V
V
= 3.3 V,  
CC  
= 1.2 V,  
V
V
= 3.3 V,  
CC  
= 1.2 V,  
IC  
IC  
|V | = 200 mV,  
23  
Input = PRBS 2 −1  
ID  
|V | = 200 mV,  
23  
Input = 2 Gbps PRBS 2 −1  
82  
74  
66  
58  
50  
ID  
60  
40  
20  
0
−40 −20  
0
20  
40  
60  
80 100  
0
560  
1120  
1680  
2240  
2800  
T
A
− Free-Air Temperature − °C  
Data Rate − Mbps  
Figure 17.  
Figure 18.  
DIFFERENTIAL OUTPUT VOLTAGE  
vs  
FREQUENCY  
EYE PATTERN  
400  
350  
300  
250  
40  
V
V
= 3.3 V,  
CC  
= 1.2 V,  
IC  
35  
30  
25  
|V | = 200 mV,  
ID  
T
= 25°C,  
A
Input = Clock  
200  
150  
100  
20  
15  
10  
50  
0
5
0
Added Random Jitter  
0
500  
1000  
1500  
2000  
2500  
f − Frequency − MHz  
60 − ps/div  
V
= 1.2 V, |V | = 200 mV, 2.5 Gbps,  
ID  
IC  
23  
Input = PRBS 2 −1, V = 3.3 V  
CC  
Figure 19.  
Figure 20.  
11  
SN65LVDS250  
SN65LVDT250  
www.ti.com  
SLLS594BMARCH 2004REVISED OCTOBER 2004  
APPLICATION INFORMATION  
CONFIGURATION EXAMPLES  
S10  
0
S30  
1
S11  
0
S31  
0
S20  
0
S40  
1
S21  
S10  
0
S30  
0
S11  
0
S31  
0
S20  
0
S40  
0
S21  
0
S41  
0
1
S41  
1
1Y  
1Z  
1A  
1B  
1Y  
1A  
1B  
1Z  
2Y  
2Z  
2A  
2B  
2Y  
2Z  
3Y  
3Z  
3A  
3B  
3Y  
3Z  
4Y  
4Z  
4Y  
4Z  
4A  
4B  
S10  
0
S11  
0
S20  
0
S21  
0
S10  
1
S11  
1
S20  
1
S21  
1
S30  
1
S31  
0
S40  
1
S41  
0
S30  
0
S31  
0
S40  
0
S41  
0
1A  
1B  
1Y  
1Z  
1A  
1B  
1Y  
1Z  
2Y  
2Z  
2Y  
2Z  
3Y  
3Z  
3A  
3B  
3Y  
3Z  
4Y  
4Z  
4A  
4B  
4Y  
4Z  
12  
SN65LVDS250  
SN65LVDT250  
www.ti.com  
SLLS594BMARCH 2004REVISED OCTOBER 2004  
APPLICATION INFORMATION (continued)  
TYPICAL APPLICATION CIRCUITS (ECL, PECL, LVDS, etc.)  
50 Ω  
3.3 V or 5 V  
3.3 V  
SN65LVDS250  
A
B
ECL  
50 Ω  
50 Ω  
50 Ω  
V
TT  
= V -2 V  
CC  
V
TT  
Figure 21. Low-Voltage Positive Emitter-Coupled Logic (LVPECL)  
3.3 V  
50 Ω  
50 Ω  
50 Ω  
3.3 V  
3.3 V  
SN65LVDS250  
A
B
CML  
50 Ω  
3.3 V  
Figure 22. Current-Mode Logic (CML)  
3.3 V  
3.3 V  
SN65LVDS250  
50 Ω  
A
B
ECL  
50 Ω  
1.1 kΩ  
3.3 V  
1.5 kΩ  
V
TT  
= V -2 V  
CC  
V
TT  
Figure 23. Single-Ended (LVPECL)  
50 Ω  
3.3 V or 5 V  
LVDS  
3.3 V  
SN65LVDS250  
A
B
100 Ω  
50 Ω  
Figure 24. Low-Voltage Differential Signaling (LVDS)  
13  
PACKAGE OPTION ADDENDUM  
www.ti.com  
4-Feb-2005  
PACKAGING INFORMATION  
Orderable Device  
Status (1)  
Package Package  
Pins Package Eco Plan (2) Lead/Ball Finish MSL Peak Temp (3)  
Qty  
Type  
SM8  
SM8  
SM8  
SM8  
Drawing  
SN65LVDS250DBT  
SN65LVDS250DBTR  
SN65LVDT250DBT  
SN65LVDT250DBTR  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
DBT  
38  
38  
38  
38  
50  
2000  
50  
None  
None  
None  
None  
CU NIPDAU Level-2-220C-1 YEAR  
CU NIPDAU Level-2-220C-1 YEAR  
CU NIPDAU Level-2-220C-1 YEAR  
CU NIPDAU Level-2-220C-1 YEAR  
DBT  
DBT  
DBT  
2000  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in  
a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2)  
Eco Plan - May not be currently available - please check http://www.ti.com/productcontent for the latest availability information and additional  
product content details.  
None: Not yet available Lead (Pb-Free).  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements  
for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered  
at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean "Pb-Free" and in addition, uses package materials that do not contain halogens,  
including bromine (Br) or antimony (Sb) above 0.1% of total product weight.  
(3)  
MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDECindustry standard classifications, and peak solder  
temperature.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is  
provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the  
accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take  
reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on  
incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited  
information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI  
to Customer on an annual basis.  
Addendum-Page 1  
MECHANICAL DATA  
MPDS019D – FEBRUARY 1996 – REVISED FEBRUARY 2002  
DBT (R-PDSO-G**)  
PLASTIC SMALL-OUTLINE PACKAGE  
30 PINS SHOWN  
0,27  
0,17  
M
0,50  
30  
0,08  
16  
0,15 NOM  
4,50  
4,30  
6,60  
6,20  
Gage Plane  
0,25  
1
15  
0°ā8°  
0,75  
0,50  
A
Seating Plane  
0,10  
0,15  
0,05  
1,20 MAX  
PINS **  
20  
24  
28  
30  
38  
44  
50  
DIM  
5,10  
4.90  
6,60  
6,40  
7,90  
7,70  
7,90  
7,70  
9,80  
9,60  
11,10  
10,90  
12,60  
12,40  
A MAX  
A MIN  
4073252/E 02/02  
NOTES: A. All linear dimensions are in millimeters.  
B. This drawing is subject to change without notice.  
C. Body dimensions do not include mold flash or protrusion.  
D. Falls within JEDEC MO-153  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,  
enhancements, improvements, and other changes to its products and services at any time and to discontinue  
any product or service without notice. Customers should obtain the latest relevant information before placing  
orders and should verify that such information is current and complete. All products are sold subject to TI’s terms  
and conditions of sale supplied at the time of order acknowledgment.  
TI warrants performance of its hardware products to the specifications applicable at the time of sale in  
accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI  
deems necessary to support this warranty. Except where mandated by government requirements, testing of all  
parameters of each product is not necessarily performed.  
TI assumes no liability for applications assistance or customer product design. Customers are responsible for  
their products and applications using TI components. To minimize the risks associated with customer products  
and applications, customers should provide adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right,  
copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process  
in which TI products or services are used. Information published by TI regarding third-party products or services  
does not constitute a license from TI to use such products or services or a warranty or endorsement thereof.  
Use of such information may require a license from a third party under the patents or other intellectual property  
of the third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of information in TI data books or data sheets is permissible only if reproduction is without  
alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction  
of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for  
such altered documentation.  
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that  
product or service voids all express and any implied warranties for the associated TI product or service and  
is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.  
Following are URLs where you can obtain information on other Texas Instruments products and application  
solutions:  
Products  
Applications  
Audio  
Amplifiers  
amplifier.ti.com  
www.ti.com/audio  
Data Converters  
dataconverter.ti.com  
Automotive  
www.ti.com/automotive  
DSP  
dsp.ti.com  
Broadband  
Digital Control  
Military  
www.ti.com/broadband  
www.ti.com/digitalcontrol  
www.ti.com/military  
Interface  
Logic  
interface.ti.com  
logic.ti.com  
Power Mgmt  
Microcontrollers  
power.ti.com  
Optical Networking  
Security  
www.ti.com/opticalnetwork  
www.ti.com/security  
www.ti.com/telephony  
www.ti.com/video  
microcontroller.ti.com  
Telephony  
Video & Imaging  
Wireless  
www.ti.com/wireless  
Mailing Address:  
Texas Instruments  
Post Office Box 655303 Dallas, Texas 75265  
Copyright 2005, Texas Instruments Incorporated  

相关型号:

SN65LVDS250DBT

LVDS 4x4 CROSSPOINT SWITCH
TI

SN65LVDS250DBTG4

LVDS 4x4 CROSSPOINT SWITCH
TI

SN65LVDS250DBTR

LVDS 4x4 CROSSPOINT SWITCH
TI

SN65LVDS250DBTRG4

LVDS 4x4 CROSSPOINT SWITCH
TI

SN65LVDS250_07

LVDS 4x4 CROSSPOINT SWITCH
TI

SN65LVDS2D

HIGH-SPEED DIFFERENTAIL LINE DRIVER/RECEIVERS
TI

SN65LVDS2DBV

HIGH-SPEED DIFFERENTIAL LINE RECEIVER
TI

SN65LVDS2DBVR

HIGH-SPEED DIFFERENTAIL LINE DRIVER/RECEIVERS
TI

SN65LVDS2DBVRG4

HIGH-SPEED DIFFERENTAIL LINE DRIVER/RECEIVERS
TI

SN65LVDS2DBVT

HIGH-SPEED DIFFERENTAIL LINE DRIVER/RECEIVERS
TI

SN65LVDS2DBVTG4

HIGH-SPEED DIFFERENTAIL LINE DRIVER/RECEIVERS
TI

SN65LVDS2DG4

HIGH-SPEED DIFFERENTIAL LINE DRIVER/RECEIVERS
TI